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Abstract—The rapid expansion of smart city infrastructures
necessitates robust and efficient security mechanisms for em-
bedded processor-based Software-Defined Networking (SDN)
nodes. Hence, this research introduces the Adaptive Secure
XTEA for Embedded Microcontrollers (ASX-EM), a novel
encryption method designed to address these environments'
unique security and performance needs. Existing encryption im-
plementations often neglect proper padding validation, leading
to vulnerabilities such as the Padding Oracle Attack (POA). The
proposed Context-Aware Key Expansion and Secure Padding
Validation (CAKE-SPV) technique customizes key scheduling
based on node-specific parameters and employs a robust pad-
ding verification mechanism, significantly enhancing encryption
security. Moreover, the computational demands of XTEA, with
its multiple rounds of operations, are inefficient on resource-
constrained 8-bit microcontrollers, leading to increased latency
and reduced system responsiveness. To optimize performance,
the Adaptive Round and Parallel Processing (ARPP) method is
developed that dynamically adjusts encryption rounds based on
system metrics and employs bit-slice processing with precom-
puted lookup tables for efficient arithmetic operations. The re-
sults show that the proposed model has a low encryption time of
2.7s a decryption time of 2.6s, and a high encryption throughput
of 22,000 KB/sec and, a decryption throughput of 17600 KB/sec,
compared to other existing models.

Index Terms—Smart cities, Padding Oracle Attack, Software-
Defined Networking, Extended Tiny Encryption Algorithm,
precomputed lookup tables.

[. INTRODUCTION

The infrastructure of smart cities is being revolutionized by
Software-Defined Networking (SDN), which provides a
programmable and centralized method of controlling intricate
and diverse metropolitan networks. SDN offers the required
agility and control in the context of a smart city, where the
integration of several IoT devices, traffic management systems,
energy grids, and public safety networks produces a highly
dynamic environment. SDN design allows for centralized
control via a software-based controller by severing the network
control plane from the data plane. Because it is in charge of the
whole network, this controller enables dynamic resource
allocation, automatic traffic management, and real-time
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monitoring. Because SDN is programmable, network policies
may be quickly altered in response to shifting circumstances or
new threats, guaranteeing ongoing security and optimization.
To improve network flow and lower latency for vital
applications like emergency response systems, SDN, for
example, dynamically redirects data from bottleneck locations
in traffic management. By modifying the distribution in
response to real-time supply and demand data, SDN in energy
management can help make it easier to integrate renewable
energy sources. Furthermore, by offering a centralized platform
for executing security procedures and identifying irregularities
throughout the network, SDN's centralized architecture
improves cybersecurity [1-4].

Enormous networks of interlinked sensors, devices, and
communication systems underpin smart cities, and secure data
transfer is necessary to preserve confidentiality, integrity, and
trust. The XTEA (Extended Tiny Encryption Algorithm) is a
durable and lightweight symmetric key block cipher that is
well-suited for use in smart city applications. Because of its
small size and ability to function on 64-bit blocks with a 128-
bit key, XTEA is perfect for resource-constrained contexts, such
as embedded systems and Internet of Things devices, which are
commonly found in smart city infrastructure. Strong
cryptographic security is provided by its straightforward
structure, which consists of a sequence of bitwise shifts, XOR
operations, and modular additions, this offers little computing
cost. Because of its iterative method, which typically consists
of 64 rounds, XTEA is more resistant to cryptanalysis attempts,
which makes it a dependable option for protecting sensitive data
such as traffic data, utility use statistics, and personal
information. Although XTEA has many benefits, there are
security risks and vulnerabilities associated with its usage in
smart city infrastructure that need to be properly addressed [5-
8].

One major issue is that XTEA is subject to differential
cryptanalysis, especially if it is not implemented correctly and
with enough rounds (64 rounds is the ideal amount, but
implementations with fewer rounds are still vulnerable).
Additionally, if weak keys are utilized, XTEA's key scheduling
technique is extremely basic and vulnerable to cryptanalytic
assaults. Physical assaults, like side-channel attacks, present a
significant concern in the context of smart cities since gadgets
frequently function in unsupervised and sometimes unsafe
settings. To determine the encryption key, these attacks
make use of data that is disclosed during the encryption process,
such as power usage or electromagnetic emissions. Another risk
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is replay attacks, in which a hacker intercepts encrypted data
and sends it again to trick the target system into carrying out
commands or actions that are not authorized. Robust key
management procedures, such as regular key rotation and the
use of powerful, randomly generated keys, must be put in place
to reduce these risks [9-12]. Smart cities may use XTEA's
advantages while reducing possible weaknesses by tackling
these risks with all-encompassing security solutions.

The XTEA implementation in embedded microcontrollers
inside an SDN framework for smart city infrastructure has
several technical difficulties that need to be carefully
considered. One major problem is that embedded
microcontrollers have restricted resources by nature; they
include memory, computational power, and energy availability.
Despite the lightweight nature of XTEA, cryptographic
operations can still put a load on these few resources, which
might affect the responsiveness and performance of vital smart
city applications. In an SDN environment, where real-time data
flow management and fast reconfiguration are critical, this is
especially pertinent. The computational expense of
XTEA causes latency problems, impacting the speed at which
data is sent and decisions are made in the SDN, particularly
when the necessary 64 rounds for security are implemented.
The integration of XTEA inside the SDN control plane and data
plane separation paradigm is another major hurdle. Embedding
XTEA encryption techniques that dynamically adapt to the
network's changing topology and traffic patterns is necessary to
provide smooth and secure communication across various
planes [13—15]. It is imperative to optimize the implementation
of XTEA for low-power operations to overcome these
technological obstacles. This can be achieved, for example, by
using software libraries that are specifically designed for
microcontroller architectures or by using hardware
acceleration. Ultimately, an integrated approach that achieves a
balance between security, performance, and resource
limitations while guaranteeing the flexibility and scalability of
the whole infrastructure is needed for the effective
implementation of XTEA in embedded microcontrollers inside
an SDN framework for smart cities.

A. Main objective of this paper

The following methodological and
contributions have been achieved by this paper:

. To mitigate POA vulnerabilities, CAKE-SPV is
implemented within the XTEA encryption, in which Context-
Aware Key Expansion Scheduling algorithm is utilized for
customizing the key scheduling process, and OAEP with HIPV
mechanism is utilized for secure padding with integrated
validation, thereby ensuring secure communication and
preventing information leakage through POA vulnerabilities.

. To optimize the XTEA for 8-bit Microcontrollers-
based smart city infrastructure, an ARPP is presented, which
utilizes adaptive round adjustment for an optimal number of
encryption rounds and parallel processing for dividing the data
into smaller bit-level blocks thereby enhancing the efficiency
of XTEA encryption methods to operate effectively on 8-bit

experimental
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microcontrollers, reducing chip area, power consumption, and
processing time.

B. Organization of study

The arrangement of the paper is as follows. In Section 2,
relevant literature is reviewed; in Section 3, the methodology of
the proposed system is explained; in Section 4, experiments,
datasets, comparison, and evaluation methodologies are
covered; in Section 5, suggestions for future developments and
limits of the approach are made.

II. LITERATURE SURVEY

For the protection of sensitive data in a variety of
applications, including RFID systems and smart cities, the
security and effectiveness of encryption methods are essential.
Enhancing the XTEA algorithm and its variations to handle
certain security flaws and performance limitations in various
scenarios has been the subject of recent research.

Ahmed et al [16] employed an enhanced S-box to boost
security and thwart a variety of assaults, resulting in a new and
reliable version of the original XXTEA. To achieve the one-
time pad idea and provide an extra degree of protection, the M-
XXTEA was also combined with a chaotic key-
generating system. In contrast to the original XXTEA and AES,
the cipher keys were dynamically updated for every block of
plaintext throughout the encryption process, offering a more
reliable security method. The M-XXTEA works with multiple
text block sizes and key sizes in addition to improving data
security. To compare the M-XXTEA's performance with that of
the original XXTEA and AES, many experiments were carried
out. The results showed that M-XXTEA surpassed AES by 60%
in terms of encryption and decryption time efficiencies. The
addition of new elements, including the chaotic key
generation, results in unanticipated weaknesses, even if the M-
XXTEA already counters several assaults.

Manikandan et al [17] addressed the XTEA's security issues
by using domain-specific customization, random number
generation, and hidden key renewal processes. RXMAP-1 and
RXMAP-2, two different encoder architectures for the
Renovated XTEA Mutual Authentication Protocol (RXMAP),
were proposed. Their foundation was the replacement of
accurate computational blocks with approximations. The
proposed RXMAP protocol's computational and storage
overhead was evaluated, and it was tested against a variety of
security threats using BAN logic in both formal and informal
verification. The proposed encoder designs are simulated for
functional verification, and ASIC implementation is carried out
on a 132 nm manufacturing node. However, because of the
customization, use of random numbers, and key renewal
procedures, the suggested protocol resulted in computational
and storage overhead.

Zeesha Mishra and Bibhudendra Acharya [18]
constructed optimal lightweight ciphers to implement the cipher
in hardware by modeling the design characteristics. To
accomplish the intended result, the TEA, XTEA, and XXTEA
ciphers were developed, put into practice, and optimized
utilizing specialist hardware platforms including Application
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Specific Integrated Circuit (ASIC) and Field Programmable
Gate Array (FPGA). Through the execution of designs for four
hardware architectures TEA (T1), XTEA (T2), XXTEA (T3),
and hybrid model (T4) many elements, including block sizes,
implementation rounds, and crucial scheduling components,
have been explored. The percentage gains in frequency for T1,
T2, and T3 using a pipelined method are 75.9%, 162%, and
89%, respectively. Nevertheless, when optimizations are
carried out, their scope and effects on other aspects like as
security or resource use are not thoroughly investigated.

Neha Khute et al [19] proposed a round-based XXTEA-
192-bit architecture to reduce the implemented hardware's
space. This design had cheap cost and small space required, and
it was meant for RFID applications. Simple shifting, addition,
and XOR operations are among the fundamental and logical
operations used by XXTEA. These simple activities allowed the
architecture to be low-area and extremely efficient by design.
Performance analysis was carried out on several FPGA device
families, including Spartan-3, Virtex-7, Virtex-5, and Virtex-4,
assessing variables including throughput and efficacy.
Nevertheless, further optimization is needed in terms of speed,
power usage, or reduced area.

Dzaky Zakiyal et al [20] developed a distributed MQTT
(message queuing telemetry transmission) brokers-optimized
architecture. For edge resources, a distributed MQTT broker
might reduce latency and network traffic by managing only
topics that were consumed on the network. An integer non-
linear code was created to optimize container placement and
minimize the wastage of edge computing resources. This
architecture with the existing distributed MQTT middleware
design with random and greedy container placement was
simulated through rigorous modeling. When it came to
lowering synchronization overhead, power use, network
utilization, and deployment failure rates, this design fared better
than the others. Nevertheless, the limited memory, processing
power, and storage of edge devices affect the solution's viability
and efficiency.

Keshari et al [21] suggested using the Grey Wolf
Optimization Affinity Propagation (GWOAP) algorithm to
arrange many controllers in smart city networks. The network's
linked smart devices' traffic was controlled by the controllers.
The OS3E network architecture is used to mimic the suggested
method. To minimize processing delays and regulate the
controller's traffic load, the controller deploys in the OS3E
network topology by executing AP and GWO optimization
algorithms that split the network into subdomains. IoT-enabled
smart switches are better distributed throughout clusters using
GWOAP, and node equalization was distributed evenly among
all controllers in the deployed architecture. The traffic load of
IoT-enabled devices in smart city networks is intelligently
balanced across controllers by employing the suggested
technique.

Anusha, and Shastrimath [22] developed and put into use
a low-cost FPGA RFID-Mutual Authentication (MA) system
with XTEA security. By offering Reader's and Tag's challenge
and Response utilizing XTEA security, the RFID-MA
incorporated Reader and Tag authentication. The RFID-
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MA procedure was completed faster overall because of XTEA's
pipelined design, which combined parallel execution of key
scheduling with encryption and decryption processes. RFID
incorporated the XTEA with Cypher block chaining (CBC) for
protected MA applications. Based on the challenge and
response between the Reader and Tag utilizing XTEA-CBC, the
authentication procedure was successful. The security of XTEA
is constrained by its vulnerability to complex cryptographic
techniques such as differential cryptanalysis. For long-term
security, more powerful encryption algorithms and frequent
upgrades are required.

Chen et al [23] focused on DDoS attack traceback
techniques in SDN-based SC. Relevant reports from the past
few years were analysed, and it was discovered that the current
approaches were less adaptable overall and require more time
and resources. As a result, this research provided a simple
traceback system based on anomaly trees. By examining
network traffic fluctuations, this approach created an anomaly
tree. It then calls on several detection algorithms that satisfy the
necessary conditions to reduce the tree and ultimately identify
the attack path. The main weakness in the method is that it is
vulnerable to erroneous data from hacked base station nodes,
which might result in imprecise anomaly identification and
traceability of attack paths. It is additionally susceptible to noise
and inconsistencies since it depends on consistent network
traffic patterns.

Abdulkadhim et al [24] presented a more advanced,
lightweight Modified XTEA Algorithm that protected against
node abuse attacks and side-channel vulnerabilities. Provide a
design in this work that used chaotic systems to create
encryption keys, making them more unpredictable and random.
This research's main goal is to strengthen security protocols
against a variety of modern attack methods, ensuring complete
defense, unpredictable behavior, and resilience. The purpose of
implementing strategic defenses and strategies is to protect
important resources from potential harm. Even with these
improved security measures, the complexity of chaotic key
generation still causes the updated XTEA method to operate
poorly on very limited hardware.

Ragab et al [25] demonstrated that the XXTEA lightweight
block cypher used fewer memory and computing cycles, so it is
a better fit for usage in IoT smart devices for message
encryption. Additionally, the elliptic curve cryptography (ECC)
asymmetric cipher was chosen over RSA because it provides a
higher level of bit security at smaller key sizes. To ensure
authenticity, integrity, and non-repudiation, the ECC cipher
was employed. For secrecy, the XXTEA block cipher was
employed. Additionally, each time data is encrypted, the script
hashing algorithm is utilized to confirm data integrity and
produce numerous keys. By combining ECC, XXTEA, and
script, the suggested hybrid cryptosystem satisfies the four
primary requirements of cryptography: secrecy, authenticity,
integrity, and non-repudiation. However, the physical setup of
the suggested hybrid cryptosystem needs to be addressed.

From this review, it is noted that [16] introduces unexpected
weaknesses that can impact reliability, in [17] results in
increased computational and storage overhead, and in [18§]
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observed that their optimized hardware implementations while
improving performance, did not thoroughly address the trade-
offs between security and resource usage. [19] it still requires
further optimization for speed, power consumption, and area
reduction, in [20] faces challenges due to the limited memory
and processing power of edge devices, in [21] highlighted that
their GWOAP-based controller arrangement, while balancing
IoT traffic, could be limited by the complexity of the
optimization process, in [22] vulnerable to advanced
cryptographic attacks and requires more robust encryption
solutions. [23] reported that their anomaly tree-based DDoS
traceback method, while simplifying detection, is susceptible to
inaccuracies from erroneous data and noise, in [24] suffers from
poor performance on highly constrained hardware due to the
complexity of chaotic key generation.

III. ADAPTIVE SECURE XTEA FOR EMBEDDED
MICROCONTROLLERS IN SMART CITIES

As smart cities rely more on networked devices for crucial
urban infrastructure, the demand for strong security measures
grows. XTEA is a lightweight encryption solution designed for
resource-constrained contexts, making it a good fit for
embedded processor-based SDN nodes. However, using XTEA
in these systems involves specific obstacles that need to be
overcome to maintain effective security. Hence, an Adaptive
Secure XTEA for Embedded Microcontrollers (ASX-EM) is
proposed to address the goals of mitigating vulnerabilities
caused by POA, optimizing performance for 8-bit
microcontrollers, and developing customized XTEA encryption
methods for embedded processor-based SDN nodes in smart
cities. Many existing embedded processor-based SDN
controllers ignore adequate padding validation to improve
decryption performance. This carelessness makes them
vulnerable to Padding Oracle Attacks, which allow attackers to
change ciphertext and exploit incorrect answers from the SDN
controller. By iterating through potential modifications,
attackers can decrypt sensitive data block by block,
compromising the integrity and confidentiality of the
communication. To mitigate POA vulnerabilities, the Context-
Aware Key Expansion and Secure Padding Validation (CAKE-
SPV) are introduced. Here, A Context-Aware Key Expansion
Scheduling technique is developed, which customizes the key
scheduling process to node-specific factors such as MAC
address and node ID. This ensures that even if one key is
compromised; the security of other nodes remains intact.
Additionally, the OAEP with HIPV mechanism provides secure
padding and integrated validation. OAEP adds random padding
and a cryptographic hash to the plaintext before encryption.
During decryption, the HIPV checks hash consistency, aborting
if the message is tampered with, thus ensuring ciphertext
integrity and preventing information leakage through padding
oracle attack vulnerabilities. This technique adds an extra layer
of security to XTEA encryption, safeguarding against potential
POA risks.

Furthermore, smart city infrastructure frequently relies on a
large number of interconnected devices, many of which are
powered by 8-bit microcontrollers since they are inexpensive
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and consume little power. Such devices manage important tasks
including public safety, environmental monitoring, and traffic
control. Many existing XTEA designs, which include multiple
rounds of complicated arithmetic and bitwise operations, are
not appropriate for 8-bit microcontrollers. These devices
struggle with computational overhead, causing considerable
delays during encryption and decryption. The restricted
processing power and memory increase latency difficulties,
preventing real-time data transfer. As a result, essential
applications in smart city infrastructure may encounter delays,
jeopardising the security and efficiency of sensitive data
exchange. This inefficiency presents a substantial difficulty for
implementing strong encryption in resource-limited contexts.
Hence, an Adaptive Round and Parallel Processing (ARPP)
method is introduced to optimize XTEA for 8-bit
microcontrollers in smart city infrastructure. The Dynamic
Round Adjustment technique uses Threshold-based Adaptive
Control Logic to monitor system parameters such as CPU load,
memory, and network traffic, and then adjusts the number of
encryption rounds in real-time. This lowers the need for huge
buffers or storage spaces, reducing the necessary chip area.
During periods of low system load or restricted resources, fewer
rounds accelerate processing without risking security.
Furthermore, Bit-Slice Processing with Precomputed Lookup
Tables accelerates encryption/decryption by processing bit-
level blocks concurrently and obtaining precomputed values.
This reduces arithmetic operations while dramatically
increasing XTEA efficiency on 8-bit microcontrollers, making
it suitable for smart city applications.

Adaptive Secure XTEA for Embedded
Microcontrollers (ASX-EM)

o]
o

Expansion and Secure
’ Padding Validation
(CAKE-SPV)

SDN Controller

- - - -

\-----1-----

Fig.1: Overall flow diagram of the proposed model

The overall flow diagram of the suggested model is
illustrated in the figure 1. IoT devices in the smart city transmit
data to the ASX-EM framework. Initially, the Context-Aware
Key Expansion method produces unique keys for each node
depending on predefined factors. The Dynamic Round
Adjustment program then analyses system parameters and
modifies the number of encryption rounds accordingly. The
XTEA algorithm is used to encrypt data, which is optimized
with Bit-Slice Processing and Precomputed Lookup Tables.
Furthermore, OAEP provides padding and a hash for safe
transmission, while the HIPV technique maintains integrity
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during decryption. Finally, the encrypted data is decrypted, and
the HIPV detects manipulation. If the data is genuine, it is
processed; otherwise, the operation is aborted. The SDN
Controller manages the whole process, guaranteeing optimal
resource allocation and network management.

A. Context-Aware Key Expansion Scheduling

The Context-Aware Key Expansion Scheduling method is
proposed to improve the security of the XTEA encryption
system by creating unique encryption keys for specific nodes in
a dispersed network. This approach incorporates node-specific
factors into the key scheduling process, resulting in unique,
pseudo-random encryption keys for each node. This
customization enables each node to produce unique encryption
keys, which improves security, particularly in dispersed
networks. This solution dramatically enhances the security of
XTEA encryption by preventing a key breach from influencing
the security of other nodes.

The algorithm begins by generating a base key K}, from node-
specific parameters. let MAC be the node's MAC address and
NodelD be its unique identification. These parameters serve as
the basis for generating unique keys for each node. The unique
key for each node is generated by combining the base key with
the node-specific parameters, which is mathematically
represented as in equation (1)

Ky = f(MAC, NodelD) (1)

Where Ky, is the base key. f is a cryptographic function that
combines the base key with the node-specific parameters,
which is designed using a hash function to ensure that the output
is pseudo-random and unique for each node. Once the base key
is generated, the key scheduling process begins. The key
scheduling function K, takes the base key Ky and a context
parameter C;. The context parameter is a combination of node-
specific parameters or an additional random value for added
security.

Ksen (Ko, C) = (K5, K7, Kg?, . K} 2

The basic key Kpis extended into round keys
{Kl(jl), KI(JZ), KS), ...,Kt()n)} for XTEA encryption rounds. The
Context-Aware Key Expansion Scheduling algorithm generates
these round keys in a manner that incorporates node-specific
context. The key scheduling is adaptive; this is change based on
the operational context of the node. To further strengthen the
uniqueness of the keys, the algorithm modifies the round keys
based on contextual information:

C; = h(MAC, NodelD, V;) 3)

Where V; is a nonce to ensure the uniqueness of the context
parameter, and h adjusts the round key based on the current
context, ensuring that even under similar conditions, the keys
remain distinct. The key scheduling function K., uses a
pseudo-random number generator (PRNG) seeded with the base
key Ky, and context parameter C; to produce the round keys. The
PRNG ensures that the round keys are unique and pseudo-
random.

K¢ = PRNG(C;, V;) @)

Here, the V; is a unique number used to prevent replay
attacks, ensuring that each key generated is distinct even if the
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same base key is used. The Context-Aware Key Expansion
Scheduling approach generates round keys that are
subsequently employed in the XTEA encryption process.
Algorithm 1: Context-Aware Key Expansion Scheduling
algorithm
Input: MAC Address, Node ID, Context Parameters C;,
Nonce V;, and
Step 1: Generate a unique key for node i
Step 2: Generate the context parameter C;using the function
h
Step 3: Initialize RoundKeys array
Step 4: Key scheduling using PRNG seeded with base key
K}, and context parameter C;
for i from 0 to n do

K[i] < Ksch((Kb: Ci))

end for
Step 5: Key scheduling function K, uses a PRNG: K[i] =
PRNG(C;, V)
Step 6: Return unique context-aware key Ky
QOutput: A series of unique, context-aware keys for
encryption.

This promises that even if one node's key breaches, the
security of other nodes is preserved through unique sub-keys
formed from node-specific factors. This pseudo-random and
unique key expansion considerably improves the security of the
XTEA encryption technique. This customization makes it
difficult for an attacker to derive keys for other nodes even if
one key is compromised.

B. Dynamic Round Adjustment Algorithm

The Dynamic Round Adjustment technique optimizes the
XTEA encryption process for 8-bit microcontrollers used in
smart city infrastructures. With this approach, XTEA
encryption security and performance are optimally balanced
since the number of encryption rounds is constantly adjusted
based on real-time system parameters, even under varying
computational loads and resource availability. Threshold-based
adaptive control logic monitors various system metrics and
makes decisions about the number of encryption rounds
required at any given time.

In the first step, the system predefined the number of
encryption rounds minimum (R ;) and maximum (R,,y). The
intended security level and the microcontroller's capabilities are
used to define these values. Additionally, threshold values are
set for network traffic, CPU load, and memory availability. The
number of encryption rounds will be increased or decreased
based on these thresholds. These thresholds help the algorithm
decide when to adjust the number of encryption rounds.

The algorithm continuously monitors real-time data on the
identified system metrics (CPU load, available memory, and
network traffic). The monitored values are compared against
predefined thresholds to evaluate the system's current state.

CPU Load Evaluation

DECEMBER 2025 « voLUME XVII « NUMBER 4




INFOCOMMUNICATIONS JOURNAL

Dynamic XTEA Optimization and Secure Key Management for
Embedded Microcontroller-Based SDN Systems in Smart Cities

° If the CPU load is below a low threshold, it indicates
low processing demand, allowing the system to afford more
encryption rounds for enhanced security.

° If the CPU load is above a high threshold, it suggests
high processing demand, prompting a reduction in the number
of rounds to free up processing power.

Memory Evaluation

° High available memory allows for more encryption
rounds without risking memory overflow or significant
slowdowns.

° Low available memory necessitates reducing the
number of rounds to conserve resources.

Network Traffic Evaluation

o Low network traffic permits more encryption rounds
as the system can handle additional processing without
impacting transmission speed.

° High network traffic requires fewer encryption rounds
to maintain timely and efficient data transmission.

The algorithm calculates the optimal number of encryption
rounds (R,,) based on a weighted function of the monitored

metrics:
CPU load+memory+Traffic factor

Rop = Rmin( 3

) X (Rmax -
Rmin) (5)
The calculated Ry, is then used to update the number of
encryption rounds in real time. The number of encryption
rounds is dynamically adjusted in real time based on the
ongoing assessment of system metrics. This adjustment helps
keep the encryption process both efficient and secure, even as
system conditions change. Finally, the algorithm applies the
updated number of rounds to the XTEA encryption process.
This continuous modification ensures that the system keeps
running without any problems, dynamically adjusting to the
present situation. The encryption and decryption operations
now proceed with the adjusted rounds, ensuring that the system
operates efficiently without compromising security. The
Dynamic Round Adjustment Algorithm is shown in the
following algorithm 2.
Algorithm 2: Dynamic Round Adjustment Algorithm
1. Start
2. Initialize Parameters
Set Rmin» Rmax, and Define thresholds for CPU
load, memory availability, and network traffic
3. Monitor System Metrics
Continuously collect data on CPU load, available
memory, and network traffic
4. CPU Load Evaluation
If CPU load < low threshold, increase encryption
rounds
If CPU load > high threshold, decrease encryption
rounds
5. Memory Evaluation
If available memory is high, increase encryption
rounds
If available memory is low, decrease encryption
rounds
6. Network Traffic Evaluation
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If network traffic is low, increase encryption rounds
If network traffic is high, decrease encryption
rounds
7. Calculate Optimal Number of Rounds
Rop
CPU load + memory + Traffic factor
~ Tmin ( 3 )

X (Rimax — Rmin)
Adjust the number of encryption rounds to R,
Implement the adjusted number of rounds in the
XTEA encryption process

8. Repeat from step 3

9.End

By altering the number of encryptions rounds dynamically,
the Dynamic Round Adjustment algorithm method reduces the
need for huge buffers or storage locations. This is especially
important for 8-bit microcontrollers, which have limited
memory and computing capability.

Once the number of encryption rounds is updated, the Bit-
Slice Processing is used to divide data into smaller bit-level
segments, allowing several encryption processes, which is
explained in the following section 3.3.

C. Bit-Slice Processing

Conventional byte-oriented processing processes data in 8-
bit (or larger) chunks, resulting in inefficiencies while
performing concurrent activities. Hence the bit-slice processing
is used in this research, which divides data into discrete bits
such that many bits carry out operations concurrently. This
method greatly increases efficiency and speed by enabling the
simultaneous execution of many encryptions or decryption
operations.

The specific architecture of the 8-bit microcontroller
determines how bits are efficiently processed in parallel. This
includes the availability of parallel execution units and the
capability to handle bit-level operations. By dividing the data
into slices, multiple bit-wise operations are executed
simultaneously, improving throughput and reducing processing
time on 8-bit microcontrollers. The Bit-Split function is defined
as follows in equation (6)

Bs(Q)) = Bx® B-1®, ... ® B, (6)

Here, @ denotes the bitwise XOR operation,
and By, Bx_1,..., Bj represent the different segments obtained
by splitting the bit sequence. These bit-level blocks are then

processed simultaneously.
BIT SLICE PROCESSING

| Tnput data block (8 bits) |

./M;nplil into bits

L EL D Bt ER = Bit Block
with redundant
l bits if any
Opl Op2 op3 Op4 OpR | paraliel execution

l Output data block (8 bit)

| Processed Output Data Block |

Fig.2: Bit-Slice Processing
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Figure 2 depicts the bit slice processing of the proposed
model. This implies that multiple encryption/decryption
operations are performed at the same time, making use of
parallel processing units within the microcontroller. This bit-
slice processing offers a flexible and scalable approach to
processor architecture, allowing for effective execution of
arithmetic and logical operations in parallel. This method is
especially useful in resource-constrained situations, such as 8-
bit microcontrollers, where optimal performance and resource
utilization are crucial. Bit-slice processing improves flexibility,
speed, and efficiency in microprocessor designs by breaking
down the data route into smaller slices. Once the bit-slicing
operation is done, OAEP is utilized for proper encryption,
which is explained in the following section 3.4.

D. Optimal Asymmetric Encryption Padding

To provide a secure padding, the OAEP is utilized for
encrypting the plaintext message from the IoT device. OAEP is
a padding strategy that is frequently used in conjunction with
asymmetric encryption algorithms to increase security,
particularly against POAs and other cryptographic
vulnerabilities. The process of OAEP requires numerous
phases, from appending padding to the plaintext to validating
the message's integrity after decryption.

Begin with the plaintext message needs to be encrypted. Let
M be the original plaintext message. The first step is to
determine the required length of the padding. The total length
of the padded message needs to match the block size of the
encryption algorithm. Apply padding to M to ensure the total
length is a multiple of the block size n required by the
encryption algorithm. Extra bytes are added to the plaintext to
ensure that it fits the encryption algorithm's required block size.
This stage also includes adding random bytes to the message to
ensure that the same message encrypted several times produces
distinct ciphertexts, hence increasing security. Let P(M) denote
the operation of adding padding P to M:

PM)=P& M @)

Where @ denotes concatenation, and P is the random
padding added to make the message length compliant with
block size requirements. The padding is random, enhancing
security by making it difficult for attackers to predict the
padding structure. Then compute a cryptographic hash H(M) of
the original plaintext M, which is expressed in the following
equation ()

h =HM) ®)

This hash h is important for verifying the integrity of the
message during the decryption process. The generated hash
value is attached to the message along with the random padding.
Concatenate the padded message P(M) with the hash h, which
is expressed in the following equation ()

Dy =P(M) @ h ©

This combined message Dy includes both the padded
plaintext and the hash, ensuring both data integrity and security.
Encrypt the concatenated message Dy using the XTEA
encryption algorithm with a key Kg.

C= EKf (Dm) (10)
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Here, K, is the encryption function, and C is the resulting
ciphertext. The encryption key Kgis uniquely generated for
each node using the Context-Aware Key Expansion Scheduling
algorithm, ensuring that the keys are pseudo-random and node-
specific. The encryption process transforms the combined
message into ciphertext, ensuring its confidentiality during
transmission. The encrypted message (ciphertext C) is
transmitted to the intended recipient. By including random
padding in the message, OAEP promises that even if the same
plaintext is encrypted numerous times, the resultant ciphertext
is unique each time. This randomization makes it far more
difficult for an attacker to anticipate or manipulate the
ciphertext. OAEP is designed to work effectively within the
constraints of 8-bit microcontrollers. The use of a lightweight
hash function and efficient padding mechanisms ensures that
the encryption process remains fast and resource-efficient. The
algorithm for OAEP is explained in Algorithm 3.

Algorithm 3: Optimal Asymmetric Encryption Padding
Inputs: Plaintext message M, Block size n of the encryption
algorithm, encryption key K;generated using the Context-
Aware Key Expansion Scheduling algorithm, and Hash
function H

Output: Ciphertext C

1. Compute the length of the padding P needed to
make M fit the block size n.

2. Generate a random padding P of appropriate
length.

3. Concatenate the random padding P with the
plaintext message M:

4. Compute the cryptographic hash h of the
original plaintext M

5. Combine the padded message P(M) with the
hash h

6. Encrypt the combined message Dy using the

XTEA encryption algorithm:
The resulting ciphertext C is returned.
Send the ciphertext C to the intended recipient.

To optimize the XTEA encryption algorithm by using
precomputed lookup tables, reducing real-time computational
overhead, and improving processing efficiency on 8-bit
microcontrollers. Frequently used arithmetic operations in the
XTEA algorithm are precomputed and stored in lookup tables.
During encryption or decryption, instead of performing the
computation in real time, the algorithm retrieves the result from
the table. The main purpose is to speed up encryption and
decryption by avoiding repetitive computations, especially for
computationally ~ expensive operations. By accessing
precomputed values, the need for real-time arithmetic
operations is minimized, leading to faster encryption and
decryption. Minimizes processor cycles and memory usage,
making it suitable for 8-bit microcontrollers with limited
resources.

The OAEP method is enhanced by HIPV, which checks the
integrity of the decrypted message. By recalculating the hash
after decryption and comparing it to the initial hash, the system
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assures that the message has not been altered, which is
explained in the following section 3.5.

E. Hash-Based Integrated Padding Verification

HIPV is designed as an additional layer for improving the
security of encrypted data by including padding validation
directly into the decryption process. It aims to prevent
vulnerabilities corresponding to the POA by ensuring that only
valid ciphertexts are decrypted.

Upon receiving the ciphertext, the SDN controller decrypts it
using the XTEA decryption algorithm. This restores the padded
and hashed plaintext message. The recipient receives the
ciphertext that needs to be decrypted. Decrypt the incoming
ciphertext to get the padded plaintext and appended hash. The
ciphertext C is decrypted using the XTEA decryption function
Dy () with key Kj, restoring the combined message M.

M' = Dg.(C) (1D

The decrypted message is divided into two parts: the original
message with padding and the hash value. This extracted hash
was appended during the encryption phase and serves as a
reference for integrity verification. The decrypted message M’
is split into the padded plaintext P’ and the extracted hash Hp'.

Then the random padding bytes are removed from the
decrypted message to extract the original plaintext. This step
restores the plaintext to its original form before padding and
hashing. The padding bytes q are removed from P’, yielding the
extracted plaintext P. A new hash is calculated from the
extracted plaintext using the same cryptographic hash function
as in the encryption phase. This recalculated hash (Hp'') is
compared with the extracted hash to verify the integrity of the
message. Calculate the hash of the extracted plaintext P’, which
is expressed in the following equation ()

Hp = H(P") (12)

Compare the recalculated hash Hp with the extracted hash
Hp'. If the recalculated hash matches the retrieved hash, it
means that the message was not tampered with. The plaintext is
regarded as valid. If the hashes do not match, it means that the
message was tampered with. In this situation, the decryption
operation is terminated, and the plaintext is not utilized. This
hash consistency check detects ciphertext manipulation and
padding issues during decryption. If the hashes do not match,
the decryption is halted, ensuring the message's integrity

s
@ T)

Receive Ciphertext
(<)

Decrypt using XTEA
with Key K to get M

Split M’ into
P’ (padded plaintext)
and HP' (hash)

Remove padding from
g

i

Calculate new hash

Ves T
o .

HP=RP"

o

g

\

Hashes match:
Message is valld

Hashes do not match:
Message is tampered

Fig.3: Flow chart for Hash-Based Integrated Padding
Verification
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Figure 3 illustrates the flow chart for HIPV. HIPV offers an
adequate framework for maintaining the integrity and security
of encrypted messages. By combining hashing and padding
verification, it overcomes significant vulnerabilities including
the POA while remaining efficient, making it ideal for
embedded processor-based smart city systems. This structured
security technique ensures that only genuine and untampered
ciphertexts are handled, which considerably improves the
encryption scheme's overall resilience. The OAEP with HIPV
approach improves the security of encrypted data by ensuring
that the plaintext is securely padded and verifiable.

Overall, the proposed approaches solve a variety of
difficulties while considerably improving the security,
performance, and efficiency of XTEA encryption for integrated
processor-based SDN nodes in smart cities.

IV.RESULT AND DISCUSSION

The performance of the proposed system and the
implementation findings are explained in depth in this section,
which also includes a comparison section to verify that the
suggested technique is appropriate for data security in
embedded processor-based SDN nodes in smart cities.

A. System Configuration

The proposed data security methodology has been simulated
in MATLAB. The evaluation is conducted by varying the data
size correspondingly.

Software : MATLAB

(O] : Windows 10 (64-bit)
Processor : Intel 15

RAM : 8GB RAM

The simulation in MATLAB was conducted using an embedded
microcontroller model, which includes hardware-supported
operations such as bitwise logic, arithmetic computations, and
memory access. The microcontroller supports fixed-point
arithmetic and instruction-level optimizations, enabling
efficient execution of encryption algorithms.

B. Performance of the proposed model

This section discusses the experimental results from the
initial setup of the suggested model for ASX-EM to mitigate
POA vulnerabilities, and optimize performance for 8-bit
microcontrollers in embedded processor-based SDN nodes in
smart cities.

35

251 -

Encryption Time(s)
\

05 -

1000 20000 50000 80000
Message Size(KB)

Fig.4: Encryption time of the suggested model
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The suggested model's encryption time is displayed in Figure
4. When the message size is 80000KB, the suggested model
achieves an encryption time of 3.25s, while when the message
size is 1000KB, it achieves an encryption time of 0.07s. If the
message size increases, the encryption time of the proposed
model also increases. OAEP uses a lightweight hash function
and efficient padding procedures to keep the encryption process
speedy and resource-efficient, thereby reducing the encryption
time.
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Fig.5: Decryption time of the suggested model

Figure 5 shows the suggested approach's decryption time.
The suggested model achieves the fastest decryption time of 3.6
seconds when the message size is 80000KB and the fastest
encryption time of 0.07 seconds when the message size is
1000KB. By processing many bits at once and utilizing parallel
execution units, the bit slice process technique shortens the time
required for encryption and decryption without increasing clock
speed.
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Fig.6: Error rate of the suggested model

Figure 6 presents the error rate of the suggested model across
different encryption rounds. At 25 encryption rounds, the model
exhibits an error rate of 0.9%, whereas at 5 encryption rounds,
the error rate decreases to 0.4%. By verifying that only
authentic and unaltered ciphertexts are decrypted, CAKE-SPV
in conjunction with HIPV lowers the error rate associated with
improper decryption.
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Fig.7: Power consumption of the suggested model

123 13 5

66

Figure 7 displays the power consumption of the
recommended model for varying encryption rounds. The graph
indicates that as encryption rounds increase, so does the power
consumption. When the encryption rounds are at 5, the power
consumption is 0.2mW, whereas when the encryption rounds
are increased to 30, the power consumption of the suggested
model is 1.5mW. By reducing the computational complexity
and number of required operations, these Precomputed Lookup
Tables help in maintaining lower power consumption.
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Fig.8: Average throughput of the suggested model

Figure 8 depicts the suggested model's average throughput.
The suggested model achieves an average throughput value of
1.00000 Kbps when the number of encryption rounds is 5 and
also attains an average throughput value of 1.03000 Kbps when
the encryption rounds are 25. By optimizing the number of
rounds based on system conditions using dynamic round
adjustment, the average throughput is maintained at an optimal
level, balancing security needs and system performance.
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Fig.9: Execution time of the suggested model

The execution time of the suggested model is illustrated in
the above figure 9. When the iterations are 6 and 1, the
suggested method achieves the execution time of 11.8 ms, and
2 ms respectively. The proposed model's execution time
expands with the number of iterations. The dynamic round
adjustment algorithm reduces execution time by having logic
constantly check system parameters and decide the ideal
amount of encryption rounds in real time.
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Fig.10: Computation time of the suggested model
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The suggested model’s computation time is represented in
Figure 10. The computation time increases linearly with each
iteration, starting from around 3.1 ms in the first iteration to
12.4 ms in the sixth iteration. Precomputed lookup tables and
parallel processing are significantly reducing computation
times by eliminating needless calculations and accelerating
encryption and decryption processes.
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Fig.11: End-to-end delay of the suggested model

The suggested model's end-to-end delay is shown in Figure
11. The mode's end-to-end delay increases as the number of
nodes rises. When the number of nodes is 5 the suggested
approach attains a delay of 5 ms, also when the number of
rounds is 30 the suggested approach attains a delay of 14 ms
respectively. The suggested ASX-EM's ability to control end-
to-end latency over a range of node densities emphasizes its
applicability for scalable smart city applications, ensuring safe
and effective communication even as the network increases.
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Fig.12: Encryption throughput of the suggested model

Figure 12 shows the encryption throughput across various
iterations. The proposed model achieves 22000KB/sec and
6000KB/sec encryption throughput, respectively, at 80000KB
and 1000KB message sizes. The encryption throughput of the
proposed model rises with message size. The proposed ASX-
EM maintains a high level in terms of encryption throughput,
which indicates that the optimizations, such as Bit-Slice
Processing, effectively sustain throughput performance without
degradation over multiple iterations.
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Fig.13: Decryption throughput of the suggested model
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Figure 13 shows the decryption throughput across various
iterations. When the message size is 80000KB and 1000KB, the
suggested approach achieves a decryption throughput of
19200KB/sec and 13000KB/sec, respectively. The proposed
ASX-EM maintains a high level in terms of decryption
throughput, which indicates that the optimizations, such as Bit-
Slice Processing, effectively sustain throughput performance
without degradation over multiple iterations.

C. Comparative analysis of the proposed model

In this section, a detailed explanation of the effectiveness of
the suggested technique and the achieved outcome were
explained. According to the evaluation, the following metrics
have been considered: encryption throughput, decryption
throughput, End-to-End delay, encryption time, decryption
time, throughput/area, latency, and execution time.

Encryption Time(s)

TEA XTEA

XXTEA M-XXTEA Proposed
Fig.14: Comparison of encryption time

A comparison of the encryption time of the suggested model
with existing models at 50000 KB message size is shown in
Figure 14. The encryption time is used to measure how quickly
plaintext data can be converted into ciphertext, which is
essential  for efficient and real-time secure
communication in smart city applications. The existing models
[16] such as TEA, XTEA, XXTEA, and M-XXTEA attain an
encryption time of 3.43s, 3.55s, 3.91s, and 4.03s, Whereas the
proposed model achieves an encryption time of 2.7s. Compared
to previous approaches, the proposed model has less encryption
time.
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Fig.15: Comparison of decryption time

A comparison of the decryption time of the suggested model
with existing models at 50000 KB message size is shown in
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Figure 15. The decryption time is essential for assessing how
quickly an encrypted message can be converted back to its
original form, which is particularly crucial for real-time data
access in smart city applications. The existing models [16] such
as TEA, XTEA, XXTEA, and M-XXTEA attain a decryption
time of 2.7s, 3.57s, 3.66s, and 3.78s, Whereas the proposed
model achieves a decryption time of 2.4s. Compared with all
the above existing models the proposed model attains a low
decryption time.

=104

2 | | B XXTEA
)

M-XXTEA
TEA

Encryption Throughput{KB/sec)

1000 20000 50000
Message Size(KB)

Fig.16: Comparison of encryption throughput

Figure 16 illustrates the encryption throughput of the
suggested model with the existing model [16]. Encryption
throughput measures the rate at which data is encrypted per unit
of time, typically in KB/sec or Mbps. It is crucial for smart city
applications where large volumes of data need to be securely
processed in real-time. In encryption throughput, the proposed
model demonstrates superior performance, especially for larger
message sizes (50,000 KB), reaching around 22,000 KB/sec
compared to existing models such as 13,000 KB/sec for
XXTEA, 12,500 KB/sec for M-XXTEA, and 20,000 KB/sec for
XTEA respectively.
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Fig.17: Comparison of decryption throughput

Figure 17 illustrates the decryption throughput of the
suggested model with the existing model [16]. Decryption
throughput measures how efficiently an encrypted message can
be converted back to its original form per unit of time. This is
crucial in smart city applications, where real-time data access is
essential for traffic control, environmental monitoring, and
public safety. The suggested model outperforms existing
models in terms of decryption throughput, particularly for
larger message sizes (50,000 KB), reaching roughly 17600
KB/sec compared to 13,800 KB/sec for XXTEA, 13,000
KB/sec for M-XXTEA, and 17,500 KB/sec for XTEA.
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A latency comparison between the suggested model and the
current models is shown in Figure 18. Latency measures the
time delay between the input of a data packet and its
corresponding output after encryption or decryption. The
latency for TEA, XTEA, and XXTEA [18] in the existing
models is 33ms, 33ms, and 33ms, respectively. The lowest
latency of the suggested model is 30 ms when compared to the
existing models.
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The power consumption comparison of the suggested model
with the existing models is represented in Figure 19. Power
consumption is used to evaluate the energy efficiency of the
encryption model, which is crucial for embedded
microcontroller-based SDN nodes in smart cities. The various
existing [ 18] models including TEA, XTEA, and XXTEA attain
a power consumption value of 2.5mW, 3mW, and 2.92mW
respectively. Compared with existing models the suggested
model achieves a low power consumption of 1.5mW.
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Fig.20: Comparison of end-to-end delay
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The comparison of the suggested model's End-to-End Delay
with existing models is shown in Figure 20. End-to-end delay
measures the total time taken for a data packet to travel from
the source to the destination, including encryption,
transmission, processing, and decryption delays. The existing
models [27] such as OLSR, Multipath, and Q-Learning are
attaining an end-to-end delay value of 42ms, 18ms, and 15ms.
Compared with existing models the suggested model achieves
the lowest end-to-end delay of 14ms.
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Fig.21: Comparison of execution time

A comparison of the execution time of the suggested model
with various existing models is depicted in Figure 21.
Execution time measures the total time required for the
encryption and decryption processes to complete. This metric is
crucial for embedded microcontroller-based SDN nodes in
smart cities, as they have limited computational resources and
operate in real-time environments. Various existing models [26]
such as TEA, AES, and FlexenTech have an execution time of
15ms, 20.5ms, and 13ms, conversely, the suggested mode
attains an execution time of 11.8ms. Compared with existing
models the suggested model attains the lowest execution time.
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Fig.22: Comparison of throughput/area
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Figure 22 illustrates the comparison of the throughput/area
of the suggested model with the existing models. Throughput
measures the rate at which data is successfully processed
(encrypted or decrypted) over time. This metric is crucial for
embedded microcontroller-based SDN nodes in smart cities, as
they process large volumes of real-time data from connected
devices like traffic management systems, surveillance cameras,
and environmental sensors. The existing models [18] such as
TEA, XTEA, and XXTEA attain a throughput/area value of
10.87 Mbps/slice, 16.27 Mbps/slice, and 27.30 Mbps/slice.
Compared with existing models the suggested model attains the
highest throughput/area value of 30 Mbps/slice.
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TABLEI
COMPARISON OF THE PROPOSED MODEL WITH OTHER EXISTING APPROACHES
Metric Proposed TEA | XTEA | XXTEA M-
Model XXTE
A

Encryption 2.7 3.43 3.55 3.91 4.03
Time (s)

Decryption 24 2.7 3.57 3.66 3.78
Time (s)

Encryption 22,000 - 20,000 13,000 12,500
Throughput

(KB/sec)

Decryption 17,600 - 17,500 13,800 13,000
Throughput

(KB/sec)

Latency (ms) 30 33 33 33 -
Power 1.5 2.5 3 2.92 -
Consumptio

n (mW)

Throughput/ 30 10.8 16.27 27.30 -
Area 7

(Mbps/slice)

Table 1 proposed model outperforms TEA, XTEA, XXTEA,
and M-XXTEA in encryption and decryption time, achieving
the fastest execution of 2.7s and 2.6s, respectively. It also
demonstrates superior encryption and decryption throughput of
22,000 KB/sec and 17,600 KB/sec while maintaining the lowest
power consumption of 1.5 mW. Additionally, the proposed
model achieves the highest throughput per area of 30
Mbps/slice, highlighting its efficiency in resource utilization.
TABLE Il

COMPARISON OF THE PROPOSED MODEL END-TO-END DELAY AND
ExgecutioN TIME WITH OTHER EXISTING APPROACHES

Metric P:e"g" TE | OL | Multip Lg;ni AE | Flexen
A SR ath S Tech

Model ng

End-

to-End

Delay 14 - 42 18 15

(ms)

Execut

ion 20.

Time 11.8 15 - - - 5 13

(ms)

Table 2 shows the proposed model achieves the lowest end-to-
end delay of 14 ms compared to OLSR of 42 ms, Multipath of
18 ms, and Q-Learning of 15 ms, ensuring faster data
transmission. It also outperforms TEA and AES in execution
time, completing tasks in 11.8 ms, which is faster than TEA of
15 ms and AES of 20.5 ms. These results highlight the proposed
model’s efficiency in both latency and computational
performance.

Overall, in the results section, the proposed model is
compared to existing models, and the performance is explained
using graphs. This shows that the technique that is used in the
novelty Dynamic XTEA Optimization and Secure Key
Management for Embedded Microcontroller-based SDN for
smart cities has comparatively higher encryption throughput
and decryption throughput, and low decryption time, encryption
time, and execution time than the previous techniques that are
taken for the comparison.
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V. CONCLUSION

In conclusion, the proposed ASX-EM tackles major security
and performance concerns for SDN nodes in smart cities. By
using CAKE-SPV, the suggested approach successfully
mitigates POA vulnerabilities while providing secure
communication between nodes. Moreover, the ARPP method
addresses limitations about chip space, power consumption, and
processing time to optimize XTEA for 8-bit microcontrollers.
Efficient encryption and decryption operations are made
possible by the Dynamic Round Adjustment method and Bit-
Slice Processing with Precomputed Lookup Tables, which
balance security needs with efficiency. These combined
strategies make ASX-EM a highly efficient and secure
encryption method suitable for the constrained environments of
smart city SDN nodes. Compared with existing models TEA,
XTEA, XXTEA, AES and M-XXTEA the proposed model
achieves a high encryption throughput of 22,000 KB/sec,
decryption throughput of 17600 KB/sec, and low execution
time of 11.8ms, power consumption of 1.5SmW, encryption time
of 2.7s and decryption time of 2.6s. The proposed solution not
only mitigates prevalent security risks but also ensures the
smooth and efficient operation of smart city infrastructures,
paving the way for future advancements in secure and efficient
embedded systems.
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