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Abstract — In this paper the results of our investigations 
related to social spreading are summed up and concluded. In our 
work we studied information spreading on different network 
topologies. Based on a novel complex network generating method 
we managed to generate several test cases for social simulations 
focusing mainly on the case of declining social networks. We ran 
simulations using a previously presented model of information 
spreading. As a result we showed how the effectiveness of the 
spreading depends on the way and the intensity of declining. 
Later, using a modified version of the model we examined the 
effect of dynamically active agents in the system. As the most 
important result of this study we showed that increasing the 
activity of central nodes of a social network alone does not make 
the spreading significantly more effective.  

 

Index Terms — information spreading, declining social 
networks, complex networks, cellular automata simulation 

I. INTRODUCTION 
HE investigation of social spreading phenomena has been  
in the focus of research for a couple of decades. However 

in the last 15 years with the appearance of online communities 
its importance has become much greater as it turned out that 
the models used to model classical societies based on personal 
contacts are also applicable for these social structures [1-3]. 
While the classical topics of the field were in most of the cases 
related to disease spreading, rumor spreading, opinion 
spreading, etc. [1,2], today – reflecting to the questions of the 
informational society – one of the most important questions is 
information spreading. In our work we study the spreading on 
the most widely known group of online societies, on social 
networks. In this very work we focus on to major topics: (i.) 
declining social networks and (ii.) networks of dynamically 
active agents. In the first part we try to understand how the 
dynamics of information spreading change on social networks 
that have passed their golden age, and start to decline. Based 
on this result we give a hint, where is the point when it does 
not worth anymore to spread information (e.g. advertise) on 
these networks. In the second part of our work we examine the 
change of the spreading when we assume that agents may not 
be always active and ready to spread or receive information. 
More practically our goal is to find out that in such a network 
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what can one do to speed up the spreading only by 
manipulating the activity of agents. The results of our work 
may be used later in planning advertising campaign strategies, 
or anti-spam actions. 

II. SPREADING ON DECLINING SOCIAL NETWORKS 
As history shows, online 

social networks follow the 
universal rules of diffusion 
of new technologies [1] 
during their life cycle and 
go through four different 
stages [4] (see Fig. 1.). At 
the very beginning, when 
they are just introduced, the 
number of users starts to 
increase slowly. Later more 
and more users join and the 
network grows much faster. 
After a while however the 

system reaches its possible maximal size, and enters to its 
maturity phase. The aim of the owners of all social networks is 
of course to stay as long as possible in these latter two stages. 
Several examples show however (MySpace, Orkut, iwiw, etc.) 
that after a while social networks start to get out of fashion. 
This means that users leave them, they arrive to their fourth 
stage and the declining starts. In our work presented in [5] we 
focus on information spreading on social networks of this 
fourth kind. As one possible result we wanted to get an idea if 
it is worth to advertise such networks or not.  

In the next three sections the two steps of this work is 
presented. First we model the network structure and then we 
model the behavior of the nodes of the network. 

A. Reproducing the topology of declining social networks 

To be able to run our simulations the first step was to find a 
way to generate topologies similar to the ones that online 
social networks have. Finally we worked out a two step 
method for this [6,7]. First we generate a network that is 
topologically more or less similar to a real social network in 
its mature phase. And then we attack it to catch the declining. 

As it is widely known from the literature real social 
networks have a so called scale-free topology meaning that 
there are a huge number of actors with a low number of 
connections and only some that have a high number of 
neighbors [8-10]. More precisely this means that the degree 
distributions of these networks follow a power law form 
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Fig. 1. Life cycle of a social network. 
First, when the network is introduced 
more and more users come and it keeps 
growing till the maturity. The last phase 
however is always declining. 
 

IJ-14-25 1 

Abstract — In this paper the results of our investigations 
related to social spreading are summed up and concluded. In our 
work we studied information spreading on different network 
topologies. Based on a novel complex network generating method 
we managed to generate several test cases for social simulations 
focusing mainly on the case of declining social networks. We ran 
simulations using a previously presented model of information 
spreading. As a result we showed how the effectiveness of the 
spreading depends on the way and the intensity of declining. 
Later, using a modified version of the model we examined the 
effect of dynamically active agents in the system. As the most 
important result of this study we showed that increasing the 
activity of central nodes of a social network alone does not make 
the spreading significantly more effective.  

 

Index Terms — information spreading, declining social 
networks, complex networks, cellular automata simulation 

I. INTRODUCTION 
HE investigation of social spreading phenomena has been  
in the focus of research for a couple of decades. However 

in the last 15 years with the appearance of online communities 
its importance has become much greater as it turned out that 
the models used to model classical societies based on personal 
contacts are also applicable for these social structures [1-3]. 
While the classical topics of the field were in most of the cases 
related to disease spreading, rumor spreading, opinion 
spreading, etc. [1,2], today – reflecting to the questions of the 
informational society – one of the most important questions is 
information spreading. In our work we study the spreading on 
the most widely known group of online societies, on social 
networks. In this very work we focus on to major topics: (i.) 
declining social networks and (ii.) networks of dynamically 
active agents. In the first part we try to understand how the 
dynamics of information spreading change on social networks 
that have passed their golden age, and start to decline. Based 
on this result we give a hint, where is the point when it does 
not worth anymore to spread information (e.g. advertise) on 
these networks. In the second part of our work we examine the 
change of the spreading when we assume that agents may not 
be always active and ready to spread or receive information. 
More practically our goal is to find out that in such a network 

 
Manuscript submitted June 14, 2014, revised September 10, 2014. 
Kocsis, G. Is assistant professor at the University of Debrecen, Faculty of 

Informatics, Department of Informatics Systems and Networks (e-mail: 
kocsis.gergely@inf.unideb.hu). 

Varga, I. Is assistant professor at the University of Debrecen, Faculty of 
Informatics, Department of Informatics Systems and Networks (e-mail: 
varga.imre@inf.unideb.hu). 

what can one do to speed up the spreading only by 
manipulating the activity of agents. The results of our work 
may be used later in planning advertising campaign strategies, 
or anti-spam actions. 

II. SPREADING ON DECLINING SOCIAL NETWORKS 
As history shows, online 

social networks follow the 
universal rules of diffusion 
of new technologies [1] 
during their life cycle and 
go through four different 
stages [4] (see Fig. 1.). At 
the very beginning, when 
they are just introduced, the 
number of users starts to 
increase slowly. Later more 
and more users join and the 
network grows much faster. 
After a while however the 

system reaches its possible maximal size, and enters to its 
maturity phase. The aim of the owners of all social networks is 
of course to stay as long as possible in these latter two stages. 
Several examples show however (MySpace, Orkut, iwiw, etc.) 
that after a while social networks start to get out of fashion. 
This means that users leave them, they arrive to their fourth 
stage and the declining starts. In our work presented in [5] we 
focus on information spreading on social networks of this 
fourth kind. As one possible result we wanted to get an idea if 
it is worth to advertise such networks or not.  

In the next three sections the two steps of this work is 
presented. First we model the network structure and then we 
model the behavior of the nodes of the network. 

A. Reproducing the topology of declining social networks 

To be able to run our simulations the first step was to find a 
way to generate topologies similar to the ones that online 
social networks have. Finally we worked out a two step 
method for this [6,7]. First we generate a network that is 
topologically more or less similar to a real social network in 
its mature phase. And then we attack it to catch the declining. 

As it is widely known from the literature real social 
networks have a so called scale-free topology meaning that 
there are a huge number of actors with a low number of 
connections and only some that have a high number of 
neighbors [8-10]. More precisely this means that the degree 
distributions of these networks follow a power law form 

Investigation of spreading phenomena 
on social networks 

Gergely Kocsis and Imre Varga 

T 
 

Fig. 1. Life cycle of a social network. 
First, when the network is introduced 
more and more users come and it keeps 
growing till the maturity. The last phase 
however is always declining. 
 

IJ-14-25 1 

Abstract — In this paper the results of our investigations 
related to social spreading are summed up and concluded. In our 
work we studied information spreading on different network 
topologies. Based on a novel complex network generating method 
we managed to generate several test cases for social simulations 
focusing mainly on the case of declining social networks. We ran 
simulations using a previously presented model of information 
spreading. As a result we showed how the effectiveness of the 
spreading depends on the way and the intensity of declining. 
Later, using a modified version of the model we examined the 
effect of dynamically active agents in the system. As the most 
important result of this study we showed that increasing the 
activity of central nodes of a social network alone does not make 
the spreading significantly more effective.  

 

Index Terms — information spreading, declining social 
networks, complex networks, cellular automata simulation 

I. INTRODUCTION 
HE investigation of social spreading phenomena has been  
in the focus of research for a couple of decades. However 

in the last 15 years with the appearance of online communities 
its importance has become much greater as it turned out that 
the models used to model classical societies based on personal 
contacts are also applicable for these social structures [1-3]. 
While the classical topics of the field were in most of the cases 
related to disease spreading, rumor spreading, opinion 
spreading, etc. [1,2], today – reflecting to the questions of the 
informational society – one of the most important questions is 
information spreading. In our work we study the spreading on 
the most widely known group of online societies, on social 
networks. In this very work we focus on to major topics: (i.) 
declining social networks and (ii.) networks of dynamically 
active agents. In the first part we try to understand how the 
dynamics of information spreading change on social networks 
that have passed their golden age, and start to decline. Based 
on this result we give a hint, where is the point when it does 
not worth anymore to spread information (e.g. advertise) on 
these networks. In the second part of our work we examine the 
change of the spreading when we assume that agents may not 
be always active and ready to spread or receive information. 
More practically our goal is to find out that in such a network 

 
Manuscript submitted June 14, 2014, revised September 10, 2014. 
Kocsis, G. Is assistant professor at the University of Debrecen, Faculty of 

Informatics, Department of Informatics Systems and Networks (e-mail: 
kocsis.gergely@inf.unideb.hu). 

Varga, I. Is assistant professor at the University of Debrecen, Faculty of 
Informatics, Department of Informatics Systems and Networks (e-mail: 
varga.imre@inf.unideb.hu). 

what can one do to speed up the spreading only by 
manipulating the activity of agents. The results of our work 
may be used later in planning advertising campaign strategies, 
or anti-spam actions. 

II. SPREADING ON DECLINING SOCIAL NETWORKS 
As history shows, online 

social networks follow the 
universal rules of diffusion 
of new technologies [1] 
during their life cycle and 
go through four different 
stages [4] (see Fig. 1.). At 
the very beginning, when 
they are just introduced, the 
number of users starts to 
increase slowly. Later more 
and more users join and the 
network grows much faster. 
After a while however the 

system reaches its possible maximal size, and enters to its 
maturity phase. The aim of the owners of all social networks is 
of course to stay as long as possible in these latter two stages. 
Several examples show however (MySpace, Orkut, iwiw, etc.) 
that after a while social networks start to get out of fashion. 
This means that users leave them, they arrive to their fourth 
stage and the declining starts. In our work presented in [5] we 
focus on information spreading on social networks of this 
fourth kind. As one possible result we wanted to get an idea if 
it is worth to advertise such networks or not.  

In the next three sections the two steps of this work is 
presented. First we model the network structure and then we 
model the behavior of the nodes of the network. 

A. Reproducing the topology of declining social networks 

To be able to run our simulations the first step was to find a 
way to generate topologies similar to the ones that online 
social networks have. Finally we worked out a two step 
method for this [6,7]. First we generate a network that is 
topologically more or less similar to a real social network in 
its mature phase. And then we attack it to catch the declining. 

As it is widely known from the literature real social 
networks have a so called scale-free topology meaning that 
there are a huge number of actors with a low number of 
connections and only some that have a high number of 
neighbors [8-10]. More precisely this means that the degree 
distributions of these networks follow a power law form 

Investigation of spreading phenomena 
on social networks 

Gergely Kocsis and Imre Varga 

T 
 

Fig. 1. Life cycle of a social network. 
First, when the network is introduced 
more and more users come and it keeps 
growing till the maturity. The last phase 
however is always declining. 
 

IJ-14-25 1 

Abstract — In this paper the results of our investigations 
related to social spreading are summed up and concluded. In our 
work we studied information spreading on different network 
topologies. Based on a novel complex network generating method 
we managed to generate several test cases for social simulations 
focusing mainly on the case of declining social networks. We ran 
simulations using a previously presented model of information 
spreading. As a result we showed how the effectiveness of the 
spreading depends on the way and the intensity of declining. 
Later, using a modified version of the model we examined the 
effect of dynamically active agents in the system. As the most 
important result of this study we showed that increasing the 
activity of central nodes of a social network alone does not make 
the spreading significantly more effective.  

 

Index Terms — information spreading, declining social 
networks, complex networks, cellular automata simulation 

I. INTRODUCTION 
HE investigation of social spreading phenomena has been  
in the focus of research for a couple of decades. However 

in the last 15 years with the appearance of online communities 
its importance has become much greater as it turned out that 
the models used to model classical societies based on personal 
contacts are also applicable for these social structures [1-3]. 
While the classical topics of the field were in most of the cases 
related to disease spreading, rumor spreading, opinion 
spreading, etc. [1,2], today – reflecting to the questions of the 
informational society – one of the most important questions is 
information spreading. In our work we study the spreading on 
the most widely known group of online societies, on social 
networks. In this very work we focus on to major topics: (i.) 
declining social networks and (ii.) networks of dynamically 
active agents. In the first part we try to understand how the 
dynamics of information spreading change on social networks 
that have passed their golden age, and start to decline. Based 
on this result we give a hint, where is the point when it does 
not worth anymore to spread information (e.g. advertise) on 
these networks. In the second part of our work we examine the 
change of the spreading when we assume that agents may not 
be always active and ready to spread or receive information. 
More practically our goal is to find out that in such a network 

 
Manuscript submitted June 14, 2014, revised September 10, 2014. 
Kocsis, G. Is assistant professor at the University of Debrecen, Faculty of 

Informatics, Department of Informatics Systems and Networks (e-mail: 
kocsis.gergely@inf.unideb.hu). 

Varga, I. Is assistant professor at the University of Debrecen, Faculty of 
Informatics, Department of Informatics Systems and Networks (e-mail: 
varga.imre@inf.unideb.hu). 

what can one do to speed up the spreading only by 
manipulating the activity of agents. The results of our work 
may be used later in planning advertising campaign strategies, 
or anti-spam actions. 

II. SPREADING ON DECLINING SOCIAL NETWORKS 
As history shows, online 

social networks follow the 
universal rules of diffusion 
of new technologies [1] 
during their life cycle and 
go through four different 
stages [4] (see Fig. 1.). At 
the very beginning, when 
they are just introduced, the 
number of users starts to 
increase slowly. Later more 
and more users join and the 
network grows much faster. 
After a while however the 

system reaches its possible maximal size, and enters to its 
maturity phase. The aim of the owners of all social networks is 
of course to stay as long as possible in these latter two stages. 
Several examples show however (MySpace, Orkut, iwiw, etc.) 
that after a while social networks start to get out of fashion. 
This means that users leave them, they arrive to their fourth 
stage and the declining starts. In our work presented in [5] we 
focus on information spreading on social networks of this 
fourth kind. As one possible result we wanted to get an idea if 
it is worth to advertise such networks or not.  

In the next three sections the two steps of this work is 
presented. First we model the network structure and then we 
model the behavior of the nodes of the network. 

A. Reproducing the topology of declining social networks 

To be able to run our simulations the first step was to find a 
way to generate topologies similar to the ones that online 
social networks have. Finally we worked out a two step 
method for this [6,7]. First we generate a network that is 
topologically more or less similar to a real social network in 
its mature phase. And then we attack it to catch the declining. 

As it is widely known from the literature real social 
networks have a so called scale-free topology meaning that 
there are a huge number of actors with a low number of 
connections and only some that have a high number of 
neighbors [8-10]. More precisely this means that the degree 
distributions of these networks follow a power law form 

Investigation of spreading phenomena 
on social networks 

Gergely Kocsis and Imre Varga 

T 
 

Fig. 1. Life cycle of a social network. 
First, when the network is introduced 
more and more users come and it keeps 
growing till the maturity. The last phase 
however is always declining. 
 



Investigation of Spreading Phenomena
on Social Networks

SEPTEMBER 2014 • VOLUME VI • NUMBER 346

INFOCOMMUNICATIONS JOURNAL

IJ-14-25 3 

The model evolves in discrete time-steps using synchronous 
update rules. i.e. the state of agent  at time  depends on the 
states of itself and its neighbors at time . In each time-
step agents get stochastically informed based on the amount of 
the received information at the given time-step (see Fig. 2.). 
The probability of changing to informed is 

 

, (1) 

where in the exp() function the amount of information 
received by agent i is caught. Namely in the sum we add all 
the information coming from the informed interacting partners 
and multiply the result with the sensitivity to the inner 
channel. Then we add the amount of information from the 
outside multiplied by the respective sensitivity. Note that for 
simplicity both the amount of information coming from the 

external source in one time-step and the amount of 
information coming from an informed neighbor are set to 1 
“unit”.   

Since our main goal here was to study the effect of the 
declining of the network on the spreading, and not the 
spreading model itself, in all our simulations we used the same 
parameter set that proven to be quite good in representing real 
life scenarios [17]. Namely we set the sensitivity parameters to 
α=0.01 and β=0.001. 

C. The effect of declining 

To study the effect of declining on the spreading of 
information, we ran computer simulations on various network 
topologies attacked in different ways. As a key property of the 
spreading, we focused on the ratio of informed agents in the 
system  as a function of time . Our results showed that the 
spreading process is qualitatively independent of the system 
size, but it highly depends both on the way how we attack the 
system, and the strength of the attack. It can be seen in Fig. 3. 
that while peripheral attack hardly affects the spreading even 
in the case of removing 40% of the agents, general attack 
makes the spreading increasingly slower as more and more 
nodes are removed from the network. In the third case, when 
we applied central attack the spreading dramatically changed. 
Even for a small number of removed agents the spreading gets 
much slower than in the case without attack. Of course this 
effect again increases with the increase of the amount of 
removed nodes.  

Another interesting result of our work was found when we 
plotted the needed time for the system to reach an almost 
homogeneous informed state  (i.e. where 95% of the 
agents are informed) as a function of the strength of the attack 
η. We had to use this almost homogeneous state instead of 
totally homogeneous one because close to saturation the 
evolution of the system slows down dramatically implying 
that the respective simulation time increases in this sense as 
well. However this almost homogeneous informed state also 
fits our needs to describe consensus. The results showed that 
the needed time to reach this state depends exponentially on 
the strength of the attack (see Fig. 4.). In a practical sense this 
result means e.g. that if a social network is losing its users 
linearly the effectiveness of information spreading (e.g. 
advertising) is decreasing much faster.  

III. THE EFFECT OF THE INACTIVITY OF AGENTS 
In the first part of our research we focused on systems, 

where the agents of network were handled to be always active. 
Most social networks however do not share this property 
[18,19] so we found it reasonable to examine how the activity 
of agents affects the spreading. Even though the topic is 
marginally present in some related works [20,21], we found 
that the exact question have not been answered yet. What we 
did to get a better insight, is that we modified the previous 
model and examined the behavior of it in networks from 
simple square lattices to complex topologies [22]. Note that in 
this case instead of reactions for the underlying topologies we 
focused on the spreading itself. 

 
Fig. 3.  The effect of the attack on the spreading. On the figure the ratio of 
informed agents in the system  is presented as a function of time  
Different colors and styles are for different ways of attack. Note that with 
the increase of the amount of removed nodes (marked by the arrow) the 
spreading slows down in all cases but in the central attack case especially. 

 
Fig. 4.  The time needed to reach an almost homogeneous informed state in 
the system depends on the attack strength exponentially. Note that this 
exponential form is independent of the exact type of the attack, however 
different attack types result in different levels of dependence. 
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( , where k is the number of neighbors and the 
exponent  can be used to identify different types of networks. 
By comparing a the properties of a real social network sample 
[11] (with the degree distribution in the first place) it can be 
seen that unfortunately the most widely used Barabási-Albert 
(BA) model [12] does not provide us a similar network [13]. 
Namely there is a clear difference between the exponent of the 
degree distribution of the sample ( ) and of the BA 
generated network ( ).  We found a mixed model of 
generating scale-free networks to be functional for our needs. 
Namely we used the model of Lee et. al. [14] which is a 
mixture of the simplest Barabási-Albert (BA) model and the 
model of Bianconi et. al. [15]. In both models the generation 
of the network starts the same way: we start from a fully 
connected network of  nodes and then we add new nodes 
one-by-one to the network. Each new node is connected to the 
network by  edges. The difference between the classical BA 
model and the model of Bianconi et. al. is the way how we 
choose the other endpoints of these new edges. The BA model 
is often referred as a so called popularity driven model, since 
the endpoints of the new edges are selected based on the 
existing number of links of the nodes, i.e. a node with a bigger 
number of edges has a bigger probability to be the end of the 
new edge as well. On the other hand the model of Bianconi et. 
al. uses a so called fitness driven algorithm i.e. we define a 
random real fitness value between 0 and 1 for all nodes, and 
the probability to connect the new edge to a node is 
proportional to the product of its fitness and the number of 
their existing connections. 

In our case the two models above were mixed in the 
following way [5]. We also started from the fully connected 
core of  nodes and we also added  new edges 
with each new node. However when we selected the endpoints 
of the new edges we used the classical BA algorithm with 
probability , and the fitness driven algorithm with probability 

. We iterated this process till the total number of nodes 
in the system  reached a desired value. Using this mixed 
model we were able to generate networks that are fairly 
similar to a sample network that we had containing data of 
almost 60 million Facebook users. Or more precisely the 
exponent of the degree distribution matched to the respective 
exponent of the sample [6]. 

After we became able to generate a topology that is similar 
to a real social network, we tried to find a way to model the 
declining itself. However unfortunately we have not found any 
published results in the literature how this declining goes. One 
obvious solution would have been for this problem to sample a 
social network through its whole life cycle (or at least at the 
end). However with respect to the time cost of this process we 
found that this is out of the scope of our current work. Instead 
we worked out different node-removing processes for three 
different possible declining scenarios. Following the 
terminology of the literature [16], hereafter we refer to this 
node-removing as attack. Namely we used central, peripheral 
and general attack to model the situations where the most 
popular, the least popular or random actors leave the network 
more likely respectively. From the algorithmic point of view 

this means that in all three cases we started from the above 
generated network of  nodes and  edges. After this 
we removed  nodes with their edges (where  is the 
strength of the attack). The difference between these options is 
that in the central case the probability of a node to be removed 
is linearly proportional to its degree. In the case of peripheral 
attack the probability of removing a node is inverse linearly 
proportional to the degree, while in the case of general attack 
all nodes are removed with the same probability. 

Not surprisingly the topological examination of these 
attacked networks showed that the most dramatic changes 
appear in the case of central attack [16]. The general attack 
has only a minor effect on the topology, while the peripheral 
attack almost leads back to a previous state of the same 
network. (Since removing the lowest degree nodes means 
removing the nodes that were added at the end of the 
generation.) 

With the use of this two step grow-and-destroy model we 
became able to produce networks with the same properties as 
declining social graphs (assuming that the declining of real 
social networks follows one of the three scenarios presented 
above). As a next step of our research we focused on the 
spreading of information on these topologies. 

B. Information spreading 

To model the spreading of information in social systems we 
used a simplified version of a previous model introduced by 
Kun et. al. [17]. In this cellular automata model the actors of 
the system get information from two different channels: (i.) 
there is an external source that provides a constant amount of 
information for all actors and (ii.) actors can also get 
information from each other. As an example if we look at the 
case of online advertising the external information channel 
may model public advertisements placed on web pages, while 
the inner channel represents discussions of users about the 
advertised items. In the model the actors are represented by 
interacting agents sitting on the nodes of an underlying 
topology. The agents can be in two different states: 
uninformed  and informed . We use the variable  to 
denote whether an agent  is in an informed state or not. If 
agent  is in state , , and if it is in state , . We 
introduce two parameters of the system to describe the 
sensitivity of agents to the information channels. The 
parameter α tells how sensitive are the agents for the inner 
information channel, while β describes the sensitivity for the 
external information channel. Originally α and β were both 
random real numbers for each agents, however based on the 
results of the original study of the model we set both of them 
to be the same for all agents.  

 
Fig. 2.  The states and the possible state changes of the basic information 
spreading model. Uninformed agents  can get informed  or stay 
uninformed stochastically based on the amount of the received information. 
Informed agents do not forget so there is no way back from  to . 
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external source in one time-step and the amount of 
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topologies attacked in different ways. As a key property of the 
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III. THE EFFECT OF THE INACTIVITY OF AGENTS 
In the first part of our research we focused on systems, 

where the agents of network were handled to be always active. 
Most social networks however do not share this property 
[18,19] so we found it reasonable to examine how the activity 
of agents affects the spreading. Even though the topic is 
marginally present in some related works [20,21], we found 
that the exact question have not been answered yet. What we 
did to get a better insight, is that we modified the previous 
model and examined the behavior of it in networks from 
simple square lattices to complex topologies [22]. Note that in 
this case instead of reactions for the underlying topologies we 
focused on the spreading itself. 

 
Fig. 3.  The effect of the attack on the spreading. On the figure the ratio of 
informed agents in the system  is presented as a function of time  
Different colors and styles are for different ways of attack. Note that with 
the increase of the amount of removed nodes (marked by the arrow) the 
spreading slows down in all cases but in the central attack case especially. 

 
Fig. 4.  The time needed to reach an almost homogeneous informed state in 
the system depends on the attack strength exponentially. Note that this 
exponential form is independent of the exact type of the attack, however 
different attack types result in different levels of dependence. 
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( , where k is the number of neighbors and the 
exponent  can be used to identify different types of networks. 
By comparing a the properties of a real social network sample 
[11] (with the degree distribution in the first place) it can be 
seen that unfortunately the most widely used Barabási-Albert 
(BA) model [12] does not provide us a similar network [13]. 
Namely there is a clear difference between the exponent of the 
degree distribution of the sample ( ) and of the BA 
generated network ( ).  We found a mixed model of 
generating scale-free networks to be functional for our needs. 
Namely we used the model of Lee et. al. [14] which is a 
mixture of the simplest Barabási-Albert (BA) model and the 
model of Bianconi et. al. [15]. In both models the generation 
of the network starts the same way: we start from a fully 
connected network of  nodes and then we add new nodes 
one-by-one to the network. Each new node is connected to the 
network by  edges. The difference between the classical BA 
model and the model of Bianconi et. al. is the way how we 
choose the other endpoints of these new edges. The BA model 
is often referred as a so called popularity driven model, since 
the endpoints of the new edges are selected based on the 
existing number of links of the nodes, i.e. a node with a bigger 
number of edges has a bigger probability to be the end of the 
new edge as well. On the other hand the model of Bianconi et. 
al. uses a so called fitness driven algorithm i.e. we define a 
random real fitness value between 0 and 1 for all nodes, and 
the probability to connect the new edge to a node is 
proportional to the product of its fitness and the number of 
their existing connections. 

In our case the two models above were mixed in the 
following way [5]. We also started from the fully connected 
core of  nodes and we also added  new edges 
with each new node. However when we selected the endpoints 
of the new edges we used the classical BA algorithm with 
probability , and the fitness driven algorithm with probability 

. We iterated this process till the total number of nodes 
in the system  reached a desired value. Using this mixed 
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exponent of the degree distribution matched to the respective 
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terminology of the literature [16], hereafter we refer to this 
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and general attack to model the situations where the most 
popular, the least popular or random actors leave the network 
more likely respectively. From the algorithmic point of view 

this means that in all three cases we started from the above 
generated network of  nodes and  edges. After this 
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strength of the attack). The difference between these options is 
that in the central case the probability of a node to be removed 
is linearly proportional to its degree. In the case of peripheral 
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With the use of this two step grow-and-destroy model we 
became able to produce networks with the same properties as 
declining social graphs (assuming that the declining of real 
social networks follows one of the three scenarios presented 
above). As a next step of our research we focused on the 
spreading of information on these topologies. 

B. Information spreading 

To model the spreading of information in social systems we 
used a simplified version of a previous model introduced by 
Kun et. al. [17]. In this cellular automata model the actors of 
the system get information from two different channels: (i.) 
there is an external source that provides a constant amount of 
information for all actors and (ii.) actors can also get 
information from each other. As an example if we look at the 
case of online advertising the external information channel 
may model public advertisements placed on web pages, while 
the inner channel represents discussions of users about the 
advertised items. In the model the actors are represented by 
interacting agents sitting on the nodes of an underlying 
topology. The agents can be in two different states: 
uninformed  and informed . We use the variable  to 
denote whether an agent  is in an informed state or not. If 
agent  is in state , , and if it is in state , . We 
introduce two parameters of the system to describe the 
sensitivity of agents to the information channels. The 
parameter α tells how sensitive are the agents for the inner 
information channel, while β describes the sensitivity for the 
external information channel. Originally α and β were both 
random real numbers for each agents, however based on the 
results of the original study of the model we set both of them 
to be the same for all agents.  

 
Fig. 2.  The states and the possible state changes of the basic information 
spreading model. Uninformed agents  can get informed  or stay 
uninformed stochastically based on the amount of the received information. 
Informed agents do not forget so there is no way back from  to . 
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not changed, but it is much slower. Of course this slowing is 
not similar for different values of the probability of being 
inactive . In order to find out how the spreading depends on 
the probability of being inactive we plotted the time needed to 
reach an almost homogeneous state as a function of the 
parameter . The results are presented on Fig. 7. Note that we 
again used the 95% informed state of the system ( ) 
because of the same reason as in the case of the examination 
of declining social networks. On the plot we used a semi-log 
scale in order to show that the dependence of  is faster 
than exponential.  

Our observations on the square lattice gave us a first insight 
of the effect of the inactivity of agents, however since we 
wanted to get results that are closer to real social systems we 
had to apply complex network topologies again. So as a next 
step we ran the modified model on a scale-free network. Based 
on a Facebook data sample we also used previously [11], this 
network was generated so that it has similar topological 
properties as online social networks, however to make our 
simulations faster we used a smaller number of nodes. What 
we have found in this case was very similar to the square 
lattice case despite of the obvious differences in the topology. 
On Fig. 7. we also plotted the time to reach the almost 
homogeneous state as a function of time in the case of our 
scale-free generated network. Note that not surprisingly,  
especially at small values of , spreading on the scale-free 
network is a bit faster. However by observing the whole 
picture the same sentence becomes true again: As the 
probability of being inactive increases linearly, the time 
needed to reach the almost homogeneous state  
increases faster than exponentially.  

B. Heterogeneous activity 

In the previous cases we always assumed that all agents of 
the system have the same probability of being inactive i.e. 

 for all . However this is not a realistic 
assumption in the case of social networks. Thus the next step 
of our research was to examine the effect of heterogeneous 
activity in the system.  

In order to get realistic results we studied the work of 
Huberman et. al. [23] and found that in real social networks 
the activity of users is in linear connection with the amount of 
friends (see Fig. 8.). In our case this means that if we would 
like to make our model more realistic, we have to make  a 

function of the degree of agent . To do this we chose the 
following form: 

 (3) 
 

where  is the number of connections of agent  and  is 
the highest degree in the system. Eq. (3) means that the lowest 
degree nodes keep their level of activity, while agents with a 
lot of connections become more active. In the case of scale-
free networks this simply means that we make the central 
nodes more active. 

As a result of our simulations surprisingly we found that 
despite of the inhomogeneous probability of being inactive the 
spreading process shows hardly any noticeable changes. On 
Fig. 9. we plotted the average amount of informed agents in 
the system  as a function of time  for both homogeneous 
and inhomogeneous inactivity. It can be clearly seen that 
making the central nodes of the network more active does not 
have a major effect on the spreading. In a practical sense this 
would result for example that in the case when one wants to 
improve the efficiency of an online advertising campaign, 
making the most active user more active alone does not have 
the required effect. The reason of this is that however these 
central nodes became more active and ready to spread 
information more likely, since the contacts of them are still 
inactive with the same probability there is no one to interact 
with. A possible solution would be of course to focus instead 
on the increase of the activity of all the agents of the system 
(i.e. decrease the value of , see Fig. 7.).  

IV. DISCUSSION 

In this paper the results of our investigations related to 
spreading phenomena on social networks have been presented. 
Our work built up from three major parts. At first, starting 
from a network sample we developed a way to generate 
network topologies with similar key properties as real social 
networks. To do this we examined the topological properties 
of the real and the generated networks. With the use of an 
information spreading model we also studied how spreading 
behaves on these networks. As a second part of our research 
we investigated spreading on declining social networks. 

 
Fig. 8.  The activity of users in a social network is linearly dependent on their 
number of friends. Here we defined activity as the number of posts a user 
posts in his/her timeline.  Figure based on [23]. 

 
Fig. 9.  The average amount of informed agents in the system as a function of 
time  in the case of homogeneous and inhomogeneous activity. Note that the 
increased activity of high degree nodes does have as much impact on the 
spreading as one would expect. 
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A. The modified model 
To make our model able to describe activity of the agents 

we added a new parameter of the agents  to 
describe how often an agent goes inactive. This means that for 
a value of  close to 1 the agent is almost always inactive 
while in the opposite case when  is close to 0 it is active in 
most of the time. Note that in contrast to  and ,  is not a 
system wide parameter but it can be different for different 
agents. However at the beginning of our investigations to 
make our results more clear we set  for all  
where  is the number of nodes. The property that agent  is 
active or not is caught by the variable , where  if the 
agent is inactive, and  if it is active. By introducing 
these new parameters of the agents of course the number of 
possible states is increased and the state-change rules 
themselves have changed as well.  

First of all, based on the informed/uninformed property  
and the activity  now agent  can be in four different states 

. These possible states are presented on Table 1. 
The basic state change rule related to the activity of agents is 
the following: In each time-step agent  stays or changes to 
inactive with probability  and stays or changes to active with 
probability . The most crucial state-change of course 
in this case again is the change from the active uninformed 
state  to active informed state  (Inactive agents can not get 
informed or spread information, and informed agents do not 
go uninformed regardless of their activity). This state-change 
rule again depends on the received information, however to 
catch the effect of our new parameters we had to alter eq. (1) a 
little bit. In this modified model the probability of agent i to 
get informed is: 

  (2) 

 

Note that eq. (2) differs from eq. (1) only through the 
parameters  and , where these parameters describe that 
inactive agents can not receive or spread information. Based 
on this modified equation and the parameter . The state-
change rules are presented on Fig. 5.   

In order to study the evolution of our modified model we 
ran simulations on different network topologies. As a first try 
to get a qualitative insight of the evolution we used a small 
regular square lattice. This simple topology made it very easy 
to visualize what is happening, and compare the original and 

the modified model. Snapshots of a system containing 
 agents at different time-steps are presented on 

Fig. 6. In the first row the pictures are from the original model 
while the second row is for the modified model (

). Our results show that the evolution of the system does 
not change qualitatively however it takes noticeably more time 
for the modified model to reach an almost similar state as the 
original model. This means that the way of the spreading is 

 
Fig. 5.  The states and the possible state changes of the modified information 
spreading model. Agents can stay or change to inactive (grey filled) with 
probability  and stay change to active with probability . The state-
change from uninformed to informed is led by the modified probability . 

TABLE I 
POSSIBLE STATES OF AGENTS  

   

 : active, 
uninformed 

: active,  
informed 

 : inactive, 
uninformed 

: inactive, 
informed 

 
Depending on the values of  and  agents can be in four different states. 

 describes whether an agent is informed  or not , while  tells 
whether the agent is active  or not . The values of  and  have been 
chosen so that the form of the later state-change rules stay reasonably easy. 
 

 
Fig. 6.  Snapshots of the evolution of the model on a square lattice of  

 agents. a, b and c are for the original model while e, f and g are 
for the modified model including dynamic activity. Note that the respective 
pictures in the two rows show the same structure, however in the second row 
a longer interval of time is covered. (The snapshots were made respectively 
for a, b, c, d, e, f and g at  and . Colors 
identify separate clusters of informed agents.) 

 
Fig. 7.  The time needed for the system to reach an almost heterogeneous 
informed state in the case of square lattice , and on a scale free 
network similar to real social network topologies. The dependence in both 
cases are faster than exponential. 
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make our results more clear we set  for all  
where  is the number of nodes. The property that agent  is 
active or not is caught by the variable , where  if the 
agent is inactive, and  if it is active. By introducing 
these new parameters of the agents of course the number of 
possible states is increased and the state-change rules 
themselves have changed as well.  

First of all, based on the informed/uninformed property  
and the activity  now agent  can be in four different states 

. These possible states are presented on Table 1. 
The basic state change rule related to the activity of agents is 
the following: In each time-step agent  stays or changes to 
inactive with probability  and stays or changes to active with 
probability . The most crucial state-change of course 
in this case again is the change from the active uninformed 
state  to active informed state  (Inactive agents can not get 
informed or spread information, and informed agents do not 
go uninformed regardless of their activity). This state-change 
rule again depends on the received information, however to 
catch the effect of our new parameters we had to alter eq. (1) a 
little bit. In this modified model the probability of agent i to 
get informed is: 

  (2) 

 

Note that eq. (2) differs from eq. (1) only through the 
parameters  and , where these parameters describe that 
inactive agents can not receive or spread information. Based 
on this modified equation and the parameter . The state-
change rules are presented on Fig. 5.   

In order to study the evolution of our modified model we 
ran simulations on different network topologies. As a first try 
to get a qualitative insight of the evolution we used a small 
regular square lattice. This simple topology made it very easy 
to visualize what is happening, and compare the original and 

the modified model. Snapshots of a system containing 
 agents at different time-steps are presented on 

Fig. 6. In the first row the pictures are from the original model 
while the second row is for the modified model (

). Our results show that the evolution of the system does 
not change qualitatively however it takes noticeably more time 
for the modified model to reach an almost similar state as the 
original model. This means that the way of the spreading is 

 
Fig. 5.  The states and the possible state changes of the modified information 
spreading model. Agents can stay or change to inactive (grey filled) with 
probability  and stay change to active with probability . The state-
change from uninformed to informed is led by the modified probability . 

TABLE I 
POSSIBLE STATES OF AGENTS  

   

 : active, 
uninformed 

: active,  
informed 

 : inactive, 
uninformed 

: inactive, 
informed 

 
Depending on the values of  and  agents can be in four different states. 

 describes whether an agent is informed  or not , while  tells 
whether the agent is active  or not . The values of  and  have been 
chosen so that the form of the later state-change rules stay reasonably easy. 
 

 
Fig. 6.  Snapshots of the evolution of the model on a square lattice of  

 agents. a, b and c are for the original model while e, f and g are 
for the modified model including dynamic activity. Note that the respective 
pictures in the two rows show the same structure, however in the second row 
a longer interval of time is covered. (The snapshots were made respectively 
for a, b, c, d, e, f and g at  and . Colors 
identify separate clusters of informed agents.) 
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not changed, but it is much slower. Of course this slowing is 
not similar for different values of the probability of being 
inactive . In order to find out how the spreading depends on 
the probability of being inactive we plotted the time needed to 
reach an almost homogeneous state as a function of the 
parameter . The results are presented on Fig. 7. Note that we 
again used the 95% informed state of the system ( ) 
because of the same reason as in the case of the examination 
of declining social networks. On the plot we used a semi-log 
scale in order to show that the dependence of  is faster 
than exponential.  

Our observations on the square lattice gave us a first insight 
of the effect of the inactivity of agents, however since we 
wanted to get results that are closer to real social systems we 
had to apply complex network topologies again. So as a next 
step we ran the modified model on a scale-free network. Based 
on a Facebook data sample we also used previously [11], this 
network was generated so that it has similar topological 
properties as online social networks, however to make our 
simulations faster we used a smaller number of nodes. What 
we have found in this case was very similar to the square 
lattice case despite of the obvious differences in the topology. 
On Fig. 7. we also plotted the time to reach the almost 
homogeneous state as a function of time in the case of our 
scale-free generated network. Note that not surprisingly,  
especially at small values of , spreading on the scale-free 
network is a bit faster. However by observing the whole 
picture the same sentence becomes true again: As the 
probability of being inactive increases linearly, the time 
needed to reach the almost homogeneous state  
increases faster than exponentially.  

B. Heterogeneous activity 

In the previous cases we always assumed that all agents of 
the system have the same probability of being inactive i.e. 

 for all . However this is not a realistic 
assumption in the case of social networks. Thus the next step 
of our research was to examine the effect of heterogeneous 
activity in the system.  

In order to get realistic results we studied the work of 
Huberman et. al. [23] and found that in real social networks 
the activity of users is in linear connection with the amount of 
friends (see Fig. 8.). In our case this means that if we would 
like to make our model more realistic, we have to make  a 

function of the degree of agent . To do this we chose the 
following form: 

 (3) 
 

where  is the number of connections of agent  and  is 
the highest degree in the system. Eq. (3) means that the lowest 
degree nodes keep their level of activity, while agents with a 
lot of connections become more active. In the case of scale-
free networks this simply means that we make the central 
nodes more active. 

As a result of our simulations surprisingly we found that 
despite of the inhomogeneous probability of being inactive the 
spreading process shows hardly any noticeable changes. On 
Fig. 9. we plotted the average amount of informed agents in 
the system  as a function of time  for both homogeneous 
and inhomogeneous inactivity. It can be clearly seen that 
making the central nodes of the network more active does not 
have a major effect on the spreading. In a practical sense this 
would result for example that in the case when one wants to 
improve the efficiency of an online advertising campaign, 
making the most active user more active alone does not have 
the required effect. The reason of this is that however these 
central nodes became more active and ready to spread 
information more likely, since the contacts of them are still 
inactive with the same probability there is no one to interact 
with. A possible solution would be of course to focus instead 
on the increase of the activity of all the agents of the system 
(i.e. decrease the value of , see Fig. 7.).  

IV. DISCUSSION 

In this paper the results of our investigations related to 
spreading phenomena on social networks have been presented. 
Our work built up from three major parts. At first, starting 
from a network sample we developed a way to generate 
network topologies with similar key properties as real social 
networks. To do this we examined the topological properties 
of the real and the generated networks. With the use of an 
information spreading model we also studied how spreading 
behaves on these networks. As a second part of our research 
we investigated spreading on declining social networks. 

 
Fig. 8.  The activity of users in a social network is linearly dependent on their 
number of friends. Here we defined activity as the number of posts a user 
posts in his/her timeline.  Figure based on [23]. 

 
Fig. 9.  The average amount of informed agents in the system as a function of 
time  in the case of homogeneous and inhomogeneous activity. Note that the 
increased activity of high degree nodes does have as much impact on the 
spreading as one would expect. 
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Note that eq. (2) differs from eq. (1) only through the 
parameters  and , where these parameters describe that 
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on this modified equation and the parameter . The state-
change rules are presented on Fig. 5.   
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ran simulations on different network topologies. As a first try 
to get a qualitative insight of the evolution we used a small 
regular square lattice. This simple topology made it very easy 
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for the modified model to reach an almost similar state as the 
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because of the same reason as in the case of the examination 
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scale in order to show that the dependence of  is faster 
than exponential.  
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of the effect of the inactivity of agents, however since we 
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had to apply complex network topologies again. So as a next 
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on a Facebook data sample we also used previously [11], this 
network was generated so that it has similar topological 
properties as online social networks, however to make our 
simulations faster we used a smaller number of nodes. What 
we have found in this case was very similar to the square 
lattice case despite of the obvious differences in the topology. 
On Fig. 7. we also plotted the time to reach the almost 
homogeneous state as a function of time in the case of our 
scale-free generated network. Note that not surprisingly,  
especially at small values of , spreading on the scale-free 
network is a bit faster. However by observing the whole 
picture the same sentence becomes true again: As the 
probability of being inactive increases linearly, the time 
needed to reach the almost homogeneous state  
increases faster than exponentially.  

B. Heterogeneous activity 

In the previous cases we always assumed that all agents of 
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 
Abstract—This survey/position paper gives an overview of the 
state-of-the art multimedia communications technologies and 
services, analyses their present significance and expected future 
role, and attempts to identify development trends. The paper 
analyses the evolution of networking infrastructure and multi-
media services over the last decade and identifies future direc-
tions. It consists of two parts. Part I, published in the preceding 
issue of this journal, dealt with the technologies and systems for 
multimedia delivery, and covered the dedicated networks such as 
digital broadcasting systems and IPTV and the technologies of 
Internet based multimedia delivery. The present paper, Part II, 
addresses applications, services and future directions.  
 

Index Terms—Multimedia communication, IP networks, Inter-
net, mobile communications.  

I. INTRODUCTION 
The survey paper, written a decade ago by Stephen 

Weinstein and Alexander Gelman [1], was cited in detail in 
Part I [2] since one of the objectives of the paper was to 
analyse the state-of-the-art and to see what trends could be 
observed, after ten years since the paper was published. It was 
shown how the networking infrastructures and services have 
developed, and now in this paper we want to show whether the 
forecasted applications have gained wide acceptance and 
implementations and what new trends can be identified that 
were not foreseen that time by Weinstein and Gelman. 

The paper is organized as follows.  
In Sections 2.1 and 2.2, we come back to digital broad-

casting and IPTV, with short comments on the service aspects.  
In Section 2.3, the technology as well as service-related 

issues around the emerging Internet TV and OTT – Over-The-
Top content services will be addressed. 

The social element is gaining increasing role and import-
ance in media consumption. In Section 3, dealing with “social 
media” and “social TV”, we look into issues around these 
terms and point out to the importance of social network based 
interactions among users of multimedia services. 
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    Section 4 deals with key application areas such as enter-
tainment, e-health and telemedicine, visual collaboration and 
e-learning, and smart city applications and services.  

Our concluding Section 5 outlines some promising direc-
tions including multi-screen TV, Free-viewpoint TV and the 
trend of moving from traditional broadcasting platforms to 
wireless broadband Internet.)  

II. TELEVISION SERVICES PROVIDED OVER DEDICATED 
NETWORKS  

A. Digital television broadcasting 
In Part I, we discussed the technologies of digital television 

systems. While the technical solutions are interesting for 
engineers, the question is what do they mean for consumers. 
The short answer is: improved picture quality including HD. 
This is not too much, given the expenses the customers need 
to bear by buying a digital TV set or a set-top box that allows 
for using the existing analogue receiver and a new rooftop 
antenna. Additional benefit is a greater choice of channels. A 
digital multiplex as it is called, a package in which TV chan-
nels are grouped, usually contains up to 8 TV channels and 
several radio channels, and is being provided for free. Addi-
tional multiplexes are included in a paid monthly subscription. 

We should mention the importance of digital terrestrial 
broadcasting for low-income population groups, living in rural 
areas, in less developed countries. For them, the digital 
switchover means that the terrestrial broadcasting will survive 
in its new form, and thus their only way of accessing news, 
entertainment programs and taking part in educational prog-
rams will remain available in the foreseeable future.   

Interestingly enough, the transition from analogue to digital 
broadcasting paves the way towards replacing this relatively 
new (since it is digital) but at the same time old (since it uses 
dedicated broadcasting systems) method by a new one: distri-
buting and consuming TV programs using the public Internet. 
This is because, as a result of the analogue-to-digital switch-
over, a considerable amount of bandwidth within the so-called 
digital dividend has been/will be freed up and will be available 
for other purposes. There are several applicants for these fre-
quencies, and most likely a great deal of it will be allocated to 
mobile cellular service providers, which then will use it for 
expanding their new generation services, and first of all 
mobile broadband Internet access. This process could even-
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Namely we studied the effect of different types of attack on 
the spreading, using the same information spreading model as 
above. We showed that independently of the type of the attack 
the time to reach an almost fully informed state of the system 
depends exponentially on the strength of the attack (from 0% 
to 40% nodes removed). In the third part of the work we 
examined how the presence of dynamically active/inactive 
agents effects the spreading. For this we altered the original 
model a bit, and introduced some new states, and state-change 
rules. We found here that even though the dynamic activity 
does not change the spreading qualitatively, it slows it down. 
Namely the needed time for the domination of informed 
agents shows faster than exponential dependence on the 
probability of being inactive. Finally we studied the effect of
inhomogeneous activity and found that increasing only the 
activity of high degree nodes in social networks does not have 
the expected result. The activation of low degree nodes is also 
needed to make the spreading significantly faster.   

It is clear that additional investigations are required to make 
our findings more precise. However these results may be 
found useful in the future when planning online advertisement 
campaigns or anti-spam actions. As a further step we would 
like to examine spreading phenomena on spatially and 
temporally dynamic networks in order to take one more step to 
bring our results closer to reality. It is also known from the 
literature that beside the degree distribution the structure of the 
community also plays an important role in spreading 
phenomena [24]. Based on this idea it would be also 
promising to examine the spreading on networks with 
different community structures. 
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were not foreseen that time by Weinstein and Gelman. 

The paper is organized as follows.  
In Sections 2.1 and 2.2, we come back to digital broad-

casting and IPTV, with short comments on the service aspects.  
In Section 2.3, the technology as well as service-related 

issues around the emerging Internet TV and OTT – Over-The-
Top content services will be addressed. 

The social element is gaining increasing role and import-
ance in media consumption. In Section 3, dealing with “social 
media” and “social TV”, we look into issues around these 
terms and point out to the importance of social network based 
interactions among users of multimedia services. 
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    Section 4 deals with key application areas such as enter-
tainment, e-health and telemedicine, visual collaboration and 
e-learning, and smart city applications and services.  

Our concluding Section 5 outlines some promising direc-
tions including multi-screen TV, Free-viewpoint TV and the 
trend of moving from traditional broadcasting platforms to 
wireless broadband Internet.)  

II. TELEVISION SERVICES PROVIDED OVER DEDICATED 
NETWORKS  

A. Digital television broadcasting 
In Part I, we discussed the technologies of digital television 

systems. While the technical solutions are interesting for 
engineers, the question is what do they mean for consumers. 
The short answer is: improved picture quality including HD. 
This is not too much, given the expenses the customers need 
to bear by buying a digital TV set or a set-top box that allows 
for using the existing analogue receiver and a new rooftop 
antenna. Additional benefit is a greater choice of channels. A 
digital multiplex as it is called, a package in which TV chan-
nels are grouped, usually contains up to 8 TV channels and 
several radio channels, and is being provided for free. Addi-
tional multiplexes are included in a paid monthly subscription. 

We should mention the importance of digital terrestrial 
broadcasting for low-income population groups, living in rural 
areas, in less developed countries. For them, the digital 
switchover means that the terrestrial broadcasting will survive 
in its new form, and thus their only way of accessing news, 
entertainment programs and taking part in educational prog-
rams will remain available in the foreseeable future.   

Interestingly enough, the transition from analogue to digital 
broadcasting paves the way towards replacing this relatively 
new (since it is digital) but at the same time old (since it uses 
dedicated broadcasting systems) method by a new one: distri-
buting and consuming TV programs using the public Internet. 
This is because, as a result of the analogue-to-digital switch-
over, a considerable amount of bandwidth within the so-called 
digital dividend has been/will be freed up and will be available 
for other purposes. There are several applicants for these fre-
quencies, and most likely a great deal of it will be allocated to 
mobile cellular service providers, which then will use it for 
expanding their new generation services, and first of all 
mobile broadband Internet access. This process could even-
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