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Abstract—This paper introduces a fast and configurable 
method for solving resource-constrained multi-project scheduling 
problems, using a multi-aspect decision-making procedure that 
combines a schedule generation scheme with various task-selection 
values and priorities. The goal of fast scheduling generation is to 
support reactive scheduling environments. During calculation 
each decision aspect is computed to produce numerical values, 
reflecting the importance of each aspect for candidate selection. 
These priorities can be tailored to specific optimization objectives. 
The priorities can be customized according to the objective of the 
optimization problem. The method was tested on the PSPLIB 
RCPSP J30 benchmark series to minimize project completion time 
using eight decision aspects. The average relative deviation from 
lower bounds was used to evaluate the impact of different decision 
aspect priorities. Although the focus was not on determining 
optimal priority values, the study explores the effectiveness of 
using multiple priority rules simultaneously in a configurable way 
in reactive scheduling environment. Performance tests confirm 
that the proposed method is flexible, robust, fast, and effective in 
solving the examined problem type.
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I. INTRODUCTION 
NE of the core challenges in project management is 
creating an effective schedule that ensures the timely and 

efficient completion of projects. The Resource-Constrained 
Project Scheduling Problem (RCPSP) is a fundamental issue 
that impacts various industries, including manufacturing, 
software development, construction, logistics, and research and 
development. The primary goal of RCPSP is to allocate limited 
resources over time to a set of interdependent activities or tasks, 
optimizing performance indicators such as minimizing project 
duration, reducing lateness, minimizing costs, or maximizing 
resource utilization. 

Our research focuses on the efficient solution of reactive 
scheduling and control problems in dynamically changing 
execution environments with numerous tasks. This paper 
presents a method suitable for reactive scheduling that 
simultaneously considers multiple decision aspects without 
iterative attempts. 
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In this paper, we first provide a literature review in Chapter 
II of the Resource-Constrained Project Scheduling Problem 
(RCPSP). Chapter III presents the base problem extension to 
multi-project scheduling. Chapter IV discusses generation 
schemes and their applicability as simulation module for 
reactive scheduling. Chapter V introduces a multi-aspect 
qualification method as an enhancement option to the 
generation schemes. Chapter VI presents the experimental 
results by implementing the method on the PSPLIB benchmark 
set. Chapter VII concludes with a summary of the results. 

II. LITERATURE REVIEW 
The definition of the RCPSP problem was introduced in 1969 

[1] and was mathematically proven by Blazewicz et al. to be 
strongly NP-hard [2]. Several survey papers on RCPSP have 
been published [3]-[5]. Although the original RCPSP model is 
well-known and sufficient for many cases, practical 
applications require further extensions. An updated overview 
of these extensions is provided by Hartmann and Briskorn [6], 
who categorize model variants based on generalization of 
activities, alternative precedence constraints, network 
characteristics, and consideration of multiple projects. 

One common approach to solving RCPSP involves using 
task selection priority rules with schedule generation schemes 
(SGS). These priority rules determine the task scheduling 
sequence, impacting the overall schedule efficiency. Priority 
rules are heuristic methods that order tasks based on specific 
criteria. Early examples include the earliest start time (EST), 
earliest finish time (EFT) [7], minimum slack time (MST) [8], 
and shortest processing time (SPT) [9]. Recent research 
explores the use of genetic-like evolution of task priority rules 
[10] and the automatic detection of the best applicable rules for 
RCPSP problems [11]. 

The literature presents approaches for handling multiple 
objective functions simultaneously [12]. Problems with more 
than three objectives are referred to as many-objective 
optimization problems [13], presenting new challenges, such 
as comparing candidate solutions using suitable performance 
metrics [14]. To address these challenges, researchers develop 
various methods based on existing approaches [15], advanced 
methods [16] and hybrid approaches [17]. 
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III. MULTI-PROJECT SCHEDULING

The resource-constrained multi-project scheduling problem 
involves a set of activities to be executed on a set of resources, 
collectively forming projects. Each project is represented by an 
acyclic directed graph following an activity-on-node model. 
Nodes represent activities, which must be executed without 
interruption. Precedence relations, shown as arcs between 
nodes, indicate that a successor activity cannot start until all 
predecessors are completed.

The time horizon is divided into elementary time units (e.g., 
seconds, days, months), chosen based on the project-execution 
environment. Each activity's processing time is given as 
multiples of these units. Some activities may belong to 
multiple projects, creating interdependencies. Projects may 
have unique release times and due dates, and activities cannot
start before their release times. Projects may differ in priority 
and have various scheduling goals modeled as objective 
functions, which project management uses for concurrent 
scheduling.

The execution system has a set of renewable resource types 
available for project activities. Each resource type has a time-
dependent capacity constraint that specifies the available 
quantity in each time unit. These resources are not consumed 
but used by activities, then released upon completion, making 
them available again.

Each activity has specific resource requirements defining the 
type, quantity, and processing time needed. An activity can 
start only if the required resources are available for the 
necessary duration. Resource use begins simultaneously but 
may end at different times. Activities are non-interruptible, as 
pre-emption is not allowed. Each project includes virtual start 
and end activities, which require no resources and have zero 
processing time.

The investigated scheduling problems may involve multiple 
objectives with varying values, optimization directions, and 
importance levels. The objective functions can differ. To solve 
this extended problem type, a detailed schedule must be 
created specifying the exact start time for each activity. Our 
goal is to rapidly generate a feasible, near-optimal schedule 
that considers the objectives and meets all constraints. 

This extended scheduling problem is referred to as ESP in 
this paper. In describing ESP, we draw on classical project 
scheduling concepts to establish its relationship to known 
models and highlight its unique features. 

ESP includes RCPSP as a special case, making it also NP-
hard. Additionally, ESP encompasses other classical 
scheduling problems like Single Machine Scheduling, Flow 
Shop Scheduling, and Job Shop Scheduling. While the 
literature often uses "operation" instead of "activity" in 
machine scheduling, and "job" to denote a set of operations, 
we use "task" to denote the elementary process and "project" 
to refer to a set of related tasks. This paper avoids the 
ambiguous term "job".

Our research objective was to develop a solution approach 
for making real-time decisions for ESP, especially in 
environments burdened with uncertainty and frequent 

adjustments and rapid scheduling decisions, such as in cyber-
physical production systems or agent-based logistical systems. 
Considering these factors, we chose the reactive scheduling 
strategy as our fundamental approach.

IV. GENERATION SCHEME AS A SUITABLE BASE FOR REACTIVE 
SCHEDULING

The Schedule Generation Scheme (SGS) is a well-known 
type of predefined, rule-based, constructive methods. Starting 
with an empty schedule, SGS iteratively adds one unscheduled 
task to the partial schedule until all tasks are scheduled. Table 
I presents the applied notations of variables used in the 
algorithm.

TABLE I
NOTATION FOR GENERATION SCHEME

Notation Description

T Set of tasks to be scheduled
m Iteration of the generation scheme
TGENm 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑚𝑚 ⊆ 𝑻𝑻; the already scheduled tasks in iteration m
Dm 𝑫𝑫𝑚𝑚  ⊆ 𝑻𝑻; the decision set of tasks in iteration m
SGENm 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚 =  (𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑗𝑗, … , 𝑆𝑆𝑁𝑁𝑁𝑁), the starting time vector of 

already scheduled tasks in iteration m
CGENm 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚 =  (𝐶𝐶1, 𝐶𝐶2, … , 𝐶𝐶𝑗𝑗, … , 𝐶𝐶𝑁𝑁𝑁𝑁), the completion time vector 

of already scheduled tasks in iteration m

Algorithm 1. presents the pseudo code of generation schemes 
in general.

Algorithm 1: Generation Scheme Algorithm (SGS)

Input: ESP problem definition, task selection rules and priority values
Output: Feasible schedule 
Begin
2.1 Create an empty schedule ;
2.2 m = 0; 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻0 =  ∅,𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆0 = (0,0, … ,0); 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶0 = (0,0, … ,0);
2.3 while (𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑚𝑚 <> 𝑻𝑻)
2.4 m =  m + 1;
2.5 Calculate Dm

2.6 Select one task from Dm

2.7 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑚𝑚 =  𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑚𝑚 ∩ {𝑡𝑡𝑚𝑚}
2.8 Calculate 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚
2.9 end while
2.10 Return schedule 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚
End

The calculation of Dm depends on the generation scheme 
variant. This paper uses the serial generation scheme variant,
where a task is included in the Dm decision set in the m.-th
iteration if and only if the task has not been scheduled and all
its predecessor tasks have been scheduled.

𝑫𝑫𝒎𝒎 = ({ 𝑡𝑡𝑗𝑗 }|𝑡𝑡𝑗𝑗  ∉ 𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝒎𝒎  ∧  ∀𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝 ∈ 𝑷𝑷𝑷𝑷𝑷𝑷𝒋𝒋  ∧ 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝  ∈ 𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝐓𝒎𝒎  ) (1)

V. A MULTI-ASPECT QUALIFICATION METHOD TO SELECT THE 
MOST APPROPRIATE TASK FROM THE DECISION SET

In our reactive scheduling model, multiple task-selection 
decision aspects (TSDA) can be used simultaneously. We 
assume the set of applicable TSDAs is not limited and can 
encompass various items with different priorities and 
optimization directions. Optimization direction indicates 

unexpected events. Such environments require continuous 
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system of applied TSDAs is given, and the actual value of each 
TSDA can be calculated.

Let sx and sy be two candidate tasks to be selected for adding 
to the partial schedule at iteration m. The calculated values of 
TSDAs are represented by a given vector containing K real 
numbers. The notations are given in Table II.

TABLE II
NOTATION FOR RELATIVE QUALIFICATION

Notation Description

u 𝑢𝑢 = (𝑢𝑢1, 𝑢𝑢2, … , 𝑢𝑢𝑘𝑘, … , 𝑢𝑢𝐾𝐾), 𝑢𝑢𝑘𝑘  ∈ ℝ; u denotes the vector 
containing the values of TSDAs considering the given task to 
be compared.

z 𝑧𝑧 = (𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑘𝑘, … , 𝑧𝑧𝐾𝐾), 𝑧𝑧𝑘𝑘  ∈ {−1, 1}; 𝑧𝑧 denotes the vector 
containing the optimization directions of TSDAs. The value 
of 𝑧𝑧𝑘𝑘 is 1 if the smaller value of the kth TSDA indicates the 
more favorable task. The 𝑧𝑧𝑘𝑘 is -1 if the larger value pf the kth

TSDA indicates the more favorable task.
w 𝑤𝑤 = (𝑤𝑤1, 𝑤𝑤2, … , 𝑤𝑤𝑘𝑘, … , 𝑤𝑤𝐾𝐾), 𝑤𝑤𝑘𝑘  ∈ ℤ0

+; 𝑤𝑤 denotes the vector 
containing priorities for the TSDAs. Each 𝑤𝑤𝑘𝑘 is a non-
negative real value (𝑤𝑤𝑘𝑘 ≥ 0) that expresses the importance of 
the 𝑢𝑢𝑘𝑘 value of the kth TSDA.

A distance function D is defined as follows.

𝐷𝐷 ∶ ℝ2 →  ℝ , 𝐷𝐷(𝑎𝑎 , 𝑏𝑏) ∶= {
 0, 𝑖𝑖𝑖𝑖 max(|𝑎𝑎|, |𝑏𝑏|) = 0,

𝑏𝑏−𝑎𝑎
max(|𝑎𝑎|,|𝑏𝑏|) , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (2)

The relative qualification uses notations defined in Table II.
Let 𝑥𝑥 and 𝑦𝑦 be two vectors with type 𝑢𝑢. These vectors contain 
the values of TSDAs, and they represent the absolute qualities
of candidate tasks tx and ty to be compared. We define the 𝐹𝐹
function to express the relative quality of 𝑦𝑦 compared to 𝑥𝑥 as a 
real number.

𝐹𝐹 ∶ 𝑢𝑢2 →  ℝ , 𝐹𝐹(𝑥𝑥 , y) ∶= ∑ ( 𝑤𝑤𝑘𝑘 ∙ z𝑘𝑘 ∙ 𝐷𝐷( x𝑘𝑘,  y𝑘𝑘) )𝐾𝐾
𝑘𝑘=1 (3)

Using the return value of F(x, y), we can expresses the 
relative quality of vector y compared to vector x as the 
following:

• y is better than x if F(x, y) is less than zero.
• y is worse than x if F(x, y) is larger than zero.
• y and x are equally good if F(x, y) is exactly zero.

The presented F-based relative qualification model 
effectively solves the comparison of the candidate tasks from 
decision set Dm in the proposed solving approach.

VI. EXPERIMENTAL RESULT

We tested the presented method on the PSLIB benchmark 
RCPSP J30 problem set [18], which consists of 480 problem 
instances. The considered objective function was the 
maximum completion time of all tasks (Cmax).

RC_DEST is a dynamic (time-dependent) TDSA, whose value 
is updated by the construction algorithm through recalculation 
in changing decision situations. The others are static (time-
independent) TDSAs, which are calculated once at the start of 
the construction algorithm.

TABLE III
USED TASK-SELECTION ASPECTS

Notation Description

NSucc Number of successors
ProcT Processing time of the task
CPM_EST Earliest start time calculated by Critical Path Method (CPM)
CPM_EFT Earliest finish time calculated by CPM
CPM_LST Latest start time calculated by CPM
CPM_LFT Latest finish time calculated by CPM
RC_DEST Dynamic earliest start time considering dynamically the 

actual resource constraints at the given time of decision 
making

DD Due date of the task

B. Numerical results
To evaluate the performance of the reactive solver, we used 

the lower bound LBp as reference value for each benchmark 
instance p. LBp is provided for all instances in the PSLIB 
dataset. The result of the reactive solver executed on problem 
instance p is denoted by Cmax,p.We calculated the the average 
relative deviation (ARD) of the reactive solver execution for 
the complete J30 benchmark dataset by Equation (4), where 
smaller ARD value indicates the better result.

ARD =
∑ Cmax,p−LBp

LBp
P
p=1

P 100 [%] (4)

Table IV presents the measurement results of tests 
considering only one individual TSDA. The priority values are 
set to 1 or -1 depending on the optimization direction. For 
simplicity, we presented the multiplication of zk and wk as the 
priority of the kth TSDA.

The CPM_LST achieved the lowest ARD value, which was 
approximately 0.04923.

TABLE IV
ARD EVALUATION RESULTS FOR INDIVIDUAL TASK-SELECTION ASPECTS

Test Task selection priority multiplied with optimization direction ARD
# RC_

DEST
NSucc ProcT CPM_

EST
CPM_
EFT

CPM_
LST

CPM_
LFT

DD

1 1 0 0 0 0 0 0 0 0.078260
2 0 1 0 0 0 0 0 0 0.140896
3 0 0 1 0 0 0 0 0 0.174179
4 0 0 0 1 0 0 0 0 0.091479
5 0 0 0 0 1 0 0 0 0.115464
6 0 0 0 0 0 1 0 0 0.049226
7 0 0 0 0 0 0 1 0 0.051196
8 0 0 0 0 0 0 0 1 0.095355
9 0 -1 0 0 0 0 0 0 0.100995
10 0 0 -1 0 0 0 0 0 0.124379

whether a larger or smaller numerical value is desirable for the 
candidate task. In each execution of the solver, an actual 

A. The applied set of TSDAs
Table III. presents the applied task selection decision aspects 

(TSDAs). During testing, eight TSDAs were examined. The system of applied TSDAs is given, and the actual value of each 
TSDA can be calculated.
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the values of TSDAs, and they represent the absolute qualities
of candidate tasks tx and ty to be compared. We define the 𝐹𝐹
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Using the return value of F(x, y), we can expresses the 
relative quality of vector y compared to vector x as the 
following:

• y is better than x if F(x, y) is less than zero.
• y is worse than x if F(x, y) is larger than zero.
• y and x are equally good if F(x, y) is exactly zero.

The presented F-based relative qualification model 
effectively solves the comparison of the candidate tasks from 
decision set Dm in the proposed solving approach.
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We tested the presented method on the PSLIB benchmark 
RCPSP J30 problem set [18], which consists of 480 problem 
instances. The considered objective function was the 
maximum completion time of all tasks (Cmax).

RC_DEST is a dynamic (time-dependent) TDSA, whose value 
is updated by the construction algorithm through recalculation 
in changing decision situations. The others are static (time-
independent) TDSAs, which are calculated once at the start of 
the construction algorithm.
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RC_DEST Dynamic earliest start time considering dynamically the 
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making
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B. Numerical results
To evaluate the performance of the reactive solver, we used 

the lower bound LBp as reference value for each benchmark 
instance p. LBp is provided for all instances in the PSLIB 
dataset. The result of the reactive solver executed on problem 
instance p is denoted by Cmax,p.We calculated the the average 
relative deviation (ARD) of the reactive solver execution for 
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candidate task. In each execution of the solver, an actual 
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TABLE V
ARD EVALUATION RESULTS FOR COMBINED TASK SELECTION ASPECTS

Test Task selection priority multiplied with optimization direction ADR
# RC_

DEST
NSucc ProcT CPM_

EST
CPM_
EFT

CPM_
LST

CPM_
LFT

DD

11 1 0 0 0 0 2 0 0 0.045571
12 1 -1 -1 1 1 1 1 0 0.061593
13 1 1 1 1 1 1 1 1 0.092054
14 1 1 -1 1 1 1 1 1 0.072527
15 1 -1 1 1 1 1 1 1 0.077187
16 1 -1 -1 1 1 1 1 1 0.061593
17 1 -1 -1 1 1 10 1 1 0.051461
18 1 -1 -1 1 1 20 1 1 0.049511
19 1 -1 -1 1 1 5 1 1 0.052672
20 2 0 0 0 0 1 0 0 0.038408
21 5 0 0 0 0 4 0 0 0.040886
22 5 -1 -1 1 1 1 1 1 0.05537
23 6 0 0 0 0 3 0 0 0.038408
24 6 -0.1 0.1 0 0 3 0 0 0.03776
25 6 -0.5 0.5 0 0 3 0 0 0.037249
26 6 -0.5 0.5 0 0 3 0.2 0 0.038329
27 6 -0.5 0.5 0 0 3 -0.2 0 0.037479
28 6 -0.5 0.5 0 0 3 0.5 0 0.037442
29 6 -0.5 0.5 0 0 3 1 0 0.037848
30 6 -0.5 0.5 0 0 3 -1 0 0.038671
31 6 -0.5 0.5 0 0.1 3 0 0 0.037556
32 6 -0.5 0.5 0 -0.1 3 0 0 0.037324
33 6 -0.5 0.5 0 0.5 3 0 0 0.037772
34 6 -0.5 0.5 0.05 0.05 3 0.05 0.05 0.037635
35 6 -0.5 0.5 0.1 0 3 0 0 0.037843
36 6 -0.5 0.5 -0.1 0 3 0 0 0.037999
37 6 -0.5 0.5 0.1 0.1 3 0.1 0.1 0.038126
38 6 -0.5 0.5 0.5 0 3 0 0 0.039375
39 6 -0.5 0.5 -0.5 0 3 0 0 0.041056
40 6 -0.5 0.5 1 0 3 0 0 0.041141
41 6 1 1 0 0 3 0 0 0.048826
42 6 -1 1 0 0 3 0 0 0.043549
43 6 -1 -1 0 0 3 0 0 0.056383
44 6 -1 -1 1 1 3 1 1 0.050003

The third-best result was given by RC_DEST, with an ARD 
value of approximately 0.07826 (Table IV Test #1). When 
these two selection criteria were applied together, an even
better result was obtained than when used separately. For 
example, with priority value of RC_DEST 1 and CPM_LST 2
(Test #11), the ARD value was approximately 0.04557. 
Swapping the priorities of the two selection criteria (Test #20) 
reduced the ARD to approximately 0.03841. 

An interesting observation was that in the combined solution, 
it was advantageous to assign a higher priority to the criterion 
that performed worse individually. The specific values of the 
TSDAs were not as important as their relative ratio. For 
instance, increasing the priorities threefold (e.g., from 2:1 to 
6:3) resulted in an unchanged ARD value.

This experimental finding can be proven mathematically.
Considering the F function (3) used for relative comparison, 
multiplying the priority values by a constant is equivalent to 
multiplying the final result of the F function by the same 
constant. Since the result of F is compared to zero, multiplying 
by any non-negative real number does not change its relation 
to zero. If F was greater, less, or equal to zero, it remains so. 
This should be considered when fine-tuning the priority values 
of TSDAs.

function value is close to zero based on higher-priority criteria. 
The priority of NSucc is negative because the method favors 
candidate tasks with a higher number of successor tasks. For 
other criteria, smaller numbers are more favorable.

In this experiment, the best result was achieved with the 
following priorities: 6; -0.5; 0.5; 0; 0; 3; 0; 0, (Test #25). The 
ARD value achieved this way was approximately 0.037249. 
Table V also shows that an ARD value below 0.038 could be 
reached with many settings. This is favorable because, for a 
given specific system, the set priority value scheme can be used 
effectively, providing a sufficiently sharp solution while 
maintaining flexibility.

While lower ARD values can be achieved with search 
algorithms, they come with significantly longer computation 
times due to the need to generate a large number of solutions 
iteratively. In contrast, a reactive construction algorithm 
produces only one solution. Reactive scheduling quickly 
adapts to real-time changes, as it operates based on predefined 
priority rules and decision criteria, allowing for immediate 
decision-making. In the investigated situations, the reactive 
approach may be more advantageous, as it does not require 
waiting for the search algorithms to respond, enabling faster 
reactions to environmental changes.

The experiment demonstrated that combining multiple task-
selection aspects yields better solutions than using a single 
aspect. The decision-making method based on relative 
qualification can handle any finite number of selection criteria 
together. Assigning priority values to TSDAs is 
straightforward and flexible.

VII. CONCLUSION

In this paper, we present a novel reactive scheduling 
approach for extended project scheduling problems, aiming to 
create feasible and fast schedules for multiple projects with 
detailed resource requirements. The model uses a serial 
generation scheme with a new multi-priority decision-making 
procedure that considers many different decision aspects for 
deterministically selecting tasks.

The proposed extension is adaptable to a wide range of 
scheduling problems due to its problem-independent nature 
and ability to incorporate diverse decision aspects. These 
aspects can be calibrated and incorporated similarly to classical 
priority rules.

Our performance tests, conducted on the PSLIB J30 
benchmark series, demonstrated that the combination of 
multiple decision aspects outperforms single aspects in 
minimizing the latest completion time. This supports our 
hypothesis that combining decision aspects using the relative 
qualification model is advantageous.

Table V presents the results of 34 different tests where 
multiple TSDAs were used simultaneously. The table includes 
the applied priority values for each TSDA and the calculated 
ARD values.

significantly reduced with different priority values. RC_DEST 
and CPM_LST remained dominant, but other criteria, such as 
NSucc and ProcT, also proved useful with smaller priority 
values. These criteria influence the decision when the F

Involving additional selection criteria further improved the 
results. Table V examples show that the ARD value could be 
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reduced the ARD to approximately 0.03841. 

An interesting observation was that in the combined solution, 
it was advantageous to assign a higher priority to the criterion 
that performed worse individually. The specific values of the 
TSDAs were not as important as their relative ratio. For 
instance, increasing the priorities threefold (e.g., from 2:1 to 
6:3) resulted in an unchanged ARD value.

This experimental finding can be proven mathematically.
Considering the F function (3) used for relative comparison, 
multiplying the priority values by a constant is equivalent to 
multiplying the final result of the F function by the same 
constant. Since the result of F is compared to zero, multiplying 
by any non-negative real number does not change its relation 
to zero. If F was greater, less, or equal to zero, it remains so. 
This should be considered when fine-tuning the priority values 
of TSDAs.

function value is close to zero based on higher-priority criteria. 
The priority of NSucc is negative because the method favors 
candidate tasks with a higher number of successor tasks. For 
other criteria, smaller numbers are more favorable.

In this experiment, the best result was achieved with the 
following priorities: 6; -0.5; 0.5; 0; 0; 3; 0; 0, (Test #25). The 
ARD value achieved this way was approximately 0.037249. 
Table V also shows that an ARD value below 0.038 could be 
reached with many settings. This is favorable because, for a 
given specific system, the set priority value scheme can be used 
effectively, providing a sufficiently sharp solution while 
maintaining flexibility.

While lower ARD values can be achieved with search 
algorithms, they come with significantly longer computation 
times due to the need to generate a large number of solutions 
iteratively. In contrast, a reactive construction algorithm 
produces only one solution. Reactive scheduling quickly 
adapts to real-time changes, as it operates based on predefined 
priority rules and decision criteria, allowing for immediate 
decision-making. In the investigated situations, the reactive 
approach may be more advantageous, as it does not require 
waiting for the search algorithms to respond, enabling faster 
reactions to environmental changes.

The experiment demonstrated that combining multiple task-
selection aspects yields better solutions than using a single 
aspect. The decision-making method based on relative 
qualification can handle any finite number of selection criteria 
together. Assigning priority values to TSDAs is 
straightforward and flexible.

VII. CONCLUSION

In this paper, we present a novel reactive scheduling 
approach for extended project scheduling problems, aiming to 
create feasible and fast schedules for multiple projects with 
detailed resource requirements. The model uses a serial 
generation scheme with a new multi-priority decision-making 
procedure that considers many different decision aspects for 
deterministically selecting tasks.

The proposed extension is adaptable to a wide range of 
scheduling problems due to its problem-independent nature 
and ability to incorporate diverse decision aspects. These 
aspects can be calibrated and incorporated similarly to classical 
priority rules.

Our performance tests, conducted on the PSLIB J30 
benchmark series, demonstrated that the combination of 
multiple decision aspects outperforms single aspects in 
minimizing the latest completion time. This supports our 
hypothesis that combining decision aspects using the relative 
qualification model is advantageous.

Table V presents the results of 34 different tests where 
multiple TSDAs were used simultaneously. The table includes 
the applied priority values for each TSDA and the calculated 
ARD values.

significantly reduced with different priority values. RC_DEST 
and CPM_LST remained dominant, but other criteria, such as 
NSucc and ProcT, also proved useful with smaller priority 
values. These criteria influence the decision when the F

Involving additional selection criteria further improved the 
results. Table V examples show that the ARD value could be 



An Advanced Reactive Approach to Solve Extended  
Resource-Constrained Project Scheduling Problems

SPECIAL ISSUE ON AI TRANSFORMATION 6

Special Issue
of the Infocommunication Journal

	 [1]	 A. A. B. Pritsker, W. J. Lawrence and P. M. Wolfe, "Multiproject 
Scheduling with Limited Resources: A Zero-One Programming 
Approach," Management Science, vol. 16, no. 1, pp. 93–108, Sept. 
1969.

	 [2]	 J. Blazewicz, J. K. Lenstra and A. H. Kan, "Scheduling  subject to 
resource constraints: classification and complexity," Discrete Applied 
Mathematics, vol. 5, no. 1, pp. 11–24, Jan. 1983, 

		  doi: 10.1016/0166-218X(83)90012-4.
	 [3]	 R. Kolisch, S. Hartmann, “Heuristic algorithms for the resource- 

constrained project scheduling problem: Classification and 
computational analysis”, Project scheduling, pp. 147–178, 1999., 

		  doi: 10.1007/978-1-4615-5533-9_7
	 [4]	 R. Kolisch, S. Hartmann, "Experimental investigation of heuristics 

for   resource-constrained project scheduling: An update", European 
journal of   operational research, vol. 174, no. 1, pp. 23–37, 2006., 
doi: 10.1016/j.ejor.2005.01.065

	 [5]	 R. Pellerin, N. Perrier and F. Berthaut, "A survey of hybrid 
metaheuristics for the resource-constrained project scheduling 
problem," European Journal of Operational Research, vol. 280, no. 
2, pp. 395–416, 16 Jan. 2020, doi: 10.1016/j.ejor.2019.01.063.

	 [6]	 S. Hartmann and D. Briskorn, "An updated survey of variants and 
extensions of the resource-constrained project scheduling problem," 
European Journal of Operational Research, vol. 297, no. 1, pp. 1–14, 
16 Feb. 2022, doi: 10.1016/j.ejor.2021.05.004.

	 [7]	 J. E. Kelley and M. R. Walker, "Critical-path planning and scheduling," 
Proceedings of the Eastern Joint Computer Conference, 1959.  
doi: 10.1145/1460299.1460318

	 [8]	 A. A. Pritsker and W. Happ, GERT: Graphical Evaluation and Review 
Technique, Wiley, 1966.

	 [9]	 R. W. Conway, W. L. Maxwell, and L. W. Miller, Theory of Scheduling, 
Addison-Wesley, 1967.

	[10]	 J. Luo, M. Vanhoucke, J. Coelho, W. Guo, „An efficient genetic 
programming approach to design priority rules for resource-
constrained project scheduling problem”, Expert Systems with 
Applications, vol. 198, 2022, doi: 10.1016/j.eswa.2022.116753.

	[11]	 W. Guo, M. Vanhoucke, J. Coelho, J. Luo, “Automatic detection of 
the best performing priority rule for the resource-constrained project 
scheduling problem”, Expert Systems with Applications, vol. 167, 
2021, doi: 10.1016/j.eswa.2020.114116.

	[12]	 K. Taha, "Methods That Optimize Multi-Objective Problems: A 
Survey and Experimental Evaluation," IEEE Access, vol. 8, pp.  
80 855–80 878, 2020, doi: 10.1109/ACCESS.2020.2989219.

	[13]	 Y.-H. Zhang, Y.-J. Gong, J. Zhang and Y.-b. Ling, "A hybrid 
evolutionary algorithm with dual populations for many-objective 
optimization," 2016 IEEE Congress on Evolutionary Computation 
(CEC)”, Vancouver, BC, Canada, 2016, pp. 1610–1617, 

		  doi: 10.1109/CEC.2016.7743981

References

	[14]	 I. R. Meneghini, M. A. Alves, A. Gaspar-Cunha and F. G. Guimarães, 
"Scalable and customizable benchmark problems for many-objective 
optimization," Applied Soft Computing, vol. 90, May 2020, 

		  doi: 10.48550/arXiv.2001.11591.
	[15]	 H. Dai, W. Cheng and P. Guo, "An Improved Tabu Search for Multi-

skill Resource-Constrained Project Scheduling Problems Under Step- 
Deterioration," Arabian Journal for Science and Engineering, vol. 43, 
no. 6, pp. 3279–3290, Jan. 2018, doi: 10.1007/s13369-017-3047-4.

	[16]	 S. Mane and M. R. Narasingarao, "A chaotic-based improved many- 
objective jaya algorithm for many-objective optimization problems," 
International Journal of Industrial Engineering Computations, vol. 
12, no. 1, pp. 49–62, Oct. 2020, doi:10.5267/j.ijiec.2020.10.001.

[17]	 K. Mihály and Gy. Kulcsár, “A New Many-Objective Hybrid Method 
to Solve Scheduling Problems”, International Journal of Industrial 
Engineering and Management, vol. 14, no. 4, pp. 326–335, Dec. 2023.

	[18]	 PSLIB Single Mode Scheduling Benchmark Dataset, last accessed 
2024/04/03, https://www.om-db.wi.tum.de/psplib/getdata_sm.html.

Krisztián Mihály is an assistant lecturer at the Institute of 
Information Science, University of Miskolc (Hungary). 
He received his M.Sc. in Information Engineering from 
the Budapest University of Technology and Economics 
(Hungary) in 2008. He is currently working on his PhD 
thesis. He is working as a development architect at SAP 
Hungary Ltd., responsible for SAP PLM for Process 
Industry solutions. He is recipient of the “Award of the 
Best Trainer of the Year at SAP”. His research interests 
include production planning and scheduling, project 

planning and scheduling, many-objective optimization, metaheuristics, and 
software architectures.

Gyula Kulcsár is an associate professor in the Institute 
of Information Science at the University of Miskolc 
(Hungary). He received an M.Sc. in Information Science 
from the University of Miskolc (Hungary) in 2001. and 
a Ph.D. in Information Science from the University 
of Miskolc (Hungary) in 2008. His research interests 
include production planning and scheduling, project 
planning and scheduling, many-objective optimization, 
metaheuristics, discrete event-driven simulation, and 
manufacturing control. He is a member of the public 

body of the Hungarian Academy of Sciences. He is the recipient of the Young 
Researcher Scientific Award from the Hungarian Academy of Sciences in 2008.

Mónika Kulcsárné Forrai an associate professor in 
the Institute of Information Science at the University 
of Miskolc (Hungary). She received an M.Sc. in 
Information Engineering from the University of 
Miskolc (Hungary) in 2001, and a Ph.D. in Information 
Science and Technology from the University of Miskolc 
(Hungary) in 2018. Her research interests include 
scheduling, search algorithms, optimization, production 
planning and control, enterprise resource planning, and 
project scheduling. She is a member of the public body 

of the Hungarian Academy of Sciences.

5

next task selection method, handles problem-specific 
constraints and can work with any generation scheme.
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