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Abstract—Function as a Service (FaaS) is the latest stage
of application virtualization in the cloud. It enables to deploy
small code pieces – functions – in the cloud. FaaS focuses on
event-driven functions in response to triggers from different
sources. The functions run in ephemeral virtual environments.
This means that the user is charged on the basis of the time
the function is busy serving the invocation requests. With the
advent of Industry 4.0 the need has arisen to run applications
on Edge Computing nodes. FaaS is a promising solution for
serving industrial applications that require predictable latency
while meeting the demands of edge computing, which operates
on a limited resource base. Therefore, knowing the completion
time of the invocation requests is of key importance.

In this paper, we introduce a function runtime design for open-
source FaaS implementations that achieves a lower deviation
in request completion times compared to default runtimes by
regulating the function’s access to host CPU cores. We present the
implementation details of our proposed function runtime design
for Python, Go and Node.js. We also introduce a simulation
framework that is able to estimate the completion time distribu-
tion of the incoming invocation requests. We validate the results
of our simulation framework using real measurement data.

Index Terms—Communications Society, IEEE, IEEEtran, jour-
nal, LATEX, paper, template.

I. INTRODUCTION

The granularity of application virtualization technologies is
continuously increasing in the past decades, virtual machines
have been partially replaced by light-weight container virtual-
ization solutions, however, in both cases complete applications
are hosted in the virtualized environment. In contrast to Virtual
Machines (VMs) and containers, FaaS makes it available to
host only a single building block of a distributed application in
the virtualized environment. FaaS implementations are based
on virtualization solutions, such as containers and lightweight
VMs, such as microVMs [1], [2] or unikernels [3]. The FaaS
framework spins up an instance for the incoming requests
and keeps it running for a given time period and they are
evicted if no requests are sent to them during this time. FaaS
shows a change in the paradigm, a new way of application
orchestration, rather than introducing a new implementation
for virtualization. Functions can be organized into function
chains, where one function invokes the next, thus implement-
ing a complex application.

Functions are invoked for incoming events and they use
the compute resources only during the execution. The cor-
responding billing model is based on the time the function
keeps the compute resources allocated to serve the incoming

requests. In contrast, using VMs and containers, the user pays
for the up-time of the virtualized environment even if the
hosted applications are idle.

The importance of FaaS can be seen by the fact that
not only the major public cloud providers have implemented
their FaaS platforms (e.g. Google Cloud, Amazon Web Ser-
vices, Microsoft Azure, Alibaba Cloud), but the open source
community has also embraced the technology. Several open-
source FaaS implementations are available on GitHub, such as
OpenFaaS [4], Fission [5], Kubeless [6] or Nuclio [7].

FaaS systems provide predefined function runtimes to exe-
cute the functions. Functions implemented by the users are
encapsulated into the provided function runtimes, helping
the users to focus on the business logic and sparing the
manual integration work. However, these runtimes can majorly
influence the performance of the functions.

Knowing the completion time of the requests has a key
importance, as the billing model of FaaS systems is based
on the combination of time the function is busy serving the
requests as well as the allocated resources for the functions.
Cloud providers can define different strategies for cost calcula-
tion. In AWS Lambda [8] and Microsoft Azure Functions [9],
users are charged based on a per-millisecond rate, whereas
users of Google Cloud Functions [10] and Alibaba Function
Compute [11] are billed in 100-millisecond increments. The
amount of allocated resources determines the price of each
time increment. Therefore we exclusively focus on the com-
pletion time of the function invocations, as the cost of an
invocation can be derived from the completion time and the
amount of allocated resources.

In this paper we introduce a function runtime design that
is able to provide stable completion times by regulating the
function’s access to the host CPU cores, thereby preventing
bottlenecks and achieving higher QoS. We also introduce a
method to estimate the completion time of function invo-
cations. We present our results by using compute intensive
functions implemented in Python, Go and Node.js.

We base our work on our previous paper [12] in which
we have introduced our function runtime design as well as
an algorithm that is able to estimate the completion time
distribution of the function invocations. However, in [12] we
have implemented our function runtime design exclusively in
Python, and we designed our algorithm to estimate the comple-
tion time of functions that support parallel request processing.
In this paper, we introduce the implementation details and
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performance characteristics of our function runtime design
for Python, Go and Node.js. We also introduce an additional
algorithm that is designed to estimate the completion time
distributions of invocation requests sent to function instances
supporting sequential request processing. The introduced al-
gorithms are taking into account the resource assignment
strategies as well as the expected load that is sent to the
examined function instance.

In this paper we focus on open source FaaS systems, as in
this case we have access to the source code of the whole eco-
system in contrast to public cloud providers’ implementations.

Open source FaaS systems are almost exclusively imple-
mented on top of Kubernetes. Kubernetes is an open source
cloud orchestration platform for containers. The basic archi-
tecture of an open source FaaS system is depicted in Fig.
1. The gateway component is the entry point of the FaaS
system. It works as a proxy and directs the requests to the
appropriate functions. Function instances run in containers that
are encapsulated by Kubernetes pods. Function instances of the
same type are hidden by a Kubernetes service. The gateway
component addresses the service of the given function and
forwards the requests to the actual function instances.

Fig. 1. Generic open source FaaS architecture

This paper is structured as follows. In Section II, we review
the related work. Section III introduces our proposed function
run-time design, while in Section IV we discuss the details of
our function completion time prediction methods. In Sections
V and VI we introduce our measurement environment and
discuss our findings. Finally, Section VII concludes the paper.

II. RELATED WORK

The benchmarking of FaaS implementations has a key
importance, as different implementations have different per-
formance characteristics [13], [14], [15]. M. Grambow et al.
introduce BeFaaS [16], a framework to benchmark the major
public providers’ as well as open source FaaS platforms.
BeFaaS comes with a built-in benchmark scenario that is
an e-commerce application. BeFaaS can be extended by new
benchmarks and can be created and added to the framework by
using the BeFaaS programming library. In addition to showing
the completion time of the functions, BeFaaS provides a drill-
down analysis that helps to understand the particularities of the
behavior of the benchmarked FaaS frameworks. P. Maissen et
al. implemented FaaSdom, a tool to benchmark major public
FaaS frameworks. FaaSdom [18] supports the benchmarking
of different language runtimes, as well as it provides the
ability to calculate the costs of the users. SeBS [17] provides
a framework to benchmark public FaaS platforms. SeBS takes
the following metrics into consideration, CPU and Memmory

utilization, Response time, Code Size and Network IO. Costs
can also be benchmarked by SeBS. The authors discuss the
additional costs for the user that originates from the billing
model of a particular FaaS provider.

Simulation frameworks can significantly reduce the costs
of developing applications in a FaaS ecosystem, while also
identifying factors that influence performance. SimFaaS [19]
is a simulation framework for FaaS systems that enables the
prediction of several performance metrics of a FaaS system,
such as average response time, the probability of cold starts,
and the average number of function instances. The authors
validate the results of SimFaaS by comparing it to real usage
data from AWS Lambda. M. Hanaforoosh et al. introduce
MFS [20], a serverless FaaS simulator based on Apache
Open Whisk. MFS calculates the reports of several metrics
on top of the ones supported by SimFaaS, e.g., the number
of functions that can or cannot be scheduled on any of
the physical machines, the number of requests that can or
cannot finish before a given deadline, and unlike SimFaaS,
it handles containers and functions separately, reporting the
number of containers used. SimLess [21] is a framework
to simulate function choreographies in major public FaaS
providers’ ecosystems. SimLess considers various overheads
such as network, concurrency and, authentication when esti-
mating the round-trip time of the functions. J. Manner et al.
introduces a methodology [22] to enable the comparison of
the local and the cloud function execution and to map the
local profiling data to the cloud platform. Their effort can
significantly reduce development time as developers can work
with their local tools that they are familiar with.

Using ephemeral, event-driven FaaS functions is a promis-
ing approach to implement services hosted on top of Edge
computing devices, as such environments are equipped with a
limited amount of compute resources. LambdaContSim [23]
is a simulator designed to evaluate custom strategies to place
functions on edge nodes to meet various requirements. It
measures different metrics, such as placement success and
failure, energy consumption, and service time. F. Filippini et
al. present a simulation framework [24] for evaluating load-
balancing algorithms in decentralized FaaS environments. The
framework assesses performance using metrics such as success
rate, power consumption, and the number of rejected requests.

Based on this review, our contribution differs from previous
efforts, as our work focuses on the behavior of function run-
times under various compute resource assignment strategies,
by using our proposed simulation framework.

III. FUNCTION RUNTIMES

Function runtimes are key components of FaaS systems.
Function runtimes are encapsulating the user-defined func-
tions, and by this lifting the burden of the integration of
the functions to the distributed FaaS environment off the
shoulders of the users. Function runtimes are implented as
lightweight web-servers, that wrap the user-defined function.
They also define an endpoint to respond to periodic health-
check messages initiated by the FaaS framework. We have ex-
amined runtimes of several open source FaaS systems, namely
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OpenFaaS [26], Fission [27], and Kubeless [28]. According
to our investigations, the majority of the supported runtimes
are capable of parallel request processing by starting a new
worker thread for each of the incoming requests. However,
these runtimes do not necessarily take into consideration the
number of physical CPU cores that the host computer has. In
case of starting more worker threads than the number of host
CPU cores can lead to variable completion times. To overcome
this issue, we propose a function runtime, that sets the limit the
number of concurrently processed requests to the number of
host CPU cores [12]. In the following, we introduce function
runtimes for Python, Go and Node.js.

A. Python

Python runtimes are implemented by using different li-
braries in case of the examined FaaS frameworks. OpenFaaS
and Fission implement their Python runtimes by using the
Flask web framework, while Kubeless is using the Bottle
library.

For the sake of simplicity, in the case of Python, we imple-
mented our proposed runtime by using the Flask library. Flask
supports parallel request processing by starting new Python
threads or forking new Python processes. Python threads are
sharing the Python interpreter’s Global Interpreter Lock (GIL),
which can lead to a serious performance bottleneck in the
case of CPU intensive tasks [29]. To overcome this issue, we
implemented our runtime by using Python’s multiprocessing
library, that starts a new Python interpreter with the user-
defined function for each of the incoming requests. In Fig. 2,
we show our measurement results performed on a computer
having 16 physical CPU cores. We performed our measure-
ments by sending function invocation requests to the examined
function instance at different concurrency levels, which were
integer multiples of the number of physical CPU cores. It can
be seen that the tail latency is lower when limiting the number
of worker threads to the number of available CPU cores.

Fig. 2. Completion time differences - Limited vs. Unlimited number of
worker threads - Python

B. Go

The Go runtimes of the examined open source FaaS imple-
mentations are all using the built-in HTTP server implemented
in the Net library of the Go language that starts a new worker
thread (Goroutine) for each of the incoming requests.

We extended the basic Go runtime design by adding a
counting semaphore (implemented by Go buffered channels)

to limit the number of simultaneously running worker threads.
Fig. 3 depicts the performance difference of request processing
between the proposed and the default function runtime designs.
It can be seen that the proposed runtime design shows lower
tail completion time values when the requests concurrency
exceeds the number of CPU cores.

Fig. 3. Completion time differences - Limited vs. Unlimited number of
worker threads - Go

C. Node.js

The Node.js runtimes are single threaded and are not
capable of using multiple CPU cores simultaneously to con-
currently serve CPU intensive tasks. By exploiting the Cluster
or Worker threads library, we can achieve parallel processing
of the incoming requests with Node.js. We have implemented a
Node.js function runtime, that enables parallel request process-
ing, by using the Worker threads library. To limit the number
of concurrently running worker threads, we implemented our
runtime to store all the incoming requests in a queue and use a
counter to limit the number of requests processed concurrently.
However, Node.js adds an extra layer of scheduling as it uses
an event loop that allows to run tasks in an asynchronous
way, therefore, the behavior of this function runtime differs
from that runtimes where threads are directly scheduled by
the operating system’s task scheduler. Fig. 4 shows the results
of using our proposed Node.js runtime with setting limited and
unlimited number of worker threads to process the invocation
requests.

Fig. 4. Completion time differences - Limited vs. Unlimited number of
worker threads - Node.js

IV. COMPLETION TIME PREDICTION

Being able to predict the completion time of function
invocations is crucial. It makes available for the users to
estimate their costs as the billing model of FaaS is based on
the time the function spends on serving the incoming requests,
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as well as it helps to design latency-sensitive workflows in a
FaaS ecosystem.

In open source FaaS systems the function instances are
running in containers encapsulated in Kubernetes Pods. Con-
tainerized applications are assigned to different Linux Control
Groups (cgroups). Cgroups control the associated amount of
resources to the application, e.g., CPU, memory, network. In
open source FaaS frameworks, the users can specify the as-
signed amount of CPU and memory resources to the functions.
These values are configured in the cgroups of the function
instance’s container.

The amount of CPU resources assigned to the container
determines the amount of CPU time the applications in the
container can consume in a single scheduling window. This
value can be higher than 100% in the case of multi-core
systems. For example, if the user assigns 200% CPU resources
to the containerized application that has 4 threads and is
running on a computer with 4 cores, then each of the threads
can run in 50% of the scheduling window. The Completely
Fair Scheduler (CFS) of Linux takes into account the CPU
resources allocated for the applications through the cgroups.

We propose two algorithms to estimate the completion
time distribution of the function invocations. Both algorithms
model the CFS scheduler in a simplified way, by using round-
robin scheduling. Cgroups are organized in a hierarchical way,
which results in a hierarchical way of scheduling. However,
the round-robin scheduling can be used, as the cgroup of
the function container has no sub-cgroups, and the function
container hosts only the user-defined function, that is, a small
and simple single or multi-threaded application.

A. Multi-Threaded Runtimes

Our proposed algorithm for multi-threaded function run-
times [12] takes into account the number of CPU cores, the
time (translated from CPU ticks) required for the function to
run on the CPU to serve the invocation request (onCPU time),
the assigned amount of CPU resources, and the concurrency of
the incoming load. The on-CPU time is not necessarily equal
to the response time, as the worker thread can be preempted
while serving the request. The algorithm assumes that the
function instance uses our proposed function runtime and that
the user specifies the desired amount of CPU resources to be
allocated to the function.

Our proposed function runtimes have a main thread that
starts a new worker thread for each of the incoming requests
until the number of worker threads reaches the CPU core limit.
The proposed algorithm distributes the worker threads over
the CPU cores. The algorithm runs the tasks in the scheduling
window and decreases the tasks’ onCPU time by the minimum
time-slice as well as the CPU quota for the current scheduling
window. If the CPU quota has decreased to less than the
minimum time-slice, the algorithm starts a new scheduling
window (see Algorithm 1).

According to our investigations, the minimum time-slice is
4 milliseconds, while the length of the scheduling window
is 100ms. Our estimate for the time required to fork a new
worker thread is 1 ms. If a task does not need the whole time-

slice to finish, the rest of the time-slice can be used by the
rest of the worker threads.

Algorithm 1: Completion time prediction for
simultaneous request processing [12]

Function AddNewTask(sartTime):
actualWindow -= TimeOfFork
tasks.append({timeOnCpu, startTime, endTime=-1})
parallelTasks -= 1
numTasks += 1

Function RunTask(task):
task.timeOnCPU -= minTimeSlice
actualWindow -= minTimeSlice

loops=1
timeFrame = 100ms
actualWindow = CPUThrottle
minTimeSlice = 4ms
timeOfFork = 1ms
numTasks = 0
parallelTasks = numCPUCores
tasks, finishedTasks = []
while len(FinishedTasks) != N do

while actualWindow > minTimeSlice do
task = tasks.GetNextTask()
if task is mainTask then

if numTasks < concurrency then
// first batch of requests
if parallelTasks < numCPUs then

AddNewTask(0)
end

else
// at least one task of the first batch

has finished
if newTasks > 0 and parallelTasks < numCPUs then

AddNewTask(finishedTasks[-newTasks].endTime+
ElapsedTimeTillNewRequest)

newTasks -= 1
end

end
else

RunTask(task)
if task.timeOnCPU <= 0 then

task.endTime = loops*timeFrame
SaveTaskRuntime(task)
finishedTasks.append(Task)
tasks.Remove(Task)
parallelTasks -= 1
newTasks += 1

end
end

end
loops++
actualWindow = cpuQuota

end

B. Single Threaded Runtimes

Some of the function runtimes only support sequential
request processing, therefore, we propose another algorithm
to estimate the completion time distribution of such functions.
Initially, the algorithm starts tasks equal to the concurrency
level and stores them in a list and starts to run the first task.
The simulator decreases the on-CPU time and the CPU quota
for the actual scheduling window. If the on-CPU time of the
task is less than or equal to zero, then the simulator starts to
run a new task as well as it adds a new task to the end of the
task list. If the CPU quota reaches a value that is less than
the minimum time slice, the simulator starts a new scheduling
window. If the CPU quota is not zero but is less than the
minimum time slice, it can be used in the next scheduling
window. (see Algorithm 2)
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Algorithm 2: Completion time prediction for
sequential request processing

currTime = 0
for i in [1..Concurrency] do

tasks.Append(Task(startTime=currTime))
end
actualWindow = CPUThrottle
task = tasks.popFirst()
while len(FinishedTasks) != N do

while task.onCPU > 0 and actualWindow > 0 do
task.onCPU -= minRuntime
actualWindow -= minRuntime
currTime += minRuntime

end
if task.onCPU <= 0 then

FinishedTasks.append(currTime - task.startTime)
task = tasks.popFirst()
tasks.Append(Task(startTime = currTime))

end
if actualWindow <= min𝑟𝑟𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 then

if actualWindow > 0 then
actualWindow = CPUThrottle + actualWindow

else
actualWindow = CPUThrottle
currTime += schedWindow - CPUThrottle

end
end

end

V. TESTBED

A. Test environment

We deployed our measurement environments by installing
a two-node Kubernetes cluster on Cloudlab [25] c220g1
compute nodes equipped with 2 Intel E5-2630 v3 8-core and
128 GB RAM and 10 Gb network interfaces. The Linux CFS
operates with time values instead of CPU ticks. However, if the
CPU frequency scaling is turned on, the number of CPU ticks
and the number of operations under a given time period are
undefined. Therefore, we turned off the CPU frequency scaling
and locked the CPU frequency to 2.2GHz. We have also
turned off the logical CPU cores given by the HyperThreading
capability, to avoid situations when tasks are scheduled to the
same physical core.

B. Test Functions

We implemented our test functions in Python, Go, and
Node.js programming languages. Each of the functions cal-
culates the estimated value of 𝜋𝜋 by using the Leibniz formula.
The Leibniz formula takes a parameter that sets the accuracy
of the estimated value of 𝜋𝜋. This parameter is the input value of
the function. The higher the value of the parameter, the more
accurate the estimated value of 𝜋𝜋. For our measurements, we
selected the input values from a normal distribution.

C. Load Generator

For our measurements, we used Hey, an HTTP load gen-
erator that is able to generate HTTP requests with a given
concurrency level. To maintain a stable concurrency level, Hey
initially starts client threads equal to the desired concurrency
level. First, all the clients send out their requests. After that, a
client can only send a new request once a response has been
received for the current request.

Hey is only able to work with the same request content
during load generation. Therefore, we modified the code-
base of Hey to be able to send different input values to the
functions.

VI. EVALUATION

We have implemented the proposed algorithms as function
completion time simulator software modules. We validate
the accuracy of the proposed simulators by comparing their
outputs with real measurement results. We performed our
measurements by using function runtimes that support parallel
and sequential request processing.

To show the ability of our simulator software to predict
the completion time distribution even in the case of variable
input, we performed our measurements by selecting the input
variables from a normal distribution. In this case, the con-
figuration of the simulator requires two measurements. To be
able to calculate the values of a normal distribution, we need
to know the mean and deviation values. Thus, we performed
two measurements using the median and deviation of the input
values, to get the corresponding onCPU times.

The onCPU times can be acquired by using the Linux
Perf tool. However, running Perf requires system administrator
rights that are not necessarily available in all cases. In such
situations, we can estimate the onCPU time by the response
time of the function invocation as shown by eq. (1). When
using eq. (1) to estimate the onCPU value, we suppose that
the user-defined function does not start any further threads.
However, this calculated value includes the additional latency
of the network transport.

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 ≈ ⌊𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑆𝑆𝑆𝑆𝑆𝐶𝑆𝑆
⌋ ∗ 𝑂𝑂𝑂𝑂𝑂𝑂 𝑓𝑓 𝑢𝑢+

𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − ⌊𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑆𝑆𝑆𝑆𝑆𝐶𝑆𝑆
⌋ ∗ 𝑆𝑆𝑆𝑆𝑆𝐶𝑆𝑆 (1)

Where:

• 𝑆𝑆𝑆𝑆𝑆𝐶𝑆𝑆 = 100ms, scheduling window,
• 𝑂𝑂𝑂𝑂𝑂𝑂 𝑓𝑓 𝑢𝑢 ∈ [1𝐶𝐶100], amount of CPU resources assigned

to the function,
• 𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 : completion time of a single function invocation.

A. Parallel Request Processing

To show the efficiency of our simulator, we present our
results of different scenarios covering cases with different CPU
and concurrency settings. The performance of the examined
language runtimes are different, therefore, we adjusted the
function invocation parameters accordingly.

Fig. 5 shows our measured and simulated results in the
case of runtimes that are able to process multiple requests
simultaneously. It can be seen that the measured and simulated
values are very close to each other. In Table I we summarized
the absolute differences between the measured and simulated
results, for each of the language runtimes, related to the
median and the 95th percentile.
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Fig. 5. Real vs Simulation completion time distribution in case of parallel
request processing

TABLE I
MEDIAN AND 95𝑡𝑡𝑡 %ILE ERRORS [SEC]

PARALLEL REQUEST PROCESSING

CPU Conc. Percentile Python Go Node.js

80% 16 50th 0.0047 0.0038 0.0038
95th 0.1974 0.0023 0.0078

100%

16 50th 0.0056 0.0081 0.0002
95th 0.1987 0.0000 0.0022

32 50th 0.0949 0.0999 0.0007
95th 0.1007 0.0003 0.0008

64 50th 0.0089 0.0000 0.0002
95th 0.1953 0.0998 0.0014

200% 64 50th 0.0998 0.0003 0.1046
95th 0.1907 0.0101 0.1104

B. Sequential Request Processing

Fig. 6 shows the results of our measured and simulated
completion time distributions for each of the examined func-
tion runtimes. In this case, we selected the input values
to generate jobs of which onCPU times are less than the
time the function is scheduled to run in a given scheduling
window. This leads to a scenario where some of the function
invocation completion times are significantly longer than the
rest, as it can happen that the function is preempted by the
scheduler while it is processing an invocation request. In this
case, not only the completion time of the preempted request
is influenced, but all the completion times of the requests
that arrived after the preempted request. We experienced an
undefined behavior in the case of Node.js over the request
concurrency level of 32, therefore, in Fig. 6 we only show our
results for the concurrency levels of 16 and 32. We suppose
that the experienced undefined behavior over the concurrency
level of 32 is due to the asynchronous event-loop of the
Node.js runtime. We show the absolute differences between
the measured and simulation results related to the median and
95𝑡𝑡𝑡 percentile in Table II.

Fig. 6. Real vs Simulation completion time distribution in case of
sequential request processing

C. Differences of Sequential and Parallel Request Processing

We investigated the completion time differences in the cases
where function runtimes supporting parallel request processing
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to generate jobs of which onCPU times are less than the
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window. This leads to a scenario where some of the function
invocation completion times are significantly longer than the
rest, as it can happen that the function is preempted by the
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is influenced, but all the completion times of the requests
that arrived after the preempted request. We experienced an
undefined behavior in the case of Node.js over the request
concurrency level of 32, therefore, in Fig. 6 we only show our
results for the concurrency levels of 16 and 32. We suppose
that the experienced undefined behavior over the concurrency
level of 32 is due to the asynchronous event-loop of the
Node.js runtime. We show the absolute differences between
the measured and simulation results related to the median and
95𝑡𝑡𝑡 percentile in Table II.

Fig. 6. Real vs Simulation completion time distribution in case of
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C. Differences of Sequential and Parallel Request Processing

We investigated the completion time differences in the cases
where function runtimes supporting parallel request processing
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TABLE II
MEDIAN AND 95𝑡𝑡𝑡 %ILE ERRORS [SEC]

SEQUENTIAL REQUEST PROCESSING

CPU Conc. Percentile Python Go Node.js

50%

16 50th 0.0005 0.0079 0.0031
95th 0.0022 0.0083 0.0052

32 50th 0.0010 0.0015 0.0172
95th 0.0019 0.0156 0.0384

64 50th 0.0039 0.0240 -
95th 0.0070 0.0015 -

and those where sequential processing runtimes were used. In
Fig. 7 we show the differences between the completion time
distributions related to the examined cases. In this scenario, we
used our Python and Go language runtimes and assigned 100%
of CPU resources to them. It can be seen that, in the case of
Python, using a function runtime that supports simultaneous
request processing results in higher completion time values in
general. This phenomenon can be explained by the additional
time that is caused by the starting a new Python interpreter for
each of the incoming requests. In case of Go, the completion
time distributions for the two cases are very close to each
other. Also, our parallel processing Go runtime starts threads
that are not as expensive as starting new processes. Parallel
function runtimes can gain extra performance with more than
100% of assigned CPU resources.

Fig. 7. Distribution of function completion times in case of parallel and
sequential request processing runtimes

D. Variable CPU frequency

We performed our measurements by turning off the CPU
frequency scaler. However, in a real-life scenario, the lack
of enabling the CPU frequency scaler results in high energy
consumption even if the compute node is idle. Therefore, we
investigated the effects of the CPU frequency scaling on the ac-
curacy of our measurements. We performed our measurements
with the CPU frequency scaling turned on and off, as well as
investigated the effects of CPU utilization generated by other
CPU heavy loads. For our measurements, we used our function

implemented in Go, with 50% of CPU assigned, to also have
an idle period in the scheduling window. In this idle period the
frequency scaler will scale down the CPU frequency short after
the application is scheduled out even if the application remains
on the same CPU core. To mitigate any unpredictable behavior
on the software side, we generated load using a fixed input
value instead of varying the input parameters. Fig. 8 shows
the results of our measurements. It can be seen that the results
are influenced by the variable CPU frequency caused by the
CPU frequency scaler. In the case of a fully utilized compute
node, the CPU clock runs on the maximal frequency, which
results in more predictable completion times that are very
close to the results of the scenario where the CPU frequency
scaling is turned off. We can also observe that the background
load does not influence the performance of the function. This
can be explained by the assigned amount of CPU resources
that is guaranteed for the function instance at the level of the
scheduler of the OS.

Fig. 8. Effects of CPU frequency scaling on function completion times

VII. CONCLUSION

In this paper we introduced a function runtime design that
is able to process multiple requests at the same time but it
limits the number of simultaneously processed requests to
the number of available CPU cores. We showed that using
our runtime design the tail completion times can be reduced
significantly. We implemented the proposed function runtime
design for Python, Go and Node.js.

We have also proposed an algorithm to predict the com-
pletion time distribution of the invocation requests sent to a
FaaS function that are using our proposed function runtimes.
However, not all the function runtimes support simultaneous
request processing. Therefore, we proposed another algorithm
that is able to forecast the completion time distribution of
invocation requests sent to functions that are only capable of
sequential request processing. We implemented both proposed
algorithms as function runtime simulators and validated their
results using real measurement data from scenarios with vary-
ing inbound request concurrency and CPU resource allocations
for the functions.

Knowing the function completion time in advance can
highly facilitate the design phase of software architectures
based on FaaS considering the billing model of FaaS. FaaS
operates with ephemeral function instances; therefore, FaaS
is a promising model to implement services hosted by edge
computing nodes. Knowing the completion times for a given
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used our Python and Go language runtimes and assigned 100%
of CPU resources to them. It can be seen that, in the case of
Python, using a function runtime that supports simultaneous
request processing results in higher completion time values in
general. This phenomenon can be explained by the additional
time that is caused by the starting a new Python interpreter for
each of the incoming requests. In case of Go, the completion
time distributions for the two cases are very close to each
other. Also, our parallel processing Go runtime starts threads
that are not as expensive as starting new processes. Parallel
function runtimes can gain extra performance with more than
100% of assigned CPU resources.

Fig. 7. Distribution of function completion times in case of parallel and
sequential request processing runtimes

D. Variable CPU frequency

We performed our measurements by turning off the CPU
frequency scaler. However, in a real-life scenario, the lack
of enabling the CPU frequency scaler results in high energy
consumption even if the compute node is idle. Therefore, we
investigated the effects of the CPU frequency scaling on the ac-
curacy of our measurements. We performed our measurements
with the CPU frequency scaling turned on and off, as well as
investigated the effects of CPU utilization generated by other
CPU heavy loads. For our measurements, we used our function

implemented in Go, with 50% of CPU assigned, to also have
an idle period in the scheduling window. In this idle period the
frequency scaler will scale down the CPU frequency short after
the application is scheduled out even if the application remains
on the same CPU core. To mitigate any unpredictable behavior
on the software side, we generated load using a fixed input
value instead of varying the input parameters. Fig. 8 shows
the results of our measurements. It can be seen that the results
are influenced by the variable CPU frequency caused by the
CPU frequency scaler. In the case of a fully utilized compute
node, the CPU clock runs on the maximal frequency, which
results in more predictable completion times that are very
close to the results of the scenario where the CPU frequency
scaling is turned off. We can also observe that the background
load does not influence the performance of the function. This
can be explained by the assigned amount of CPU resources
that is guaranteed for the function instance at the level of the
scheduler of the OS.

Fig. 8. Effects of CPU frequency scaling on function completion times

VII. CONCLUSION

In this paper we introduced a function runtime design that
is able to process multiple requests at the same time but it
limits the number of simultaneously processed requests to
the number of available CPU cores. We showed that using
our runtime design the tail completion times can be reduced
significantly. We implemented the proposed function runtime
design for Python, Go and Node.js.

We have also proposed an algorithm to predict the com-
pletion time distribution of the invocation requests sent to a
FaaS function that are using our proposed function runtimes.
However, not all the function runtimes support simultaneous
request processing. Therefore, we proposed another algorithm
that is able to forecast the completion time distribution of
invocation requests sent to functions that are only capable of
sequential request processing. We implemented both proposed
algorithms as function runtime simulators and validated their
results using real measurement data from scenarios with vary-
ing inbound request concurrency and CPU resource allocations
for the functions.

Knowing the function completion time in advance can
highly facilitate the design phase of software architectures
based on FaaS considering the billing model of FaaS. FaaS
operates with ephemeral function instances; therefore, FaaS
is a promising model to implement services hosted by edge
computing nodes. Knowing the completion times for a given

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

load, our work helps engineers to better utilize the limited
resource base of edge computing devices.

REFERENCES

[1] Agache, A., Brooker, M., Iordache, A., Liguori, A., Neugebauer, R., Pi-
wonka, P., & Popa, D. M. (2020). Firecracker: Lightweight virtualization
for serverless applications. In 17th USENIX symposium on networked
systems design and implementation (NSDI 20) (pp. 419-434).

[2] Randazzo, A., & Tinnirello, I. (2019, October). Kata containers: An
emerging architecture for enabling mec services in fast and secure way.
In 2019 Sixth International Conference on Internet of Things: Systems,
Management and Security (IOTSMS) (pp. 209-214). IEEE.

[3] Manco, F., Lupu, C., Schmidt, F., Mendes, J., Kuenzer, S., Sati, S., ...
& Huici, F. (2017, October). My VM is Lighter (and Safer) than your
Container. In Proceedings of the 26th Symposium on Operating Systems
Principles (pp. 218-233).

[4] https://openfaas.com
[5] https://fission.io/
[6] https://github.com/vmware-archive/kubeless
[7] https://nuclio.io/
[8] AWS Lambda pricing, https://aws.amazon.com/lambda/pricing
[9] Azure Functions pricing, https://azure.microsoft.com/pricing/details/

functions/
[10] Pricing Overview, https://cloud.google.com/functions/pricing-overview
[11] Function Compute Pricing, https://www.alibabacloud.com/product/

function-compute/pricing
[12] Balla, D., Maliosz, M., & Simon, C. (2021, November). Estimating

function completion time distribution in open source FaaS. In 2021 IEEE
10th International Conference on Cloud Networking (CloudNet) (pp. 65-
71). IEEE.

[13] Motta, M. A. C., Carvalho, L. R., Rosa, M. J. F., & Araujo, A. P.
F. (2022). Comparison of faas platform performance in private clouds.
Proceedings of the 12th CLOSER, 109-120.

[14] Ma, P., Shi, P., & Yi, G. (2023, October). Feature and Performance Com-
parison of FaaS Platforms. In 2023 IEEE 14th International Conference
on Software Engineering and Service Science (ICSESS) (pp. 239-243).
IEEE.

[15] Barcelona-Pons, D., & García-López, P. (2021). Benchmarking paral-
lelism in FaaS platforms. Future Generation Computer Systems, 124,
268-284.

[16] Grambow, M., Pfandzelter, T., Burchard, L., Schubert, C., Zhao, M.,
& Bermbach, D. (2021, October). Befaas: An application-centric bench-
marking framework for faas platforms. In 2021 IEEE International
Conference on Cloud Engineering (IC2E) (pp. 1-8). IEEE.

[17] Copik, M., Kwasniewski, G., Besta, M., Podstawski, M., & Hoefler, T.
(2021, November). Sebs: A serverless benchmark suite for function-as-a-
service computing. In Proceedings of the 22nd International Middleware
Conference (pp. 64-78).

[18] Maissen, P., Felber, P., Kropf, P., & Schiavoni, V. (2020, July). Faasdom:
A benchmark suite for serverless computing. In Proceedings of the 14th
ACM international conference on distributed and event-based systems
(pp. 73-84).

[19] Mahmoudi, N., & Khazaei, H. (2021). Simfaas: A performance simulator
for serverless computing platforms. arXiv preprint arXiv:2102.08904.

[20] Hanaforoosh, M., Ashtiani, M., & Azgomi, M. A. (2023, May). MFS: A
serverless FaaS simulator. In 2023 9th International Conference on Web
Research (ICWR) (pp. 81-86). IEEE.

[21] Ristov, S., Hautz, M., Hollaus, C., & Prodan, R. (2022, November).
SimLess: simulate serverless workflows and their twins and siblings
in federated FaaS. In Proceedings of the 13th Symposium on Cloud
Computing (pp. 323-339).

[22] Manner, J., Endreß, M., Böhm, S., & Wirtz, G. (2021, September).
Optimizing cloud function configuration via local simulations. In 2021
IEEE 14th International Conference on Cloud Computing (CLOUD) (pp.
168-178). IEEE.

[23] Matricardi, A., Bocci, A., Forti, S., & Brogi, A. (2023, August). Simulat-
ing FaaS Orchestrations In The Cloud-Edge Continuum. In Proceedings
of the 3rd Workshop on Flexible Resource and Application Management
on the Edge (pp. 19-26).

[24] Filippini, F., Calmi, N., Cavenaghi, L., Petriglia, E., Savi, M., &
Ciavotta, M. (2024, June). Analysis and Evaluation of Load Management
Strategies in a Decentralized FaaS Environment: A Simulation-Based
Framework. In Proceedings of the 1st Workshop on Serverless at the
Edge (pp. 1-8).

[25] Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E.,
... & Mishra, P. (2019). The design and operation of CloudLab. In 2019
USENIX annual technical conference (USENIX ATC 19) (pp. 1-14).

[26] https://github.com/openfaas/templates
[27] https://github.com/fission/environments
[28] https://github.com/vmware-archive/runtimes
[29] Python GlobalInterpreterLock https://wiki.python.org/moin/

GlobalInterpreterLock

David Balla is a PhD candidate at the Budapest
University of Technology and Economics (BME),
Department of Telecommunications and Artificial
Intelligence, High Speed Networks Laboratory. His
research interests include low-latency and real-time
networking and cloud computing solutions. His cur-
rent research focuses on cloud-native software archi-
tectures and real-time FaaS systems.

Markosz Maliosz is an associate professor at the
Budapest University of Technology and Economics
(BME), Department of Telecommunications and Ar-
tificial Intelligence, High Speed Networks Labora-
tory. He received his PhD (2006) and MSc (1998)
degrees in Computer Science in the field of com-
munication systems from BME. He worked as guest
researcher and consultant at telecommunication in
the areas of network performance evaluation and
time-sensitive networks. His research interests in-
clude network architectures and design, optimization

techniques and traffic engineering, his current research activity focuses on
network virtualization and optimization, and cloud networking. He is member
of the Scientific Association for Infocommunications (HTE), Hungary.

Csaba Simon obtained his PhD degree at Budapest
University of Technology and Economics, Depart-
ment of Telecommunications and Artificial Intelli-
gence and he is working at the same Department
since 2001. His research interests are mostly related
to 5G and 6G Systems, virtualization, cloud native
applications and network and service management.



Completion Time Prediction of
Open Source FaaS Functions

JUNE 2025 • VOLUME XVII • NUMBER 260

INFOCOMMUNICATIONS JOURNAL

 [1] Agache, A., Brooker, M., Iordache, A., Liguori, A., Neugebauer, 
R., Piwonka, P., & Popa, D. M. (2020). Firecracker: Lightweight 
virtualization for serverless applications. In 17th USENIX symposium 
on networked systems design and implementation (NSDI 20) (pp. 
419–434).

 [2] Randazzo, A., & Tinnirello, I. (2019, October). Kata containers: An 
emerging architecture for enabling mec services in fast and secure 
way. In 2019 Sixth International Conference on Internet of Things: 
Systems, Management and Security (IOTSMS) (pp. 209–214). IEEE.

 [3] Manco, F., Lupu, C., Schmidt, F., Mendes, J., Kuenzer, S., Sati, S., 
... & Huici, F. (2017, October). My VM is Lighter (and Safer) than 
your Container. In Proceedings of the 26th Symposium on Operating 
Systems Principles (pp. 218–233).

 [4] https://openfaas.com
 [5] https://fission.io/
 [6] https://github.com/vmware-archive/kubeless
 [7] https://nuclio.io/
 [8] AWS Lambda pricing, https://aws.amazon.com/lambda/pricing
 [9] Azure Functions pricing, 
  https://azure.microsoft.com/pricing/details/functions/
 [10] Pricing Overview, 
  https://cloud.google.com/functions/pricing-overview 
 [11] Function Compute Pricing, 
  https://www.alibabacloud.com/product/function-compute/pricing
[12] Balla, D., Maliosz, M., & Simon, C. (2021, November). Estimating 

function completion time distribution in open source FaaS. In 2021 
IEEE 10th International Conference on Cloud Networking (CloudNet) 
(pp. 65–71). IEEE.

[13] Motta, M. A. C., Carvalho, L. R., Rosa, M. J. F., & Araujo, A. P. F. 
(2022). Comparison of faas platform performance in private clouds. 
Proceedings of the 12th CLOSER, 109–120.

 [14] Ma, P., Shi, P., & Yi, G. (2023, October). Feature and Performance 
Comparison of FaaS Platforms. In 2023 IEEE 14th International 
Conference on Software Engineering and Service Science (ICSESS) 
(pp. 239–243). IEEE.

[15] Barcelona-Pons, D., & García-López, P. (2021). Benchmarking paral- 
lelism in FaaS platforms. Future Generation Computer Systems, 124, 
268–284.

[16] Grambow, M., Pfandzelter, T., Burchard, L., Schubert, C., Zhao, M., & 
Bermbach, D. (2021, October). Befaas: An application-centric bench- 
marking framework for faas platforms. In 2021 IEEE International 
Conference on Cloud Engineering (IC2E) (pp. 1–8). IEEE.

[17] Copik, M., Kwasniewski, G., Besta, M., Podstawski, M., & Hoefler, T. 
(2021, November). Sebs: A serverless benchmark suite for function-
as-a-service computing. In Proceedings of the 22nd International 
Middleware Conference (pp. 64–78).

 [18] Maissen, P., Felber, P., Kropf, P., & Schiavoni, V. (2020, July).
Faasdom: A benchmark suite for serverless computing. In Proceedings 
of the 14th ACM international conference on distributed and event-
based systems (pp. 73–84).

[19] Mahmoudi, N., & Khazaei, H. (2021). Simfaas: A performance 
simulator for serverless computing platforms. arXiv preprint 
arXiv:2102.08904.

[20] Hanaforoosh, M., Ashtiani, M., & Azgomi, M. A. (2023, May). MFS: 
A serverless FaaS simulator. In 2023 9th International Conference on 
Web Research (ICWR) (pp. 81–86). IEEE.

[21] Ristov, S., Hautz, M., Hollaus, C., & Prodan, R. (2022, November). 
SimLess: simulate serverless workflows and their twins and siblings 
in federated FaaS. In Proceedings of the 13th Symposium on Cloud 
Computing (pp. 323–339).

[22] Manner, J., Endreß, M., Böhm, S., & Wirtz, G. (2021, September). 
Optimizing cloud function configuration via local simulations. In 
2021 IEEE 14th International Conference on Cloud Computing 
(CLOUD) (pp. 168–178). IEEE.

[23] Matricardi, A., Bocci, A., Forti, S., & Brogi, A. (2023,August).
Simulating FaaS Orchestrations In The Cloud-Edge Continuum. 
In Proceedings of the 3rd Workshop on Flexible Resource and 
Application Management on the Edge (pp. 19–26).

References [24] Filippini, F., Calmi, N., Cavenaghi, L., Petriglia, E., Savi, M., 
& Ciavotta, M. (2024, June). Analysis and Evaluation of Load 
Management Strategies in a Decentralized FaaS Environment: A 
Simulation-Based Framework. In Proceedings of the 1st Workshop on 
Serverless at the Edge (pp. 1–8).

[25] Duplyakin, D., Ricci, R., Maricq, A., Wong, G., Duerig, J., Eide, E., ... 
& Mishra, P. (2019). The design and operation of CloudLab. In 2019 
USENIX annual technical conference (USENIX ATC 19) (pp. 1–14).

[26] https://github.com/openfaas/templates
[27] https://github.com/fission/environments
[28] https://github.com/vmware-archive/runtimes
[29] Python GlobalInterpreterLock 
  https://wiki.python.org/moin/GlobalInterpreterLock

David Balla is a PhD candidate at the Budapest Uni-
versity of Technology and Economics (BME), Depart-
ment of Telecommunications and Artificial Intelli-
gence, High Speed Networks Laboratory. His research 
interests include low-latency and real-time networking 
and cloud computing solutions. His current research 
focuses on cloud-native software architectures and 
real-time FaaS systems.

Markosz Maliosz is an associate professor at the 
Budapest University of Technology and Economics 
(BME), Department of Telecommunications and Arti-
ficial Intelligence, High Speed Networks Laboratory. 
He received his PhD (2006) and MSc (1998) degrees 
in Computer Science in the field of communication 
systems from BME. He worked as guest researcher 
and consultant at telecommunication in the areas of 
network performance evaluation and time-sensitive 
networks. His research interests include network ar-

chitectures and design, optimization techniques and traffic engineering, his 
current research activity focuses on network virtualization and optimization, 
and cloud networking. He is member of the Scientific Association for Info-
communications (HTE), Hungary.

Csaba Simon obtained his PhD degree at Budapest 
University of Technology and Economics, Department 
of Telecommunications and Artificial Intelligence and 
he is working at the same Department since 2001. His 
research interests are mostly related to 5G and 6G Sys-
tems, virtualization, cloud native applications and net-
work and service management.

https://openfaas.com
https://openfaas.com
https://openfaas.com
https://nuclio.io/
https://aws.amazon.com/lambda/pricing
https://azure.microsoft.com/pricing/details/functions/
https://cloud.google.com/functions/pricing-overview 
https://www.alibabacloud.com/product/function-compute/pricing
https://arxiv.org/abs/2102.08904
https://github.com/openfaas/templates
https://github.com/fission/environments
https://github.com/vmware-archive/runtimes
https://wiki.python.org/moin/GlobalInterpreterLock



