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Abstract—High-accuracy automatic modulation classification 
(AMC) is essential for spectrum monitoring and interference- 
aware access in future 6G systems [1]. We propose AMC-
Transformer, which tokenizes raw I/Q sequences into fixed- 
length patches, augments them with learnable positional 
embeddings, and applies multi-layer, multi-head self-attention 
to capture global temporal–spatial correlations without 
handcrafted features or convolutions. On RadioML2018.01A, 
our model achieves 98.8% accuracy in the high-SNR regime 
(SNR at least 10 dB), showing higher accuracy than a CNN and a 
ResNet reimplementation by 4.44% and 1.96% in relative terms; 
averaged across all SNRs, it also improves upon MCformer, 
CNN, and ResNet baselines. Consistent gains are observed on 
the RadioML2016.10A dataset, further validating robustness 
across benchmarks. Ablations on depth, patch size, and head 
count provide practical guidance under different SNR regimes 
and compute budgets. These results demonstrate the promise 
of transformer-based AMC for robust recognition in complex 
wireless environments.

Index Terms—Modulation Recognition, Deep Learning, 
Transformer, Attention Mechanism, IQ Signal.
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I. INTRODUCTION
Wireless signal recognition—also known as

automatic modulation classification (AMC)—is pivotal
across military and civilian scenarios. It enables
identifying modulation types from raw RF signals
under limited prior knowledge, supporting dynamic
spectrum access (DSA), interference detection,
spectrum monitoring, and spectrum coexistence.
Moving toward 6G, AMC becomes even more critical
for improving spectrum utilization, robustness, and
low-overhead (pilot-free) communications. [2–3]

Classical AMC approaches fall broadly into
likelihood-based (LB) and feature-based (FB) families.
LB methods (e.g., ML/EM-assisted inference,
HLRT/QHLRT variants) can achieve high accuracy in
favorable conditions but are often sensitive to channel
state information and carry significant complexity. FB
methods draw on expert features such as
cyclostationary statistics and higher-order cumulants,
offering lower complexity and near-optimal
performance for lower-order schemes, yet they struggle
in multipath, overlapping sources, and high-order
modulations. [4–7]

Deep learning (DL) has boosted AMC in both
supervised CNNs and newer foundation-model-style

approaches [8]. CNNs exploit multi-scale structures
and constellation geometry effectively (e.g.,
constellation-image CNNs; robust multi-scale designs
under synthetic channel impairments). ResNet-style
networks further mitigate vanishing gradients and
improve feature reuse; lightweight/binarized ResNets
demonstrate competitive accuracy–efficiency trade-offs
for edge deployment. [9–13]

Transformers (TRN) provide an alternative by
modeling long range dependencies via self-attention
with efficient parallelism. Beyond their foundational
success, time series surveys highlight their strengths
for sequence tasks. In AMC, Transformer variants such
as MCformer, CNN Transformer hybrids, and CNN
Transformer GNN adaptively weight multi scale
patterns and improve robustness and scalability in non-
cooperative settings [14-18].

We propose the AMC-Transformer, a transformer-
based model designed for time-series IQ samples to
improve AMC accuracy. Key contributions include:
1. Learnable Embedding of RF Signal Patches: To

represent the time-series nature of raw IQ samples, we
design a learnable embedding strategy that combines patch
and positional information. RF signals are segmented into
fixed-size patches, mapped into the feature space via an
MLP, and augmented with positional embeddings to
preserve temporal dependencies, enabling effective
attention-based modeling.

2. Attention Mechanism on Raw Time-Series IQ Data:
We apply self-attention directly to raw IQ data, enabling
the model to capture long-range dependencies. This enables
the model to capture long-range dependencies and
temporal–spatial correlations, extracting global
representations without handcrafted features or
convolutional operations, thus overcoming the locality
limitations of CNN-based methods.

3. Enhanced Diversity and Robustness with Multi-Head
Attention: To improve generalization under varying SNR
conditions, we employ multi-head attention, allowing
feature extraction in multiple subspaces. This enriches
representation diversity and enhances robustness against
noise and channel impairments, improving classification
reliability in realistic wireless environments.

4. Competitive performance on public RadioML datasets:
On RadioML2018.01A [19] we obtain 98.8 percent
accuracy at SNR at least 10 dB and observe higher average
accuracy than MCformer, CNN, and ResNet. Similar trends
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appear on RadioML2016.10a [19]. We also provide
ablations on depth, patch size, and head count.

The proposed AMC-Transformer provides a robust
attention-based solution for AMC, demonstrating
competitive performance across multiple modulation
scenarios. At the same time, the increased model
complexity introduced by attention mechanisms highlights
an inherent accuracy–complexity trade-off, which is
particularly relevant for practical 6G deployments. Despite
these advantages, transformer models face challenges such
as quadratic complexity, higher data requirements, and
limited invariance to signal distortions. To enhance
practicality and scalability, future work will focus on
efficient attention mechanisms, hybrid Conv–Attention
architectures, and RF-specific data augmentation strategies.

The paper is structured as follows: Section 2
summarizes related research. Section 3 details the
AMC-Transformer architecture. Section 4 presents
evaluation results. Section 5 concludes the paper.

II. RELATED WORK
Deep learning–based AMC has advanced

markedly in recent years. On the CNN side, one-
dimensional residual networks for I/Q sequences and
complex-valued convolutions can extract
discriminative features while keeping parameter counts
manageable; for example, ResNet-style variants
tailored to wireless signals and complex depthwise-
separable CNNs report strong results on RadioML
benchmarks [20,21]. Meanwhile, MCNet—using
asymmetric kernels and skip connections—achieves
about 93% accuracy at high SNR (20 dB) on
RadioML2018.01A, illustrating the upper bound of
CNNs in high-SNR regimes [22]. RNN/CRNN and
LSTM models have also been used to capture long-
range dependencies, but their generalization to unseen
channel conditions and modulation parameters remains
limited [23–25]. RadioML datasets (e.g.,
RML2018.01A, RML2016.10a/10b) continue to be the
standard benchmarks in this area.

Transformer-based AMC has recently evolved in
three directions. First, sequence models operating
directly on raw I/Q: Cai et al. apply a Transformer to
AMC and report consistent gains over CNN/LSTM
baselines—especially at low SNR—with fewer
parameters; MCformer embeds each (I, Q) sample via a
lightweight 1-D convolution and stacks Transformer
encoders, with the notable observation that omitting
positional encodings works better; it attains state-of-
the-art accuracy on RML2016.10b with only ~10k–72k
parameters [16]. Second, hybrid CNN–Transformer
designs: CTGNet/CTRNet use convolutions for local
invariances and self-attention for long-range
dependencies, improving robustness under multiple
impairments and non-idealities [26]. Third, ViT on 2-D
signal representations: by converting signals to
constellation images, MobileViT and related ViT
variants improve robustness under noise without an
explicit denoising pipeline (e.g., NMformer) [27,28].

In addition, scalability and label efficiency have
been advanced via meta-learning and semi/self-

supervision: Meta-Transformer provides a general few-
shot adaptation framework for previously unseen
modulations, and subsequent studies further validate
meta-learning for cross-domain generalization [29,30].
Transformer-based contrastive semi-supervised
learning and self-supervised RF representation learning
(e.g., Self-Contrastive, NextG RF SSL) substantially
reduce labeled-data requirements while maintaining
accuracy in low-label regimes [31–33].

III. MODEL DESCRIPTION
The AMC-Transformer is tailored to 2-D in-

phase/quadrature (IQ) signals and addresses two
challenges that limit conventional CNN/ResNet models
on RF data: (i) high-frequency noise and (ii) long-range
temporal dependencies. As summarized in Fig. 1, the
model converts a 2 × 1024 IQ sample into fixed-length
tokens via patching, augments them with positional
encodings, and processes the sequence using a
Transformer encoder whose output feeds an MLP head
for prediction.

A. Input Processing
We adopted a minimal, task-compatible

preprocessing pipeline per sample 2×1024 : including:
(i) per-channel DC offset removal, (ii) RMS
normalization across I/Q channels, and (iii) channel-
wise z-score standardization using statistics estimated
from the training split only. The same normalization
parameters are then applied to validation and test data
to avoid information leakage. Explicit filtering or
denoising is intentionally avoided to preserve
modulation-discriminative spectral and phase
characteristics.
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where (, ) are the channel-wise mean and
standard deviation estimated on the training split after
steps (i)–(ii) and then fixed for validation and test sets,
and  is a small constant for numerical stability.

B. Overall Pipeline
The preprocessed signal � is treated as a two-

channel 2-D array 2 × 1024 . We tokenize it into  =
1024 non-overlapping 2 ×  patches (covering both I
and Q to retain I/Q coherence), add learned positional
embeddings, and process tokens with a stack of
Transformer encoder blocks (multi-head self-attention
and MLP, each preceded by layer normalization and
followed by dropout). An MLP head produces the final
logits. Fig. 1 is updated to include the preprocessing
block.
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Fig. 1.Model Overview

C. Patch Embedding
To balance context coverage and efficiency, the

input is partitioned along the time axis into non-
overlapping patches of size 1 × 16, yielding 64 patches
per sample. Each patch contains 2 × 16 values that are
flattened to a 32-D vector and linearly projected to the
model width  (we use  = 32 ), producing a token
sequence of shape 64 ×  . This tokenization lets the
self-attention mechanism relate local structures (e.g.,
short-term amplitude/phase transitions) to global
patterns influenced by modulation type and SNR. The
choice 16 ensures sufficient local resolution under
symbol-rate offsets, delays, and noise fluctuations
while keeping compute tractable.

D. Positional Encoding
Because Transformer blocks process all tokens in

parallel, explicit position information is required to
capture temporal dynamics (amplitude, frequency, and
phase evolutions). We use learnable positional
embeddings of length 64 and dimension  ; the
positional vector for each patch is added to its token
embedding, yielding  ∈ 64× . This enables the model
to distinguish early/late patches and to learn temporal
patterns associated with different modulations and
SNRs.

E. Self-Attention
Given the token matrix  , the encoder computes

query, key, and value projections
 = 
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where ,  ∈ 64× and  ∈ 64× .
Scaled dot-product attention (Fig. 2) is
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The output  ∈ × preserves sequence length
while re-weighting each token by its global correlations.
For token  , the vector  aggregates values 
according to the similarity between  and ， thereby

encoding long-range dependencies across the entire
2 × 1024 signal.

Fig. 2. Scaled Dot-Product Attention

F. Multi-Head Attention and Classifier
To learn complementary temporal and frequency

relations. For head ,
 = 

,  = 
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with per-head dimension  =  = 8 . Each head
produces the heads are concatenated and projected:
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Fig. 3.Multi-Head Attention
restoring the model width  = 32 . Each encoder block
applies LayerNorm, multi-head self-attention, dropout,
and an MLP with residual connections (see Fig. 3). The
encoder output is passed to an MLP head (linear layers
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each waveform be indexed by its modulation  ∈  ,
SNR s ∈ S , and within-class index i ∈ {0, …, 4095} . We
define a group as

, = {(, , )|}
i.e., the same base waveform rendered at all SNRs for a

given modulation. Splitting is conducted at the group level
so that no group , ​ appears in more than one subset,
eliminating leakage where the same underlying waveform
at different SNRs would otherwise straddle train and
evaluation sets.

We adopt a group-aware split to avoid cross-SNR
leakage: within each modulation, base examples are
grouped across all SNRs and treated as indivisible units.
Groups are randomly assigned to 70% / 20% / 10%
train/validation/test with a fixed seed (48), stratified by
modulation to preserve class priors. Because each group
spans the full SNR set, the SNR distribution is preserved
across splits by construction. At the per-(modulation, SNR)
level this yields approximately 2867 / 819 / 410 samples for
train/val/test, respectively (rounded from 4096 per pair).

Class IDs are remapped to [0, 23] following the fixed
24-class list in Sec. A, ensuring a stable label order aligned
with the classifier’s output layer.

We apply lightweight, task-compatible preprocessing: (i)
per-sample DC offset removal on I/Q channels; (ii) per-
sample RMS normalization (AGC-style) to unit average
power across I/Q; and (iii) channel-wise z-score
standardization using training-split statistics (, ) only.
The same normalization parameters are then applied to
validation and test data to avoid information leakage.
Random seeds and the exact split indices are fixed and
recorded to ensure reproducibility.

B. Baselines and training protocol
We re-train all baselines (CNN[34], ResNet[3],

MCformer[16]) and our AMC-Transformer under the same
preprocessing and training protocol. All models take
identical inputs (I/Q, shape 2×1024), use the same loss
(multiclass cross-entropy), optimizer and learning-rate
schedule, and share the same group-aware data split.
Specifically, within each modulation, base examples are
grouped across all SNRs, and each group is assigned
wholly to train/validation/test (70/20/10), which prevents
cross-SNR leakage while preserving class priors. Early
stopping and weight decay are applied to mitigate
overfitting.

CNN: A 2D ConvNet consisting of four sequential
stages including ABlock, BBlock, CBlock1, and CBlock2,
followed by global average pooling and a 24-way classifier.
The model contains 66,008 parameters.

ResNet: A 1D ResNet with residual connections,
featuring an initial Conv1D layer followed by 5 residual
blocks with progressive channel expansion from 32 to 64 to
128 channels. The architecture uses kernel size 7, batch
normalization, and ReLU activations. The final layers
consist of global average pooling followed by dropout and
a dense classifier. The model contains 534,104 parameters.

MCformer: A hybrid architecture combining Conv1D
with 8 channels and 4 lightweight encoder blocks, followed
by temporal aggregation to 4 tokens. The output is
processed through flattening, a 128-dimensional fully
connected layer, and finally a 24-dimensional classification

layer. The parameter counts increases from 10,050 for the
original 10-class head to 11,856 for 24 classes, with the
increase attributed to the expanded classifier.

AMC-Transformer (ours): The input is reshaped to
dimensions 2×1024×1 and divided into 64 patches of 32
dimensions each. The architecture employs an embedding
dimension of 96 with positional encoding, followed by 6
encoder layers with 8 attention heads each. The final
process consists of flattening followed by a multi-layer
perception with layer dimensions 6144, 2048, 1024, and 24.
The model contains 15,834,680 parameters.

All models are trained using the AdamW optimizer
with a learning rate of 1e-3, cosine decay scheduling with
5-epoch warm-up, weight decay of 1e-4, and gradient
clipping at 1.0. The default batch size is 256, with
additional results reported using batch size 800. Dropout of
0.1 is applied to MLP and classifier layers. Input data
undergoes z-score normalization with no data augmentation
applied. Hardware specifications, random seeds, and library
versions are documented in the Appendix. All code and
training scripts are provided to ensure reproducibility.

Table 1.Model and architecture overview
Model Params Tokens

/ Patch Heads Dim Blocks

CNN 66,008 – – – A/B/C ×4 →
GAP → FC

ResNet-1D 534,104
Conv1D →
5×ResBlock →
GAP → FC

MCformer-
24
(reimpl.)

11,856 T-agg
→ 4 – – Conv1D →

4×Enc → FC

AMC-
Trans
(ours)

15,834,680 64 / 16 8 96 6×(MHA+FFN)
→MLP

Fig. 4. Accuracy versus SNR on the RML2018.01A
dataset

Over the full SNR range, AMC-Transformer achieves
an average accuracy of 63.58%, higher than MCformer at
59.02%, CNN at 59.84%, and ResNet at 61.96% (Fig. 4.) In
the high-SNR region (SNR of at least 10 dB), AMC-
Transformer reaches 98.8% and exhibits a clear saturation
plateau, higher than MCformer at 92.29%, CNN at 94.50%,
and ResNet at 96.79%. In the low-SNR region (SNR at
most -8 dB), AMC-Transformer attains 20.97%, higher
than MCformer at 19.19%, CNN at 18.70%, and ResNet at
19.37%. In the mid-SNR range from 2 to 8 dB, AMC-
Transformer averages 84.20%, higher than MCformer at
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Fig. 3.Multi-Head Attention
restoring the model width  = 32 . Each encoder block
applies LayerNorm, multi-head self-attention, dropout,
and an MLP with residual connections (see Fig. 3). The
encoder output is passed to an MLP head (linear layers
with normalization/dropout) to obtain pre-logits and
final predictions (e.g., via softmax for classification)

IV. EXPERIMENT AND RESULTS

A. Datasets and Split Protocol
We use the publicly available RadioML 2018.01A

dataset, which synthesizes realistic channel impairments—
including delay spread, carrier frequency offset, and
thermal noise. It covers 24 modulation types across 26 SNR
levels from −20 dB to 30 dB in 2 dB steps. Each SNR level
contains 4,096 signal examples, yielding a total of
2,555,904 samples, each represented as complex IQ (in-
phase and quadrature) sequences. In addition to training
and validation on 2018.01A, we perform cross-dataset
evaluation on RadioML 2016 to assess the algorithm’s
robustness and generalization under distribution shifts and
differing channel conditions.

To prevent sample leakage across SNR conditions, we
perform a group-aware split of RadioML2018.01A. Let

Fig. 4. Accuracy versus SNR on the RML2018.01A dataset
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each waveform be indexed by its modulation  ∈  ,
SNR s ∈ S , and within-class index i ∈ {0, …, 4095} . We
define a group as

, = {(, , )|}
i.e., the same base waveform rendered at all SNRs for a

given modulation. Splitting is conducted at the group level
so that no group , ​ appears in more than one subset,
eliminating leakage where the same underlying waveform
at different SNRs would otherwise straddle train and
evaluation sets.

We adopt a group-aware split to avoid cross-SNR
leakage: within each modulation, base examples are
grouped across all SNRs and treated as indivisible units.
Groups are randomly assigned to 70% / 20% / 10%
train/validation/test with a fixed seed (48), stratified by
modulation to preserve class priors. Because each group
spans the full SNR set, the SNR distribution is preserved
across splits by construction. At the per-(modulation, SNR)
level this yields approximately 2867 / 819 / 410 samples for
train/val/test, respectively (rounded from 4096 per pair).

Class IDs are remapped to [0, 23] following the fixed
24-class list in Sec. A, ensuring a stable label order aligned
with the classifier’s output layer.

We apply lightweight, task-compatible preprocessing: (i)
per-sample DC offset removal on I/Q channels; (ii) per-
sample RMS normalization (AGC-style) to unit average
power across I/Q; and (iii) channel-wise z-score
standardization using training-split statistics (, ) only.
The same normalization parameters are then applied to
validation and test data to avoid information leakage.
Random seeds and the exact split indices are fixed and
recorded to ensure reproducibility.

B. Baselines and training protocol
We re-train all baselines (CNN[34], ResNet[3],

MCformer[16]) and our AMC-Transformer under the same
preprocessing and training protocol. All models take
identical inputs (I/Q, shape 2×1024), use the same loss
(multiclass cross-entropy), optimizer and learning-rate
schedule, and share the same group-aware data split.
Specifically, within each modulation, base examples are
grouped across all SNRs, and each group is assigned
wholly to train/validation/test (70/20/10), which prevents
cross-SNR leakage while preserving class priors. Early
stopping and weight decay are applied to mitigate
overfitting.

CNN: A 2D ConvNet consisting of four sequential
stages including ABlock, BBlock, CBlock1, and CBlock2,
followed by global average pooling and a 24-way classifier.
The model contains 66,008 parameters.

ResNet: A 1D ResNet with residual connections,
featuring an initial Conv1D layer followed by 5 residual
blocks with progressive channel expansion from 32 to 64 to
128 channels. The architecture uses kernel size 7, batch
normalization, and ReLU activations. The final layers
consist of global average pooling followed by dropout and
a dense classifier. The model contains 534,104 parameters.

MCformer: A hybrid architecture combining Conv1D
with 8 channels and 4 lightweight encoder blocks, followed
by temporal aggregation to 4 tokens. The output is
processed through flattening, a 128-dimensional fully
connected layer, and finally a 24-dimensional classification

layer. The parameter counts increases from 10,050 for the
original 10-class head to 11,856 for 24 classes, with the
increase attributed to the expanded classifier.

AMC-Transformer (ours): The input is reshaped to
dimensions 2×1024×1 and divided into 64 patches of 32
dimensions each. The architecture employs an embedding
dimension of 96 with positional encoding, followed by 6
encoder layers with 8 attention heads each. The final
process consists of flattening followed by a multi-layer
perception with layer dimensions 6144, 2048, 1024, and 24.
The model contains 15,834,680 parameters.

All models are trained using the AdamW optimizer
with a learning rate of 1e-3, cosine decay scheduling with
5-epoch warm-up, weight decay of 1e-4, and gradient
clipping at 1.0. The default batch size is 256, with
additional results reported using batch size 800. Dropout of
0.1 is applied to MLP and classifier layers. Input data
undergoes z-score normalization with no data augmentation
applied. Hardware specifications, random seeds, and library
versions are documented in the Appendix. All code and
training scripts are provided to ensure reproducibility.

Table 1.Model and architecture overview
Model Params Tokens

/ Patch Heads Dim Blocks

CNN 66,008 – – – A/B/C ×4 →
GAP → FC

ResNet-1D 534,104
Conv1D →
5×ResBlock →
GAP → FC

MCformer-
24
(reimpl.)

11,856 T-agg
→ 4 – – Conv1D →

4×Enc → FC

AMC-
Trans
(ours)

15,834,680 64 / 16 8 96 6×(MHA+FFN)
→MLP

Fig. 4. Accuracy versus SNR on the RML2018.01A
dataset

Over the full SNR range, AMC-Transformer achieves
an average accuracy of 63.58%, higher than MCformer at
59.02%, CNN at 59.84%, and ResNet at 61.96% (Fig. 4.) In
the high-SNR region (SNR of at least 10 dB), AMC-
Transformer reaches 98.8% and exhibits a clear saturation
plateau, higher than MCformer at 92.29%, CNN at 94.50%,
and ResNet at 96.79%. In the low-SNR region (SNR at
most -8 dB), AMC-Transformer attains 20.97%, higher
than MCformer at 19.19%, CNN at 18.70%, and ResNet at
19.37%. In the mid-SNR range from 2 to 8 dB, AMC-
Transformer averages 84.20%, higher than MCformer at
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Over the full SNR range, AMC-Transformer achieves
an average accuracy of 63.58%, higher than MCformer at
59.02%, CNN at 59.84%, and ResNet at 61.96% (Fig. 4.) In
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77.07% and CNN at 77.66%, and essentially on par with
ResNet at 83.32%.

Overall, AMC-Transformer maintains robustness at
low SNR and sustains a consistent performance margin as
SNR increases, with a near-saturated accuracy around
98.8% on RML2018.01A in the high-SNR region.

C. Robustness Analyses
1. Accuracy Across SNRs on RML2016.10a

RML2016.10a (Fig. 5). Over the full SNR range, the
average accuracies of AMC-Transformer and MCformer
are essentially identical (63.48% and 63.48%). In the high-
SNR region (SNR of at least 10 dB), AMC-Transformer
attains an average accuracy of 93.51%, which is higher than
MCformer by 0.82 percentage points and higher than CNN
and ResNet by 3.00 and 6.37 percentage points,
respectively. In the low-SNR region (SNR at most -10 dB),
AMC-Transformer reaches 29.12%, comparable to
MCformer at 29.06% and higher than CNN at 25.68% and
ResNet at 23.70%

Fig. 5. Evaluation on RML2016.10a Across SNRs

2. Macro-F1 Stability Over Random Seeds
Having established performance trends across SNRs,

we next test whether these gains persist under different
random initializations. To address the concern that the
proposed model only achieves high accuracy under
favorable conditions, we further evaluate its robustness
across the full SNR range. Fig. 6 shows the Macro-F1
scores from −20 dB to 30 dB, averaged over five
independent runs with different random seeds. In addition
to the high-SNR regime (20–30 dB), where AMC-
Transformer attains near-saturation performance, the model
maintains competitive robustness under mid and low SNR
conditions. For example, at -10 dB and 0 dB, the Macro-F1
remains above 10.8% and 57.4%, respectively, with narrow
confidence intervals, indicating stable generalization across
noise levels. This result confirms that the performance of
AMC-Transformer is not restricted to high SNRs but
extends to more challenging communication environments
as well.

Fig. 6. Robustness to Random Initialization: Macro-F1 over
Five Seeds.

3. Per-Class F1 Across SNRs
To further examine the robustness of the AMC-

Transformer, we report per-class F1-scores across different
SNR levels. The horizontal axis corresponds to SNR values
(−20 dB to 30 dB), the vertical axis lists the 24 modulation
types, and the color intensity indicates the F1-score.

Overall, fig.7 shows that F1-scores consistently
increase with SNR. Low-order modulations such as BPSK
and QPSK remain relatively robust even at low SNR (−10
dB), whereas higher-order QAM schemes suffer significant
degradation under noise but quickly recover above 0 dB.
Importantly, the model maintains competitive per-class F1
performance in the mid-SNR regime (0–10 dB),
demonstrating that its effectiveness is not limited to high
SNR conditions.

Fig. 7. Per-class F1-scores across SNR levels

D. Analysis of AMC-Transformer Model Parameter
Tuning

To systematically evaluate the impact of key
hyperparameters on AMC-Transformer performance, we
conducted a parameter sensitivity study across four critical
dimensions: batch size, transformer layer depth, patch size,
and number of attention heads. The baseline configuration
used a learning rate of 0.001, a batch size of 256, 100
training epochs, three transformer layers, a patch size of 32,
and two attention heads, achieving an overall accuracy of
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Over the full SNR range, AMC-Transformer achieves
an average accuracy of 63.58%, higher than MCformer at
59.02%, CNN at 59.84%, and ResNet at 61.96% (Fig. 4.) In
the high-SNR region (SNR of at least 10 dB), AMC-
Transformer reaches 98.8% and exhibits a clear saturation
plateau, higher than MCformer at 92.29%, CNN at 94.50%,
and ResNet at 96.79%. In the low-SNR region (SNR at
most -8 dB), AMC-Transformer attains 20.97%, higher
than MCformer at 19.19%, CNN at 18.70%, and ResNet at
19.37%. In the mid-SNR range from 2 to 8 dB, AMC-
Transformer averages 84.20%, higher than MCformer at
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58.30% and an average accuracy of 89.31% at SNR above
10 dB.

During tuning, only one parameter was varied at a time,
while the others were fixed at the baseline values. This
single-factor analysis is adopted to provide interpretable
sensitivity trends for each design choice under controlled
conditions, while we acknowledge that hyperparameters
may be coupled. Joint hyperparameter optimization (e.g.,
Bayesian optimization) could be explored in future work to
more efficiently search the coupled space; however, the
focus here is to characterize the main effects and practical
ranges of key parameters. This single-factor analysis is
adopted to provide interpretable sensitivity trends for each
design choice under controlled conditions, while we
acknowledge that hyperparameters may be coupled. Joint
hyperparameter optimization (e.g., Bayesian optimization)
could be explored in future work to more efficiently search
the coupled space; however, the focus here is to
characterize the main effects and practical ranges of key
parameters.

Fig. 8. Hyperparameter sensitivity analysis of AMC-
Transformer. (a) Batch size vs. Accuracy; (b) Transformer
layer depth vs. Accuracy; (c) Patch size vs. Accuracy; (d)

Number of attention heads vs. accuracy
In addition to accuracy, varying the number of layers and
attention heads directly changes model complexity
(parameter count and compute), whereas batch size mainly
affects optimization dynamics and patch size trades
temporal resolution against sequence length. Therefore, the
following results are discussed from both accuracy and
complexity perspectives, which is particularly relevant for
low-overhead 6G deployment scenarios.

1) Batch Size
Table 1 shows the relationship between batch size and

classification accuracy. A baseline batch size of 256 yields
58.30 percent accuracy. Increasing the batch size gives only
marginal gains, with peak performance observed around the
512–732 range; further increases lead to a slight
degradation. This suggests the model benefits from more
stable gradient updates, but overly large batches reduce
helpful stochasticity.

2) Patch Size
Patch size strongly influences feature resolution. As

shown in Fig. 8(c), reducing the patch size from 32 to 16
markedly improves accuracy to 92.57 percent, while a
patch size of 8 produces 90.00 percent under baseline
conditions. Larger patch sizes such as 64 degrade

performance to 87.52 percent due to loss of fine-grained
temporal features.

3) Transformer Layer Depth
Fig. 8(b) illustrates that accuracy improves steadily as

the number of transformer layers increases, up to 10 layers
where it reaches about 91.64 percent. Beyond this point,
performance plateaus or slightly decreases, reflecting a
trade-off between representational capacity and the risk of
overfitting. Moreover, deeper stacks increase parameters
and attention compute roughly linearly with depth, so the
marginal accuracy gains beyond 6–10 layers should be
weighed against the added complexity.

4) Multi-Head Attention
The number of attention heads has a pronounced effect.

As seen in Fig. 8(d), accuracy rises quickly from 2 heads,
where the baseline is 58.30 percent, to 6 heads, which
achieves 92.57 percent. It then stabilizes around 8 to 14
heads near 90.8 percent and declines slightly thereafter,
indicating that a moderate number of heads captures
diverse signal dependencies without introducing
redundancy. Since multi-head attention increases projection
parameters and compute, the observed saturation beyond 8–
14 heads indicate diminishing returns in accuracy relative
to complexity.

Combining the best settings from each dimension —
batch size 512, transformer layers 6, patch size 16, and
attention heads 8 — yields an overall accuracy of 63.87
percent and an average accuracy of 98.80 percent at SNR
greater than 10 dB (as shown in Table 2). This represents a
notable improvement over the baseline, with an absolute
overall gain of 5.57 percentage points and a gain of 9.49
points in the high-SNR regime.

Table 2. Effect of Individual Parameter Optimization on
Model Accuracy

Parameter Baseline Best Value Accuracy
(Overall)

Accuracy
(SNR > 10
dB)

Batch Size 256 512 58.30 →
59.50

89.31 →
90.33

Layers 3 6 58.30 →
61.64

89.31 →
91.64

Patch Size 32 16 58.30 →
62.57

89.31 →
92.57

Heads 2 8 58.30 →
61.23

89.31 →
94.80

Combined –

(6 layers,
8 heads,
patch 16,
batch 512)

63.87 98.80

To further illustrate the effect of hyperparameter
optimization, Figure 9 presents the classification accuracy
across the full SNR range for both the baseline and
optimized configurations. While the baseline model
saturates around 90% accuracy at high SNR levels, the
optimized AMC-Transformer achieves up to 98.8%
accuracy at SNR of at least 10 dB and shows consistent
improvements in the mid-SNR range from 0 to 10 dB. This
confirms that the performance gain is not restricted to very
high SNR conditions, addressing concerns about robustness.
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as well.
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Overall, fig.7 shows that F1-scores consistently
increase with SNR. Low-order modulations such as BPSK
and QPSK remain relatively robust even at low SNR (−10
dB), whereas higher-order QAM schemes suffer significant
degradation under noise but quickly recover above 0 dB.
Importantly, the model maintains competitive per-class F1
performance in the mid-SNR regime (0–10 dB),
demonstrating that its effectiveness is not limited to high
SNR conditions.
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58.30% and an average accuracy of 89.31% at SNR above
10 dB.

During tuning, only one parameter was varied at a time,
while the others were fixed at the baseline values. This
single-factor analysis is adopted to provide interpretable
sensitivity trends for each design choice under controlled
conditions, while we acknowledge that hyperparameters
may be coupled. Joint hyperparameter optimization (e.g.,
Bayesian optimization) could be explored in future work to
more efficiently search the coupled space; however, the
focus here is to characterize the main effects and practical
ranges of key parameters. This single-factor analysis is
adopted to provide interpretable sensitivity trends for each
design choice under controlled conditions, while we
acknowledge that hyperparameters may be coupled. Joint
hyperparameter optimization (e.g., Bayesian optimization)
could be explored in future work to more efficiently search
the coupled space; however, the focus here is to
characterize the main effects and practical ranges of key
parameters.

Fig. 8. Hyperparameter sensitivity analysis of AMC-
Transformer. (a) Batch size vs. Accuracy; (b) Transformer
layer depth vs. Accuracy; (c) Patch size vs. Accuracy; (d)

Number of attention heads vs. accuracy
In addition to accuracy, varying the number of layers and
attention heads directly changes model complexity
(parameter count and compute), whereas batch size mainly
affects optimization dynamics and patch size trades
temporal resolution against sequence length. Therefore, the
following results are discussed from both accuracy and
complexity perspectives, which is particularly relevant for
low-overhead 6G deployment scenarios.

1) Batch Size
Table 1 shows the relationship between batch size and

classification accuracy. A baseline batch size of 256 yields
58.30 percent accuracy. Increasing the batch size gives only
marginal gains, with peak performance observed around the
512–732 range; further increases lead to a slight
degradation. This suggests the model benefits from more
stable gradient updates, but overly large batches reduce
helpful stochasticity.

2) Patch Size
Patch size strongly influences feature resolution. As

shown in Fig. 8(c), reducing the patch size from 32 to 16
markedly improves accuracy to 92.57 percent, while a
patch size of 8 produces 90.00 percent under baseline
conditions. Larger patch sizes such as 64 degrade

performance to 87.52 percent due to loss of fine-grained
temporal features.

3) Transformer Layer Depth
Fig. 8(b) illustrates that accuracy improves steadily as

the number of transformer layers increases, up to 10 layers
where it reaches about 91.64 percent. Beyond this point,
performance plateaus or slightly decreases, reflecting a
trade-off between representational capacity and the risk of
overfitting. Moreover, deeper stacks increase parameters
and attention compute roughly linearly with depth, so the
marginal accuracy gains beyond 6–10 layers should be
weighed against the added complexity.

4) Multi-Head Attention
The number of attention heads has a pronounced effect.

As seen in Fig. 8(d), accuracy rises quickly from 2 heads,
where the baseline is 58.30 percent, to 6 heads, which
achieves 92.57 percent. It then stabilizes around 8 to 14
heads near 90.8 percent and declines slightly thereafter,
indicating that a moderate number of heads captures
diverse signal dependencies without introducing
redundancy. Since multi-head attention increases projection
parameters and compute, the observed saturation beyond 8–
14 heads indicate diminishing returns in accuracy relative
to complexity.

Combining the best settings from each dimension —
batch size 512, transformer layers 6, patch size 16, and
attention heads 8 — yields an overall accuracy of 63.87
percent and an average accuracy of 98.80 percent at SNR
greater than 10 dB (as shown in Table 2). This represents a
notable improvement over the baseline, with an absolute
overall gain of 5.57 percentage points and a gain of 9.49
points in the high-SNR regime.

Table 2. Effect of Individual Parameter Optimization on
Model Accuracy

Parameter Baseline Best Value Accuracy
(Overall)

Accuracy
(SNR > 10
dB)

Batch Size 256 512 58.30 →
59.50

89.31 →
90.33

Layers 3 6 58.30 →
61.64

89.31 →
91.64

Patch Size 32 16 58.30 →
62.57

89.31 →
92.57

Heads 2 8 58.30 →
61.23

89.31 →
94.80

Combined –

(6 layers,
8 heads,
patch 16,
batch 512)

63.87 98.80

To further illustrate the effect of hyperparameter
optimization, Figure 9 presents the classification accuracy
across the full SNR range for both the baseline and
optimized configurations. While the baseline model
saturates around 90% accuracy at high SNR levels, the
optimized AMC-Transformer achieves up to 98.8%
accuracy at SNR of at least 10 dB and shows consistent
improvements in the mid-SNR range from 0 to 10 dB. This
confirms that the performance gain is not restricted to very
high SNR conditions, addressing concerns about robustness.
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To further illustrate the effect of hyperparameter
optimization, Figure 9 presents the classification accuracy
across the full SNR range for both the baseline and
optimized configurations. While the baseline model
saturates around 90% accuracy at high SNR levels, the
optimized AMC-Transformer achieves up to 98.8%
accuracy at SNR of at least 10 dB and shows consistent
improvements in the mid-SNR range from 0 to 10 dB. This
confirms that the performance gain is not restricted to very
high SNR conditions, addressing concerns about robustness.

TABLE II
Effect of Individual Parameter Optimization on Model Accuracy
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Fig. 9. Accuracy versus SNR for baseline and optimized
AMC-Transformer.

To analyze the source of the performance gains, Fig. 10
and Fig. 11 contrasts class-wise confusion matrices before
and after hyperparameter optimization across SNR ranges.
At higher SNRs (10–30 dB), the optimized model
substantially reduces within-family confusion—most
notably among high-order QAM constellations (e.g., 256-
QAM), between adjacent PSK orders (16- vs. 32-PSK), and
between AM subtypes (SSB vs. DSB). In the mid- to low-
SNR regime (0–10 dB), the optimization primarily
mitigates cross-family confusion, yielding sizable per-class
recall gains. Overall, the confusion matrices indicate that
the accuracy improvement arises from a systematic
attenuation of characteristic misclassification patterns
across the entire SNR spectrum, rather than from isolated
gains at specific operating points.

Fig. 10. Confusion matrices comparing baseline and
optimized models at mid-to-low SNR range (5-15 dB).

Fig. 11. Confusion matrices comparing baseline and
optimized models at high SNR range (10-30 dB).

Overall, the sensitivity results indicate that most of the
achievable gains come from selecting an appropriate patch
size and a moderate number of layers/heads, while very
deep or heavily multi-headed configurations exhibit
diminishing returns. Importantly, the optimized
configuration improves accuracy across the full SNR range
(Fig. 9) but does so with increased model complexity. This
accuracy–complexity trade-off should be considered when

targeting resource-constrained receivers and low-overhead
6G deployments.

E. Positional Encoding Strategy
To evaluate the impact of positional encoding methods on
AMC-Transformer performance, we compared learnable
positional embeddings against fixed sinusoidal encodings
while keeping all other hyperparameters constant (6 layers,
8 heads, patch size 16, batch size 512).

Fig. 12. Comparison of positional encoding strategies
across SNR levels

Fig. 12 shows the F1 scores across the full SNR range for
both encoding strategies. While both methods achieve
comparable performance at low SNRs (below 0 dB), a clear
divergence emerges in the mid-to-high SNR regime.
Learnable positional encoding consistently outperforms
fixed sinusoidal encoding above 10 dB SNR, maintaining
an average F1 score of 98.5% compared to 97.3% for the
fixed encoding—a relative improvement of 1.2 percentage
points. The performance gap is most pronounced between
10-20 dB, suggesting that learnable embeddings better
capture the position-dependent temporal patterns specific to
modulated signals under favorable channel conditions.
This result indicates that allowing the model to learn task-
specific positional representations provides measurable
benefits for AMC, particularly when signal quality permits
extraction of fine-grained temporal features. The learned
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Parameter Baseline Best Value Accuracy
(Overall)

Accuracy
(SNR > 10
dB)
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89.31 →
90.33

Layers 3 6 58.30 →
61.64

89.31 →
91.64
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89.31 →
92.57

Heads 2 8 58.30 →
61.23

89.31 →
94.80

Combined –

(6 layers,
8 heads,
patch 16,
batch 512)

63.87 98.80

To further illustrate the effect of hyperparameter
optimization, Figure 9 presents the classification accuracy
across the full SNR range for both the baseline and
optimized configurations. While the baseline model
saturates around 90% accuracy at high SNR levels, the
optimized AMC-Transformer achieves up to 98.8%
accuracy at SNR of at least 10 dB and shows consistent
improvements in the mid-SNR range from 0 to 10 dB. This
confirms that the performance gain is not restricted to very
high SNR conditions, addressing concerns about robustness.
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recall gains. Overall, the confusion matrices indicate that
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diminishing returns. Importantly, the optimized
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(Fig. 9) but does so with increased model complexity. This
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To evaluate the impact of positional encoding methods on
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10-20 dB, suggesting that learnable embeddings better
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This result indicates that allowing the model to learn task-
specific positional representations provides measurable
benefits for AMC, particularly when signal quality permits
extraction of fine-grained temporal features. The learned
embeddings likely adapt to the periodic structures and
phase relationships inherent in different modulation
schemes, which generic sinusoidal patterns cannot fully
capture.
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This result indicates that allowing the model to learn task-
specific positional representations provides measurable
benefits for AMC, particularly when signal quality permits
extraction of fine-grained temporal features. The learned
embeddings likely adapt to the periodic structures and
phase relationships inherent in different modulation
schemes, which generic sinusoidal patterns cannot fully
capture.
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regime, demonstrating robustness beyond a single
dataset. Ablation studies indicate that model capacity
and tokenization drive the accuracy–efficiency trade-off:
patch size 16, 8 attention heads, and about six encoder
layers offer a favorable balance across SNR conditions.
These gains, however, come at the cost of increased
model complexity, which should be carefully considered
for low-overhead and resource-constrained 6G receivers.

Despite these gains, transformer attention scales
quadratically and benefits from substantial data. Future
work will explore efficient attention (for example, linear
or clustered variants), hybrid Conv–Attention designs
that inject local inductive bias, and RF-aware
augmentation and self-supervision to improve robustness
to channel non-idealities while reducing the need for
labeled data.
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