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Abstract—Amalgamation of formalised knowledge and real-
world datasets is a pivotal challenge in the realm of information
and communication technologies. Semi-automated classification
of datasets can be performed by utilisation of ontologies. The
detection process of image objects in Very High Resolution
Satellite Imagery (VHRSI) gives a prominent example. The
process of refinement of formalised expert knowledge within the
related ontology still remains a challenging and time-consuming
task. In this paper, the JSON2OWL Converter (OWLET) extension
for Protégé is presented which supports experts during this
refinement phase. The extension offers an integrated approach
to transfer real-world dataset objects into the ontology mod-
elling software for semi-automated classification. This transfer
is achieved by combining open standard formats from both
domains, the (Geo) Web domain (GeoJSON) and the Web
ontology domain (OWL2). Thereby OWLET supports the process
of accuracy analysis and accuracy fostering. By utilising the
OWLET extension, experts can not only speed up their clas-
sification procedure considerably, but they can also refine their
formalised knowledge by using the results of the classification
process in conjunction with the outcomes of the accuracy analysis.

Index Terms—OWL, Ontology, Protégé, Remote Sensing, GIS,
Knowledge Formalisation

I. INTRODUCTION

S the formalisation of expert knowledge is required in

almost all research domains, ontologies represent one
solution towards this issue. The challenge associated to this
procedure is twofold: on the hand the formalised knowledge
has to be applied to the real-world datasets, on the other
hand the real- dataset should also enhance and develop the
formal knowledge. By serving both sides, semi-automated
classification of data becomes possible.

For instance, Object Based Image Analysis (OBIA) presents
an accepted and efficient method concerning the classification
of high-resolution imagery datasets [1]. The main idea of this
approach is to segment the original image into homogeneous
units, based on pre-define criteria. In the next step, the image
analysis process builds on these segmented objects [2]. Up to
now, OBIA is expert knowledge-driven. In consequence, the
accuracy of the classification and the time consumption for this
process strongly depend on the experts‘ knowledge about the
properties of objects represented in the image. Furthermore, he
or she has to consider the relations between the objects as well
as the context of the image. These circumstances exacerbate
the process of embedding OBIA-based methods into opera-
tional frameworks, where speed and flexibility of information
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retrieval are important assets [3], [4]. To overcome this issue,
a formalisation of a priori knowledge is necessary for the
purpose of information extraction from satellite imagery by
image analysis systems. One possible solution is presented
in form of ontologies. Ontologies can be defined within the
Artificial Intelligence (AI) domain as ‘an explicit specification
of a shared conceptualisation’ [5, p. 1]. In other words: An
ontology can be seen as the knowledge of a domain expert,
formalised in a machine-understandable way. Various research
endeavours have been conducted to employ ontologies for the
automation of the image analysis and interpretation process
[6], [7], [8], [9]. For a detailed review of ontology-based ap-
plications in remote sensing, please refer to [10]. In summary,
it can be argued that the process of image analysis and image
interpretation necessitates two kinds of knowledge: i) domain-
specific knowledge, and ii) knowledge for image analysis
[11]. The domain-specific knowledge represents the domain-
specific terminology and incorporated semantics. The image
interpretation knowledge can be separated into gqualitative
information and quantitative information. The first refers to
spectral and spatial properties of objects inherent in e.g.
satellite imagery. These properties can be characterised in
natural language: for instance, rivers feature an elongated
form, or buildings are represented by rectangular objects when
seen from above. These qualitative descriptions need then to
be mapped to information from the source image, in particular,
the delineated objects. One of the most challenging steps
presented by the associated engineering process is to form a
knowledge base which features the necessary domain-specific
semantics at a meaningful granularity. This issues is known
in the literature as ‘the ontology grounding problem’ [12].
To contribute towards a possible solution to this problem,
the JSON2OWL Converter (OWLET) presented in this paper
aims at supporting domain experts during the development and
refinement phase of their ontologies based on real-world data
as fundament. This process bridges the ontology domain and
the domain of real-world applications.

For the development of before-mentioned ontologies, the
ontology creation tool Protégé [13] represents the de facto
standard in the remote sensing community and beyond. This
tool is not an expert system itself. Instead, it is intended to
provide the necessary environment to develop custom-tailored
tools for the process of knowledge-acquisition. The current
version of Protégé is Java-based and therefore platform-
independent. Furthermore, it is possible to extend the Protégé
environment by plug-ins such as ontology visualisation [14]
or fuzzy logics [15], [16]. Therefore, OWLET was realised as
such a plugin'.

! A demo version of the plugin, together with sample data and a sample

ontology for testing purposes can be found at:
http://lampoltshammer.com/owlet/demo.zip
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The remainder of the paper is as follows: First, the overall
architecture of OWLET is presented, together with the as-
sociated data flow and workflow. Second, the transformation
process of geo data to the ontology modelling language is
described. Subsequently, the presented plugin is demonstrated
via an example workflow. A discussion about important as-
pects of the suggested solution and the conclusion end this

paper.

II. ONTOLOGY EVALUATION

Throughout the literature, various approaches exist to eval-
uate given ontologies. According to [17], four main evaluation
directions can be identified: i) ‘gold standard’ comparison, ii)
application-based evaluation, iii) data source comparison, and
iv) human-centric evaluation. The first category is dedicated
to compare the given ontology to a ‘gold standard’, that is
a predefined, well-formed dataset against other datasets are
measured [18]. The second category describes the use of
an ontology within an application and then to evaluate the
outcome based on the employed ontology [19]. The third
category utilises a repository of documents about a certain
domain, which is then compared to the ontology that should
cover this domain and the associated knowledge [20]. The last
category describes a human-centric approach. Here, experts
assess the quality of the given ontology by comparing it to a
defined set of criteria [21].

The example workflow described in this paper is based
on object features from literature, in particular building fea-
tures. This qualitative and quantitative knowledge is then
employed to manually build a ‘gold standard’, against which
the ontology-based classification results are matched.

III. THE INTEGRATED SYSTEM ARCHITECTURE AND
PROCESS FLOW

Figure 1 depicts the integrated system architecture as well
as the associated process flow. The rhomboid boxes represent
data for input/output, while the rectangular-shaped boxes de-
pict processing modules. The arrows within the figure visualise
the process flow within the architecture. The architecture itself
comprises several layers from bottom to top of Fig. 1. : i) the
data layer, ii) the image processing layer, iii) the reasoning
layer, and iv) the expert knowledge layer. The first layer serves
as a repository for Very High Resolution Satellite Imagery
(VHRSI). From this database, the image to be analysed is han-
dled by the image processing layer. This layer is represented
by a remote sensing application for image processing and
analysis, e.g. eCognition?®. Via this object-based image analysis
tool, image segmentation algorithms are applied to the satellite
image. The process of segmentation can be described as the
partitioning of an image into distinct areas or regions. These
regions are non-overlapping and are homogeneous considering
certain predefined attributes [22]. The resulting delineated
objects are then exported into the GeoJSON format [23]. The
export functionality is either included in the remote sensing
application or can be achieved via the use of external services

2 eCognition - http://www.ecognition.com
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Fig. 1: Integrated architecture of the OWLET plugin
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or libraries, such as WorldMap® or the Geospatial Data Ab-
straction Library (GDAL)*. The resulting GeoJSON file is then
imported into Protégé via the OWLET plugin which is denoted
by dashed lines within the processing modules in Fig. 1. In
the next step, the imported objects (delineated objects from
the prior segmentation) are translated into the Ontology Web
Language Version 2 (OWL2) [24]. Subsequently, the ontology
and the objects modelled in OWL (so-called Individuals) are
now merged for the reasoning process. The ontology itself
comprises the qualitative class description of the domain, as
well as the quantitative descriptions based on the actual image.
The classification results can then be used to perform an
accuracy assessment based on precision and recall [25]. In the
final step, experts can analyse characteristics of misclassified
objects to refine the qualitative and quantitative knowledge
modelled within the ontology, until satisfying accuracy results
are achieved.

IV. GEO DATA TRANSFORMATION

In order to validate and evaluate the developed ontology, the
segmented objects from the satellite image have to be imported
into Protégé. As Protégé does not ‘understand’ shape files, the
segmented objects have to be exported and converted in order
to be compatible. In the first step, the given shape file has to be
exported into the GeoJSON format [23]. GeoJSON provides
encoding capabilities for various geographic data structures,
such as geometry, a feature, or a collection of features. After
the export is completed, the newly produced GeoJSON file
can be imported into Protégé via OWLET.

For the process of reasoning (in this case the process
of classification based on formalised knowledge), Protégé
employs description logics in form of various reasoners. These
reasoners make use of the specifically designed elements of

WorldMap - http://worldmap.harvard.edu/
4 GDAL - http:www.gdal.org/
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the Ontology Web Language Version 2 (OWL) by W3C [24].
For a comprehensive treatise of the origin of OWL2, the
reader may refer to [26]. The OWL vocabulary contains three
main artefacts as there are classes, individuals and, properties.
Classes as such can be described as set of individuals, while
properties describe the relationships between the classes and
in consequence the associated individuals. These artefacts are
formalised within OWL based on Description Logics (DL) —
here called OWL DL. By these logic statements, automated
testing by a reasoner becomes possible. A reasoner can be
described as application the can infer logical relationships
within the ontology and in consequence can perform consis-
tency, equivalence and instantiation testing. There exist three
profiles within the OWL2 standard - also called fragment or
sublanguage - available. These sublanguages represent altered
versions of OWL, namely: i) OWL 2 EL, ii) OWL 2 QL,
and iii) OWL 2 RL (Motik et al., 2009). For the ontology in
this research work, the author chose Protégé-OWL [27], an
adapted and optimised version for Protégé.

This part of the paper introduces the main components
utilised to build a basic ontology in OWL. First, a class hierar-
chy is built by classes and sub-classes. Listing 1 describes the
class ‘Area’ to be a sub-class of the parent class ‘Classifiers’.

<Declaration>
<Class
</Declaration>
<Declaration>
<Class IRI="#Classifiers"/>
</Declaration>
<SubClassOf>
<Class IRI="#Area"/>
<Class IRI="#Classifiers"/>
</SubClassOf>

IRI="#Area"/>

Listing 1: Defining OWL classes and sub-classes

In order to link two classes with each other, object properties
are employed. In addition, these relationships can be employed
to describe entire classes - called ‘EquivalentClasses’. Listing
2 demonstrates how such properties and ‘EquivalentClasses’
are described in OWL. In particular, it is defined that a class
‘ResidentialAres’ is equivalent to a class that is linked to the
class 'LowArea’ via the object property ‘hasArea’.

<EquivalentClasses>
<Class IRI="#ResidentialArea"/>
<ObjectIntersectionOf>
<ObjectSomeValuesFrom>
<ObjectProperty IRI="#hasArea"/>
<Class IRI="#LowArea"/>
</ObjectSomeValuesFrom>
</ObjectIntersectionOf>
</EquivalentClasses>

Listing 2: Defining OWL EquivalenClasses by ObjectProper-
ties and Relationships

The next step consists of mapping these qualitative descrip-
tions to quantitative values. Again, the principle of ‘Equiva-
lentClasses’ is used. In addition, data properties are utilised
to map concrete values to qualitative descriptions (see List.
3). Here, the definition of ’LowArea’ is described as a double
value of greater than 1,500. The property which holds this
value is denoted as ‘area_pxI’.

14

<EquivalentClasses>
<Class IRI="#LowArea"/>
<DataSomeValuesFrom>
<DataProperty IRI="#area_pxl"/>
<DatatypeRestriction>
<Datatype abbreviatedIRI="xsd:double"/>
<FacetRestriction facet="&xsd;maxExclusive">
Literal datatypeIRI="&xsd;double
">1500.0</Literal>
</FacetRestriction>
</DatatypeRestriction>
</DataSomeValuesFrom>
</EquivalentClasses>

Listing 3: Mapping of qualitative and quantitative knowledge

What the OWLET plugin does is to parse the objects
denoted in the GeoJSON file and ports them into the OWL
syntax to be included into the ontology. Listing 4 shows an
example ontology entry for a parsed object as an individual.

<Declaration>
<NamedIndividual IRI="#DataSet_building_set.2"/>
</Declaration>

<DataPropertyAssertion>
<DataProperty IRI="#area pxl"/>
<NamedIndividual IRI="#DataSet_building_set.2"/>
<Literal datatypeIRI="&xsd;double">1230.0</Literal>
</DataPropertyAssertion>

Listing 4: Defining OWL classes and sub-classes

This process is repeated for all properties of one object and
for all objects included within the GeoJSON file.

V. APPLICATION EXAMPLE

The following example describes a typical application
scenario for OWLET. The example at hand is simplified
for demonstration purposes. The employed quantitative and
qualitative descriptions within the ontology are by no means
representative. However, the described workflow can easily be
extended to cover complex knowledge acquisition projects as
well. For a more complex example dedicated to classification
of buildings from Light detection and ranging (LiDAR)-based
data, involving an early prototypical version of this plugin, the
reader may refer to [28]. As a start, a remote sensing image
is envisioned (for instance VHRSI) after the segmentation
process in eCognition. The desired task is to identify different
types of building classes within the segmented objects. In the
next step, the segmented objects are exported to the GeoJSON
format. The features utilised in this example are building
features from literature. In particular, features mentioned in
the work of [29] are employed such as i) the occupied area of
the building, ii) the density of buildings in a specific area, iii)
the two-dimensional shape of the building, and iv) the roof
type of the building. An example set of segmented objects
after the export to GeoJSON can be seen in Fig. 2.

The ‘manual_classification’ field holds the associated man-
ual (visual) classification by the expert. Type ‘1’ represents an
‘ResidentialArea’ and Type ‘2’ represents an ‘IndustrialArea’.
The generated GeoJSON file can then be imported by the
OWLET plugin. The user interface of the extension as such
is clean and simple. Via a file explorer, the user can select
the specific GeoJSON file which is then imported into the
ontology.
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= {JusoN
o type : "FeatureCollection"
= [ Jfeatures
={}o
¥ type : "Feature"
¥ id : "building_set.1"
= {} geometry
® geometry_name : "geometry”
= { } properties
u area_pxl: 1230
slope : 30
density : 1
rectangular_fit : 23
manual_classification : 1

Fig. 2: GeoJSON example file after export

It is important to use the same object properties from the
segmented objects within the ontology. A visualisation of
the modelled a priori knowledge is depicted in Fig. 3. This
figure represents a snapshot of the larger ontology, which was
embedded in the Corine land-use/land-cover ontology>. After
the import of the segmented objects within the GeoJSON file,
the objects are contained as individuals within the ontology. In
the next step, the reasoning process can be started to perform
the ontology-based classification.

Based on the combined results per class (Tab. I and Tab. II),
precision (1) and recall (2) can be calculated. In this case, the
precision and recall values reach 100% and 70% respectively
for the class ‘ResidentialArea’, while the associated precision
and recall values for the “IndustrialArea’ class reach 80% for
precision and 50% for recall.

Condition pos.

Condition neg.

Test pos.

392

0

Test neg.

168

240

TABLE I: Precision and Recall for ‘ResidentialArea’ class

Condition pos.

Condition neg.

Test pos.

120

30

Test neg. | 120 530

TABLE II: Precision and Recall for ‘IndustrialArea’ class

. true positive
Precision = — — (1)
true positive + false positive

Recall — .t7juc positive ‘ @)
true positive + false negative

This situation occurred due to the ‘unsharp’ properties of
some objects. An example object can be seen in Fig. 4. This
object was manually classified as ’IndustrialArea’, but was
neither recognised as ‘ResidentialArea’ nor ‘IndustrialArea’.
Some properties are very close to both types of classes and
therefore it is not possible to come up with a distinct result.

5 Corine - http://harmonisa.uni-klu.ac.at/de
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At this point, it is the expert‘s task to decide upon the
quantitative description of the classes and their refinement. In
addition, the expert might need to add additional qualitative
descriptions as well. Furthermore, it could turn out that the
existing object properties are not enough to describe the given
classes in a proper way and additional properties have to be
included or existing properties have to be omitted due to their
generality.

Property assertions: DataSet_building_set.7

Object property assertions
® hasRectangularFit DataSet_building_set.7
® hasDensity DataSet_building_set.7
®mhasRoofType DataSet_building_set.7
®mhasArea DataSet_building_set.7

Data property assertions
®mrectangular_fit 0.6
Wslope 25.0
@ manual_classification 2.0
®Warea_pxl 1500.0
W density 1.0

Fig. 4: Misclassified object

VI. DISCUSSION AND CONCLUSION

As Protégé is the de facto software in regard to ontology
development, the introduced extension does not only provide
a higher degree of comfort, but also speeds up the entire
evaluation process. As manually defining hundreds of seg-
mented objects and their associated attributes would demand
a tremendous amount of time, the import and translation
capabilities of the OWLET plugin perform these tasks in a
few minutes or even a few seconds - depending on the amount
of objects.

However, several potential pitfalls remain, which should
not be neglected. Three issues are related to the work with
ontologies and quantitative modelling, while the fourth issue
is an inherent problem of the remote sensing domain. The first
issue related to the work with ontologies is represented by
the so-called semantic gap [30]. This issue describes the fact
that visual description of data is biased by the analysts’ own
perception and experiences. Hence, assuming n experts work
on the interpretation task, n different interpretations may result.
However, this issue of ‘an objective reality’ is not novel and
was (and still is) discussed in philosophy under the paradigm
of ‘constructivism’ [31].

Another issue can be identified as the problem of ‘over-
fitting’ [32]. This issues occurs if a model comprises more
details than necessary (such as attributes or terms) to define
a given concept. This can lead to worse decisions during the
classification process, as the ‘tweaked’ ontology may cover
some types of object classes better, while others are now
misclassified. In addition, overfitting has a severe impact on
the ontology’s transferability.
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manual_classification:double
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double[==1.0] double[= 1.0]

Fig. 3: Experts‘ a priori knowledge formalised within an OWL ontology in Protégé

For instance, an expert refines the ontology’s quantitative
and qualitative descriptors to match the given image close
to 100% of the ‘gold standard’. If the actual image has
some special image properties, these are modelled within the
ontology as well. If the expert now tries to transfer the newly
gained ontology to another image from the same domain —
e.g. another snapshot of a different area of the same city —
these additional modelled properties have now the potential to
negatively influence the classification results.

When working with ontology reasoning, the topic perfor-
mance is an important aspect. Performance issues related to
reasoning in terms of complexity or computational resources
for various reasoners were studied by the authors of [33] and
[34].

There come several reasoners included in Protégé ‘from the
shelf’. One of them is called Pellet and comprises state-of-the-
art optimisation techniques such as Normalisation, Simplifica-
tion, Absorption and Semantic Branching [35]. In addition,
it features novel approaches to improve performance when
handling nominal (enumerated classes) and individuals. As the
approach in this paper strongly deals with individuals, Pellet
poses as one solution for the reasoning process. Still, the user
has to bear in mind that large numbers of individuals (several
thousands) may heavily impact on the overall performance in
terms of computation times and memory resources.

Figure 5 depicts the overall classification performance of
the three common reasoners for Protégé. It can be seen that
if the number of objects increases, the classification time
is rapidly rising around 1,000 objects. This behaviour can
become mission critical when dealing with near-real-time
applications.
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Fig. 5: Performance and run time comparison of the main rea-
soners of Protégé. The x-axis represents the number of objects
classified, while the y-axis shows the associated classification
time in ms.

The last issue to be discussed is an inherent problem of
the remote sensing domain itself — the segmentation process
[36]. Image segmentation refers to the process of aggregating
adjacent pixels based on their similarities such as texture. As
the related algorithms for the segmentation process tend to
react heavily on small changes to the segmentation parameters,
the outcomes of the segmentation may vary significantly. Users
of the presented plugin may therefore not neglect that this
important step in the process flow will impact the overall
accuracy of the ontology — even if the ontology itself would
be ‘100%’ accurate.

This paper presented the OWLET plugin for Protégé to
deliver an integrated solution for the process of ontology eval-
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uation. This open-source extension supports domain experts
from numerous field during the iterative process of formalising
his or her knowledge, while performing collateral evaluation
and refinement. The introduced integrated methodology for
semi-automated classification of (image) objects, together with
the implemented plugin serves as the missing link in the
defined process. In addition, the suggested process, as well
as its implementation, relies on multiple international standard
technologies and tools such as JSON, OWL2 and Protégé. For
the classification task, we map extracted (image) object infor-
mation against a formalised a priori expert knowledge in form
of an ontology. Furthermore, we demonstrate how to refine the
modelled knowledge based on the classification outcomes. Our
approach is built on state-of-the-art technologies; it is open
and generic and can thus be adopted by people from various
research fields.
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