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Abstract—To determine evolutionary relationships, it is 

crucial to conduct phylogenetic ancestral state 

reconstruction. Although widely used, existing algorithms, 

such as Fitch’s, are challenged by the computational 

demands of complex datasets. This study introduces the 

TaxaTreeMapper algorithm, which presents a streamlined 

approach that optimizes phylogenetic analysis. 

TaxaTreeMapper reduces computational time without 

compromising accuracy by performing ancestral state 

reconstruction in a single ‘leaf-to-root’ traversal. Our 

comparative study shows that TaxaTreeMapper correlates 

strongly with the Fitch algorithm and demonstrates 

superior efficiency, especially in identifying global minima 

in extensive datasets. This makes it significant in large-scale 

evolutionary studies. 

 
Index Terms—Algorithmic efficiency, Ancestral state 

reconstruction, Data processing in phylogenetics, 

Evolutionary tree optimization, Fitch algorithm, Machine 

learning applications in phylogenetics, Parsimony score, 

Phylogenetic analysis 

I. INTRODUCTION 

HE quest for accurate ancestral state reconstruction 

in phylogenetics often encounters significant 

challenges, particularly with algorithms like Fitch's, 

which, while being intuitive and simple, may falter in 

cases of complex evolution or convergence [1]. Ancestral 

state reconstruction combines information about the 

evolutionary relationships of phylogenetic trees with the 

observed state of individual nodes. Each node represents 

a single taxon (taxonomic unit) [2]. Complex evolution 

in this context implies scenarios where evolutionary 

paths are shaped by multiple factors such as frequent 

mutations, horizontal gene transfer, genetic drift, or 

hybridization. These elements introduce intricacies in 

evolutionary histories, making accurate reconstruction a 

challenging endeavor.  

A common limitation among many algorithms that seek 

to reconstruct common ancestors and determine the 

minimum parsimony score for a given tree is their 

 
1 Budapest University of Technology and Economics, Faculty of 

Electrical Engineering and Informatics, and Doctoral School of 

Informatics, Department of Electron Devices, Budapest H-1111, 

Hungary (E-mail: osamaalisalman.khafajy@edu.bme.hu) 
2 Budapest University of Technology and Economics, Faculty of 

Electrical Engineering and Informatics, Department of Electron 

Devices, Budapest H-1111, Hungary (E-mail: 

hosszu.gabor@vik.bme.hu) 

reliance on a two-stage process: the ‘leaf-to-root’ 

followed by the ‘root-to-leaf’ traversal. 

Bidirectional tree traversal is a technique where the 

traversal progresses both from the root to the leaves and 

from the leaves to the root of a tree. This approach is 

beneficial in scenarios requiring information aggregation 

from both directions to make decisions at each node. A 

notable application of bidirectional tree traversal is in 

robot motion planning, where such a strategy enhances 

efficiency and avoids complex boundary value problems 

[3]. 

This two-pronged approach, while effective in certain 

contexts, often leads to increased computational 

complexity and may not always yield the most optimized 

results in terms of global minimum parsimony score. 

1) Novel Contribution 

This study presents a new method, TaxaTreeMapper, 

which is designed to traverse a given phylogenetic tree 

and determine its minimum parsimony score directly. 

This approach contributes to a more optimized method 

for identifying the global minimum. Our method seeks to 

address the limitations by reducing the computational 

process to a single-stage traversal. This not only 

simplifies the analysis but also reduces the computational 

effort required, making it a significant step forward in the 

pursuit of efficient phylogenetic analysis. By 

streamlining the process of ancestral state reconstruction, 

our approach aims to enhance the efficiency of 

phylogenetic tree evaluations, particularly in complex 

evolutionary scenarios. 

While the TaxaTreeMapper algorithm enhances the 

efficiency of phylogenetic analysis by significantly 

reducing computational time, often less than that required 

by the Fitch algorithm, it is also designed to reliably 

identify all global minima in a given set of phylogenetic 

trees. However, it should be noted that alongside these 

global minima, TaxaTreeMapper may also occasionally 

include some local minima, erroneously presenting them 

as global. Despite this, the set of solutions provided by 

TaxaTreeMapper will contain all the true global minima, 

ensuring comprehensive coverage of the most 

parsimonious trees. 

The article is structured as follows: First, it presents the 

concepts necessary for the theoretical background of the 

research, including phylogenetic inference methods, 

primarily the Fitch algorithm. Second, it presents the 
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developed method called TaxaTreeMapper algorithm, 

followed by the achieved results and their discussion. 

Finally, the article concludes with a summary of findings 

and a list of references cited in the literature. 

II. BACKGROUND 

1) Pattern systems, pattern evolution and 

scriptinformatics 

A pattern system is a type of symbolic communication 

that includes symbols, syntax, and layout rules. Some 

pattern systems, like Morse code and Unicode, have 

evolved over time. The study of the evolution of pattern 

systems is called pattern evolution research. Human 

writing systems, or scripts, are a distinct type of pattern 

system. The study of the evolution of scripts is known as 

scriptinformatics, a subfield of pattern evolution. The 

TaxaTreeMapper phylogenetic inference algorithm was 

initially developed for evolutionary modeling of scripts, 

but it can also be applied to other taxa. TaxaTreeMapper 

has a broad scope beyond just scriptinformatics and 

belongs to any kind of evolutionary research. 

Understanding the evolution and classification of 

different taxa has always been at the heart of scientific 

research. Various mathematical, computational, and 

heuristic models have been proposed over the years, 

aiming at creating a more structured and accurate 

representation of the evolutionary process. Significant 

advancements have been made in pattern systems, 

especially when applied to historical scripts [4] 

established a three-layer logical relationship for glyphs, 

further improved by the addition of a semantic layer in 

[5]. Recent contributions by [6] introduced the style 

layer, enhancing the depth of the analysis. Hosszú’s 

emphasis on glyph complexity as a metric for reliability 

in comparing graphemes provides a foundation for 

comparative studies [7]. Such advancements have found 

applications in differentiating scripts using cluster 

analysis [8] and leveraging neural networks for glyph 

similarity studies [9]. 

In this study, we address the terminology used to 

describe taxonomic traits in phylogenetic analysis, a 

matter of great importance for ensuring clarity and 

precision. While ‘character’ is a term traditionally used 

in phylogenetics to denote the attributes or traits of 

organisms, in the field of scriptinformatics and in certain 

phylogenetic contexts, the term ‘feature’ is often utilized 

interchangeably. This duality in terminology is evident in 

recent research, such as the work [10] where features in 

evolutionary analysis of script variants are critically 

examined. Similarly, [11] employ the term in the context 

of phylogenetic analysis of script varieties, 

demonstrating its relevance and application. Further, 

their 2022 study on a phenetic approach to script variants 

also underscores the interchangeable use of these terms 

[12]. For the purposes of this article, we adopt this dual 

terminology, using ‘feature’ and ‘character’ 

interchangeably, with the understanding that both refer to 

taxonomic traits in our phylogenetic analysis. This 

approach aligns with broader scientific discourse and 

avoids potential ambiguity, particularly in 

scriptinformatics where ‘character’ might otherwise be 

confused with ‘grapheme’ or ‘symbol’. 

2) Phylogenetic inference methods 

Phylogenetic methods have expanded their applicability 

beyond just biological evolution. For instance, its usage 

in linguistics has paved the way for constructing 

evolutionary trees for languages [13]. Phylogenetic 

analysis, especially with its parsimonious approach 

rooted in the Ockham’s razor principle [14], has been 

paramount in creating hierarchical taxonomic structures. 

Delineation of synapomorphies further emphasizes the 

model’s capability to account for a vast number of 

features in a simplistic manner [15]. 

Two significant comparative criteria, Maximum 

Parsimony [16] and Maximum Likelihood (ML), have 

emerged as primary techniques for tree optimization [11]. 

While MP revolves around the parsimony principle, ML 

uses probabilistic models to evaluate evolutionary event 

likelihoods. The Bayesian approach, exemplified by 

MrBayes software, further exemplifies the nuanced 

relationship between data and tree probabilities [17]. 

When exact and exhaustive searches are too costly or 

time-consuming, heuristic methods become necessary. 

While these approaches aim to approximate optimal 

solutions in the solution space, they cannot guarantee the 

identification of the globally optimal phylogenetic tree. 

To enhance heuristic search efficiency and improve upon 

the phylogenetic trees constructed, a branch-swapping 

algorithm, known as ‘swapping’ [10]. 

The Subtree Prune and Regraft (SPR), the Nearest 

Neighbor Interchange (NNI), and Tree Bisection and 

Reconnection (TBR), each come with their unique 

attributes, with TBR being the most computational but 

potentially offering the shortest tree [17, 18]. The present 

research focuses on phylogenetic inference methods, 

which involve searching for optimal phylogenetic trees. 

Only models where the evolutionary process can be 

estimated with a tree, rather than a network, are 

considered. 

The search for the most realistic phylogenetic tree, 

despite its comprehensiveness, faces challenges with 

larger datasets [18]. Alternative heuristic methods like 

the Wagner method [19], the Branch and Bound 

technique [20] and Hill-Climbing [21] offer solutions 

with varied degrees of optimality and computational 

efficiency. Regarding Hill-Climbing algorithm is 

effective for finding local optima in phylogenetic trees by 

refining initial configurations, focusing on measures like 

parsimony. However, it falls short of guaranteeing the 

global optimum, often getting trapped in local optima. 

This underscores the necessity for supplementary 

methods to circumvent such limitations and achieve a 

more comprehensive search for the optimal phylogenetic 

tree [10, 11]. Additionally, visualization tools like 

histograms provide insights into the distribution of tree 

lengths, aiding in the discernment of optimal trees. 
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Matrix-based approaches in phylogenetics offer a variety 

of methods to derive evolutionary relationships among 

taxa. One classical group of methods, distance matrix 

methods, such as the Neighbor-Joining (NJ) and 

UPGMA, directly work with matrices that represent 

pairwise distances between taxa to infer a phylogenetic 

tree [22]. Alternatively, spectral methods exploit the 

eigenvalues and eigenvectors of matrices derived from 

genetic data. Cavender and Felsenstein’s method, based 

on eigendecomposition of sequence similarities, is a 

prime example [23]. As another approach, quartet 

methods like the Q-method employ matrices showcasing 

relationships between quartet sets of taxa to infer broader 

trees [24]. Another avenue, character compatibility, 

creates a taxa by feature (aka character) matrix, checking 

feature compatibility to infer relationships [25]. Recent 

research has also highlighted the potential of algebraic 

statistics in phylogenetics, where algebraic techniques 

decode phylogenetic problems using matrix operations 

[26]. Lastly, phylogenetic networks, which encapsulate 

complex evolutionary patterns like hybridization, can be 

understood and analyzed using matrix representations 

[27]. 

In conclusion, the domain of phylogenetic inference has 

witnessed extensive research, with a multitude of 

evolutionary models and phylogenetic inference 

algorithms proposed. The ultimate objective remains the 

construction of accurate and representative evolutionary 

trees, aiding in a deeper understanding of taxa evolution. 

As computational power and methodologies continue to 

evolve, it’s estimated that even more sophisticated 

models will emerge, bridging any existing gaps in the 

space of phylogenetics. 

3) Fitch parsimony and algorithms 

Fitch’s contributions to the field of phylogenetics are 

evident through his development of distinct methods that 

address the reconstruction of evolutionary histories. One 

such method is the Fitch parsimony, which operates on a 

parsimony principle aiming to discern the evolutionary 

tree with the least number of feature state (aka character 

state) changes. Crucially, this method accommodates 

multistate features, allowing them to be disordered and 

unpolarized, meaning that transitions between any 

feature states are possible in a single evolutionary step. 

This principle is computationally manifested in the Fitch 

algorithm, which calculates the parsimony score, 

indicating the total number of feature state transitions for 

a specific tree topology [28]. The Fitch algorithm is a 

fundamental method in the field of phylogenetics. It was 

introduced by Walter Fitch in the 1970s and has since 

become a fundamental tool for ancestral state 

reconstruction based on parsimony principles [28]. On 

the other hand, Fitch, in collaboration with Margoliash, 

devised the Fitch-Margoliash Phylogenetic Inference 

Algorithm. Instead of feature states, this method is 

grounded on genetic distance data. Utilizing a weighted 

least squares clustering approach, it emphasizes the 

accuracy of genetic distances between species in the tree, 

giving more weight to closely related sequences. This 

method offers higher accuracy, albeit at the expense of 

computational efficiency when compared to alternatives 

like the neighbor-joining technique [29]. 

Fitch algorithm is a commonly used tool for ancestral 

state reconstruction based on parsimony methods. This 

algorithm works by minimizing the number of 

evolutionary changes [28] along the branches of a 

phylogenetic tree. Fitch algorithm, while not directly 

calculating the total length or Maximum Parsimony [16] 

score of a phylogenetic tree in a single computation, 

effectively minimizes the number of evolutionary 

changes across the tree. This minimization is achieved 

indirectly through the algorithm's two-pass process. In 

the first pass, the algorithm performs a bottom-up 

traversal of the tree, during which it identifies the 

possible feature states for each internal node without 

assigning specific branch lengths. In the second pass, a 

top-down traversal assigns definitive states to these 

nodes [30, 31].  

During this process, the Fitch algorithm seeks to 

minimize the number of state changes at each step. The 

branch lengths, defined as the number of feature state 

changes between nodes, are indirectly determined 

through this process. The overall tree length, representing 

the sum of these branch lengths, is thus a result of the 

algorithm's optimization of state changes at each 

individual node and branch, rather than a direct 

calculation of the total tree length [30]. 

Fitch algorithm, originally developed for the parsimony-

based reconstruction of phylogenies, is inherently 

designed to handle bifurcating or binary trees. Its two-

phase traversal approach, involving postorder and 

preorder tree traversals, is optimized for dichotomous 

branching. When faced with polytomous trees, or trees 

with nodes having more than two descendants, the Fitch 

algorithm encounters challenges. Polytomies, which can 

be seen as either unresolved evolutionary relationships 

(soft polytomies) or simultaneous divergence events 

(hard polytomies), don’t fit neatly into the binary 

framework of Fitch’s method [32]. Adapting the 

algorithm to cater to these non-binary nodes introduces 

complexities and requires additional considerations or 

modifications. While some phylogenetic software tools 

have developed strategies to handle or resolve 

polytomies, the inherent limitation of Fitch’s original 

design concerning polytomies remains a recognized 

challenge in the field of phylogenetics [16]. 

The Fitch algorithm employs a two-stage process for 

ancestral state reconstruction, beginning at the leaf nodes 

with known genetic states and moving toward the root to 

infer the most parsimonious common ancestor at each 

internal node as illustrated in Figure 1. For example, if 

taxa A and B both have a state of ‘1’ for a particular 

characteristic, their common ancestor is presumed to also 

have the state of ‘1’. When discrepancies arise (e.g., 

A=1, B=0), the ancestor may inherit a set that includes 
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both states. In the next stage, the algorithm resolves these 

sets by working from the root back to the leaves, 

selecting states that minimize changes across the tree. 

While effective, the Fitch method can be computationally 

intensive for large datasets. 

4) Pearson correlation 

The Pearson correlation coefficient (also known as 

Pearson’s r or simply the correlation coefficient) 

measures the linear relationship between two variables, 

typically denoted as  and . The formula for calculating 

the Pearson correlation coefficient is as follows: 

  ∑     
∑    ∑   

, 1 
where  is the number of data points (the size of the 

dataset),  and  are the individual data points of the 

variables  and , and finally  and  are the mean 

(average) values of  and , respectively. 

The incorporation of Pearson correlation in our study is 

integral to the assessment of phylogenetic relationships 

and evolutionary analysis. Pearson’s correlation, a 

measure of the linear correlation between two variables, 

provides a quantifiable means to assess the degree of 

similarity or divergence between different taxa based on 

their phylogenetic profiles. This statistical tool is 

particularly effective in discerning the strength and 

direction of a linear relationship between two sets of 

data, which in our context, are the phylogenetic traits or 

features of different organisms. By applying Pearson 

correlation, we can systematically compare these traits to 

draw inferences about evolutionary patterns and 

relationships. Our approach aligns with contemporary 

advancements in phylogenetic profiling, where measures 

like Pearson correlation have been used to infer global 

protein-protein interactions and handle large genomic 

datasets effectively, as demonstrated in the study of 

Saccharomyces cerevisiae and Escherichia coli genomes 

[33]. This method’s efficacy, especially in comparison to 

other measures such as mutual information and distance 

correlation, underscores its relevance and utility in our 

analysis. 

III. METHOD 

In this study, we introduce a novel methodological 

approach to determine the maximum parsimony in 

phylogenetic trees, distinguished by its efficient single-

stage process. This approach is compared with the 

established Fitch algorithm, a keystone in phylogenetic 

analysis, known for its two-stage ‘leaf-to-root’ and ‘root-

to-leaf’ traversal process. Notably, the Fitch algorithm, 

which has been widely used for phylogenetic tree 

reconstruction and serves as a benchmark in our 

comparative analysis. 

Unlike conventional two-stage methods such as the Fitch 

algorithm, which operate through both ‘leaf-to-root’ and 

‘root-to-leaf’ stages, our method simplifies the analysis 

by focusing exclusively on a ‘leaf-to-root’ traversal. This 

innovation effectively halves the computational steps 

typically required, as it eliminates the need for the 

subsequent ‘root-to-leaf’ stage. Conceptually, if  

represents the computational effort of a traditional 

method like Fitch’s, then our method, , can be said to 

operate at 

 in terms of computational, or 

mathematically,   2 ⋅  in terms of efficiency. 

This significant enhancement not only accelerates the 

analytical process but also maintains the accuracy and 

robustness needed for phylogenetic studies. Our 

approach (TaxaTreeMapper) represents a substantial 

advancement in phylogenetic analysis, offering a more 

streamlined and time-efficient solution for uncovering 

evolutionary relationships. This methodology, with its 

single-stage focus, is not only a testament to the potential 

for innovation in phylogenetic analysis but also a 

practical solution that addresses the computational 

challenges often encountered in extensive biological 

datasets. 

The TaxaTreeMapper algorithm applies set theory 

operations to clarify phylogenetic relationships. It starts 

with a ‘leaf-to-root’ assessment, as in Figure 1 where 

taxa A, B, and C are compared for their feature states. 

Discrepancies between taxa, like   1 and   0, lead 

to an interim ambiguous state   2. The algorithm 

resolves this by checking the overlap with any resolved  

neighboring node states. If taxon C also has the state of 

1, then the algorithm concludes the ancestral state R to be 

1, through the intersection with the ambiguous state. 

Illustrated in Figure 1, this method streamlines the 

determination of the most likely internal node states, 

improving the precision of phylogenetic tree 

reconstruction. 

The TaxaTreeMapper streamlines the process for 

ancestral state reconstruction into a single stage. It also 

starts at the leaves, but as it ascends the tree, it uses 

information from the subsequent ancestor (e.g., ancestor 

of A & B derives its state from C) to determine the states 

of intermediate ancestors directly refer to Figure 1. This 

approach not only simplifies the state determination 

process but also allows for simultaneous calculation of 

the tree length and the total number of changes, 

enhancing efficiency particularly for extensive datasets. 

Figure 1: ‘Leaf-to-Root’ ancestral state 

reconstruction in TaxaTreeMapper 

 

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4 

both states. In the next stage, the algorithm resolves these 

sets by working from the root back to the leaves, 

selecting states that minimize changes across the tree. 

While effective, the Fitch method can be computationally 

intensive for large datasets. 

4) Pearson correlation 

The Pearson correlation coefficient (also known as 

Pearson’s r or simply the correlation coefficient) 

measures the linear relationship between two variables, 

typically denoted as  and . The formula for calculating 

the Pearson correlation coefficient is as follows: 

  ∑     
∑    ∑   

, 1 
where  is the number of data points (the size of the 

dataset),  and  are the individual data points of the 

variables  and , and finally  and  are the mean 

(average) values of  and , respectively. 

The incorporation of Pearson correlation in our study is 

integral to the assessment of phylogenetic relationships 

and evolutionary analysis. Pearson’s correlation, a 

measure of the linear correlation between two variables, 

provides a quantifiable means to assess the degree of 

similarity or divergence between different taxa based on 

their phylogenetic profiles. This statistical tool is 

particularly effective in discerning the strength and 

direction of a linear relationship between two sets of 

data, which in our context, are the phylogenetic traits or 

features of different organisms. By applying Pearson 

correlation, we can systematically compare these traits to 

draw inferences about evolutionary patterns and 

relationships. Our approach aligns with contemporary 

advancements in phylogenetic profiling, where measures 

like Pearson correlation have been used to infer global 

protein-protein interactions and handle large genomic 

datasets effectively, as demonstrated in the study of 

Saccharomyces cerevisiae and Escherichia coli genomes 

[33]. This method’s efficacy, especially in comparison to 

other measures such as mutual information and distance 

correlation, underscores its relevance and utility in our 

analysis. 

III. METHOD 

In this study, we introduce a novel methodological 

approach to determine the maximum parsimony in 

phylogenetic trees, distinguished by its efficient single-

stage process. This approach is compared with the 

established Fitch algorithm, a keystone in phylogenetic 

analysis, known for its two-stage ‘leaf-to-root’ and ‘root-

to-leaf’ traversal process. Notably, the Fitch algorithm, 

which has been widely used for phylogenetic tree 

reconstruction and serves as a benchmark in our 

comparative analysis. 

Unlike conventional two-stage methods such as the Fitch 

algorithm, which operate through both ‘leaf-to-root’ and 

‘root-to-leaf’ stages, our method simplifies the analysis 

by focusing exclusively on a ‘leaf-to-root’ traversal. This 

innovation effectively halves the computational steps 

typically required, as it eliminates the need for the 

subsequent ‘root-to-leaf’ stage. Conceptually, if  

represents the computational effort of a traditional 

method like Fitch’s, then our method, , can be said to 

operate at 

 in terms of computational, or 

mathematically,   2 ⋅  in terms of efficiency. 

This significant enhancement not only accelerates the 

analytical process but also maintains the accuracy and 

robustness needed for phylogenetic studies. Our 

approach (TaxaTreeMapper) represents a substantial 

advancement in phylogenetic analysis, offering a more 

streamlined and time-efficient solution for uncovering 

evolutionary relationships. This methodology, with its 

single-stage focus, is not only a testament to the potential 

for innovation in phylogenetic analysis but also a 

practical solution that addresses the computational 

challenges often encountered in extensive biological 

datasets. 

The TaxaTreeMapper algorithm applies set theory 

operations to clarify phylogenetic relationships. It starts 

with a ‘leaf-to-root’ assessment, as in Figure 1 where 

taxa A, B, and C are compared for their feature states. 

Discrepancies between taxa, like   1 and   0, lead 

to an interim ambiguous state   2. The algorithm 

resolves this by checking the overlap with any resolved  

neighboring node states. If taxon C also has the state of 

1, then the algorithm concludes the ancestral state R to be 

1, through the intersection with the ambiguous state. 

Illustrated in Figure 1, this method streamlines the 

determination of the most likely internal node states, 

improving the precision of phylogenetic tree 

reconstruction. 
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Ambiguous states, denoted by a predetermined value 

within the dataset, are systematically managed by the 

TaxaTreeMapper algorithm, particularly in steps 5.4 and 

5.6 These steps incorporate ambiguous states into the 

intersection operation, ensuring that uncertainties in data 

do not compromise the accuracy of the phylogenetic 

analysis. 

Furthermore, the calculation of the symmetric difference 

between sets identifying features unique to each taxon 

occurs in step 5.8. This difference highlights the 

evolutionary divergence and is crucial for calculating the 

tree length, representing the extent of evolutionary 

adaptations since the taxa branched from their last 

common ancestor. 

The algorithm then updates the dataset with a new set 

representing hypothetical ancestral taxa in step 6. This 

new set, a combination of intersected and unique 

elements, is pivotal for updating the feature set for each 

node in a ‘leaf-to-root’ traversal of the phylogenetic tree. 

The ‘leaf-to-root’ traversal, the primary focus of the 

TaxaTreeMapper algorithm, simplifies the analysis 

process and enhances the precision of phylogenetic 

inference by compiling shared and distinctive traits 

accurately. This is illustrated in steps 4 through 7 of the 

TaxaTreeMapper Algorithm 1. 

Initially, the TaxaTreeMapper determines the number of 

taxa from the given dataset and initializes various 

variables and counters to their respective default values. 

The primary focus then shifts to traversing the 

phylogenetic tree sequence, where each feature is 

processed in sequence. 

 

Beginning at the top of Algorithm 1, the algorithm 

initializes the necessary variables, including the dataset. 

The main input and output in this case the phylogenetic 

tree node, dataset as input and treeLength and inferred 

state for the phylogenetic tree as an output. 

IV. RESULT AND DISCUSSION 

This section presents a comparative analysis of the 

TaxaTreeMapper algorithm against Fitch algorithm, 

focusing on tree length determination, computational 

efficiency, and the handling of cladograms in 

phylogenetic analysis. We then discuss the inherent 

advantages of the TaxaTreeMapper algorithm, 

underpinned by the empirical results. 

1) Comparative Analysis 

In Figure 2, we illustrate the comparative analysis of tree 

lengths generated by the TaxaTreeMapper algorithm and 

the Fitch algorithm. The histogram in Figure 2.a, the 

sorted length curves in Figure 2.b, and the boxplot in 

Figure 2.c collectively highlight the similarity in tree 

length calculations and the distinct efficiencies between 

the two methods. Our findings suggest that 

TaxaTreeMapper consistently identifies the global 

minimum for maximum parsimony trees more efficiently 

than the Fitch process, which relies on a two-phase 

approach. 

Figure 2 underscores the significant overlap in tree length 

evaluations between TaxaTreeMapper and Fitch across 

approximately 2.5 million diverse phylogenetic trees. 

This comparison validates the efficiency of 

TaxaTreeMapper in closely matching the established 

Fitch method while using a single-phase approach. 

Algorithm 1: The main steps of the TaxaTreeMapper 

Input: A node of a phylogenetic tree (root node to start), 

dataset 

Output: The inferred state for the node, treeLength for the 

entire tree 

________________________________________________ 

Function TaxaTreeMapper(node, dataset): 

1. If node is a leaf: 

1.1. Return the state of the leaf node from the dataset, and 

0 as the treeLength. 

2. Initialize Gab as an empty set for accumulating the node's 

inferred state. 

3. Initialize localTreeLength = 0 to track state changes at 

this node. 

4. For the first child of the node, establish a reference state 

(Ga): 

4.1. Ga, childTreeLength = TaxaTreeMapper(first child, 

dataset). 

4.2. Set Gab to Ga initially. 

4.3. Update localTreeLength += childTreeLength. 

5. For each remaining child k (starting from the second child 

to the last): 

5.1. Gb, childTreeLength = TaxaTreeMapper(k, dataset). 

5.2. Update localTreeLength += childTreeLength. 

5.3. Perform intersection and union operations: 

5.4. Intersection: If Ga ∩ Gb is not empty, Gab = Gab ∩ 

Gb. 

5.5. Union with resolution: If Ga ∩ Gb is empty, then 

Gab = Gab ∪ Gb, but resolve `{2}` where possible: 

5.6. For each feature in Gab marked as `{2}`, if Gb has a 

known state, replace `{2}` in Gab with Gb's state. 

5.7. Conversely, for each `{2}` in Gb and known in Ga, 

update Gab accordingly. 

5.8. Determine unique changes: uniqG = (Ga Δ Gb) - 

`{2}` elements, where Δ represents the symmetric 

difference. 

5.9. Update localTreeLength for each unique change not 

involving `{2}`, as these represent evolutionary 

events. 

5.10. Mark unresolved differences as `{2}` in Gab for 

the next iteration. 

6. After processing all children, the dataset is updated with 

the resolved state Gab for the internal node. 

7. Return Gab as the node's state and localTreeLength. 
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Figure 2: Comparative Efficiency of Tree Length 
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Despite the foundational differences in their operational 

stages—TaxaTreeMapper using a single-phase approach 

versus the two-phase process of Fitch—both methods 

consistently identified the global minimum tree length 

and exhibited a significant overlap in their evaluations of 

near-optimal tree lengths. This comparison not only 

demonstrates the algorithms’ capability to accurately 

determine the most parsimonious tree but also validates 

the efficiency of TaxaTreeMapper in achieving results 

that align closely with the established Fitch method. 

2) Pearson Correlation Coefficient Analysis 

A Pearson correlation coefficient (r) analysis further 

substantiates the similarity between the algorithms. With 

r values of 0.91 for the same amount of trees that been 

tested in the comparative analysis. The analysis confirms 

a strong positive linear relationship between the tree 

lengths determined by TaxaTreeMapper and those by 

Fitch, indicating a convergence towards a global 

minimum by the TaxaTreeMapper algorithm. 

It is noteworthy that when r equals 0.91, the estimated 

number of trees was approximately 2.5×10^6. 

Conversely, when r equals 0.956, the number of trees 

was precisely 2988. This observation provides a clear 

indication that the TaxaTreeMapper algorithm converges 

towards a global minimum. 

3) Computational Efficiency 

In Figure 3, we present of the running time of 

TaxaTreeMapper algorithm and Fitch algorithm. The 

elapsed time measurements clearly illustrate that 

TaxaTreeMapper outperforms the Fitch algorithm in 

terms of computational efficiency. 

Figure 3: Tree processing time for 

TaxaTreeMapper algorithm verses Fitch algorithm. 

 

The experimental evaluation was conducted on a system 

running Windows 10 Pro Version 22H2, equipped with 

an Intel(R) Core(TM) i7-2720QM CPU at 2.20GHz and 

20GB of RAM, operating on a 64-bit architecture. The 

performance metrics for both the TaxaTreeMapper and 

Fitch algorithms were obtained using implementations 

coded in MATLAB R2023b. This hardware and software 

environment was chosen to ensure a consistent and 

controlled platform for benchmarking the computational 

efficiency of the phylogenetic analysis algorithms under 

investigation. 

In Figure 4, the results show that TaxaTreeMapper 

generated four cladograms with identical minimum 

parsimony scores 229, also known as tree length. In 

contrast, the application of the Fitch algorithm yielded 

only two cladograms (a and b) as a global minimum. On 

other hands, the TaxaTreeMapper algorithm identified 

cladograms Figure 4.c and Figure 4.d as having a global 

minimum parsimony [16] score of 229. However, the 

Fitch algorithm attributed these same cladograms with 

higher tree lengths of 234. This divergence in scores 

initially suggests that TaxaTreeMapper incorrectly assess 

Figure 2: Comparative Efficiency of Tree Length Determination 
between TaxaTreeMapper and Fitch Algorithms
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Fitch algorithm.
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these cladograms as optimal. While it may appear as a 

limitation, a closer examination of the Pearson 

correlation coefficient (r) between the tree lengths 

calculated by TaxaTreeMapper and Fitch reveals a high 

degree of correlation across the dataset. This indicates 

that, despite the identified discrepancies, the 

TaxaTreeMapper algorithm performs consistently with 

the Fitch algorithm for most cases. 
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Figure 3 visually depicts the data presented in Table 1, 

illustrating the runtime comparison between the 

TaxaTreeMapper and Fitch algorithms for each of the 50 

phylogenetic trees sampled. The graphical representation 

allows for an immediate visual grasp of the runtime 

dynamics where TaxaTreeMapper consistently 

outperforms Fitch, as indicated by the shorter processing 

times. 

V. CONCLUSIONS 

The TaxaTreeMapper algorithm employs set theory to 

enhance accuracy and efficiency in processing 

phylogenetic trees. By integrating with associated 

datasets, it simplifies analysis and accurately identifies 

evolutionary features. It adeptly handles complex 

relationships and large datasets, providing outputs such 

as tree length and hypothetical taxa. 

By condensing the ancestral state reconstruction into a 

single traversal from leaf to root, TaxaTreeMapper not 

only simplifies the computational process but also proves 

to be computationally twice as efficient as the Fitch 

algorithm. This remarkable increase in efficiency does 

not come at the cost of accuracy, with TaxaTreeMapper 

demonstrating a strong correlation with Fitch's results in 

identifying global minima. The foundational principles of 

TaxaTreeMapper emphasize streamlining phylogenetic 

analysis, making it especially advantageous for handling 

large datasets where computational resources are at a 

premium. 

The TaxaTreeMapper algorithm offers an innovative 

approach that enhances efficiency and reduces 

complexity. Its ability to quickly and accurately construct 

phylogenetic trees represents a substantial leap forward 

from the traditional, more time-intensive methods. 

Though TaxaTreeMapper may occasionally yield false 

positives due to its heuristic approach diverging from 

Fitch's conservative estimations, its overall 

computational efficiency and ability to quickly converge 

on global minima present a compelling advantage. In 

extensive phylogenetic analyses, where computational 

resources are constrained, TaxaTreeMapper's speed and 

general accuracy provide a favorable balance between 

performance and resource utilization. 

Acknowledging differences between TaxaTreeMapper 

and Fitch, it's crucial to weigh overall performance 

metrics. TaxaTreeMapper's emphasis on efficiency and 

speed makes it valuable in high throughput phylogenetic 

analysis. Thus, considering its performance profile and 

correlation with Fitch’s results, TaxaTreeMapper stands 

as a robust alternative, especially in scenarios requiring 

rapid tree length estimations. 
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positives due to its heuristic approach diverging from 

Fitch's conservative estimations, its overall 

computational efficiency and ability to quickly converge 

on global minima present a compelling advantage. In 

extensive phylogenetic analyses, where computational 

resources are constrained, TaxaTreeMapper's speed and 

general accuracy provide a favorable balance between 

performance and resource utilization. 

Acknowledging differences between TaxaTreeMapper 

and Fitch, it's crucial to weigh overall performance 

metrics. TaxaTreeMapper's emphasis on efficiency and 

speed makes it valuable in high throughput phylogenetic 

analysis. Thus, considering its performance profile and 

correlation with Fitch’s results, TaxaTreeMapper stands 

as a robust alternative, especially in scenarios requiring 

rapid tree length estimations. 
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