
IP Packet Forwarding Performance Comparison
of the FD.io VPP and the Linux Kernel

INFOCOMMUNICATIONS JOURNAL

JUNE 2025 • VOLUME XVII • NUMBER 2 35

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1


Abstract— There are numerous free software solutions for IPv4

or IPv6 packet forwarding. The Fast Data Project / Vector Packet
Processing (FD.io VPP) is a novel and prominent solution. This
paper investigates its performance and scalability compared to
that of the Linux kernel. The investigation was conducted in
accordance with the requirements outlined in the relevant Request
for Comments (RFC) documents (RFC 2544, RFC 4814, and RFC
5180) using the siitperf measurement software. Two different test
environments were used to eliminate the potential hardware-
specific side effects and to gain insight into the performance and
scalability of the IPv4 and IPv6 packet forwarding capability of
the two investigated solutions. It was found that FD.io VPP
outperformed the Linux kernel by approximately an order of
magnitude. The configuration of FD.io VPP, along with the details
of the measurements, are provided, and the results are presented
and analyzed in the paper.

Index Terms— FD.io VPP, IPv4, IPv6, Linux kernel, packet

forwarding

I. INTRODUCTION
HE Internet is an essential part of our life. All data of our
daily communication is carried in packets by the Internet
Protocol (IP). At the time of writing, there are two versions

of IP: the older IPv4 version and the newer, increasingly more
adopted IPv6. For IPv4 and IPv6 packet forwarding, there are
numerous free software solutions, such as the Linux kernel, and
one with exceptionally high performance called FD.io VPP.
This article focuses on FD.io VPP, as its developers claim: “The
Fast Data Project (FD.io) is an open-source project aimed at
providing the world's fastest and most secure networking data
plane through Vector Packet Processing (VPP).” [1]. We
examine this proposition from a performance perspective. In
this paper, we compare the IPv4 and IPv6 packet forwarding
performance and scalability of the Linux kernel and FD.io VPP.
By scalability, we refer to how their performance increases with
the number of CPU cores utilized. First, we complete the
performance and scalability test of the Linux kernel to establish
a basis for comparison. Then we continue with the examination
of the performance and scalability of FD.io VPP. For our tests,
we use two different hardware environments.

The remainder of this paper is organized as follows. In
section II, a brief introduction is given to the theoretical
background of the performance measurements of network
interconnect devices on the basis of the relevant Internet

Submittted November 18, 2024.
M. Kosák is with the Cybersecurity and Network Technologies Research

Group of the Faculty of Mechanical Engineering, Informatics, and Electrical

Engineering Task Force (IETF) Request for Comments (RFC)
documents. Section III presents a short survey of related works.
Section IV is an overview of the software used for our
measurements. Section V discloses the relevant details of our
measurement environments. In section VI, our measurement
results are presented and analyzed. Section VII covers the
discussion and our plans for future research. Section VIII
concludes our paper.

II. THEORETICAL BACKGROUND

A. RFC 2544
The main purpose of the RFC 2544 [2] is to define how to

measure the performance of network interconnect devices in an
objective and repeatable way. The most important aspects
include measurement setup, Device Under Test (DUT) setup,
frame format and frames sizes, and testing duration.

The RFC lists three different measurement setups of which
we used the first one.

The RFC recommends the usage of the following Ethernet
frame sizes: 64, 128, 256, 512, 1024, 1280, 1518. It defines
TCP/IP over Ethernet frame formats. They are: learning frame,
routing update frame, management query frame and test frame.
The test frame is used for different benchmarking tests like
throughput, latency, frame loss rate, back-to-back frames,
system recovery, and reset. From among them, throughput is
the most essential one.

To measure the performance of routers, an IP address range
was reserved, 198.18.0.0/15. The lower half of the range
(198.18.0.0/16) was used on the left side of the configuration
shown in Figure 1, and the upper half (198.19.0.0/16) on the
right side. The interfaces of the DUT were assigned the IP
address ending in 1 of the domains (198.18.0.1 and 198.19.0.1).

It should be noted that RFC 2544 requires testing with
bidirectional traffic and it was used in all our measurements.

B. RFC 4814
RFC 4814 [3] covers several different topics. During our

measurements, we used the pseudorandom port numbers, which
are recommended in section 4.5 of the aforementioned RFC.
The network cards in use today are capable of distributing
interrupts caused by the packet arrivals to different CPU cores
for processing. This is done using a hash function that takes the
source and destination IP addresses, as well as the TCP or UDP
source and destination port numbers in incoming packets, as

Engineering, Széchenyi István University, Egyetem tér 1, Győr, H-9026,
Hungary (e-mail: kosakmeli@gmail.com).

G. Lencse is with the Department of Telecommunications, Széchenyi István
University, Egyetem tér 1, Győr, H-9026, Hungary (e-mail: lencse@sze.hu).

IP Packet Forwarding Performance Comparison
of the FD.io VPP and the Linux Kernel

M. Kosák, G. Lencse

T

DOI: 10.36244/ICJ.2025.2.5

IP Packet Forwarding Performance Comparison
of the FD.io VPP and the Linux Kernel

Melinda Kosák, and Gábor Lencse

Abstract—There are numerous free software solutions
for IPv4 or IPv6 packet forwarding. The Fast Data Project /
Vector Packet Processing (FD.io VPP) is a novel and prominent
solution. This paper investigates its performance and scalability
compared to that of the Linux kernel. The investigation was
conducted in accordance with the requirements outlined in the
relevant Request for Comments (RFC) documents (RFC 2544,
RFC 4814, and RFC 5180) using the siitperf measurement
software. Two different test environments were used to
eliminate the potential hardware-specific side effects and to
gain insight into the performance and scalability of the IPv4
and IPv6 packet forwarding capability of the two investigated
solutions. It was found that FD.io VPP outperformed the
Linux kernel by approximately an order of magnitude. The
configuration of FD.io VPP, along with the details of the
measurements, are provided, and the results are presented and
analyzed in the paper.

Index Terms—FD.io VPP, IPv4, IPv6, Linux kernel, packet
forwarding

Submittted November 18, 2024.
M. Kosák is with the Cybersecurity and Network Technologies Research

Group of the Faculty of Mechanical Engineering, Informatics, and Electrical
Engineering, Széchenyi István University, Győr, Hungary (e-mail:
kosakmeli@gmail.com).

G. Lencse is with the Department of Telecommunications, Széchenyi
István University, Győr, Hungary (e-mail: lencse@sze.hu).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1


Abstract— There are numerous free software solutions for IPv4

or IPv6 packet forwarding. The Fast Data Project / Vector Packet
Processing (FD.io VPP) is a novel and prominent solution. This
paper investigates its performance and scalability compared to
that of the Linux kernel. The investigation was conducted in
accordance with the requirements outlined in the relevant Request
for Comments (RFC) documents (RFC 2544, RFC 4814, and RFC
5180) using the siitperf measurement software. Two different test
environments were used to eliminate the potential hardware-
specific side effects and to gain insight into the performance and
scalability of the IPv4 and IPv6 packet forwarding capability of
the two investigated solutions. It was found that FD.io VPP
outperformed the Linux kernel by approximately an order of
magnitude. The configuration of FD.io VPP, along with the details
of the measurements, are provided, and the results are presented
and analyzed in the paper.

Index Terms— FD.io VPP, IPv4, IPv6, Linux kernel, packet

forwarding

I. INTRODUCTION
HE Internet is an essential part of our life. All data of our
daily communication is carried in packets by the Internet
Protocol (IP). At the time of writing, there are two versions

of IP: the older IPv4 version and the newer, increasingly more
adopted IPv6. For IPv4 and IPv6 packet forwarding, there are
numerous free software solutions, such as the Linux kernel, and
one with exceptionally high performance called FD.io VPP.
This article focuses on FD.io VPP, as its developers claim: “The
Fast Data Project (FD.io) is an open-source project aimed at
providing the world's fastest and most secure networking data
plane through Vector Packet Processing (VPP).” [1]. We
examine this proposition from a performance perspective. In
this paper, we compare the IPv4 and IPv6 packet forwarding
performance and scalability of the Linux kernel and FD.io VPP.
By scalability, we refer to how their performance increases with
the number of CPU cores utilized. First, we complete the
performance and scalability test of the Linux kernel to establish
a basis for comparison. Then we continue with the examination
of the performance and scalability of FD.io VPP. For our tests,
we use two different hardware environments.

The remainder of this paper is organized as follows. In
section II, a brief introduction is given to the theoretical
background of the performance measurements of network
interconnect devices on the basis of the relevant Internet

Submittted November 18, 2024.
M. Kosák is with the Cybersecurity and Network Technologies Research

Group of the Faculty of Mechanical Engineering, Informatics, and Electrical

Engineering Task Force (IETF) Request for Comments (RFC)
documents. Section III presents a short survey of related works.
Section IV is an overview of the software used for our
measurements. Section V discloses the relevant details of our
measurement environments. In section VI, our measurement
results are presented and analyzed. Section VII covers the
discussion and our plans for future research. Section VIII
concludes our paper.

II. THEORETICAL BACKGROUND

A. RFC 2544
The main purpose of the RFC 2544 [2] is to define how to

measure the performance of network interconnect devices in an
objective and repeatable way. The most important aspects
include measurement setup, Device Under Test (DUT) setup,
frame format and frames sizes, and testing duration.

The RFC lists three different measurement setups of which
we used the first one.

The RFC recommends the usage of the following Ethernet
frame sizes: 64, 128, 256, 512, 1024, 1280, 1518. It defines
TCP/IP over Ethernet frame formats. They are: learning frame,
routing update frame, management query frame and test frame.
The test frame is used for different benchmarking tests like
throughput, latency, frame loss rate, back-to-back frames,
system recovery, and reset. From among them, throughput is
the most essential one.

To measure the performance of routers, an IP address range
was reserved, 198.18.0.0/15. The lower half of the range
(198.18.0.0/16) was used on the left side of the configuration
shown in Figure 1, and the upper half (198.19.0.0/16) on the
right side. The interfaces of the DUT were assigned the IP
address ending in 1 of the domains (198.18.0.1 and 198.19.0.1).

It should be noted that RFC 2544 requires testing with
bidirectional traffic and it was used in all our measurements.

B. RFC 4814
RFC 4814 [3] covers several different topics. During our

measurements, we used the pseudorandom port numbers, which
are recommended in section 4.5 of the aforementioned RFC.
The network cards in use today are capable of distributing
interrupts caused by the packet arrivals to different CPU cores
for processing. This is done using a hash function that takes the
source and destination IP addresses, as well as the TCP or UDP
source and destination port numbers in incoming packets, as

Engineering, Széchenyi István University, Egyetem tér 1, Győr, H-9026,
Hungary (e-mail: kosakmeli@gmail.com).

G. Lencse is with the Department of Telecommunications, Széchenyi István
University, Egyetem tér 1, Győr, H-9026, Hungary (e-mail: lencse@sze.hu).

IP Packet Forwarding Performance Comparison
of the FD.io VPP and the Linux Kernel

M. Kosák, G. Lencse

T

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1


Abstract— There are numerous free software solutions for IPv4

or IPv6 packet forwarding. The Fast Data Project / Vector Packet
Processing (FD.io VPP) is a novel and prominent solution. This
paper investigates its performance and scalability compared to
that of the Linux kernel. The investigation was conducted in
accordance with the requirements outlined in the relevant Request
for Comments (RFC) documents (RFC 2544, RFC 4814, and RFC
5180) using the siitperf measurement software. Two different test
environments were used to eliminate the potential hardware-
specific side effects and to gain insight into the performance and
scalability of the IPv4 and IPv6 packet forwarding capability of
the two investigated solutions. It was found that FD.io VPP
outperformed the Linux kernel by approximately an order of
magnitude. The configuration of FD.io VPP, along with the details
of the measurements, are provided, and the results are presented
and analyzed in the paper.

Index Terms— FD.io VPP, IPv4, IPv6, Linux kernel, packet

forwarding

I. INTRODUCTION
HE Internet is an essential part of our life. All data of our
daily communication is carried in packets by the Internet
Protocol (IP). At the time of writing, there are two versions

of IP: the older IPv4 version and the newer, increasingly more
adopted IPv6. For IPv4 and IPv6 packet forwarding, there are
numerous free software solutions, such as the Linux kernel, and
one with exceptionally high performance called FD.io VPP.
This article focuses on FD.io VPP, as its developers claim: “The
Fast Data Project (FD.io) is an open-source project aimed at
providing the world's fastest and most secure networking data
plane through Vector Packet Processing (VPP).” [1]. We
examine this proposition from a performance perspective. In
this paper, we compare the IPv4 and IPv6 packet forwarding
performance and scalability of the Linux kernel and FD.io VPP.
By scalability, we refer to how their performance increases with
the number of CPU cores utilized. First, we complete the
performance and scalability test of the Linux kernel to establish
a basis for comparison. Then we continue with the examination
of the performance and scalability of FD.io VPP. For our tests,
we use two different hardware environments.

The remainder of this paper is organized as follows. In
section II, a brief introduction is given to the theoretical
background of the performance measurements of network
interconnect devices on the basis of the relevant Internet

Submittted November 18, 2024.
M. Kosák is with the Cybersecurity and Network Technologies Research

Group of the Faculty of Mechanical Engineering, Informatics, and Electrical

Engineering Task Force (IETF) Request for Comments (RFC)
documents. Section III presents a short survey of related works.
Section IV is an overview of the software used for our
measurements. Section V discloses the relevant details of our
measurement environments. In section VI, our measurement
results are presented and analyzed. Section VII covers the
discussion and our plans for future research. Section VIII
concludes our paper.

II. THEORETICAL BACKGROUND

A. RFC 2544
The main purpose of the RFC 2544 [2] is to define how to

measure the performance of network interconnect devices in an
objective and repeatable way. The most important aspects
include measurement setup, Device Under Test (DUT) setup,
frame format and frames sizes, and testing duration.

The RFC lists three different measurement setups of which
we used the first one.

The RFC recommends the usage of the following Ethernet
frame sizes: 64, 128, 256, 512, 1024, 1280, 1518. It defines
TCP/IP over Ethernet frame formats. They are: learning frame,
routing update frame, management query frame and test frame.
The test frame is used for different benchmarking tests like
throughput, latency, frame loss rate, back-to-back frames,
system recovery, and reset. From among them, throughput is
the most essential one.

To measure the performance of routers, an IP address range
was reserved, 198.18.0.0/15. The lower half of the range
(198.18.0.0/16) was used on the left side of the configuration
shown in Figure 1, and the upper half (198.19.0.0/16) on the
right side. The interfaces of the DUT were assigned the IP
address ending in 1 of the domains (198.18.0.1 and 198.19.0.1).

It should be noted that RFC 2544 requires testing with
bidirectional traffic and it was used in all our measurements.

B. RFC 4814
RFC 4814 [3] covers several different topics. During our

measurements, we used the pseudorandom port numbers, which
are recommended in section 4.5 of the aforementioned RFC.
The network cards in use today are capable of distributing
interrupts caused by the packet arrivals to different CPU cores
for processing. This is done using a hash function that takes the
source and destination IP addresses, as well as the TCP or UDP
source and destination port numbers in incoming packets, as

Engineering, Széchenyi István University, Egyetem tér 1, Győr, H-9026,
Hungary (e-mail: kosakmeli@gmail.com).

G. Lencse is with the Department of Telecommunications, Széchenyi István
University, Egyetem tér 1, Győr, H-9026, Hungary (e-mail: lencse@sze.hu).

IP Packet Forwarding Performance Comparison
of the FD.io VPP and the Linux Kernel

M. Kosák, G. Lencse

T

https://doi.org/10.36244/ICJ.2025.2.5
mailto:kosakmeli%40gmail.com?subject=
mailto:lencse%40sze.hu?subject=

IP Packet Forwarding Performance Comparison
of the FD.io VPP and the Linux Kernel

JUNE 2025 • VOLUME XVII • NUMBER 236

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

input parameters. This process is called Receive-Side Scaling
(RSS) [4], which aims to achieve scalability. To support RSS,
RFC 4814 recommends the usage of pseudorandom port
numbers. The recommended ranges are:

 for source port numbers: 1024 – 65535
 for destination port numbers: 1 – 49151

C. RFC 5180
RFC 5180 [5] is highly similar to RFC 2544 in several ways,

but while RFC 2544 focused on IPv4, RFC 5180 deals with
IPv6. Similar to IPv4, an IPv6 address space was reserved for
benchmarking. The reserved range is 2001:2::/48. As in RFC
2544, the address range should be halved.

III. RELATED WORK
As for peer-reviewed research papers about measuring IPv4

and IPv6 packet forwarding performance of FD.io VPP
according to the current industry standards laid down by the
RFCs mentioned above, we found only our own conference
paper [6], which is extended in our current paper with further
measurements.

However, several other recent research papers recommended
FD.io VPP for IPv4 or IPv6 packet forwarding.

For example, Slavic and Krajnovic [7] proposed that open-
source software and commodity hardware may replace the
router vendors' products. They recommended the usage of
FD.io VPP and some further software. However, they did not
present any benchmarking measurements that were RFC 2544
or RFC 5180 compliant.

FD.io VPP was used as the packet forwarding solution of a
network emulator called “CNNet” [8].

FD.io VPP is integrated with a custom control plane to
provide a high-performance, low-cost software cloud gateway
for accelerating virtual cloud networks [9]. Although certain
performance data are included in the paper, the testing
conditions are not mentioned. Their measurements were not
RFC 2544 compliant because of the traffic generator used.

Another paper gives an important insight into the issue of
why user-space solutions may outperform the interrupt-based
ones [10].

IV. SOFTWARE USED FOR MEASUREMENTS
In this section, a brief summary is provided on DPDK, the

Linux kernel, Non-Uniform Memory Access (NUMA), FD.io
VPP, and siitperf.

A. DPDK
The Data Plane Development Kit (DPDK) [11] is an open-

source software, with Linux based user platform, that was
designed to improve packet processing speeds. DPDK enables
the rapid development of high-speed data packet networking
applications. DPDK achieves fast packet processing by
consisting of libraries and drivers that bypass the operating
system’s network stack. DPDK-based programs can send and
receive approximately an order of magnitude more packets per
CPU core than those using the Linux kernel [11].

B. Linux kernel
During packet forwarding, the Linux kernel processes

incoming network packets and forwards them to the appropriate
destination. In the Linux kernel, both scalar packet processing
and RSS play an important role in packet delivery. During the
scalar packet processing, the kernel individually processes the
incoming packets. Just one packet is taken by an interrupt
function (by default) from the network interface, then it works
through a series of functions [1]. This method is simple, but its
efficiency can be limited as it requires the same call chain to be
executed for each packet. This can be time-consuming and
place a strain on the processor and caches. With RSS, the kernel
can handle heavy loads more efficiently and distribute packet
processing across multiple CPUs in the system, increasing
performance and reducing latency.

C. Non-Uniform Memory Access
NUMA is a multiprocessor system design where memory

access time depends on the position of memory relative to the
processor: each processor accesses its own local memory faster
than the local memory of another processor [12]. Whereas
NUMA is necessary to support scalability, our results show the
consequences of its usage when a CPU core belongs to a
different NUMA node than the Network Interface Card (NIC)
it communicates with.

D. FD.io VPP
The Fast Data Project (FD.io) [1] introduced Vector Packet

Processing (VPP) that can handle high performance traffic. It
can be used on multiple platforms. Vector packet processing
can receive multiple packets at once and pass this group, known
as a packet vector, to the processing function, which then
processes it, thereby saving time. The Packet Processing Graph
(PPG) is at the heart of the FD.io VPP design. FD.io VPP
collects a vector of packets from the RX rings, up to 256 packets
in a single vector. The received packets are then traversed
through the nodes of the PPG in the vector, with each graph
node representing network processing that is applied to each
packet. FD.io VPP can be used with or without DPDK. We used
it with DPDK.

E. Siitperf
Siitperf [13] was running on our Tester server. The name of

siitperf comes from the fact that it was originally designed to
measure the performance of Stateless IP/ICMP Translation
(SIIT) gateways. Due to its flexibility, it is also suitable for
measuring the performance of IPv4 and IPv6 packet forwarders
(routers). Siitperf uses DPDK to achieve a sufficiently high
performance [13]. It should be noted that siitperf reports the
results as packets per second per direction. When bidirectional
traffic is used, the number of all frames forwarded is double the
value reported.

As siitperf supports the throughput, latency, frame loss rate
and packet delay variation measurement procedures of RFC
8219 [14], and the throughput measurement procedure of RFC
2544 was incorporated in RFC 5180 and then in RFC 8219
without any changes, siitperf could be used for measuring IPv4
and IPv6 throughput according to the requirements of RFC
2544 and RFC 5180, respectively.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

input parameters. This process is called Receive-Side Scaling
(RSS) [4], which aims to achieve scalability. To support RSS,
RFC 4814 recommends the usage of pseudorandom port
numbers. The recommended ranges are:

 for source port numbers: 1024 – 65535
 for destination port numbers: 1 – 49151

C. RFC 5180
RFC 5180 [5] is highly similar to RFC 2544 in several ways,

but while RFC 2544 focused on IPv4, RFC 5180 deals with
IPv6. Similar to IPv4, an IPv6 address space was reserved for
benchmarking. The reserved range is 2001:2::/48. As in RFC
2544, the address range should be halved.

III. RELATED WORK
As for peer-reviewed research papers about measuring IPv4

and IPv6 packet forwarding performance of FD.io VPP
according to the current industry standards laid down by the
RFCs mentioned above, we found only our own conference
paper [6], which is extended in our current paper with further
measurements.

However, several other recent research papers recommended
FD.io VPP for IPv4 or IPv6 packet forwarding.

For example, Slavic and Krajnovic [7] proposed that open-
source software and commodity hardware may replace the
router vendors' products. They recommended the usage of
FD.io VPP and some further software. However, they did not
present any benchmarking measurements that were RFC 2544
or RFC 5180 compliant.

FD.io VPP was used as the packet forwarding solution of a
network emulator called “CNNet” [8].

FD.io VPP is integrated with a custom control plane to
provide a high-performance, low-cost software cloud gateway
for accelerating virtual cloud networks [9]. Although certain
performance data are included in the paper, the testing
conditions are not mentioned. Their measurements were not
RFC 2544 compliant because of the traffic generator used.

Another paper gives an important insight into the issue of
why user-space solutions may outperform the interrupt-based
ones [10].

IV. SOFTWARE USED FOR MEASUREMENTS
In this section, a brief summary is provided on DPDK, the

Linux kernel, Non-Uniform Memory Access (NUMA), FD.io
VPP, and siitperf.

A. DPDK
The Data Plane Development Kit (DPDK) [11] is an open-

source software, with Linux based user platform, that was
designed to improve packet processing speeds. DPDK enables
the rapid development of high-speed data packet networking
applications. DPDK achieves fast packet processing by
consisting of libraries and drivers that bypass the operating
system’s network stack. DPDK-based programs can send and
receive approximately an order of magnitude more packets per
CPU core than those using the Linux kernel [11].

B. Linux kernel
During packet forwarding, the Linux kernel processes

incoming network packets and forwards them to the appropriate
destination. In the Linux kernel, both scalar packet processing
and RSS play an important role in packet delivery. During the
scalar packet processing, the kernel individually processes the
incoming packets. Just one packet is taken by an interrupt
function (by default) from the network interface, then it works
through a series of functions [1]. This method is simple, but its
efficiency can be limited as it requires the same call chain to be
executed for each packet. This can be time-consuming and
place a strain on the processor and caches. With RSS, the kernel
can handle heavy loads more efficiently and distribute packet
processing across multiple CPUs in the system, increasing
performance and reducing latency.

C. Non-Uniform Memory Access
NUMA is a multiprocessor system design where memory

access time depends on the position of memory relative to the
processor: each processor accesses its own local memory faster
than the local memory of another processor [12]. Whereas
NUMA is necessary to support scalability, our results show the
consequences of its usage when a CPU core belongs to a
different NUMA node than the Network Interface Card (NIC)
it communicates with.

D. FD.io VPP
The Fast Data Project (FD.io) [1] introduced Vector Packet

Processing (VPP) that can handle high performance traffic. It
can be used on multiple platforms. Vector packet processing
can receive multiple packets at once and pass this group, known
as a packet vector, to the processing function, which then
processes it, thereby saving time. The Packet Processing Graph
(PPG) is at the heart of the FD.io VPP design. FD.io VPP
collects a vector of packets from the RX rings, up to 256 packets
in a single vector. The received packets are then traversed
through the nodes of the PPG in the vector, with each graph
node representing network processing that is applied to each
packet. FD.io VPP can be used with or without DPDK. We used
it with DPDK.

E. Siitperf
Siitperf [13] was running on our Tester server. The name of

siitperf comes from the fact that it was originally designed to
measure the performance of Stateless IP/ICMP Translation
(SIIT) gateways. Due to its flexibility, it is also suitable for
measuring the performance of IPv4 and IPv6 packet forwarders
(routers). Siitperf uses DPDK to achieve a sufficiently high
performance [13]. It should be noted that siitperf reports the
results as packets per second per direction. When bidirectional
traffic is used, the number of all frames forwarded is double the
value reported.

As siitperf supports the throughput, latency, frame loss rate
and packet delay variation measurement procedures of RFC
8219 [14], and the throughput measurement procedure of RFC
2544 was incorporated in RFC 5180 and then in RFC 8219
without any changes, siitperf could be used for measuring IPv4
and IPv6 throughput according to the requirements of RFC
2544 and RFC 5180, respectively.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1


Abstract— There are numerous free software solutions for IPv4

or IPv6 packet forwarding. The Fast Data Project / Vector Packet
Processing (FD.io VPP) is a novel and prominent solution. This
paper investigates its performance and scalability compared to
that of the Linux kernel. The investigation was conducted in
accordance with the requirements outlined in the relevant Request
for Comments (RFC) documents (RFC 2544, RFC 4814, and RFC
5180) using the siitperf measurement software. Two different test
environments were used to eliminate the potential hardware-
specific side effects and to gain insight into the performance and
scalability of the IPv4 and IPv6 packet forwarding capability of
the two investigated solutions. It was found that FD.io VPP
outperformed the Linux kernel by approximately an order of
magnitude. The configuration of FD.io VPP, along with the details
of the measurements, are provided, and the results are presented
and analyzed in the paper.

Index Terms— FD.io VPP, IPv4, IPv6, Linux kernel, packet

forwarding

I. INTRODUCTION
HE Internet is an essential part of our life. All data of our
daily communication is carried in packets by the Internet
Protocol (IP). At the time of writing, there are two versions

of IP: the older IPv4 version and the newer, increasingly more
adopted IPv6. For IPv4 and IPv6 packet forwarding, there are
numerous free software solutions, such as the Linux kernel, and
one with exceptionally high performance called FD.io VPP.
This article focuses on FD.io VPP, as its developers claim: “The
Fast Data Project (FD.io) is an open-source project aimed at
providing the world's fastest and most secure networking data
plane through Vector Packet Processing (VPP).” [1]. We
examine this proposition from a performance perspective. In
this paper, we compare the IPv4 and IPv6 packet forwarding
performance and scalability of the Linux kernel and FD.io VPP.
By scalability, we refer to how their performance increases with
the number of CPU cores utilized. First, we complete the
performance and scalability test of the Linux kernel to establish
a basis for comparison. Then we continue with the examination
of the performance and scalability of FD.io VPP. For our tests,
we use two different hardware environments.

The remainder of this paper is organized as follows. In
section II, a brief introduction is given to the theoretical
background of the performance measurements of network
interconnect devices on the basis of the relevant Internet

Submittted November 18, 2024.
M. Kosák is with the Cybersecurity and Network Technologies Research

Group of the Faculty of Mechanical Engineering, Informatics, and Electrical

Engineering Task Force (IETF) Request for Comments (RFC)
documents. Section III presents a short survey of related works.
Section IV is an overview of the software used for our
measurements. Section V discloses the relevant details of our
measurement environments. In section VI, our measurement
results are presented and analyzed. Section VII covers the
discussion and our plans for future research. Section VIII
concludes our paper.

II. THEORETICAL BACKGROUND

A. RFC 2544
The main purpose of the RFC 2544 [2] is to define how to

measure the performance of network interconnect devices in an
objective and repeatable way. The most important aspects
include measurement setup, Device Under Test (DUT) setup,
frame format and frames sizes, and testing duration.

The RFC lists three different measurement setups of which
we used the first one.

The RFC recommends the usage of the following Ethernet
frame sizes: 64, 128, 256, 512, 1024, 1280, 1518. It defines
TCP/IP over Ethernet frame formats. They are: learning frame,
routing update frame, management query frame and test frame.
The test frame is used for different benchmarking tests like
throughput, latency, frame loss rate, back-to-back frames,
system recovery, and reset. From among them, throughput is
the most essential one.

To measure the performance of routers, an IP address range
was reserved, 198.18.0.0/15. The lower half of the range
(198.18.0.0/16) was used on the left side of the configuration
shown in Figure 1, and the upper half (198.19.0.0/16) on the
right side. The interfaces of the DUT were assigned the IP
address ending in 1 of the domains (198.18.0.1 and 198.19.0.1).

It should be noted that RFC 2544 requires testing with
bidirectional traffic and it was used in all our measurements.

B. RFC 4814
RFC 4814 [3] covers several different topics. During our

measurements, we used the pseudorandom port numbers, which
are recommended in section 4.5 of the aforementioned RFC.
The network cards in use today are capable of distributing
interrupts caused by the packet arrivals to different CPU cores
for processing. This is done using a hash function that takes the
source and destination IP addresses, as well as the TCP or UDP
source and destination port numbers in incoming packets, as

Engineering, Széchenyi István University, Egyetem tér 1, Győr, H-9026,
Hungary (e-mail: kosakmeli@gmail.com).

G. Lencse is with the Department of Telecommunications, Széchenyi István
University, Egyetem tér 1, Győr, H-9026, Hungary (e-mail: lencse@sze.hu).

IP Packet Forwarding Performance Comparison
of the FD.io VPP and the Linux Kernel

M. Kosák, G. Lencse

T

IP Packet Forwarding Performance Comparison
of the FD.io VPP and the Linux Kernel

INFOCOMMUNICATIONS JOURNAL

JUNE 2025 • VOLUME XVII • NUMBER 2 37

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

Siitperf is a collection of binaries and bash shell scripts. The
binaries execute an elementary step of the given measurement
procedure. For example, the siitperf-tp binary performs a 60-
second long throughput test, and the binary-rate-alg.sh script
performs the binary search by calling the siitperf-tp binary and
providing the appropriate parameter values as command line
arguments. In contrast, other parameters that do not change
during the consecutive steps of the binary search are read from
the siitperf.conf configuration file.

As required by the throughput measurement procedures of
RFC 2544 or RFC 5180, siitperf-tp sends bidirectional IPv4 or
IPv6 traffic and counts the received frames. Based on the
reported values, the shell script determines throughput, which
is the highest frame rate at which the DUT can forward all test
frames without loss.

Further details of the design, implementation, operation and
performance of siitperf can be found in several research papers.
The original design, which relied on fixed port numbers, was
disclosed in [13]. The extension to support RFC 4814
pseudorandom port numbers was documented in [15]. The
accuracy of siitperf was checked by comparing the IPv4
throughput of the same DUT determined by siitperf and the
RFC 2544-compliant commercial Anritsu MP1590B Network
Performance Tester [16]. The theory and practice of extending
siitperf for stateful tests was published in [17]. Finally, support
for pseudorandom IP addresses was added, as described in [18].

V. TEST ENVIRONMENT

A. The Structure of the Test Network
Two test systems were used. The first one consisted of Dell

PowerEdge R620 servers. Each had two 6-core Intel Xeon E5-
2620 processors and 32 GB 1600 MHz DDR3 SDRAM
configured as 1333 MT/s. The second one contained Dell
PowerEdge R730 servers. Each had two 8-core Intel Xeon E5-
2667 v4 CPUs and 128 GB 2666 MHz DDR4 SDRAM
configured as 2400 MT/s. We installed an Intel X540 10G/1G
network interface card (NIC) in each of them, using the two 10
GbE ports for the measurements. The servers were directly
connected with Cat6 UTP patch cables. The test setup is shown
in Fig. 1.

To achieve stable measurement results, we switched off
hyper-threading and set the CPU clock frequency of the servers
to a fixed rate at their nominal clock frequency using the tlp
Linux package, namely to 2 GHz and to 3.2 GHz for the R620
and the R730 servers, respectively.

As for drivers for the 10GbE ports of the X540 NIC, ixgbe
and uio_pci_generic were used with the Linux kernel and with
FD.io.VPP.

It should be noted that all servers used had two NUMA
nodes, where the 10GbE network interfaces and the CPU cores
with even serial numbers (core 0, core 2, core 4, etc.) belonged
to NUMA node 0 and the CPU cores with odd serial numbers
(core 1, core 3, core 5, etc.) belonged to NUMA node 1.

B. Performance of the Tester
As we did not use a commercial network performance tester

to perform the measurements but instead employed our own
software tester called siitperf, which ran on the same type of

servers as the DUT, it was important to avoid the situation that
the Tester could become a bottleneck. To achieve this, we
conducted a loopback test: the two interfaces of the Tester were
interconnected by a direct cable, leaving out the DUT, and a
throughput test was performed. (This was called the “self-test
of the Tester” in our previous papers about siitperf.)

This test was only performed with the R620 Tester using
IPv4. The result was highly stable: 6.03 Mfps. The test was not
repeated with IPv6 traffic because, according to our experience,
it would not make a significant difference. (Please refer to Table
4 and Table 5 of [18].) We did not need to perform the test with
the R730 server because we knew from our previous
experiments that the X540 NIC formed the bottleneck, as it can
do about 7.1-7.2 Mfps. (As already mentioned, these rates were
measured with bidirectional traffic and are to be understood as
per direction rates.)

C. Configuration of FD.io VPP
We followed the installation guide from the official FD.io

webpage [1]. We installed the following packages: libvppinfra,
vpp, vpp-plugin-core, vpp-plugin-dpdk. During FD.io VPP
measurements, we assigned our interfaces to DPDK with the
uio_pci_generic driver. The configuration of FD.io VPP was
done with the following commands:

set interface ip address \
TenGigabitEthernet1/0/0 198.18.0.1/24
set interface ip address \
TenGigabitEthernet1/0/1 198.19.0.1/24
set interface state TenGigabitEthernet1/0/0 up
set interface state TenGigabitEthernet1/0/1 up
set ip neighbor TenGigabitEthernet1/0/0 \
198.18.0.2 24:6e:96:3b:fb:00
set ip neighbor TenGigabitEthernet1/0/1 \
198.19.0.2 24:6e:96:3b:fb:02

The latter two commands were necessary because siitperf
cannot respond to ARP requests. As a result, we had to set the
ARP table entries manually.

The IPv6 configuration was similar, using IPv6 addresses
instead of the IPv4 addresses. In that case we set the NDP table
entries similar to the ARP table entries.

DUT
Dell PowerEdge R620 / R730

Debian Linux 11.7
with 5.10 kernel

Tester
Dell PowerEdge R620 / R730

(running siitperf)
eno1:

198.18.0.2/24
2001:2::2/64

eno2:
198.19.0.2/24
2001:2:0:8000::2/64

eno2:
198.19.0.1/24
2001:2:0:8000::1/64

eno1:
198.18.0.1/24

2001:2::1/64

10G Ethernet with
Cat6 UTP cables

Fig. 1. Test setup for benchmarking FD.io VPP and the Linux kernel.

IP Packet Forwarding Performance Comparison
of the FD.io VPP and the Linux Kernel

JUNE 2025 • VOLUME XVII • NUMBER 238

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

In VPP, for setting the number of CPU cores to be used, we
had to modify the /etc/vpp/startup.conf configuration file. In the
CPU segment, we changed the following settings:

main-core 2 # the main program runs on core 2
corelist-workers 4, 6 # 2 workers (on 4 and 6)

VI. MEASUREMENTS AND RESULTS
As for frame sizes, 64-byte and 84-byte test frames were

used for IPv4 and IPv6 respectively. These are the smallest
frame sizes allowed by siitperf. The rationale behind this choice
was to make the CPU's processing capacity the bottleneck
(limiting the maximum frame rate), rather than the packet
transmission capacity of the network interface card.

It should be noted that since we used a general-purpose
operating system, random events could occur during our
measurements, potentially influencing the results. Therefore,
each test was executed 20 times to achieve statistically reliable
results.

As for summarizing function, both median and average was
used. In the analysis, we primarily relied on median, because it
is less sensitive to outliers than average.

To express the consistent or scattered nature of the results,
we primarily relied on dispersion. It is defined by (1).

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 100% (1)

In addition, we also included the standard deviation.
As mentioned, in Section IV.E, siitperf reports the number

of forwarded packets per direction. Therefore, our results
should be interpreted accordingly (i.e., they should be
multiplied by two to obtain the total number of forwarded
packets per second).

A. Linux Kernel Packet Forwarding Performance of R620
The IPv4 and IPv6 packet forwarding performance of the

Linux kernel was measured as a function of the number of
active CPU cores. The number of active CPU cores was limited

using the maxcpus=n kernel parameter, where n took the values
of 1, 2, 4, 6, 8 and 12.

The IPv4 packet forwarding performance of the Linux
kernel as a function of the number of active CPU cores is shown
in Table I. At first glance, the results show that the performance
of the DUT scaled up well with the increase of the number of
active CPU cores. To facilitate a more detailed analysis of the
results, the second-to-last line of the table shows the
performance relative to having half as many active CPU cores,
while the last line displays the relative scale-up, as defined by
(2).

 𝑆𝑆(𝑑𝑑) = 𝑃𝑃(𝑑𝑑)/𝑃𝑃(1)/𝑑𝑑 (2)

Where n is the number of active CPU cores, and P(n) is the
performance measured (in frames per second) with n active
CPU core. Its theoretical maximum value is 1.

A closer inspection of the results shows the following:

When using 2 CPU cores instead of 1 CPU core, the system
performance did not double, but only increased by a factor of
1.7282. There are two main reasons for this phenomenon:

1. there is a performance cost of running a system with
multiple cores compared to running a system with a
single core,

2. CPU core 0 and the 10GbE Ethernet interfaces used for
measurement belong to NUMA node 0, but CPU core
1 belongs to NUMA node 1, which means that CPU
core 1 can only communicate with the network
interface via core 0, and this communication overhead
reduces the performance.

However, when we used 4 active CPU cores instead of 2,
the performance doubled by a very good approximation (1.992
times). The explanation for this is very simple. The above
factors were already present in the dual core system, so they did
not cause any additional performance degradation in the quad
core system.

TABLE II

THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ
Number of CPU cores 1 2 4 6 8 12
median (fps) 425,782 732,299 1,466,585 2,176,369 2,658,915 3,766,926
minimum (fps) 424,951 726,561 1,374,999 1,999,999 2,617,186 3,761,709
maximum (fps) 426,026 733,467 1,466,974 2,178,284 2,660,414 3,772,095
average (fps) 425,628 731,888 1,461,745 2,156,176 2,656,771 3,766,972
standard deviation 291.61 1,481.93 20,459.50 54,645.21 9,443.81 2,679.58
dispersion (%) 0.25 0.94 6.27 8.19 1.63 0.28
relative to half as many cores -- 1.7199 2.0027 -- 1.8130 1.7308
relative scale-up 1 0.8599 0.8611 0.8519 0.7806 0.7373

TABLE I
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ

Number of CPU cores 1 2 4 6 8 12
median (fps) 442,782 765,223 1,524,287 2,265,108 2,788,933 3,923,150
minimum (fps) 442,352 764,369 1,521,483 2,218,749 2,781,247 3,874,999
maximum (fps) 443,848 768,128 1,525,409 2,268,067 2,790,527 3,929,688
average (fps) 442,889 765,329 1,524,244 2,262,774 2,787,973 3,918,181
standard deviation 363.64 814.01 981.57 10,549.55 2,234.20 1,5163.08
dispersion (%) 0.34 0.49 0.26 2.18 0.33 1.39
relative to half as many cores -- 1.7282 1.9920 -- 1.8297 1.7320
relative scale-up 1 0.8641 0.8606 0.8526 0.7873 0.7384

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

In VPP, for setting the number of CPU cores to be used, we
had to modify the /etc/vpp/startup.conf configuration file. In the
CPU segment, we changed the following settings:

main-core 2 # the main program runs on core 2
corelist-workers 4, 6 # 2 workers (on 4 and 6)

VI. MEASUREMENTS AND RESULTS
As for frame sizes, 64-byte and 84-byte test frames were

used for IPv4 and IPv6 respectively. These are the smallest
frame sizes allowed by siitperf. The rationale behind this choice
was to make the CPU's processing capacity the bottleneck
(limiting the maximum frame rate), rather than the packet
transmission capacity of the network interface card.

It should be noted that since we used a general-purpose
operating system, random events could occur during our
measurements, potentially influencing the results. Therefore,
each test was executed 20 times to achieve statistically reliable
results.

As for summarizing function, both median and average was
used. In the analysis, we primarily relied on median, because it
is less sensitive to outliers than average.

To express the consistent or scattered nature of the results,
we primarily relied on dispersion. It is defined by (1).

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 100% (1)

In addition, we also included the standard deviation.
As mentioned, in Section IV.E, siitperf reports the number

of forwarded packets per direction. Therefore, our results
should be interpreted accordingly (i.e., they should be
multiplied by two to obtain the total number of forwarded
packets per second).

A. Linux Kernel Packet Forwarding Performance of R620
The IPv4 and IPv6 packet forwarding performance of the

Linux kernel was measured as a function of the number of
active CPU cores. The number of active CPU cores was limited

using the maxcpus=n kernel parameter, where n took the values
of 1, 2, 4, 6, 8 and 12.

The IPv4 packet forwarding performance of the Linux
kernel as a function of the number of active CPU cores is shown
in Table I. At first glance, the results show that the performance
of the DUT scaled up well with the increase of the number of
active CPU cores. To facilitate a more detailed analysis of the
results, the second-to-last line of the table shows the
performance relative to having half as many active CPU cores,
while the last line displays the relative scale-up, as defined by
(2).

 𝑆𝑆(𝑑𝑑) = 𝑃𝑃(𝑑𝑑)/𝑃𝑃(1)/𝑑𝑑 (2)

Where n is the number of active CPU cores, and P(n) is the
performance measured (in frames per second) with n active
CPU core. Its theoretical maximum value is 1.

A closer inspection of the results shows the following:

When using 2 CPU cores instead of 1 CPU core, the system
performance did not double, but only increased by a factor of
1.7282. There are two main reasons for this phenomenon:

1. there is a performance cost of running a system with
multiple cores compared to running a system with a
single core,

2. CPU core 0 and the 10GbE Ethernet interfaces used for
measurement belong to NUMA node 0, but CPU core
1 belongs to NUMA node 1, which means that CPU
core 1 can only communicate with the network
interface via core 0, and this communication overhead
reduces the performance.

However, when we used 4 active CPU cores instead of 2,
the performance doubled by a very good approximation (1.992
times). The explanation for this is very simple. The above
factors were already present in the dual core system, so they did
not cause any additional performance degradation in the quad
core system.

TABLE II

THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ
Number of CPU cores 1 2 4 6 8 12
median (fps) 425,782 732,299 1,466,585 2,176,369 2,658,915 3,766,926
minimum (fps) 424,951 726,561 1,374,999 1,999,999 2,617,186 3,761,709
maximum (fps) 426,026 733,467 1,466,974 2,178,284 2,660,414 3,772,095
average (fps) 425,628 731,888 1,461,745 2,156,176 2,656,771 3,766,972
standard deviation 291.61 1,481.93 20,459.50 54,645.21 9,443.81 2,679.58
dispersion (%) 0.25 0.94 6.27 8.19 1.63 0.28
relative to half as many cores -- 1.7199 2.0027 -- 1.8130 1.7308
relative scale-up 1 0.8599 0.8611 0.8519 0.7806 0.7373

TABLE I
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ

Number of CPU cores 1 2 4 6 8 12
median (fps) 442,782 765,223 1,524,287 2,265,108 2,788,933 3,923,150
minimum (fps) 442,352 764,369 1,521,483 2,218,749 2,781,247 3,874,999
maximum (fps) 443,848 768,128 1,525,409 2,268,067 2,790,527 3,929,688
average (fps) 442,889 765,329 1,524,244 2,262,774 2,787,973 3,918,181
standard deviation 363.64 814.01 981.57 10,549.55 2,234.20 1,5163.08
dispersion (%) 0.34 0.49 0.26 2.18 0.33 1.39
relative to half as many cores -- 1.7282 1.9920 -- 1.8297 1.7320
relative scale-up 1 0.8641 0.8606 0.8526 0.7873 0.7384

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

In VPP, for setting the number of CPU cores to be used, we
had to modify the /etc/vpp/startup.conf configuration file. In the
CPU segment, we changed the following settings:

main-core 2 # the main program runs on core 2
corelist-workers 4, 6 # 2 workers (on 4 and 6)

VI. MEASUREMENTS AND RESULTS
As for frame sizes, 64-byte and 84-byte test frames were

used for IPv4 and IPv6 respectively. These are the smallest
frame sizes allowed by siitperf. The rationale behind this choice
was to make the CPU's processing capacity the bottleneck
(limiting the maximum frame rate), rather than the packet
transmission capacity of the network interface card.

It should be noted that since we used a general-purpose
operating system, random events could occur during our
measurements, potentially influencing the results. Therefore,
each test was executed 20 times to achieve statistically reliable
results.

As for summarizing function, both median and average was
used. In the analysis, we primarily relied on median, because it
is less sensitive to outliers than average.

To express the consistent or scattered nature of the results,
we primarily relied on dispersion. It is defined by (1).

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 100% (1)

In addition, we also included the standard deviation.
As mentioned, in Section IV.E, siitperf reports the number

of forwarded packets per direction. Therefore, our results
should be interpreted accordingly (i.e., they should be
multiplied by two to obtain the total number of forwarded
packets per second).

A. Linux Kernel Packet Forwarding Performance of R620
The IPv4 and IPv6 packet forwarding performance of the

Linux kernel was measured as a function of the number of
active CPU cores. The number of active CPU cores was limited

using the maxcpus=n kernel parameter, where n took the values
of 1, 2, 4, 6, 8 and 12.

The IPv4 packet forwarding performance of the Linux
kernel as a function of the number of active CPU cores is shown
in Table I. At first glance, the results show that the performance
of the DUT scaled up well with the increase of the number of
active CPU cores. To facilitate a more detailed analysis of the
results, the second-to-last line of the table shows the
performance relative to having half as many active CPU cores,
while the last line displays the relative scale-up, as defined by
(2).

 𝑆𝑆(𝑑𝑑) = 𝑃𝑃(𝑑𝑑)/𝑃𝑃(1)/𝑑𝑑 (2)

Where n is the number of active CPU cores, and P(n) is the
performance measured (in frames per second) with n active
CPU core. Its theoretical maximum value is 1.

A closer inspection of the results shows the following:

When using 2 CPU cores instead of 1 CPU core, the system
performance did not double, but only increased by a factor of
1.7282. There are two main reasons for this phenomenon:

1. there is a performance cost of running a system with
multiple cores compared to running a system with a
single core,

2. CPU core 0 and the 10GbE Ethernet interfaces used for
measurement belong to NUMA node 0, but CPU core
1 belongs to NUMA node 1, which means that CPU
core 1 can only communicate with the network
interface via core 0, and this communication overhead
reduces the performance.

However, when we used 4 active CPU cores instead of 2,
the performance doubled by a very good approximation (1.992
times). The explanation for this is very simple. The above
factors were already present in the dual core system, so they did
not cause any additional performance degradation in the quad
core system.

TABLE II

THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ
Number of CPU cores 1 2 4 6 8 12
median (fps) 425,782 732,299 1,466,585 2,176,369 2,658,915 3,766,926
minimum (fps) 424,951 726,561 1,374,999 1,999,999 2,617,186 3,761,709
maximum (fps) 426,026 733,467 1,466,974 2,178,284 2,660,414 3,772,095
average (fps) 425,628 731,888 1,461,745 2,156,176 2,656,771 3,766,972
standard deviation 291.61 1,481.93 20,459.50 54,645.21 9,443.81 2,679.58
dispersion (%) 0.25 0.94 6.27 8.19 1.63 0.28
relative to half as many cores -- 1.7199 2.0027 -- 1.8130 1.7308
relative scale-up 1 0.8599 0.8611 0.8519 0.7806 0.7373

TABLE I
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ

Number of CPU cores 1 2 4 6 8 12
median (fps) 442,782 765,223 1,524,287 2,265,108 2,788,933 3,923,150
minimum (fps) 442,352 764,369 1,521,483 2,218,749 2,781,247 3,874,999
maximum (fps) 443,848 768,128 1,525,409 2,268,067 2,790,527 3,929,688
average (fps) 442,889 765,329 1,524,244 2,262,774 2,787,973 3,918,181
standard deviation 363.64 814.01 981.57 10,549.55 2,234.20 1,5163.08
dispersion (%) 0.34 0.49 0.26 2.18 0.33 1.39
relative to half as many cores -- 1.7282 1.9920 -- 1.8297 1.7320
relative scale-up 1 0.8641 0.8606 0.8526 0.7873 0.7384

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

In VPP, for setting the number of CPU cores to be used, we
had to modify the /etc/vpp/startup.conf configuration file. In the
CPU segment, we changed the following settings:

main-core 2 # the main program runs on core 2
corelist-workers 4, 6 # 2 workers (on 4 and 6)

VI. MEASUREMENTS AND RESULTS
As for frame sizes, 64-byte and 84-byte test frames were

used for IPv4 and IPv6 respectively. These are the smallest
frame sizes allowed by siitperf. The rationale behind this choice
was to make the CPU's processing capacity the bottleneck
(limiting the maximum frame rate), rather than the packet
transmission capacity of the network interface card.

It should be noted that since we used a general-purpose
operating system, random events could occur during our
measurements, potentially influencing the results. Therefore,
each test was executed 20 times to achieve statistically reliable
results.

As for summarizing function, both median and average was
used. In the analysis, we primarily relied on median, because it
is less sensitive to outliers than average.

To express the consistent or scattered nature of the results,
we primarily relied on dispersion. It is defined by (1).

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 100% (1)

In addition, we also included the standard deviation.
As mentioned, in Section IV.E, siitperf reports the number

of forwarded packets per direction. Therefore, our results
should be interpreted accordingly (i.e., they should be
multiplied by two to obtain the total number of forwarded
packets per second).

A. Linux Kernel Packet Forwarding Performance of R620
The IPv4 and IPv6 packet forwarding performance of the

Linux kernel was measured as a function of the number of
active CPU cores. The number of active CPU cores was limited

using the maxcpus=n kernel parameter, where n took the values
of 1, 2, 4, 6, 8 and 12.

The IPv4 packet forwarding performance of the Linux
kernel as a function of the number of active CPU cores is shown
in Table I. At first glance, the results show that the performance
of the DUT scaled up well with the increase of the number of
active CPU cores. To facilitate a more detailed analysis of the
results, the second-to-last line of the table shows the
performance relative to having half as many active CPU cores,
while the last line displays the relative scale-up, as defined by
(2).

 𝑆𝑆(𝑑𝑑) = 𝑃𝑃(𝑑𝑑)/𝑃𝑃(1)/𝑑𝑑 (2)

Where n is the number of active CPU cores, and P(n) is the
performance measured (in frames per second) with n active
CPU core. Its theoretical maximum value is 1.

A closer inspection of the results shows the following:

When using 2 CPU cores instead of 1 CPU core, the system
performance did not double, but only increased by a factor of
1.7282. There are two main reasons for this phenomenon:

1. there is a performance cost of running a system with
multiple cores compared to running a system with a
single core,

2. CPU core 0 and the 10GbE Ethernet interfaces used for
measurement belong to NUMA node 0, but CPU core
1 belongs to NUMA node 1, which means that CPU
core 1 can only communicate with the network
interface via core 0, and this communication overhead
reduces the performance.

However, when we used 4 active CPU cores instead of 2,
the performance doubled by a very good approximation (1.992
times). The explanation for this is very simple. The above
factors were already present in the dual core system, so they did
not cause any additional performance degradation in the quad
core system.

TABLE II

THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ
Number of CPU cores 1 2 4 6 8 12
median (fps) 425,782 732,299 1,466,585 2,176,369 2,658,915 3,766,926
minimum (fps) 424,951 726,561 1,374,999 1,999,999 2,617,186 3,761,709
maximum (fps) 426,026 733,467 1,466,974 2,178,284 2,660,414 3,772,095
average (fps) 425,628 731,888 1,461,745 2,156,176 2,656,771 3,766,972
standard deviation 291.61 1,481.93 20,459.50 54,645.21 9,443.81 2,679.58
dispersion (%) 0.25 0.94 6.27 8.19 1.63 0.28
relative to half as many cores -- 1.7199 2.0027 -- 1.8130 1.7308
relative scale-up 1 0.8599 0.8611 0.8519 0.7806 0.7373

TABLE I
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ

Number of CPU cores 1 2 4 6 8 12
median (fps) 442,782 765,223 1,524,287 2,265,108 2,788,933 3,923,150
minimum (fps) 442,352 764,369 1,521,483 2,218,749 2,781,247 3,874,999
maximum (fps) 443,848 768,128 1,525,409 2,268,067 2,790,527 3,929,688
average (fps) 442,889 765,329 1,524,244 2,262,774 2,787,973 3,918,181
standard deviation 363.64 814.01 981.57 10,549.55 2,234.20 1,5163.08
dispersion (%) 0.34 0.49 0.26 2.18 0.33 1.39
relative to half as many cores -- 1.7282 1.9920 -- 1.8297 1.7320
relative scale-up 1 0.8641 0.8606 0.8526 0.7873 0.7384

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

In VPP, for setting the number of CPU cores to be used, we
had to modify the /etc/vpp/startup.conf configuration file. In the
CPU segment, we changed the following settings:

main-core 2 # the main program runs on core 2
corelist-workers 4, 6 # 2 workers (on 4 and 6)

VI. MEASUREMENTS AND RESULTS
As for frame sizes, 64-byte and 84-byte test frames were

used for IPv4 and IPv6 respectively. These are the smallest
frame sizes allowed by siitperf. The rationale behind this choice
was to make the CPU's processing capacity the bottleneck
(limiting the maximum frame rate), rather than the packet
transmission capacity of the network interface card.

It should be noted that since we used a general-purpose
operating system, random events could occur during our
measurements, potentially influencing the results. Therefore,
each test was executed 20 times to achieve statistically reliable
results.

As for summarizing function, both median and average was
used. In the analysis, we primarily relied on median, because it
is less sensitive to outliers than average.

To express the consistent or scattered nature of the results,
we primarily relied on dispersion. It is defined by (1).

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 100% (1)

In addition, we also included the standard deviation.
As mentioned, in Section IV.E, siitperf reports the number

of forwarded packets per direction. Therefore, our results
should be interpreted accordingly (i.e., they should be
multiplied by two to obtain the total number of forwarded
packets per second).

A. Linux Kernel Packet Forwarding Performance of R620
The IPv4 and IPv6 packet forwarding performance of the

Linux kernel was measured as a function of the number of
active CPU cores. The number of active CPU cores was limited

using the maxcpus=n kernel parameter, where n took the values
of 1, 2, 4, 6, 8 and 12.

The IPv4 packet forwarding performance of the Linux
kernel as a function of the number of active CPU cores is shown
in Table I. At first glance, the results show that the performance
of the DUT scaled up well with the increase of the number of
active CPU cores. To facilitate a more detailed analysis of the
results, the second-to-last line of the table shows the
performance relative to having half as many active CPU cores,
while the last line displays the relative scale-up, as defined by
(2).

 𝑆𝑆(𝑑𝑑) = 𝑃𝑃(𝑑𝑑)/𝑃𝑃(1)/𝑑𝑑 (2)

Where n is the number of active CPU cores, and P(n) is the
performance measured (in frames per second) with n active
CPU core. Its theoretical maximum value is 1.

A closer inspection of the results shows the following:

When using 2 CPU cores instead of 1 CPU core, the system
performance did not double, but only increased by a factor of
1.7282. There are two main reasons for this phenomenon:

1. there is a performance cost of running a system with
multiple cores compared to running a system with a
single core,

2. CPU core 0 and the 10GbE Ethernet interfaces used for
measurement belong to NUMA node 0, but CPU core
1 belongs to NUMA node 1, which means that CPU
core 1 can only communicate with the network
interface via core 0, and this communication overhead
reduces the performance.

However, when we used 4 active CPU cores instead of 2,
the performance doubled by a very good approximation (1.992
times). The explanation for this is very simple. The above
factors were already present in the dual core system, so they did
not cause any additional performance degradation in the quad
core system.

TABLE II

THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ
Number of CPU cores 1 2 4 6 8 12
median (fps) 425,782 732,299 1,466,585 2,176,369 2,658,915 3,766,926
minimum (fps) 424,951 726,561 1,374,999 1,999,999 2,617,186 3,761,709
maximum (fps) 426,026 733,467 1,466,974 2,178,284 2,660,414 3,772,095
average (fps) 425,628 731,888 1,461,745 2,156,176 2,656,771 3,766,972
standard deviation 291.61 1,481.93 20,459.50 54,645.21 9,443.81 2,679.58
dispersion (%) 0.25 0.94 6.27 8.19 1.63 0.28
relative to half as many cores -- 1.7199 2.0027 -- 1.8130 1.7308
relative scale-up 1 0.8599 0.8611 0.8519 0.7806 0.7373

TABLE I
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ

Number of CPU cores 1 2 4 6 8 12
median (fps) 442,782 765,223 1,524,287 2,265,108 2,788,933 3,923,150
minimum (fps) 442,352 764,369 1,521,483 2,218,749 2,781,247 3,874,999
maximum (fps) 443,848 768,128 1,525,409 2,268,067 2,790,527 3,929,688
average (fps) 442,889 765,329 1,524,244 2,262,774 2,787,973 3,918,181
standard deviation 363.64 814.01 981.57 10,549.55 2,234.20 1,5163.08
dispersion (%) 0.34 0.49 0.26 2.18 0.33 1.39
relative to half as many cores -- 1.7282 1.9920 -- 1.8297 1.7320
relative scale-up 1 0.8641 0.8606 0.8526 0.7873 0.7384

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

In VPP, for setting the number of CPU cores to be used, we
had to modify the /etc/vpp/startup.conf configuration file. In the
CPU segment, we changed the following settings:

main-core 2 # the main program runs on core 2
corelist-workers 4, 6 # 2 workers (on 4 and 6)

VI. MEASUREMENTS AND RESULTS
As for frame sizes, 64-byte and 84-byte test frames were

used for IPv4 and IPv6 respectively. These are the smallest
frame sizes allowed by siitperf. The rationale behind this choice
was to make the CPU's processing capacity the bottleneck
(limiting the maximum frame rate), rather than the packet
transmission capacity of the network interface card.

It should be noted that since we used a general-purpose
operating system, random events could occur during our
measurements, potentially influencing the results. Therefore,
each test was executed 20 times to achieve statistically reliable
results.

As for summarizing function, both median and average was
used. In the analysis, we primarily relied on median, because it
is less sensitive to outliers than average.

To express the consistent or scattered nature of the results,
we primarily relied on dispersion. It is defined by (1).

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 100% (1)

In addition, we also included the standard deviation.
As mentioned, in Section IV.E, siitperf reports the number

of forwarded packets per direction. Therefore, our results
should be interpreted accordingly (i.e., they should be
multiplied by two to obtain the total number of forwarded
packets per second).

A. Linux Kernel Packet Forwarding Performance of R620
The IPv4 and IPv6 packet forwarding performance of the

Linux kernel was measured as a function of the number of
active CPU cores. The number of active CPU cores was limited

using the maxcpus=n kernel parameter, where n took the values
of 1, 2, 4, 6, 8 and 12.

The IPv4 packet forwarding performance of the Linux
kernel as a function of the number of active CPU cores is shown
in Table I. At first glance, the results show that the performance
of the DUT scaled up well with the increase of the number of
active CPU cores. To facilitate a more detailed analysis of the
results, the second-to-last line of the table shows the
performance relative to having half as many active CPU cores,
while the last line displays the relative scale-up, as defined by
(2).

 𝑆𝑆(𝑑𝑑) = 𝑃𝑃(𝑑𝑑)/𝑃𝑃(1)/𝑑𝑑 (2)

Where n is the number of active CPU cores, and P(n) is the
performance measured (in frames per second) with n active
CPU core. Its theoretical maximum value is 1.

A closer inspection of the results shows the following:

When using 2 CPU cores instead of 1 CPU core, the system
performance did not double, but only increased by a factor of
1.7282. There are two main reasons for this phenomenon:

1. there is a performance cost of running a system with
multiple cores compared to running a system with a
single core,

2. CPU core 0 and the 10GbE Ethernet interfaces used for
measurement belong to NUMA node 0, but CPU core
1 belongs to NUMA node 1, which means that CPU
core 1 can only communicate with the network
interface via core 0, and this communication overhead
reduces the performance.

However, when we used 4 active CPU cores instead of 2,
the performance doubled by a very good approximation (1.992
times). The explanation for this is very simple. The above
factors were already present in the dual core system, so they did
not cause any additional performance degradation in the quad
core system.

TABLE II

THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ
Number of CPU cores 1 2 4 6 8 12
median (fps) 425,782 732,299 1,466,585 2,176,369 2,658,915 3,766,926
minimum (fps) 424,951 726,561 1,374,999 1,999,999 2,617,186 3,761,709
maximum (fps) 426,026 733,467 1,466,974 2,178,284 2,660,414 3,772,095
average (fps) 425,628 731,888 1,461,745 2,156,176 2,656,771 3,766,972
standard deviation 291.61 1,481.93 20,459.50 54,645.21 9,443.81 2,679.58
dispersion (%) 0.25 0.94 6.27 8.19 1.63 0.28
relative to half as many cores -- 1.7199 2.0027 -- 1.8130 1.7308
relative scale-up 1 0.8599 0.8611 0.8519 0.7806 0.7373

TABLE I
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ

Number of CPU cores 1 2 4 6 8 12
median (fps) 442,782 765,223 1,524,287 2,265,108 2,788,933 3,923,150
minimum (fps) 442,352 764,369 1,521,483 2,218,749 2,781,247 3,874,999
maximum (fps) 443,848 768,128 1,525,409 2,268,067 2,790,527 3,929,688
average (fps) 442,889 765,329 1,524,244 2,262,774 2,787,973 3,918,181
standard deviation 363.64 814.01 981.57 10,549.55 2,234.20 1,5163.08
dispersion (%) 0.34 0.49 0.26 2.18 0.33 1.39
relative to half as many cores -- 1.7282 1.9920 -- 1.8297 1.7320
relative scale-up 1 0.8641 0.8606 0.8526 0.7873 0.7384

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

In VPP, for setting the number of CPU cores to be used, we
had to modify the /etc/vpp/startup.conf configuration file. In the
CPU segment, we changed the following settings:

main-core 2 # the main program runs on core 2
corelist-workers 4, 6 # 2 workers (on 4 and 6)

VI. MEASUREMENTS AND RESULTS
As for frame sizes, 64-byte and 84-byte test frames were

used for IPv4 and IPv6 respectively. These are the smallest
frame sizes allowed by siitperf. The rationale behind this choice
was to make the CPU's processing capacity the bottleneck
(limiting the maximum frame rate), rather than the packet
transmission capacity of the network interface card.

It should be noted that since we used a general-purpose
operating system, random events could occur during our
measurements, potentially influencing the results. Therefore,
each test was executed 20 times to achieve statistically reliable
results.

As for summarizing function, both median and average was
used. In the analysis, we primarily relied on median, because it
is less sensitive to outliers than average.

To express the consistent or scattered nature of the results,
we primarily relied on dispersion. It is defined by (1).

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 100% (1)

In addition, we also included the standard deviation.
As mentioned, in Section IV.E, siitperf reports the number

of forwarded packets per direction. Therefore, our results
should be interpreted accordingly (i.e., they should be
multiplied by two to obtain the total number of forwarded
packets per second).

A. Linux Kernel Packet Forwarding Performance of R620
The IPv4 and IPv6 packet forwarding performance of the

Linux kernel was measured as a function of the number of
active CPU cores. The number of active CPU cores was limited

using the maxcpus=n kernel parameter, where n took the values
of 1, 2, 4, 6, 8 and 12.

The IPv4 packet forwarding performance of the Linux
kernel as a function of the number of active CPU cores is shown
in Table I. At first glance, the results show that the performance
of the DUT scaled up well with the increase of the number of
active CPU cores. To facilitate a more detailed analysis of the
results, the second-to-last line of the table shows the
performance relative to having half as many active CPU cores,
while the last line displays the relative scale-up, as defined by
(2).

 𝑆𝑆(𝑑𝑑) = 𝑃𝑃(𝑑𝑑)/𝑃𝑃(1)/𝑑𝑑 (2)

Where n is the number of active CPU cores, and P(n) is the
performance measured (in frames per second) with n active
CPU core. Its theoretical maximum value is 1.

A closer inspection of the results shows the following:

When using 2 CPU cores instead of 1 CPU core, the system
performance did not double, but only increased by a factor of
1.7282. There are two main reasons for this phenomenon:

1. there is a performance cost of running a system with
multiple cores compared to running a system with a
single core,

2. CPU core 0 and the 10GbE Ethernet interfaces used for
measurement belong to NUMA node 0, but CPU core
1 belongs to NUMA node 1, which means that CPU
core 1 can only communicate with the network
interface via core 0, and this communication overhead
reduces the performance.

However, when we used 4 active CPU cores instead of 2,
the performance doubled by a very good approximation (1.992
times). The explanation for this is very simple. The above
factors were already present in the dual core system, so they did
not cause any additional performance degradation in the quad
core system.

TABLE II

THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ
Number of CPU cores 1 2 4 6 8 12
median (fps) 425,782 732,299 1,466,585 2,176,369 2,658,915 3,766,926
minimum (fps) 424,951 726,561 1,374,999 1,999,999 2,617,186 3,761,709
maximum (fps) 426,026 733,467 1,466,974 2,178,284 2,660,414 3,772,095
average (fps) 425,628 731,888 1,461,745 2,156,176 2,656,771 3,766,972
standard deviation 291.61 1,481.93 20,459.50 54,645.21 9,443.81 2,679.58
dispersion (%) 0.25 0.94 6.27 8.19 1.63 0.28
relative to half as many cores -- 1.7199 2.0027 -- 1.8130 1.7308
relative scale-up 1 0.8599 0.8611 0.8519 0.7806 0.7373

TABLE I
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ

Number of CPU cores 1 2 4 6 8 12
median (fps) 442,782 765,223 1,524,287 2,265,108 2,788,933 3,923,150
minimum (fps) 442,352 764,369 1,521,483 2,218,749 2,781,247 3,874,999
maximum (fps) 443,848 768,128 1,525,409 2,268,067 2,790,527 3,929,688
average (fps) 442,889 765,329 1,524,244 2,262,774 2,787,973 3,918,181
standard deviation 363.64 814.01 981.57 10,549.55 2,234.20 1,5163.08
dispersion (%) 0.34 0.49 0.26 2.18 0.33 1.39
relative to half as many cores -- 1.7282 1.9920 -- 1.8297 1.7320
relative scale-up 1 0.8641 0.8606 0.8526 0.7873 0.7384

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

In VPP, for setting the number of CPU cores to be used, we
had to modify the /etc/vpp/startup.conf configuration file. In the
CPU segment, we changed the following settings:

main-core 2 # the main program runs on core 2
corelist-workers 4, 6 # 2 workers (on 4 and 6)

VI. MEASUREMENTS AND RESULTS
As for frame sizes, 64-byte and 84-byte test frames were

used for IPv4 and IPv6 respectively. These are the smallest
frame sizes allowed by siitperf. The rationale behind this choice
was to make the CPU's processing capacity the bottleneck
(limiting the maximum frame rate), rather than the packet
transmission capacity of the network interface card.

It should be noted that since we used a general-purpose
operating system, random events could occur during our
measurements, potentially influencing the results. Therefore,
each test was executed 20 times to achieve statistically reliable
results.

As for summarizing function, both median and average was
used. In the analysis, we primarily relied on median, because it
is less sensitive to outliers than average.

To express the consistent or scattered nature of the results,
we primarily relied on dispersion. It is defined by (1).

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 100% (1)

In addition, we also included the standard deviation.
As mentioned, in Section IV.E, siitperf reports the number

of forwarded packets per direction. Therefore, our results
should be interpreted accordingly (i.e., they should be
multiplied by two to obtain the total number of forwarded
packets per second).

A. Linux Kernel Packet Forwarding Performance of R620
The IPv4 and IPv6 packet forwarding performance of the

Linux kernel was measured as a function of the number of
active CPU cores. The number of active CPU cores was limited

using the maxcpus=n kernel parameter, where n took the values
of 1, 2, 4, 6, 8 and 12.

The IPv4 packet forwarding performance of the Linux
kernel as a function of the number of active CPU cores is shown
in Table I. At first glance, the results show that the performance
of the DUT scaled up well with the increase of the number of
active CPU cores. To facilitate a more detailed analysis of the
results, the second-to-last line of the table shows the
performance relative to having half as many active CPU cores,
while the last line displays the relative scale-up, as defined by
(2).

 𝑆𝑆(𝑑𝑑) = 𝑃𝑃(𝑑𝑑)/𝑃𝑃(1)/𝑑𝑑 (2)

Where n is the number of active CPU cores, and P(n) is the
performance measured (in frames per second) with n active
CPU core. Its theoretical maximum value is 1.

A closer inspection of the results shows the following:

When using 2 CPU cores instead of 1 CPU core, the system
performance did not double, but only increased by a factor of
1.7282. There are two main reasons for this phenomenon:

1. there is a performance cost of running a system with
multiple cores compared to running a system with a
single core,

2. CPU core 0 and the 10GbE Ethernet interfaces used for
measurement belong to NUMA node 0, but CPU core
1 belongs to NUMA node 1, which means that CPU
core 1 can only communicate with the network
interface via core 0, and this communication overhead
reduces the performance.

However, when we used 4 active CPU cores instead of 2,
the performance doubled by a very good approximation (1.992
times). The explanation for this is very simple. The above
factors were already present in the dual core system, so they did
not cause any additional performance degradation in the quad
core system.

TABLE II

THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ
Number of CPU cores 1 2 4 6 8 12
median (fps) 425,782 732,299 1,466,585 2,176,369 2,658,915 3,766,926
minimum (fps) 424,951 726,561 1,374,999 1,999,999 2,617,186 3,761,709
maximum (fps) 426,026 733,467 1,466,974 2,178,284 2,660,414 3,772,095
average (fps) 425,628 731,888 1,461,745 2,156,176 2,656,771 3,766,972
standard deviation 291.61 1,481.93 20,459.50 54,645.21 9,443.81 2,679.58
dispersion (%) 0.25 0.94 6.27 8.19 1.63 0.28
relative to half as many cores -- 1.7199 2.0027 -- 1.8130 1.7308
relative scale-up 1 0.8599 0.8611 0.8519 0.7806 0.7373

TABLE I
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ

Number of CPU cores 1 2 4 6 8 12
median (fps) 442,782 765,223 1,524,287 2,265,108 2,788,933 3,923,150
minimum (fps) 442,352 764,369 1,521,483 2,218,749 2,781,247 3,874,999
maximum (fps) 443,848 768,128 1,525,409 2,268,067 2,790,527 3,929,688
average (fps) 442,889 765,329 1,524,244 2,262,774 2,787,973 3,918,181
standard deviation 363.64 814.01 981.57 10,549.55 2,234.20 1,5163.08
dispersion (%) 0.34 0.49 0.26 2.18 0.33 1.39
relative to half as many cores -- 1.7282 1.9920 -- 1.8297 1.7320
relative scale-up 1 0.8641 0.8606 0.8526 0.7873 0.7384

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

In VPP, for setting the number of CPU cores to be used, we
had to modify the /etc/vpp/startup.conf configuration file. In the
CPU segment, we changed the following settings:

main-core 2 # the main program runs on core 2
corelist-workers 4, 6 # 2 workers (on 4 and 6)

VI. MEASUREMENTS AND RESULTS
As for frame sizes, 64-byte and 84-byte test frames were

used for IPv4 and IPv6 respectively. These are the smallest
frame sizes allowed by siitperf. The rationale behind this choice
was to make the CPU's processing capacity the bottleneck
(limiting the maximum frame rate), rather than the packet
transmission capacity of the network interface card.

It should be noted that since we used a general-purpose
operating system, random events could occur during our
measurements, potentially influencing the results. Therefore,
each test was executed 20 times to achieve statistically reliable
results.

As for summarizing function, both median and average was
used. In the analysis, we primarily relied on median, because it
is less sensitive to outliers than average.

To express the consistent or scattered nature of the results,
we primarily relied on dispersion. It is defined by (1).

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 100% (1)

In addition, we also included the standard deviation.
As mentioned, in Section IV.E, siitperf reports the number

of forwarded packets per direction. Therefore, our results
should be interpreted accordingly (i.e., they should be
multiplied by two to obtain the total number of forwarded
packets per second).

A. Linux Kernel Packet Forwarding Performance of R620
The IPv4 and IPv6 packet forwarding performance of the

Linux kernel was measured as a function of the number of
active CPU cores. The number of active CPU cores was limited

using the maxcpus=n kernel parameter, where n took the values
of 1, 2, 4, 6, 8 and 12.

The IPv4 packet forwarding performance of the Linux
kernel as a function of the number of active CPU cores is shown
in Table I. At first glance, the results show that the performance
of the DUT scaled up well with the increase of the number of
active CPU cores. To facilitate a more detailed analysis of the
results, the second-to-last line of the table shows the
performance relative to having half as many active CPU cores,
while the last line displays the relative scale-up, as defined by
(2).

 𝑆𝑆(𝑑𝑑) = 𝑃𝑃(𝑑𝑑)/𝑃𝑃(1)/𝑑𝑑 (2)

Where n is the number of active CPU cores, and P(n) is the
performance measured (in frames per second) with n active
CPU core. Its theoretical maximum value is 1.

A closer inspection of the results shows the following:

When using 2 CPU cores instead of 1 CPU core, the system
performance did not double, but only increased by a factor of
1.7282. There are two main reasons for this phenomenon:

1. there is a performance cost of running a system with
multiple cores compared to running a system with a
single core,

2. CPU core 0 and the 10GbE Ethernet interfaces used for
measurement belong to NUMA node 0, but CPU core
1 belongs to NUMA node 1, which means that CPU
core 1 can only communicate with the network
interface via core 0, and this communication overhead
reduces the performance.

However, when we used 4 active CPU cores instead of 2,
the performance doubled by a very good approximation (1.992
times). The explanation for this is very simple. The above
factors were already present in the dual core system, so they did
not cause any additional performance degradation in the quad
core system.

TABLE II

THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ
Number of CPU cores 1 2 4 6 8 12
median (fps) 425,782 732,299 1,466,585 2,176,369 2,658,915 3,766,926
minimum (fps) 424,951 726,561 1,374,999 1,999,999 2,617,186 3,761,709
maximum (fps) 426,026 733,467 1,466,974 2,178,284 2,660,414 3,772,095
average (fps) 425,628 731,888 1,461,745 2,156,176 2,656,771 3,766,972
standard deviation 291.61 1,481.93 20,459.50 54,645.21 9,443.81 2,679.58
dispersion (%) 0.25 0.94 6.27 8.19 1.63 0.28
relative to half as many cores -- 1.7199 2.0027 -- 1.8130 1.7308
relative scale-up 1 0.8599 0.8611 0.8519 0.7806 0.7373

TABLE I
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ

Number of CPU cores 1 2 4 6 8 12
median (fps) 442,782 765,223 1,524,287 2,265,108 2,788,933 3,923,150
minimum (fps) 442,352 764,369 1,521,483 2,218,749 2,781,247 3,874,999
maximum (fps) 443,848 768,128 1,525,409 2,268,067 2,790,527 3,929,688
average (fps) 442,889 765,329 1,524,244 2,262,774 2,787,973 3,918,181
standard deviation 363.64 814.01 981.57 10,549.55 2,234.20 1,5163.08
dispersion (%) 0.34 0.49 0.26 2.18 0.33 1.39
relative to half as many cores -- 1.7282 1.9920 -- 1.8297 1.7320
relative scale-up 1 0.8641 0.8606 0.8526 0.7873 0.7384

IP Packet Forwarding Performance Comparison
of the FD.io VPP and the Linux Kernel

INFOCOMMUNICATIONS JOURNAL

JUNE 2025 • VOLUME XVII • NUMBER 2 39

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

Further on, the performance of the 8-core system compared
to a 4-core system is only 1.8297 times higher, and the
comparison of performance of the 12-core system and the 6-
core system shows only a 1.732 times increase. There may
already be other reasons for this degraded increase, such as the
fact that all CPU cores share the same network interfaces and,
as their number increases, they are already interfering with each
other to some extent by competing for the access to the network
interfaces.

In conclusion, we observed that the performance of the
system scaled up well: the throughput of the 12-core system
instead the 1-core system increased from 442,782 fps to
3,923,150 fps, which means an 8.86 times increase.

The results of the throughput measurements for the IPv6
packet forwarding performance of the Linux kernel are shown
in Table II. These results are essentially highly similar to those
in Table I. There are two striking differences:

 The dispersion values are remarkably larger for 4 and
6 CPU cores. This is because one of the tests at
1,375,000 fps frame rate with 4 CPU cores and one of
the tests at 2,000,000 fps frame rate with 6 CPU cores
failed. These may be due to some relatively rare events
in the system. The average is obviously affected by
these outliers, which justifies our usage of median as
summarizing function.

 The IPv6 throughput is slightly lower than the IPv4
throughput. There are two possible root causes for this:
firstly, the frame size was larger for the IPv6
measurements, and secondly, the IPv6 addresses are
four times as long as IPv4 addresses.

B. FD.io VPP Packet Forwarding Performance of R620
In order to measure the throughput of the FD.io VPP IPv4

and IPv6 packet forwarding, we used the CPU core 2 as the
main core and 1 or 2 workers running on CPU cores with even
or odd serial numbers to examine the performance of the test
system and to gain insight into its scalability. When the CPU
cores with even serial numbers were used with a single worker,

we tested both core 4 and core 6 to check if there was a
difference. Then they both were used with two workers. In the
case of CPU cores with the odd serial numbers, the same was
done with core 3, core 5, and finally, with cores 3 and 5.

At the time of our preliminary measurements using FD.io
VPP with 2 workers, it was found that the Tester became the
bottleneck, and thus we could not measure the true performance
of the DUT. However, we considered it highly important to be
able to measure the scalability of FD.io VPP at least up to two
CPU cores. Therefore, the CPU clock frequency was set to 1.2
GHz (instead of 2 GHz, the nominal clock frequency of the
CPU) to be able to perform the measurements using two
workers.

The results of our throughput measurements of the IPv4
packet forwarding performance of FD.io VPP are shown in
Table III. Core 4 and core 6 show nearly identical performance,
with frame rates of 2,091,964 fps and 2,096,376 fps,
respectively. When two workers were used across both cores
the median frame rate roughly doubled to 4,187,904 fps. This
indicates that the system scales efficiently, maximizing
processing capacity without significant bottlenecks. The same
can be said for the CPU cores with odd serial numbers.
However, for those cores, the median value was more than 18%
lower, which is clearly due to using the different NUMA node.

As for the quality of the results, with a single worker thread,
the dispersion is always below 0.3%, so the results are highly
stable. With two worker threads, the dispersion increased
significantly, but still remained below 2%.

The results of our throughput measurements characterizing
the performance of the FD.io VPP IPv6 packet forwarding are
shown in Table IV. These results are basically very similar to
the results in Table III. There is one visible difference: the IPv6
throughput is slightly lower than the IPv4 throughput. The
possible reasons for this were explained in section A.

C. Comparison of the Performance of the Linux kernel and
FD.io VPP using an R620 Server as DUT

The performance and scalability of the Linux kernel and

TABLE III
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2620 @ 1.2GHZ

Used CPU cores 4th 6th 4th & 6th 3rd 5th 3rd & 5th
Number of workers 1 1 2 1 1 2
median (fps) 2,091,964 2,096,376 4,187,904 1,700,940 1,697,002 3,432,319
minimum (fps) 2,089,688 2,093,309 4,183,576 1,699,461 1,695,153 3,390,624
maximum (fps) 2,093,880 2,099,060 4,238,282 1,702,287 1,698,181 3,448,609
average (fps) 2,091,944 2,096,289 4,191,721 1,700,981 1,696,889 3,431,086
standard deviation 1,501.18 1,721.36 12,034.38 849.40 726.75 13,274.60
dispersion (%) 0.20 0.27 1.31 0.17 0.18 1.69

TABLE IV
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2620 @ 1.2GHZ

Used CPU cores 4th 6th 4th & 6th 3rd 5th 3rd & 5th
Number of workers 1 1 2 1 1 2
median (fps) 1,919,142 1,926,082 3,876,009 1,526,365 1,587,369 3,188,186
minimum (fps) 1,916,951 1,923,811 3,866,209 1,517,536 1,585,936 3,124,999
maximum (fps) 1,921,052 1,928,529 3,908,204 1,528,194 1,588,904 3,195,313
average (fps) 1,918,898 1,926,321 3,878,199 1,525,300 1,587,528 3,185,315
standard deviation 1,120.34 1,119.19 10,495.01 3,163.36 746.77 14,657.38
dispersion (%) 0.21 0.24 1.08 0.70 0.19 2.21

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

Further on, the performance of the 8-core system compared
to a 4-core system is only 1.8297 times higher, and the
comparison of performance of the 12-core system and the 6-
core system shows only a 1.732 times increase. There may
already be other reasons for this degraded increase, such as the
fact that all CPU cores share the same network interfaces and,
as their number increases, they are already interfering with each
other to some extent by competing for the access to the network
interfaces.

In conclusion, we observed that the performance of the
system scaled up well: the throughput of the 12-core system
instead the 1-core system increased from 442,782 fps to
3,923,150 fps, which means an 8.86 times increase.

The results of the throughput measurements for the IPv6
packet forwarding performance of the Linux kernel are shown
in Table II. These results are essentially highly similar to those
in Table I. There are two striking differences:

 The dispersion values are remarkably larger for 4 and
6 CPU cores. This is because one of the tests at
1,375,000 fps frame rate with 4 CPU cores and one of
the tests at 2,000,000 fps frame rate with 6 CPU cores
failed. These may be due to some relatively rare events
in the system. The average is obviously affected by
these outliers, which justifies our usage of median as
summarizing function.

 The IPv6 throughput is slightly lower than the IPv4
throughput. There are two possible root causes for this:
firstly, the frame size was larger for the IPv6
measurements, and secondly, the IPv6 addresses are
four times as long as IPv4 addresses.

B. FD.io VPP Packet Forwarding Performance of R620
In order to measure the throughput of the FD.io VPP IPv4

and IPv6 packet forwarding, we used the CPU core 2 as the
main core and 1 or 2 workers running on CPU cores with even
or odd serial numbers to examine the performance of the test
system and to gain insight into its scalability. When the CPU
cores with even serial numbers were used with a single worker,

we tested both core 4 and core 6 to check if there was a
difference. Then they both were used with two workers. In the
case of CPU cores with the odd serial numbers, the same was
done with core 3, core 5, and finally, with cores 3 and 5.

At the time of our preliminary measurements using FD.io
VPP with 2 workers, it was found that the Tester became the
bottleneck, and thus we could not measure the true performance
of the DUT. However, we considered it highly important to be
able to measure the scalability of FD.io VPP at least up to two
CPU cores. Therefore, the CPU clock frequency was set to 1.2
GHz (instead of 2 GHz, the nominal clock frequency of the
CPU) to be able to perform the measurements using two
workers.

The results of our throughput measurements of the IPv4
packet forwarding performance of FD.io VPP are shown in
Table III. Core 4 and core 6 show nearly identical performance,
with frame rates of 2,091,964 fps and 2,096,376 fps,
respectively. When two workers were used across both cores
the median frame rate roughly doubled to 4,187,904 fps. This
indicates that the system scales efficiently, maximizing
processing capacity without significant bottlenecks. The same
can be said for the CPU cores with odd serial numbers.
However, for those cores, the median value was more than 18%
lower, which is clearly due to using the different NUMA node.

As for the quality of the results, with a single worker thread,
the dispersion is always below 0.3%, so the results are highly
stable. With two worker threads, the dispersion increased
significantly, but still remained below 2%.

The results of our throughput measurements characterizing
the performance of the FD.io VPP IPv6 packet forwarding are
shown in Table IV. These results are basically very similar to
the results in Table III. There is one visible difference: the IPv6
throughput is slightly lower than the IPv4 throughput. The
possible reasons for this were explained in section A.

C. Comparison of the Performance of the Linux kernel and
FD.io VPP using an R620 Server as DUT

The performance and scalability of the Linux kernel and

TABLE III
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2620 @ 1.2GHZ

Used CPU cores 4th 6th 4th & 6th 3rd 5th 3rd & 5th
Number of workers 1 1 2 1 1 2
median (fps) 2,091,964 2,096,376 4,187,904 1,700,940 1,697,002 3,432,319
minimum (fps) 2,089,688 2,093,309 4,183,576 1,699,461 1,695,153 3,390,624
maximum (fps) 2,093,880 2,099,060 4,238,282 1,702,287 1,698,181 3,448,609
average (fps) 2,091,944 2,096,289 4,191,721 1,700,981 1,696,889 3,431,086
standard deviation 1,501.18 1,721.36 12,034.38 849.40 726.75 13,274.60
dispersion (%) 0.20 0.27 1.31 0.17 0.18 1.69

TABLE IV
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2620 @ 1.2GHZ

Used CPU cores 4th 6th 4th & 6th 3rd 5th 3rd & 5th
Number of workers 1 1 2 1 1 2
median (fps) 1,919,142 1,926,082 3,876,009 1,526,365 1,587,369 3,188,186
minimum (fps) 1,916,951 1,923,811 3,866,209 1,517,536 1,585,936 3,124,999
maximum (fps) 1,921,052 1,928,529 3,908,204 1,528,194 1,588,904 3,195,313
average (fps) 1,918,898 1,926,321 3,878,199 1,525,300 1,587,528 3,185,315
standard deviation 1,120.34 1,119.19 10,495.01 3,163.36 746.77 14,657.38
dispersion (%) 0.21 0.24 1.08 0.70 0.19 2.21

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

Further on, the performance of the 8-core system compared
to a 4-core system is only 1.8297 times higher, and the
comparison of performance of the 12-core system and the 6-
core system shows only a 1.732 times increase. There may
already be other reasons for this degraded increase, such as the
fact that all CPU cores share the same network interfaces and,
as their number increases, they are already interfering with each
other to some extent by competing for the access to the network
interfaces.

In conclusion, we observed that the performance of the
system scaled up well: the throughput of the 12-core system
instead the 1-core system increased from 442,782 fps to
3,923,150 fps, which means an 8.86 times increase.

The results of the throughput measurements for the IPv6
packet forwarding performance of the Linux kernel are shown
in Table II. These results are essentially highly similar to those
in Table I. There are two striking differences:

 The dispersion values are remarkably larger for 4 and
6 CPU cores. This is because one of the tests at
1,375,000 fps frame rate with 4 CPU cores and one of
the tests at 2,000,000 fps frame rate with 6 CPU cores
failed. These may be due to some relatively rare events
in the system. The average is obviously affected by
these outliers, which justifies our usage of median as
summarizing function.

 The IPv6 throughput is slightly lower than the IPv4
throughput. There are two possible root causes for this:
firstly, the frame size was larger for the IPv6
measurements, and secondly, the IPv6 addresses are
four times as long as IPv4 addresses.

B. FD.io VPP Packet Forwarding Performance of R620
In order to measure the throughput of the FD.io VPP IPv4

and IPv6 packet forwarding, we used the CPU core 2 as the
main core and 1 or 2 workers running on CPU cores with even
or odd serial numbers to examine the performance of the test
system and to gain insight into its scalability. When the CPU
cores with even serial numbers were used with a single worker,

we tested both core 4 and core 6 to check if there was a
difference. Then they both were used with two workers. In the
case of CPU cores with the odd serial numbers, the same was
done with core 3, core 5, and finally, with cores 3 and 5.

At the time of our preliminary measurements using FD.io
VPP with 2 workers, it was found that the Tester became the
bottleneck, and thus we could not measure the true performance
of the DUT. However, we considered it highly important to be
able to measure the scalability of FD.io VPP at least up to two
CPU cores. Therefore, the CPU clock frequency was set to 1.2
GHz (instead of 2 GHz, the nominal clock frequency of the
CPU) to be able to perform the measurements using two
workers.

The results of our throughput measurements of the IPv4
packet forwarding performance of FD.io VPP are shown in
Table III. Core 4 and core 6 show nearly identical performance,
with frame rates of 2,091,964 fps and 2,096,376 fps,
respectively. When two workers were used across both cores
the median frame rate roughly doubled to 4,187,904 fps. This
indicates that the system scales efficiently, maximizing
processing capacity without significant bottlenecks. The same
can be said for the CPU cores with odd serial numbers.
However, for those cores, the median value was more than 18%
lower, which is clearly due to using the different NUMA node.

As for the quality of the results, with a single worker thread,
the dispersion is always below 0.3%, so the results are highly
stable. With two worker threads, the dispersion increased
significantly, but still remained below 2%.

The results of our throughput measurements characterizing
the performance of the FD.io VPP IPv6 packet forwarding are
shown in Table IV. These results are basically very similar to
the results in Table III. There is one visible difference: the IPv6
throughput is slightly lower than the IPv4 throughput. The
possible reasons for this were explained in section A.

C. Comparison of the Performance of the Linux kernel and
FD.io VPP using an R620 Server as DUT

The performance and scalability of the Linux kernel and

TABLE III
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2620 @ 1.2GHZ

Used CPU cores 4th 6th 4th & 6th 3rd 5th 3rd & 5th
Number of workers 1 1 2 1 1 2
median (fps) 2,091,964 2,096,376 4,187,904 1,700,940 1,697,002 3,432,319
minimum (fps) 2,089,688 2,093,309 4,183,576 1,699,461 1,695,153 3,390,624
maximum (fps) 2,093,880 2,099,060 4,238,282 1,702,287 1,698,181 3,448,609
average (fps) 2,091,944 2,096,289 4,191,721 1,700,981 1,696,889 3,431,086
standard deviation 1,501.18 1,721.36 12,034.38 849.40 726.75 13,274.60
dispersion (%) 0.20 0.27 1.31 0.17 0.18 1.69

TABLE IV
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2620 @ 1.2GHZ

Used CPU cores 4th 6th 4th & 6th 3rd 5th 3rd & 5th
Number of workers 1 1 2 1 1 2
median (fps) 1,919,142 1,926,082 3,876,009 1,526,365 1,587,369 3,188,186
minimum (fps) 1,916,951 1,923,811 3,866,209 1,517,536 1,585,936 3,124,999
maximum (fps) 1,921,052 1,928,529 3,908,204 1,528,194 1,588,904 3,195,313
average (fps) 1,918,898 1,926,321 3,878,199 1,525,300 1,587,528 3,185,315
standard deviation 1,120.34 1,119.19 10,495.01 3,163.36 746.77 14,657.38
dispersion (%) 0.21 0.24 1.08 0.70 0.19 2.21

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

Further on, the performance of the 8-core system compared
to a 4-core system is only 1.8297 times higher, and the
comparison of performance of the 12-core system and the 6-
core system shows only a 1.732 times increase. There may
already be other reasons for this degraded increase, such as the
fact that all CPU cores share the same network interfaces and,
as their number increases, they are already interfering with each
other to some extent by competing for the access to the network
interfaces.

In conclusion, we observed that the performance of the
system scaled up well: the throughput of the 12-core system
instead the 1-core system increased from 442,782 fps to
3,923,150 fps, which means an 8.86 times increase.

The results of the throughput measurements for the IPv6
packet forwarding performance of the Linux kernel are shown
in Table II. These results are essentially highly similar to those
in Table I. There are two striking differences:

 The dispersion values are remarkably larger for 4 and
6 CPU cores. This is because one of the tests at
1,375,000 fps frame rate with 4 CPU cores and one of
the tests at 2,000,000 fps frame rate with 6 CPU cores
failed. These may be due to some relatively rare events
in the system. The average is obviously affected by
these outliers, which justifies our usage of median as
summarizing function.

 The IPv6 throughput is slightly lower than the IPv4
throughput. There are two possible root causes for this:
firstly, the frame size was larger for the IPv6
measurements, and secondly, the IPv6 addresses are
four times as long as IPv4 addresses.

B. FD.io VPP Packet Forwarding Performance of R620
In order to measure the throughput of the FD.io VPP IPv4

and IPv6 packet forwarding, we used the CPU core 2 as the
main core and 1 or 2 workers running on CPU cores with even
or odd serial numbers to examine the performance of the test
system and to gain insight into its scalability. When the CPU
cores with even serial numbers were used with a single worker,

we tested both core 4 and core 6 to check if there was a
difference. Then they both were used with two workers. In the
case of CPU cores with the odd serial numbers, the same was
done with core 3, core 5, and finally, with cores 3 and 5.

At the time of our preliminary measurements using FD.io
VPP with 2 workers, it was found that the Tester became the
bottleneck, and thus we could not measure the true performance
of the DUT. However, we considered it highly important to be
able to measure the scalability of FD.io VPP at least up to two
CPU cores. Therefore, the CPU clock frequency was set to 1.2
GHz (instead of 2 GHz, the nominal clock frequency of the
CPU) to be able to perform the measurements using two
workers.

The results of our throughput measurements of the IPv4
packet forwarding performance of FD.io VPP are shown in
Table III. Core 4 and core 6 show nearly identical performance,
with frame rates of 2,091,964 fps and 2,096,376 fps,
respectively. When two workers were used across both cores
the median frame rate roughly doubled to 4,187,904 fps. This
indicates that the system scales efficiently, maximizing
processing capacity without significant bottlenecks. The same
can be said for the CPU cores with odd serial numbers.
However, for those cores, the median value was more than 18%
lower, which is clearly due to using the different NUMA node.

As for the quality of the results, with a single worker thread,
the dispersion is always below 0.3%, so the results are highly
stable. With two worker threads, the dispersion increased
significantly, but still remained below 2%.

The results of our throughput measurements characterizing
the performance of the FD.io VPP IPv6 packet forwarding are
shown in Table IV. These results are basically very similar to
the results in Table III. There is one visible difference: the IPv6
throughput is slightly lower than the IPv4 throughput. The
possible reasons for this were explained in section A.

C. Comparison of the Performance of the Linux kernel and
FD.io VPP using an R620 Server as DUT

The performance and scalability of the Linux kernel and

TABLE III
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2620 @ 1.2GHZ

Used CPU cores 4th 6th 4th & 6th 3rd 5th 3rd & 5th
Number of workers 1 1 2 1 1 2
median (fps) 2,091,964 2,096,376 4,187,904 1,700,940 1,697,002 3,432,319
minimum (fps) 2,089,688 2,093,309 4,183,576 1,699,461 1,695,153 3,390,624
maximum (fps) 2,093,880 2,099,060 4,238,282 1,702,287 1,698,181 3,448,609
average (fps) 2,091,944 2,096,289 4,191,721 1,700,981 1,696,889 3,431,086
standard deviation 1,501.18 1,721.36 12,034.38 849.40 726.75 13,274.60
dispersion (%) 0.20 0.27 1.31 0.17 0.18 1.69

TABLE IV
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2620 @ 1.2GHZ

Used CPU cores 4th 6th 4th & 6th 3rd 5th 3rd & 5th
Number of workers 1 1 2 1 1 2
median (fps) 1,919,142 1,926,082 3,876,009 1,526,365 1,587,369 3,188,186
minimum (fps) 1,916,951 1,923,811 3,866,209 1,517,536 1,585,936 3,124,999
maximum (fps) 1,921,052 1,928,529 3,908,204 1,528,194 1,588,904 3,195,313
average (fps) 1,918,898 1,926,321 3,878,199 1,525,300 1,587,528 3,185,315
standard deviation 1,120.34 1,119.19 10,495.01 3,163.36 746.77 14,657.38
dispersion (%) 0.21 0.24 1.08 0.70 0.19 2.21

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

Further on, the performance of the 8-core system compared
to a 4-core system is only 1.8297 times higher, and the
comparison of performance of the 12-core system and the 6-
core system shows only a 1.732 times increase. There may
already be other reasons for this degraded increase, such as the
fact that all CPU cores share the same network interfaces and,
as their number increases, they are already interfering with each
other to some extent by competing for the access to the network
interfaces.

In conclusion, we observed that the performance of the
system scaled up well: the throughput of the 12-core system
instead the 1-core system increased from 442,782 fps to
3,923,150 fps, which means an 8.86 times increase.

The results of the throughput measurements for the IPv6
packet forwarding performance of the Linux kernel are shown
in Table II. These results are essentially highly similar to those
in Table I. There are two striking differences:

 The dispersion values are remarkably larger for 4 and
6 CPU cores. This is because one of the tests at
1,375,000 fps frame rate with 4 CPU cores and one of
the tests at 2,000,000 fps frame rate with 6 CPU cores
failed. These may be due to some relatively rare events
in the system. The average is obviously affected by
these outliers, which justifies our usage of median as
summarizing function.

 The IPv6 throughput is slightly lower than the IPv4
throughput. There are two possible root causes for this:
firstly, the frame size was larger for the IPv6
measurements, and secondly, the IPv6 addresses are
four times as long as IPv4 addresses.

B. FD.io VPP Packet Forwarding Performance of R620
In order to measure the throughput of the FD.io VPP IPv4

and IPv6 packet forwarding, we used the CPU core 2 as the
main core and 1 or 2 workers running on CPU cores with even
or odd serial numbers to examine the performance of the test
system and to gain insight into its scalability. When the CPU
cores with even serial numbers were used with a single worker,

we tested both core 4 and core 6 to check if there was a
difference. Then they both were used with two workers. In the
case of CPU cores with the odd serial numbers, the same was
done with core 3, core 5, and finally, with cores 3 and 5.

At the time of our preliminary measurements using FD.io
VPP with 2 workers, it was found that the Tester became the
bottleneck, and thus we could not measure the true performance
of the DUT. However, we considered it highly important to be
able to measure the scalability of FD.io VPP at least up to two
CPU cores. Therefore, the CPU clock frequency was set to 1.2
GHz (instead of 2 GHz, the nominal clock frequency of the
CPU) to be able to perform the measurements using two
workers.

The results of our throughput measurements of the IPv4
packet forwarding performance of FD.io VPP are shown in
Table III. Core 4 and core 6 show nearly identical performance,
with frame rates of 2,091,964 fps and 2,096,376 fps,
respectively. When two workers were used across both cores
the median frame rate roughly doubled to 4,187,904 fps. This
indicates that the system scales efficiently, maximizing
processing capacity without significant bottlenecks. The same
can be said for the CPU cores with odd serial numbers.
However, for those cores, the median value was more than 18%
lower, which is clearly due to using the different NUMA node.

As for the quality of the results, with a single worker thread,
the dispersion is always below 0.3%, so the results are highly
stable. With two worker threads, the dispersion increased
significantly, but still remained below 2%.

The results of our throughput measurements characterizing
the performance of the FD.io VPP IPv6 packet forwarding are
shown in Table IV. These results are basically very similar to
the results in Table III. There is one visible difference: the IPv6
throughput is slightly lower than the IPv4 throughput. The
possible reasons for this were explained in section A.

C. Comparison of the Performance of the Linux kernel and
FD.io VPP using an R620 Server as DUT

The performance and scalability of the Linux kernel and

TABLE III
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2620 @ 1.2GHZ

Used CPU cores 4th 6th 4th & 6th 3rd 5th 3rd & 5th
Number of workers 1 1 2 1 1 2
median (fps) 2,091,964 2,096,376 4,187,904 1,700,940 1,697,002 3,432,319
minimum (fps) 2,089,688 2,093,309 4,183,576 1,699,461 1,695,153 3,390,624
maximum (fps) 2,093,880 2,099,060 4,238,282 1,702,287 1,698,181 3,448,609
average (fps) 2,091,944 2,096,289 4,191,721 1,700,981 1,696,889 3,431,086
standard deviation 1,501.18 1,721.36 12,034.38 849.40 726.75 13,274.60
dispersion (%) 0.20 0.27 1.31 0.17 0.18 1.69

TABLE IV
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2620 @ 1.2GHZ

Used CPU cores 4th 6th 4th & 6th 3rd 5th 3rd & 5th
Number of workers 1 1 2 1 1 2
median (fps) 1,919,142 1,926,082 3,876,009 1,526,365 1,587,369 3,188,186
minimum (fps) 1,916,951 1,923,811 3,866,209 1,517,536 1,585,936 3,124,999
maximum (fps) 1,921,052 1,928,529 3,908,204 1,528,194 1,588,904 3,195,313
average (fps) 1,918,898 1,926,321 3,878,199 1,525,300 1,587,528 3,185,315
standard deviation 1,120.34 1,119.19 10,495.01 3,163.36 746.77 14,657.38
dispersion (%) 0.21 0.24 1.08 0.70 0.19 2.21

IP Packet Forwarding Performance Comparison
of the FD.io VPP and the Linux Kernel

JUNE 2025 • VOLUME XVII • NUMBER 240

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

FD.io VPP using a Dell PowerEdge R620 as the DUT is
compared in Fig. 2. When considering their results, it is
important to note that while the performance of the Linux kernel
was measured at 2 GHz, the performance of FD.io VPP was
measured at 1.2 GHz. Despite this disadvantage, FD.io VPP
seriously outperformed the Linux kernel. While the Linux
kernel on 1 CPU core delivered 442,782 fps IPv4 packet
forwarding and 425,782 fps IPv6 packet forwarding
performance, the FD.io VPP on 1 worker thread delivered more
than 2 million IPv4 packets and more than 1.9 million IPv6
packets. Even when using CPU cores belonging to a different
NUMA node than the NIC, the performance was still around
1.7 Mfps and 1.5 Mfps, for IPv4 and IPv6, respectively.

When the Linux system used all 12 CPU cores at the nominal
2 GHz clock frequency of the CPU, the performance was still
only 3.92 Mfps and 3.77 Mfps for IPv4 and IPv6 packet
forwarding, respectively. In contrast, FD.io VPP, using only 2
CPU cores (4 and 6), achieved more than 4.18 Mfps and 3.87
Mfps performance for IPv4 and IPv6 packet forwarding,
respectively, at a clock frequency of 1.2 GHz. Our results prove
that FD.io VPP is indeed a high-performance solution for IP

packet forwarding.

D. Linux Kernel Packet Forwarding Performance on R730
The appropriate settings have been made using the methods

described above. The same measurement parameters were used.
Each R730 server had 16 CPU cores, therefore we were able

to set the active core numbers by the power of two (1, 2, 4, 8,
16). Our tests were performed using both 3.2 GHz and 1.2 GHz
as the CPU clock frequency.

The IPv4 packet forwarding performance of the Linux kernel
as a function of the number of active CPU cores at 3.2 GHz is
shown in Table V. Using 2 CPU cores instead of 1 did not
double system performance; it increased by only 1.7387 times.
This phenomenon was discussed earlier. When we used 4 active
CPU cores instead of 2, the performance doubled by a very
good approximation (1.9293 times). The performance
improvement of an 8-core system compared to 4 cores is now
1.9414 times. However, the performance increase at 16 cores
was only 1.3374 times compared to that of an 8-core system.
We contend that the main reason for this degradation was the
insufficient performance of the NIC. To prove this, we repeated

TABLE V
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 3.2 GHZ

Number of CPU cores 1 2 4 8 16
median (fps) 746,706 1,298,271 2,504,729 4,862,591 6,503,402
minimum (fps) 744,141 1,249,991 2,499,022 4,808,590 6,492,093
maximum (fps) 750,001 1,301,758 2,509,173 4,880,386 6,516,618
average (fps) 746,678 1,295,252 2,503,804 4,859,680 6,504,297
standard deviation 1,239 10,875 3,477 21,168 7,033
dispersion (%) 0.78 3.99 0.41 1.48 0.38
relative to half as many cores -- 1.7387 1.9293 1.9414 1.3374
relative scale-up 1 0.8693 0.8386 0.8140 0.5443

TABLE VI

THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 1.2 GHZ
Number of CPU cores 1 2 4 8 16
median (fps) 299,758 552,915 1,093,546 2,169,302 4,046,615
minimum (fps) 298,741 548,765 1,085,934 2,160,155 4,030,760
maximum (fps) 300,659 554,762 1,095,856 2,172,245 4,056,641
average (fps) 299,694 552,454 1,093,201 2,168,249 4,045,039
standard deviation 622 1,954 1,988 3,546 6,120
dispersion (%) 0.64 1.08 0.91 0.56 0.64
relative to half as many cores -- 1.8445 1.9778 1.9837 1.8654
relative scale-up 1 0.9223 0.9120 0.9046 0.8437

Fig. 2. Performance and scalability comparison of the Linux kernel using 1-12 active CPU cores (2GHz, left side) and FD.io VPP using one or two workers executed
by the specified CPU cores (1.2GHz, right side) of a Dell PowerEdge R620 server with two 6-core Intel Xeon E5-2620 processors.

0

1000000

2000000

3000000

4000000

5000000

1 2 4 6 8 1 2

Th
ro

ug
hp

ut
 (f

ps
)

Number of active CPU cores

IPv4 median IPv6 median

0

1000000

2000000

3000000

4000000

5000000

4 t h 6 t h 4 t h &
6 t h

3 r d 5 t h 3 r d &
5 t h

Th
ro

ug
hp

ut
 (f

ps
)

CPU cores used

IPv4 median IPv6 median

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

Further on, the performance of the 8-core system compared
to a 4-core system is only 1.8297 times higher, and the
comparison of performance of the 12-core system and the 6-
core system shows only a 1.732 times increase. There may
already be other reasons for this degraded increase, such as the
fact that all CPU cores share the same network interfaces and,
as their number increases, they are already interfering with each
other to some extent by competing for the access to the network
interfaces.

In conclusion, we observed that the performance of the
system scaled up well: the throughput of the 12-core system
instead the 1-core system increased from 442,782 fps to
3,923,150 fps, which means an 8.86 times increase.

The results of the throughput measurements for the IPv6
packet forwarding performance of the Linux kernel are shown
in Table II. These results are essentially highly similar to those
in Table I. There are two striking differences:

 The dispersion values are remarkably larger for 4 and
6 CPU cores. This is because one of the tests at
1,375,000 fps frame rate with 4 CPU cores and one of
the tests at 2,000,000 fps frame rate with 6 CPU cores
failed. These may be due to some relatively rare events
in the system. The average is obviously affected by
these outliers, which justifies our usage of median as
summarizing function.

 The IPv6 throughput is slightly lower than the IPv4
throughput. There are two possible root causes for this:
firstly, the frame size was larger for the IPv6
measurements, and secondly, the IPv6 addresses are
four times as long as IPv4 addresses.

B. FD.io VPP Packet Forwarding Performance of R620
In order to measure the throughput of the FD.io VPP IPv4

and IPv6 packet forwarding, we used the CPU core 2 as the
main core and 1 or 2 workers running on CPU cores with even
or odd serial numbers to examine the performance of the test
system and to gain insight into its scalability. When the CPU
cores with even serial numbers were used with a single worker,

we tested both core 4 and core 6 to check if there was a
difference. Then they both were used with two workers. In the
case of CPU cores with the odd serial numbers, the same was
done with core 3, core 5, and finally, with cores 3 and 5.

At the time of our preliminary measurements using FD.io
VPP with 2 workers, it was found that the Tester became the
bottleneck, and thus we could not measure the true performance
of the DUT. However, we considered it highly important to be
able to measure the scalability of FD.io VPP at least up to two
CPU cores. Therefore, the CPU clock frequency was set to 1.2
GHz (instead of 2 GHz, the nominal clock frequency of the
CPU) to be able to perform the measurements using two
workers.

The results of our throughput measurements of the IPv4
packet forwarding performance of FD.io VPP are shown in
Table III. Core 4 and core 6 show nearly identical performance,
with frame rates of 2,091,964 fps and 2,096,376 fps,
respectively. When two workers were used across both cores
the median frame rate roughly doubled to 4,187,904 fps. This
indicates that the system scales efficiently, maximizing
processing capacity without significant bottlenecks. The same
can be said for the CPU cores with odd serial numbers.
However, for those cores, the median value was more than 18%
lower, which is clearly due to using the different NUMA node.

As for the quality of the results, with a single worker thread,
the dispersion is always below 0.3%, so the results are highly
stable. With two worker threads, the dispersion increased
significantly, but still remained below 2%.

The results of our throughput measurements characterizing
the performance of the FD.io VPP IPv6 packet forwarding are
shown in Table IV. These results are basically very similar to
the results in Table III. There is one visible difference: the IPv6
throughput is slightly lower than the IPv4 throughput. The
possible reasons for this were explained in section A.

C. Comparison of the Performance of the Linux kernel and
FD.io VPP using an R620 Server as DUT

The performance and scalability of the Linux kernel and

TABLE III
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2620 @ 1.2GHZ

Used CPU cores 4th 6th 4th & 6th 3rd 5th 3rd & 5th
Number of workers 1 1 2 1 1 2
median (fps) 2,091,964 2,096,376 4,187,904 1,700,940 1,697,002 3,432,319
minimum (fps) 2,089,688 2,093,309 4,183,576 1,699,461 1,695,153 3,390,624
maximum (fps) 2,093,880 2,099,060 4,238,282 1,702,287 1,698,181 3,448,609
average (fps) 2,091,944 2,096,289 4,191,721 1,700,981 1,696,889 3,431,086
standard deviation 1,501.18 1,721.36 12,034.38 849.40 726.75 13,274.60
dispersion (%) 0.20 0.27 1.31 0.17 0.18 1.69

TABLE IV
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2620 @ 1.2GHZ

Used CPU cores 4th 6th 4th & 6th 3rd 5th 3rd & 5th
Number of workers 1 1 2 1 1 2
median (fps) 1,919,142 1,926,082 3,876,009 1,526,365 1,587,369 3,188,186
minimum (fps) 1,916,951 1,923,811 3,866,209 1,517,536 1,585,936 3,124,999
maximum (fps) 1,921,052 1,928,529 3,908,204 1,528,194 1,588,904 3,195,313
average (fps) 1,918,898 1,926,321 3,878,199 1,525,300 1,587,528 3,185,315
standard deviation 1,120.34 1,119.19 10,495.01 3,163.36 746.77 14,657.38
dispersion (%) 0.21 0.24 1.08 0.70 0.19 2.21

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

FD.io VPP using a Dell PowerEdge R620 as the DUT is
compared in Fig. 2. When considering their results, it is
important to note that while the performance of the Linux kernel
was measured at 2 GHz, the performance of FD.io VPP was
measured at 1.2 GHz. Despite this disadvantage, FD.io VPP
seriously outperformed the Linux kernel. While the Linux
kernel on 1 CPU core delivered 442,782 fps IPv4 packet
forwarding and 425,782 fps IPv6 packet forwarding
performance, the FD.io VPP on 1 worker thread delivered more
than 2 million IPv4 packets and more than 1.9 million IPv6
packets. Even when using CPU cores belonging to a different
NUMA node than the NIC, the performance was still around
1.7 Mfps and 1.5 Mfps, for IPv4 and IPv6, respectively.

When the Linux system used all 12 CPU cores at the nominal
2 GHz clock frequency of the CPU, the performance was still
only 3.92 Mfps and 3.77 Mfps for IPv4 and IPv6 packet
forwarding, respectively. In contrast, FD.io VPP, using only 2
CPU cores (4 and 6), achieved more than 4.18 Mfps and 3.87
Mfps performance for IPv4 and IPv6 packet forwarding,
respectively, at a clock frequency of 1.2 GHz. Our results prove
that FD.io VPP is indeed a high-performance solution for IP

packet forwarding.

D. Linux Kernel Packet Forwarding Performance on R730
The appropriate settings have been made using the methods

described above. The same measurement parameters were used.
Each R730 server had 16 CPU cores, therefore we were able

to set the active core numbers by the power of two (1, 2, 4, 8,
16). Our tests were performed using both 3.2 GHz and 1.2 GHz
as the CPU clock frequency.

The IPv4 packet forwarding performance of the Linux kernel
as a function of the number of active CPU cores at 3.2 GHz is
shown in Table V. Using 2 CPU cores instead of 1 did not
double system performance; it increased by only 1.7387 times.
This phenomenon was discussed earlier. When we used 4 active
CPU cores instead of 2, the performance doubled by a very
good approximation (1.9293 times). The performance
improvement of an 8-core system compared to 4 cores is now
1.9414 times. However, the performance increase at 16 cores
was only 1.3374 times compared to that of an 8-core system.
We contend that the main reason for this degradation was the
insufficient performance of the NIC. To prove this, we repeated

TABLE V
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 3.2 GHZ

Number of CPU cores 1 2 4 8 16
median (fps) 746,706 1,298,271 2,504,729 4,862,591 6,503,402
minimum (fps) 744,141 1,249,991 2,499,022 4,808,590 6,492,093
maximum (fps) 750,001 1,301,758 2,509,173 4,880,386 6,516,618
average (fps) 746,678 1,295,252 2,503,804 4,859,680 6,504,297
standard deviation 1,239 10,875 3,477 21,168 7,033
dispersion (%) 0.78 3.99 0.41 1.48 0.38
relative to half as many cores -- 1.7387 1.9293 1.9414 1.3374
relative scale-up 1 0.8693 0.8386 0.8140 0.5443

TABLE VI

THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 1.2 GHZ
Number of CPU cores 1 2 4 8 16
median (fps) 299,758 552,915 1,093,546 2,169,302 4,046,615
minimum (fps) 298,741 548,765 1,085,934 2,160,155 4,030,760
maximum (fps) 300,659 554,762 1,095,856 2,172,245 4,056,641
average (fps) 299,694 552,454 1,093,201 2,168,249 4,045,039
standard deviation 622 1,954 1,988 3,546 6,120
dispersion (%) 0.64 1.08 0.91 0.56 0.64
relative to half as many cores -- 1.8445 1.9778 1.9837 1.8654
relative scale-up 1 0.9223 0.9120 0.9046 0.8437

Fig. 2. Performance and scalability comparison of the Linux kernel using 1-12 active CPU cores (2GHz, left side) and FD.io VPP using one or two workers executed
by the specified CPU cores (1.2GHz, right side) of a Dell PowerEdge R620 server with two 6-core Intel Xeon E5-2620 processors.

0

1000000

2000000

3000000

4000000

5000000

1 2 4 6 8 1 2

Th
ro

ug
hp

ut
 (f

ps
)

Number of active CPU cores

IPv4 median IPv6 median

0

1000000

2000000

3000000

4000000

5000000

4 t h 6 t h 4 t h &
6 t h

3 r d 5 t h 3 r d &
5 t h

Th
ro

ug
hp

ut
 (f

ps
)

CPU cores used

IPv4 median IPv6 median

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

FD.io VPP using a Dell PowerEdge R620 as the DUT is
compared in Fig. 2. When considering their results, it is
important to note that while the performance of the Linux kernel
was measured at 2 GHz, the performance of FD.io VPP was
measured at 1.2 GHz. Despite this disadvantage, FD.io VPP
seriously outperformed the Linux kernel. While the Linux
kernel on 1 CPU core delivered 442,782 fps IPv4 packet
forwarding and 425,782 fps IPv6 packet forwarding
performance, the FD.io VPP on 1 worker thread delivered more
than 2 million IPv4 packets and more than 1.9 million IPv6
packets. Even when using CPU cores belonging to a different
NUMA node than the NIC, the performance was still around
1.7 Mfps and 1.5 Mfps, for IPv4 and IPv6, respectively.

When the Linux system used all 12 CPU cores at the nominal
2 GHz clock frequency of the CPU, the performance was still
only 3.92 Mfps and 3.77 Mfps for IPv4 and IPv6 packet
forwarding, respectively. In contrast, FD.io VPP, using only 2
CPU cores (4 and 6), achieved more than 4.18 Mfps and 3.87
Mfps performance for IPv4 and IPv6 packet forwarding,
respectively, at a clock frequency of 1.2 GHz. Our results prove
that FD.io VPP is indeed a high-performance solution for IP

packet forwarding.

D. Linux Kernel Packet Forwarding Performance on R730
The appropriate settings have been made using the methods

described above. The same measurement parameters were used.
Each R730 server had 16 CPU cores, therefore we were able

to set the active core numbers by the power of two (1, 2, 4, 8,
16). Our tests were performed using both 3.2 GHz and 1.2 GHz
as the CPU clock frequency.

The IPv4 packet forwarding performance of the Linux kernel
as a function of the number of active CPU cores at 3.2 GHz is
shown in Table V. Using 2 CPU cores instead of 1 did not
double system performance; it increased by only 1.7387 times.
This phenomenon was discussed earlier. When we used 4 active
CPU cores instead of 2, the performance doubled by a very
good approximation (1.9293 times). The performance
improvement of an 8-core system compared to 4 cores is now
1.9414 times. However, the performance increase at 16 cores
was only 1.3374 times compared to that of an 8-core system.
We contend that the main reason for this degradation was the
insufficient performance of the NIC. To prove this, we repeated

TABLE V
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 3.2 GHZ

Number of CPU cores 1 2 4 8 16
median (fps) 746,706 1,298,271 2,504,729 4,862,591 6,503,402
minimum (fps) 744,141 1,249,991 2,499,022 4,808,590 6,492,093
maximum (fps) 750,001 1,301,758 2,509,173 4,880,386 6,516,618
average (fps) 746,678 1,295,252 2,503,804 4,859,680 6,504,297
standard deviation 1,239 10,875 3,477 21,168 7,033
dispersion (%) 0.78 3.99 0.41 1.48 0.38
relative to half as many cores -- 1.7387 1.9293 1.9414 1.3374
relative scale-up 1 0.8693 0.8386 0.8140 0.5443

TABLE VI

THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 1.2 GHZ
Number of CPU cores 1 2 4 8 16
median (fps) 299,758 552,915 1,093,546 2,169,302 4,046,615
minimum (fps) 298,741 548,765 1,085,934 2,160,155 4,030,760
maximum (fps) 300,659 554,762 1,095,856 2,172,245 4,056,641
average (fps) 299,694 552,454 1,093,201 2,168,249 4,045,039
standard deviation 622 1,954 1,988 3,546 6,120
dispersion (%) 0.64 1.08 0.91 0.56 0.64
relative to half as many cores -- 1.8445 1.9778 1.9837 1.8654
relative scale-up 1 0.9223 0.9120 0.9046 0.8437

Fig. 2. Performance and scalability comparison of the Linux kernel using 1-12 active CPU cores (2GHz, left side) and FD.io VPP using one or two workers executed
by the specified CPU cores (1.2GHz, right side) of a Dell PowerEdge R620 server with two 6-core Intel Xeon E5-2620 processors.

0

1000000

2000000

3000000

4000000

5000000

1 2 4 6 8 1 2

Th
ro

ug
hp

ut
 (f

ps
)

Number of active CPU cores

IPv4 median IPv6 median

0

1000000

2000000

3000000

4000000

5000000

4 t h 6 t h 4 t h &
6 t h

3 r d 5 t h 3 r d &
5 t h

Th
ro

ug
hp

ut
 (f

ps
)

CPU cores used

IPv4 median IPv6 median

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

the tests by setting the CPU clock frequency to 1.2 GHz (the
lowest possible value).

The IPv4 packet forwarding performance of the Linux kernel
as a function of the number of active CPU cores using 1.2 GHz
CPU clock frequency is shown in Table VI. The results show
that the performance of the DUT scaled up well with the
increase in the number of active CPU cores in the entire range.
With a 16-core system, we can observe a 1.8654 times increase
compared to 8 cores. On one hand, this is certainly an
improvement (especially compared to 1.3374); however, it is
still lower than the increases seen when scaling from 2 to 4 or
from 4 to 8 cores in the same test series, despite the NIC
capacity being higher than the measured throughput. We
attribute this small degradation to the fact that the 16 cores were
competing to access the NIC. Overall, the system performance
scaled up well: when using 16 CPU cores instead of 1 CPU
core, the throughput increased from 299,758 fps to 4,046,615
fps by a factor of 13.5.

The IPv6 packet forwarding performance of the Linux kernel
as a function of the number of active CPU cores using 3.2 GHz
CPU clock frequency is shown in Table VII. These results are
basically very similar to those in Table V with the difference
that IPv6 throughput is slightly lower than IPv4 throughput.

Although IPv6 throughput is generally slightly lower than
IPv4, the median values for 16 CPU cores are very similar
(6,503,402 fps for IPv6 and 6,505,859 fps for IPv4). This
suggests a hardware limitation, likely the network interface, in
this case.

The IPv6 packet forwarding performance of the Linux kernel
as a function of the number of active CPU cores using 1.2 GHz
CPU clock frequency is shown in Table VIII. Overall, the
system performance scaled well: when using 16 CPU cores
instead of 1 CPU core, the throughput increased from 288,704
fps to 3,861,507 fps by a factor of 13.4.

E. FD.io VPP Packet Forwarding Performance on R730
The appropriate settings have been made using the methods

described above. The measurement parameters used so far were
also used for these measurements.

In order to measure the throughput of the FD.io VPP IPv4
and IPv6 packet forwarding, we used the CPU core 2 as the
main core and 1 or 2 workers running on CPU cores with even
serial numbers to examine the performance of the test system
and to gain insight into its scalability. Previously, we also used
CPU cores with odd serial numbers to examine the test system's
performance. However, as discussed, there were no relevant
differences in the results, aside from being lower due to their
association with a different NUMA node than the NIC. This
time, we focused on providing a clear comparison between
different clock speeds (3.2 GHz and 1.2 GHz) and omitted the
use of CPU cores with odd serial numbers.

The results of our throughput measurements of the IPv4
packet forwarding performance of FD.io VPP are shown in
Table IX. Examining core 4 and core 6 at 3.2 GHz, we see that
there is no significant difference in performance (6,947,546 fps
and 6,960,875 fps) but compared to the results measured at 1.2
GHz (2,886,634 fps and 2,887,674 fps), there is a nearly 2.5-
fold increase. For two workers, we can say that our results
approximately doubled when comparing the single worker and
the two worker results at 1.2 GHz.

As for the quality of the results, they are highly stable and
consistent because all of the dispersions are below 1%.

The results of the throughput measurements of the IPv6
packet forwarding performance of FD.io VPP are shown in
Table X. These results are basically very similar to the results
in Table IX with the difference that IPv6 throughput is slightly
lower than IPv4 throughput. Overall, we have highly stable
results because all of the dispersions are below 1%.

It is salient that the results with FD.io VPP are more stable
than those with the Linux kernel. The reason behind this is the
following: during FD.io VPP measurements, the CPUs used for
executing the workers were isolated (using the isolcpus
kernel command line parameter). This means that no other task

TABLE VII
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 3.2 GHZ

Number of CPU cores 1 2 4 8 16
median (fps) 728,805 1,144,471 2,233,474 4,420,087 6,505,859
minimum (fps) 718,749 1,140,602 2,124,968 4,374,999 6,374,999
maximum (fps) 730,621 1,148,438 2,239,532 4,437,501 6,562,577
average (fps) 728,192 1,143,963 2,226,907 4,417,140 6,505,697
standard deviation 2,588 2,104 2,4466 1,4143 4,0059
dispersion (%) 1,63 0,68 5,13 1,41 2,88
relative to half as many cores -- 1.5703 1.9515 1.9790 1.4719
relative scale-up 1 0.7852 0.7661 0.7581 0.5579

TABLE VIII
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 1.2 GHZ

Number of CPU cores 1 2 4 8 16
median (fps) 288,704 511,763 1,017,832 1,990,212 3,861,507
minimum (fps) 281,249 499,999 1,007,688 1,937,483 3,749,999
maximum (fps) 289,093 512,894 1,019,907 1,996,223 3,875,001
average (fps) 288,348 511,299 1,016,904 1,988,055 3,856,157
standard deviation 1,685 2,693 3,329 12,125 25,856
dispersion (%) 2.72 2.52 1.20 2.95 3.24
relative to half as many cores -- 1.7726 1.9889 1.9553 1.9402
relative scale-up 1 0.8863 0.8814 0.8617 0.8360

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

FD.io VPP using a Dell PowerEdge R620 as the DUT is
compared in Fig. 2. When considering their results, it is
important to note that while the performance of the Linux kernel
was measured at 2 GHz, the performance of FD.io VPP was
measured at 1.2 GHz. Despite this disadvantage, FD.io VPP
seriously outperformed the Linux kernel. While the Linux
kernel on 1 CPU core delivered 442,782 fps IPv4 packet
forwarding and 425,782 fps IPv6 packet forwarding
performance, the FD.io VPP on 1 worker thread delivered more
than 2 million IPv4 packets and more than 1.9 million IPv6
packets. Even when using CPU cores belonging to a different
NUMA node than the NIC, the performance was still around
1.7 Mfps and 1.5 Mfps, for IPv4 and IPv6, respectively.

When the Linux system used all 12 CPU cores at the nominal
2 GHz clock frequency of the CPU, the performance was still
only 3.92 Mfps and 3.77 Mfps for IPv4 and IPv6 packet
forwarding, respectively. In contrast, FD.io VPP, using only 2
CPU cores (4 and 6), achieved more than 4.18 Mfps and 3.87
Mfps performance for IPv4 and IPv6 packet forwarding,
respectively, at a clock frequency of 1.2 GHz. Our results prove
that FD.io VPP is indeed a high-performance solution for IP

packet forwarding.

D. Linux Kernel Packet Forwarding Performance on R730
The appropriate settings have been made using the methods

described above. The same measurement parameters were used.
Each R730 server had 16 CPU cores, therefore we were able

to set the active core numbers by the power of two (1, 2, 4, 8,
16). Our tests were performed using both 3.2 GHz and 1.2 GHz
as the CPU clock frequency.

The IPv4 packet forwarding performance of the Linux kernel
as a function of the number of active CPU cores at 3.2 GHz is
shown in Table V. Using 2 CPU cores instead of 1 did not
double system performance; it increased by only 1.7387 times.
This phenomenon was discussed earlier. When we used 4 active
CPU cores instead of 2, the performance doubled by a very
good approximation (1.9293 times). The performance
improvement of an 8-core system compared to 4 cores is now
1.9414 times. However, the performance increase at 16 cores
was only 1.3374 times compared to that of an 8-core system.
We contend that the main reason for this degradation was the
insufficient performance of the NIC. To prove this, we repeated

TABLE V
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 3.2 GHZ

Number of CPU cores 1 2 4 8 16
median (fps) 746,706 1,298,271 2,504,729 4,862,591 6,503,402
minimum (fps) 744,141 1,249,991 2,499,022 4,808,590 6,492,093
maximum (fps) 750,001 1,301,758 2,509,173 4,880,386 6,516,618
average (fps) 746,678 1,295,252 2,503,804 4,859,680 6,504,297
standard deviation 1,239 10,875 3,477 21,168 7,033
dispersion (%) 0.78 3.99 0.41 1.48 0.38
relative to half as many cores -- 1.7387 1.9293 1.9414 1.3374
relative scale-up 1 0.8693 0.8386 0.8140 0.5443

TABLE VI

THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 1.2 GHZ
Number of CPU cores 1 2 4 8 16
median (fps) 299,758 552,915 1,093,546 2,169,302 4,046,615
minimum (fps) 298,741 548,765 1,085,934 2,160,155 4,030,760
maximum (fps) 300,659 554,762 1,095,856 2,172,245 4,056,641
average (fps) 299,694 552,454 1,093,201 2,168,249 4,045,039
standard deviation 622 1,954 1,988 3,546 6,120
dispersion (%) 0.64 1.08 0.91 0.56 0.64
relative to half as many cores -- 1.8445 1.9778 1.9837 1.8654
relative scale-up 1 0.9223 0.9120 0.9046 0.8437

Fig. 2. Performance and scalability comparison of the Linux kernel using 1-12 active CPU cores (2GHz, left side) and FD.io VPP using one or two workers executed
by the specified CPU cores (1.2GHz, right side) of a Dell PowerEdge R620 server with two 6-core Intel Xeon E5-2620 processors.

0

1000000

2000000

3000000

4000000

5000000

1 2 4 6 8 1 2

Th
ro

ug
hp

ut
 (f

ps
)

Number of active CPU cores

IPv4 median IPv6 median

0

1000000

2000000

3000000

4000000

5000000

4 t h 6 t h 4 t h &
6 t h

3 r d 5 t h 3 r d &
5 t h

Th
ro

ug
hp

ut
 (f

ps
)

CPU cores used

IPv4 median IPv6 median

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

FD.io VPP using a Dell PowerEdge R620 as the DUT is
compared in Fig. 2. When considering their results, it is
important to note that while the performance of the Linux kernel
was measured at 2 GHz, the performance of FD.io VPP was
measured at 1.2 GHz. Despite this disadvantage, FD.io VPP
seriously outperformed the Linux kernel. While the Linux
kernel on 1 CPU core delivered 442,782 fps IPv4 packet
forwarding and 425,782 fps IPv6 packet forwarding
performance, the FD.io VPP on 1 worker thread delivered more
than 2 million IPv4 packets and more than 1.9 million IPv6
packets. Even when using CPU cores belonging to a different
NUMA node than the NIC, the performance was still around
1.7 Mfps and 1.5 Mfps, for IPv4 and IPv6, respectively.

When the Linux system used all 12 CPU cores at the nominal
2 GHz clock frequency of the CPU, the performance was still
only 3.92 Mfps and 3.77 Mfps for IPv4 and IPv6 packet
forwarding, respectively. In contrast, FD.io VPP, using only 2
CPU cores (4 and 6), achieved more than 4.18 Mfps and 3.87
Mfps performance for IPv4 and IPv6 packet forwarding,
respectively, at a clock frequency of 1.2 GHz. Our results prove
that FD.io VPP is indeed a high-performance solution for IP

packet forwarding.

D. Linux Kernel Packet Forwarding Performance on R730
The appropriate settings have been made using the methods

described above. The same measurement parameters were used.
Each R730 server had 16 CPU cores, therefore we were able

to set the active core numbers by the power of two (1, 2, 4, 8,
16). Our tests were performed using both 3.2 GHz and 1.2 GHz
as the CPU clock frequency.

The IPv4 packet forwarding performance of the Linux kernel
as a function of the number of active CPU cores at 3.2 GHz is
shown in Table V. Using 2 CPU cores instead of 1 did not
double system performance; it increased by only 1.7387 times.
This phenomenon was discussed earlier. When we used 4 active
CPU cores instead of 2, the performance doubled by a very
good approximation (1.9293 times). The performance
improvement of an 8-core system compared to 4 cores is now
1.9414 times. However, the performance increase at 16 cores
was only 1.3374 times compared to that of an 8-core system.
We contend that the main reason for this degradation was the
insufficient performance of the NIC. To prove this, we repeated

TABLE V
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 3.2 GHZ

Number of CPU cores 1 2 4 8 16
median (fps) 746,706 1,298,271 2,504,729 4,862,591 6,503,402
minimum (fps) 744,141 1,249,991 2,499,022 4,808,590 6,492,093
maximum (fps) 750,001 1,301,758 2,509,173 4,880,386 6,516,618
average (fps) 746,678 1,295,252 2,503,804 4,859,680 6,504,297
standard deviation 1,239 10,875 3,477 21,168 7,033
dispersion (%) 0.78 3.99 0.41 1.48 0.38
relative to half as many cores -- 1.7387 1.9293 1.9414 1.3374
relative scale-up 1 0.8693 0.8386 0.8140 0.5443

TABLE VI

THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 1.2 GHZ
Number of CPU cores 1 2 4 8 16
median (fps) 299,758 552,915 1,093,546 2,169,302 4,046,615
minimum (fps) 298,741 548,765 1,085,934 2,160,155 4,030,760
maximum (fps) 300,659 554,762 1,095,856 2,172,245 4,056,641
average (fps) 299,694 552,454 1,093,201 2,168,249 4,045,039
standard deviation 622 1,954 1,988 3,546 6,120
dispersion (%) 0.64 1.08 0.91 0.56 0.64
relative to half as many cores -- 1.8445 1.9778 1.9837 1.8654
relative scale-up 1 0.9223 0.9120 0.9046 0.8437

Fig. 2. Performance and scalability comparison of the Linux kernel using 1-12 active CPU cores (2GHz, left side) and FD.io VPP using one or two workers executed
by the specified CPU cores (1.2GHz, right side) of a Dell PowerEdge R620 server with two 6-core Intel Xeon E5-2620 processors.

0

1000000

2000000

3000000

4000000

5000000

1 2 4 6 8 1 2

Th
ro

ug
hp

ut
 (f

ps
)

Number of active CPU cores

IPv4 median IPv6 median

0

1000000

2000000

3000000

4000000

5000000

4 t h 6 t h 4 t h &
6 t h

3 r d 5 t h 3 r d &
5 t h

Th
ro

ug
hp

ut
 (f

ps
)

CPU cores used

IPv4 median IPv6 median

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

FD.io VPP using a Dell PowerEdge R620 as the DUT is
compared in Fig. 2. When considering their results, it is
important to note that while the performance of the Linux kernel
was measured at 2 GHz, the performance of FD.io VPP was
measured at 1.2 GHz. Despite this disadvantage, FD.io VPP
seriously outperformed the Linux kernel. While the Linux
kernel on 1 CPU core delivered 442,782 fps IPv4 packet
forwarding and 425,782 fps IPv6 packet forwarding
performance, the FD.io VPP on 1 worker thread delivered more
than 2 million IPv4 packets and more than 1.9 million IPv6
packets. Even when using CPU cores belonging to a different
NUMA node than the NIC, the performance was still around
1.7 Mfps and 1.5 Mfps, for IPv4 and IPv6, respectively.

When the Linux system used all 12 CPU cores at the nominal
2 GHz clock frequency of the CPU, the performance was still
only 3.92 Mfps and 3.77 Mfps for IPv4 and IPv6 packet
forwarding, respectively. In contrast, FD.io VPP, using only 2
CPU cores (4 and 6), achieved more than 4.18 Mfps and 3.87
Mfps performance for IPv4 and IPv6 packet forwarding,
respectively, at a clock frequency of 1.2 GHz. Our results prove
that FD.io VPP is indeed a high-performance solution for IP

packet forwarding.

D. Linux Kernel Packet Forwarding Performance on R730
The appropriate settings have been made using the methods

described above. The same measurement parameters were used.
Each R730 server had 16 CPU cores, therefore we were able

to set the active core numbers by the power of two (1, 2, 4, 8,
16). Our tests were performed using both 3.2 GHz and 1.2 GHz
as the CPU clock frequency.

The IPv4 packet forwarding performance of the Linux kernel
as a function of the number of active CPU cores at 3.2 GHz is
shown in Table V. Using 2 CPU cores instead of 1 did not
double system performance; it increased by only 1.7387 times.
This phenomenon was discussed earlier. When we used 4 active
CPU cores instead of 2, the performance doubled by a very
good approximation (1.9293 times). The performance
improvement of an 8-core system compared to 4 cores is now
1.9414 times. However, the performance increase at 16 cores
was only 1.3374 times compared to that of an 8-core system.
We contend that the main reason for this degradation was the
insufficient performance of the NIC. To prove this, we repeated

TABLE V
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 3.2 GHZ

Number of CPU cores 1 2 4 8 16
median (fps) 746,706 1,298,271 2,504,729 4,862,591 6,503,402
minimum (fps) 744,141 1,249,991 2,499,022 4,808,590 6,492,093
maximum (fps) 750,001 1,301,758 2,509,173 4,880,386 6,516,618
average (fps) 746,678 1,295,252 2,503,804 4,859,680 6,504,297
standard deviation 1,239 10,875 3,477 21,168 7,033
dispersion (%) 0.78 3.99 0.41 1.48 0.38
relative to half as many cores -- 1.7387 1.9293 1.9414 1.3374
relative scale-up 1 0.8693 0.8386 0.8140 0.5443

TABLE VI

THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 1.2 GHZ
Number of CPU cores 1 2 4 8 16
median (fps) 299,758 552,915 1,093,546 2,169,302 4,046,615
minimum (fps) 298,741 548,765 1,085,934 2,160,155 4,030,760
maximum (fps) 300,659 554,762 1,095,856 2,172,245 4,056,641
average (fps) 299,694 552,454 1,093,201 2,168,249 4,045,039
standard deviation 622 1,954 1,988 3,546 6,120
dispersion (%) 0.64 1.08 0.91 0.56 0.64
relative to half as many cores -- 1.8445 1.9778 1.9837 1.8654
relative scale-up 1 0.9223 0.9120 0.9046 0.8437

Fig. 2. Performance and scalability comparison of the Linux kernel using 1-12 active CPU cores (2GHz, left side) and FD.io VPP using one or two workers executed
by the specified CPU cores (1.2GHz, right side) of a Dell PowerEdge R620 server with two 6-core Intel Xeon E5-2620 processors.

0

1000000

2000000

3000000

4000000

5000000

1 2 4 6 8 1 2

Th
ro

ug
hp

ut
 (f

ps
)

Number of active CPU cores

IPv4 median IPv6 median

0

1000000

2000000

3000000

4000000

5000000

4 t h 6 t h 4 t h &
6 t h

3 r d 5 t h 3 r d &
5 t h

Th
ro

ug
hp

ut
 (f

ps
)

CPU cores used

IPv4 median IPv6 median

IP Packet Forwarding Performance Comparison
of the FD.io VPP and the Linux Kernel

INFOCOMMUNICATIONS JOURNAL

JUNE 2025 • VOLUME XVII • NUMBER 2 41

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

the tests by setting the CPU clock frequency to 1.2 GHz (the
lowest possible value).

The IPv4 packet forwarding performance of the Linux kernel
as a function of the number of active CPU cores using 1.2 GHz
CPU clock frequency is shown in Table VI. The results show
that the performance of the DUT scaled up well with the
increase in the number of active CPU cores in the entire range.
With a 16-core system, we can observe a 1.8654 times increase
compared to 8 cores. On one hand, this is certainly an
improvement (especially compared to 1.3374); however, it is
still lower than the increases seen when scaling from 2 to 4 or
from 4 to 8 cores in the same test series, despite the NIC
capacity being higher than the measured throughput. We
attribute this small degradation to the fact that the 16 cores were
competing to access the NIC. Overall, the system performance
scaled up well: when using 16 CPU cores instead of 1 CPU
core, the throughput increased from 299,758 fps to 4,046,615
fps by a factor of 13.5.

The IPv6 packet forwarding performance of the Linux kernel
as a function of the number of active CPU cores using 3.2 GHz
CPU clock frequency is shown in Table VII. These results are
basically very similar to those in Table V with the difference
that IPv6 throughput is slightly lower than IPv4 throughput.

Although IPv6 throughput is generally slightly lower than
IPv4, the median values for 16 CPU cores are very similar
(6,503,402 fps for IPv6 and 6,505,859 fps for IPv4). This
suggests a hardware limitation, likely the network interface, in
this case.

The IPv6 packet forwarding performance of the Linux kernel
as a function of the number of active CPU cores using 1.2 GHz
CPU clock frequency is shown in Table VIII. Overall, the
system performance scaled well: when using 16 CPU cores
instead of 1 CPU core, the throughput increased from 288,704
fps to 3,861,507 fps by a factor of 13.4.

E. FD.io VPP Packet Forwarding Performance on R730
The appropriate settings have been made using the methods

described above. The measurement parameters used so far were
also used for these measurements.

In order to measure the throughput of the FD.io VPP IPv4
and IPv6 packet forwarding, we used the CPU core 2 as the
main core and 1 or 2 workers running on CPU cores with even
serial numbers to examine the performance of the test system
and to gain insight into its scalability. Previously, we also used
CPU cores with odd serial numbers to examine the test system's
performance. However, as discussed, there were no relevant
differences in the results, aside from being lower due to their
association with a different NUMA node than the NIC. This
time, we focused on providing a clear comparison between
different clock speeds (3.2 GHz and 1.2 GHz) and omitted the
use of CPU cores with odd serial numbers.

The results of our throughput measurements of the IPv4
packet forwarding performance of FD.io VPP are shown in
Table IX. Examining core 4 and core 6 at 3.2 GHz, we see that
there is no significant difference in performance (6,947,546 fps
and 6,960,875 fps) but compared to the results measured at 1.2
GHz (2,886,634 fps and 2,887,674 fps), there is a nearly 2.5-
fold increase. For two workers, we can say that our results
approximately doubled when comparing the single worker and
the two worker results at 1.2 GHz.

As for the quality of the results, they are highly stable and
consistent because all of the dispersions are below 1%.

The results of the throughput measurements of the IPv6
packet forwarding performance of FD.io VPP are shown in
Table X. These results are basically very similar to the results
in Table IX with the difference that IPv6 throughput is slightly
lower than IPv4 throughput. Overall, we have highly stable
results because all of the dispersions are below 1%.

It is salient that the results with FD.io VPP are more stable
than those with the Linux kernel. The reason behind this is the
following: during FD.io VPP measurements, the CPUs used for
executing the workers were isolated (using the isolcpus
kernel command line parameter). This means that no other task

TABLE VII
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 3.2 GHZ

Number of CPU cores 1 2 4 8 16
median (fps) 728,805 1,144,471 2,233,474 4,420,087 6,505,859
minimum (fps) 718,749 1,140,602 2,124,968 4,374,999 6,374,999
maximum (fps) 730,621 1,148,438 2,239,532 4,437,501 6,562,577
average (fps) 728,192 1,143,963 2,226,907 4,417,140 6,505,697
standard deviation 2,588 2,104 2,4466 1,4143 4,0059
dispersion (%) 1,63 0,68 5,13 1,41 2,88
relative to half as many cores -- 1.5703 1.9515 1.9790 1.4719
relative scale-up 1 0.7852 0.7661 0.7581 0.5579

TABLE VIII
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 1.2 GHZ

Number of CPU cores 1 2 4 8 16
median (fps) 288,704 511,763 1,017,832 1,990,212 3,861,507
minimum (fps) 281,249 499,999 1,007,688 1,937,483 3,749,999
maximum (fps) 289,093 512,894 1,019,907 1,996,223 3,875,001
average (fps) 288,348 511,299 1,016,904 1,988,055 3,856,157
standard deviation 1,685 2,693 3,329 12,125 25,856
dispersion (%) 2.72 2.52 1.20 2.95 3.24
relative to half as many cores -- 1.7726 1.9889 1.9553 1.9402
relative scale-up 1 0.8863 0.8814 0.8617 0.8360

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

the tests by setting the CPU clock frequency to 1.2 GHz (the
lowest possible value).

The IPv4 packet forwarding performance of the Linux kernel
as a function of the number of active CPU cores using 1.2 GHz
CPU clock frequency is shown in Table VI. The results show
that the performance of the DUT scaled up well with the
increase in the number of active CPU cores in the entire range.
With a 16-core system, we can observe a 1.8654 times increase
compared to 8 cores. On one hand, this is certainly an
improvement (especially compared to 1.3374); however, it is
still lower than the increases seen when scaling from 2 to 4 or
from 4 to 8 cores in the same test series, despite the NIC
capacity being higher than the measured throughput. We
attribute this small degradation to the fact that the 16 cores were
competing to access the NIC. Overall, the system performance
scaled up well: when using 16 CPU cores instead of 1 CPU
core, the throughput increased from 299,758 fps to 4,046,615
fps by a factor of 13.5.

The IPv6 packet forwarding performance of the Linux kernel
as a function of the number of active CPU cores using 3.2 GHz
CPU clock frequency is shown in Table VII. These results are
basically very similar to those in Table V with the difference
that IPv6 throughput is slightly lower than IPv4 throughput.

Although IPv6 throughput is generally slightly lower than
IPv4, the median values for 16 CPU cores are very similar
(6,503,402 fps for IPv6 and 6,505,859 fps for IPv4). This
suggests a hardware limitation, likely the network interface, in
this case.

The IPv6 packet forwarding performance of the Linux kernel
as a function of the number of active CPU cores using 1.2 GHz
CPU clock frequency is shown in Table VIII. Overall, the
system performance scaled well: when using 16 CPU cores
instead of 1 CPU core, the throughput increased from 288,704
fps to 3,861,507 fps by a factor of 13.4.

E. FD.io VPP Packet Forwarding Performance on R730
The appropriate settings have been made using the methods

described above. The measurement parameters used so far were
also used for these measurements.

In order to measure the throughput of the FD.io VPP IPv4
and IPv6 packet forwarding, we used the CPU core 2 as the
main core and 1 or 2 workers running on CPU cores with even
serial numbers to examine the performance of the test system
and to gain insight into its scalability. Previously, we also used
CPU cores with odd serial numbers to examine the test system's
performance. However, as discussed, there were no relevant
differences in the results, aside from being lower due to their
association with a different NUMA node than the NIC. This
time, we focused on providing a clear comparison between
different clock speeds (3.2 GHz and 1.2 GHz) and omitted the
use of CPU cores with odd serial numbers.

The results of our throughput measurements of the IPv4
packet forwarding performance of FD.io VPP are shown in
Table IX. Examining core 4 and core 6 at 3.2 GHz, we see that
there is no significant difference in performance (6,947,546 fps
and 6,960,875 fps) but compared to the results measured at 1.2
GHz (2,886,634 fps and 2,887,674 fps), there is a nearly 2.5-
fold increase. For two workers, we can say that our results
approximately doubled when comparing the single worker and
the two worker results at 1.2 GHz.

As for the quality of the results, they are highly stable and
consistent because all of the dispersions are below 1%.

The results of the throughput measurements of the IPv6
packet forwarding performance of FD.io VPP are shown in
Table X. These results are basically very similar to the results
in Table IX with the difference that IPv6 throughput is slightly
lower than IPv4 throughput. Overall, we have highly stable
results because all of the dispersions are below 1%.

It is salient that the results with FD.io VPP are more stable
than those with the Linux kernel. The reason behind this is the
following: during FD.io VPP measurements, the CPUs used for
executing the workers were isolated (using the isolcpus
kernel command line parameter). This means that no other task

TABLE VII
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 3.2 GHZ

Number of CPU cores 1 2 4 8 16
median (fps) 728,805 1,144,471 2,233,474 4,420,087 6,505,859
minimum (fps) 718,749 1,140,602 2,124,968 4,374,999 6,374,999
maximum (fps) 730,621 1,148,438 2,239,532 4,437,501 6,562,577
average (fps) 728,192 1,143,963 2,226,907 4,417,140 6,505,697
standard deviation 2,588 2,104 2,4466 1,4143 4,0059
dispersion (%) 1,63 0,68 5,13 1,41 2,88
relative to half as many cores -- 1.5703 1.9515 1.9790 1.4719
relative scale-up 1 0.7852 0.7661 0.7581 0.5579

TABLE VIII
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 1.2 GHZ

Number of CPU cores 1 2 4 8 16
median (fps) 288,704 511,763 1,017,832 1,990,212 3,861,507
minimum (fps) 281,249 499,999 1,007,688 1,937,483 3,749,999
maximum (fps) 289,093 512,894 1,019,907 1,996,223 3,875,001
average (fps) 288,348 511,299 1,016,904 1,988,055 3,856,157
standard deviation 1,685 2,693 3,329 12,125 25,856
dispersion (%) 2.72 2.52 1.20 2.95 3.24
relative to half as many cores -- 1.7726 1.9889 1.9553 1.9402
relative scale-up 1 0.8863 0.8814 0.8617 0.8360

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

the tests by setting the CPU clock frequency to 1.2 GHz (the
lowest possible value).

The IPv4 packet forwarding performance of the Linux kernel
as a function of the number of active CPU cores using 1.2 GHz
CPU clock frequency is shown in Table VI. The results show
that the performance of the DUT scaled up well with the
increase in the number of active CPU cores in the entire range.
With a 16-core system, we can observe a 1.8654 times increase
compared to 8 cores. On one hand, this is certainly an
improvement (especially compared to 1.3374); however, it is
still lower than the increases seen when scaling from 2 to 4 or
from 4 to 8 cores in the same test series, despite the NIC
capacity being higher than the measured throughput. We
attribute this small degradation to the fact that the 16 cores were
competing to access the NIC. Overall, the system performance
scaled up well: when using 16 CPU cores instead of 1 CPU
core, the throughput increased from 299,758 fps to 4,046,615
fps by a factor of 13.5.

The IPv6 packet forwarding performance of the Linux kernel
as a function of the number of active CPU cores using 3.2 GHz
CPU clock frequency is shown in Table VII. These results are
basically very similar to those in Table V with the difference
that IPv6 throughput is slightly lower than IPv4 throughput.

Although IPv6 throughput is generally slightly lower than
IPv4, the median values for 16 CPU cores are very similar
(6,503,402 fps for IPv6 and 6,505,859 fps for IPv4). This
suggests a hardware limitation, likely the network interface, in
this case.

The IPv6 packet forwarding performance of the Linux kernel
as a function of the number of active CPU cores using 1.2 GHz
CPU clock frequency is shown in Table VIII. Overall, the
system performance scaled well: when using 16 CPU cores
instead of 1 CPU core, the throughput increased from 288,704
fps to 3,861,507 fps by a factor of 13.4.

E. FD.io VPP Packet Forwarding Performance on R730
The appropriate settings have been made using the methods

described above. The measurement parameters used so far were
also used for these measurements.

In order to measure the throughput of the FD.io VPP IPv4
and IPv6 packet forwarding, we used the CPU core 2 as the
main core and 1 or 2 workers running on CPU cores with even
serial numbers to examine the performance of the test system
and to gain insight into its scalability. Previously, we also used
CPU cores with odd serial numbers to examine the test system's
performance. However, as discussed, there were no relevant
differences in the results, aside from being lower due to their
association with a different NUMA node than the NIC. This
time, we focused on providing a clear comparison between
different clock speeds (3.2 GHz and 1.2 GHz) and omitted the
use of CPU cores with odd serial numbers.

The results of our throughput measurements of the IPv4
packet forwarding performance of FD.io VPP are shown in
Table IX. Examining core 4 and core 6 at 3.2 GHz, we see that
there is no significant difference in performance (6,947,546 fps
and 6,960,875 fps) but compared to the results measured at 1.2
GHz (2,886,634 fps and 2,887,674 fps), there is a nearly 2.5-
fold increase. For two workers, we can say that our results
approximately doubled when comparing the single worker and
the two worker results at 1.2 GHz.

As for the quality of the results, they are highly stable and
consistent because all of the dispersions are below 1%.

The results of the throughput measurements of the IPv6
packet forwarding performance of FD.io VPP are shown in
Table X. These results are basically very similar to the results
in Table IX with the difference that IPv6 throughput is slightly
lower than IPv4 throughput. Overall, we have highly stable
results because all of the dispersions are below 1%.

It is salient that the results with FD.io VPP are more stable
than those with the Linux kernel. The reason behind this is the
following: during FD.io VPP measurements, the CPUs used for
executing the workers were isolated (using the isolcpus
kernel command line parameter). This means that no other task

TABLE VII
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 3.2 GHZ

Number of CPU cores 1 2 4 8 16
median (fps) 728,805 1,144,471 2,233,474 4,420,087 6,505,859
minimum (fps) 718,749 1,140,602 2,124,968 4,374,999 6,374,999
maximum (fps) 730,621 1,148,438 2,239,532 4,437,501 6,562,577
average (fps) 728,192 1,143,963 2,226,907 4,417,140 6,505,697
standard deviation 2,588 2,104 2,4466 1,4143 4,0059
dispersion (%) 1,63 0,68 5,13 1,41 2,88
relative to half as many cores -- 1.5703 1.9515 1.9790 1.4719
relative scale-up 1 0.7852 0.7661 0.7581 0.5579

TABLE VIII
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 1.2 GHZ

Number of CPU cores 1 2 4 8 16
median (fps) 288,704 511,763 1,017,832 1,990,212 3,861,507
minimum (fps) 281,249 499,999 1,007,688 1,937,483 3,749,999
maximum (fps) 289,093 512,894 1,019,907 1,996,223 3,875,001
average (fps) 288,348 511,299 1,016,904 1,988,055 3,856,157
standard deviation 1,685 2,693 3,329 12,125 25,856
dispersion (%) 2.72 2.52 1.20 2.95 3.24
relative to half as many cores -- 1.7726 1.9889 1.9553 1.9402
relative scale-up 1 0.8863 0.8814 0.8617 0.8360

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

the tests by setting the CPU clock frequency to 1.2 GHz (the
lowest possible value).

The IPv4 packet forwarding performance of the Linux kernel
as a function of the number of active CPU cores using 1.2 GHz
CPU clock frequency is shown in Table VI. The results show
that the performance of the DUT scaled up well with the
increase in the number of active CPU cores in the entire range.
With a 16-core system, we can observe a 1.8654 times increase
compared to 8 cores. On one hand, this is certainly an
improvement (especially compared to 1.3374); however, it is
still lower than the increases seen when scaling from 2 to 4 or
from 4 to 8 cores in the same test series, despite the NIC
capacity being higher than the measured throughput. We
attribute this small degradation to the fact that the 16 cores were
competing to access the NIC. Overall, the system performance
scaled up well: when using 16 CPU cores instead of 1 CPU
core, the throughput increased from 299,758 fps to 4,046,615
fps by a factor of 13.5.

The IPv6 packet forwarding performance of the Linux kernel
as a function of the number of active CPU cores using 3.2 GHz
CPU clock frequency is shown in Table VII. These results are
basically very similar to those in Table V with the difference
that IPv6 throughput is slightly lower than IPv4 throughput.

Although IPv6 throughput is generally slightly lower than
IPv4, the median values for 16 CPU cores are very similar
(6,503,402 fps for IPv6 and 6,505,859 fps for IPv4). This
suggests a hardware limitation, likely the network interface, in
this case.

The IPv6 packet forwarding performance of the Linux kernel
as a function of the number of active CPU cores using 1.2 GHz
CPU clock frequency is shown in Table VIII. Overall, the
system performance scaled well: when using 16 CPU cores
instead of 1 CPU core, the throughput increased from 288,704
fps to 3,861,507 fps by a factor of 13.4.

E. FD.io VPP Packet Forwarding Performance on R730
The appropriate settings have been made using the methods

described above. The measurement parameters used so far were
also used for these measurements.

In order to measure the throughput of the FD.io VPP IPv4
and IPv6 packet forwarding, we used the CPU core 2 as the
main core and 1 or 2 workers running on CPU cores with even
serial numbers to examine the performance of the test system
and to gain insight into its scalability. Previously, we also used
CPU cores with odd serial numbers to examine the test system's
performance. However, as discussed, there were no relevant
differences in the results, aside from being lower due to their
association with a different NUMA node than the NIC. This
time, we focused on providing a clear comparison between
different clock speeds (3.2 GHz and 1.2 GHz) and omitted the
use of CPU cores with odd serial numbers.

The results of our throughput measurements of the IPv4
packet forwarding performance of FD.io VPP are shown in
Table IX. Examining core 4 and core 6 at 3.2 GHz, we see that
there is no significant difference in performance (6,947,546 fps
and 6,960,875 fps) but compared to the results measured at 1.2
GHz (2,886,634 fps and 2,887,674 fps), there is a nearly 2.5-
fold increase. For two workers, we can say that our results
approximately doubled when comparing the single worker and
the two worker results at 1.2 GHz.

As for the quality of the results, they are highly stable and
consistent because all of the dispersions are below 1%.

The results of the throughput measurements of the IPv6
packet forwarding performance of FD.io VPP are shown in
Table X. These results are basically very similar to the results
in Table IX with the difference that IPv6 throughput is slightly
lower than IPv4 throughput. Overall, we have highly stable
results because all of the dispersions are below 1%.

It is salient that the results with FD.io VPP are more stable
than those with the Linux kernel. The reason behind this is the
following: during FD.io VPP measurements, the CPUs used for
executing the workers were isolated (using the isolcpus
kernel command line parameter). This means that no other task

TABLE VII
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 3.2 GHZ

Number of CPU cores 1 2 4 8 16
median (fps) 728,805 1,144,471 2,233,474 4,420,087 6,505,859
minimum (fps) 718,749 1,140,602 2,124,968 4,374,999 6,374,999
maximum (fps) 730,621 1,148,438 2,239,532 4,437,501 6,562,577
average (fps) 728,192 1,143,963 2,226,907 4,417,140 6,505,697
standard deviation 2,588 2,104 2,4466 1,4143 4,0059
dispersion (%) 1,63 0,68 5,13 1,41 2,88
relative to half as many cores -- 1.5703 1.9515 1.9790 1.4719
relative scale-up 1 0.7852 0.7661 0.7581 0.5579

TABLE VIII
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 1.2 GHZ

Number of CPU cores 1 2 4 8 16
median (fps) 288,704 511,763 1,017,832 1,990,212 3,861,507
minimum (fps) 281,249 499,999 1,007,688 1,937,483 3,749,999
maximum (fps) 289,093 512,894 1,019,907 1,996,223 3,875,001
average (fps) 288,348 511,299 1,016,904 1,988,055 3,856,157
standard deviation 1,685 2,693 3,329 12,125 25,856
dispersion (%) 2.72 2.52 1.20 2.95 3.24
relative to half as many cores -- 1.7726 1.9889 1.9553 1.9402
relative scale-up 1 0.8863 0.8814 0.8617 0.8360

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

the tests by setting the CPU clock frequency to 1.2 GHz (the
lowest possible value).

The IPv4 packet forwarding performance of the Linux kernel
as a function of the number of active CPU cores using 1.2 GHz
CPU clock frequency is shown in Table VI. The results show
that the performance of the DUT scaled up well with the
increase in the number of active CPU cores in the entire range.
With a 16-core system, we can observe a 1.8654 times increase
compared to 8 cores. On one hand, this is certainly an
improvement (especially compared to 1.3374); however, it is
still lower than the increases seen when scaling from 2 to 4 or
from 4 to 8 cores in the same test series, despite the NIC
capacity being higher than the measured throughput. We
attribute this small degradation to the fact that the 16 cores were
competing to access the NIC. Overall, the system performance
scaled up well: when using 16 CPU cores instead of 1 CPU
core, the throughput increased from 299,758 fps to 4,046,615
fps by a factor of 13.5.

The IPv6 packet forwarding performance of the Linux kernel
as a function of the number of active CPU cores using 3.2 GHz
CPU clock frequency is shown in Table VII. These results are
basically very similar to those in Table V with the difference
that IPv6 throughput is slightly lower than IPv4 throughput.

Although IPv6 throughput is generally slightly lower than
IPv4, the median values for 16 CPU cores are very similar
(6,503,402 fps for IPv6 and 6,505,859 fps for IPv4). This
suggests a hardware limitation, likely the network interface, in
this case.

The IPv6 packet forwarding performance of the Linux kernel
as a function of the number of active CPU cores using 1.2 GHz
CPU clock frequency is shown in Table VIII. Overall, the
system performance scaled well: when using 16 CPU cores
instead of 1 CPU core, the throughput increased from 288,704
fps to 3,861,507 fps by a factor of 13.4.

E. FD.io VPP Packet Forwarding Performance on R730
The appropriate settings have been made using the methods

described above. The measurement parameters used so far were
also used for these measurements.

In order to measure the throughput of the FD.io VPP IPv4
and IPv6 packet forwarding, we used the CPU core 2 as the
main core and 1 or 2 workers running on CPU cores with even
serial numbers to examine the performance of the test system
and to gain insight into its scalability. Previously, we also used
CPU cores with odd serial numbers to examine the test system's
performance. However, as discussed, there were no relevant
differences in the results, aside from being lower due to their
association with a different NUMA node than the NIC. This
time, we focused on providing a clear comparison between
different clock speeds (3.2 GHz and 1.2 GHz) and omitted the
use of CPU cores with odd serial numbers.

The results of our throughput measurements of the IPv4
packet forwarding performance of FD.io VPP are shown in
Table IX. Examining core 4 and core 6 at 3.2 GHz, we see that
there is no significant difference in performance (6,947,546 fps
and 6,960,875 fps) but compared to the results measured at 1.2
GHz (2,886,634 fps and 2,887,674 fps), there is a nearly 2.5-
fold increase. For two workers, we can say that our results
approximately doubled when comparing the single worker and
the two worker results at 1.2 GHz.

As for the quality of the results, they are highly stable and
consistent because all of the dispersions are below 1%.

The results of the throughput measurements of the IPv6
packet forwarding performance of FD.io VPP are shown in
Table X. These results are basically very similar to the results
in Table IX with the difference that IPv6 throughput is slightly
lower than IPv4 throughput. Overall, we have highly stable
results because all of the dispersions are below 1%.

It is salient that the results with FD.io VPP are more stable
than those with the Linux kernel. The reason behind this is the
following: during FD.io VPP measurements, the CPUs used for
executing the workers were isolated (using the isolcpus
kernel command line parameter). This means that no other task

TABLE VII
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 3.2 GHZ

Number of CPU cores 1 2 4 8 16
median (fps) 728,805 1,144,471 2,233,474 4,420,087 6,505,859
minimum (fps) 718,749 1,140,602 2,124,968 4,374,999 6,374,999
maximum (fps) 730,621 1,148,438 2,239,532 4,437,501 6,562,577
average (fps) 728,192 1,143,963 2,226,907 4,417,140 6,505,697
standard deviation 2,588 2,104 2,4466 1,4143 4,0059
dispersion (%) 1,63 0,68 5,13 1,41 2,88
relative to half as many cores -- 1.5703 1.9515 1.9790 1.4719
relative scale-up 1 0.7852 0.7661 0.7581 0.5579

TABLE VIII
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 1.2 GHZ

Number of CPU cores 1 2 4 8 16
median (fps) 288,704 511,763 1,017,832 1,990,212 3,861,507
minimum (fps) 281,249 499,999 1,007,688 1,937,483 3,749,999
maximum (fps) 289,093 512,894 1,019,907 1,996,223 3,875,001
average (fps) 288,348 511,299 1,016,904 1,988,055 3,856,157
standard deviation 1,685 2,693 3,329 12,125 25,856
dispersion (%) 2.72 2.52 1.20 2.95 3.24
relative to half as many cores -- 1.7726 1.9889 1.9553 1.9402
relative scale-up 1 0.8863 0.8814 0.8617 0.8360

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

could be scheduled to the isolated CPU cores by the kernel.
Conversely, the Linux kernel used all CPU cores for packet
forwarding and the scheduler occasionally assigned them other
tasks, as well.

F. Comparison of the performance of the Linux kernel and
FD.io VPP using an R730 Server as DUT

Unlike in the case of the R620 test system, the results of the
Linux kernel and the FD.io VPP using the same CPU clock
frequency on the R730 test system are directly comparable.

First, we compare the results produced using 1.2 GHz CPU
clock frequency. The results are shown in Fig. 3. Whereas the
Linux kernel on 1 CPU core delivered 299,758 fps IPv4 packet
forwarding and 288,704 fps IPv6 packet forwarding
performance, the FD.io VPP with 1 worker thread delivered
more than 2.8 million IPv4 packets and more than 2.5 million
IPv6 packets. When the Linux system used all 16 CPU cores of
the CPU, the performance was only 4.05 Mfps and 3.86 Mfps
for IPv4 and IPv6 packet forwarding, respectively. In contrast,
FD.io VPP, using only 2 CPU cores (4 and 6), achieved 5.87
Mfps and 5.22 Mfps performance for IPv4 and IPv6 packet

forwarding, respectively.
The 3.2 GHz results are compared in Fig. 4. The single core

system of Linux kernel delivered 746,706 fps IPv4 packet
forwarding and 728,805 fps IPv6 packet forwarding
performance, whereas the FD.io VPP on 1 worker thread
delivered more than 6.95 million IPv4 packets and more than
6.25 million IPv6 packets. Our results prove that FD.io VPP is
indeed a high-performance solution for IP packet forwarding.

G. Comparison of the results of the R620 and R730 Servers
When comparing the two types of servers, it is important to

note that the nominal CPU clock frequencies of the R620 and
R730 servers are 2 GHz and 3.2 GHz, respectively.

When comparing the median values of their Linux kernel
IPv4 packet forwarding results measured at their nominal CPU
frequencies, a single CPU core of the R730 server outperformed
the single CPU core of the R620 server with a factor of 1.6864
(746,706 fps vs. 442,782 fps) and similar statements can be
made regarding their performances from 2 to 8 CPU cores.
Alternatively, it can be noted that the performance of a single
core of the E5-2667 v4 CPU at 3.2 GHz (746,706 fps) is nearly

TABLE IX
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4

Used CPU cores 4th 6th 4th 6th 4th & 6th
Number of workers 1 1 1 1 2
CPU clock frequency 3.2 GHz 3.2GHz 1.2 GHz 1.2 GHz 1.2 GHz
median (fps) 6,947,546 6,960,875 2,886,634 2,887,674 5,866,613
minimum (fps) 6,942,869 6,937,499 2,874,999 2,885,736 5,859,374
maximum (fps) 6,953,156 6,968,751 2,887,939 2,888,488 5,869,027
average (fps) 6,948,498 6,959,671 2,886,116 2,887,500 5,866,099
standard deviation 3,077 6,674 2,906 747 2,680
dispersion (%) 0.15 0.45 0.45 0.10 0.16

TABLE X
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4

Used CPU cores 4th 6th 4th 6th 4th & 6th
Number of workers 1 1 1 1 2
CPU clock frequency 3.2 GHz 3.2GHz 1.2 GHz 1.2 GHz 1.2 GHz
median (fps) 6,250,366 6,253,601 2,559,248 2,555,627 5,215,632
minimum (fps) 6,218,749 6,240,721 2,546,874 2,554,662 5,187,499
maximum (fps) 6,258,057 6,264,577 2,559,815 2,556,732 5,220,337
average (fps) 6,251,035 6,252,592 2,558,535 2,555,526 5,213,860
standard deviation 3,195 4,308 3,023 666 3,670
dispersion (%) 0.63 0.38 0.51 0.08 0.63

Fig. 3. Performance and scalability comparison of the Linux kernel using 1-16 active CPU cores (left side) and FD.io VPP using one or two workers executed by the
specified CPU cores (right side) of a Dell PowerEdge R730 server with two 8-core Intel Xeon E5-2667 v4 processors @ 1.2GHz.

0

1000000

2000000

3000000

4000000

5000000

6000000

1 2 4 8 1 6

Th
ro

ug
hp

ut
 (f

ps
)

Number of active CPU cores

IPv4 median IPv6 median

0

1000000

2000000

3000000

4000000

5000000

6000000

4 t h 6 t h 4 t h & 6 t h

Th
ro

ug
hp

ut
 (f

ps
)

CPU cores used

IPv4 median
IPv6 median

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

the tests by setting the CPU clock frequency to 1.2 GHz (the
lowest possible value).

The IPv4 packet forwarding performance of the Linux kernel
as a function of the number of active CPU cores using 1.2 GHz
CPU clock frequency is shown in Table VI. The results show
that the performance of the DUT scaled up well with the
increase in the number of active CPU cores in the entire range.
With a 16-core system, we can observe a 1.8654 times increase
compared to 8 cores. On one hand, this is certainly an
improvement (especially compared to 1.3374); however, it is
still lower than the increases seen when scaling from 2 to 4 or
from 4 to 8 cores in the same test series, despite the NIC
capacity being higher than the measured throughput. We
attribute this small degradation to the fact that the 16 cores were
competing to access the NIC. Overall, the system performance
scaled up well: when using 16 CPU cores instead of 1 CPU
core, the throughput increased from 299,758 fps to 4,046,615
fps by a factor of 13.5.

The IPv6 packet forwarding performance of the Linux kernel
as a function of the number of active CPU cores using 3.2 GHz
CPU clock frequency is shown in Table VII. These results are
basically very similar to those in Table V with the difference
that IPv6 throughput is slightly lower than IPv4 throughput.

Although IPv6 throughput is generally slightly lower than
IPv4, the median values for 16 CPU cores are very similar
(6,503,402 fps for IPv6 and 6,505,859 fps for IPv4). This
suggests a hardware limitation, likely the network interface, in
this case.

The IPv6 packet forwarding performance of the Linux kernel
as a function of the number of active CPU cores using 1.2 GHz
CPU clock frequency is shown in Table VIII. Overall, the
system performance scaled well: when using 16 CPU cores
instead of 1 CPU core, the throughput increased from 288,704
fps to 3,861,507 fps by a factor of 13.4.

E. FD.io VPP Packet Forwarding Performance on R730
The appropriate settings have been made using the methods

described above. The measurement parameters used so far were
also used for these measurements.

In order to measure the throughput of the FD.io VPP IPv4
and IPv6 packet forwarding, we used the CPU core 2 as the
main core and 1 or 2 workers running on CPU cores with even
serial numbers to examine the performance of the test system
and to gain insight into its scalability. Previously, we also used
CPU cores with odd serial numbers to examine the test system's
performance. However, as discussed, there were no relevant
differences in the results, aside from being lower due to their
association with a different NUMA node than the NIC. This
time, we focused on providing a clear comparison between
different clock speeds (3.2 GHz and 1.2 GHz) and omitted the
use of CPU cores with odd serial numbers.

The results of our throughput measurements of the IPv4
packet forwarding performance of FD.io VPP are shown in
Table IX. Examining core 4 and core 6 at 3.2 GHz, we see that
there is no significant difference in performance (6,947,546 fps
and 6,960,875 fps) but compared to the results measured at 1.2
GHz (2,886,634 fps and 2,887,674 fps), there is a nearly 2.5-
fold increase. For two workers, we can say that our results
approximately doubled when comparing the single worker and
the two worker results at 1.2 GHz.

As for the quality of the results, they are highly stable and
consistent because all of the dispersions are below 1%.

The results of the throughput measurements of the IPv6
packet forwarding performance of FD.io VPP are shown in
Table X. These results are basically very similar to the results
in Table IX with the difference that IPv6 throughput is slightly
lower than IPv4 throughput. Overall, we have highly stable
results because all of the dispersions are below 1%.

It is salient that the results with FD.io VPP are more stable
than those with the Linux kernel. The reason behind this is the
following: during FD.io VPP measurements, the CPUs used for
executing the workers were isolated (using the isolcpus
kernel command line parameter). This means that no other task

TABLE VII
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 3.2 GHZ

Number of CPU cores 1 2 4 8 16
median (fps) 728,805 1,144,471 2,233,474 4,420,087 6,505,859
minimum (fps) 718,749 1,140,602 2,124,968 4,374,999 6,374,999
maximum (fps) 730,621 1,148,438 2,239,532 4,437,501 6,562,577
average (fps) 728,192 1,143,963 2,226,907 4,417,140 6,505,697
standard deviation 2,588 2,104 2,4466 1,4143 4,0059
dispersion (%) 1,63 0,68 5,13 1,41 2,88
relative to half as many cores -- 1.5703 1.9515 1.9790 1.4719
relative scale-up 1 0.7852 0.7661 0.7581 0.5579

TABLE VIII
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 1.2 GHZ

Number of CPU cores 1 2 4 8 16
median (fps) 288,704 511,763 1,017,832 1,990,212 3,861,507
minimum (fps) 281,249 499,999 1,007,688 1,937,483 3,749,999
maximum (fps) 289,093 512,894 1,019,907 1,996,223 3,875,001
average (fps) 288,348 511,299 1,016,904 1,988,055 3,856,157
standard deviation 1,685 2,693 3,329 12,125 25,856
dispersion (%) 2.72 2.52 1.20 2.95 3.24
relative to half as many cores -- 1.7726 1.9889 1.9553 1.9402
relative scale-up 1 0.8863 0.8814 0.8617 0.8360

IP Packet Forwarding Performance Comparison
of the FD.io VPP and the Linux Kernel

JUNE 2025 • VOLUME XVII • NUMBER 242

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

could be scheduled to the isolated CPU cores by the kernel.
Conversely, the Linux kernel used all CPU cores for packet
forwarding and the scheduler occasionally assigned them other
tasks, as well.

F. Comparison of the performance of the Linux kernel and
FD.io VPP using an R730 Server as DUT

Unlike in the case of the R620 test system, the results of the
Linux kernel and the FD.io VPP using the same CPU clock
frequency on the R730 test system are directly comparable.

First, we compare the results produced using 1.2 GHz CPU
clock frequency. The results are shown in Fig. 3. Whereas the
Linux kernel on 1 CPU core delivered 299,758 fps IPv4 packet
forwarding and 288,704 fps IPv6 packet forwarding
performance, the FD.io VPP with 1 worker thread delivered
more than 2.8 million IPv4 packets and more than 2.5 million
IPv6 packets. When the Linux system used all 16 CPU cores of
the CPU, the performance was only 4.05 Mfps and 3.86 Mfps
for IPv4 and IPv6 packet forwarding, respectively. In contrast,
FD.io VPP, using only 2 CPU cores (4 and 6), achieved 5.87
Mfps and 5.22 Mfps performance for IPv4 and IPv6 packet

forwarding, respectively.
The 3.2 GHz results are compared in Fig. 4. The single core

system of Linux kernel delivered 746,706 fps IPv4 packet
forwarding and 728,805 fps IPv6 packet forwarding
performance, whereas the FD.io VPP on 1 worker thread
delivered more than 6.95 million IPv4 packets and more than
6.25 million IPv6 packets. Our results prove that FD.io VPP is
indeed a high-performance solution for IP packet forwarding.

G. Comparison of the results of the R620 and R730 Servers
When comparing the two types of servers, it is important to

note that the nominal CPU clock frequencies of the R620 and
R730 servers are 2 GHz and 3.2 GHz, respectively.

When comparing the median values of their Linux kernel
IPv4 packet forwarding results measured at their nominal CPU
frequencies, a single CPU core of the R730 server outperformed
the single CPU core of the R620 server with a factor of 1.6864
(746,706 fps vs. 442,782 fps) and similar statements can be
made regarding their performances from 2 to 8 CPU cores.
Alternatively, it can be noted that the performance of a single
core of the E5-2667 v4 CPU at 3.2 GHz (746,706 fps) is nearly

TABLE IX
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4

Used CPU cores 4th 6th 4th 6th 4th & 6th
Number of workers 1 1 1 1 2
CPU clock frequency 3.2 GHz 3.2GHz 1.2 GHz 1.2 GHz 1.2 GHz
median (fps) 6,947,546 6,960,875 2,886,634 2,887,674 5,866,613
minimum (fps) 6,942,869 6,937,499 2,874,999 2,885,736 5,859,374
maximum (fps) 6,953,156 6,968,751 2,887,939 2,888,488 5,869,027
average (fps) 6,948,498 6,959,671 2,886,116 2,887,500 5,866,099
standard deviation 3,077 6,674 2,906 747 2,680
dispersion (%) 0.15 0.45 0.45 0.10 0.16

TABLE X
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4

Used CPU cores 4th 6th 4th 6th 4th & 6th
Number of workers 1 1 1 1 2
CPU clock frequency 3.2 GHz 3.2GHz 1.2 GHz 1.2 GHz 1.2 GHz
median (fps) 6,250,366 6,253,601 2,559,248 2,555,627 5,215,632
minimum (fps) 6,218,749 6,240,721 2,546,874 2,554,662 5,187,499
maximum (fps) 6,258,057 6,264,577 2,559,815 2,556,732 5,220,337
average (fps) 6,251,035 6,252,592 2,558,535 2,555,526 5,213,860
standard deviation 3,195 4,308 3,023 666 3,670
dispersion (%) 0.63 0.38 0.51 0.08 0.63

Fig. 3. Performance and scalability comparison of the Linux kernel using 1-16 active CPU cores (left side) and FD.io VPP using one or two workers executed by the
specified CPU cores (right side) of a Dell PowerEdge R730 server with two 8-core Intel Xeon E5-2667 v4 processors @ 1.2GHz.

0

1000000

2000000

3000000

4000000

5000000

6000000

1 2 4 8 1 6

Th
ro

ug
hp

ut
 (f

ps
)

Number of active CPU cores

IPv4 median IPv6 median

0

1000000

2000000

3000000

4000000

5000000

6000000

4 t h 6 t h 4 t h & 6 t h

Th
ro

ug
hp

ut
 (f

ps
)

CPU cores used

IPv4 median
IPv6 median

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

could be scheduled to the isolated CPU cores by the kernel.
Conversely, the Linux kernel used all CPU cores for packet
forwarding and the scheduler occasionally assigned them other
tasks, as well.

F. Comparison of the performance of the Linux kernel and
FD.io VPP using an R730 Server as DUT

Unlike in the case of the R620 test system, the results of the
Linux kernel and the FD.io VPP using the same CPU clock
frequency on the R730 test system are directly comparable.

First, we compare the results produced using 1.2 GHz CPU
clock frequency. The results are shown in Fig. 3. Whereas the
Linux kernel on 1 CPU core delivered 299,758 fps IPv4 packet
forwarding and 288,704 fps IPv6 packet forwarding
performance, the FD.io VPP with 1 worker thread delivered
more than 2.8 million IPv4 packets and more than 2.5 million
IPv6 packets. When the Linux system used all 16 CPU cores of
the CPU, the performance was only 4.05 Mfps and 3.86 Mfps
for IPv4 and IPv6 packet forwarding, respectively. In contrast,
FD.io VPP, using only 2 CPU cores (4 and 6), achieved 5.87
Mfps and 5.22 Mfps performance for IPv4 and IPv6 packet

forwarding, respectively.
The 3.2 GHz results are compared in Fig. 4. The single core

system of Linux kernel delivered 746,706 fps IPv4 packet
forwarding and 728,805 fps IPv6 packet forwarding
performance, whereas the FD.io VPP on 1 worker thread
delivered more than 6.95 million IPv4 packets and more than
6.25 million IPv6 packets. Our results prove that FD.io VPP is
indeed a high-performance solution for IP packet forwarding.

G. Comparison of the results of the R620 and R730 Servers
When comparing the two types of servers, it is important to

note that the nominal CPU clock frequencies of the R620 and
R730 servers are 2 GHz and 3.2 GHz, respectively.

When comparing the median values of their Linux kernel
IPv4 packet forwarding results measured at their nominal CPU
frequencies, a single CPU core of the R730 server outperformed
the single CPU core of the R620 server with a factor of 1.6864
(746,706 fps vs. 442,782 fps) and similar statements can be
made regarding their performances from 2 to 8 CPU cores.
Alternatively, it can be noted that the performance of a single
core of the E5-2667 v4 CPU at 3.2 GHz (746,706 fps) is nearly

TABLE IX
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4

Used CPU cores 4th 6th 4th 6th 4th & 6th
Number of workers 1 1 1 1 2
CPU clock frequency 3.2 GHz 3.2GHz 1.2 GHz 1.2 GHz 1.2 GHz
median (fps) 6,947,546 6,960,875 2,886,634 2,887,674 5,866,613
minimum (fps) 6,942,869 6,937,499 2,874,999 2,885,736 5,859,374
maximum (fps) 6,953,156 6,968,751 2,887,939 2,888,488 5,869,027
average (fps) 6,948,498 6,959,671 2,886,116 2,887,500 5,866,099
standard deviation 3,077 6,674 2,906 747 2,680
dispersion (%) 0.15 0.45 0.45 0.10 0.16

TABLE X
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4

Used CPU cores 4th 6th 4th 6th 4th & 6th
Number of workers 1 1 1 1 2
CPU clock frequency 3.2 GHz 3.2GHz 1.2 GHz 1.2 GHz 1.2 GHz
median (fps) 6,250,366 6,253,601 2,559,248 2,555,627 5,215,632
minimum (fps) 6,218,749 6,240,721 2,546,874 2,554,662 5,187,499
maximum (fps) 6,258,057 6,264,577 2,559,815 2,556,732 5,220,337
average (fps) 6,251,035 6,252,592 2,558,535 2,555,526 5,213,860
standard deviation 3,195 4,308 3,023 666 3,670
dispersion (%) 0.63 0.38 0.51 0.08 0.63

Fig. 3. Performance and scalability comparison of the Linux kernel using 1-16 active CPU cores (left side) and FD.io VPP using one or two workers executed by the
specified CPU cores (right side) of a Dell PowerEdge R730 server with two 8-core Intel Xeon E5-2667 v4 processors @ 1.2GHz.

0

1000000

2000000

3000000

4000000

5000000

6000000

1 2 4 8 1 6

Th
ro

ug
hp

ut
 (f

ps
)

Number of active CPU cores

IPv4 median IPv6 median

0

1000000

2000000

3000000

4000000

5000000

6000000

4 t h 6 t h 4 t h & 6 t h

Th
ro

ug
hp

ut
 (f

ps
)

CPU cores used

IPv4 median
IPv6 median

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

could be scheduled to the isolated CPU cores by the kernel.
Conversely, the Linux kernel used all CPU cores for packet
forwarding and the scheduler occasionally assigned them other
tasks, as well.

F. Comparison of the performance of the Linux kernel and
FD.io VPP using an R730 Server as DUT

Unlike in the case of the R620 test system, the results of the
Linux kernel and the FD.io VPP using the same CPU clock
frequency on the R730 test system are directly comparable.

First, we compare the results produced using 1.2 GHz CPU
clock frequency. The results are shown in Fig. 3. Whereas the
Linux kernel on 1 CPU core delivered 299,758 fps IPv4 packet
forwarding and 288,704 fps IPv6 packet forwarding
performance, the FD.io VPP with 1 worker thread delivered
more than 2.8 million IPv4 packets and more than 2.5 million
IPv6 packets. When the Linux system used all 16 CPU cores of
the CPU, the performance was only 4.05 Mfps and 3.86 Mfps
for IPv4 and IPv6 packet forwarding, respectively. In contrast,
FD.io VPP, using only 2 CPU cores (4 and 6), achieved 5.87
Mfps and 5.22 Mfps performance for IPv4 and IPv6 packet

forwarding, respectively.
The 3.2 GHz results are compared in Fig. 4. The single core

system of Linux kernel delivered 746,706 fps IPv4 packet
forwarding and 728,805 fps IPv6 packet forwarding
performance, whereas the FD.io VPP on 1 worker thread
delivered more than 6.95 million IPv4 packets and more than
6.25 million IPv6 packets. Our results prove that FD.io VPP is
indeed a high-performance solution for IP packet forwarding.

G. Comparison of the results of the R620 and R730 Servers
When comparing the two types of servers, it is important to

note that the nominal CPU clock frequencies of the R620 and
R730 servers are 2 GHz and 3.2 GHz, respectively.

When comparing the median values of their Linux kernel
IPv4 packet forwarding results measured at their nominal CPU
frequencies, a single CPU core of the R730 server outperformed
the single CPU core of the R620 server with a factor of 1.6864
(746,706 fps vs. 442,782 fps) and similar statements can be
made regarding their performances from 2 to 8 CPU cores.
Alternatively, it can be noted that the performance of a single
core of the E5-2667 v4 CPU at 3.2 GHz (746,706 fps) is nearly

TABLE IX
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4

Used CPU cores 4th 6th 4th 6th 4th & 6th
Number of workers 1 1 1 1 2
CPU clock frequency 3.2 GHz 3.2GHz 1.2 GHz 1.2 GHz 1.2 GHz
median (fps) 6,947,546 6,960,875 2,886,634 2,887,674 5,866,613
minimum (fps) 6,942,869 6,937,499 2,874,999 2,885,736 5,859,374
maximum (fps) 6,953,156 6,968,751 2,887,939 2,888,488 5,869,027
average (fps) 6,948,498 6,959,671 2,886,116 2,887,500 5,866,099
standard deviation 3,077 6,674 2,906 747 2,680
dispersion (%) 0.15 0.45 0.45 0.10 0.16

TABLE X
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4

Used CPU cores 4th 6th 4th 6th 4th & 6th
Number of workers 1 1 1 1 2
CPU clock frequency 3.2 GHz 3.2GHz 1.2 GHz 1.2 GHz 1.2 GHz
median (fps) 6,250,366 6,253,601 2,559,248 2,555,627 5,215,632
minimum (fps) 6,218,749 6,240,721 2,546,874 2,554,662 5,187,499
maximum (fps) 6,258,057 6,264,577 2,559,815 2,556,732 5,220,337
average (fps) 6,251,035 6,252,592 2,558,535 2,555,526 5,213,860
standard deviation 3,195 4,308 3,023 666 3,670
dispersion (%) 0.63 0.38 0.51 0.08 0.63

Fig. 3. Performance and scalability comparison of the Linux kernel using 1-16 active CPU cores (left side) and FD.io VPP using one or two workers executed by the
specified CPU cores (right side) of a Dell PowerEdge R730 server with two 8-core Intel Xeon E5-2667 v4 processors @ 1.2GHz.

0

1000000

2000000

3000000

4000000

5000000

6000000

1 2 4 8 1 6

Th
ro

ug
hp

ut
 (f

ps
)

Number of active CPU cores

IPv4 median IPv6 median

0

1000000

2000000

3000000

4000000

5000000

6000000

4 t h 6 t h 4 t h & 6 t h

Th
ro

ug
hp

ut
 (f

ps
)

CPU cores used

IPv4 median
IPv6 median

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

could be scheduled to the isolated CPU cores by the kernel.
Conversely, the Linux kernel used all CPU cores for packet
forwarding and the scheduler occasionally assigned them other
tasks, as well.

F. Comparison of the performance of the Linux kernel and
FD.io VPP using an R730 Server as DUT

Unlike in the case of the R620 test system, the results of the
Linux kernel and the FD.io VPP using the same CPU clock
frequency on the R730 test system are directly comparable.

First, we compare the results produced using 1.2 GHz CPU
clock frequency. The results are shown in Fig. 3. Whereas the
Linux kernel on 1 CPU core delivered 299,758 fps IPv4 packet
forwarding and 288,704 fps IPv6 packet forwarding
performance, the FD.io VPP with 1 worker thread delivered
more than 2.8 million IPv4 packets and more than 2.5 million
IPv6 packets. When the Linux system used all 16 CPU cores of
the CPU, the performance was only 4.05 Mfps and 3.86 Mfps
for IPv4 and IPv6 packet forwarding, respectively. In contrast,
FD.io VPP, using only 2 CPU cores (4 and 6), achieved 5.87
Mfps and 5.22 Mfps performance for IPv4 and IPv6 packet

forwarding, respectively.
The 3.2 GHz results are compared in Fig. 4. The single core

system of Linux kernel delivered 746,706 fps IPv4 packet
forwarding and 728,805 fps IPv6 packet forwarding
performance, whereas the FD.io VPP on 1 worker thread
delivered more than 6.95 million IPv4 packets and more than
6.25 million IPv6 packets. Our results prove that FD.io VPP is
indeed a high-performance solution for IP packet forwarding.

G. Comparison of the results of the R620 and R730 Servers
When comparing the two types of servers, it is important to

note that the nominal CPU clock frequencies of the R620 and
R730 servers are 2 GHz and 3.2 GHz, respectively.

When comparing the median values of their Linux kernel
IPv4 packet forwarding results measured at their nominal CPU
frequencies, a single CPU core of the R730 server outperformed
the single CPU core of the R620 server with a factor of 1.6864
(746,706 fps vs. 442,782 fps) and similar statements can be
made regarding their performances from 2 to 8 CPU cores.
Alternatively, it can be noted that the performance of a single
core of the E5-2667 v4 CPU at 3.2 GHz (746,706 fps) is nearly

TABLE IX
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4

Used CPU cores 4th 6th 4th 6th 4th & 6th
Number of workers 1 1 1 1 2
CPU clock frequency 3.2 GHz 3.2GHz 1.2 GHz 1.2 GHz 1.2 GHz
median (fps) 6,947,546 6,960,875 2,886,634 2,887,674 5,866,613
minimum (fps) 6,942,869 6,937,499 2,874,999 2,885,736 5,859,374
maximum (fps) 6,953,156 6,968,751 2,887,939 2,888,488 5,869,027
average (fps) 6,948,498 6,959,671 2,886,116 2,887,500 5,866,099
standard deviation 3,077 6,674 2,906 747 2,680
dispersion (%) 0.15 0.45 0.45 0.10 0.16

TABLE X
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4

Used CPU cores 4th 6th 4th 6th 4th & 6th
Number of workers 1 1 1 1 2
CPU clock frequency 3.2 GHz 3.2GHz 1.2 GHz 1.2 GHz 1.2 GHz
median (fps) 6,250,366 6,253,601 2,559,248 2,555,627 5,215,632
minimum (fps) 6,218,749 6,240,721 2,546,874 2,554,662 5,187,499
maximum (fps) 6,258,057 6,264,577 2,559,815 2,556,732 5,220,337
average (fps) 6,251,035 6,252,592 2,558,535 2,555,526 5,213,860
standard deviation 3,195 4,308 3,023 666 3,670
dispersion (%) 0.63 0.38 0.51 0.08 0.63

Fig. 3. Performance and scalability comparison of the Linux kernel using 1-16 active CPU cores (left side) and FD.io VPP using one or two workers executed by the
specified CPU cores (right side) of a Dell PowerEdge R730 server with two 8-core Intel Xeon E5-2667 v4 processors @ 1.2GHz.

0

1000000

2000000

3000000

4000000

5000000

6000000

1 2 4 8 1 6

Th
ro

ug
hp

ut
 (f

ps
)

Number of active CPU cores

IPv4 median IPv6 median

0

1000000

2000000

3000000

4000000

5000000

6000000

4 t h 6 t h 4 t h & 6 t h

Th
ro

ug
hp

ut
 (f

ps
)

CPU cores used

IPv4 median
IPv6 median

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

could be scheduled to the isolated CPU cores by the kernel.
Conversely, the Linux kernel used all CPU cores for packet
forwarding and the scheduler occasionally assigned them other
tasks, as well.

F. Comparison of the performance of the Linux kernel and
FD.io VPP using an R730 Server as DUT

Unlike in the case of the R620 test system, the results of the
Linux kernel and the FD.io VPP using the same CPU clock
frequency on the R730 test system are directly comparable.

First, we compare the results produced using 1.2 GHz CPU
clock frequency. The results are shown in Fig. 3. Whereas the
Linux kernel on 1 CPU core delivered 299,758 fps IPv4 packet
forwarding and 288,704 fps IPv6 packet forwarding
performance, the FD.io VPP with 1 worker thread delivered
more than 2.8 million IPv4 packets and more than 2.5 million
IPv6 packets. When the Linux system used all 16 CPU cores of
the CPU, the performance was only 4.05 Mfps and 3.86 Mfps
for IPv4 and IPv6 packet forwarding, respectively. In contrast,
FD.io VPP, using only 2 CPU cores (4 and 6), achieved 5.87
Mfps and 5.22 Mfps performance for IPv4 and IPv6 packet

forwarding, respectively.
The 3.2 GHz results are compared in Fig. 4. The single core

system of Linux kernel delivered 746,706 fps IPv4 packet
forwarding and 728,805 fps IPv6 packet forwarding
performance, whereas the FD.io VPP on 1 worker thread
delivered more than 6.95 million IPv4 packets and more than
6.25 million IPv6 packets. Our results prove that FD.io VPP is
indeed a high-performance solution for IP packet forwarding.

G. Comparison of the results of the R620 and R730 Servers
When comparing the two types of servers, it is important to

note that the nominal CPU clock frequencies of the R620 and
R730 servers are 2 GHz and 3.2 GHz, respectively.

When comparing the median values of their Linux kernel
IPv4 packet forwarding results measured at their nominal CPU
frequencies, a single CPU core of the R730 server outperformed
the single CPU core of the R620 server with a factor of 1.6864
(746,706 fps vs. 442,782 fps) and similar statements can be
made regarding their performances from 2 to 8 CPU cores.
Alternatively, it can be noted that the performance of a single
core of the E5-2667 v4 CPU at 3.2 GHz (746,706 fps) is nearly

TABLE IX
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4

Used CPU cores 4th 6th 4th 6th 4th & 6th
Number of workers 1 1 1 1 2
CPU clock frequency 3.2 GHz 3.2GHz 1.2 GHz 1.2 GHz 1.2 GHz
median (fps) 6,947,546 6,960,875 2,886,634 2,887,674 5,866,613
minimum (fps) 6,942,869 6,937,499 2,874,999 2,885,736 5,859,374
maximum (fps) 6,953,156 6,968,751 2,887,939 2,888,488 5,869,027
average (fps) 6,948,498 6,959,671 2,886,116 2,887,500 5,866,099
standard deviation 3,077 6,674 2,906 747 2,680
dispersion (%) 0.15 0.45 0.45 0.10 0.16

TABLE X
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4

Used CPU cores 4th 6th 4th 6th 4th & 6th
Number of workers 1 1 1 1 2
CPU clock frequency 3.2 GHz 3.2GHz 1.2 GHz 1.2 GHz 1.2 GHz
median (fps) 6,250,366 6,253,601 2,559,248 2,555,627 5,215,632
minimum (fps) 6,218,749 6,240,721 2,546,874 2,554,662 5,187,499
maximum (fps) 6,258,057 6,264,577 2,559,815 2,556,732 5,220,337
average (fps) 6,251,035 6,252,592 2,558,535 2,555,526 5,213,860
standard deviation 3,195 4,308 3,023 666 3,670
dispersion (%) 0.63 0.38 0.51 0.08 0.63

Fig. 3. Performance and scalability comparison of the Linux kernel using 1-16 active CPU cores (left side) and FD.io VPP using one or two workers executed by the
specified CPU cores (right side) of a Dell PowerEdge R730 server with two 8-core Intel Xeon E5-2667 v4 processors @ 1.2GHz.

0

1000000

2000000

3000000

4000000

5000000

6000000

1 2 4 8 1 6

Th
ro

ug
hp

ut
 (f

ps
)

Number of active CPU cores

IPv4 median IPv6 median

0

1000000

2000000

3000000

4000000

5000000

6000000

4 t h 6 t h 4 t h & 6 t h

Th
ro

ug
hp

ut
 (f

ps
)

CPU cores used

IPv4 median
IPv6 median

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

could be scheduled to the isolated CPU cores by the kernel.
Conversely, the Linux kernel used all CPU cores for packet
forwarding and the scheduler occasionally assigned them other
tasks, as well.

F. Comparison of the performance of the Linux kernel and
FD.io VPP using an R730 Server as DUT

Unlike in the case of the R620 test system, the results of the
Linux kernel and the FD.io VPP using the same CPU clock
frequency on the R730 test system are directly comparable.

First, we compare the results produced using 1.2 GHz CPU
clock frequency. The results are shown in Fig. 3. Whereas the
Linux kernel on 1 CPU core delivered 299,758 fps IPv4 packet
forwarding and 288,704 fps IPv6 packet forwarding
performance, the FD.io VPP with 1 worker thread delivered
more than 2.8 million IPv4 packets and more than 2.5 million
IPv6 packets. When the Linux system used all 16 CPU cores of
the CPU, the performance was only 4.05 Mfps and 3.86 Mfps
for IPv4 and IPv6 packet forwarding, respectively. In contrast,
FD.io VPP, using only 2 CPU cores (4 and 6), achieved 5.87
Mfps and 5.22 Mfps performance for IPv4 and IPv6 packet

forwarding, respectively.
The 3.2 GHz results are compared in Fig. 4. The single core

system of Linux kernel delivered 746,706 fps IPv4 packet
forwarding and 728,805 fps IPv6 packet forwarding
performance, whereas the FD.io VPP on 1 worker thread
delivered more than 6.95 million IPv4 packets and more than
6.25 million IPv6 packets. Our results prove that FD.io VPP is
indeed a high-performance solution for IP packet forwarding.

G. Comparison of the results of the R620 and R730 Servers
When comparing the two types of servers, it is important to

note that the nominal CPU clock frequencies of the R620 and
R730 servers are 2 GHz and 3.2 GHz, respectively.

When comparing the median values of their Linux kernel
IPv4 packet forwarding results measured at their nominal CPU
frequencies, a single CPU core of the R730 server outperformed
the single CPU core of the R620 server with a factor of 1.6864
(746,706 fps vs. 442,782 fps) and similar statements can be
made regarding their performances from 2 to 8 CPU cores.
Alternatively, it can be noted that the performance of a single
core of the E5-2667 v4 CPU at 3.2 GHz (746,706 fps) is nearly

TABLE IX
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4

Used CPU cores 4th 6th 4th 6th 4th & 6th
Number of workers 1 1 1 1 2
CPU clock frequency 3.2 GHz 3.2GHz 1.2 GHz 1.2 GHz 1.2 GHz
median (fps) 6,947,546 6,960,875 2,886,634 2,887,674 5,866,613
minimum (fps) 6,942,869 6,937,499 2,874,999 2,885,736 5,859,374
maximum (fps) 6,953,156 6,968,751 2,887,939 2,888,488 5,869,027
average (fps) 6,948,498 6,959,671 2,886,116 2,887,500 5,866,099
standard deviation 3,077 6,674 2,906 747 2,680
dispersion (%) 0.15 0.45 0.45 0.10 0.16

TABLE X
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4

Used CPU cores 4th 6th 4th 6th 4th & 6th
Number of workers 1 1 1 1 2
CPU clock frequency 3.2 GHz 3.2GHz 1.2 GHz 1.2 GHz 1.2 GHz
median (fps) 6,250,366 6,253,601 2,559,248 2,555,627 5,215,632
minimum (fps) 6,218,749 6,240,721 2,546,874 2,554,662 5,187,499
maximum (fps) 6,258,057 6,264,577 2,559,815 2,556,732 5,220,337
average (fps) 6,251,035 6,252,592 2,558,535 2,555,526 5,213,860
standard deviation 3,195 4,308 3,023 666 3,670
dispersion (%) 0.63 0.38 0.51 0.08 0.63

Fig. 3. Performance and scalability comparison of the Linux kernel using 1-16 active CPU cores (left side) and FD.io VPP using one or two workers executed by the
specified CPU cores (right side) of a Dell PowerEdge R730 server with two 8-core Intel Xeon E5-2667 v4 processors @ 1.2GHz.

0

1000000

2000000

3000000

4000000

5000000

6000000

1 2 4 8 1 6

Th
ro

ug
hp

ut
 (f

ps
)

Number of active CPU cores

IPv4 median IPv6 median

0

1000000

2000000

3000000

4000000

5000000

6000000

4 t h 6 t h 4 t h & 6 t h

Th
ro

ug
hp

ut
 (f

ps
)

CPU cores used

IPv4 median
IPv6 median

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

could be scheduled to the isolated CPU cores by the kernel.
Conversely, the Linux kernel used all CPU cores for packet
forwarding and the scheduler occasionally assigned them other
tasks, as well.

F. Comparison of the performance of the Linux kernel and
FD.io VPP using an R730 Server as DUT

Unlike in the case of the R620 test system, the results of the
Linux kernel and the FD.io VPP using the same CPU clock
frequency on the R730 test system are directly comparable.

First, we compare the results produced using 1.2 GHz CPU
clock frequency. The results are shown in Fig. 3. Whereas the
Linux kernel on 1 CPU core delivered 299,758 fps IPv4 packet
forwarding and 288,704 fps IPv6 packet forwarding
performance, the FD.io VPP with 1 worker thread delivered
more than 2.8 million IPv4 packets and more than 2.5 million
IPv6 packets. When the Linux system used all 16 CPU cores of
the CPU, the performance was only 4.05 Mfps and 3.86 Mfps
for IPv4 and IPv6 packet forwarding, respectively. In contrast,
FD.io VPP, using only 2 CPU cores (4 and 6), achieved 5.87
Mfps and 5.22 Mfps performance for IPv4 and IPv6 packet

forwarding, respectively.
The 3.2 GHz results are compared in Fig. 4. The single core

system of Linux kernel delivered 746,706 fps IPv4 packet
forwarding and 728,805 fps IPv6 packet forwarding
performance, whereas the FD.io VPP on 1 worker thread
delivered more than 6.95 million IPv4 packets and more than
6.25 million IPv6 packets. Our results prove that FD.io VPP is
indeed a high-performance solution for IP packet forwarding.

G. Comparison of the results of the R620 and R730 Servers
When comparing the two types of servers, it is important to

note that the nominal CPU clock frequencies of the R620 and
R730 servers are 2 GHz and 3.2 GHz, respectively.

When comparing the median values of their Linux kernel
IPv4 packet forwarding results measured at their nominal CPU
frequencies, a single CPU core of the R730 server outperformed
the single CPU core of the R620 server with a factor of 1.6864
(746,706 fps vs. 442,782 fps) and similar statements can be
made regarding their performances from 2 to 8 CPU cores.
Alternatively, it can be noted that the performance of a single
core of the E5-2667 v4 CPU at 3.2 GHz (746,706 fps) is nearly

TABLE IX
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4

Used CPU cores 4th 6th 4th 6th 4th & 6th
Number of workers 1 1 1 1 2
CPU clock frequency 3.2 GHz 3.2GHz 1.2 GHz 1.2 GHz 1.2 GHz
median (fps) 6,947,546 6,960,875 2,886,634 2,887,674 5,866,613
minimum (fps) 6,942,869 6,937,499 2,874,999 2,885,736 5,859,374
maximum (fps) 6,953,156 6,968,751 2,887,939 2,888,488 5,869,027
average (fps) 6,948,498 6,959,671 2,886,116 2,887,500 5,866,099
standard deviation 3,077 6,674 2,906 747 2,680
dispersion (%) 0.15 0.45 0.45 0.10 0.16

TABLE X
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4

Used CPU cores 4th 6th 4th 6th 4th & 6th
Number of workers 1 1 1 1 2
CPU clock frequency 3.2 GHz 3.2GHz 1.2 GHz 1.2 GHz 1.2 GHz
median (fps) 6,250,366 6,253,601 2,559,248 2,555,627 5,215,632
minimum (fps) 6,218,749 6,240,721 2,546,874 2,554,662 5,187,499
maximum (fps) 6,258,057 6,264,577 2,559,815 2,556,732 5,220,337
average (fps) 6,251,035 6,252,592 2,558,535 2,555,526 5,213,860
standard deviation 3,195 4,308 3,023 666 3,670
dispersion (%) 0.63 0.38 0.51 0.08 0.63

Fig. 3. Performance and scalability comparison of the Linux kernel using 1-16 active CPU cores (left side) and FD.io VPP using one or two workers executed by the
specified CPU cores (right side) of a Dell PowerEdge R730 server with two 8-core Intel Xeon E5-2667 v4 processors @ 1.2GHz.

0

1000000

2000000

3000000

4000000

5000000

6000000

1 2 4 8 1 6

Th
ro

ug
hp

ut
 (f

ps
)

Number of active CPU cores

IPv4 median IPv6 median

0

1000000

2000000

3000000

4000000

5000000

6000000

4 t h 6 t h 4 t h & 6 t h

Th
ro

ug
hp

ut
 (f

ps
)

CPU cores used

IPv4 median
IPv6 median

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

equivalent to the performance of two cores of the E5-2620 CPU
at 2 GHz (765,223 fps).

As for the FD.io VPP results of the two types of CPUs, those
measured at 1.2 GHz are directly comparable. The 2.89 Mfps
single core IPv4 throughput of the E5-2667 v4 CPU @ 1.2 GHz
shows a 1.38-fold increase compared to the 2.09 Mfps single
core IPv4 throughput of the E5-2620 CPU @ 1.2 GHz. The
higher nominal clock frequency of the newer CPU further
amplifies this difference.

VII. DISCUSSION AND FUTURE RESEARCH
In our research group's previous benchmarking effort, the

number of CPU cores in the test system was equal to powers of
2 (see [19]). This approach allowed us to consistently double
the number of active CPU cores in each iteration and fully
utilize all available CPU cores in the final test. During our first
attempt to compare the performance of the Linux kernel and
FD.io VPP, only servers with 12 CPU cores were available for
the task. For this reason, we also conducted tests using 6 cores
to provide a basis for comparison with the tests with 12 cores.
Building on the success of our initial effort [6], we decided to
repeat our experiments with 16-core servers, too.

Our current measurements only included throughput tests. In
the future, we also plan to examine the latency. Since latency is
measured at the frame rate previously determined by the
throughput tests, our hypothesis is that FD.io VPP will exhibit
higher latency. This is due to its vector packet processing
mechanism, where a substantial number of frames are first
accumulated into a vector before being processed together as
they traverse the nodes of the packet processing graph. The
latency results will complement the throughput results to give a
more comprehensive view of the performance of the tested IP
packet forwarding solutions.

Since both FD.io VPP and siitperf use DPDK, and siitperf
only uses one core for sending and one core for receiving in
each direction, we could evaluate the performance of FD.io
VPP only up to two working threads. This remains the case even
when using the trick of lowering the CPU clock frequency of
the DUT. To be able to work with a significantly higher number
of workers (4, 8, etc.) a more powerful Tester would be needed.
The long-term plan of our research group includes the building

of an FPGA-based tester that implements the functionalities of
siitperf.

Another interesting research direction could be to evaluate
the performance of the Linux kernel when using NAPI polling
mode [20].

It would also be worth comparing the performance of FD.io
VPP to that of Open vSwitch with DPDK (OvS DPDK) and
eXpress Data Path (XDP).

Our results will encourage network operators to use FD.io
VPP in production networks for IPv4 and IPv6 packet
forwarding. Exhibiting high performance when running on
commodity servers and being free software, FD.io VPP can be
a good alternative to commercial routers. However, high
performance and low cost are only two aspects. Network
operators must consider at least two other ones: security and
support. FD.io VPP runs on Linux, a general-purpose and
widely used operating system. It is crucial to ensure the secure
operation of the host machine. To that end, it must be carefully
configured, and security updates must be regularly installed.
Major version upgrades to the operating system could involve
issues when DPDK and FD.io versions are upgraded.
Fortunately, Debian and Ubuntu have long-term support (LTS)
versions; thus, they can be operated for several years without
changing the major version. Router vendors also provide
support. As free software is basically provided “as is” without
support, network operators either need to employ experts or buy
support from a company that employs experts in Linux, DPDK
and FD.io VPP.

VIII. CONCLUSION
We measured the performance of IPv4 and IPv6 packet

forwarding of the Linux kernel and FD.io VPP. Regardless of
the IP version, the Linux kernel’s packet forwarding
performance showed a good scale-up with the increasing
number of CPU cores, although minor performance variations
were observed when utilizing different NUMA nodes. In
contrast, FD.io VPP tests demonstrated exceptionally high
performance with perfect scalability from 1 to 2 workers.

When a Dell PowerEdge R620 server with two 6-core E5-
2620 CPUs was used as the DUT, FD.io VPP, using 2 workers
executed by two CPU cores running at 1.2 GHz, outperformed

Fig. 4. Performance and scalability comparison of the Linux kernel using 1-16 active CPU cores (left side) and FD.io VPP using one worker executed by the specified
CPU cores (right side) of a Dell PowerEdge R730 server with two 8-core Intel Xeon E5-2667 v4 processors @ 3.2GHz.

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000

1 2 4 8 1 6

Th
ro

ug
hp

ut
 (f

ps
)

Number of active CPU cores

IPv4 median IPv6 median

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000

4 t h 6 t h

Th
ro

ug
hp

ut
 (f

ps
)

CPU cores used

IPv4 median IPv6 median

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

could be scheduled to the isolated CPU cores by the kernel.
Conversely, the Linux kernel used all CPU cores for packet
forwarding and the scheduler occasionally assigned them other
tasks, as well.

F. Comparison of the performance of the Linux kernel and
FD.io VPP using an R730 Server as DUT

Unlike in the case of the R620 test system, the results of the
Linux kernel and the FD.io VPP using the same CPU clock
frequency on the R730 test system are directly comparable.

First, we compare the results produced using 1.2 GHz CPU
clock frequency. The results are shown in Fig. 3. Whereas the
Linux kernel on 1 CPU core delivered 299,758 fps IPv4 packet
forwarding and 288,704 fps IPv6 packet forwarding
performance, the FD.io VPP with 1 worker thread delivered
more than 2.8 million IPv4 packets and more than 2.5 million
IPv6 packets. When the Linux system used all 16 CPU cores of
the CPU, the performance was only 4.05 Mfps and 3.86 Mfps
for IPv4 and IPv6 packet forwarding, respectively. In contrast,
FD.io VPP, using only 2 CPU cores (4 and 6), achieved 5.87
Mfps and 5.22 Mfps performance for IPv4 and IPv6 packet

forwarding, respectively.
The 3.2 GHz results are compared in Fig. 4. The single core

system of Linux kernel delivered 746,706 fps IPv4 packet
forwarding and 728,805 fps IPv6 packet forwarding
performance, whereas the FD.io VPP on 1 worker thread
delivered more than 6.95 million IPv4 packets and more than
6.25 million IPv6 packets. Our results prove that FD.io VPP is
indeed a high-performance solution for IP packet forwarding.

G. Comparison of the results of the R620 and R730 Servers
When comparing the two types of servers, it is important to

note that the nominal CPU clock frequencies of the R620 and
R730 servers are 2 GHz and 3.2 GHz, respectively.

When comparing the median values of their Linux kernel
IPv4 packet forwarding results measured at their nominal CPU
frequencies, a single CPU core of the R730 server outperformed
the single CPU core of the R620 server with a factor of 1.6864
(746,706 fps vs. 442,782 fps) and similar statements can be
made regarding their performances from 2 to 8 CPU cores.
Alternatively, it can be noted that the performance of a single
core of the E5-2667 v4 CPU at 3.2 GHz (746,706 fps) is nearly

TABLE IX
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4

Used CPU cores 4th 6th 4th 6th 4th & 6th
Number of workers 1 1 1 1 2
CPU clock frequency 3.2 GHz 3.2GHz 1.2 GHz 1.2 GHz 1.2 GHz
median (fps) 6,947,546 6,960,875 2,886,634 2,887,674 5,866,613
minimum (fps) 6,942,869 6,937,499 2,874,999 2,885,736 5,859,374
maximum (fps) 6,953,156 6,968,751 2,887,939 2,888,488 5,869,027
average (fps) 6,948,498 6,959,671 2,886,116 2,887,500 5,866,099
standard deviation 3,077 6,674 2,906 747 2,680
dispersion (%) 0.15 0.45 0.45 0.10 0.16

TABLE X
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4

Used CPU cores 4th 6th 4th 6th 4th & 6th
Number of workers 1 1 1 1 2
CPU clock frequency 3.2 GHz 3.2GHz 1.2 GHz 1.2 GHz 1.2 GHz
median (fps) 6,250,366 6,253,601 2,559,248 2,555,627 5,215,632
minimum (fps) 6,218,749 6,240,721 2,546,874 2,554,662 5,187,499
maximum (fps) 6,258,057 6,264,577 2,559,815 2,556,732 5,220,337
average (fps) 6,251,035 6,252,592 2,558,535 2,555,526 5,213,860
standard deviation 3,195 4,308 3,023 666 3,670
dispersion (%) 0.63 0.38 0.51 0.08 0.63

Fig. 3. Performance and scalability comparison of the Linux kernel using 1-16 active CPU cores (left side) and FD.io VPP using one or two workers executed by the
specified CPU cores (right side) of a Dell PowerEdge R730 server with two 8-core Intel Xeon E5-2667 v4 processors @ 1.2GHz.

0

1000000

2000000

3000000

4000000

5000000

6000000

1 2 4 8 1 6

Th
ro

ug
hp

ut
 (f

ps
)

Number of active CPU cores

IPv4 median IPv6 median

0

1000000

2000000

3000000

4000000

5000000

6000000

4 t h 6 t h 4 t h & 6 t h

Th
ro

ug
hp

ut
 (f

ps
)

CPU cores used

IPv4 median
IPv6 median

IP Packet Forwarding Performance Comparison
of the FD.io VPP and the Linux Kernel

INFOCOMMUNICATIONS JOURNAL

JUNE 2025 • VOLUME XVII • NUMBER 2 43

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

equivalent to the performance of two cores of the E5-2620 CPU
at 2 GHz (765,223 fps).

As for the FD.io VPP results of the two types of CPUs, those
measured at 1.2 GHz are directly comparable. The 2.89 Mfps
single core IPv4 throughput of the E5-2667 v4 CPU @ 1.2 GHz
shows a 1.38-fold increase compared to the 2.09 Mfps single
core IPv4 throughput of the E5-2620 CPU @ 1.2 GHz. The
higher nominal clock frequency of the newer CPU further
amplifies this difference.

VII. DISCUSSION AND FUTURE RESEARCH
In our research group's previous benchmarking effort, the

number of CPU cores in the test system was equal to powers of
2 (see [19]). This approach allowed us to consistently double
the number of active CPU cores in each iteration and fully
utilize all available CPU cores in the final test. During our first
attempt to compare the performance of the Linux kernel and
FD.io VPP, only servers with 12 CPU cores were available for
the task. For this reason, we also conducted tests using 6 cores
to provide a basis for comparison with the tests with 12 cores.
Building on the success of our initial effort [6], we decided to
repeat our experiments with 16-core servers, too.

Our current measurements only included throughput tests. In
the future, we also plan to examine the latency. Since latency is
measured at the frame rate previously determined by the
throughput tests, our hypothesis is that FD.io VPP will exhibit
higher latency. This is due to its vector packet processing
mechanism, where a substantial number of frames are first
accumulated into a vector before being processed together as
they traverse the nodes of the packet processing graph. The
latency results will complement the throughput results to give a
more comprehensive view of the performance of the tested IP
packet forwarding solutions.

Since both FD.io VPP and siitperf use DPDK, and siitperf
only uses one core for sending and one core for receiving in
each direction, we could evaluate the performance of FD.io
VPP only up to two working threads. This remains the case even
when using the trick of lowering the CPU clock frequency of
the DUT. To be able to work with a significantly higher number
of workers (4, 8, etc.) a more powerful Tester would be needed.
The long-term plan of our research group includes the building

of an FPGA-based tester that implements the functionalities of
siitperf.

Another interesting research direction could be to evaluate
the performance of the Linux kernel when using NAPI polling
mode [20].

It would also be worth comparing the performance of FD.io
VPP to that of Open vSwitch with DPDK (OvS DPDK) and
eXpress Data Path (XDP).

Our results will encourage network operators to use FD.io
VPP in production networks for IPv4 and IPv6 packet
forwarding. Exhibiting high performance when running on
commodity servers and being free software, FD.io VPP can be
a good alternative to commercial routers. However, high
performance and low cost are only two aspects. Network
operators must consider at least two other ones: security and
support. FD.io VPP runs on Linux, a general-purpose and
widely used operating system. It is crucial to ensure the secure
operation of the host machine. To that end, it must be carefully
configured, and security updates must be regularly installed.
Major version upgrades to the operating system could involve
issues when DPDK and FD.io versions are upgraded.
Fortunately, Debian and Ubuntu have long-term support (LTS)
versions; thus, they can be operated for several years without
changing the major version. Router vendors also provide
support. As free software is basically provided “as is” without
support, network operators either need to employ experts or buy
support from a company that employs experts in Linux, DPDK
and FD.io VPP.

VIII. CONCLUSION
We measured the performance of IPv4 and IPv6 packet

forwarding of the Linux kernel and FD.io VPP. Regardless of
the IP version, the Linux kernel’s packet forwarding
performance showed a good scale-up with the increasing
number of CPU cores, although minor performance variations
were observed when utilizing different NUMA nodes. In
contrast, FD.io VPP tests demonstrated exceptionally high
performance with perfect scalability from 1 to 2 workers.

When a Dell PowerEdge R620 server with two 6-core E5-
2620 CPUs was used as the DUT, FD.io VPP, using 2 workers
executed by two CPU cores running at 1.2 GHz, outperformed

Fig. 4. Performance and scalability comparison of the Linux kernel using 1-16 active CPU cores (left side) and FD.io VPP using one worker executed by the specified
CPU cores (right side) of a Dell PowerEdge R730 server with two 8-core Intel Xeon E5-2667 v4 processors @ 3.2GHz.

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000

1 2 4 8 1 6

Th
ro

ug
hp

ut
 (f

ps
)

Number of active CPU cores

IPv4 median IPv6 median

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000

4 t h 6 t h

Th
ro

ug
hp

ut
 (f

ps
)

CPU cores used

IPv4 median IPv6 median

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

equivalent to the performance of two cores of the E5-2620 CPU
at 2 GHz (765,223 fps).

As for the FD.io VPP results of the two types of CPUs, those
measured at 1.2 GHz are directly comparable. The 2.89 Mfps
single core IPv4 throughput of the E5-2667 v4 CPU @ 1.2 GHz
shows a 1.38-fold increase compared to the 2.09 Mfps single
core IPv4 throughput of the E5-2620 CPU @ 1.2 GHz. The
higher nominal clock frequency of the newer CPU further
amplifies this difference.

VII. DISCUSSION AND FUTURE RESEARCH
In our research group's previous benchmarking effort, the

number of CPU cores in the test system was equal to powers of
2 (see [19]). This approach allowed us to consistently double
the number of active CPU cores in each iteration and fully
utilize all available CPU cores in the final test. During our first
attempt to compare the performance of the Linux kernel and
FD.io VPP, only servers with 12 CPU cores were available for
the task. For this reason, we also conducted tests using 6 cores
to provide a basis for comparison with the tests with 12 cores.
Building on the success of our initial effort [6], we decided to
repeat our experiments with 16-core servers, too.

Our current measurements only included throughput tests. In
the future, we also plan to examine the latency. Since latency is
measured at the frame rate previously determined by the
throughput tests, our hypothesis is that FD.io VPP will exhibit
higher latency. This is due to its vector packet processing
mechanism, where a substantial number of frames are first
accumulated into a vector before being processed together as
they traverse the nodes of the packet processing graph. The
latency results will complement the throughput results to give a
more comprehensive view of the performance of the tested IP
packet forwarding solutions.

Since both FD.io VPP and siitperf use DPDK, and siitperf
only uses one core for sending and one core for receiving in
each direction, we could evaluate the performance of FD.io
VPP only up to two working threads. This remains the case even
when using the trick of lowering the CPU clock frequency of
the DUT. To be able to work with a significantly higher number
of workers (4, 8, etc.) a more powerful Tester would be needed.
The long-term plan of our research group includes the building

of an FPGA-based tester that implements the functionalities of
siitperf.

Another interesting research direction could be to evaluate
the performance of the Linux kernel when using NAPI polling
mode [20].

It would also be worth comparing the performance of FD.io
VPP to that of Open vSwitch with DPDK (OvS DPDK) and
eXpress Data Path (XDP).

Our results will encourage network operators to use FD.io
VPP in production networks for IPv4 and IPv6 packet
forwarding. Exhibiting high performance when running on
commodity servers and being free software, FD.io VPP can be
a good alternative to commercial routers. However, high
performance and low cost are only two aspects. Network
operators must consider at least two other ones: security and
support. FD.io VPP runs on Linux, a general-purpose and
widely used operating system. It is crucial to ensure the secure
operation of the host machine. To that end, it must be carefully
configured, and security updates must be regularly installed.
Major version upgrades to the operating system could involve
issues when DPDK and FD.io versions are upgraded.
Fortunately, Debian and Ubuntu have long-term support (LTS)
versions; thus, they can be operated for several years without
changing the major version. Router vendors also provide
support. As free software is basically provided “as is” without
support, network operators either need to employ experts or buy
support from a company that employs experts in Linux, DPDK
and FD.io VPP.

VIII. CONCLUSION
We measured the performance of IPv4 and IPv6 packet

forwarding of the Linux kernel and FD.io VPP. Regardless of
the IP version, the Linux kernel’s packet forwarding
performance showed a good scale-up with the increasing
number of CPU cores, although minor performance variations
were observed when utilizing different NUMA nodes. In
contrast, FD.io VPP tests demonstrated exceptionally high
performance with perfect scalability from 1 to 2 workers.

When a Dell PowerEdge R620 server with two 6-core E5-
2620 CPUs was used as the DUT, FD.io VPP, using 2 workers
executed by two CPU cores running at 1.2 GHz, outperformed

Fig. 4. Performance and scalability comparison of the Linux kernel using 1-16 active CPU cores (left side) and FD.io VPP using one worker executed by the specified
CPU cores (right side) of a Dell PowerEdge R730 server with two 8-core Intel Xeon E5-2667 v4 processors @ 3.2GHz.

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000

1 2 4 8 1 6

Th
ro

ug
hp

ut
 (f

ps
)

Number of active CPU cores

IPv4 median IPv6 median

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000

4 t h 6 t h

Th
ro

ug
hp

ut
 (f

ps
)

CPU cores used

IPv4 median IPv6 median

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

equivalent to the performance of two cores of the E5-2620 CPU
at 2 GHz (765,223 fps).

As for the FD.io VPP results of the two types of CPUs, those
measured at 1.2 GHz are directly comparable. The 2.89 Mfps
single core IPv4 throughput of the E5-2667 v4 CPU @ 1.2 GHz
shows a 1.38-fold increase compared to the 2.09 Mfps single
core IPv4 throughput of the E5-2620 CPU @ 1.2 GHz. The
higher nominal clock frequency of the newer CPU further
amplifies this difference.

VII. DISCUSSION AND FUTURE RESEARCH
In our research group's previous benchmarking effort, the

number of CPU cores in the test system was equal to powers of
2 (see [19]). This approach allowed us to consistently double
the number of active CPU cores in each iteration and fully
utilize all available CPU cores in the final test. During our first
attempt to compare the performance of the Linux kernel and
FD.io VPP, only servers with 12 CPU cores were available for
the task. For this reason, we also conducted tests using 6 cores
to provide a basis for comparison with the tests with 12 cores.
Building on the success of our initial effort [6], we decided to
repeat our experiments with 16-core servers, too.

Our current measurements only included throughput tests. In
the future, we also plan to examine the latency. Since latency is
measured at the frame rate previously determined by the
throughput tests, our hypothesis is that FD.io VPP will exhibit
higher latency. This is due to its vector packet processing
mechanism, where a substantial number of frames are first
accumulated into a vector before being processed together as
they traverse the nodes of the packet processing graph. The
latency results will complement the throughput results to give a
more comprehensive view of the performance of the tested IP
packet forwarding solutions.

Since both FD.io VPP and siitperf use DPDK, and siitperf
only uses one core for sending and one core for receiving in
each direction, we could evaluate the performance of FD.io
VPP only up to two working threads. This remains the case even
when using the trick of lowering the CPU clock frequency of
the DUT. To be able to work with a significantly higher number
of workers (4, 8, etc.) a more powerful Tester would be needed.
The long-term plan of our research group includes the building

of an FPGA-based tester that implements the functionalities of
siitperf.

Another interesting research direction could be to evaluate
the performance of the Linux kernel when using NAPI polling
mode [20].

It would also be worth comparing the performance of FD.io
VPP to that of Open vSwitch with DPDK (OvS DPDK) and
eXpress Data Path (XDP).

Our results will encourage network operators to use FD.io
VPP in production networks for IPv4 and IPv6 packet
forwarding. Exhibiting high performance when running on
commodity servers and being free software, FD.io VPP can be
a good alternative to commercial routers. However, high
performance and low cost are only two aspects. Network
operators must consider at least two other ones: security and
support. FD.io VPP runs on Linux, a general-purpose and
widely used operating system. It is crucial to ensure the secure
operation of the host machine. To that end, it must be carefully
configured, and security updates must be regularly installed.
Major version upgrades to the operating system could involve
issues when DPDK and FD.io versions are upgraded.
Fortunately, Debian and Ubuntu have long-term support (LTS)
versions; thus, they can be operated for several years without
changing the major version. Router vendors also provide
support. As free software is basically provided “as is” without
support, network operators either need to employ experts or buy
support from a company that employs experts in Linux, DPDK
and FD.io VPP.

VIII. CONCLUSION
We measured the performance of IPv4 and IPv6 packet

forwarding of the Linux kernel and FD.io VPP. Regardless of
the IP version, the Linux kernel’s packet forwarding
performance showed a good scale-up with the increasing
number of CPU cores, although minor performance variations
were observed when utilizing different NUMA nodes. In
contrast, FD.io VPP tests demonstrated exceptionally high
performance with perfect scalability from 1 to 2 workers.

When a Dell PowerEdge R620 server with two 6-core E5-
2620 CPUs was used as the DUT, FD.io VPP, using 2 workers
executed by two CPU cores running at 1.2 GHz, outperformed

Fig. 4. Performance and scalability comparison of the Linux kernel using 1-16 active CPU cores (left side) and FD.io VPP using one worker executed by the specified
CPU cores (right side) of a Dell PowerEdge R730 server with two 8-core Intel Xeon E5-2667 v4 processors @ 3.2GHz.

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000

1 2 4 8 1 6

Th
ro

ug
hp

ut
 (f

ps
)

Number of active CPU cores

IPv4 median IPv6 median

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000

4 t h 6 t h

Th
ro

ug
hp

ut
 (f

ps
)

CPU cores used

IPv4 median IPv6 median

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

equivalent to the performance of two cores of the E5-2620 CPU
at 2 GHz (765,223 fps).

As for the FD.io VPP results of the two types of CPUs, those
measured at 1.2 GHz are directly comparable. The 2.89 Mfps
single core IPv4 throughput of the E5-2667 v4 CPU @ 1.2 GHz
shows a 1.38-fold increase compared to the 2.09 Mfps single
core IPv4 throughput of the E5-2620 CPU @ 1.2 GHz. The
higher nominal clock frequency of the newer CPU further
amplifies this difference.

VII. DISCUSSION AND FUTURE RESEARCH
In our research group's previous benchmarking effort, the

number of CPU cores in the test system was equal to powers of
2 (see [19]). This approach allowed us to consistently double
the number of active CPU cores in each iteration and fully
utilize all available CPU cores in the final test. During our first
attempt to compare the performance of the Linux kernel and
FD.io VPP, only servers with 12 CPU cores were available for
the task. For this reason, we also conducted tests using 6 cores
to provide a basis for comparison with the tests with 12 cores.
Building on the success of our initial effort [6], we decided to
repeat our experiments with 16-core servers, too.

Our current measurements only included throughput tests. In
the future, we also plan to examine the latency. Since latency is
measured at the frame rate previously determined by the
throughput tests, our hypothesis is that FD.io VPP will exhibit
higher latency. This is due to its vector packet processing
mechanism, where a substantial number of frames are first
accumulated into a vector before being processed together as
they traverse the nodes of the packet processing graph. The
latency results will complement the throughput results to give a
more comprehensive view of the performance of the tested IP
packet forwarding solutions.

Since both FD.io VPP and siitperf use DPDK, and siitperf
only uses one core for sending and one core for receiving in
each direction, we could evaluate the performance of FD.io
VPP only up to two working threads. This remains the case even
when using the trick of lowering the CPU clock frequency of
the DUT. To be able to work with a significantly higher number
of workers (4, 8, etc.) a more powerful Tester would be needed.
The long-term plan of our research group includes the building

of an FPGA-based tester that implements the functionalities of
siitperf.

Another interesting research direction could be to evaluate
the performance of the Linux kernel when using NAPI polling
mode [20].

It would also be worth comparing the performance of FD.io
VPP to that of Open vSwitch with DPDK (OvS DPDK) and
eXpress Data Path (XDP).

Our results will encourage network operators to use FD.io
VPP in production networks for IPv4 and IPv6 packet
forwarding. Exhibiting high performance when running on
commodity servers and being free software, FD.io VPP can be
a good alternative to commercial routers. However, high
performance and low cost are only two aspects. Network
operators must consider at least two other ones: security and
support. FD.io VPP runs on Linux, a general-purpose and
widely used operating system. It is crucial to ensure the secure
operation of the host machine. To that end, it must be carefully
configured, and security updates must be regularly installed.
Major version upgrades to the operating system could involve
issues when DPDK and FD.io versions are upgraded.
Fortunately, Debian and Ubuntu have long-term support (LTS)
versions; thus, they can be operated for several years without
changing the major version. Router vendors also provide
support. As free software is basically provided “as is” without
support, network operators either need to employ experts or buy
support from a company that employs experts in Linux, DPDK
and FD.io VPP.

VIII. CONCLUSION
We measured the performance of IPv4 and IPv6 packet

forwarding of the Linux kernel and FD.io VPP. Regardless of
the IP version, the Linux kernel’s packet forwarding
performance showed a good scale-up with the increasing
number of CPU cores, although minor performance variations
were observed when utilizing different NUMA nodes. In
contrast, FD.io VPP tests demonstrated exceptionally high
performance with perfect scalability from 1 to 2 workers.

When a Dell PowerEdge R620 server with two 6-core E5-
2620 CPUs was used as the DUT, FD.io VPP, using 2 workers
executed by two CPU cores running at 1.2 GHz, outperformed

Fig. 4. Performance and scalability comparison of the Linux kernel using 1-16 active CPU cores (left side) and FD.io VPP using one worker executed by the specified
CPU cores (right side) of a Dell PowerEdge R730 server with two 8-core Intel Xeon E5-2667 v4 processors @ 3.2GHz.

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000

1 2 4 8 1 6

Th
ro

ug
hp

ut
 (f

ps
)

Number of active CPU cores

IPv4 median IPv6 median

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000

4 t h 6 t h

Th
ro

ug
hp

ut
 (f

ps
)

CPU cores used

IPv4 median IPv6 median

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

equivalent to the performance of two cores of the E5-2620 CPU
at 2 GHz (765,223 fps).

As for the FD.io VPP results of the two types of CPUs, those
measured at 1.2 GHz are directly comparable. The 2.89 Mfps
single core IPv4 throughput of the E5-2667 v4 CPU @ 1.2 GHz
shows a 1.38-fold increase compared to the 2.09 Mfps single
core IPv4 throughput of the E5-2620 CPU @ 1.2 GHz. The
higher nominal clock frequency of the newer CPU further
amplifies this difference.

VII. DISCUSSION AND FUTURE RESEARCH
In our research group's previous benchmarking effort, the

number of CPU cores in the test system was equal to powers of
2 (see [19]). This approach allowed us to consistently double
the number of active CPU cores in each iteration and fully
utilize all available CPU cores in the final test. During our first
attempt to compare the performance of the Linux kernel and
FD.io VPP, only servers with 12 CPU cores were available for
the task. For this reason, we also conducted tests using 6 cores
to provide a basis for comparison with the tests with 12 cores.
Building on the success of our initial effort [6], we decided to
repeat our experiments with 16-core servers, too.

Our current measurements only included throughput tests. In
the future, we also plan to examine the latency. Since latency is
measured at the frame rate previously determined by the
throughput tests, our hypothesis is that FD.io VPP will exhibit
higher latency. This is due to its vector packet processing
mechanism, where a substantial number of frames are first
accumulated into a vector before being processed together as
they traverse the nodes of the packet processing graph. The
latency results will complement the throughput results to give a
more comprehensive view of the performance of the tested IP
packet forwarding solutions.

Since both FD.io VPP and siitperf use DPDK, and siitperf
only uses one core for sending and one core for receiving in
each direction, we could evaluate the performance of FD.io
VPP only up to two working threads. This remains the case even
when using the trick of lowering the CPU clock frequency of
the DUT. To be able to work with a significantly higher number
of workers (4, 8, etc.) a more powerful Tester would be needed.
The long-term plan of our research group includes the building

of an FPGA-based tester that implements the functionalities of
siitperf.

Another interesting research direction could be to evaluate
the performance of the Linux kernel when using NAPI polling
mode [20].

It would also be worth comparing the performance of FD.io
VPP to that of Open vSwitch with DPDK (OvS DPDK) and
eXpress Data Path (XDP).

Our results will encourage network operators to use FD.io
VPP in production networks for IPv4 and IPv6 packet
forwarding. Exhibiting high performance when running on
commodity servers and being free software, FD.io VPP can be
a good alternative to commercial routers. However, high
performance and low cost are only two aspects. Network
operators must consider at least two other ones: security and
support. FD.io VPP runs on Linux, a general-purpose and
widely used operating system. It is crucial to ensure the secure
operation of the host machine. To that end, it must be carefully
configured, and security updates must be regularly installed.
Major version upgrades to the operating system could involve
issues when DPDK and FD.io versions are upgraded.
Fortunately, Debian and Ubuntu have long-term support (LTS)
versions; thus, they can be operated for several years without
changing the major version. Router vendors also provide
support. As free software is basically provided “as is” without
support, network operators either need to employ experts or buy
support from a company that employs experts in Linux, DPDK
and FD.io VPP.

VIII. CONCLUSION
We measured the performance of IPv4 and IPv6 packet

forwarding of the Linux kernel and FD.io VPP. Regardless of
the IP version, the Linux kernel’s packet forwarding
performance showed a good scale-up with the increasing
number of CPU cores, although minor performance variations
were observed when utilizing different NUMA nodes. In
contrast, FD.io VPP tests demonstrated exceptionally high
performance with perfect scalability from 1 to 2 workers.

When a Dell PowerEdge R620 server with two 6-core E5-
2620 CPUs was used as the DUT, FD.io VPP, using 2 workers
executed by two CPU cores running at 1.2 GHz, outperformed

Fig. 4. Performance and scalability comparison of the Linux kernel using 1-16 active CPU cores (left side) and FD.io VPP using one worker executed by the specified
CPU cores (right side) of a Dell PowerEdge R730 server with two 8-core Intel Xeon E5-2667 v4 processors @ 3.2GHz.

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000

1 2 4 8 1 6

Th
ro

ug
hp

ut
 (f

ps
)

Number of active CPU cores

IPv4 median IPv6 median

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000

4 t h 6 t h

Th
ro

ug
hp

ut
 (f

ps
)

CPU cores used

IPv4 median IPv6 median

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

equivalent to the performance of two cores of the E5-2620 CPU
at 2 GHz (765,223 fps).

As for the FD.io VPP results of the two types of CPUs, those
measured at 1.2 GHz are directly comparable. The 2.89 Mfps
single core IPv4 throughput of the E5-2667 v4 CPU @ 1.2 GHz
shows a 1.38-fold increase compared to the 2.09 Mfps single
core IPv4 throughput of the E5-2620 CPU @ 1.2 GHz. The
higher nominal clock frequency of the newer CPU further
amplifies this difference.

VII. DISCUSSION AND FUTURE RESEARCH
In our research group's previous benchmarking effort, the

number of CPU cores in the test system was equal to powers of
2 (see [19]). This approach allowed us to consistently double
the number of active CPU cores in each iteration and fully
utilize all available CPU cores in the final test. During our first
attempt to compare the performance of the Linux kernel and
FD.io VPP, only servers with 12 CPU cores were available for
the task. For this reason, we also conducted tests using 6 cores
to provide a basis for comparison with the tests with 12 cores.
Building on the success of our initial effort [6], we decided to
repeat our experiments with 16-core servers, too.

Our current measurements only included throughput tests. In
the future, we also plan to examine the latency. Since latency is
measured at the frame rate previously determined by the
throughput tests, our hypothesis is that FD.io VPP will exhibit
higher latency. This is due to its vector packet processing
mechanism, where a substantial number of frames are first
accumulated into a vector before being processed together as
they traverse the nodes of the packet processing graph. The
latency results will complement the throughput results to give a
more comprehensive view of the performance of the tested IP
packet forwarding solutions.

Since both FD.io VPP and siitperf use DPDK, and siitperf
only uses one core for sending and one core for receiving in
each direction, we could evaluate the performance of FD.io
VPP only up to two working threads. This remains the case even
when using the trick of lowering the CPU clock frequency of
the DUT. To be able to work with a significantly higher number
of workers (4, 8, etc.) a more powerful Tester would be needed.
The long-term plan of our research group includes the building

of an FPGA-based tester that implements the functionalities of
siitperf.

Another interesting research direction could be to evaluate
the performance of the Linux kernel when using NAPI polling
mode [20].

It would also be worth comparing the performance of FD.io
VPP to that of Open vSwitch with DPDK (OvS DPDK) and
eXpress Data Path (XDP).

Our results will encourage network operators to use FD.io
VPP in production networks for IPv4 and IPv6 packet
forwarding. Exhibiting high performance when running on
commodity servers and being free software, FD.io VPP can be
a good alternative to commercial routers. However, high
performance and low cost are only two aspects. Network
operators must consider at least two other ones: security and
support. FD.io VPP runs on Linux, a general-purpose and
widely used operating system. It is crucial to ensure the secure
operation of the host machine. To that end, it must be carefully
configured, and security updates must be regularly installed.
Major version upgrades to the operating system could involve
issues when DPDK and FD.io versions are upgraded.
Fortunately, Debian and Ubuntu have long-term support (LTS)
versions; thus, they can be operated for several years without
changing the major version. Router vendors also provide
support. As free software is basically provided “as is” without
support, network operators either need to employ experts or buy
support from a company that employs experts in Linux, DPDK
and FD.io VPP.

VIII. CONCLUSION
We measured the performance of IPv4 and IPv6 packet

forwarding of the Linux kernel and FD.io VPP. Regardless of
the IP version, the Linux kernel’s packet forwarding
performance showed a good scale-up with the increasing
number of CPU cores, although minor performance variations
were observed when utilizing different NUMA nodes. In
contrast, FD.io VPP tests demonstrated exceptionally high
performance with perfect scalability from 1 to 2 workers.

When a Dell PowerEdge R620 server with two 6-core E5-
2620 CPUs was used as the DUT, FD.io VPP, using 2 workers
executed by two CPU cores running at 1.2 GHz, outperformed

Fig. 4. Performance and scalability comparison of the Linux kernel using 1-16 active CPU cores (left side) and FD.io VPP using one worker executed by the specified
CPU cores (right side) of a Dell PowerEdge R730 server with two 8-core Intel Xeon E5-2667 v4 processors @ 3.2GHz.

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000

1 2 4 8 1 6

Th
ro

ug
hp

ut
 (f

ps
)

Number of active CPU cores

IPv4 median IPv6 median

0
1000000
2000000
3000000
4000000
5000000
6000000
7000000

4 t h 6 t h

Th
ro

ug
hp

ut
 (f

ps
)

CPU cores used

IPv4 median IPv6 median

IP Packet Forwarding Performance Comparison
of the FD.io VPP and the Linux Kernel

JUNE 2025 • VOLUME XVII • NUMBER 244

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

the Linux kernel, using 12 CPU cores running at 2 GHz.
When a Dell PowerEdge R730 server with two 8-core E5-

2667 v4 CPUs was used as the DUT, the same two CPU clock
speeds were used for testing both solutions. At 1.2 GHz CPU
clock frequency, the Linux kernel on 1 CPU core delivered
299,758 fps IPv4 packet forwarding and 288,704 fps IPv6
packet forwarding performance, and the FD.io VPP with 1
worker thread delivered more than 2.8 million IPv4 packets and
more than 2.5 million IPv6 packets. When the Linux system
used all 16 CPU cores of the CPU, the performance was only
4.05 Mfps and 3.86 Mfps for IPv4 and IPv6 packet forwarding,
respectively. In contrast, FD.io VPP, using only 2 CPU cores (4
and 6), achieved 5.87 Mfps and 5.22 Mfps performance for
IPv4 and IPv6 packet forwarding, respectively. At a CPU clock
frequency of 3.2 GHz, the Linux kernel's single-core system
achieved an IPv4 packet forwarding performance of 746,706
fps and an IPv6 performance of 728,805 fps. In comparison,
FD.io VPP, using a single worker thread, delivered over 6.95
million IPv4 packets and more than 6.25 million IPv6 packets.
Our results confirm that FD.io VPP is indeed a high-
performance solution for IP packet forwarding.

ACKNOWLEDGEMENT
The authors thank Bertalan Kovács for reviewing and

commenting on the manuscript.
The authors thank Natasha Bailey-Borbély, Széchenyi István

University, for the English language proofreading of the
manuscript.

REFERENCES
[1] FD.io “What is the Vector Packet Processor (VPP)”, VPP official website,

https://s3-docs.fd.io/vpp/24.06/
[2] S. Bradner, and J. McQuaid, “Benchmarking methodology for network

interconnect devices”, IETF RFC 2544, 1999. DOI: 10.17487/RFC2544.
[3] D. Newman, T. Player, “Hash and stuffing: Overlooked factors in network

device benchmarking”, IETF RFC 4814, 2008. DOI: 10.17487/RFC4814.
[4] T. Herbert, W. de Bruijn, “Scaling in the Linux Networking Stack”,

https://www.kernel.org/doc/Documentation/networking/scaling.txt
[5] C. Popoviciu, A. Hamza, G. V. de Velde, and D. Dugatkin, “IPv6

benchmarking methodology for network interconnect devices”, IETF
RFC 5180, 2008, DOI: 10.17487/RFC5180.

[6] M. Kosák, and G. Lencse, "Performance comparison of IP packet
forwarding solutions", 2024 47th International Conference on
Telecommunications and Signal Processing (TSP), Virtual Conference,
July 10-12, 2024, pp. 243-248. DOI: 10.1109/TSP63128.2024.10605773

[7] G. Slavic, N. Krajnovic, “Practical implementation of the vector packet
processing software router”, 2024 32nd Telecommunications Forum
(TELFOR), Crowne Plaza, Belgrade, Serbia, November 26-27, 2024,
DOI: 10.1109/TELFOR63250.2024.10819057

[8] Y. Peng, Y. Xiao, J. Duan, X. Zhang and W. Li, “Emulating high-
performance networks with CNNet”, 2023 IEEE 43rd International
Conference on Distributed Computing Systems Workshops (ICDCSW),
Hong Kong, Hong Kong, 2023, pp. 91-96, DOI:
10.1109/ICDCSW60045.2023.00024.

[9] S. Han, S. Wang, Y. Huang, T. Huang, Y. Liu, “High-performance and
low-cost VPP gateway for virtual cloud networks” 2022 IEEE Global
Communications Conference (GLOBECOM), pp. 4419-4424, DOI:
10.1109/GLOBECOM48099.2022.10001162

[10] P. Cai, M. Karsten, “Kernel vs. user-level networking: Don’t throw out
the stack with the interrupts”, ACM SIGMETRICS Performance

Evaluation Review, vol. 52, no. 1, June 13, 2024, pp. 43-44, DOI:
10.1145/3673660.3655061

[11] DPDK official website, https://www.dpdk.org/about/
[12] B. Jacob, S. W. Ng, and D. T. Wang. Memory Systems: Cache, DRAM,

Disk, Morgan Kaufmann Publishers, 2008. DOI: 10.1016/B978-0-12-
379751-3.X5001-2.

[13] G. Lencse, “Design and implementation of a software tester for
benchmarking stateless NAT64 gateways”, IEICE Transactions on
Communications, vol. E104-B, no. 2, pp. 128-140, February 2021, DOI:
10.1587/transcom.2019EBN0010.

[14] M. Georgescu, L. Pislaru, and G. Lencse, “Benchmarking methodology
for IPv6 transition technologies”, IETF RFC 8219, August 2017, DOI:
10.17487/RFC8219.

[15] G. Lencse, “Adding RFC 4814 random port feature to siitperf: Design,
implementation and performance estimation”, International Journal of
Advances in Telecommunications, Electrotechnics, Signals and Systems,
vol. 9, no. 3, 2020, DOI: 10.11601/ijates.v9i3.291.

[16] G. Lencse, “Checking the accuracy of siitperf”, Infocommunications
Journal, vol. 13, no. 2, pp. 2-9, June 2021, DOI: 10.36244/ICJ.2021.2.1

[17] G. Lencse, “Design and implementation of a software tester for
benchmarking stateful NATxy gateways: Theory and practice of
extending siitperf for stateful tests”, Computer Communications, vol. 172,
no. 1, pp. 75-88, Aug. 1, 2022, DOI: 10.1016/j.comcom.2022.05.028.

[18] G. Lencse, “Making stateless and stateful network performance
measurements unbiased”, Computer Communications, vol. 225,
September 2024, pp. 141-155, DOI: 10.1016/j.comcom.2024.05.018

[19] G. Lencse, and Á. Bazsó, “Benchmarking methodology for IPv4aaS
technologies: Comparison of the scalability of the Jool implementation of
464XLAT and MAP-T”, Computer Communications, vol. 219, April
2024, pp. 243-258, DOI: 10.1016/j.comcom.2024.03.007

[20] J. Sahoo, “Deep dive into NAPI: Optimizing network performance in the
Linux kernel”, March 3, 2024, https://www.linkedin.com/pulse/deep-
dive-napi-optimizing-network-performance-linux-kernel-sahoo-opa1c/

Melinda Kosák received her BSc in
electrical engineering from Széchenyi
István University, Győr, Hungary in 2024.

She has been a member of the
Cybersecurity and Network Technologies
Research Group of the Faculty of
Mechanical Engineering, Informatics and
Electrical Engineering of Széchenyi István

University, Győr, Hungary since 2022. Her research interests
include performance analysis of FD.io VPP. She is now
continuing her studies at Széchenyi István University as an MSc
student in electrical engineering.

Gábor Lencse received his MSc and PhD
degrees in computer science from the
Budapest University of Technology and
Economics, Budapest, Hungary in 1994 and
2001, respectively.
 He has been working for the Department
of Telecommunications, Széchenyi István
University, Győr, Hungary since 1997 and

has attained the rank of Professor. He has also been a part-time
Senior Research Fellow at the Department of Networked
Systems and Services, Budapest University of Technology and
Economics since 2005. His research interests include the
performance and security analysis of IPv6 transition
technologies. He is a co-author of RFC 8219 and RFC 9313.

 [1] FD.io “What is the Vector Packet Processor (VPP)”, VPP official
website, https://s3-docs.fd.io/vpp/24.06/

 [2] S. Bradner, and J. McQuaid, “Benchmarking methodology for
network interconnect devices”, IETF RFC 2544, 1999.

 doi: 10.17487/RFC2544.
 [3] D. Newman, T. Player, “Hash and stuffing: Overlooked factors in

network device benchmarking”, IETF RFC 4814, 2008.
 doi: 10.17487/RFC4814.
 [4] T. Herbert, W. de Bruijn, “Scaling in the Linux Networking Stack”,

https://www.kernel.org/doc/Documentation/networking/scaling.txt
 [5] C. Popoviciu, A. Hamza, G. V. de Velde, and D. Dugatkin, “IPv6

benchmarking methodology for network interconnect devices”, IETF
RFC 5180, 2008, doi: 10.17487/RFC5180.

 [6] M. Kosák, and G. Lencse, "Performance comparison of IP packet
forwarding solutions", 2024 47th International Conference
on Telecommunications and Signal Processing (TSP), Virtual
Conference, July 10-12, 2024, pp. 243–248.

 doi: 10.1109/TSP63128.2024.10605773
 [7] G. Slavic, N. Krajnovic, “Practical implementation of the vector

packet processing software router”, 2024 32nd Telecommunications
Forum (TELFOR), Crowne Plaza, Belgrade, Serbia, November 26-
27, 2024, doi: 10.1109/TELFOR63250.2024.10819057

 [8] Y. Peng, Y. Xiao, J. Duan, X. Zhang and W. Li, “Emulating high-
performance networks with CNNet”, 2023 IEEE 43rd International
Conference on Distributed Computing Systems Workshops (ICDCSW),
Hong Kong, Hong Kong, 2023, pp. 91–96,

 doi: 10.1109/ICDCSW60045.2023.00024.
 [9] S. Han, S. Wang, Y. Huang, T. Huang, Y. Liu, “High-performance and

low-cost VPP gateway for virtual cloud networks” 2022 IEEE Global
Communications Conference (GLOBECOM), pp. 4419–4424,

 doi: 10.1109/GLOBECOM48099.2022.10001162

References

 [10] P. Cai, M. Karsten, “Kernel vs. user-level networking: Don’t throw
out the stack with the interrupts”, ACM SIGMETRICS Performance
Evaluation Review, vol. 52, no. 1, June 13, 2024, pp. 43–44,

 doi: 10.1145/3673660.3655061
 [11] DPDK official website, https://www.dpdk.org/about/
 [12] B. Jacob, S. W. Ng, and D. T. Wang. Memory Systems: Cache, DRAM,

Disk, Morgan Kaufmann Publishers, 2008.
 doi: 10.1016/B978-0-12-379751-3.X5001-2.
 [13] G. Lencse, “Design and implementation of a software tester for

benchmarking stateless NAT64 gateways”, IEICE Transactions on
Communications, vol. E104-B, no. 2, pp. 128–140, February 2021,
doi: 10.1587/transcom.2019EBN0010.

 [14] M. Georgescu, L. Pislaru, and G. Lencse, “Benchmarking
methodology for IPv6 transition technologies”, IETF RFC 8219,
August 2017, doi: 10.17487/RFC8219.

 [15] G. Lencse, “Adding RFC 4814 random port feature to siitperf:
Design, implementation and performance estimation”, International
Journal of Advances in Telecommunications, Electrotechnics, Signals
and Systems, vol. 9, no. 3, 2020, doi: 10.11601/ijates.v9i3.291.

[16] G. Lencse, “Checking the accuracy of siitperf”, Infocommunications
Journal, vol. 13, no. 2, pp. 2–9, June 2021,

 doi: 10.36244/ICJ.2021.2.1
[17] G. Lencse, “Design and implementation of a software tester for

benchmarking stateful NATxy gateways: Theory and practice of
extending siitperf for stateful tests”, Computer Communications, vol.
172, no. 1, pp. 75–88, Aug. 1, 2022,

 doi: 10.1016/j.comcom.2022.05.028.
[18] G. Lencse, “Making stateless and stateful network performance

measurements unbiased”, Computer Communications, vol. 225,
September 2024, pp. 141–155,

 doi: 10.1016/j.comcom.2024.05.018
[19] G. Lencse, and Á. Bazsó, “Benchmarking methodology for IPv4aaS

technologies: Comparison of the scalability of the Jool implementation
of 464XLAT and MAP-T”, Computer Communications, vol. 219,
April 2024, pp. 243–258, doi: 10.1016/j.comcom.2024.03.007

[20] J. Sahoo, “Deep dive into NAPI: Optimizing network performance
in the Linux kernel”, March 3, 2024, https://www.linkedin.com/
pulse/deep-dive-napi-optimizing-network-performance-linux-kernel-
sahoo-opa1c/

Melinda Kosák received her BSc in electrical
engineering from Széchenyi István University, Győr,
Hungary in 2024.
She has been a member of the Cybersecurity and
Network Technologies Research Group of the Faculty
of Mechanical Engineering, Informatics and Electrical
Engineering of Széchenyi István University, Győr,
Hungary since 2022. Her research interests include
performance analysis of FD.io VPP. She is now
continuing her studies at Széchenyi István University

as an MSc student in electrical engineering.

Gábor Lencse received his MSc and PhD degrees
in computer science from the Budapest University of
Technology and Economics, Budapest, Hungary in
1994 and 2001, respectively.
He has been working for the Department of
Telecommunications, Széchenyi István University,
Győr, Hungary since 1997 and has attained the rank
of Professor. He has also been a part-time Senior
Research Fellow at the Department of Networked
Systems and Services, Budapest University of

Technology and Economics since 2005. His research interests include the
performance and security analysis of IPv6 transition technologies. He is a
co-author of RFC 8219 and RFC 9313.

https://s3-docs.fd.io/vpp/24.06/
https://doi.org/10.17487/RFC2544
https://doi.org/10.17487/RFC4814
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://doi.org/10.17487/RFC5180
https://doi.org/10.1109/TSP63128.2024.10605773
https://doi.org/10.1109/TELFOR63250.2024.10819057
https://doi.org/10.1109/ICDCSW60045.2023.00024
https://doi.org/10.1109/GLOBECOM48099.2022.10001162
https://www.dpdk.org/about/
https://doi.org/10.1016/B978-0-12-379751-3.X5001-2
https://doi.org/10.1587/transcom.2019EBN0010
https://doi.org/10.17487/RFC8219
https://doi.org/10.11601/ijates.v9i3.291
https://doi.org/10.36244/ICJ.2021.2.1
https://doi.org/10.1016/j.comcom.2022.05.028
https://doi.org/10.1016/j.comcom.2024.05.018
https://doi.org/10.1016/j.comcom.2024.03.007
https://www.linkedin.com/pulse/deep-dive-napi-optimizing-network-performance-linux-kernel-sahoo-opa1c/
https://www.linkedin.com/pulse/deep-dive-napi-optimizing-network-performance-linux-kernel-sahoo-opa1c/
https://www.linkedin.com/pulse/deep-dive-napi-optimizing-network-performance-linux-kernel-sahoo-opa1c/

