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I. INTRODUCTION 
The infrastructure of smart cities is being revolutionized by 

Software-Defined Networking (SDN), which provides a 
programmable and centralized method of controlling intricate 
and diverse metropolitan networks. SDN offers the required 
agility and control in the context of a smart city, where the 
integration of several IoT devices, traffic management systems, 
energy grids, and public safety networks produces a highly 
dynamic environment. SDN design allows for centralized 
control via a software-based controller by severing the network 
control plane from the data plane. Because it is in charge of the 
whole network, this controller enables dynamic resource 
allocation, automatic traffic management, and real-time  

monitoring. Because SDN is programmable, network policies 
may be quickly altered in response to shifting circumstances or 
new threats, guaranteeing ongoing security and optimization. 
To improve network flow and lower latency for vital 
applications like emergency response systems, SDN, for 
example, dynamically redirects data from bottleneck locations 
in traffic management. By modifying the distribution in 
response to real-time supply and demand data, SDN in energy 
management can help make it easier to integrate renewable 
energy sources. Furthermore, by offering a centralized platform 
for executing security procedures and identifying irregularities 
throughout the network, SDN's centralized architecture 
improves cybersecurity [1-4].  
Enormous networks of interlinked sensors, devices, and 
communication systems underpin smart cities, and secure data 
transfer is necessary to preserve confidentiality, integrity, and 
trust. The XTEA (Extended Tiny Encryption Algorithm) is a 
durable and lightweight symmetric key block cipher that is 
well-suited for use in smart city applications. Because of its 
small size and ability to function on 64-bit blocks with a 128-
bit key, XTEA is perfect for resource-constrained contexts, such 
as embedded systems and Internet of Things devices, which are 
commonly found in smart city infrastructure. Strong 
cryptographic security is provided by its straightforward 
structure, which consists of a sequence of bitwise shifts, XOR 
operations, and modular additions, this offers little computing 
cost. Because of its iterative method, which typically consists 
of 64 rounds, XTEA is more resistant to cryptanalysis attempts, 
which makes it a dependable option for protecting sensitive data 
such as traffic data, utility use statistics, and personal 
information. Although XTEA has many benefits, there are 
security risks and vulnerabilities associated with its usage in 
smart city infrastructure that need to be properly addressed [5-
8].  

One major issue is that XTEA is subject to differential 
cryptanalysis, especially if it is not implemented correctly and 
with enough rounds (64 rounds is the ideal amount, but 
implementations with fewer rounds are still vulnerable). 
Additionally, if weak keys are utilized, XTEA's key scheduling 
technique is extremely basic and vulnerable to cryptanalytic 
assaults. Physical assaults, like side-channel attacks, present a 
significant concern in the context of smart cities since gadgets 
frequently function in unsupervised and sometimes unsafe 
settings. To determine the encryption key, these attacks 
make use of data that is disclosed during the encryption process, 
such as power usage or electromagnetic emissions. Another risk 
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is replay attacks, in which a hacker intercepts encrypted data 
and sends it again to trick the target system into carrying out 
commands or actions that are not authorized. Robust key 
management procedures, such as regular key rotation and the 
use of powerful, randomly generated keys, must be put in place 
to reduce these risks [9–12]. Smart cities may use XTEA's 
advantages while reducing possible weaknesses by tackling 
these risks with all-encompassing security solutions. 

The XTEA implementation in embedded microcontrollers 
inside an SDN framework for smart city infrastructure has 
several technical difficulties that need to be carefully 
considered. One major problem is that embedded 
microcontrollers have restricted resources by nature; they 
include memory, computational power, and energy availability. 
Despite the lightweight nature of XTEA, cryptographic 
operations can still put a load on these few resources, which 
might affect the responsiveness and performance of vital smart 
city applications. In an SDN environment, where real-time data 
flow management and fast reconfiguration are critical, this is 
especially pertinent. The computational expense of 
XTEA causes latency problems, impacting the speed at which 
data is sent and decisions are made in the SDN, particularly 
when the necessary 64 rounds for security are implemented. 
The integration of XTEA inside the SDN control plane and data 
plane separation paradigm is another major hurdle. Embedding 
XTEA encryption techniques that dynamically adapt to the 
network's changing topology and traffic patterns is necessary to 
provide smooth and secure communication across various 
planes [13–15]. It is imperative to optimize the implementation 
of XTEA for low-power operations to overcome these 
technological obstacles. This can be achieved, for example, by 
using software libraries that are specifically designed for 
microcontroller architectures or by using hardware 
acceleration. Ultimately, an integrated approach that achieves a 
balance between security, performance, and resource 
limitations while guaranteeing the flexibility and scalability of 
the whole infrastructure is needed for the effective 
implementation of XTEA in embedded microcontrollers inside 
an SDN framework for smart cities. 

A. Main objective of this paper  
The following methodological and experimental 

contributions have been achieved by this paper: 
• To mitigate POA vulnerabilities, CAKE-SPV is 

implemented within the XTEA encryption, in which Context-
Aware Key Expansion Scheduling algorithm is utilized for 
customizing the key scheduling process, and OAEP with HIPV 
mechanism is utilized for secure padding with integrated 
validation, thereby ensuring secure communication and 
preventing information leakage through POA vulnerabilities. 

• To optimize the XTEA for 8-bit Microcontrollers-
based smart city infrastructure, an ARPP is presented, which 
utilizes adaptive round adjustment for an optimal number of 
encryption rounds and parallel processing for dividing the data 
into smaller bit-level blocks thereby enhancing the efficiency 
of XTEA encryption methods to operate effectively on 8-bit 

microcontrollers, reducing chip area, power consumption, and 
processing time. 

B. Organization of study 
The arrangement of the paper is as follows. In Section 2, 

relevant literature is reviewed; in Section 3, the methodology of 
the proposed system is explained; in Section 4, experiments, 
datasets, comparison, and evaluation methodologies are 
covered; in Section 5, suggestions for future developments and 
limits of the approach are made. 

II. LITERATURE SURVEY 
For the protection of sensitive data in a variety of 

applications, including RFID systems and smart cities, the 
security and effectiveness of encryption methods are essential. 
Enhancing the XTEA algorithm and its variations to handle 
certain security flaws and performance limitations in various 
scenarios has been the subject of recent research. 

Ahmed et al [16] employed an enhanced S-box to boost 
security and thwart a variety of assaults, resulting in a new and 
reliable version of the original XXTEA. To achieve the one-
time pad idea and provide an extra degree of protection, the M-
XXTEA was also combined with a chaotic key-
generating system. In contrast to the original XXTEA and AES, 
the cipher keys were dynamically updated for every block of 
plaintext throughout the encryption process, offering a more 
reliable security method. The M-XXTEA works with multiple 
text block sizes and key sizes in addition to improving data 
security. To compare the M-XXTEA's performance with that of 
the original XXTEA and AES, many experiments were carried 
out. The results showed that M-XXTEA surpassed AES by 60% 
in terms of encryption and decryption time efficiencies. The 
addition of new elements, including the chaotic key 
generation, results in unanticipated weaknesses, even if the M-
XXTEA already counters several assaults. 

Manikandan et al [17] addressed the XTEA's security issues 
by using domain-specific customization, random number 
generation, and hidden key renewal processes. RXMAP-1 and 
RXMAP-2, two different encoder architectures for the 
Renovated XTEA Mutual Authentication Protocol (RXMAP), 
were proposed. Their foundation was the replacement of 
accurate computational blocks with approximations. The 
proposed RXMAP protocol's computational and storage 
overhead was evaluated, and it was tested against a variety of 
security threats using BAN logic in both formal and informal 
verification. The proposed encoder designs are simulated for 
functional verification, and ASIC implementation is carried out 
on a 132 nm manufacturing node. However, because of the 
customization, use of random numbers, and key renewal 
procedures, the suggested protocol resulted in computational 
and storage overhead. 

Zeesha Mishra and Bibhudendra Acharya [18] 
constructed optimal lightweight ciphers to implement the cipher 
in hardware by modeling the design characteristics. To 
accomplish the intended result, the TEA, XTEA, and XXTEA 
ciphers were developed, put into practice, and optimized 
utilizing specialist hardware platforms including Application 
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Specific Integrated Circuit (ASIC) and Field Programmable 
Gate Array (FPGA). Through the execution of designs for four 
hardware architectures TEA (T1), XTEA (T2), XXTEA (T3), 
and hybrid model (T4) many elements, including block sizes, 
implementation rounds, and crucial scheduling components, 
have been explored. The percentage gains in frequency for T1, 
T2, and T3 using a pipelined method are 75.9%, 162%, and 
89%, respectively. Nevertheless, when optimizations are 
carried out, their scope and effects on other aspects like as 
security or resource use are not thoroughly investigated. 

Neha Khute et al [19] proposed a round-based XXTEA-
192-bit architecture to reduce the implemented hardware's 
space. This design had cheap cost and small space required, and 
it was meant for RFID applications. Simple shifting, addition, 
and XOR operations are among the fundamental and logical 
operations used by XXTEA. These simple activities allowed the 
architecture to be low-area and extremely efficient by design. 
Performance analysis was carried out on several FPGA device 
families, including Spartan-3, Virtex-7, Virtex-5, and Virtex-4, 
assessing variables including throughput and efficacy. 
Nevertheless, further optimization is needed in terms of speed, 
power usage, or reduced area. 

Dzaky Zakiyal et al [20] developed a distributed MQTT 
(message queuing telemetry transmission) brokers-optimized 
architecture. For edge resources, a distributed MQTT broker 
might reduce latency and network traffic by managing only 
topics that were consumed on the network. An integer non-
linear code was created to optimize container placement and 
minimize the wastage of edge computing resources. This 
architecture with the existing distributed MQTT middleware 
design with random and greedy container placement was 
simulated through rigorous modeling. When it came to 
lowering synchronization overhead, power use, network 
utilization, and deployment failure rates, this design fared better 
than the others. Nevertheless, the limited memory, processing 
power, and storage of edge devices affect the solution's viability 
and efficiency. 

Keshari et al [21] suggested using the Grey Wolf 
Optimization Affinity Propagation (GWOAP) algorithm to 
arrange many controllers in smart city networks. The network's 
linked smart devices' traffic was controlled by the controllers. 
The OS3E network architecture is used to mimic the suggested 
method. To minimize processing delays and regulate the 
controller's traffic load, the controller deploys in the OS3E 
network topology by executing AP and GWO optimization 
algorithms that split the network into subdomains. IoT-enabled 
smart switches are better distributed throughout clusters using 
GWOAP, and node equalization was distributed evenly among 
all controllers in the deployed architecture. The traffic load of 
IoT-enabled devices in smart city networks is intelligently 
balanced across controllers by employing the suggested 
technique. 

Anusha, and Shastrimath [22] developed and put into use 
a low-cost FPGA RFID-Mutual Authentication (MA) system 
with XTEA security. By offering Reader's and Tag's challenge 
and Response utilizing XTEA security, the RFID-MA 
incorporated Reader and Tag authentication. The RFID-

MA procedure was completed faster overall because of XTEA's 
pipelined design, which combined parallel execution of key 
scheduling with encryption and decryption processes. RFID 
incorporated the XTEA with Cypher block chaining (CBC) for 
protected MA applications. Based on the challenge and 
response between the Reader and Tag utilizing XTEA-CBC, the 
authentication procedure was successful. The security of XTEA 
is constrained by its vulnerability to complex cryptographic 
techniques such as differential cryptanalysis. For long-term 
security, more powerful encryption algorithms and frequent 
upgrades are required. 

Chen et al [23] focused on DDoS attack traceback 
techniques in SDN-based SC. Relevant reports from the past 
few years were analysed, and it was discovered that the current 
approaches were less adaptable overall and require more time 
and resources. As a result, this research provided a simple 
traceback system based on anomaly trees. By examining 
network traffic fluctuations, this approach created an anomaly 
tree. It then calls on several detection algorithms that satisfy the 
necessary conditions to reduce the tree and ultimately identify 
the attack path. The main weakness in the method is that it is 
vulnerable to erroneous data from hacked base station nodes, 
which might result in imprecise anomaly identification and 
traceability of attack paths. It is additionally susceptible to noise 
and inconsistencies since it depends on consistent network 
traffic patterns. 

Abdulkadhim et al [24] presented a more advanced, 
lightweight Modified XTEA Algorithm that protected against 
node abuse attacks and side-channel vulnerabilities. Provide a 
design in this work that used chaotic systems to create 
encryption keys, making them more unpredictable and random. 
This research's main goal is to strengthen security protocols 
against a variety of modern attack methods, ensuring complete 
defense, unpredictable behavior, and resilience. The purpose of 
implementing strategic defenses and strategies is to protect 
important resources from potential harm. Even with these 
improved security measures, the complexity of chaotic key 
generation still causes the updated XTEA method to operate 
poorly on very limited hardware.  

Ragab et al [25] demonstrated that the XXTEA lightweight 
block cypher used fewer memory and computing cycles, so it is 
a better fit for usage in IoT smart devices for message 
encryption. Additionally, the elliptic curve cryptography (ECC) 
asymmetric cipher was chosen over RSA because it provides a 
higher level of bit security at smaller key sizes. To ensure 
authenticity, integrity, and non-repudiation, the ECC cipher 
was employed. For secrecy, the XXTEA block cipher was 
employed. Additionally, each time data is encrypted, the script 
hashing algorithm is utilized to confirm data integrity and 
produce numerous keys. By combining ECC, XXTEA, and 
script, the suggested hybrid cryptosystem satisfies the four 
primary requirements of cryptography: secrecy, authenticity, 
integrity, and non-repudiation. However, the physical setup of 
the suggested hybrid cryptosystem needs to be addressed. 

From this review, it is noted that [16] introduces unexpected 
weaknesses that can impact reliability, in [17] results in 
increased computational and storage overhead, and in [18] 
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observed that their optimized hardware implementations while 
improving performance, did not thoroughly address the trade-
offs between security and resource usage. [19] it still requires 
further optimization for speed, power consumption, and area 
reduction, in [20] faces challenges due to the limited memory 
and processing power of edge devices, in [21] highlighted that 
their GWOAP-based controller arrangement, while balancing 
IoT traffic, could be limited by the complexity of the 
optimization process, in [22] vulnerable to advanced 
cryptographic attacks and requires more robust encryption 
solutions. [23] reported that their anomaly tree-based DDoS 
traceback method, while simplifying detection, is susceptible to 
inaccuracies from erroneous data and noise, in [24] suffers from 
poor performance on highly constrained hardware due to the 
complexity of chaotic key generation. 

III. ADAPTIVE SECURE XTEA FOR EMBEDDED 
MICROCONTROLLERS IN SMART CITIES 

As smart cities rely more on networked devices for crucial 
urban infrastructure, the demand for strong security measures 
grows. XTEA is a lightweight encryption solution designed for 
resource-constrained contexts, making it a good fit for 
embedded processor-based SDN nodes. However, using XTEA 
in these systems involves specific obstacles that need to be 
overcome to maintain effective security. Hence, an Adaptive 
Secure XTEA for Embedded Microcontrollers (ASX-EM) is 
proposed to address the goals of mitigating vulnerabilities 
caused by POA, optimizing performance for 8-bit 
microcontrollers, and developing customized XTEA encryption 
methods for embedded processor-based SDN nodes in smart 
cities. Many existing embedded processor-based SDN 
controllers ignore adequate padding validation to improve 
decryption performance. This carelessness makes them 
vulnerable to Padding Oracle Attacks, which allow attackers to 
change ciphertext and exploit incorrect answers from the SDN 
controller. By iterating through potential modifications, 
attackers can decrypt sensitive data block by block, 
compromising the integrity and confidentiality of the 
communication.  To mitigate POA vulnerabilities, the Context-
Aware Key Expansion and Secure Padding Validation (CAKE-
SPV) are introduced. Here, A Context-Aware Key Expansion 
Scheduling technique is developed, which customizes the key 
scheduling process to node-specific factors such as MAC 
address and node ID. This ensures that even if one key is 
compromised; the security of other nodes remains intact. 
Additionally, the OAEP with HIPV mechanism provides secure 
padding and integrated validation. OAEP adds random padding 
and a cryptographic hash to the plaintext before encryption. 
During decryption, the HIPV checks hash consistency, aborting 
if the message is tampered with, thus ensuring ciphertext 
integrity and preventing information leakage through padding 
oracle attack vulnerabilities. This technique adds an extra layer 
of security to XTEA encryption, safeguarding against potential 
POA risks. 

Furthermore, smart city infrastructure frequently relies on a 
large number of interconnected devices, many of which are 
powered by 8-bit microcontrollers since they are inexpensive 

and consume little power. Such devices manage important tasks 
including public safety, environmental monitoring, and traffic 
control. Many existing XTEA designs, which include multiple 
rounds of complicated arithmetic and bitwise operations, are 
not appropriate for 8-bit microcontrollers. These devices 
struggle with computational overhead, causing considerable 
delays during encryption and decryption. The restricted 
processing power and memory increase latency difficulties, 
preventing real-time data transfer. As a result, essential 
applications in smart city infrastructure may encounter delays, 
jeopardising the security and efficiency of sensitive data 
exchange. This inefficiency presents a substantial difficulty for 
implementing strong encryption in resource-limited contexts. 
Hence, an Adaptive Round and Parallel Processing (ARPP) 
method is introduced to optimize XTEA for 8-bit 
microcontrollers in smart city infrastructure. The Dynamic 
Round Adjustment technique uses Threshold-based Adaptive 
Control Logic to monitor system parameters such as CPU load, 
memory, and network traffic, and then adjusts the number of 
encryption rounds in real-time. This lowers the need for huge 
buffers or storage spaces, reducing the necessary chip area. 
During periods of low system load or restricted resources, fewer 
rounds accelerate processing without risking security. 
Furthermore, Bit-Slice Processing with Precomputed Lookup 
Tables accelerates encryption/decryption by processing bit-
level blocks concurrently and obtaining precomputed values. 
This reduces arithmetic operations while dramatically 
increasing XTEA efficiency on 8-bit microcontrollers, making 
it suitable for smart city applications.  

 
Fig.1: Overall flow diagram of the proposed model 

The overall flow diagram of the suggested model is 
illustrated in the figure 1. IoT devices in the smart city transmit 
data to the ASX-EM framework. Initially, the Context-Aware 
Key Expansion method produces unique keys for each node 
depending on predefined factors. The Dynamic Round 
Adjustment program then analyses system parameters and 
modifies the number of encryption rounds accordingly. The 
XTEA algorithm is used to encrypt data, which is optimized 
with Bit-Slice Processing and Precomputed Lookup Tables.  
Furthermore, OAEP provides padding and a hash for safe 
transmission, while the HIPV technique maintains integrity 
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during decryption. Finally, the encrypted data is decrypted, and 
the HIPV detects manipulation. If the data is genuine, it is 
processed; otherwise, the operation is aborted. The SDN 
Controller manages the whole process, guaranteeing optimal 
resource allocation and network management. 

A. Context-Aware Key Expansion Scheduling 
The Context-Aware Key Expansion Scheduling method is 

proposed to improve the security of the XTEA encryption 
system by creating unique encryption keys for specific nodes in 
a dispersed network. This approach incorporates node-specific 
factors into the key scheduling process, resulting in unique, 
pseudo-random encryption keys for each node. This 
customization enables each node to produce unique encryption 
keys, which improves security, particularly in dispersed 
networks. This solution dramatically enhances the security of 
XTEA encryption by preventing a key breach from influencing 
the security of other nodes. 

The algorithm begins by generating a base key Kb from node-
specific parameters. let MAC be the node's MAC address and 
NodeID be its unique identification. These parameters serve as 
the basis for generating unique keys for each node. The unique 
key for each node is generated by combining the base key with 
the node-specific parameters, which is mathematically 
represented as in equation (1) 

Kb = f(MAC, NodeID)              (1) 
Where Kb is the base key. f is a cryptographic function that 

combines the base key with the node-specific parameters, 
which is designed using a hash function to ensure that the output 
is pseudo-random and unique for each node. Once the base key 
is generated, the key scheduling process begins. The key 
scheduling function Ksch takes the base key Kb and a context 
parameter Ci. The context parameter is a combination of node-
specific parameters or an additional random value for added 
security. 

Ksch(Kb, Ci) → {Kb
(1), Kb

(2), Kb
(3), … , Kb

(n)}    (2) 
The basic key Kb is extended into round keys 

{Kb
(1), Kb

(2), Kb
(3), … , Kb

(n)} for XTEA encryption rounds. The 
Context-Aware Key Expansion Scheduling algorithm generates 
these round keys in a manner that incorporates node-specific 
context. The key scheduling is adaptive; this is change based on 
the operational context of the node. To further strengthen the 
uniqueness of the keys, the algorithm modifies the round keys 
based on contextual information: 

Ci = h(MAC, NodeID, Vi)         (3) 
Where Vi is a nonce to ensure the uniqueness of the context 

parameter, and h adjusts the round key based on the current 
context, ensuring that even under similar conditions, the keys 
remain distinct. The key scheduling function Ksch uses a 
pseudo-random number generator (PRNG) seeded with the base 
key Kb and context parameter Ci to produce the round keys. The 
PRNG ensures that the round keys are unique and pseudo-
random. 

Kf = PRNG(Ci, Vi)         (4) 
Here, the Vi is a unique number used to prevent replay 

attacks, ensuring that each key generated is distinct even if the 

same base key is used. The Context-Aware Key Expansion 
Scheduling approach generates round keys that are 
subsequently employed in the XTEA encryption process. 

 Algorithm 1: Context-Aware Key Expansion Scheduling 
algorithm 
Input:  MAC Address, Node ID, Context Parameters Ci, 
Nonce Vi, and 
Step 1: Generate a unique key for node i 
Step 2: Generate the context parameter Ciusing the function 
h 
Step 3: Initialize RoundKeys array 
Step 4: Key scheduling using PRNG seeded with base key 
Kb and context parameter Ci 
 for i from 0 to n do 
  K[i] ← Ksch((Kb, Ci)) 
 end for 
Step 5: Key scheduling function Ksch uses a PRNG: K[i] =
PRNG(Ci, Vi)      
Step 6: Return unique context-aware key Kf 
Output: A series of unique, context-aware keys for 
encryption. 
 
This promises that even if one node's key breaches, the 

security of other nodes is preserved through unique sub-keys 
formed from node-specific factors. This pseudo-random and 
unique key expansion considerably improves the security of the 
XTEA encryption technique. This customization makes it 
difficult for an attacker to derive keys for other nodes even if 
one key is compromised. 

B. Dynamic Round Adjustment Algorithm 
The Dynamic Round Adjustment technique optimizes the 

XTEA encryption process for 8-bit microcontrollers used in 
smart city infrastructures. With this approach, XTEA 
encryption security and performance are optimally balanced 
since the number of encryption rounds is constantly adjusted 
based on real-time system parameters, even under varying 
computational loads and resource availability. Threshold-based 
adaptive control logic monitors various system metrics and 
makes decisions about the number of encryption rounds 
required at any given time. 

In the first step, the system predefined the number of 
encryption rounds minimum (Rmin) and maximum (Rmax). The 
intended security level and the microcontroller's capabilities are 
used to define these values. Additionally, threshold values are 
set for network traffic, CPU load, and memory availability. The 
number of encryption rounds will be increased or decreased 
based on these thresholds. These thresholds help the algorithm 
decide when to adjust the number of encryption rounds. 

The algorithm continuously monitors real-time data on the 
identified system metrics (CPU load, available memory, and 
network traffic). The monitored values are compared against 
predefined thresholds to evaluate the system's current state. 

 
CPU Load Evaluation 
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• If the CPU load is below a low threshold, it indicates 
low processing demand, allowing the system to afford more 
encryption rounds for enhanced security. 

• If the CPU load is above a high threshold, it suggests 
high processing demand, prompting a reduction in the number 
of rounds to free up processing power. 

Memory Evaluation 
• High available memory allows for more encryption 

rounds without risking memory overflow or significant 
slowdowns. 

• Low available memory necessitates reducing the 
number of rounds to conserve resources. 

Network Traffic Evaluation 
• Low network traffic permits more encryption rounds 

as the system can handle additional processing without 
impacting transmission speed. 

• High network traffic requires fewer encryption rounds 
to maintain timely and efficient data transmission. 

The algorithm calculates the optimal number of encryption 
rounds (Rop) based on a weighted function of the monitored 
metrics: 

Rop = Rmin (CPU load+memory+Traffic factor
3 ) × (Rmax −

Rmin)    (5) 
The calculated Rop is then used to update the number of 

encryption rounds in real time. The number of encryption 
rounds is dynamically adjusted in real time based on the 
ongoing assessment of system metrics. This adjustment helps 
keep the encryption process both efficient and secure, even as 
system conditions change. Finally, the algorithm applies the 
updated number of rounds to the XTEA encryption process. 
This continuous modification ensures that the system keeps 
running without any problems, dynamically adjusting to the 
present situation. The encryption and decryption operations 
now proceed with the adjusted rounds, ensuring that the system 
operates efficiently without compromising security. The 
Dynamic Round Adjustment Algorithm is shown in the 
following algorithm 2.  

Algorithm 2: Dynamic Round Adjustment Algorithm 
1. Start 
2. Initialize Parameters 
  Set Rmin,  Rmax, and Define thresholds for CPU 

load, memory availability, and network traffic 
3. Monitor System Metrics 
 Continuously collect data on CPU load, available 

memory, and network traffic 
4. CPU Load Evaluation 
 If CPU load < low threshold, increase encryption 

rounds 
 If CPU load > high threshold, decrease encryption 

rounds 
5. Memory Evaluation 
 If available memory is high, increase encryption 

rounds 
 If available memory is low, decrease encryption 

rounds 
6. Network Traffic Evaluation 

 If network traffic is low, increase encryption rounds 
 If network traffic is high, decrease encryption 

rounds 
7. Calculate Optimal Number of Rounds 
 Rop

= Rmin (CPU load + memory + Traffic factor
3 )

× (Rmax − Rmin) 
 Adjust the number of encryption rounds to Rop 
 Implement the adjusted number of rounds in the 

XTEA encryption process 
8. Repeat from step 3 
9.End  
 
By altering the number of encryptions rounds dynamically, 

the Dynamic Round Adjustment algorithm method reduces the 
need for huge buffers or storage locations. This is especially 
important for 8-bit microcontrollers, which have limited 
memory and computing capability. 

Once the number of encryption rounds is updated, the Bit-
Slice Processing is used to divide data into smaller bit-level 
segments, allowing several encryption processes, which is 
explained in the following section 3.3. 

C. Bit-Slice Processing 
Conventional byte-oriented processing processes data in 8-

bit (or larger) chunks, resulting in inefficiencies while 
performing concurrent activities. Hence the bit-slice processing 
is used in this research, which divides data into discrete bits 
such that many bits carry out operations concurrently. This 
method greatly increases efficiency and speed by enabling the 
simultaneous execution of many encryptions or decryption 
operations. 

The specific architecture of the 8-bit microcontroller 
determines how bits are efficiently processed in parallel. This 
includes the availability of parallel execution units and the 
capability to handle bit-level operations. By dividing the data 
into slices, multiple bit-wise operations are executed 
simultaneously, improving throughput and reducing processing 
time on 8-bit microcontrollers. The Bit-Split function is defined 
as follows in equation (6) 

Bs(Q(y)) = Bk⨁ Bk−1⨁, … , ⨁  Bi            (6) 
Here, ⊕ denotes the bitwise XOR operation, 

and Bk, Bk−1,…, Bi represent the different segments obtained 
by splitting the bit sequence. These bit-level blocks are then 
processed simultaneously.  

 
Fig.2: Bit-Slice Processing 
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Figure 2 depicts the bit slice processing of the proposed 
model. This implies that multiple encryption/decryption 
operations are performed at the same time, making use of 
parallel processing units within the microcontroller. This bit-
slice processing offers a flexible and scalable approach to 
processor architecture, allowing for effective execution of 
arithmetic and logical operations in parallel. This method is 
especially useful in resource-constrained situations, such as 8-
bit microcontrollers, where optimal performance and resource 
utilization are crucial. Bit-slice processing improves flexibility, 
speed, and efficiency in microprocessor designs by breaking 
down the data route into smaller slices. Once the bit-slicing 
operation is done, OAEP is utilized for proper encryption, 
which is explained in the following section 3.4. 

D. Optimal Asymmetric Encryption Padding  
To provide a secure padding, the OAEP is utilized for 

encrypting the plaintext message from the IoT device. OAEP is 
a padding strategy that is frequently used in conjunction with 
asymmetric encryption algorithms to increase security, 
particularly against POAs and other cryptographic 
vulnerabilities. The process of OAEP requires numerous 
phases, from appending padding to the plaintext to validating 
the message's integrity after decryption. 

Begin with the plaintext message needs to be encrypted. Let 
M be the original plaintext message. The first step is to 
determine the required length of the padding. The total length 
of the padded message needs to match the block size of the 
encryption algorithm. Apply padding to M to ensure the total 
length is a multiple of the block size n required by the 
encryption algorithm. Extra bytes are added to the plaintext to 
ensure that it fits the encryption algorithm's required block size. 
This stage also includes adding random bytes to the message to 
ensure that the same message encrypted several times produces 
distinct ciphertexts, hence increasing security. Let P(M) denote 
the operation of adding padding P to M:  

P(M) = P ⊕ M     (7) 
Where ⊕ denotes concatenation, and P is the random 

padding added to make the message length compliant with 
block size requirements. The padding is random, enhancing 
security by making it difficult for attackers to predict the 
padding structure. Then compute a cryptographic hash H(M) of 
the original plaintext M, which is expressed in the following 
equation () 

h = H(M)                    (8) 
This hash h is important for verifying the integrity of the 

message during the decryption process. The generated hash 
value is attached to the message along with the random padding. 
Concatenate the padded message P(M) with the hash h, which 
is expressed in the following equation () 

DM = P(M) ⊕ h       (9) 
This combined message DM includes both the padded 

plaintext and the hash, ensuring both data integrity and security. 
Encrypt the concatenated message DM using the XTEA 
encryption algorithm with a key Kf.  

C = EKf (DM)                             (10) 

Here, KKf is the encryption function, and C is the resulting 
ciphertext. The encryption key Kf is uniquely generated for 
each node using the Context-Aware Key Expansion Scheduling 
algorithm, ensuring that the keys are pseudo-random and node-
specific. The encryption process transforms the combined 
message into ciphertext, ensuring its confidentiality during 
transmission. The encrypted message (ciphertext C) is 
transmitted to the intended recipient. By including random 
padding in the message, OAEP promises that even if the same 
plaintext is encrypted numerous times, the resultant ciphertext 
is unique each time. This randomization makes it far more 
difficult for an attacker to anticipate or manipulate the 
ciphertext.  OAEP is designed to work effectively within the 
constraints of 8-bit microcontrollers. The use of a lightweight 
hash function and efficient padding mechanisms ensures that 
the encryption process remains fast and resource-efficient. The 
algorithm for OAEP is explained in Algorithm 3. 

 
Algorithm 3: Optimal Asymmetric Encryption Padding 
Inputs: Plaintext message M, Block size n of the encryption 
algorithm, encryption key Kf generated using the Context-
Aware Key Expansion Scheduling algorithm, and Hash 
function H 
Output: Ciphertext C 
 1. Compute the length of the padding P needed to 

make M fit the block size n. 
 2. Generate a random padding P of appropriate 

length. 
 3. Concatenate the random padding P with the 

plaintext message M: 
 4. Compute the cryptographic hash h of the 

original plaintext M 
 5. Combine the padded message P(M) with the 

hash h 
 6. Encrypt the combined message DM using the 

XTEA encryption algorithm: 
The resulting ciphertext C is returned. 
Send the ciphertext C to the intended recipient. 
 
To optimize the XTEA encryption algorithm by using 

precomputed lookup tables, reducing real-time computational 
overhead, and improving processing efficiency on 8-bit 
microcontrollers. Frequently used arithmetic operations in the 
XTEA algorithm are precomputed and stored in lookup tables. 
During encryption or decryption, instead of performing the 
computation in real time, the algorithm retrieves the result from 
the table. The main purpose is to speed up encryption and 
decryption by avoiding repetitive computations, especially for 
computationally expensive operations. By accessing 
precomputed values, the need for real-time arithmetic 
operations is minimized, leading to faster encryption and 
decryption. Minimizes processor cycles and memory usage, 
making it suitable for 8-bit microcontrollers with limited 
resources.  

The OAEP method is enhanced by HIPV, which checks the 
integrity of the decrypted message. By recalculating the hash 
after decryption and comparing it to the initial hash, the system 
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assures that the message has not been altered, which is 
explained in the following section 3.5.  

E. Hash-Based Integrated Padding Verification  
HIPV is designed as an additional layer for improving the 

security of encrypted data by including padding validation 
directly into the decryption process. It aims to prevent 
vulnerabilities corresponding to the POA by ensuring that only 
valid ciphertexts are decrypted. 

Upon receiving the ciphertext, the SDN controller decrypts it 
using the XTEA decryption algorithm. This restores the padded 
and hashed plaintext message. The recipient receives the 
ciphertext that needs to be decrypted. Decrypt the incoming 
ciphertext to get the padded plaintext and appended hash. The 
ciphertext C is decrypted using the XTEA decryption function 
DKf(⋅) with key Kf, restoring the combined message M′. 

M′ =  DKf(C)       (11) 
The decrypted message is divided into two parts: the original 

message with padding and the hash value. This extracted hash 
was appended during the encryption phase and serves as a 
reference for integrity verification. The decrypted message M′ 
is split into the padded plaintext P′ and the extracted hash HP′.  

Then the random padding bytes are removed from the 
decrypted message to extract the original plaintext. This step 
restores the plaintext to its original form before padding and 
hashing. The padding bytes q are removed from P′, yielding the 
extracted plaintext P. A new hash is calculated from the 
extracted plaintext using the same cryptographic hash function 
as in the encryption phase. This recalculated hash (HP′′) is 
compared with the extracted hash to verify the integrity of the 
message. Calculate the hash of the extracted plaintext P′, which 
is expressed in the following equation () 

HP
′′ = H(P′)               (12) 

Compare the recalculated hash HP
′′ with the extracted hash 

HP′. If the recalculated hash matches the retrieved hash, it 
means that the message was not tampered with. The plaintext is 
regarded as valid. If the hashes do not match, it means that the 
message was tampered with. In this situation, the decryption 
operation is terminated, and the plaintext is not utilized. This 
hash consistency check detects ciphertext manipulation and 
padding issues during decryption. If the hashes do not match, 
the decryption is halted, ensuring the message's integrity 

 
Fig.3: Flow chart for Hash-Based Integrated Padding 

Verification 

Figure 3 illustrates the flow chart for HIPV. HIPV offers an 
adequate framework for maintaining the integrity and security 
of encrypted messages. By combining hashing and padding 
verification, it overcomes significant vulnerabilities including 
the POA while remaining efficient, making it ideal for 
embedded processor-based smart city systems. This structured 
security technique ensures that only genuine and untampered 
ciphertexts are handled, which considerably improves the 
encryption scheme's overall resilience. The OAEP with HIPV 
approach improves the security of encrypted data by ensuring 
that the plaintext is securely padded and verifiable.  

Overall, the proposed approaches solve a variety of 
difficulties while considerably improving the security, 
performance, and efficiency of XTEA encryption for integrated 
processor-based SDN nodes in smart cities. 

IV. RESULT AND DISCUSSION  
The performance of the proposed system and the 

implementation findings are explained in depth in this section, 
which also includes a comparison section to verify that the 
suggested technique is appropriate for data security in 
embedded processor-based SDN nodes in smart cities. 

 
A. System Configuration 

The proposed data security methodology has been simulated 
in MATLAB. The evaluation is conducted by varying the data 
size correspondingly. 

Software : MATLAB 
OS : Windows 10 (64-bit) 
Processor : Intel i5 
RAM : 8GB RAM 

The simulation in MATLAB was conducted using an embedded 
microcontroller model, which includes hardware-supported 
operations such as bitwise logic, arithmetic computations, and 
memory access. The microcontroller supports fixed-point 
arithmetic and instruction-level optimizations, enabling 
efficient execution of encryption algorithms. 

B. Performance of the proposed model  
This section discusses the experimental results from the 

initial setup of the suggested model for ASX-EM to mitigate 
POA vulnerabilities, and optimize performance for 8-bit 
microcontrollers in embedded processor-based SDN nodes in 
smart cities. 

 
Fig.4: Encryption time of the suggested model 
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The suggested model's encryption time is displayed in Figure 
4. When the message size is 80000KB, the suggested model 
achieves an encryption time of 3.25s, while when the message 
size is 1000KB, it achieves an encryption time of 0.07s. If the 
message size increases, the encryption time of the proposed 
model also increases.  OAEP uses a lightweight hash function 
and efficient padding procedures to keep the encryption process 
speedy and resource-efficient, thereby reducing the encryption 
time. 

 
Fig.5: Decryption time of the suggested model 
 
Figure 5 shows the suggested approach's decryption time. 

The suggested model achieves the fastest decryption time of 3.6 
seconds when the message size is 80000KB and the fastest 
encryption time of 0.07 seconds when the message size is 
1000KB. By processing many bits at once and utilizing parallel 
execution units, the bit slice process technique shortens the time 
required for encryption and decryption without increasing clock 
speed. 

 
Fig.6: Error rate of the suggested model  
 
Figure 6 presents the error rate of the suggested model across 

different encryption rounds. At 25 encryption rounds, the model 
exhibits an error rate of 0.9%, whereas at 5 encryption rounds, 
the error rate decreases to 0.4%. By verifying that only 
authentic and unaltered ciphertexts are decrypted, CAKE-SPV 
in conjunction with HIPV lowers the error rate associated with 
improper decryption. 

 
Fig.7: Power consumption of the suggested model 

Figure 7 displays the power consumption of the 
recommended model for varying encryption rounds. The graph 
indicates that as encryption rounds increase, so does the power 
consumption. When the encryption rounds are at 5, the power 
consumption is 0.2mW, whereas when the encryption rounds 
are increased to 30, the power consumption of the suggested 
model is 1.5mW. By reducing the computational complexity 
and number of required operations, these Precomputed Lookup 
Tables help in maintaining lower power consumption. 

 
Fig.8: Average throughput of the suggested model 

Figure 8 depicts the suggested model's average throughput. 
The suggested model achieves an average throughput value of 
1.00000 Kbps when the number of encryption rounds is 5 and 
also attains an average throughput value of 1.03000 Kbps when 
the encryption rounds are 25. By optimizing the number of 
rounds based on system conditions using dynamic round 
adjustment, the average throughput is maintained at an optimal 
level, balancing security needs and system performance. 

 
Fig.9: Execution time of the suggested model 

 
The execution time of the suggested model is illustrated in 

the above figure 9. When the iterations are 6 and 1, the 
suggested method achieves the execution time of 11.8 ms, and 
2 ms respectively. The proposed model's execution time 
expands with the number of iterations. The dynamic round 
adjustment algorithm reduces execution time by having logic 
constantly check system parameters and decide the ideal 
amount of encryption rounds in real time. 

 
Fig.10: Computation time of the suggested model 



Dynamic XTEA Optimization and Secure Key Management for  
Embedded Microcontroller-Based SDN Systems in Smart Cities

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2025 • VOLUME XVII • NUMBER 4 67

10

The suggested model’s computation time is represented in 
Figure 10. The computation time increases linearly with each 
iteration, starting from around 3.1 ms in the first iteration to 
12.4 ms in the sixth iteration. Precomputed lookup tables and 
parallel processing are significantly reducing computation 
times by eliminating needless calculations and accelerating 
encryption and decryption processes. 

 
Fig.11: End-to-end delay of the suggested model 
 
The suggested model's end-to-end delay is shown in Figure 

11. The mode's end-to-end delay increases as the number of 
nodes rises. When the number of nodes is 5 the suggested 
approach attains a delay of 5 ms, also when the number of 
rounds is 30 the suggested approach attains a delay of 14 ms 
respectively. The suggested ASX-EM's ability to control end-
to-end latency over a range of node densities emphasizes its 
applicability for scalable smart city applications, ensuring safe 
and effective communication even as the network increases. 

 
Fig.12: Encryption throughput of the suggested model 

Figure 12 shows the encryption throughput across various 
iterations. The proposed model achieves 22000KB/sec and 
6000KB/sec encryption throughput, respectively, at 80000KB 
and 1000KB message sizes. The encryption throughput of the 
proposed model rises with message size. The proposed ASX-
EM maintains a high level in terms of encryption throughput, 
which indicates that the optimizations, such as Bit-Slice 
Processing, effectively sustain throughput performance without 
degradation over multiple iterations. 

 
Fig.13: Decryption throughput of the suggested model 

Figure 13 shows the decryption throughput across various 
iterations. When the message size is 80000KB and 1000KB, the 
suggested approach achieves a decryption throughput of 
19200KB/sec and 13000KB/sec, respectively. The proposed 
ASX-EM maintains a high level in terms of decryption 
throughput, which indicates that the optimizations, such as Bit-
Slice Processing, effectively sustain throughput performance 
without degradation over multiple iterations. 

C. Comparative analysis of the proposed model  
In this section, a detailed explanation of the effectiveness of 

the suggested technique and the achieved outcome were 
explained. According to the evaluation, the following metrics 
have been considered: encryption throughput, decryption 
throughput, End-to-End delay, encryption time, decryption 
time,  throughput/area, latency, and execution time.  

 

Fig.14: Comparison of encryption time 
 
A comparison of the encryption time of the suggested model 

with existing models at 50000 KB message size is shown in 
Figure 14. The encryption time is used to measure how quickly 
plaintext data can be converted into ciphertext, which is 
essential for ensuring efficient and real-time secure 
communication in smart city applications. The existing models 
[16] such as TEA, XTEA, XXTEA, and M-XXTEA attain an 
encryption time of 3.43s, 3.55s, 3.91s, and 4.03s, Whereas the 
proposed model achieves an encryption time of 2.7s. Compared 
to previous approaches, the proposed model has less encryption 
time.  

 
Fig.15: Comparison of decryption time 
 
A comparison of the decryption time of the suggested model 

with existing models at 50000 KB message size is shown in 
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Figure 15. The decryption time is essential for assessing how 
quickly an encrypted message can be converted back to its 
original form, which is particularly crucial for real-time data 
access in smart city applications. The existing models [16] such 
as TEA, XTEA, XXTEA, and M-XXTEA attain a decryption 
time of 2.7s, 3.57s, 3.66s, and 3.78s, Whereas the proposed 
model achieves a decryption time of 2.4s. Compared with all 
the above existing models the proposed model attains a low 
decryption time. 

 
Fig.16: Comparison of encryption throughput 
 
Figure 16 illustrates the encryption throughput of the 

suggested model with the existing model [16]. Encryption 
throughput measures the rate at which data is encrypted per unit 
of time, typically in KB/sec or Mbps. It is crucial for smart city 
applications where large volumes of data need to be securely 
processed in real-time.  In encryption throughput, the proposed 
model demonstrates superior performance, especially for larger 
message sizes (50,000 KB), reaching around 22,000 KB/sec 
compared to existing models such as 13,000 KB/sec for 
XXTEA, 12,500 KB/sec for M-XXTEA, and 20,000 KB/sec for 
XTEA respectively. 

 
Fig.17: Comparison of decryption throughput 
 
Figure 17 illustrates the decryption throughput of the 

suggested model with the existing model [16]. Decryption 
throughput measures how efficiently an encrypted message can 
be converted back to its original form per unit of time. This is 
crucial in smart city applications, where real-time data access is 
essential for traffic control, environmental monitoring, and 
public safety. The suggested model outperforms existing 
models in terms of decryption throughput, particularly for 
larger message sizes (50,000 KB), reaching roughly 17600 
KB/sec compared to 13,800 KB/sec for XXTEA, 13,000 
KB/sec for M-XXTEA, and 17,500 KB/sec for XTEA. 

 

 
Fig.18: Comparison of latency of the suggested model 
 
A latency comparison between the suggested model and the 

current models is shown in Figure 18. Latency measures the 
time delay between the input of a data packet and its 
corresponding output after encryption or decryption. The 
latency for TEA, XTEA, and XXTEA [18] in the existing 
models is 33ms, 33ms, and 33ms, respectively. The lowest 
latency of the suggested model is 30 ms when compared to the 
existing models. 

 
Fig.19: Comparison of power consumption 
 
The power consumption comparison of the suggested model 

with the existing models is represented in Figure 19. Power 
consumption is used to evaluate the energy efficiency of the 
encryption model, which is crucial for embedded 
microcontroller-based SDN nodes in smart cities. The various 
existing [18] models including TEA, XTEA, and XXTEA attain 
a power consumption value of 2.5mW, 3mW, and 2.92mW 
respectively. Compared with existing models the suggested 
model achieves a low power consumption of 1.5mW.  

 
Fig.20: Comparison of end-to-end delay 
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The comparison of the suggested model's End-to-End Delay 
with existing models is shown in Figure 20. End-to-end delay 
measures the total time taken for a data packet to travel from 
the source to the destination, including encryption, 
transmission, processing, and decryption delays. The existing 
models [27] such as OLSR, Multipath, and Q-Learning are 
attaining an end-to-end delay value of 42ms, 18ms, and 15ms. 
Compared with existing models the suggested model achieves 
the lowest end-to-end delay of 14ms.  

 
Fig.21: Comparison of execution time 
 
A comparison of the execution time of the suggested model 

with various existing models is depicted in Figure 21. 
Execution time measures the total time required for the 
encryption and decryption processes to complete. This metric is 
crucial for embedded microcontroller-based SDN nodes in 
smart cities, as they have limited computational resources and 
operate in real-time environments. Various existing models [26] 
such as TEA, AES, and FlexenTech have an execution time of 
15ms, 20.5ms, and 13ms, conversely, the suggested mode 
attains an execution time of 11.8ms. Compared with existing 
models the suggested model attains the lowest execution time.  

 
Fig.22: Comparison of throughput/area 
 
Figure 22 illustrates the comparison of the throughput/area 

of the suggested model with the existing models. Throughput 
measures the rate at which data is successfully processed 
(encrypted or decrypted) over time.  This metric is crucial for 
embedded microcontroller-based SDN nodes in smart cities, as 
they process large volumes of real-time data from connected 
devices like traffic management systems, surveillance cameras, 
and environmental sensors. The existing models [18] such as 
TEA, XTEA, and XXTEA attain a throughput/area value of 
10.87 Mbps/slice, 16.27 Mbps/slice, and 27.30 Mbps/slice. 
Compared with existing models the suggested model attains the 
highest throughput/area value of 30 Mbps/slice. 

Metric Proposed 
Model 

TEA XTEA XXTEA M-
XXTE
A 

Encryption 
Time (s) 

2.7 3.43 3.55 3.91 4.03 

Decryption 
Time (s) 

2.4 2.7 3.57 3.66 3.78 

Encryption 
Throughput 
(KB/sec) 

22,000 - 20,000 13,000 12,500 

Decryption 
Throughput 
(KB/sec) 

17,600 - 17,500 13,800 13,000 

Latency (ms) 30 33 33 33 - 
Power 
Consumptio
n (mW) 

1.5 2.5 3 2.92 - 

Throughput/
Area 
(Mbps/slice) 

30 10.8
7 

16.27 27.30 - 

  
Table 1 proposed model outperforms TEA, XTEA, XXTEA, 
and M-XXTEA in encryption and decryption time, achieving 
the fastest execution of 2.7s and 2.6s, respectively. It also 
demonstrates superior encryption and decryption throughput of 
22,000 KB/sec and 17,600 KB/sec while maintaining the lowest 
power consumption of 1.5 mW. Additionally, the proposed 
model achieves the highest throughput per area of 30 
Mbps/slice, highlighting its efficiency in resource utilization. 

 

Metric 
Propo

sed 
Model 

TE
A 

OL
SR 

Multip
ath 

Q-
Learni

ng 

AE
S 

Flexen
Tech 

End-
to-End 
Delay 
(ms) 

14 - 42 18 15   

Execut
ion 

Time 
(ms) 

11.8 15 - - - 20.
5 13 

Table 2 shows the proposed model achieves the lowest end-to-
end delay of 14 ms compared to OLSR of 42 ms, Multipath of 
18 ms, and Q-Learning of 15 ms, ensuring faster data 
transmission. It also outperforms TEA and AES in execution 
time, completing tasks in 11.8 ms, which is faster than TEA of 
15 ms and AES of 20.5 ms. These results highlight the proposed 
model’s efficiency in both latency and computational 
performance. 

Overall, in the results section, the proposed model is 
compared to existing models, and the performance is explained 
using graphs. This shows that the technique that is used in the 
novelty Dynamic XTEA Optimization and Secure Key 
Management for Embedded Microcontroller-based SDN for 
smart cities has comparatively higher encryption throughput 
and decryption throughput, and low decryption time, encryption 
time, and execution time than the previous techniques that are 
taken for the comparison. 

TABLE I
Comparison of the proposed model with other Existing Approaches

TABLE II
Comparison of the proposed model End-to-End Delay and  

Execution Time with other Existing Approaches
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V. CONCLUSION 
In conclusion, the proposed ASX-EM tackles major security 

and performance concerns for SDN nodes in smart cities. By 
using CAKE-SPV, the suggested approach successfully 
mitigates POA vulnerabilities while providing secure 
communication between nodes. Moreover, the ARPP method 
addresses limitations about chip space, power consumption, and 
processing time to optimize XTEA for 8-bit microcontrollers. 
Efficient encryption and decryption operations are made 
possible by the Dynamic Round Adjustment method and Bit-
Slice Processing with Precomputed Lookup Tables, which 
balance security needs with efficiency. These combined 
strategies make ASX-EM a highly efficient and secure 
encryption method suitable for the constrained environments of 
smart city SDN nodes. Compared with existing models TEA, 
XTEA, XXTEA, AES and M-XXTEA the proposed model 
achieves a high encryption throughput of 22,000 KB/sec, 
decryption throughput of 17600 KB/sec, and low execution 
time of 11.8ms, power consumption of 1.5mW, encryption time 
of 2.7s and decryption time of 2.6s. The proposed solution not 
only mitigates prevalent security risks but also ensures the 
smooth and efficient operation of smart city infrastructures, 
paving the way for future advancements in secure and efficient 
embedded systems. 
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