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Abstract—Process mining encompasses a suite of techniques
aimed at analyzing event data to gain insights and improve
operational processes. One way of achieving this is to discover
the driving process of the activities that occurred in a system.
Technically, process discovery algorithms are used to transform
an event log into a process model which is representative of the
activities registered in the given system. This study explores the
application of process discovery methods to better understand the
learning processes in an introductory programming course for
first-year Computer Science BSc students. A total of 52 practical
problems were assigned as out-of-class activities via GitHub
Classroom, resulting in 2789 commits from 59 students. These
commits, along with the students’ exam grades, were recorded in
an object-centric event log, subsequently converted into a case-
based log for analysis using the PM4Py program library.

The study had two primary goals: first, to identify the
characteristics of successful learning strategies by comparing
process models of students who passed versus those who failed
the programming exam; and second, to identify bottlenecks that
hindered student progress. By employing the Heuristic Miner and
Inductive Miner algorithms, we developed and contrasted learn-
ing process models, revealing significant patterns and obstacles
within the educational process. The findings provide valuable
insights into the factors that contribute to effective learning and
suggest areas for enhancing our teaching methodologies.

Index Terms—Process discovery, Learning process modeling,
Application of PM4Py package

I. INTRODUCTION

ITHIN the expansive domain of education, the sig-

nificance of understanding how individuals learn and
retain information cannot be overstated. This comprehension
is critical for the development and implementation of in-
structional methods that are truly effective [1]. Historically,
traditional teaching approaches have tended to adopt a one-
size-fits-all methodology, which unfortunately overlooks the
reality that each learner possesses unique preferences and
cognitive processes. This oversight can result in learning
experiences that are less than optimal, potentially hindering
the development of individuals’ skills and overall educational
performance [2]. Recognizing the diversity in learning styles
is thus essential for improving educational outcomes.

To enhance educational practices, it is imperative to identify
and understand the processes that lead to successful learning.
In this context, the field of process discovery emerges as a
promising approach. Process discovery involves uncovering
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and analyzing the patterns and strategies employed by learn-
ers, providing insights that can be used to inform and im-
prove teaching methodologies. By applying process discovery
methods specifically to the study of learning procedures in
programming, educators can gain a deeper understanding of
student behavior. This approach allows instructors to identify
and highlight problems that require additional iterations to be
resolved, ultimately facilitating a more tailored and effective
educational experience.

A. Motivation and Goals

The motivation behind this study lies in the need to better
understand the learning behaviors of students in programming
education. Programming presents unique challenges, such as
mastering problem-solving and abstract thinking, which often
leads to high variability in student performance. This study
aims to explore how process discovery methods can reveal
patterns of effective learning strategies and the obstacles
faced by struggling students. By identifying these patterns,
educators can improve their instructional methods, offering
better support to students.

The study has two main goals: first, to compare the learning
processes of students who passed versus those who failed
the programming course, using process discovery techniques
to reveal key differences in learning behaviors; and second,
to identify bottlenecks that hinder student progress. These
insights can guide future teaching practices by highlighting
the areas where students struggle the most, enabling educators
to adapt their teaching strategies accordingly.

B. Challenges and Novelty

Analyzing learning behaviors through event logs presents
the challenge of handling diverse and noisy data, especially
in educational settings where individual learning paths vary
widely. This paper addresses these challenges by applying
process discovery techniques, traditionally used in business
process analysis, to model and analyze student learning in
programming courses. The novelty lies in applying process
mining tools — specifically Heuristic Miner and Inductive
Miner — to educational data, which enables a more detailed
and dynamic understanding of how students engage with
programming tasks.

By capturing event log data from GitHub Classroom, this
study provides a unique and fine-grained view of student
behavior, going beyond traditional performance assessments. It
is one of the first studies to apply process discovery techniques
to programming education, thus offering new insights into
student engagement and problem-solving strategies.
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C. Paper Structure

The paper is structured as follows: Section II outlines the
research objectives. Section III reviews related work on the
use of GitHub in education and the application of process
mining in educational research. Section IV discusses process
discovery algorithms, comparing them and selecting the most
appropriate for the study. Section V focuses on data modeling
and analysis, detailing the data collection process, the OCEL
schema used for structuring the event log, and an analysis of
the collected data, including key statistics. Section VI presents
the results of learning process modeling, while Section VII
identifies bottleneck problems that hinder student progress.
Finally, Section VIII concludes the paper by summarizing
the findings and discussing their implications for educational
practices.

II. RESEARCH OBJECTIVES

Building on the challenges and motivations outlined in the
introduction, this study seeks to achieve two main objectives:
1) Create a learning process model that is representative
of individual cases to identify bottleneck problems that
hinder students’ progress.
2) Produce a learning process model of successful students
to serve as a showcase for other students.
By focusing on these objectives, this research seeks to provide
educators with actionable insights into the learning processes,
enabling them to tailor their instructional strategies to better
meet the diverse needs of their students. This, in turn, can lead
to improved educational outcomes and more effective learning
experiences.

III. RELATED WORKS
A. GitHub in Teaching Programming

There is a growing need for automated code assessment
systems in computer science education due to the increasing
number of learners and the limited availability of teaching
staff. These systems aim to address the challenges of grading
a large volume of code submissions. They help instructors
save time, provide timely feedback to learners, and support
the learning process. These systems target various types of
errors in programming assignments, such as syntax, runtime,
logic errors, and code quality issues, and may also address
plagiarism concerns through similarity analysis [4]. Some
tools use continuous integration for immediate feedback, while
others perform symbolic executions and unit test assessments.

Within the array of tools, GitHub is a widely-used soft-
ware development platform that originally supported version
control, collaborative development, and project hosting. It is
utilized by many businesses, organizations, and educators. In
the context of education, GitHub has gained popularity in pro-
gramming classrooms, with around 18, 000 educators incorpo-
rating it [5]. GitHub in education serves various purposes such
as submitting assignments, collaborating on group projects,
and receiving feedback. More recently, with GitHub Actions,
teachers can automate the testing of code submissions.

The study by Hsing and Gennarelli [6] explores how the
implementation of GitHub in programming classrooms affects
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students’ learning outcomes and experiences. The researchers
surveyed 7530 students and 300 educators from classrooms
using GitHub and classrooms not using GitHub. The findings
indicate that incorporating GitHub in programming education
yields several benefits, including enhancing students’ familiar-
ity with industry tools, facilitating collaboration and teamwork,
boosting engagement, and fostering a sense of belonging in the
classroom and within the field.

A more recent study [7] summarizes the key lessons learned
when using GitHub in the classroom. First of all, the authors
recommend providing proper instructions, compatible with
students’ prior experience, on how to use Git to gain the
most benefits from system use. For undergraduate courses,
GitHub Classroom is a better choice than GitHub, as GitHub
Classroom simplifies the educational use of GitHub. They also
found that custom offline automated systems are more effec-
tive for assessing students’ assignments than using GitHub
Actions.

In [8], the authors present two distinct approaches for
automatic C code assessment in programming education: one
is a custom-designed web-based tool, while the other involves
using GitHub Actions and GitHub Classroom. The web-based
tool offers a graphical user interface in Hungarian and assesses
code based on various criteria, including syntax, behavior,
and code quality metrics. The GitHub-based system employs
repositories and automation to evaluate student assignments,
providing immediate feedback and the ability to track students’
progress and activities. The authors conducted experiments
at the University of Miskolc to compare the effectiveness of
both systems in engaging students and improving their coding
skills. The results show that both systems were beneficial
for student engagement and learning, with the GitHub-based
system offering more comprehensive tracking capabilities and
integration with the software engineering community’s prac-
tices.

B. Mining Educational Data

The field of educational data mining (EDM) has received
significant attention in recent years. Researchers and educators
are increasingly seeking to utilize the extensive data generated
within educational settings to gain valuable insights and drive
substantial improvements. This goal can be achieved by ap-
plying data mining techniques, which offer a robust set of
tools capable of uncovering hidden patterns, associations, and
anomalies within educational data. By understanding these
patterns, educators can develop targeted interventions and
personalized learning strategies that address the specific needs
of individual students [9], [10].

Building on the foundation established by educational data
mining, the field of educational process mining has emerged
as a specialized discipline dedicated to extracting meaningful
insights from event logs. Process mining techniques [3] are
particularly effective for analyzing the sequences of activ-
ities performed by students, which are captured in event
logs generated from interactions with learning management
systems, online courses, and other educational technologies.
By applying process mining techniques to these event logs,
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researchers can uncover the actual learning paths taken by
students, identify critical points where students struggle or
deviations from expected or “ideal” paths, and explore how
these deviations impact learning outcomes [11], [12]. These
valuable insights allow for educators to tailor their teaching
strategies.

In summary, while educational data mining provides broad
insights into various types of educational data, educational
process mining focuses on the detailed analysis of event logs
to uncover the actual learning paths taken by students. The
integration of the two fields provides a powerful means to
enhance the understanding and improvement of educational
processes. This paper aims to contribute to this growing field
by exploring how process mining algorithms can be applied to
educational data, ultimately paving the way for more effective
and personalized education.

C. Event Log Standards

Process mining algorithms work with event logs produced
by various information systems. Consequently, these logs can
appear in numerous formats and instantiations. Each system
architecture with a logging mechanism has historically devel-
oped its own solution for recording events. The initial effort
to standardize event logs was MXML (Mining eXtensible
Markup Language), which organized timestamps, resources,
and transactions in a uniform format. This was followed by the
introduction of the XES (eXtensible Event Stream) standard,
which was published in 2016 as the IEEE 1849-2016 Standard
for eXtensible Event Stream.

Despite its comprehensive approach, the XES standard
encounters difficulties when handling object-centric data (e.g.,
database tables) due to the complexities of one-to-many and
many-to-many relationships. In response to these challenges,
a new method was proposed to extract, transform, and store
object-centric data, resulting in the Object-Centric Event Log
(OCEL) Standard which was released in 2021 [13].
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Fig. 1. OCEL schema with n — n Events and Objects connections

OCEL 2.0 represents a modernized approach to capturing
and analyzing event data in complex information systems
[14]. Traditional event logs typically record sequences of
events related to single entities, such as customer orders or
individual transactions. However, many real-world processes
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involve multiple interacting objects, such as customers, orders,
products, and payments. OCEL 2.0 addresses this complexity
by enabling a richer and more holistic representation of event
data (see Figure 1). The key features of OCEL 2.0 [14] are as
follows.
o Multi-Object Support
Multiple Objects Per Event: Unlike traditional event logs
that often focus on a single case or entity, OCEL 2.0
allows each event to be associated with multiple objects
of different types. This capability is crucial for accurately
modeling complex processes where events involve inter-
actions between several objects.
o Enhanced Data Model
Object Types and Attributes: OCEL 2.0 defines various
object types and allows each object type to have its
attributes. This structured approach facilitates detailed
analysis and better understanding of the relationships
between different objects.
o Improved Analysis Capabilities
Holistic Process Views: By considering the interactions
between multiple objects, OCEL 2.0 enables more com-
prehensive process mining and analysis. This leads to
deeper insights into process performance, bottlenecks,
and areas for improvement. Multi-Perspective Analysis:
Analysts can explore processes from different perspec-
tives, such as the lifecycle of individual objects or the
interactions between specific types of objects.
o Interoperability and Standards
Standardized Format: OCEL 2.0 promotes the use of stan-
dardized formats for event logs, ensuring compatibility
and interoperability between different tools and systems
used in process mining and analysis.
o Tool Support
Integration with Process Mining Tools: OCEL 2.0 is
supported by various process mining tools, enabling users
to leverage its advanced features for process discovery,
conformance checking, and performance analysis.

Overall, OCEL 2.0 represents a significant advancement in the
field of process mining and event log analysis, allowing for a
more nuanced and complete understanding of the processes.

IV. METHODS

In this research, we utilized the PM4Py Python program
library [15], [16], a sophisticated tool developed by the
Fraunhofer Institute, to implement a variety of algorithms and
services associated with process mining. PM4Py stands out
for its comprehensive suite of functionalities that facilitate the
analysis, visualization, and discovery of process models from
event logs, making it an ideal choice for our investigations.

Our primary focus was on process discovery algorithms,
which are essential for revealing the underlying process mod-
els that govern the sequences of events captured in logs. An
event log is defined as

L={<AB,C,D> <ACD> <ADB,D>} (1)

where A, B, C, and D are the events in the log, and L
denotes the possible order of the events. To this end, we
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conducted an in-depth examination of three prominent process
discovery methods: the Alpha Miner, the Inductive Miner, and
the Heuristic Miner [17]. Each of these methods brings distinct
methodologies and advantages to the table, allowing us to
explore different dimensions of process discovery.

The Alpha Miner algorithm [22], one of the earliest and
most fundamental process discovery techniques, operates by
identifying and interpreting patterns of event sequences to
construct a process model. This algorithm works by examining
the direct succession of events and determining causal relation-
ships, which it then uses to build a Petri net representation of
the process. In Eq. (1) these two cases are possible (which is
a sequence pattern):

A—- B oo A— B 2)

While the Alpha Miner is effective in providing a basic
structure of the process, it has limitations when dealing with
noise, infrequent paths, and complex dependencies within the
event log.

In contrast, the Inductive Miner algorithm [19], [20] offers
a more advanced and robust approach. It employs a recur-
sive technique that divides the event log into smaller parts,
constructs models for these parts, and then combines them to
form a comprehensive process model. A directly follows graph
is represented mathematically by

g(‘c) = (AIM L, sz AEL) (3)

where Ay, is an event in the log, —; means an edge between
two events (a directly follows relation), A7 is the start and
¢ 1is the end event.

Thls method is particularly suitable for handling noisy and
complex data, producing more precise and comprehensible
models. Its ability to generate hierarchical models makes it
especially useful for understanding complex processes with
multiple layers of activities.

The Heuristic Miner algorithm [21] takes a different ap-
proach by focusing on the discovery of frequent patterns and
significant relationships within the event log. This algorithm
uses statistical measures to assess the frequency and sig-
nificance of event connections, thereby identifying the most
prominent pathways in the process. The Heuristic Miner is
particularly valuable for analyzing real-world data that may
contain deviations, exceptions, and variations, providing a
realistic and practical view of the process.

In our investigations we used a real-world event log
recorded by Github, which contains few frequent patterns and
a multitude of unique cases. For this reason, the Alpha Miner
was deemed insufficient for our needs due to its sensitivity
to noise and difficulty in handling complex dependencies.
Instead, we opted to use the Inductive Miner and Heuristics
Miner algorithms.

V. DATA MODELING AND ANALYSIS

Our experiment covered 52 practical problems propagated
using GitHub Classroom within an introductory programming
course. These assignments are designed for out-of-classroom
practice to help novice programmers in developing their skills
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in C programming. The tasks are categorized into 8 groups
according to the related topics as listed in Table 1. The groups
represent the level of the acquired skills as the tasks are
designed to incrementally build upon one another. The 1% level
is completed if the tasks from the first 3 groups are solved.
The 2" level is done after completing tasks from groups 4
and 5. The next level contains tasks from groups 6 and 7, and
the top level is represented by the tasks of group 8. Students
were asked to complete tasks in the order of these levels, and
they were free to choose the tasks to solve and their order
within the topic groups. We encouraged them to complete as
many assignments as possible and try to deliver more than one
acceptable solution for the same problem.

900
800
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Fig. 2. Commit statistics for tasks groups

® Commits
Failed
B Passed

In the present study, 59 students registered for GitHub
Classroom to access these assignments as extracurricular
activities. They collectively produced 2,789 commit events,
which were automatically tested by GitHub Actions to provide
prompt evaluations as either failed (1,951 commits) or passed
(838 commits). The statistics of the executed commits are
shown in Figure 2. These data are recorded and stored in
an event log, with each entry containing the GitHub iden-
tifier of the student (resource), the name of the assignment
(activity), the time of the commit event (timestamp), and its
result (conclusion). The details of the assignments include
their topic group and level. Student data come from the
university’s learning management system, where their mid-
semester performance (signature) and final grade (grade) have
been recorded. Since all three sources are utilized to address
our research objectives, the data model is described by the
OCEL schema in Figure 5.

1[] <object>

2 <string key="id" value="studentl"/>

3 <string key="type" value="user"/>

4 <list key="ovmap">

5 <string key="signature" value="1"/>

6 <string key="grade" value="2"/>

7 </list>

8 </object>
1[] <object>
2 <string key="id" value="1 06"/>
3 <string key="type" value="task"/>
4 <list key="ovmap">
5 <string key="topic" value="1"/>
6 <string key="level" value="1"/>
7 </list>
8 </object>

Fig. 3. Objects data in XML format
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TABLE 1
COMMIT STATISTICS FOR TASK GROUPS

Task group Programming topic Level Num. of tasks Commits Failed Passed Success rate(%)
1 Use of variables, basic data types, 1 10 355 281 74 20.85
arithmetic operators, and built-in
mathematical and input/output functions
2 Control structures 1 7 242 167 75 30.99
(selections and iterations), use of
relational and logical operators
3 Basic algorithms (counting, summing) 1 8 520 373 147 28.27
4 Using one-dimensional numeric and 2 7 784 581 203 25.89
character arrays
5 Basic algorithms with one-dimensional 2 2 116 49 67 57.76
arrays (max/min selection, searching)
6 Defining functions 3 9 585 389 196 33.50
7 Working with strings and functions 3 4 117 63 54 46.15
8 Using struct data type 4 5 70 48 22 31.43
Total 52 2789 1951 838 30.05

1[] <event>

2 <string key="id" value="0"/>

3 <date key="timestamp" value="2022-09-26T02:19:00"/>
4 <string key="activity" value="1_ 06"/>

5 <string key="resource" value="studentl"/>

6 <list key="omap">

7 <string key="object-id" value="studentl"/>
8 <string key="object-id" value="1 06"/>

9 </list>

10 <list key="vmap">

11 <string key="conclusion" value="failure"/>
12 </list>

13 </event>

Fig. 4. Event data in XML format

The data are stored in an xmlocel file. In this format,
events are represented as shown in Figure 4, capturing essential
attributes such as timestamp, activity, and resource. The event
type is not specified because all events in our data set are of
the type GitHub commit. However, the result of the commit
is important and is stored in the conclusion attribute of the
event. Each event is connected to two objects: a student and
a task. Student objects serve as the resources for the events
and are described by the signature binary flag and exam grade
attributes. Task objects represent the activities affected by the
event and are described by the topic and level attributes, as
shown in Figure 3.

Table I summarizes the commit data for the programming
task groups, while Table II presents the same data categorized
by the students’ exam grades.

We can see from Table I that students achieved the lowest
success rate in the first task group, although these tasks are
the simplest ones. The reason behind this is that the use of
Git was new to the students, and they used these simple tasks
to get acquainted with the technique of taking an assignment
and then committing and pushing the solution back to GitHub
while producing a high rate of unsuccessful commits. In task
groups 5 and 7 less number of commits occurred with the
highest success rate, which means that most students quit the
game after completing the 1% level and those who carried on
were eager to solve the problems. The least number of commits
were executed in task group 8. Here the success rate is low,
which can be attributed to the fact that this group contains
advanced-level tasks that are not included in the end-semester
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exam. Therefore few students worked on these problems and
they were not motivated to make more effort.

Table II summarizes the commit events from the students’
aspect. The data show that the success rate of GitHub commits
and the number of successful commits per student increase
in line with the grade, so we can conclude that students who
were more insistent in finding the right solution achieved better
results at the end of the semester. It is also worth noting that
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TABLE 11
COMMIT STATISTICS FOR STUDENT GRADES

Exam grade Num. of students Commits Failed Passed Success rate (%)
Total  Per student  Total  Per student Total Per student Total passed / total commits
1 — failed 14 489 34.93 391 27.93 98 7.00 20.04
2 — passed 17 766 45.06 564 33.18 202 11.88 26.37
3 — satisfactory 9 526 58.44 364 40.44 162 18.00 30.80
4 — good 6 307 51.17 197 32.83 110 18.33 35.83
5 — excellent 13 701 53.92 435 33.46 266 20.46 37.95
Total 59 2789 47.27 1951 33.07 838 14.20 30.05

the total number of trials is significantly higher in the case
of students passing the exam than for those who failed. This
number is also remarkable for excellent students compared to
those who completed the exam with less success.

By applying process discovery methods to this event log,
we first created and compared learning process models of suc-
cessful and failing students. The second experiment focused
on creating a learning process model that is representative of
individual cases to identify bottleneck problems that hinder
students’ progress.

VI. LEARNING PROCESS MODELING

Analyzing the event log, the aggregated values in Table III
do not show a significant difference between the students who
completed the C programming course with an exam grade
> 1 and those who failed the exam in terms of the number
of commits. We applied independent t-tests to investigate this
hypothesis with 95% significance, and we obtained a p-value
of 0.20 for the total number of commits and a p-value of 0.50
for the failed commits, so there is no evidence to reject the
null hypothesis of equal means in these cases. On the other
hand, there is a difference between the number of successful
commits, as indicated by a p-value of 0.0056. Also, there is
a significant difference between the means of the number of
tasks solved, as indicated by a p-value of 0.0077.

Fig. 6. Learning process model of successful students

For modeling the learning process of the two student groups,
the event log was first filtered to include only those students
who completed the C programming course. This resulted in an
event log containing 2 300 committed events from 45 students.
We applied the Heuristic Miner algorithm in the PM4Py
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Fig. 7. Learing process modell of failing students

package to produce the heuristics net in Figure 6, as opposed
to Figure 7, which was generated from the event log containing
the 489 commits of 14 students who failed the course exam.
This heuristics net provides a comprehensive visualization of
the processes, highlighting the critical paths, frequent events,
and transitions.

In Figure 6, we can see that in the group of successful
students, 14 started the learning process with a task from topic
No. 1, 7 started with topic No. 2, and 18 started with topic
No. 3. Most frequently, they stopped after completing tasks
in topics No. 6 or No. 7. Students typically solved the tasks
in the order of the topics. The only exception is when some
of them stepped back from topic No. 7 to topic No. 6. Tasks
from topic No. 5 were less frequently solved, which is why
this is not depicted in the figure. The numbers in the brackets
after the topics indicate the related commit events. In this
respect, topics No. 4 (Using one-dimensional arrays) and No. 6
(Defining functions) contain the tasks that required the most
practice, as evidenced by the highest number of repetitions.
This indicates a high number of unsuccessful commits, which
motivated students to keep on practicing with another task
from the same topic.

Comparing this learning process model to the one in Fig-
ure 7, we can conclude that failing students solved fewer
tasks from a smaller number of topics, typically from No. 3
or No. 4, and then stopped practicing. This resulted in a
smaller number of successful commits, which discouraged
them from continuing this kind of practice. This explains why
their learning model is less complex than the model of the
other group.
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TABLE III
AGGREGATED VALUES OF COMMIT EVENTS FOR STUDENT GROUPS

Num. of commits

Successful commits

Failed commits Num. of tasks

All students mean 47.27 14.20 33.07 16.58
max 221 36 185 42
min 2 0 0 1
Successful students mean 51.12 16.45 35.67 18.76
max 137 35 110 42
min 2 0 0 1
Failed students mean 34.93 7.00 27.93 9.57
max 221 36 185 35
min 2 0 0 1
T-test p-value 0.20 0.0056 0.50 0.0077

VII. DETECTING BOTTLENECK PROBLEMS

A bottleneck problem is defined as a task that is the last task
attempted by a student during their learning process within
any topic except for topics No. 6, No. 7, and No. 8, and
concluded with failure. Identifying these problems is crucial
for instructors when determining their teaching methods. If
they recognize the most significant problem areas, they can
focus on these during practice in class. We do not consider
tasks from the last topics as problematic, even if most students
stop practicing after completing them, because these topics
represent the highest level we cover for novice programmers.

In this examination, we identified 18 tasks where students
quit the practice process. From these, we filtered out the ones
that meet our bottleneck problem definition and visualized
the learning processes that most frequently failed at these
tasks. In this case, the filtered event log contained a signif-
icantly reduced number of cases showing infrequent behavior,
rendering the Heuristics Miner algorithm inapplicable. As an
initial approach, we used the Directly Follows Graph (DFG),
where the nodes represent the activities in the log, and directed
edges exist between nodes if there is at least one trace in the
log where the source task is directly followed by the target
task. Frequency values are represented on these directed edges.
Figures 8 and 9 highlight two examples of bottleneck problems
for instructors of C programming fundamentals.

A. Topic No. 3: Basic algorithms

Task 3_02: Count leap years between two years that you
have to read from the standard input while checking their
validity (integer numbers between 1 900 and the current year).

104 (1) .
1
(¥
3
1 O L@
3.05(5) s
~, Y
3023 —2

Fig. 8. DFG graph of learning processes ending with Task 3_02.
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B. Topic No. 4: Using one-dimensional arrays

Task 4_03: Read float numbers from the standard input,
store them in an array, and decide whether the values follow
a monotonic-increasing order or not.

Since a DFG-based process map is created without gen-
eralization, it is typically much more complex than other
process models. For this reason, we also experimented with the
Inductive Miner algorithm of the PM4Py package, which is op-
timized for handling infrequent cases. This method generated
the process tree on Figure 10 for the problem at hand, which
was converted to a BPMN model for better comprehension.

We can conclude that students following the learning pro-
cess in Figure 8 were not persistent and stopped practicing
after a few attempts. On the other hand, students following
the learning process in Figure 9 got stuck at Task 4_03 after
solving several tasks.

VIII. CONCLUSIONS

This study aimed to enhance the understanding of successful
learning processes in programming by applying process dis-
covery methods to student commit data. In an introductory
programming course for first-year Computer Science BSc
students, 52 practical problems were distributed via GitHub
Classroom as out-of-class assignments. GitHub recorded 2 789
commits from 59 students, whose exam grades were extracted
from the learning management system of the university. All
these data were incorporated into an object-centric event log,
which was converted to a case-based log to execute the process
discovery algorithms implemented in the PM4Py library. The
primary objectives were to identify the distinguishing features
of the learning processes of successful students and to detect
bottlenecks that hinder student progress.

By applying the Heuristics Miner and Inductive Miner
process discovery methods to the event log, we first created
and compared learning process models of successful and
failing students. This comparison revealed specific patterns and
strategies that contributed to student success. Subsequently,
we conducted a second experiment focusing on identifying
bottleneck problems within the learning processes. These
bottlenecks were found to be significant barriers to student
progress, providing crucial insights for improving educational
practices.
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Fig. 9. DFG graph of learning processes ending with Task 4_03.

Fig. 10. Process tree of learning processes ending with Task 4_03.

Overall, the findings from this research contribute to a
deeper understanding of how students interact with program-
ming assignments. The results highlight the importance of
tailored instructional methods that address individual learning
challenges, ultimately enhancing educational outcomes.
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