INFOCOMMUNICATIONS JOURNAL

High Speed Compression Algorithm
for Columnar Data Storage

High speed compression algorithm
for columnar data storage

Gyorgy Balogh

Abstract—Lossless compression algorithms with very high
compression and decompression speed are widely used in data
warehouses today. Even small improvement of these algorithms
can have high impact on storage space but more importantly on
data access speed which effects response time of data analysis
systems. We present a generic column storage compression
algorithm (DictComp) with very fast compression and
decompression speed. At worst the performance of the algorithm
falls back to the LZ4 |4] compression algorithm but on data
dominated by few values (which is very frequent in unnormalized
database tables) over 5 GB/sec/CPU core decompression speed
can be achieved.

Index Terms—Big Data, Hadoop, Impala, log analysis, cloud
computing, decompression, algorithm

1. INTRODUCTION

torage capacity and data access speed of storage devices
evolve exponentially albeit with very different exponent:
data access speed is getting exponentially slower relative
to storage capacity. In 1991 a typical disk had 40 MB storage
which could be scanned and processed in around a minute
while today the typical capacity is 2 TB yet the full scan time
is more than 4 hours! Yet in cloud based log analysis services
huge amount of log data have to be stored and analysed. The
presented method provides an efficient storage for log data
achieving compression ratio of 10-30 and similar data access
speedup which translates to query response time speedup.
Distributed storage and processing (e.g.: Hadoop) can
mitigate this problem: more disks can work parallel so data
access speed can be scaled up linearly with the number of
disks. Another possibility to boost data access speed is high
speed lossless data compression. CPU speed is also evolving
much faster than data access speed so there is expanding
opportunities for the implementation of more and more clever
compression algorithms. A new generation of so called real-
time compression algorithms has developed in the last couple
of years. There is nothing new in these algorithms
theoretically, but the very efficient implementations and ratio
of CPU speed and data access speed makes the decompression
time almost negligible today. Examples of such algorithms are
LZO, Snappy and LZ4. L.Z4 can achieve around 1
GB/sec/core decompression speed on log data with a

Manuscript received June 06, revised June 6. Gyorgy Balogh, CTO of
Logdrill Kft, a subsidiary of Kiirt Zrt. Contact: gyorgy.balogh@kurt.hu

JUNE 2014 * VOLUME VI * NUMBER 2

compression ratio of 10 boosting the 100 MB/sec sequential
disk T/O limit with an order of magnitude.

LZO, Snappy and LZ4 are generic compression
algorithms, however in database storage engines other
structural information such as field and record boundaries are
also available, which can further boost the speed of
compression and decompression.

In analytical databases data is typically stored in columnar
way: values of one field for a larger set of records are stored in
a compressed block. Columnar storage has many advantages
for analytical workloads. Columns that are not participating in
a query don’t have to be read, thereby sparing significant disk
I/O. A list of values for the same field typically can be
compressed better. More and more data is stored in an
unnormalized way with many repeating values. Log files are a
typical example of this: the same value (e.g.: server address) is
stored over and over again even if it is the same in each case.
Unnormalized storage has the advantage of data locality: all
information for a record is available locally; there is no need
for indirections for potentially remote data.

In this publication we present a compression algorithm for
columnar data. The algorithm falls back to an LZ4
compression in worst case, but can achieve decompression
speed over 5 GB/sec/core for column data dominated by a few
values.

The presented compression algorithm can be applied in
analytical database storage engines. One of our goals is to
integrate this result to the Parquet storage format to further
speed up analytical queries over data stored in Parquet format.
This would reduce query response time of queries over "big
data" data sets. In practice this effect BI tool performance on
all kind of data sets (financial, click stream, sensor data etc.).

II. THE ALGORITHM

In the case of columnar compression, the input for the
compression algorithm is a sequence of string values and the
output is a byte sequence. This compression schema can be
applied to table columns with boolean, text and enum types.
Numerical data types needs different class of algorithms.

In case of decompression, the input is the coded byte
sequence and the output is the original string sequence.
However, for many query operations the original string
sequence does not have to be fully materialized. These
operations can be performed on compressed or ’half
compressed’ data.

Compression is performed in blocks with the size of
typically 1000-10000 items. Each block independently

49

INFOCOMMUNICATIONS JOURNAL

High Speed Compression Algorithm
for Columnar Data Storage

compressed contains all information for decompression. The
main idea of the compression algorithm is to split the data into
three parts: literals, literal lengths and dictionary indexes as
shown in Figure 1. Unique literals are concatenated without
string terminator and compressed with LZ4. Length of the
unique literals are collected separately and compressed with a
very efficient integer compression algorithm described later.
The same integer compression algorithm is used to compress
the dictionary indexes.

Block of
column items

GET
POST

GET Dictionary words Compressed block

= [ceTposTHEADRUT |

oSt 01010100010001
01010101010101

GET 00101011101010

HEAD - , 10101010101010
e Dictionary word sizes 10100000101010
— 1010110101010

GET E&‘f:&?{:‘aw 3443 10101010101010
WEAD 9 1001010101010
11010101010101

GET 01010010101010
PUT 1010101010110

Dictionary indexes 1011010101010
GET 1
GET 010010200203, | |Index

000...0
GET

GET

Fig. 1. The block compression process

Fig. 2. shows the compression algorithm. The dictionary
index starts with 0 and increased for every new item. A fast
hash function is used to recognize repeating items.

virtual void addFromString(const char * str, size t len)
{
Index h = murmurHash64 A(str, len) % BUCKETS;
Index ind = m_indexesByHash[h];
if (ind = m unknownltemIndex && len ==
m sizes[ind] &&
strnemp(str, m_strings.data() + m_offsets[ind],
len) == 0)
{
// existing item
m_indexes.push_back(ind);
b
else
{
// new item
m_offsets.push_back(m_strings.size());
m_strings.insert(m_strings.end(), str, str + len);
m_sizes.push_back(len);
m_indexes.push_back(0);
m_indexesByHash[h] = ++m nextld;
¥
J

Fig. 2. Dictionary building algorithm.

1II. INDEX COMPRESSION

Daniel Lemire and Leonid Boytsov have recently
presented a comprehensive evaluation of different integer
compression algorithms [8]. We evaluated the algorithms
based on decompression speed including the disk I/O. The

50

best candidate was the index compression algorithm
(Simple8b) published by [7].

Key idea of the algorithm is to use 64 bit words to code
input sequences. 4 bits are used to select the encoding schema
the rest 60 bits holds the data. Example encoding schemes: 60
pieces of 1-bit numbers, 30 pieces of 2-bit numbers, 20 pieces
of 3-bit numbers ... 1 pieces of 60 bit number. During
decoding the 64 bit code hold a register and by repeatedly
applying shift in conjunction with bitwise AND operations,
this method can produce the output numbers at an extremely
fast decoding speed.

template<size t LENGTH, uint8 t BITS, size tK=
LENGTH>
struct DecodeLiteral
{
static void decode(uintl16_t *& out, uint64 t code)
{
*out++ = (code >> (60 - BITS * (LENGTH - K +
1))) & ((1U << BITS) - 1);
DecodeLiteral<LENGTH, BITS, K -
1>::decode(out, code);
}
35
template<size t LENGTH, uint8 t BITS>
struct DecodeLiteral<LENGTH, BITS, 1>
{

static void decode(uint16_t *& out, uint64 t code)

*out++ = (code >> (60 - BITS * LENGTH)) & ((1U
<< BITS) - 1);
35
Fig. 3. Fast integer decoding routines. To decode a number, shift and bitwise
AND operations are needed. Compared to this the loop administration cost

gets too high. With the help of template meta-programming, loop unrolling
can be enforced leading to 100% speed up compared to a simple loop.

template<size t MAX LENGTH, uint8_t BITS,
uint§_t SCHEMA ID>
static size t encodeLiteral(const uint16 t * data, size t
len, uint64_t * out)
{
const uint64 t max = (1U << BITS) - 1;
const uint32 t n=std::min(len, MAX LENGTH);
*out = SCHEMA 1D;
for (size ti=0;1i<n;++i)
{
if (data[i] > max) // termination condition
return 0;
*out = (*out << BITS) | data][i]; // coding
}
*out <<= 60 - BITS * n;
return n;

}

Fig. 4. Fast integer encoding routine. Doing the test and encoding in one loop
is the key idea to speed up the coding.

Compared to the benchmark implementation of Daniel
Lemire and Leonid Boytsov, we achieved significant speed up

JUNE 2014 « VOLUME VI * NUMBER 2

INFOCOMMUNICATIONS JOURNAL

both in compression and decompression speed. With loop
unrolling (with template meta-programming) we achieved
100% decompression speedup. Decompression speed can get
above 2 billion integers per second which translates to 1-2
CPU cycles per integer. In case of 32 bit numbers this
translates to 8 GB/sec decompression speed.

In the baseline implementation, the test of coding schema
and the actual coding are done in two steps. First it finds the
best schema in a greedy manner then performs the coding in
another pass. We modified the coding algorithm to do the
schema test and coding in one step. The termination condition
and the coding are independent and can be executed in
parallel. Presumably as an effect of the superscalar execution,
the added coding does not slow down the test which gives us
an almost 100% coding speed up in compression speed. If a
coding schema terminates due to a too large number, then the
next coding will simply overwrite the invalid code generated
by the previous schema.

The original index coding algorithm has only two schemas
for encoding long O runs (run length with 120 and 240). We
extended the algorithm with a new schema that can encode 6
runs in the 60 bit data part. 7 bits are used to encode the run
length and 3 bits encode the data. This schema significantly
increased the compression ratio (50-100%) in case of zero
dominated distributions.

IV. EVALUATION

First let’s consider two special input distributions: all items are
different and only a few items are different. In the first case
dictionary index will always be zero (zero index means new
item). In this case the all zero indexes will compress extremely
well (with run length encoding) with negligible decompression
time overhead so the compression will be an LZ4 compression
basically. In the other case the dictionary indexes will be small
and again compress very well. In this case the literal string
will be short so the decompression time will be dominated by
the index decompression speed. Depending on the distribution,
the decompression will be a mixture of LZ4 decompression
and index decompression with decompression speed ranging
from around 1 GB/sec (LZ4 dominated) to over 5 GB/sec
(Index decompression dominated).

We tested the compression algorithm on two realistic big
data datasets:

+ US domestic flight statistical database [6]. (10 million
records, 29 fields, 1.6 GB in CSV).

* Web server logs of the 1998 World Cup [1]. (500
million records, 1 fields, 1.9 GB in CSV).

Measurements were performed on a $1000 class laptop
with 8GB RAM, Intel Core 17 processor having 4 cores
running at 2GHz. Operating system was Ubuntu 11.04.
Measured sequential disk read speed is 70MB/sec.

We measured compression performance (bulk load) and
some simple SQL queries. Query plans are hand coded over
our column compression storage. We selected three columnar
database engines for comparison: InfoBright [3], MonetDB [5]
and Cloudera Impala [2]. We tested the InfoBright
Community Edition (version 4.0.7), MonetDB v1.0 Jul2012-
SP2 and Impala 1.1. All are 64-bit versions.

JUNE 2014 * VOLUME VI * NUMBER 2

High Speed Compression Algorithm
for Columnar Data Storage

Table 1 shows the measured execution times.

Flight29 Web500M

Bulk | Cold [Warm| Bulk | Cold | Warm

load | query | query | load | query | query
MonetDB || 59.21 | 0.92 | 0.04 |[167.32| 7.12 | 0.95
DictComp | 17.31 | 0.61 [0.05 | 29.51 | 2.34 | 0.70
InfoBright | 78.13 | 1.67 | 0.92 |[130.34|70.96 | 70.94
Cloudera | 57.35| 490 | 0.46 || 97.79 | 47.7 | 15.82
Impala

Table 1. Bulk load and query execution times (in seconds) of the engines on
the two datasets. In case of bulk load the input file was always in the file
cache. For queries we tested the query when the file and database caches were
cleared (cold run) and after multiple runs of the same query (caches are
warmed up).

In query performance DictComp and MonetDB are close.
DictComp gets significantly better in I/O bound cold queries,
for warm queries they almost exactly match. InfoBright
simply fell short with the Web500M dataset, even a grep can
perform better (6 seconds from file cache) on the original
uncompressed dataset. The main reason why InfoBright
cannot handle record numbers of this magnitude comes from
its old architecture, which is inherited from the MySQL
framework. The MySQL storage interface forces the
InfoBright storage engine to copy every single item to the
MySQL plan executor. So the whole dataset have to be
decompressed and copied item by item. This makes the
InfoBright query execution CPU bound on the Web500M
dataset, which then results in the same execution time for cold
and warm queries.

V. ACKNOWLEDGEMENT

This publication/research has been supported by the
European Union and Hungary and co-financed by the
European Social Fund through the project TAMOP-4.2.2.C-
11/1/KONV-2012-0004 - National Research Center for
Development and Market Introduction of Advanced
Information and Communication Technologies.

VI. REFERENCES

[17 1998 world cup web site access logs.
http://ita.ee.lbl.gov/html/contrib/ WorldCup.html

[2] Cloudera Impala.
http://www.cloudera.com/content/cloudera/en/products-and-
services/cdh/impala.html

[3] Infobright. http://www.infobright.com

[4] The LZ4 lossless compression algorithm.
http://code.google.com/p/l1z4

[5] Monetdb. http://www.monetdb.org

51

INFOCOMMUNICATIONS JOURNAL

High Speed Compression Algorithm
for Columnar Data Storage

[6] USA domestic flights info data.
http://www.transtats.bts.gov/DL _SelectFields.asp?Table D=

236&DB_Short Name=On-Time

[7] Vo Ngoc Anh and Alistair Moffat. Index compression
using 64-bit words. Softw., Pract. Exper., 40(2):131-147,
2010

[8] Daniel Lemire and Leonid Boytsov. Decoding billions of

integers per second through vectorization. CoRR,
abs/1209.2137, 2012.

52

Gyérgy Balogh is the CTO of LogDrill

(Kft. Gyorgy received his computer

| science degree from the University of

Szeged and has 20 years of data mining

and machine learning experience.

Gyorgy spent 6 years at Vanderbilt

| University in Tennessee as a researcher

and developed the sensor fusion

algorithms of the first distributed shooter localization system.

Currently Gyorgy Balogh is working on the LogDrill product
family specialized for log and big data analytics.

JUNE 2014 « VOLUME VI * NUMBER 2

