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 
Abstract— There are numerous free software solutions for IPv4 

or IPv6 packet forwarding. The Fast Data Project / Vector Packet 
Processing (FD.io VPP) is a novel and prominent solution. This 
paper investigates its performance and scalability compared to 
that of the Linux kernel. The investigation was conducted in 
accordance with the requirements outlined in the relevant Request 
for Comments (RFC) documents (RFC 2544, RFC 4814, and RFC 
5180) using the siitperf measurement software. Two different test 
environments were used to eliminate the potential hardware-
specific side effects and to gain insight into the performance and 
scalability of the IPv4 and IPv6 packet forwarding capability of 
the two investigated solutions. It was found that FD.io VPP 
outperformed the Linux kernel by approximately an order of 
magnitude. The configuration of FD.io VPP, along with the details 
of the measurements, are provided, and the results are presented 
and analyzed in the paper. 

 
Index Terms— FD.io VPP, IPv4, IPv6, Linux kernel, packet 

forwarding  

I. INTRODUCTION 
HE Internet is an essential part of our life. All data of our 
daily communication is carried in packets by the Internet 
Protocol (IP). At the time of writing, there are two versions 

of IP: the older IPv4 version and the newer, increasingly more 
adopted IPv6. For IPv4 and IPv6 packet forwarding, there are 
numerous free software solutions, such as the Linux kernel, and 
one with exceptionally high performance called FD.io VPP. 
This article focuses on FD.io VPP, as its developers claim: “The 
Fast Data Project (FD.io) is an open-source project aimed at 
providing the world's fastest and most secure networking data 
plane through Vector Packet Processing (VPP).” [1]. We 
examine this proposition from a performance perspective. In 
this paper, we compare the IPv4 and IPv6 packet forwarding 
performance and scalability of the Linux kernel and FD.io VPP. 
By scalability, we refer to how their performance increases with 
the number of CPU cores utilized. First, we complete the 
performance and scalability test of the Linux kernel to establish 
a basis for comparison. Then we continue with the examination 
of the performance and scalability of FD.io VPP. For our tests, 
we use two different hardware environments. 

The remainder of this paper is organized as follows. In 
section II, a brief introduction is given to the theoretical 
background of the performance measurements of network 
interconnect devices on the basis of the relevant Internet 
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Engineering Task Force (IETF) Request for Comments (RFC) 
documents. Section III presents a short survey of related works. 
Section IV is an overview of the software used for our 
measurements. Section V discloses the relevant details of our 
measurement environments. In section VI, our measurement 
results are presented and analyzed. Section VII covers the 
discussion and our plans for future research. Section VIII 
concludes our paper. 

II. THEORETICAL BACKGROUND 

A. RFC 2544 
The main purpose of the RFC 2544 [2] is to define how to 

measure the performance of network interconnect devices in an 
objective and repeatable way. The most important aspects 
include measurement setup, Device Under Test (DUT) setup, 
frame format and frames sizes, and testing duration. 

The RFC lists three different measurement setups of which 
we used the first one. 

The RFC recommends the usage of the following Ethernet 
frame sizes: 64, 128, 256, 512, 1024, 1280, 1518. It defines 
TCP/IP over Ethernet frame formats. They are: learning frame, 
routing update frame, management query frame and test frame.  
The test frame is used for different benchmarking tests like 
throughput, latency, frame loss rate, back-to-back frames, 
system recovery, and reset. From among them, throughput is 
the most essential one. 

To measure the performance of routers, an IP address range 
was reserved, 198.18.0.0/15. The lower half of the range 
(198.18.0.0/16) was used on the left side of the configuration 
shown in Figure 1, and the upper half (198.19.0.0/16) on the 
right side. The interfaces of the DUT were assigned the IP 
address ending in 1 of the domains (198.18.0.1 and 198.19.0.1). 

It should be noted that RFC 2544 requires testing with 
bidirectional traffic and it was used in all our measurements. 

B. RFC 4814 
RFC 4814 [3] covers several different topics. During our 

measurements, we used the pseudorandom port numbers, which 
are recommended in section 4.5 of the aforementioned RFC. 
The network cards in use today are capable of distributing 
interrupts caused by the packet arrivals to different CPU cores 
for processing. This is done using a hash function that takes the 
source and destination IP addresses, as well as the TCP or UDP 
source and destination port numbers in incoming packets, as 
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input parameters. This process is called Receive-Side Scaling 
(RSS) [4], which aims to achieve scalability. To support RSS, 
RFC 4814 recommends the usage of pseudorandom port 
numbers. The recommended ranges are: 

 for source port numbers: 1024 – 65535 
 for destination port numbers: 1 – 49151 

C. RFC 5180 
RFC 5180 [5] is highly similar to RFC 2544 in several ways, 

but while RFC 2544 focused on IPv4, RFC 5180 deals with 
IPv6. Similar to IPv4, an IPv6 address space was reserved for 
benchmarking. The reserved range is 2001:2::/48. As in RFC 
2544, the address range should be halved.  

III. RELATED WORK 
As for peer-reviewed research papers about measuring IPv4 

and IPv6 packet forwarding performance of FD.io VPP 
according to the current industry standards laid down by the 
RFCs mentioned above, we found only our own conference 
paper [6], which is extended in our current paper with further 
measurements. 

However, several other recent research papers recommended 
FD.io VPP for IPv4 or IPv6 packet forwarding.  

For example, Slavic and Krajnovic [7] proposed that open-
source software and commodity hardware may replace the 
router vendors' products. They recommended the usage of 
FD.io VPP and some further software. However, they did not 
present any benchmarking measurements that were RFC 2544 
or RFC 5180 compliant. 

FD.io VPP was used as the packet forwarding solution of a 
network emulator called “CNNet” [8]. 

FD.io VPP is integrated with a custom control plane to 
provide a high-performance, low-cost software cloud gateway 
for accelerating virtual cloud networks [9]. Although certain 
performance data are included in the paper, the testing 
conditions are not mentioned. Their measurements were not 
RFC 2544 compliant because of the traffic generator used.  

Another paper gives an important insight into the issue of 
why user-space solutions may outperform the interrupt-based 
ones [10]. 

IV. SOFTWARE USED FOR MEASUREMENTS 
In this section, a brief summary is provided on DPDK, the 

Linux kernel, Non-Uniform Memory Access (NUMA), FD.io 
VPP, and siitperf. 

A. DPDK 
The Data Plane Development Kit (DPDK) [11] is an open-

source software, with Linux based user platform, that was 
designed to improve packet processing speeds. DPDK enables 
the rapid development of high-speed data packet networking 
applications. DPDK achieves fast packet processing by 
consisting of libraries and drivers that bypass the operating 
system’s network stack. DPDK-based programs can send and 
receive approximately an order of magnitude more packets per 
CPU core than those using the Linux kernel [11].  

B. Linux kernel 
During packet forwarding, the Linux kernel processes 

incoming network packets and forwards them to the appropriate 
destination. In the Linux kernel, both scalar packet processing 
and RSS play an important role in packet delivery. During the 
scalar packet processing, the kernel individually processes the 
incoming packets. Just one packet is taken by an interrupt 
function (by default) from the network interface, then it works 
through a series of functions [1]. This method is simple, but its 
efficiency can be limited as it requires the same call chain to be 
executed for each packet. This can be time-consuming and 
place a strain on the processor and caches. With RSS, the kernel 
can handle heavy loads more efficiently and distribute packet 
processing across multiple CPUs in the system, increasing 
performance and reducing latency. 

C. Non-Uniform Memory Access 
NUMA is a multiprocessor system design where memory 

access time depends on the position of memory relative to the 
processor: each processor accesses its own local memory faster 
than the local memory of another processor [12]. Whereas 
NUMA is necessary to support scalability, our results show the 
consequences of its usage when a CPU core belongs to a 
different NUMA node than the Network Interface Card (NIC) 
it communicates with. 

D. FD.io VPP 
The Fast Data Project (FD.io) [1] introduced Vector Packet 

Processing (VPP) that can handle high performance traffic. It 
can be used on multiple platforms. Vector packet processing 
can receive multiple packets at once and pass this group, known 
as a packet vector, to the processing function, which then 
processes it, thereby saving time. The Packet Processing Graph 
(PPG) is at the heart of the FD.io VPP design. FD.io VPP 
collects a vector of packets from the RX rings, up to 256 packets 
in a single vector. The received packets are then traversed 
through the nodes of the PPG in the vector, with each graph 
node representing network processing that is applied to each 
packet. FD.io VPP can be used with or without DPDK. We used 
it with DPDK. 

E. Siitperf 
Siitperf [13] was running on our Tester server. The name of 

siitperf comes from the fact that it was originally designed to 
measure the performance of Stateless IP/ICMP Translation 
(SIIT) gateways. Due to its flexibility, it is also suitable for 
measuring the performance of IPv4 and IPv6 packet forwarders 
(routers). Siitperf uses DPDK to achieve a sufficiently high 
performance [13]. It should be noted that siitperf reports the 
results as packets per second per direction. When bidirectional 
traffic is used, the number of all frames forwarded is double the 
value reported. 

As siitperf supports the throughput, latency, frame loss rate 
and packet delay variation measurement procedures of RFC 
8219 [14], and the throughput measurement procedure of RFC 
2544 was incorporated in RFC 5180 and then in RFC 8219 
without any changes, siitperf could be used for measuring IPv4 
and IPv6 throughput according to the requirements of RFC 
2544 and RFC 5180, respectively. 
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outperformed the Linux kernel by approximately an order of 
magnitude. The configuration of FD.io VPP, along with the details 
of the measurements, are provided, and the results are presented 
and analyzed in the paper. 

 
Index Terms— FD.io VPP, IPv4, IPv6, Linux kernel, packet 

forwarding  

I. INTRODUCTION 
HE Internet is an essential part of our life. All data of our 
daily communication is carried in packets by the Internet 
Protocol (IP). At the time of writing, there are two versions 

of IP: the older IPv4 version and the newer, increasingly more 
adopted IPv6. For IPv4 and IPv6 packet forwarding, there are 
numerous free software solutions, such as the Linux kernel, and 
one with exceptionally high performance called FD.io VPP. 
This article focuses on FD.io VPP, as its developers claim: “The 
Fast Data Project (FD.io) is an open-source project aimed at 
providing the world's fastest and most secure networking data 
plane through Vector Packet Processing (VPP).” [1]. We 
examine this proposition from a performance perspective. In 
this paper, we compare the IPv4 and IPv6 packet forwarding 
performance and scalability of the Linux kernel and FD.io VPP. 
By scalability, we refer to how their performance increases with 
the number of CPU cores utilized. First, we complete the 
performance and scalability test of the Linux kernel to establish 
a basis for comparison. Then we continue with the examination 
of the performance and scalability of FD.io VPP. For our tests, 
we use two different hardware environments. 

The remainder of this paper is organized as follows. In 
section II, a brief introduction is given to the theoretical 
background of the performance measurements of network 
interconnect devices on the basis of the relevant Internet 
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Engineering Task Force (IETF) Request for Comments (RFC) 
documents. Section III presents a short survey of related works. 
Section IV is an overview of the software used for our 
measurements. Section V discloses the relevant details of our 
measurement environments. In section VI, our measurement 
results are presented and analyzed. Section VII covers the 
discussion and our plans for future research. Section VIII 
concludes our paper. 

II. THEORETICAL BACKGROUND 

A. RFC 2544 
The main purpose of the RFC 2544 [2] is to define how to 

measure the performance of network interconnect devices in an 
objective and repeatable way. The most important aspects 
include measurement setup, Device Under Test (DUT) setup, 
frame format and frames sizes, and testing duration. 

The RFC lists three different measurement setups of which 
we used the first one. 

The RFC recommends the usage of the following Ethernet 
frame sizes: 64, 128, 256, 512, 1024, 1280, 1518. It defines 
TCP/IP over Ethernet frame formats. They are: learning frame, 
routing update frame, management query frame and test frame.  
The test frame is used for different benchmarking tests like 
throughput, latency, frame loss rate, back-to-back frames, 
system recovery, and reset. From among them, throughput is 
the most essential one. 

To measure the performance of routers, an IP address range 
was reserved, 198.18.0.0/15. The lower half of the range 
(198.18.0.0/16) was used on the left side of the configuration 
shown in Figure 1, and the upper half (198.19.0.0/16) on the 
right side. The interfaces of the DUT were assigned the IP 
address ending in 1 of the domains (198.18.0.1 and 198.19.0.1). 

It should be noted that RFC 2544 requires testing with 
bidirectional traffic and it was used in all our measurements. 

B. RFC 4814 
RFC 4814 [3] covers several different topics. During our 

measurements, we used the pseudorandom port numbers, which 
are recommended in section 4.5 of the aforementioned RFC. 
The network cards in use today are capable of distributing 
interrupts caused by the packet arrivals to different CPU cores 
for processing. This is done using a hash function that takes the 
source and destination IP addresses, as well as the TCP or UDP 
source and destination port numbers in incoming packets, as 
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Siitperf is a collection of binaries and bash shell scripts. The 
binaries execute an elementary step of the given measurement 
procedure. For example, the siitperf-tp binary performs a 60-
second long throughput test, and the binary-rate-alg.sh script 
performs the binary search by calling the siitperf-tp binary and 
providing the appropriate parameter values as command line 
arguments. In contrast, other parameters that do not change 
during the consecutive steps of the binary search are read from 
the siitperf.conf configuration file. 

As required by the throughput measurement procedures of 
RFC 2544 or RFC 5180, siitperf-tp sends bidirectional IPv4 or 
IPv6 traffic and counts the received frames. Based on the 
reported values, the shell script determines throughput, which 
is the highest frame rate at which the DUT can forward all test 
frames without loss. 

Further details of the design, implementation, operation and 
performance of siitperf can be found in several research papers. 
The original design, which relied on fixed port numbers, was 
disclosed in [13]. The extension to support RFC 4814 
pseudorandom port numbers was documented in [15]. The 
accuracy of siitperf was checked by comparing the IPv4 
throughput of the same DUT determined by siitperf and the 
RFC 2544-compliant commercial Anritsu MP1590B Network 
Performance Tester [16]. The theory and practice of extending 
siitperf for stateful tests was published in [17]. Finally, support 
for pseudorandom IP addresses was added, as described in [18]. 

V. TEST ENVIRONMENT 

A. The Structure of the Test Network 
Two test systems were used. The first one consisted of Dell 

PowerEdge R620 servers. Each had two 6-core Intel Xeon E5-
2620 processors and 32 GB 1600 MHz DDR3 SDRAM 
configured as 1333 MT/s. The second one contained Dell 
PowerEdge R730 servers. Each had two 8-core Intel Xeon E5-
2667 v4 CPUs and 128 GB 2666 MHz DDR4 SDRAM 
configured as 2400 MT/s. We installed an Intel X540 10G/1G 
network interface card (NIC) in each of them, using the two 10 
GbE ports for the measurements. The servers were directly 
connected with Cat6 UTP patch cables. The test setup is shown 
in Fig. 1. 

To achieve stable measurement results, we switched off 
hyper-threading and set the CPU clock frequency of the servers 
to a fixed rate at their nominal clock frequency using the tlp 
Linux package, namely to 2 GHz and to 3.2 GHz for the R620 
and the R730 servers, respectively. 

As for drivers for the 10GbE ports of the X540 NIC, ixgbe 
and uio_pci_generic were used with the Linux kernel and with 
FD.io.VPP. 

It should be noted that all servers used had two NUMA 
nodes, where the 10GbE network interfaces and the CPU cores 
with even serial numbers (core 0, core 2, core 4, etc.) belonged 
to NUMA node 0 and the CPU cores with odd serial numbers 
(core 1, core 3, core 5, etc.) belonged to NUMA node 1. 

B. Performance of the Tester 
As we did not use a commercial network performance tester 

to perform the measurements but instead employed our own 
software tester called siitperf, which ran on the same type of 

servers as the DUT, it was important to avoid the situation that 
the Tester could become a bottleneck. To achieve this, we 
conducted a loopback test: the two interfaces of the Tester were 
interconnected by a direct cable, leaving out the DUT, and a 
throughput test was performed. (This was called the “self-test 
of the Tester” in our previous papers about siitperf.)  

This test was only performed with the R620 Tester using 
IPv4. The result was highly stable: 6.03 Mfps. The test was not 
repeated with IPv6 traffic because, according to our experience, 
it would not make a significant difference. (Please refer to Table 
4 and Table 5 of [18].) We did not need to perform the test with 
the R730 server because we knew from our previous 
experiments that the X540 NIC formed the bottleneck, as it can 
do about 7.1-7.2 Mfps. (As already mentioned, these rates were 
measured with bidirectional traffic and are to be understood as 
per direction rates.)  

C. Configuration of FD.io VPP 
We followed the installation guide from the official FD.io 

webpage [1]. We installed the following packages: libvppinfra, 
vpp, vpp-plugin-core, vpp-plugin-dpdk. During FD.io VPP 
measurements, we assigned our interfaces to DPDK with the 
uio_pci_generic driver. The configuration of FD.io VPP was 
done with the following commands: 

set interface ip address \ 
TenGigabitEthernet1/0/0 198.18.0.1/24 
set interface ip address \ 
TenGigabitEthernet1/0/1 198.19.0.1/24 
set interface state TenGigabitEthernet1/0/0 up 
set interface state TenGigabitEthernet1/0/1 up 
set ip neighbor TenGigabitEthernet1/0/0 \ 
198.18.0.2 24:6e:96:3b:fb:00 
set ip neighbor TenGigabitEthernet1/0/1 \ 
198.19.0.2 24:6e:96:3b:fb:02 

The latter two commands were necessary because siitperf 
cannot respond to ARP requests. As a result, we had to set the 
ARP table entries manually.  

The IPv6 configuration was similar, using IPv6 addresses 
instead of the IPv4 addresses. In that case we set the NDP table 
entries similar to the ARP table entries. 

 

DUT
Dell PowerEdge R620 / R730

Debian Linux 11.7 
with 5.10 kernel

Tester
Dell PowerEdge R620 / R730 

(running siitperf) 
eno1:

198.18.0.2/24
2001:2::2/64

eno2:
198.19.0.2/24
2001:2:0:8000::2/64

eno2:
198.19.0.1/24
2001:2:0:8000::1/64

eno1:
198.18.0.1/24

2001:2::1/64

10G Ethernet with 
Cat6 UTP cables  

 
Fig. 1.  Test setup for benchmarking FD.io VPP and the Linux kernel. 
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In VPP, for setting the number of CPU cores to be used, we 
had to modify the /etc/vpp/startup.conf configuration file. In the 
CPU segment, we changed the following settings: 

main-core 2 # the main program runs on core 2 
corelist-workers 4, 6 # 2 workers (on 4 and 6) 

VI. MEASUREMENTS AND RESULTS 
As for frame sizes, 64-byte and 84-byte test frames were 

used for IPv4 and IPv6 respectively. These are the smallest 
frame sizes allowed by siitperf. The rationale behind this choice 
was to make the CPU's processing capacity the bottleneck 
(limiting the maximum frame rate), rather than the packet 
transmission capacity of the network interface card. 

It should be noted that since we used a general-purpose 
operating system, random events could occur during our 
measurements, potentially influencing the results. Therefore, 
each test was executed 20 times to achieve statistically reliable 
results.  

As for summarizing function, both median and average was 
used. In the analysis, we primarily relied on median, because it 
is less sensitive to outliers than average. 

To express the consistent or scattered nature of the results, 
we primarily relied on dispersion. It is defined by (1). 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 100% (1) 

In addition, we also included the standard deviation. 
As mentioned, in Section IV.E, siitperf reports the number 

of forwarded packets per direction. Therefore, our results 
should be interpreted accordingly (i.e., they should be 
multiplied by two to obtain the total number of forwarded 
packets per second). 

A. Linux Kernel Packet Forwarding Performance of R620 
The IPv4 and IPv6 packet forwarding performance of the 

Linux kernel was measured as a function of the number of 
active CPU cores. The number of active CPU cores was limited 

using the maxcpus=n kernel parameter, where n took the values 
of 1, 2, 4, 6, 8 and 12.  

The IPv4 packet forwarding performance of the Linux 
kernel as a function of the number of active CPU cores is shown 
in Table I. At first glance, the results show that the performance 
of the DUT scaled up well with the increase of the number of 
active CPU cores. To facilitate a more detailed analysis of the 
results, the second-to-last line of the table shows the 
performance relative to having half as many active CPU cores, 
while the last line displays the relative scale-up, as defined by 
(2). 

 𝑆𝑆(𝑑𝑑) = 𝑃𝑃(𝑑𝑑)/𝑃𝑃(1)/𝑑𝑑 (2) 

Where n is the number of active CPU cores, and P(n) is the 
performance measured (in frames per second) with n active 
CPU core. Its theoretical maximum value is 1. 

A closer inspection of the results shows the following: 

When using 2 CPU cores instead of 1 CPU core, the system 
performance did not double, but only increased by a factor of 
1.7282. There are two main reasons for this phenomenon: 

1. there is a performance cost of running a system with 
multiple cores compared to running a system with a 
single core, 

2. CPU core 0 and the 10GbE Ethernet interfaces used for 
measurement belong to NUMA node 0, but CPU core 
1 belongs to NUMA node 1, which means that CPU 
core 1 can only communicate with the network 
interface via core 0, and this communication overhead 
reduces the performance. 

However, when we used 4 active CPU cores instead of 2, 
the performance doubled by a very good approximation (1.992 
times). The explanation for this is very simple. The above 
factors were already present in the dual core system, so they did 
not cause any additional performance degradation in the quad 
core system.  

 
TABLE II 

THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ 
Number of CPU cores 1 2 4 6 8 12 
median (fps) 425,782 732,299 1,466,585 2,176,369 2,658,915 3,766,926 
minimum (fps) 424,951 726,561 1,374,999 1,999,999 2,617,186 3,761,709 
maximum (fps) 426,026 733,467 1,466,974 2,178,284 2,660,414 3,772,095 
average (fps) 425,628 731,888 1,461,745 2,156,176 2,656,771 3,766,972 
standard deviation 291.61 1,481.93 20,459.50 54,645.21 9,443.81 2,679.58 
dispersion (%) 0.25 0.94 6.27 8.19 1.63 0.28 
relative to half as many cores -- 1.7199 2.0027 -- 1.8130 1.7308 
relative scale-up 1 0.8599 0.8611 0.8519 0.7806 0.7373 
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In VPP, for setting the number of CPU cores to be used, we 
had to modify the /etc/vpp/startup.conf configuration file. In the 
CPU segment, we changed the following settings: 

main-core 2 # the main program runs on core 2 
corelist-workers 4, 6 # 2 workers (on 4 and 6) 

VI. MEASUREMENTS AND RESULTS 
As for frame sizes, 64-byte and 84-byte test frames were 

used for IPv4 and IPv6 respectively. These are the smallest 
frame sizes allowed by siitperf. The rationale behind this choice 
was to make the CPU's processing capacity the bottleneck 
(limiting the maximum frame rate), rather than the packet 
transmission capacity of the network interface card. 

It should be noted that since we used a general-purpose 
operating system, random events could occur during our 
measurements, potentially influencing the results. Therefore, 
each test was executed 20 times to achieve statistically reliable 
results.  

As for summarizing function, both median and average was 
used. In the analysis, we primarily relied on median, because it 
is less sensitive to outliers than average. 

To express the consistent or scattered nature of the results, 
we primarily relied on dispersion. It is defined by (1). 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 100% (1) 

In addition, we also included the standard deviation. 
As mentioned, in Section IV.E, siitperf reports the number 

of forwarded packets per direction. Therefore, our results 
should be interpreted accordingly (i.e., they should be 
multiplied by two to obtain the total number of forwarded 
packets per second). 

A. Linux Kernel Packet Forwarding Performance of R620 
The IPv4 and IPv6 packet forwarding performance of the 

Linux kernel was measured as a function of the number of 
active CPU cores. The number of active CPU cores was limited 

using the maxcpus=n kernel parameter, where n took the values 
of 1, 2, 4, 6, 8 and 12.  

The IPv4 packet forwarding performance of the Linux 
kernel as a function of the number of active CPU cores is shown 
in Table I. At first glance, the results show that the performance 
of the DUT scaled up well with the increase of the number of 
active CPU cores. To facilitate a more detailed analysis of the 
results, the second-to-last line of the table shows the 
performance relative to having half as many active CPU cores, 
while the last line displays the relative scale-up, as defined by 
(2). 

 𝑆𝑆(𝑑𝑑) = 𝑃𝑃(𝑑𝑑)/𝑃𝑃(1)/𝑑𝑑 (2) 

Where n is the number of active CPU cores, and P(n) is the 
performance measured (in frames per second) with n active 
CPU core. Its theoretical maximum value is 1. 

A closer inspection of the results shows the following: 

When using 2 CPU cores instead of 1 CPU core, the system 
performance did not double, but only increased by a factor of 
1.7282. There are two main reasons for this phenomenon: 

1. there is a performance cost of running a system with 
multiple cores compared to running a system with a 
single core, 

2. CPU core 0 and the 10GbE Ethernet interfaces used for 
measurement belong to NUMA node 0, but CPU core 
1 belongs to NUMA node 1, which means that CPU 
core 1 can only communicate with the network 
interface via core 0, and this communication overhead 
reduces the performance. 

However, when we used 4 active CPU cores instead of 2, 
the performance doubled by a very good approximation (1.992 
times). The explanation for this is very simple. The above 
factors were already present in the dual core system, so they did 
not cause any additional performance degradation in the quad 
core system.  
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In VPP, for setting the number of CPU cores to be used, we 
had to modify the /etc/vpp/startup.conf configuration file. In the 
CPU segment, we changed the following settings: 

main-core 2 # the main program runs on core 2 
corelist-workers 4, 6 # 2 workers (on 4 and 6) 

VI. MEASUREMENTS AND RESULTS 
As for frame sizes, 64-byte and 84-byte test frames were 

used for IPv4 and IPv6 respectively. These are the smallest 
frame sizes allowed by siitperf. The rationale behind this choice 
was to make the CPU's processing capacity the bottleneck 
(limiting the maximum frame rate), rather than the packet 
transmission capacity of the network interface card. 

It should be noted that since we used a general-purpose 
operating system, random events could occur during our 
measurements, potentially influencing the results. Therefore, 
each test was executed 20 times to achieve statistically reliable 
results.  

As for summarizing function, both median and average was 
used. In the analysis, we primarily relied on median, because it 
is less sensitive to outliers than average. 

To express the consistent or scattered nature of the results, 
we primarily relied on dispersion. It is defined by (1). 
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𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 100% (1) 

In addition, we also included the standard deviation. 
As mentioned, in Section IV.E, siitperf reports the number 

of forwarded packets per direction. Therefore, our results 
should be interpreted accordingly (i.e., they should be 
multiplied by two to obtain the total number of forwarded 
packets per second). 

A. Linux Kernel Packet Forwarding Performance of R620 
The IPv4 and IPv6 packet forwarding performance of the 

Linux kernel was measured as a function of the number of 
active CPU cores. The number of active CPU cores was limited 

using the maxcpus=n kernel parameter, where n took the values 
of 1, 2, 4, 6, 8 and 12.  

The IPv4 packet forwarding performance of the Linux 
kernel as a function of the number of active CPU cores is shown 
in Table I. At first glance, the results show that the performance 
of the DUT scaled up well with the increase of the number of 
active CPU cores. To facilitate a more detailed analysis of the 
results, the second-to-last line of the table shows the 
performance relative to having half as many active CPU cores, 
while the last line displays the relative scale-up, as defined by 
(2). 

 𝑆𝑆(𝑑𝑑) = 𝑃𝑃(𝑑𝑑)/𝑃𝑃(1)/𝑑𝑑 (2) 

Where n is the number of active CPU cores, and P(n) is the 
performance measured (in frames per second) with n active 
CPU core. Its theoretical maximum value is 1. 

A closer inspection of the results shows the following: 

When using 2 CPU cores instead of 1 CPU core, the system 
performance did not double, but only increased by a factor of 
1.7282. There are two main reasons for this phenomenon: 

1. there is a performance cost of running a system with 
multiple cores compared to running a system with a 
single core, 

2. CPU core 0 and the 10GbE Ethernet interfaces used for 
measurement belong to NUMA node 0, but CPU core 
1 belongs to NUMA node 1, which means that CPU 
core 1 can only communicate with the network 
interface via core 0, and this communication overhead 
reduces the performance. 

However, when we used 4 active CPU cores instead of 2, 
the performance doubled by a very good approximation (1.992 
times). The explanation for this is very simple. The above 
factors were already present in the dual core system, so they did 
not cause any additional performance degradation in the quad 
core system.  

 
TABLE II 

THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ 
Number of CPU cores 1 2 4 6 8 12 
median (fps) 425,782 732,299 1,466,585 2,176,369 2,658,915 3,766,926 
minimum (fps) 424,951 726,561 1,374,999 1,999,999 2,617,186 3,761,709 
maximum (fps) 426,026 733,467 1,466,974 2,178,284 2,660,414 3,772,095 
average (fps) 425,628 731,888 1,461,745 2,156,176 2,656,771 3,766,972 
standard deviation 291.61 1,481.93 20,459.50 54,645.21 9,443.81 2,679.58 
dispersion (%) 0.25 0.94 6.27 8.19 1.63 0.28 
relative to half as many cores -- 1.7199 2.0027 -- 1.8130 1.7308 
relative scale-up 1 0.8599 0.8611 0.8519 0.7806 0.7373 

 
 

TABLE I 
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ 

Number of CPU cores 1 2 4 6 8 12 
median (fps) 442,782 765,223 1,524,287 2,265,108 2,788,933 3,923,150 
minimum (fps) 442,352 764,369 1,521,483 2,218,749 2,781,247 3,874,999 
maximum (fps) 443,848 768,128 1,525,409 2,268,067 2,790,527 3,929,688 
average (fps) 442,889 765,329 1,524,244 2,262,774 2,787,973 3,918,181 
standard deviation 363.64 814.01 981.57 10,549.55 2,234.20 1,5163.08 
dispersion (%) 0.34 0.49 0.26 2.18 0.33 1.39 
relative to half as many cores -- 1.7282 1.9920 -- 1.8297 1.7320 
relative scale-up 1 0.8641 0.8606 0.8526 0.7873 0.7384 
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In VPP, for setting the number of CPU cores to be used, we 
had to modify the /etc/vpp/startup.conf configuration file. In the 
CPU segment, we changed the following settings: 

main-core 2 # the main program runs on core 2 
corelist-workers 4, 6 # 2 workers (on 4 and 6) 

VI. MEASUREMENTS AND RESULTS 
As for frame sizes, 64-byte and 84-byte test frames were 

used for IPv4 and IPv6 respectively. These are the smallest 
frame sizes allowed by siitperf. The rationale behind this choice 
was to make the CPU's processing capacity the bottleneck 
(limiting the maximum frame rate), rather than the packet 
transmission capacity of the network interface card. 

It should be noted that since we used a general-purpose 
operating system, random events could occur during our 
measurements, potentially influencing the results. Therefore, 
each test was executed 20 times to achieve statistically reliable 
results.  

As for summarizing function, both median and average was 
used. In the analysis, we primarily relied on median, because it 
is less sensitive to outliers than average. 

To express the consistent or scattered nature of the results, 
we primarily relied on dispersion. It is defined by (1). 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 100% (1) 

In addition, we also included the standard deviation. 
As mentioned, in Section IV.E, siitperf reports the number 

of forwarded packets per direction. Therefore, our results 
should be interpreted accordingly (i.e., they should be 
multiplied by two to obtain the total number of forwarded 
packets per second). 

A. Linux Kernel Packet Forwarding Performance of R620 
The IPv4 and IPv6 packet forwarding performance of the 

Linux kernel was measured as a function of the number of 
active CPU cores. The number of active CPU cores was limited 

using the maxcpus=n kernel parameter, where n took the values 
of 1, 2, 4, 6, 8 and 12.  

The IPv4 packet forwarding performance of the Linux 
kernel as a function of the number of active CPU cores is shown 
in Table I. At first glance, the results show that the performance 
of the DUT scaled up well with the increase of the number of 
active CPU cores. To facilitate a more detailed analysis of the 
results, the second-to-last line of the table shows the 
performance relative to having half as many active CPU cores, 
while the last line displays the relative scale-up, as defined by 
(2). 

 𝑆𝑆(𝑑𝑑) = 𝑃𝑃(𝑑𝑑)/𝑃𝑃(1)/𝑑𝑑 (2) 

Where n is the number of active CPU cores, and P(n) is the 
performance measured (in frames per second) with n active 
CPU core. Its theoretical maximum value is 1. 

A closer inspection of the results shows the following: 

When using 2 CPU cores instead of 1 CPU core, the system 
performance did not double, but only increased by a factor of 
1.7282. There are two main reasons for this phenomenon: 

1. there is a performance cost of running a system with 
multiple cores compared to running a system with a 
single core, 

2. CPU core 0 and the 10GbE Ethernet interfaces used for 
measurement belong to NUMA node 0, but CPU core 
1 belongs to NUMA node 1, which means that CPU 
core 1 can only communicate with the network 
interface via core 0, and this communication overhead 
reduces the performance. 

However, when we used 4 active CPU cores instead of 2, 
the performance doubled by a very good approximation (1.992 
times). The explanation for this is very simple. The above 
factors were already present in the dual core system, so they did 
not cause any additional performance degradation in the quad 
core system.  

 
TABLE II 

THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ 
Number of CPU cores 1 2 4 6 8 12 
median (fps) 425,782 732,299 1,466,585 2,176,369 2,658,915 3,766,926 
minimum (fps) 424,951 726,561 1,374,999 1,999,999 2,617,186 3,761,709 
maximum (fps) 426,026 733,467 1,466,974 2,178,284 2,660,414 3,772,095 
average (fps) 425,628 731,888 1,461,745 2,156,176 2,656,771 3,766,972 
standard deviation 291.61 1,481.93 20,459.50 54,645.21 9,443.81 2,679.58 
dispersion (%) 0.25 0.94 6.27 8.19 1.63 0.28 
relative to half as many cores -- 1.7199 2.0027 -- 1.8130 1.7308 
relative scale-up 1 0.8599 0.8611 0.8519 0.7806 0.7373 

 
 

TABLE I 
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ 

Number of CPU cores 1 2 4 6 8 12 
median (fps) 442,782 765,223 1,524,287 2,265,108 2,788,933 3,923,150 
minimum (fps) 442,352 764,369 1,521,483 2,218,749 2,781,247 3,874,999 
maximum (fps) 443,848 768,128 1,525,409 2,268,067 2,790,527 3,929,688 
average (fps) 442,889 765,329 1,524,244 2,262,774 2,787,973 3,918,181 
standard deviation 363.64 814.01 981.57 10,549.55 2,234.20 1,5163.08 
dispersion (%) 0.34 0.49 0.26 2.18 0.33 1.39 
relative to half as many cores -- 1.7282 1.9920 -- 1.8297 1.7320 
relative scale-up 1 0.8641 0.8606 0.8526 0.7873 0.7384 
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In VPP, for setting the number of CPU cores to be used, we 
had to modify the /etc/vpp/startup.conf configuration file. In the 
CPU segment, we changed the following settings: 

main-core 2 # the main program runs on core 2 
corelist-workers 4, 6 # 2 workers (on 4 and 6) 

VI. MEASUREMENTS AND RESULTS 
As for frame sizes, 64-byte and 84-byte test frames were 

used for IPv4 and IPv6 respectively. These are the smallest 
frame sizes allowed by siitperf. The rationale behind this choice 
was to make the CPU's processing capacity the bottleneck 
(limiting the maximum frame rate), rather than the packet 
transmission capacity of the network interface card. 

It should be noted that since we used a general-purpose 
operating system, random events could occur during our 
measurements, potentially influencing the results. Therefore, 
each test was executed 20 times to achieve statistically reliable 
results.  

As for summarizing function, both median and average was 
used. In the analysis, we primarily relied on median, because it 
is less sensitive to outliers than average. 

To express the consistent or scattered nature of the results, 
we primarily relied on dispersion. It is defined by (1). 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 100% (1) 

In addition, we also included the standard deviation. 
As mentioned, in Section IV.E, siitperf reports the number 

of forwarded packets per direction. Therefore, our results 
should be interpreted accordingly (i.e., they should be 
multiplied by two to obtain the total number of forwarded 
packets per second). 

A. Linux Kernel Packet Forwarding Performance of R620 
The IPv4 and IPv6 packet forwarding performance of the 

Linux kernel was measured as a function of the number of 
active CPU cores. The number of active CPU cores was limited 

using the maxcpus=n kernel parameter, where n took the values 
of 1, 2, 4, 6, 8 and 12.  

The IPv4 packet forwarding performance of the Linux 
kernel as a function of the number of active CPU cores is shown 
in Table I. At first glance, the results show that the performance 
of the DUT scaled up well with the increase of the number of 
active CPU cores. To facilitate a more detailed analysis of the 
results, the second-to-last line of the table shows the 
performance relative to having half as many active CPU cores, 
while the last line displays the relative scale-up, as defined by 
(2). 

 𝑆𝑆(𝑑𝑑) = 𝑃𝑃(𝑑𝑑)/𝑃𝑃(1)/𝑑𝑑 (2) 

Where n is the number of active CPU cores, and P(n) is the 
performance measured (in frames per second) with n active 
CPU core. Its theoretical maximum value is 1. 

A closer inspection of the results shows the following: 

When using 2 CPU cores instead of 1 CPU core, the system 
performance did not double, but only increased by a factor of 
1.7282. There are two main reasons for this phenomenon: 

1. there is a performance cost of running a system with 
multiple cores compared to running a system with a 
single core, 

2. CPU core 0 and the 10GbE Ethernet interfaces used for 
measurement belong to NUMA node 0, but CPU core 
1 belongs to NUMA node 1, which means that CPU 
core 1 can only communicate with the network 
interface via core 0, and this communication overhead 
reduces the performance. 

However, when we used 4 active CPU cores instead of 2, 
the performance doubled by a very good approximation (1.992 
times). The explanation for this is very simple. The above 
factors were already present in the dual core system, so they did 
not cause any additional performance degradation in the quad 
core system.  

 
TABLE II 

THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ 
Number of CPU cores 1 2 4 6 8 12 
median (fps) 425,782 732,299 1,466,585 2,176,369 2,658,915 3,766,926 
minimum (fps) 424,951 726,561 1,374,999 1,999,999 2,617,186 3,761,709 
maximum (fps) 426,026 733,467 1,466,974 2,178,284 2,660,414 3,772,095 
average (fps) 425,628 731,888 1,461,745 2,156,176 2,656,771 3,766,972 
standard deviation 291.61 1,481.93 20,459.50 54,645.21 9,443.81 2,679.58 
dispersion (%) 0.25 0.94 6.27 8.19 1.63 0.28 
relative to half as many cores -- 1.7199 2.0027 -- 1.8130 1.7308 
relative scale-up 1 0.8599 0.8611 0.8519 0.7806 0.7373 

 
 

TABLE I 
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ 

Number of CPU cores 1 2 4 6 8 12 
median (fps) 442,782 765,223 1,524,287 2,265,108 2,788,933 3,923,150 
minimum (fps) 442,352 764,369 1,521,483 2,218,749 2,781,247 3,874,999 
maximum (fps) 443,848 768,128 1,525,409 2,268,067 2,790,527 3,929,688 
average (fps) 442,889 765,329 1,524,244 2,262,774 2,787,973 3,918,181 
standard deviation 363.64 814.01 981.57 10,549.55 2,234.20 1,5163.08 
dispersion (%) 0.34 0.49 0.26 2.18 0.33 1.39 
relative to half as many cores -- 1.7282 1.9920 -- 1.8297 1.7320 
relative scale-up 1 0.8641 0.8606 0.8526 0.7873 0.7384 
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In VPP, for setting the number of CPU cores to be used, we 
had to modify the /etc/vpp/startup.conf configuration file. In the 
CPU segment, we changed the following settings: 

main-core 2 # the main program runs on core 2 
corelist-workers 4, 6 # 2 workers (on 4 and 6) 

VI. MEASUREMENTS AND RESULTS 
As for frame sizes, 64-byte and 84-byte test frames were 

used for IPv4 and IPv6 respectively. These are the smallest 
frame sizes allowed by siitperf. The rationale behind this choice 
was to make the CPU's processing capacity the bottleneck 
(limiting the maximum frame rate), rather than the packet 
transmission capacity of the network interface card. 

It should be noted that since we used a general-purpose 
operating system, random events could occur during our 
measurements, potentially influencing the results. Therefore, 
each test was executed 20 times to achieve statistically reliable 
results.  

As for summarizing function, both median and average was 
used. In the analysis, we primarily relied on median, because it 
is less sensitive to outliers than average. 

To express the consistent or scattered nature of the results, 
we primarily relied on dispersion. It is defined by (1). 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 100% (1) 

In addition, we also included the standard deviation. 
As mentioned, in Section IV.E, siitperf reports the number 

of forwarded packets per direction. Therefore, our results 
should be interpreted accordingly (i.e., they should be 
multiplied by two to obtain the total number of forwarded 
packets per second). 

A. Linux Kernel Packet Forwarding Performance of R620 
The IPv4 and IPv6 packet forwarding performance of the 

Linux kernel was measured as a function of the number of 
active CPU cores. The number of active CPU cores was limited 

using the maxcpus=n kernel parameter, where n took the values 
of 1, 2, 4, 6, 8 and 12.  

The IPv4 packet forwarding performance of the Linux 
kernel as a function of the number of active CPU cores is shown 
in Table I. At first glance, the results show that the performance 
of the DUT scaled up well with the increase of the number of 
active CPU cores. To facilitate a more detailed analysis of the 
results, the second-to-last line of the table shows the 
performance relative to having half as many active CPU cores, 
while the last line displays the relative scale-up, as defined by 
(2). 

 𝑆𝑆(𝑑𝑑) = 𝑃𝑃(𝑑𝑑)/𝑃𝑃(1)/𝑑𝑑 (2) 

Where n is the number of active CPU cores, and P(n) is the 
performance measured (in frames per second) with n active 
CPU core. Its theoretical maximum value is 1. 

A closer inspection of the results shows the following: 

When using 2 CPU cores instead of 1 CPU core, the system 
performance did not double, but only increased by a factor of 
1.7282. There are two main reasons for this phenomenon: 

1. there is a performance cost of running a system with 
multiple cores compared to running a system with a 
single core, 

2. CPU core 0 and the 10GbE Ethernet interfaces used for 
measurement belong to NUMA node 0, but CPU core 
1 belongs to NUMA node 1, which means that CPU 
core 1 can only communicate with the network 
interface via core 0, and this communication overhead 
reduces the performance. 

However, when we used 4 active CPU cores instead of 2, 
the performance doubled by a very good approximation (1.992 
times). The explanation for this is very simple. The above 
factors were already present in the dual core system, so they did 
not cause any additional performance degradation in the quad 
core system.  

 
TABLE II 

THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ 
Number of CPU cores 1 2 4 6 8 12 
median (fps) 425,782 732,299 1,466,585 2,176,369 2,658,915 3,766,926 
minimum (fps) 424,951 726,561 1,374,999 1,999,999 2,617,186 3,761,709 
maximum (fps) 426,026 733,467 1,466,974 2,178,284 2,660,414 3,772,095 
average (fps) 425,628 731,888 1,461,745 2,156,176 2,656,771 3,766,972 
standard deviation 291.61 1,481.93 20,459.50 54,645.21 9,443.81 2,679.58 
dispersion (%) 0.25 0.94 6.27 8.19 1.63 0.28 
relative to half as many cores -- 1.7199 2.0027 -- 1.8130 1.7308 
relative scale-up 1 0.8599 0.8611 0.8519 0.7806 0.7373 

 
 

TABLE I 
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ 

Number of CPU cores 1 2 4 6 8 12 
median (fps) 442,782 765,223 1,524,287 2,265,108 2,788,933 3,923,150 
minimum (fps) 442,352 764,369 1,521,483 2,218,749 2,781,247 3,874,999 
maximum (fps) 443,848 768,128 1,525,409 2,268,067 2,790,527 3,929,688 
average (fps) 442,889 765,329 1,524,244 2,262,774 2,787,973 3,918,181 
standard deviation 363.64 814.01 981.57 10,549.55 2,234.20 1,5163.08 
dispersion (%) 0.34 0.49 0.26 2.18 0.33 1.39 
relative to half as many cores -- 1.7282 1.9920 -- 1.8297 1.7320 
relative scale-up 1 0.8641 0.8606 0.8526 0.7873 0.7384 
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In VPP, for setting the number of CPU cores to be used, we 
had to modify the /etc/vpp/startup.conf configuration file. In the 
CPU segment, we changed the following settings: 

main-core 2 # the main program runs on core 2 
corelist-workers 4, 6 # 2 workers (on 4 and 6) 

VI. MEASUREMENTS AND RESULTS 
As for frame sizes, 64-byte and 84-byte test frames were 

used for IPv4 and IPv6 respectively. These are the smallest 
frame sizes allowed by siitperf. The rationale behind this choice 
was to make the CPU's processing capacity the bottleneck 
(limiting the maximum frame rate), rather than the packet 
transmission capacity of the network interface card. 

It should be noted that since we used a general-purpose 
operating system, random events could occur during our 
measurements, potentially influencing the results. Therefore, 
each test was executed 20 times to achieve statistically reliable 
results.  

As for summarizing function, both median and average was 
used. In the analysis, we primarily relied on median, because it 
is less sensitive to outliers than average. 

To express the consistent or scattered nature of the results, 
we primarily relied on dispersion. It is defined by (1). 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 100% (1) 

In addition, we also included the standard deviation. 
As mentioned, in Section IV.E, siitperf reports the number 

of forwarded packets per direction. Therefore, our results 
should be interpreted accordingly (i.e., they should be 
multiplied by two to obtain the total number of forwarded 
packets per second). 

A. Linux Kernel Packet Forwarding Performance of R620 
The IPv4 and IPv6 packet forwarding performance of the 

Linux kernel was measured as a function of the number of 
active CPU cores. The number of active CPU cores was limited 

using the maxcpus=n kernel parameter, where n took the values 
of 1, 2, 4, 6, 8 and 12.  

The IPv4 packet forwarding performance of the Linux 
kernel as a function of the number of active CPU cores is shown 
in Table I. At first glance, the results show that the performance 
of the DUT scaled up well with the increase of the number of 
active CPU cores. To facilitate a more detailed analysis of the 
results, the second-to-last line of the table shows the 
performance relative to having half as many active CPU cores, 
while the last line displays the relative scale-up, as defined by 
(2). 

 𝑆𝑆(𝑑𝑑) = 𝑃𝑃(𝑑𝑑)/𝑃𝑃(1)/𝑑𝑑 (2) 

Where n is the number of active CPU cores, and P(n) is the 
performance measured (in frames per second) with n active 
CPU core. Its theoretical maximum value is 1. 

A closer inspection of the results shows the following: 

When using 2 CPU cores instead of 1 CPU core, the system 
performance did not double, but only increased by a factor of 
1.7282. There are two main reasons for this phenomenon: 

1. there is a performance cost of running a system with 
multiple cores compared to running a system with a 
single core, 

2. CPU core 0 and the 10GbE Ethernet interfaces used for 
measurement belong to NUMA node 0, but CPU core 
1 belongs to NUMA node 1, which means that CPU 
core 1 can only communicate with the network 
interface via core 0, and this communication overhead 
reduces the performance. 

However, when we used 4 active CPU cores instead of 2, 
the performance doubled by a very good approximation (1.992 
times). The explanation for this is very simple. The above 
factors were already present in the dual core system, so they did 
not cause any additional performance degradation in the quad 
core system.  

 
TABLE II 

THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ 
Number of CPU cores 1 2 4 6 8 12 
median (fps) 425,782 732,299 1,466,585 2,176,369 2,658,915 3,766,926 
minimum (fps) 424,951 726,561 1,374,999 1,999,999 2,617,186 3,761,709 
maximum (fps) 426,026 733,467 1,466,974 2,178,284 2,660,414 3,772,095 
average (fps) 425,628 731,888 1,461,745 2,156,176 2,656,771 3,766,972 
standard deviation 291.61 1,481.93 20,459.50 54,645.21 9,443.81 2,679.58 
dispersion (%) 0.25 0.94 6.27 8.19 1.63 0.28 
relative to half as many cores -- 1.7199 2.0027 -- 1.8130 1.7308 
relative scale-up 1 0.8599 0.8611 0.8519 0.7806 0.7373 
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Number of CPU cores 1 2 4 6 8 12 
median (fps) 442,782 765,223 1,524,287 2,265,108 2,788,933 3,923,150 
minimum (fps) 442,352 764,369 1,521,483 2,218,749 2,781,247 3,874,999 
maximum (fps) 443,848 768,128 1,525,409 2,268,067 2,790,527 3,929,688 
average (fps) 442,889 765,329 1,524,244 2,262,774 2,787,973 3,918,181 
standard deviation 363.64 814.01 981.57 10,549.55 2,234.20 1,5163.08 
dispersion (%) 0.34 0.49 0.26 2.18 0.33 1.39 
relative to half as many cores -- 1.7282 1.9920 -- 1.8297 1.7320 
relative scale-up 1 0.8641 0.8606 0.8526 0.7873 0.7384 
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In VPP, for setting the number of CPU cores to be used, we 
had to modify the /etc/vpp/startup.conf configuration file. In the 
CPU segment, we changed the following settings: 

main-core 2 # the main program runs on core 2 
corelist-workers 4, 6 # 2 workers (on 4 and 6) 

VI. MEASUREMENTS AND RESULTS 
As for frame sizes, 64-byte and 84-byte test frames were 

used for IPv4 and IPv6 respectively. These are the smallest 
frame sizes allowed by siitperf. The rationale behind this choice 
was to make the CPU's processing capacity the bottleneck 
(limiting the maximum frame rate), rather than the packet 
transmission capacity of the network interface card. 

It should be noted that since we used a general-purpose 
operating system, random events could occur during our 
measurements, potentially influencing the results. Therefore, 
each test was executed 20 times to achieve statistically reliable 
results.  

As for summarizing function, both median and average was 
used. In the analysis, we primarily relied on median, because it 
is less sensitive to outliers than average. 

To express the consistent or scattered nature of the results, 
we primarily relied on dispersion. It is defined by (1). 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 100% (1) 

In addition, we also included the standard deviation. 
As mentioned, in Section IV.E, siitperf reports the number 

of forwarded packets per direction. Therefore, our results 
should be interpreted accordingly (i.e., they should be 
multiplied by two to obtain the total number of forwarded 
packets per second). 

A. Linux Kernel Packet Forwarding Performance of R620 
The IPv4 and IPv6 packet forwarding performance of the 

Linux kernel was measured as a function of the number of 
active CPU cores. The number of active CPU cores was limited 

using the maxcpus=n kernel parameter, where n took the values 
of 1, 2, 4, 6, 8 and 12.  

The IPv4 packet forwarding performance of the Linux 
kernel as a function of the number of active CPU cores is shown 
in Table I. At first glance, the results show that the performance 
of the DUT scaled up well with the increase of the number of 
active CPU cores. To facilitate a more detailed analysis of the 
results, the second-to-last line of the table shows the 
performance relative to having half as many active CPU cores, 
while the last line displays the relative scale-up, as defined by 
(2). 

 𝑆𝑆(𝑑𝑑) = 𝑃𝑃(𝑑𝑑)/𝑃𝑃(1)/𝑑𝑑 (2) 

Where n is the number of active CPU cores, and P(n) is the 
performance measured (in frames per second) with n active 
CPU core. Its theoretical maximum value is 1. 

A closer inspection of the results shows the following: 

When using 2 CPU cores instead of 1 CPU core, the system 
performance did not double, but only increased by a factor of 
1.7282. There are two main reasons for this phenomenon: 

1. there is a performance cost of running a system with 
multiple cores compared to running a system with a 
single core, 

2. CPU core 0 and the 10GbE Ethernet interfaces used for 
measurement belong to NUMA node 0, but CPU core 
1 belongs to NUMA node 1, which means that CPU 
core 1 can only communicate with the network 
interface via core 0, and this communication overhead 
reduces the performance. 

However, when we used 4 active CPU cores instead of 2, 
the performance doubled by a very good approximation (1.992 
times). The explanation for this is very simple. The above 
factors were already present in the dual core system, so they did 
not cause any additional performance degradation in the quad 
core system.  

 
TABLE II 

THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ 
Number of CPU cores 1 2 4 6 8 12 
median (fps) 425,782 732,299 1,466,585 2,176,369 2,658,915 3,766,926 
minimum (fps) 424,951 726,561 1,374,999 1,999,999 2,617,186 3,761,709 
maximum (fps) 426,026 733,467 1,466,974 2,178,284 2,660,414 3,772,095 
average (fps) 425,628 731,888 1,461,745 2,156,176 2,656,771 3,766,972 
standard deviation 291.61 1,481.93 20,459.50 54,645.21 9,443.81 2,679.58 
dispersion (%) 0.25 0.94 6.27 8.19 1.63 0.28 
relative to half as many cores -- 1.7199 2.0027 -- 1.8130 1.7308 
relative scale-up 1 0.8599 0.8611 0.8519 0.7806 0.7373 

 
 

TABLE I 
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ 

Number of CPU cores 1 2 4 6 8 12 
median (fps) 442,782 765,223 1,524,287 2,265,108 2,788,933 3,923,150 
minimum (fps) 442,352 764,369 1,521,483 2,218,749 2,781,247 3,874,999 
maximum (fps) 443,848 768,128 1,525,409 2,268,067 2,790,527 3,929,688 
average (fps) 442,889 765,329 1,524,244 2,262,774 2,787,973 3,918,181 
standard deviation 363.64 814.01 981.57 10,549.55 2,234.20 1,5163.08 
dispersion (%) 0.34 0.49 0.26 2.18 0.33 1.39 
relative to half as many cores -- 1.7282 1.9920 -- 1.8297 1.7320 
relative scale-up 1 0.8641 0.8606 0.8526 0.7873 0.7384 
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In VPP, for setting the number of CPU cores to be used, we 
had to modify the /etc/vpp/startup.conf configuration file. In the 
CPU segment, we changed the following settings: 

main-core 2 # the main program runs on core 2 
corelist-workers 4, 6 # 2 workers (on 4 and 6) 

VI. MEASUREMENTS AND RESULTS 
As for frame sizes, 64-byte and 84-byte test frames were 

used for IPv4 and IPv6 respectively. These are the smallest 
frame sizes allowed by siitperf. The rationale behind this choice 
was to make the CPU's processing capacity the bottleneck 
(limiting the maximum frame rate), rather than the packet 
transmission capacity of the network interface card. 

It should be noted that since we used a general-purpose 
operating system, random events could occur during our 
measurements, potentially influencing the results. Therefore, 
each test was executed 20 times to achieve statistically reliable 
results.  

As for summarizing function, both median and average was 
used. In the analysis, we primarily relied on median, because it 
is less sensitive to outliers than average. 

To express the consistent or scattered nature of the results, 
we primarily relied on dispersion. It is defined by (1). 

 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 100% (1) 

In addition, we also included the standard deviation. 
As mentioned, in Section IV.E, siitperf reports the number 

of forwarded packets per direction. Therefore, our results 
should be interpreted accordingly (i.e., they should be 
multiplied by two to obtain the total number of forwarded 
packets per second). 

A. Linux Kernel Packet Forwarding Performance of R620 
The IPv4 and IPv6 packet forwarding performance of the 

Linux kernel was measured as a function of the number of 
active CPU cores. The number of active CPU cores was limited 

using the maxcpus=n kernel parameter, where n took the values 
of 1, 2, 4, 6, 8 and 12.  

The IPv4 packet forwarding performance of the Linux 
kernel as a function of the number of active CPU cores is shown 
in Table I. At first glance, the results show that the performance 
of the DUT scaled up well with the increase of the number of 
active CPU cores. To facilitate a more detailed analysis of the 
results, the second-to-last line of the table shows the 
performance relative to having half as many active CPU cores, 
while the last line displays the relative scale-up, as defined by 
(2). 

 𝑆𝑆(𝑑𝑑) = 𝑃𝑃(𝑑𝑑)/𝑃𝑃(1)/𝑑𝑑 (2) 

Where n is the number of active CPU cores, and P(n) is the 
performance measured (in frames per second) with n active 
CPU core. Its theoretical maximum value is 1. 

A closer inspection of the results shows the following: 

When using 2 CPU cores instead of 1 CPU core, the system 
performance did not double, but only increased by a factor of 
1.7282. There are two main reasons for this phenomenon: 

1. there is a performance cost of running a system with 
multiple cores compared to running a system with a 
single core, 

2. CPU core 0 and the 10GbE Ethernet interfaces used for 
measurement belong to NUMA node 0, but CPU core 
1 belongs to NUMA node 1, which means that CPU 
core 1 can only communicate with the network 
interface via core 0, and this communication overhead 
reduces the performance. 

However, when we used 4 active CPU cores instead of 2, 
the performance doubled by a very good approximation (1.992 
times). The explanation for this is very simple. The above 
factors were already present in the dual core system, so they did 
not cause any additional performance degradation in the quad 
core system.  
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THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2620 @ 2 GHZ 
Number of CPU cores 1 2 4 6 8 12 
median (fps) 425,782 732,299 1,466,585 2,176,369 2,658,915 3,766,926 
minimum (fps) 424,951 726,561 1,374,999 1,999,999 2,617,186 3,761,709 
maximum (fps) 426,026 733,467 1,466,974 2,178,284 2,660,414 3,772,095 
average (fps) 425,628 731,888 1,461,745 2,156,176 2,656,771 3,766,972 
standard deviation 291.61 1,481.93 20,459.50 54,645.21 9,443.81 2,679.58 
dispersion (%) 0.25 0.94 6.27 8.19 1.63 0.28 
relative to half as many cores -- 1.7199 2.0027 -- 1.8130 1.7308 
relative scale-up 1 0.8599 0.8611 0.8519 0.7806 0.7373 
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minimum (fps) 442,352 764,369 1,521,483 2,218,749 2,781,247 3,874,999 
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relative to half as many cores -- 1.7282 1.9920 -- 1.8297 1.7320 
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Further on, the performance of the 8-core system compared 
to a 4-core system is only 1.8297 times higher, and the 
comparison of performance of the 12-core system and the 6-
core system shows only a 1.732 times increase. There may 
already be other reasons for this degraded increase, such as the 
fact that all CPU cores share the same network interfaces and, 
as their number increases, they are already interfering with each 
other to some extent by competing for the access to the network 
interfaces.  

In conclusion, we observed that the performance of the 
system scaled up well: the throughput of the 12-core system 
instead the 1-core system increased from 442,782 fps to 
3,923,150 fps, which means an 8.86 times increase. 

The results of the throughput measurements for the IPv6 
packet forwarding performance of the Linux kernel are shown 
in Table II. These results are essentially highly similar to those 
in Table I. There are two striking differences: 

 The dispersion values are remarkably larger for 4 and 
6 CPU cores. This is because one of the tests at 
1,375,000 fps frame rate with 4 CPU cores and one of 
the tests at 2,000,000 fps frame rate with 6 CPU cores 
failed. These may be due to some relatively rare events 
in the system. The average is obviously affected by 
these outliers, which justifies our usage of median as 
summarizing function. 

 The IPv6 throughput is slightly lower than the IPv4 
throughput. There are two possible root causes for this: 
firstly, the frame size was larger for the IPv6 
measurements, and secondly, the IPv6 addresses are 
four times as long as IPv4 addresses. 

B. FD.io VPP Packet Forwarding Performance of R620 
In order to measure the throughput of the FD.io VPP IPv4 

and IPv6 packet forwarding, we used the CPU core 2 as the 
main core and 1 or 2 workers running on CPU cores with even 
or odd serial numbers to examine the performance of the test 
system and to gain insight into its scalability. When the CPU 
cores with even serial numbers were used with a single worker, 

we tested both core 4 and core 6 to check if there was a 
difference. Then they both were used with two workers. In the 
case of CPU cores with the odd serial numbers, the same was 
done with core 3, core 5, and finally, with cores 3 and 5.  

At the time of our preliminary measurements using FD.io 
VPP with 2 workers, it was found that the Tester became the 
bottleneck, and thus we could not measure the true performance 
of the DUT. However, we considered it highly important to be 
able to measure the scalability of FD.io VPP at least up to two 
CPU cores. Therefore, the CPU clock frequency was set to 1.2 
GHz (instead of 2 GHz, the nominal clock frequency of the 
CPU) to be able to perform the measurements using two 
workers.  

The results of our throughput measurements of the IPv4 
packet forwarding performance of FD.io VPP are shown in 
Table III. Core 4 and core 6 show nearly identical performance, 
with frame rates of 2,091,964 fps and 2,096,376 fps, 
respectively. When two workers were used across both cores 
the median frame rate roughly doubled to 4,187,904 fps. This 
indicates that the system scales efficiently, maximizing 
processing capacity without significant bottlenecks.  The same 
can be said for the CPU cores with odd serial numbers. 
However, for those cores, the median value was more than 18% 
lower, which is clearly due to using the different NUMA node. 

As for the quality of the results, with a single worker thread, 
the dispersion is always below 0.3%, so the results are highly 
stable. With two worker threads, the dispersion increased 
significantly, but still remained below 2%.  

The results of our throughput measurements characterizing 
the performance of the FD.io VPP IPv6 packet forwarding are 
shown in Table IV. These results are basically very similar to 
the results in Table III. There is one visible difference: the IPv6 
throughput is slightly lower than the IPv4 throughput. The 
possible reasons for this were explained in section A. 

C. Comparison of the Performance of the Linux kernel and 
FD.io VPP using an R620 Server as DUT 

The performance and scalability of the Linux kernel and 
 
 

TABLE III 
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2620 @ 1.2GHZ 

Used CPU cores 4th 6th 4th & 6th 3rd 5th 3rd & 5th 
Number of workers 1 1 2 1 1 2 
median (fps) 2,091,964 2,096,376 4,187,904 1,700,940 1,697,002 3,432,319 
minimum (fps) 2,089,688 2,093,309 4,183,576 1,699,461 1,695,153 3,390,624 
maximum (fps) 2,093,880 2,099,060 4,238,282 1,702,287 1,698,181 3,448,609 
average (fps) 2,091,944 2,096,289 4,191,721 1,700,981 1,696,889 3,431,086 
standard deviation 1,501.18 1,721.36 12,034.38 849.40 726.75 13,274.60 
dispersion (%) 0.20 0.27 1.31 0.17 0.18 1.69 

 
 

TABLE IV 
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2620 @ 1.2GHZ 

Used CPU cores 4th 6th 4th & 6th 3rd 5th 3rd & 5th 
Number of workers 1 1 2 1 1 2 
median (fps) 1,919,142 1,926,082 3,876,009 1,526,365 1,587,369 3,188,186 
minimum (fps) 1,916,951 1,923,811 3,866,209 1,517,536 1,585,936 3,124,999 
maximum (fps) 1,921,052 1,928,529 3,908,204 1,528,194 1,588,904 3,195,313 
average (fps) 1,918,898 1,926,321 3,878,199 1,525,300 1,587,528 3,185,315 
standard deviation 1,120.34 1,119.19 10,495.01 3,163.36 746.77 14,657.38 
dispersion (%) 0.21 0.24 1.08 0.70 0.19 2.21 
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Further on, the performance of the 8-core system compared 
to a 4-core system is only 1.8297 times higher, and the 
comparison of performance of the 12-core system and the 6-
core system shows only a 1.732 times increase. There may 
already be other reasons for this degraded increase, such as the 
fact that all CPU cores share the same network interfaces and, 
as their number increases, they are already interfering with each 
other to some extent by competing for the access to the network 
interfaces.  

In conclusion, we observed that the performance of the 
system scaled up well: the throughput of the 12-core system 
instead the 1-core system increased from 442,782 fps to 
3,923,150 fps, which means an 8.86 times increase. 

The results of the throughput measurements for the IPv6 
packet forwarding performance of the Linux kernel are shown 
in Table II. These results are essentially highly similar to those 
in Table I. There are two striking differences: 

 The dispersion values are remarkably larger for 4 and 
6 CPU cores. This is because one of the tests at 
1,375,000 fps frame rate with 4 CPU cores and one of 
the tests at 2,000,000 fps frame rate with 6 CPU cores 
failed. These may be due to some relatively rare events 
in the system. The average is obviously affected by 
these outliers, which justifies our usage of median as 
summarizing function. 

 The IPv6 throughput is slightly lower than the IPv4 
throughput. There are two possible root causes for this: 
firstly, the frame size was larger for the IPv6 
measurements, and secondly, the IPv6 addresses are 
four times as long as IPv4 addresses. 

B. FD.io VPP Packet Forwarding Performance of R620 
In order to measure the throughput of the FD.io VPP IPv4 

and IPv6 packet forwarding, we used the CPU core 2 as the 
main core and 1 or 2 workers running on CPU cores with even 
or odd serial numbers to examine the performance of the test 
system and to gain insight into its scalability. When the CPU 
cores with even serial numbers were used with a single worker, 

we tested both core 4 and core 6 to check if there was a 
difference. Then they both were used with two workers. In the 
case of CPU cores with the odd serial numbers, the same was 
done with core 3, core 5, and finally, with cores 3 and 5.  

At the time of our preliminary measurements using FD.io 
VPP with 2 workers, it was found that the Tester became the 
bottleneck, and thus we could not measure the true performance 
of the DUT. However, we considered it highly important to be 
able to measure the scalability of FD.io VPP at least up to two 
CPU cores. Therefore, the CPU clock frequency was set to 1.2 
GHz (instead of 2 GHz, the nominal clock frequency of the 
CPU) to be able to perform the measurements using two 
workers.  

The results of our throughput measurements of the IPv4 
packet forwarding performance of FD.io VPP are shown in 
Table III. Core 4 and core 6 show nearly identical performance, 
with frame rates of 2,091,964 fps and 2,096,376 fps, 
respectively. When two workers were used across both cores 
the median frame rate roughly doubled to 4,187,904 fps. This 
indicates that the system scales efficiently, maximizing 
processing capacity without significant bottlenecks.  The same 
can be said for the CPU cores with odd serial numbers. 
However, for those cores, the median value was more than 18% 
lower, which is clearly due to using the different NUMA node. 

As for the quality of the results, with a single worker thread, 
the dispersion is always below 0.3%, so the results are highly 
stable. With two worker threads, the dispersion increased 
significantly, but still remained below 2%.  

The results of our throughput measurements characterizing 
the performance of the FD.io VPP IPv6 packet forwarding are 
shown in Table IV. These results are basically very similar to 
the results in Table III. There is one visible difference: the IPv6 
throughput is slightly lower than the IPv4 throughput. The 
possible reasons for this were explained in section A. 

C. Comparison of the Performance of the Linux kernel and 
FD.io VPP using an R620 Server as DUT 

The performance and scalability of the Linux kernel and 
 
 

TABLE III 
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2620 @ 1.2GHZ 

Used CPU cores 4th 6th 4th & 6th 3rd 5th 3rd & 5th 
Number of workers 1 1 2 1 1 2 
median (fps) 2,091,964 2,096,376 4,187,904 1,700,940 1,697,002 3,432,319 
minimum (fps) 2,089,688 2,093,309 4,183,576 1,699,461 1,695,153 3,390,624 
maximum (fps) 2,093,880 2,099,060 4,238,282 1,702,287 1,698,181 3,448,609 
average (fps) 2,091,944 2,096,289 4,191,721 1,700,981 1,696,889 3,431,086 
standard deviation 1,501.18 1,721.36 12,034.38 849.40 726.75 13,274.60 
dispersion (%) 0.20 0.27 1.31 0.17 0.18 1.69 
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Used CPU cores 4th 6th 4th & 6th 3rd 5th 3rd & 5th 
Number of workers 1 1 2 1 1 2 
median (fps) 1,919,142 1,926,082 3,876,009 1,526,365 1,587,369 3,188,186 
minimum (fps) 1,916,951 1,923,811 3,866,209 1,517,536 1,585,936 3,124,999 
maximum (fps) 1,921,052 1,928,529 3,908,204 1,528,194 1,588,904 3,195,313 
average (fps) 1,918,898 1,926,321 3,878,199 1,525,300 1,587,528 3,185,315 
standard deviation 1,120.34 1,119.19 10,495.01 3,163.36 746.77 14,657.38 
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Further on, the performance of the 8-core system compared 
to a 4-core system is only 1.8297 times higher, and the 
comparison of performance of the 12-core system and the 6-
core system shows only a 1.732 times increase. There may 
already be other reasons for this degraded increase, such as the 
fact that all CPU cores share the same network interfaces and, 
as their number increases, they are already interfering with each 
other to some extent by competing for the access to the network 
interfaces.  

In conclusion, we observed that the performance of the 
system scaled up well: the throughput of the 12-core system 
instead the 1-core system increased from 442,782 fps to 
3,923,150 fps, which means an 8.86 times increase. 

The results of the throughput measurements for the IPv6 
packet forwarding performance of the Linux kernel are shown 
in Table II. These results are essentially highly similar to those 
in Table I. There are two striking differences: 

 The dispersion values are remarkably larger for 4 and 
6 CPU cores. This is because one of the tests at 
1,375,000 fps frame rate with 4 CPU cores and one of 
the tests at 2,000,000 fps frame rate with 6 CPU cores 
failed. These may be due to some relatively rare events 
in the system. The average is obviously affected by 
these outliers, which justifies our usage of median as 
summarizing function. 

 The IPv6 throughput is slightly lower than the IPv4 
throughput. There are two possible root causes for this: 
firstly, the frame size was larger for the IPv6 
measurements, and secondly, the IPv6 addresses are 
four times as long as IPv4 addresses. 

B. FD.io VPP Packet Forwarding Performance of R620 
In order to measure the throughput of the FD.io VPP IPv4 

and IPv6 packet forwarding, we used the CPU core 2 as the 
main core and 1 or 2 workers running on CPU cores with even 
or odd serial numbers to examine the performance of the test 
system and to gain insight into its scalability. When the CPU 
cores with even serial numbers were used with a single worker, 

we tested both core 4 and core 6 to check if there was a 
difference. Then they both were used with two workers. In the 
case of CPU cores with the odd serial numbers, the same was 
done with core 3, core 5, and finally, with cores 3 and 5.  

At the time of our preliminary measurements using FD.io 
VPP with 2 workers, it was found that the Tester became the 
bottleneck, and thus we could not measure the true performance 
of the DUT. However, we considered it highly important to be 
able to measure the scalability of FD.io VPP at least up to two 
CPU cores. Therefore, the CPU clock frequency was set to 1.2 
GHz (instead of 2 GHz, the nominal clock frequency of the 
CPU) to be able to perform the measurements using two 
workers.  

The results of our throughput measurements of the IPv4 
packet forwarding performance of FD.io VPP are shown in 
Table III. Core 4 and core 6 show nearly identical performance, 
with frame rates of 2,091,964 fps and 2,096,376 fps, 
respectively. When two workers were used across both cores 
the median frame rate roughly doubled to 4,187,904 fps. This 
indicates that the system scales efficiently, maximizing 
processing capacity without significant bottlenecks.  The same 
can be said for the CPU cores with odd serial numbers. 
However, for those cores, the median value was more than 18% 
lower, which is clearly due to using the different NUMA node. 

As for the quality of the results, with a single worker thread, 
the dispersion is always below 0.3%, so the results are highly 
stable. With two worker threads, the dispersion increased 
significantly, but still remained below 2%.  

The results of our throughput measurements characterizing 
the performance of the FD.io VPP IPv6 packet forwarding are 
shown in Table IV. These results are basically very similar to 
the results in Table III. There is one visible difference: the IPv6 
throughput is slightly lower than the IPv4 throughput. The 
possible reasons for this were explained in section A. 

C. Comparison of the Performance of the Linux kernel and 
FD.io VPP using an R620 Server as DUT 

The performance and scalability of the Linux kernel and 
 
 

TABLE III 
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2620 @ 1.2GHZ 

Used CPU cores 4th 6th 4th & 6th 3rd 5th 3rd & 5th 
Number of workers 1 1 2 1 1 2 
median (fps) 2,091,964 2,096,376 4,187,904 1,700,940 1,697,002 3,432,319 
minimum (fps) 2,089,688 2,093,309 4,183,576 1,699,461 1,695,153 3,390,624 
maximum (fps) 2,093,880 2,099,060 4,238,282 1,702,287 1,698,181 3,448,609 
average (fps) 2,091,944 2,096,289 4,191,721 1,700,981 1,696,889 3,431,086 
standard deviation 1,501.18 1,721.36 12,034.38 849.40 726.75 13,274.60 
dispersion (%) 0.20 0.27 1.31 0.17 0.18 1.69 

 
 

TABLE IV 
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2620 @ 1.2GHZ 

Used CPU cores 4th 6th 4th & 6th 3rd 5th 3rd & 5th 
Number of workers 1 1 2 1 1 2 
median (fps) 1,919,142 1,926,082 3,876,009 1,526,365 1,587,369 3,188,186 
minimum (fps) 1,916,951 1,923,811 3,866,209 1,517,536 1,585,936 3,124,999 
maximum (fps) 1,921,052 1,928,529 3,908,204 1,528,194 1,588,904 3,195,313 
average (fps) 1,918,898 1,926,321 3,878,199 1,525,300 1,587,528 3,185,315 
standard deviation 1,120.34 1,119.19 10,495.01 3,163.36 746.77 14,657.38 
dispersion (%) 0.21 0.24 1.08 0.70 0.19 2.21 
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Further on, the performance of the 8-core system compared 
to a 4-core system is only 1.8297 times higher, and the 
comparison of performance of the 12-core system and the 6-
core system shows only a 1.732 times increase. There may 
already be other reasons for this degraded increase, such as the 
fact that all CPU cores share the same network interfaces and, 
as their number increases, they are already interfering with each 
other to some extent by competing for the access to the network 
interfaces.  

In conclusion, we observed that the performance of the 
system scaled up well: the throughput of the 12-core system 
instead the 1-core system increased from 442,782 fps to 
3,923,150 fps, which means an 8.86 times increase. 

The results of the throughput measurements for the IPv6 
packet forwarding performance of the Linux kernel are shown 
in Table II. These results are essentially highly similar to those 
in Table I. There are two striking differences: 

 The dispersion values are remarkably larger for 4 and 
6 CPU cores. This is because one of the tests at 
1,375,000 fps frame rate with 4 CPU cores and one of 
the tests at 2,000,000 fps frame rate with 6 CPU cores 
failed. These may be due to some relatively rare events 
in the system. The average is obviously affected by 
these outliers, which justifies our usage of median as 
summarizing function. 

 The IPv6 throughput is slightly lower than the IPv4 
throughput. There are two possible root causes for this: 
firstly, the frame size was larger for the IPv6 
measurements, and secondly, the IPv6 addresses are 
four times as long as IPv4 addresses. 

B. FD.io VPP Packet Forwarding Performance of R620 
In order to measure the throughput of the FD.io VPP IPv4 

and IPv6 packet forwarding, we used the CPU core 2 as the 
main core and 1 or 2 workers running on CPU cores with even 
or odd serial numbers to examine the performance of the test 
system and to gain insight into its scalability. When the CPU 
cores with even serial numbers were used with a single worker, 

we tested both core 4 and core 6 to check if there was a 
difference. Then they both were used with two workers. In the 
case of CPU cores with the odd serial numbers, the same was 
done with core 3, core 5, and finally, with cores 3 and 5.  

At the time of our preliminary measurements using FD.io 
VPP with 2 workers, it was found that the Tester became the 
bottleneck, and thus we could not measure the true performance 
of the DUT. However, we considered it highly important to be 
able to measure the scalability of FD.io VPP at least up to two 
CPU cores. Therefore, the CPU clock frequency was set to 1.2 
GHz (instead of 2 GHz, the nominal clock frequency of the 
CPU) to be able to perform the measurements using two 
workers.  

The results of our throughput measurements of the IPv4 
packet forwarding performance of FD.io VPP are shown in 
Table III. Core 4 and core 6 show nearly identical performance, 
with frame rates of 2,091,964 fps and 2,096,376 fps, 
respectively. When two workers were used across both cores 
the median frame rate roughly doubled to 4,187,904 fps. This 
indicates that the system scales efficiently, maximizing 
processing capacity without significant bottlenecks.  The same 
can be said for the CPU cores with odd serial numbers. 
However, for those cores, the median value was more than 18% 
lower, which is clearly due to using the different NUMA node. 

As for the quality of the results, with a single worker thread, 
the dispersion is always below 0.3%, so the results are highly 
stable. With two worker threads, the dispersion increased 
significantly, but still remained below 2%.  

The results of our throughput measurements characterizing 
the performance of the FD.io VPP IPv6 packet forwarding are 
shown in Table IV. These results are basically very similar to 
the results in Table III. There is one visible difference: the IPv6 
throughput is slightly lower than the IPv4 throughput. The 
possible reasons for this were explained in section A. 

C. Comparison of the Performance of the Linux kernel and 
FD.io VPP using an R620 Server as DUT 

The performance and scalability of the Linux kernel and 
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Used CPU cores 4th 6th 4th & 6th 3rd 5th 3rd & 5th 
Number of workers 1 1 2 1 1 2 
median (fps) 2,091,964 2,096,376 4,187,904 1,700,940 1,697,002 3,432,319 
minimum (fps) 2,089,688 2,093,309 4,183,576 1,699,461 1,695,153 3,390,624 
maximum (fps) 2,093,880 2,099,060 4,238,282 1,702,287 1,698,181 3,448,609 
average (fps) 2,091,944 2,096,289 4,191,721 1,700,981 1,696,889 3,431,086 
standard deviation 1,501.18 1,721.36 12,034.38 849.40 726.75 13,274.60 
dispersion (%) 0.20 0.27 1.31 0.17 0.18 1.69 
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Further on, the performance of the 8-core system compared 
to a 4-core system is only 1.8297 times higher, and the 
comparison of performance of the 12-core system and the 6-
core system shows only a 1.732 times increase. There may 
already be other reasons for this degraded increase, such as the 
fact that all CPU cores share the same network interfaces and, 
as their number increases, they are already interfering with each 
other to some extent by competing for the access to the network 
interfaces.  

In conclusion, we observed that the performance of the 
system scaled up well: the throughput of the 12-core system 
instead the 1-core system increased from 442,782 fps to 
3,923,150 fps, which means an 8.86 times increase. 

The results of the throughput measurements for the IPv6 
packet forwarding performance of the Linux kernel are shown 
in Table II. These results are essentially highly similar to those 
in Table I. There are two striking differences: 

 The dispersion values are remarkably larger for 4 and 
6 CPU cores. This is because one of the tests at 
1,375,000 fps frame rate with 4 CPU cores and one of 
the tests at 2,000,000 fps frame rate with 6 CPU cores 
failed. These may be due to some relatively rare events 
in the system. The average is obviously affected by 
these outliers, which justifies our usage of median as 
summarizing function. 

 The IPv6 throughput is slightly lower than the IPv4 
throughput. There are two possible root causes for this: 
firstly, the frame size was larger for the IPv6 
measurements, and secondly, the IPv6 addresses are 
four times as long as IPv4 addresses. 

B. FD.io VPP Packet Forwarding Performance of R620 
In order to measure the throughput of the FD.io VPP IPv4 

and IPv6 packet forwarding, we used the CPU core 2 as the 
main core and 1 or 2 workers running on CPU cores with even 
or odd serial numbers to examine the performance of the test 
system and to gain insight into its scalability. When the CPU 
cores with even serial numbers were used with a single worker, 

we tested both core 4 and core 6 to check if there was a 
difference. Then they both were used with two workers. In the 
case of CPU cores with the odd serial numbers, the same was 
done with core 3, core 5, and finally, with cores 3 and 5.  

At the time of our preliminary measurements using FD.io 
VPP with 2 workers, it was found that the Tester became the 
bottleneck, and thus we could not measure the true performance 
of the DUT. However, we considered it highly important to be 
able to measure the scalability of FD.io VPP at least up to two 
CPU cores. Therefore, the CPU clock frequency was set to 1.2 
GHz (instead of 2 GHz, the nominal clock frequency of the 
CPU) to be able to perform the measurements using two 
workers.  

The results of our throughput measurements of the IPv4 
packet forwarding performance of FD.io VPP are shown in 
Table III. Core 4 and core 6 show nearly identical performance, 
with frame rates of 2,091,964 fps and 2,096,376 fps, 
respectively. When two workers were used across both cores 
the median frame rate roughly doubled to 4,187,904 fps. This 
indicates that the system scales efficiently, maximizing 
processing capacity without significant bottlenecks.  The same 
can be said for the CPU cores with odd serial numbers. 
However, for those cores, the median value was more than 18% 
lower, which is clearly due to using the different NUMA node. 

As for the quality of the results, with a single worker thread, 
the dispersion is always below 0.3%, so the results are highly 
stable. With two worker threads, the dispersion increased 
significantly, but still remained below 2%.  

The results of our throughput measurements characterizing 
the performance of the FD.io VPP IPv6 packet forwarding are 
shown in Table IV. These results are basically very similar to 
the results in Table III. There is one visible difference: the IPv6 
throughput is slightly lower than the IPv4 throughput. The 
possible reasons for this were explained in section A. 

C. Comparison of the Performance of the Linux kernel and 
FD.io VPP using an R620 Server as DUT 

The performance and scalability of the Linux kernel and 
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Used CPU cores 4th 6th 4th & 6th 3rd 5th 3rd & 5th 
Number of workers 1 1 2 1 1 2 
median (fps) 2,091,964 2,096,376 4,187,904 1,700,940 1,697,002 3,432,319 
minimum (fps) 2,089,688 2,093,309 4,183,576 1,699,461 1,695,153 3,390,624 
maximum (fps) 2,093,880 2,099,060 4,238,282 1,702,287 1,698,181 3,448,609 
average (fps) 2,091,944 2,096,289 4,191,721 1,700,981 1,696,889 3,431,086 
standard deviation 1,501.18 1,721.36 12,034.38 849.40 726.75 13,274.60 
dispersion (%) 0.20 0.27 1.31 0.17 0.18 1.69 
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maximum (fps) 1,921,052 1,928,529 3,908,204 1,528,194 1,588,904 3,195,313 
average (fps) 1,918,898 1,926,321 3,878,199 1,525,300 1,587,528 3,185,315 
standard deviation 1,120.34 1,119.19 10,495.01 3,163.36 746.77 14,657.38 
dispersion (%) 0.21 0.24 1.08 0.70 0.19 2.21 

 



IP Packet Forwarding Performance Comparison  
of the FD.io VPP and the Linux Kernel

JUNE 2025 • VOLUME XVII • NUMBER 240

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

6 

FD.io VPP using a Dell PowerEdge R620 as the DUT is 
compared in Fig. 2. When considering their results, it is 
important to note that while the performance of the Linux kernel 
was measured at 2 GHz, the performance of FD.io VPP was 
measured at 1.2 GHz. Despite this disadvantage, FD.io VPP 
seriously outperformed the Linux kernel. While the Linux 
kernel on 1 CPU core delivered 442,782 fps IPv4 packet 
forwarding and 425,782 fps IPv6 packet forwarding 
performance, the FD.io VPP on 1 worker thread delivered more 
than 2 million IPv4 packets and more than 1.9 million IPv6 
packets. Even when using CPU cores belonging to a different 
NUMA node than the NIC, the performance was still around 
1.7 Mfps and 1.5 Mfps, for IPv4 and IPv6, respectively. 

When the Linux system used all 12 CPU cores at the nominal 
2 GHz clock frequency of the CPU, the performance was still 
only 3.92 Mfps and 3.77 Mfps for IPv4 and IPv6 packet 
forwarding, respectively. In contrast, FD.io VPP, using only 2 
CPU cores (4 and 6), achieved more than 4.18 Mfps and 3.87 
Mfps performance for IPv4 and IPv6 packet forwarding, 
respectively, at a clock frequency of 1.2 GHz. Our results prove 
that FD.io VPP is indeed a high-performance solution for IP 

packet forwarding. 

D. Linux Kernel Packet Forwarding Performance on R730 
The appropriate settings have been made using the methods 

described above. The same measurement parameters were used. 
Each R730 server had 16 CPU cores, therefore we were able 

to set the active core numbers by the power of two (1, 2, 4, 8, 
16). Our tests were performed using both 3.2 GHz and 1.2 GHz 
as the CPU clock frequency. 

The IPv4 packet forwarding performance of the Linux kernel 
as a function of the number of active CPU cores at 3.2 GHz is 
shown in Table V. Using 2 CPU cores instead of 1 did not 
double system performance; it increased by only 1.7387 times. 
This phenomenon was discussed earlier. When we used 4 active 
CPU cores instead of 2, the performance doubled by a very 
good approximation (1.9293 times). The performance 
improvement of an 8-core system compared to 4 cores is now 
1.9414 times. However, the performance increase at 16 cores 
was only 1.3374 times compared to that of an 8-core system. 
We contend that the main reason for this degradation was the 
insufficient performance of the NIC. To prove this, we repeated 

 
 

TABLE V 
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 3.2 GHZ 

Number of CPU cores 1 2 4 8 16 
median (fps) 746,706 1,298,271 2,504,729 4,862,591 6,503,402 
minimum (fps) 744,141 1,249,991 2,499,022 4,808,590 6,492,093 
maximum (fps) 750,001 1,301,758 2,509,173 4,880,386 6,516,618 
average (fps) 746,678 1,295,252 2,503,804 4,859,680 6,504,297 
standard deviation 1,239 10,875 3,477 21,168 7,033 
dispersion (%) 0.78 3.99 0.41 1.48 0.38 
relative to half as many cores -- 1.7387 1.9293 1.9414 1.3374 
relative scale-up 1 0.8693 0.8386 0.8140 0.5443 

 
TABLE VI 

THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 1.2 GHZ 
Number of CPU cores 1 2 4 8 16 
median (fps) 299,758 552,915 1,093,546 2,169,302 4,046,615 
minimum (fps) 298,741 548,765 1,085,934 2,160,155 4,030,760 
maximum (fps) 300,659 554,762 1,095,856 2,172,245 4,056,641 
average (fps) 299,694 552,454 1,093,201 2,168,249 4,045,039 
standard deviation 622 1,954 1,988 3,546 6,120 
dispersion (%) 0.64 1.08 0.91 0.56 0.64 
relative to half as many cores -- 1.8445 1.9778 1.9837 1.8654 
relative scale-up 1 0.9223 0.9120 0.9046 0.8437 

 
 

  
 

Fig. 2. Performance and scalability comparison of the Linux kernel using 1-12 active CPU cores (2GHz, left side) and FD.io VPP using one or two workers executed 
by the specified CPU cores (1.2GHz, right side) of a Dell PowerEdge R620 server with two 6-core Intel Xeon E5-2620 processors. 
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Further on, the performance of the 8-core system compared 
to a 4-core system is only 1.8297 times higher, and the 
comparison of performance of the 12-core system and the 6-
core system shows only a 1.732 times increase. There may 
already be other reasons for this degraded increase, such as the 
fact that all CPU cores share the same network interfaces and, 
as their number increases, they are already interfering with each 
other to some extent by competing for the access to the network 
interfaces.  

In conclusion, we observed that the performance of the 
system scaled up well: the throughput of the 12-core system 
instead the 1-core system increased from 442,782 fps to 
3,923,150 fps, which means an 8.86 times increase. 

The results of the throughput measurements for the IPv6 
packet forwarding performance of the Linux kernel are shown 
in Table II. These results are essentially highly similar to those 
in Table I. There are two striking differences: 

 The dispersion values are remarkably larger for 4 and 
6 CPU cores. This is because one of the tests at 
1,375,000 fps frame rate with 4 CPU cores and one of 
the tests at 2,000,000 fps frame rate with 6 CPU cores 
failed. These may be due to some relatively rare events 
in the system. The average is obviously affected by 
these outliers, which justifies our usage of median as 
summarizing function. 

 The IPv6 throughput is slightly lower than the IPv4 
throughput. There are two possible root causes for this: 
firstly, the frame size was larger for the IPv6 
measurements, and secondly, the IPv6 addresses are 
four times as long as IPv4 addresses. 

B. FD.io VPP Packet Forwarding Performance of R620 
In order to measure the throughput of the FD.io VPP IPv4 

and IPv6 packet forwarding, we used the CPU core 2 as the 
main core and 1 or 2 workers running on CPU cores with even 
or odd serial numbers to examine the performance of the test 
system and to gain insight into its scalability. When the CPU 
cores with even serial numbers were used with a single worker, 

we tested both core 4 and core 6 to check if there was a 
difference. Then they both were used with two workers. In the 
case of CPU cores with the odd serial numbers, the same was 
done with core 3, core 5, and finally, with cores 3 and 5.  

At the time of our preliminary measurements using FD.io 
VPP with 2 workers, it was found that the Tester became the 
bottleneck, and thus we could not measure the true performance 
of the DUT. However, we considered it highly important to be 
able to measure the scalability of FD.io VPP at least up to two 
CPU cores. Therefore, the CPU clock frequency was set to 1.2 
GHz (instead of 2 GHz, the nominal clock frequency of the 
CPU) to be able to perform the measurements using two 
workers.  

The results of our throughput measurements of the IPv4 
packet forwarding performance of FD.io VPP are shown in 
Table III. Core 4 and core 6 show nearly identical performance, 
with frame rates of 2,091,964 fps and 2,096,376 fps, 
respectively. When two workers were used across both cores 
the median frame rate roughly doubled to 4,187,904 fps. This 
indicates that the system scales efficiently, maximizing 
processing capacity without significant bottlenecks.  The same 
can be said for the CPU cores with odd serial numbers. 
However, for those cores, the median value was more than 18% 
lower, which is clearly due to using the different NUMA node. 

As for the quality of the results, with a single worker thread, 
the dispersion is always below 0.3%, so the results are highly 
stable. With two worker threads, the dispersion increased 
significantly, but still remained below 2%.  

The results of our throughput measurements characterizing 
the performance of the FD.io VPP IPv6 packet forwarding are 
shown in Table IV. These results are basically very similar to 
the results in Table III. There is one visible difference: the IPv6 
throughput is slightly lower than the IPv4 throughput. The 
possible reasons for this were explained in section A. 

C. Comparison of the Performance of the Linux kernel and 
FD.io VPP using an R620 Server as DUT 

The performance and scalability of the Linux kernel and 
 
 

TABLE III 
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2620 @ 1.2GHZ 

Used CPU cores 4th 6th 4th & 6th 3rd 5th 3rd & 5th 
Number of workers 1 1 2 1 1 2 
median (fps) 2,091,964 2,096,376 4,187,904 1,700,940 1,697,002 3,432,319 
minimum (fps) 2,089,688 2,093,309 4,183,576 1,699,461 1,695,153 3,390,624 
maximum (fps) 2,093,880 2,099,060 4,238,282 1,702,287 1,698,181 3,448,609 
average (fps) 2,091,944 2,096,289 4,191,721 1,700,981 1,696,889 3,431,086 
standard deviation 1,501.18 1,721.36 12,034.38 849.40 726.75 13,274.60 
dispersion (%) 0.20 0.27 1.31 0.17 0.18 1.69 

 
 

TABLE IV 
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2620 @ 1.2GHZ 

Used CPU cores 4th 6th 4th & 6th 3rd 5th 3rd & 5th 
Number of workers 1 1 2 1 1 2 
median (fps) 1,919,142 1,926,082 3,876,009 1,526,365 1,587,369 3,188,186 
minimum (fps) 1,916,951 1,923,811 3,866,209 1,517,536 1,585,936 3,124,999 
maximum (fps) 1,921,052 1,928,529 3,908,204 1,528,194 1,588,904 3,195,313 
average (fps) 1,918,898 1,926,321 3,878,199 1,525,300 1,587,528 3,185,315 
standard deviation 1,120.34 1,119.19 10,495.01 3,163.36 746.77 14,657.38 
dispersion (%) 0.21 0.24 1.08 0.70 0.19 2.21 
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FD.io VPP using a Dell PowerEdge R620 as the DUT is 
compared in Fig. 2. When considering their results, it is 
important to note that while the performance of the Linux kernel 
was measured at 2 GHz, the performance of FD.io VPP was 
measured at 1.2 GHz. Despite this disadvantage, FD.io VPP 
seriously outperformed the Linux kernel. While the Linux 
kernel on 1 CPU core delivered 442,782 fps IPv4 packet 
forwarding and 425,782 fps IPv6 packet forwarding 
performance, the FD.io VPP on 1 worker thread delivered more 
than 2 million IPv4 packets and more than 1.9 million IPv6 
packets. Even when using CPU cores belonging to a different 
NUMA node than the NIC, the performance was still around 
1.7 Mfps and 1.5 Mfps, for IPv4 and IPv6, respectively. 

When the Linux system used all 12 CPU cores at the nominal 
2 GHz clock frequency of the CPU, the performance was still 
only 3.92 Mfps and 3.77 Mfps for IPv4 and IPv6 packet 
forwarding, respectively. In contrast, FD.io VPP, using only 2 
CPU cores (4 and 6), achieved more than 4.18 Mfps and 3.87 
Mfps performance for IPv4 and IPv6 packet forwarding, 
respectively, at a clock frequency of 1.2 GHz. Our results prove 
that FD.io VPP is indeed a high-performance solution for IP 

packet forwarding. 

D. Linux Kernel Packet Forwarding Performance on R730 
The appropriate settings have been made using the methods 

described above. The same measurement parameters were used. 
Each R730 server had 16 CPU cores, therefore we were able 

to set the active core numbers by the power of two (1, 2, 4, 8, 
16). Our tests were performed using both 3.2 GHz and 1.2 GHz 
as the CPU clock frequency. 

The IPv4 packet forwarding performance of the Linux kernel 
as a function of the number of active CPU cores at 3.2 GHz is 
shown in Table V. Using 2 CPU cores instead of 1 did not 
double system performance; it increased by only 1.7387 times. 
This phenomenon was discussed earlier. When we used 4 active 
CPU cores instead of 2, the performance doubled by a very 
good approximation (1.9293 times). The performance 
improvement of an 8-core system compared to 4 cores is now 
1.9414 times. However, the performance increase at 16 cores 
was only 1.3374 times compared to that of an 8-core system. 
We contend that the main reason for this degradation was the 
insufficient performance of the NIC. To prove this, we repeated 
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FD.io VPP using a Dell PowerEdge R620 as the DUT is 
compared in Fig. 2. When considering their results, it is 
important to note that while the performance of the Linux kernel 
was measured at 2 GHz, the performance of FD.io VPP was 
measured at 1.2 GHz. Despite this disadvantage, FD.io VPP 
seriously outperformed the Linux kernel. While the Linux 
kernel on 1 CPU core delivered 442,782 fps IPv4 packet 
forwarding and 425,782 fps IPv6 packet forwarding 
performance, the FD.io VPP on 1 worker thread delivered more 
than 2 million IPv4 packets and more than 1.9 million IPv6 
packets. Even when using CPU cores belonging to a different 
NUMA node than the NIC, the performance was still around 
1.7 Mfps and 1.5 Mfps, for IPv4 and IPv6, respectively. 

When the Linux system used all 12 CPU cores at the nominal 
2 GHz clock frequency of the CPU, the performance was still 
only 3.92 Mfps and 3.77 Mfps for IPv4 and IPv6 packet 
forwarding, respectively. In contrast, FD.io VPP, using only 2 
CPU cores (4 and 6), achieved more than 4.18 Mfps and 3.87 
Mfps performance for IPv4 and IPv6 packet forwarding, 
respectively, at a clock frequency of 1.2 GHz. Our results prove 
that FD.io VPP is indeed a high-performance solution for IP 

packet forwarding. 

D. Linux Kernel Packet Forwarding Performance on R730 
The appropriate settings have been made using the methods 

described above. The same measurement parameters were used. 
Each R730 server had 16 CPU cores, therefore we were able 

to set the active core numbers by the power of two (1, 2, 4, 8, 
16). Our tests were performed using both 3.2 GHz and 1.2 GHz 
as the CPU clock frequency. 

The IPv4 packet forwarding performance of the Linux kernel 
as a function of the number of active CPU cores at 3.2 GHz is 
shown in Table V. Using 2 CPU cores instead of 1 did not 
double system performance; it increased by only 1.7387 times. 
This phenomenon was discussed earlier. When we used 4 active 
CPU cores instead of 2, the performance doubled by a very 
good approximation (1.9293 times). The performance 
improvement of an 8-core system compared to 4 cores is now 
1.9414 times. However, the performance increase at 16 cores 
was only 1.3374 times compared to that of an 8-core system. 
We contend that the main reason for this degradation was the 
insufficient performance of the NIC. To prove this, we repeated 
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the tests by setting the CPU clock frequency to 1.2 GHz (the 
lowest possible value). 

The IPv4 packet forwarding performance of the Linux kernel 
as a function of the number of active CPU cores using 1.2 GHz 
CPU clock frequency is shown in Table VI. The results show 
that the performance of the DUT scaled up well with the 
increase in the number of active CPU cores in the entire range. 
With a 16-core system, we can observe a 1.8654 times increase 
compared to 8 cores. On one hand, this is certainly an 
improvement (especially compared to 1.3374); however, it is 
still lower than the increases seen when scaling from 2 to 4 or 
from 4 to 8 cores in the same test series, despite the NIC 
capacity being higher than the measured throughput. We 
attribute this small degradation to the fact that the 16 cores were 
competing to access the NIC. Overall, the system performance 
scaled up well: when using 16 CPU cores instead of 1 CPU 
core, the throughput increased from 299,758 fps to 4,046,615 
fps by a factor of 13.5. 

The IPv6 packet forwarding performance of the Linux kernel 
as a function of the number of active CPU cores using 3.2 GHz 
CPU clock frequency is shown in Table VII. These results are 
basically very similar to those in Table V with the difference 
that IPv6 throughput is slightly lower than IPv4 throughput. 

Although IPv6 throughput is generally slightly lower than 
IPv4, the median values for 16 CPU cores are very similar 
(6,503,402 fps for IPv6 and 6,505,859 fps for IPv4). This 
suggests a hardware limitation, likely the network interface, in 
this case. 

The IPv6 packet forwarding performance of the Linux kernel 
as a function of the number of active CPU cores using 1.2 GHz 
CPU clock frequency is shown in Table VIII. Overall, the 
system performance scaled well: when using 16 CPU cores 
instead of 1 CPU core, the throughput increased from 288,704 
fps to 3,861,507 fps by a factor of 13.4. 

E. FD.io VPP Packet Forwarding Performance on R730 
The appropriate settings have been made using the methods 

described above. The measurement parameters used so far were 
also used for these measurements. 

In order to measure the throughput of the FD.io VPP IPv4 
and IPv6 packet forwarding, we used the CPU core 2 as the 
main core and 1 or 2 workers running on CPU cores with even 
serial numbers to examine the performance of the test system 
and to gain insight into its scalability. Previously, we also used 
CPU cores with odd serial numbers to examine the test system's 
performance. However, as discussed, there were no relevant 
differences in the results, aside from being lower due to their 
association with a different NUMA node than the NIC. This 
time, we focused on providing a clear comparison between 
different clock speeds (3.2 GHz and 1.2 GHz) and omitted the 
use of CPU cores with odd serial numbers.  

The results of our throughput measurements of the IPv4 
packet forwarding performance of FD.io VPP are shown in 
Table IX. Examining core 4 and core 6 at 3.2 GHz, we see that 
there is no significant difference in performance (6,947,546 fps 
and 6,960,875 fps) but compared to the results measured at 1.2 
GHz (2,886,634 fps and 2,887,674 fps), there is a nearly 2.5-
fold increase. For two workers, we can say that our results 
approximately doubled when comparing the single worker and 
the two worker results at 1.2 GHz.  

As for the quality of the results, they are highly stable and 
consistent because all of the dispersions are below 1%. 

The results of the throughput measurements of the IPv6 
packet forwarding performance of FD.io VPP are shown in 
Table X. These results are basically very similar to the results 
in Table IX with the difference that IPv6 throughput is slightly 
lower than IPv4 throughput. Overall, we have highly stable 
results because all of the dispersions are below 1%. 

It is salient that the results with FD.io VPP are more stable 
than those with the Linux kernel. The reason behind this is the 
following: during FD.io VPP measurements, the CPUs used for 
executing the workers were isolated (using the isolcpus 
kernel command line parameter). This means that no other task 

TABLE VII 
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 3.2 GHZ 

Number of CPU cores 1 2 4 8 16 
median (fps) 728,805 1,144,471 2,233,474 4,420,087 6,505,859 
minimum (fps) 718,749 1,140,602 2,124,968 4,374,999 6,374,999 
maximum (fps) 730,621 1,148,438 2,239,532 4,437,501 6,562,577 
average (fps) 728,192 1,143,963 2,226,907 4,417,140 6,505,697 
standard deviation 2,588 2,104 2,4466 1,4143 4,0059 
dispersion (%) 1,63 0,68 5,13 1,41 2,88 
relative to half as many cores -- 1.5703 1.9515 1.9790 1.4719 
relative scale-up 1 0.7852 0.7661 0.7581 0.5579 

 
 

TABLE VIII 
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 1.2 GHZ 

Number of CPU cores 1 2 4 8 16 
median (fps) 288,704 511,763 1,017,832 1,990,212 3,861,507 
minimum (fps) 281,249 499,999 1,007,688 1,937,483 3,749,999 
maximum (fps) 289,093 512,894 1,019,907 1,996,223 3,875,001 
average (fps) 288,348 511,299 1,016,904 1,988,055 3,856,157 
standard deviation 1,685 2,693 3,329 12,125 25,856 
dispersion (%) 2.72 2.52 1.20 2.95 3.24 
relative to half as many cores -- 1.7726 1.9889 1.9553 1.9402 
relative scale-up 1 0.8863 0.8814 0.8617 0.8360 
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FD.io VPP using a Dell PowerEdge R620 as the DUT is 
compared in Fig. 2. When considering their results, it is 
important to note that while the performance of the Linux kernel 
was measured at 2 GHz, the performance of FD.io VPP was 
measured at 1.2 GHz. Despite this disadvantage, FD.io VPP 
seriously outperformed the Linux kernel. While the Linux 
kernel on 1 CPU core delivered 442,782 fps IPv4 packet 
forwarding and 425,782 fps IPv6 packet forwarding 
performance, the FD.io VPP on 1 worker thread delivered more 
than 2 million IPv4 packets and more than 1.9 million IPv6 
packets. Even when using CPU cores belonging to a different 
NUMA node than the NIC, the performance was still around 
1.7 Mfps and 1.5 Mfps, for IPv4 and IPv6, respectively. 

When the Linux system used all 12 CPU cores at the nominal 
2 GHz clock frequency of the CPU, the performance was still 
only 3.92 Mfps and 3.77 Mfps for IPv4 and IPv6 packet 
forwarding, respectively. In contrast, FD.io VPP, using only 2 
CPU cores (4 and 6), achieved more than 4.18 Mfps and 3.87 
Mfps performance for IPv4 and IPv6 packet forwarding, 
respectively, at a clock frequency of 1.2 GHz. Our results prove 
that FD.io VPP is indeed a high-performance solution for IP 

packet forwarding. 

D. Linux Kernel Packet Forwarding Performance on R730 
The appropriate settings have been made using the methods 

described above. The same measurement parameters were used. 
Each R730 server had 16 CPU cores, therefore we were able 

to set the active core numbers by the power of two (1, 2, 4, 8, 
16). Our tests were performed using both 3.2 GHz and 1.2 GHz 
as the CPU clock frequency. 

The IPv4 packet forwarding performance of the Linux kernel 
as a function of the number of active CPU cores at 3.2 GHz is 
shown in Table V. Using 2 CPU cores instead of 1 did not 
double system performance; it increased by only 1.7387 times. 
This phenomenon was discussed earlier. When we used 4 active 
CPU cores instead of 2, the performance doubled by a very 
good approximation (1.9293 times). The performance 
improvement of an 8-core system compared to 4 cores is now 
1.9414 times. However, the performance increase at 16 cores 
was only 1.3374 times compared to that of an 8-core system. 
We contend that the main reason for this degradation was the 
insufficient performance of the NIC. To prove this, we repeated 
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maximum (fps) 750,001 1,301,758 2,509,173 4,880,386 6,516,618 
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standard deviation 1,239 10,875 3,477 21,168 7,033 
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FD.io VPP using a Dell PowerEdge R620 as the DUT is 
compared in Fig. 2. When considering their results, it is 
important to note that while the performance of the Linux kernel 
was measured at 2 GHz, the performance of FD.io VPP was 
measured at 1.2 GHz. Despite this disadvantage, FD.io VPP 
seriously outperformed the Linux kernel. While the Linux 
kernel on 1 CPU core delivered 442,782 fps IPv4 packet 
forwarding and 425,782 fps IPv6 packet forwarding 
performance, the FD.io VPP on 1 worker thread delivered more 
than 2 million IPv4 packets and more than 1.9 million IPv6 
packets. Even when using CPU cores belonging to a different 
NUMA node than the NIC, the performance was still around 
1.7 Mfps and 1.5 Mfps, for IPv4 and IPv6, respectively. 

When the Linux system used all 12 CPU cores at the nominal 
2 GHz clock frequency of the CPU, the performance was still 
only 3.92 Mfps and 3.77 Mfps for IPv4 and IPv6 packet 
forwarding, respectively. In contrast, FD.io VPP, using only 2 
CPU cores (4 and 6), achieved more than 4.18 Mfps and 3.87 
Mfps performance for IPv4 and IPv6 packet forwarding, 
respectively, at a clock frequency of 1.2 GHz. Our results prove 
that FD.io VPP is indeed a high-performance solution for IP 

packet forwarding. 

D. Linux Kernel Packet Forwarding Performance on R730 
The appropriate settings have been made using the methods 

described above. The same measurement parameters were used. 
Each R730 server had 16 CPU cores, therefore we were able 

to set the active core numbers by the power of two (1, 2, 4, 8, 
16). Our tests were performed using both 3.2 GHz and 1.2 GHz 
as the CPU clock frequency. 

The IPv4 packet forwarding performance of the Linux kernel 
as a function of the number of active CPU cores at 3.2 GHz is 
shown in Table V. Using 2 CPU cores instead of 1 did not 
double system performance; it increased by only 1.7387 times. 
This phenomenon was discussed earlier. When we used 4 active 
CPU cores instead of 2, the performance doubled by a very 
good approximation (1.9293 times). The performance 
improvement of an 8-core system compared to 4 cores is now 
1.9414 times. However, the performance increase at 16 cores 
was only 1.3374 times compared to that of an 8-core system. 
We contend that the main reason for this degradation was the 
insufficient performance of the NIC. To prove this, we repeated 
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FD.io VPP using a Dell PowerEdge R620 as the DUT is 
compared in Fig. 2. When considering their results, it is 
important to note that while the performance of the Linux kernel 
was measured at 2 GHz, the performance of FD.io VPP was 
measured at 1.2 GHz. Despite this disadvantage, FD.io VPP 
seriously outperformed the Linux kernel. While the Linux 
kernel on 1 CPU core delivered 442,782 fps IPv4 packet 
forwarding and 425,782 fps IPv6 packet forwarding 
performance, the FD.io VPP on 1 worker thread delivered more 
than 2 million IPv4 packets and more than 1.9 million IPv6 
packets. Even when using CPU cores belonging to a different 
NUMA node than the NIC, the performance was still around 
1.7 Mfps and 1.5 Mfps, for IPv4 and IPv6, respectively. 

When the Linux system used all 12 CPU cores at the nominal 
2 GHz clock frequency of the CPU, the performance was still 
only 3.92 Mfps and 3.77 Mfps for IPv4 and IPv6 packet 
forwarding, respectively. In contrast, FD.io VPP, using only 2 
CPU cores (4 and 6), achieved more than 4.18 Mfps and 3.87 
Mfps performance for IPv4 and IPv6 packet forwarding, 
respectively, at a clock frequency of 1.2 GHz. Our results prove 
that FD.io VPP is indeed a high-performance solution for IP 

packet forwarding. 

D. Linux Kernel Packet Forwarding Performance on R730 
The appropriate settings have been made using the methods 

described above. The same measurement parameters were used. 
Each R730 server had 16 CPU cores, therefore we were able 

to set the active core numbers by the power of two (1, 2, 4, 8, 
16). Our tests were performed using both 3.2 GHz and 1.2 GHz 
as the CPU clock frequency. 

The IPv4 packet forwarding performance of the Linux kernel 
as a function of the number of active CPU cores at 3.2 GHz is 
shown in Table V. Using 2 CPU cores instead of 1 did not 
double system performance; it increased by only 1.7387 times. 
This phenomenon was discussed earlier. When we used 4 active 
CPU cores instead of 2, the performance doubled by a very 
good approximation (1.9293 times). The performance 
improvement of an 8-core system compared to 4 cores is now 
1.9414 times. However, the performance increase at 16 cores 
was only 1.3374 times compared to that of an 8-core system. 
We contend that the main reason for this degradation was the 
insufficient performance of the NIC. To prove this, we repeated 
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THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 3.2 GHZ 

Number of CPU cores 1 2 4 8 16 
median (fps) 746,706 1,298,271 2,504,729 4,862,591 6,503,402 
minimum (fps) 744,141 1,249,991 2,499,022 4,808,590 6,492,093 
maximum (fps) 750,001 1,301,758 2,509,173 4,880,386 6,516,618 
average (fps) 746,678 1,295,252 2,503,804 4,859,680 6,504,297 
standard deviation 1,239 10,875 3,477 21,168 7,033 
dispersion (%) 0.78 3.99 0.41 1.48 0.38 
relative to half as many cores -- 1.7387 1.9293 1.9414 1.3374 
relative scale-up 1 0.8693 0.8386 0.8140 0.5443 

 
TABLE VI 

THROUGHPUT OF IPV4 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 1.2 GHZ 
Number of CPU cores 1 2 4 8 16 
median (fps) 299,758 552,915 1,093,546 2,169,302 4,046,615 
minimum (fps) 298,741 548,765 1,085,934 2,160,155 4,030,760 
maximum (fps) 300,659 554,762 1,095,856 2,172,245 4,056,641 
average (fps) 299,694 552,454 1,093,201 2,168,249 4,045,039 
standard deviation 622 1,954 1,988 3,546 6,120 
dispersion (%) 0.64 1.08 0.91 0.56 0.64 
relative to half as many cores -- 1.8445 1.9778 1.9837 1.8654 
relative scale-up 1 0.9223 0.9120 0.9046 0.8437 

 
 

  
 

Fig. 2. Performance and scalability comparison of the Linux kernel using 1-12 active CPU cores (2GHz, left side) and FD.io VPP using one or two workers executed 
by the specified CPU cores (1.2GHz, right side) of a Dell PowerEdge R620 server with two 6-core Intel Xeon E5-2620 processors. 
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the tests by setting the CPU clock frequency to 1.2 GHz (the 
lowest possible value). 

The IPv4 packet forwarding performance of the Linux kernel 
as a function of the number of active CPU cores using 1.2 GHz 
CPU clock frequency is shown in Table VI. The results show 
that the performance of the DUT scaled up well with the 
increase in the number of active CPU cores in the entire range. 
With a 16-core system, we can observe a 1.8654 times increase 
compared to 8 cores. On one hand, this is certainly an 
improvement (especially compared to 1.3374); however, it is 
still lower than the increases seen when scaling from 2 to 4 or 
from 4 to 8 cores in the same test series, despite the NIC 
capacity being higher than the measured throughput. We 
attribute this small degradation to the fact that the 16 cores were 
competing to access the NIC. Overall, the system performance 
scaled up well: when using 16 CPU cores instead of 1 CPU 
core, the throughput increased from 299,758 fps to 4,046,615 
fps by a factor of 13.5. 

The IPv6 packet forwarding performance of the Linux kernel 
as a function of the number of active CPU cores using 3.2 GHz 
CPU clock frequency is shown in Table VII. These results are 
basically very similar to those in Table V with the difference 
that IPv6 throughput is slightly lower than IPv4 throughput. 

Although IPv6 throughput is generally slightly lower than 
IPv4, the median values for 16 CPU cores are very similar 
(6,503,402 fps for IPv6 and 6,505,859 fps for IPv4). This 
suggests a hardware limitation, likely the network interface, in 
this case. 

The IPv6 packet forwarding performance of the Linux kernel 
as a function of the number of active CPU cores using 1.2 GHz 
CPU clock frequency is shown in Table VIII. Overall, the 
system performance scaled well: when using 16 CPU cores 
instead of 1 CPU core, the throughput increased from 288,704 
fps to 3,861,507 fps by a factor of 13.4. 

E. FD.io VPP Packet Forwarding Performance on R730 
The appropriate settings have been made using the methods 

described above. The measurement parameters used so far were 
also used for these measurements. 

In order to measure the throughput of the FD.io VPP IPv4 
and IPv6 packet forwarding, we used the CPU core 2 as the 
main core and 1 or 2 workers running on CPU cores with even 
serial numbers to examine the performance of the test system 
and to gain insight into its scalability. Previously, we also used 
CPU cores with odd serial numbers to examine the test system's 
performance. However, as discussed, there were no relevant 
differences in the results, aside from being lower due to their 
association with a different NUMA node than the NIC. This 
time, we focused on providing a clear comparison between 
different clock speeds (3.2 GHz and 1.2 GHz) and omitted the 
use of CPU cores with odd serial numbers.  

The results of our throughput measurements of the IPv4 
packet forwarding performance of FD.io VPP are shown in 
Table IX. Examining core 4 and core 6 at 3.2 GHz, we see that 
there is no significant difference in performance (6,947,546 fps 
and 6,960,875 fps) but compared to the results measured at 1.2 
GHz (2,886,634 fps and 2,887,674 fps), there is a nearly 2.5-
fold increase. For two workers, we can say that our results 
approximately doubled when comparing the single worker and 
the two worker results at 1.2 GHz.  

As for the quality of the results, they are highly stable and 
consistent because all of the dispersions are below 1%. 

The results of the throughput measurements of the IPv6 
packet forwarding performance of FD.io VPP are shown in 
Table X. These results are basically very similar to the results 
in Table IX with the difference that IPv6 throughput is slightly 
lower than IPv4 throughput. Overall, we have highly stable 
results because all of the dispersions are below 1%. 

It is salient that the results with FD.io VPP are more stable 
than those with the Linux kernel. The reason behind this is the 
following: during FD.io VPP measurements, the CPUs used for 
executing the workers were isolated (using the isolcpus 
kernel command line parameter). This means that no other task 

TABLE VII 
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 3.2 GHZ 

Number of CPU cores 1 2 4 8 16 
median (fps) 728,805 1,144,471 2,233,474 4,420,087 6,505,859 
minimum (fps) 718,749 1,140,602 2,124,968 4,374,999 6,374,999 
maximum (fps) 730,621 1,148,438 2,239,532 4,437,501 6,562,577 
average (fps) 728,192 1,143,963 2,226,907 4,417,140 6,505,697 
standard deviation 2,588 2,104 2,4466 1,4143 4,0059 
dispersion (%) 1,63 0,68 5,13 1,41 2,88 
relative to half as many cores -- 1.5703 1.9515 1.9790 1.4719 
relative scale-up 1 0.7852 0.7661 0.7581 0.5579 

 
 

TABLE VIII 
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 1.2 GHZ 

Number of CPU cores 1 2 4 8 16 
median (fps) 288,704 511,763 1,017,832 1,990,212 3,861,507 
minimum (fps) 281,249 499,999 1,007,688 1,937,483 3,749,999 
maximum (fps) 289,093 512,894 1,019,907 1,996,223 3,875,001 
average (fps) 288,348 511,299 1,016,904 1,988,055 3,856,157 
standard deviation 1,685 2,693 3,329 12,125 25,856 
dispersion (%) 2.72 2.52 1.20 2.95 3.24 
relative to half as many cores -- 1.7726 1.9889 1.9553 1.9402 
relative scale-up 1 0.8863 0.8814 0.8617 0.8360 
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the tests by setting the CPU clock frequency to 1.2 GHz (the 
lowest possible value). 

The IPv4 packet forwarding performance of the Linux kernel 
as a function of the number of active CPU cores using 1.2 GHz 
CPU clock frequency is shown in Table VI. The results show 
that the performance of the DUT scaled up well with the 
increase in the number of active CPU cores in the entire range. 
With a 16-core system, we can observe a 1.8654 times increase 
compared to 8 cores. On one hand, this is certainly an 
improvement (especially compared to 1.3374); however, it is 
still lower than the increases seen when scaling from 2 to 4 or 
from 4 to 8 cores in the same test series, despite the NIC 
capacity being higher than the measured throughput. We 
attribute this small degradation to the fact that the 16 cores were 
competing to access the NIC. Overall, the system performance 
scaled up well: when using 16 CPU cores instead of 1 CPU 
core, the throughput increased from 299,758 fps to 4,046,615 
fps by a factor of 13.5. 

The IPv6 packet forwarding performance of the Linux kernel 
as a function of the number of active CPU cores using 3.2 GHz 
CPU clock frequency is shown in Table VII. These results are 
basically very similar to those in Table V with the difference 
that IPv6 throughput is slightly lower than IPv4 throughput. 

Although IPv6 throughput is generally slightly lower than 
IPv4, the median values for 16 CPU cores are very similar 
(6,503,402 fps for IPv6 and 6,505,859 fps for IPv4). This 
suggests a hardware limitation, likely the network interface, in 
this case. 

The IPv6 packet forwarding performance of the Linux kernel 
as a function of the number of active CPU cores using 1.2 GHz 
CPU clock frequency is shown in Table VIII. Overall, the 
system performance scaled well: when using 16 CPU cores 
instead of 1 CPU core, the throughput increased from 288,704 
fps to 3,861,507 fps by a factor of 13.4. 

E. FD.io VPP Packet Forwarding Performance on R730 
The appropriate settings have been made using the methods 

described above. The measurement parameters used so far were 
also used for these measurements. 

In order to measure the throughput of the FD.io VPP IPv4 
and IPv6 packet forwarding, we used the CPU core 2 as the 
main core and 1 or 2 workers running on CPU cores with even 
serial numbers to examine the performance of the test system 
and to gain insight into its scalability. Previously, we also used 
CPU cores with odd serial numbers to examine the test system's 
performance. However, as discussed, there were no relevant 
differences in the results, aside from being lower due to their 
association with a different NUMA node than the NIC. This 
time, we focused on providing a clear comparison between 
different clock speeds (3.2 GHz and 1.2 GHz) and omitted the 
use of CPU cores with odd serial numbers.  

The results of our throughput measurements of the IPv4 
packet forwarding performance of FD.io VPP are shown in 
Table IX. Examining core 4 and core 6 at 3.2 GHz, we see that 
there is no significant difference in performance (6,947,546 fps 
and 6,960,875 fps) but compared to the results measured at 1.2 
GHz (2,886,634 fps and 2,887,674 fps), there is a nearly 2.5-
fold increase. For two workers, we can say that our results 
approximately doubled when comparing the single worker and 
the two worker results at 1.2 GHz.  

As for the quality of the results, they are highly stable and 
consistent because all of the dispersions are below 1%. 

The results of the throughput measurements of the IPv6 
packet forwarding performance of FD.io VPP are shown in 
Table X. These results are basically very similar to the results 
in Table IX with the difference that IPv6 throughput is slightly 
lower than IPv4 throughput. Overall, we have highly stable 
results because all of the dispersions are below 1%. 

It is salient that the results with FD.io VPP are more stable 
than those with the Linux kernel. The reason behind this is the 
following: during FD.io VPP measurements, the CPUs used for 
executing the workers were isolated (using the isolcpus 
kernel command line parameter). This means that no other task 

TABLE VII 
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 3.2 GHZ 

Number of CPU cores 1 2 4 8 16 
median (fps) 728,805 1,144,471 2,233,474 4,420,087 6,505,859 
minimum (fps) 718,749 1,140,602 2,124,968 4,374,999 6,374,999 
maximum (fps) 730,621 1,148,438 2,239,532 4,437,501 6,562,577 
average (fps) 728,192 1,143,963 2,226,907 4,417,140 6,505,697 
standard deviation 2,588 2,104 2,4466 1,4143 4,0059 
dispersion (%) 1,63 0,68 5,13 1,41 2,88 
relative to half as many cores -- 1.5703 1.9515 1.9790 1.4719 
relative scale-up 1 0.7852 0.7661 0.7581 0.5579 

 
 

TABLE VIII 
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 1.2 GHZ 

Number of CPU cores 1 2 4 8 16 
median (fps) 288,704 511,763 1,017,832 1,990,212 3,861,507 
minimum (fps) 281,249 499,999 1,007,688 1,937,483 3,749,999 
maximum (fps) 289,093 512,894 1,019,907 1,996,223 3,875,001 
average (fps) 288,348 511,299 1,016,904 1,988,055 3,856,157 
standard deviation 1,685 2,693 3,329 12,125 25,856 
dispersion (%) 2.72 2.52 1.20 2.95 3.24 
relative to half as many cores -- 1.7726 1.9889 1.9553 1.9402 
relative scale-up 1 0.8863 0.8814 0.8617 0.8360 
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the tests by setting the CPU clock frequency to 1.2 GHz (the 
lowest possible value). 

The IPv4 packet forwarding performance of the Linux kernel 
as a function of the number of active CPU cores using 1.2 GHz 
CPU clock frequency is shown in Table VI. The results show 
that the performance of the DUT scaled up well with the 
increase in the number of active CPU cores in the entire range. 
With a 16-core system, we can observe a 1.8654 times increase 
compared to 8 cores. On one hand, this is certainly an 
improvement (especially compared to 1.3374); however, it is 
still lower than the increases seen when scaling from 2 to 4 or 
from 4 to 8 cores in the same test series, despite the NIC 
capacity being higher than the measured throughput. We 
attribute this small degradation to the fact that the 16 cores were 
competing to access the NIC. Overall, the system performance 
scaled up well: when using 16 CPU cores instead of 1 CPU 
core, the throughput increased from 299,758 fps to 4,046,615 
fps by a factor of 13.5. 

The IPv6 packet forwarding performance of the Linux kernel 
as a function of the number of active CPU cores using 3.2 GHz 
CPU clock frequency is shown in Table VII. These results are 
basically very similar to those in Table V with the difference 
that IPv6 throughput is slightly lower than IPv4 throughput. 

Although IPv6 throughput is generally slightly lower than 
IPv4, the median values for 16 CPU cores are very similar 
(6,503,402 fps for IPv6 and 6,505,859 fps for IPv4). This 
suggests a hardware limitation, likely the network interface, in 
this case. 

The IPv6 packet forwarding performance of the Linux kernel 
as a function of the number of active CPU cores using 1.2 GHz 
CPU clock frequency is shown in Table VIII. Overall, the 
system performance scaled well: when using 16 CPU cores 
instead of 1 CPU core, the throughput increased from 288,704 
fps to 3,861,507 fps by a factor of 13.4. 

E. FD.io VPP Packet Forwarding Performance on R730 
The appropriate settings have been made using the methods 

described above. The measurement parameters used so far were 
also used for these measurements. 

In order to measure the throughput of the FD.io VPP IPv4 
and IPv6 packet forwarding, we used the CPU core 2 as the 
main core and 1 or 2 workers running on CPU cores with even 
serial numbers to examine the performance of the test system 
and to gain insight into its scalability. Previously, we also used 
CPU cores with odd serial numbers to examine the test system's 
performance. However, as discussed, there were no relevant 
differences in the results, aside from being lower due to their 
association with a different NUMA node than the NIC. This 
time, we focused on providing a clear comparison between 
different clock speeds (3.2 GHz and 1.2 GHz) and omitted the 
use of CPU cores with odd serial numbers.  

The results of our throughput measurements of the IPv4 
packet forwarding performance of FD.io VPP are shown in 
Table IX. Examining core 4 and core 6 at 3.2 GHz, we see that 
there is no significant difference in performance (6,947,546 fps 
and 6,960,875 fps) but compared to the results measured at 1.2 
GHz (2,886,634 fps and 2,887,674 fps), there is a nearly 2.5-
fold increase. For two workers, we can say that our results 
approximately doubled when comparing the single worker and 
the two worker results at 1.2 GHz.  

As for the quality of the results, they are highly stable and 
consistent because all of the dispersions are below 1%. 

The results of the throughput measurements of the IPv6 
packet forwarding performance of FD.io VPP are shown in 
Table X. These results are basically very similar to the results 
in Table IX with the difference that IPv6 throughput is slightly 
lower than IPv4 throughput. Overall, we have highly stable 
results because all of the dispersions are below 1%. 

It is salient that the results with FD.io VPP are more stable 
than those with the Linux kernel. The reason behind this is the 
following: during FD.io VPP measurements, the CPUs used for 
executing the workers were isolated (using the isolcpus 
kernel command line parameter). This means that no other task 

TABLE VII 
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 3.2 GHZ 

Number of CPU cores 1 2 4 8 16 
median (fps) 728,805 1,144,471 2,233,474 4,420,087 6,505,859 
minimum (fps) 718,749 1,140,602 2,124,968 4,374,999 6,374,999 
maximum (fps) 730,621 1,148,438 2,239,532 4,437,501 6,562,577 
average (fps) 728,192 1,143,963 2,226,907 4,417,140 6,505,697 
standard deviation 2,588 2,104 2,4466 1,4143 4,0059 
dispersion (%) 1,63 0,68 5,13 1,41 2,88 
relative to half as many cores -- 1.5703 1.9515 1.9790 1.4719 
relative scale-up 1 0.7852 0.7661 0.7581 0.5579 

 
 

TABLE VIII 
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 1.2 GHZ 

Number of CPU cores 1 2 4 8 16 
median (fps) 288,704 511,763 1,017,832 1,990,212 3,861,507 
minimum (fps) 281,249 499,999 1,007,688 1,937,483 3,749,999 
maximum (fps) 289,093 512,894 1,019,907 1,996,223 3,875,001 
average (fps) 288,348 511,299 1,016,904 1,988,055 3,856,157 
standard deviation 1,685 2,693 3,329 12,125 25,856 
dispersion (%) 2.72 2.52 1.20 2.95 3.24 
relative to half as many cores -- 1.7726 1.9889 1.9553 1.9402 
relative scale-up 1 0.8863 0.8814 0.8617 0.8360 
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the tests by setting the CPU clock frequency to 1.2 GHz (the 
lowest possible value). 

The IPv4 packet forwarding performance of the Linux kernel 
as a function of the number of active CPU cores using 1.2 GHz 
CPU clock frequency is shown in Table VI. The results show 
that the performance of the DUT scaled up well with the 
increase in the number of active CPU cores in the entire range. 
With a 16-core system, we can observe a 1.8654 times increase 
compared to 8 cores. On one hand, this is certainly an 
improvement (especially compared to 1.3374); however, it is 
still lower than the increases seen when scaling from 2 to 4 or 
from 4 to 8 cores in the same test series, despite the NIC 
capacity being higher than the measured throughput. We 
attribute this small degradation to the fact that the 16 cores were 
competing to access the NIC. Overall, the system performance 
scaled up well: when using 16 CPU cores instead of 1 CPU 
core, the throughput increased from 299,758 fps to 4,046,615 
fps by a factor of 13.5. 

The IPv6 packet forwarding performance of the Linux kernel 
as a function of the number of active CPU cores using 3.2 GHz 
CPU clock frequency is shown in Table VII. These results are 
basically very similar to those in Table V with the difference 
that IPv6 throughput is slightly lower than IPv4 throughput. 

Although IPv6 throughput is generally slightly lower than 
IPv4, the median values for 16 CPU cores are very similar 
(6,503,402 fps for IPv6 and 6,505,859 fps for IPv4). This 
suggests a hardware limitation, likely the network interface, in 
this case. 

The IPv6 packet forwarding performance of the Linux kernel 
as a function of the number of active CPU cores using 1.2 GHz 
CPU clock frequency is shown in Table VIII. Overall, the 
system performance scaled well: when using 16 CPU cores 
instead of 1 CPU core, the throughput increased from 288,704 
fps to 3,861,507 fps by a factor of 13.4. 

E. FD.io VPP Packet Forwarding Performance on R730 
The appropriate settings have been made using the methods 

described above. The measurement parameters used so far were 
also used for these measurements. 

In order to measure the throughput of the FD.io VPP IPv4 
and IPv6 packet forwarding, we used the CPU core 2 as the 
main core and 1 or 2 workers running on CPU cores with even 
serial numbers to examine the performance of the test system 
and to gain insight into its scalability. Previously, we also used 
CPU cores with odd serial numbers to examine the test system's 
performance. However, as discussed, there were no relevant 
differences in the results, aside from being lower due to their 
association with a different NUMA node than the NIC. This 
time, we focused on providing a clear comparison between 
different clock speeds (3.2 GHz and 1.2 GHz) and omitted the 
use of CPU cores with odd serial numbers.  

The results of our throughput measurements of the IPv4 
packet forwarding performance of FD.io VPP are shown in 
Table IX. Examining core 4 and core 6 at 3.2 GHz, we see that 
there is no significant difference in performance (6,947,546 fps 
and 6,960,875 fps) but compared to the results measured at 1.2 
GHz (2,886,634 fps and 2,887,674 fps), there is a nearly 2.5-
fold increase. For two workers, we can say that our results 
approximately doubled when comparing the single worker and 
the two worker results at 1.2 GHz.  

As for the quality of the results, they are highly stable and 
consistent because all of the dispersions are below 1%. 

The results of the throughput measurements of the IPv6 
packet forwarding performance of FD.io VPP are shown in 
Table X. These results are basically very similar to the results 
in Table IX with the difference that IPv6 throughput is slightly 
lower than IPv4 throughput. Overall, we have highly stable 
results because all of the dispersions are below 1%. 

It is salient that the results with FD.io VPP are more stable 
than those with the Linux kernel. The reason behind this is the 
following: during FD.io VPP measurements, the CPUs used for 
executing the workers were isolated (using the isolcpus 
kernel command line parameter). This means that no other task 

TABLE VII 
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 3.2 GHZ 

Number of CPU cores 1 2 4 8 16 
median (fps) 728,805 1,144,471 2,233,474 4,420,087 6,505,859 
minimum (fps) 718,749 1,140,602 2,124,968 4,374,999 6,374,999 
maximum (fps) 730,621 1,148,438 2,239,532 4,437,501 6,562,577 
average (fps) 728,192 1,143,963 2,226,907 4,417,140 6,505,697 
standard deviation 2,588 2,104 2,4466 1,4143 4,0059 
dispersion (%) 1,63 0,68 5,13 1,41 2,88 
relative to half as many cores -- 1.5703 1.9515 1.9790 1.4719 
relative scale-up 1 0.7852 0.7661 0.7581 0.5579 

 
 

TABLE VIII 
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 1.2 GHZ 

Number of CPU cores 1 2 4 8 16 
median (fps) 288,704 511,763 1,017,832 1,990,212 3,861,507 
minimum (fps) 281,249 499,999 1,007,688 1,937,483 3,749,999 
maximum (fps) 289,093 512,894 1,019,907 1,996,223 3,875,001 
average (fps) 288,348 511,299 1,016,904 1,988,055 3,856,157 
standard deviation 1,685 2,693 3,329 12,125 25,856 
dispersion (%) 2.72 2.52 1.20 2.95 3.24 
relative to half as many cores -- 1.7726 1.9889 1.9553 1.9402 
relative scale-up 1 0.8863 0.8814 0.8617 0.8360 
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the tests by setting the CPU clock frequency to 1.2 GHz (the 
lowest possible value). 

The IPv4 packet forwarding performance of the Linux kernel 
as a function of the number of active CPU cores using 1.2 GHz 
CPU clock frequency is shown in Table VI. The results show 
that the performance of the DUT scaled up well with the 
increase in the number of active CPU cores in the entire range. 
With a 16-core system, we can observe a 1.8654 times increase 
compared to 8 cores. On one hand, this is certainly an 
improvement (especially compared to 1.3374); however, it is 
still lower than the increases seen when scaling from 2 to 4 or 
from 4 to 8 cores in the same test series, despite the NIC 
capacity being higher than the measured throughput. We 
attribute this small degradation to the fact that the 16 cores were 
competing to access the NIC. Overall, the system performance 
scaled up well: when using 16 CPU cores instead of 1 CPU 
core, the throughput increased from 299,758 fps to 4,046,615 
fps by a factor of 13.5. 

The IPv6 packet forwarding performance of the Linux kernel 
as a function of the number of active CPU cores using 3.2 GHz 
CPU clock frequency is shown in Table VII. These results are 
basically very similar to those in Table V with the difference 
that IPv6 throughput is slightly lower than IPv4 throughput. 

Although IPv6 throughput is generally slightly lower than 
IPv4, the median values for 16 CPU cores are very similar 
(6,503,402 fps for IPv6 and 6,505,859 fps for IPv4). This 
suggests a hardware limitation, likely the network interface, in 
this case. 

The IPv6 packet forwarding performance of the Linux kernel 
as a function of the number of active CPU cores using 1.2 GHz 
CPU clock frequency is shown in Table VIII. Overall, the 
system performance scaled well: when using 16 CPU cores 
instead of 1 CPU core, the throughput increased from 288,704 
fps to 3,861,507 fps by a factor of 13.4. 

E. FD.io VPP Packet Forwarding Performance on R730 
The appropriate settings have been made using the methods 

described above. The measurement parameters used so far were 
also used for these measurements. 

In order to measure the throughput of the FD.io VPP IPv4 
and IPv6 packet forwarding, we used the CPU core 2 as the 
main core and 1 or 2 workers running on CPU cores with even 
serial numbers to examine the performance of the test system 
and to gain insight into its scalability. Previously, we also used 
CPU cores with odd serial numbers to examine the test system's 
performance. However, as discussed, there were no relevant 
differences in the results, aside from being lower due to their 
association with a different NUMA node than the NIC. This 
time, we focused on providing a clear comparison between 
different clock speeds (3.2 GHz and 1.2 GHz) and omitted the 
use of CPU cores with odd serial numbers.  

The results of our throughput measurements of the IPv4 
packet forwarding performance of FD.io VPP are shown in 
Table IX. Examining core 4 and core 6 at 3.2 GHz, we see that 
there is no significant difference in performance (6,947,546 fps 
and 6,960,875 fps) but compared to the results measured at 1.2 
GHz (2,886,634 fps and 2,887,674 fps), there is a nearly 2.5-
fold increase. For two workers, we can say that our results 
approximately doubled when comparing the single worker and 
the two worker results at 1.2 GHz.  

As for the quality of the results, they are highly stable and 
consistent because all of the dispersions are below 1%. 

The results of the throughput measurements of the IPv6 
packet forwarding performance of FD.io VPP are shown in 
Table X. These results are basically very similar to the results 
in Table IX with the difference that IPv6 throughput is slightly 
lower than IPv4 throughput. Overall, we have highly stable 
results because all of the dispersions are below 1%. 

It is salient that the results with FD.io VPP are more stable 
than those with the Linux kernel. The reason behind this is the 
following: during FD.io VPP measurements, the CPUs used for 
executing the workers were isolated (using the isolcpus 
kernel command line parameter). This means that no other task 

TABLE VII 
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 3.2 GHZ 

Number of CPU cores 1 2 4 8 16 
median (fps) 728,805 1,144,471 2,233,474 4,420,087 6,505,859 
minimum (fps) 718,749 1,140,602 2,124,968 4,374,999 6,374,999 
maximum (fps) 730,621 1,148,438 2,239,532 4,437,501 6,562,577 
average (fps) 728,192 1,143,963 2,226,907 4,417,140 6,505,697 
standard deviation 2,588 2,104 2,4466 1,4143 4,0059 
dispersion (%) 1,63 0,68 5,13 1,41 2,88 
relative to half as many cores -- 1.5703 1.9515 1.9790 1.4719 
relative scale-up 1 0.7852 0.7661 0.7581 0.5579 

 
 

TABLE VIII 
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 1.2 GHZ 

Number of CPU cores 1 2 4 8 16 
median (fps) 288,704 511,763 1,017,832 1,990,212 3,861,507 
minimum (fps) 281,249 499,999 1,007,688 1,937,483 3,749,999 
maximum (fps) 289,093 512,894 1,019,907 1,996,223 3,875,001 
average (fps) 288,348 511,299 1,016,904 1,988,055 3,856,157 
standard deviation 1,685 2,693 3,329 12,125 25,856 
dispersion (%) 2.72 2.52 1.20 2.95 3.24 
relative to half as many cores -- 1.7726 1.9889 1.9553 1.9402 
relative scale-up 1 0.8863 0.8814 0.8617 0.8360 
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could be scheduled to the isolated CPU cores by the kernel. 
Conversely, the Linux kernel used all CPU cores for packet 
forwarding and the scheduler occasionally assigned them other 
tasks, as well. 

F. Comparison of the performance of the Linux kernel and 
FD.io VPP using an R730 Server as DUT 

Unlike in the case of the R620 test system, the results of the 
Linux kernel and the FD.io VPP using the same CPU clock 
frequency on the R730 test system are directly comparable. 

First, we compare the results produced using 1.2 GHz CPU 
clock frequency. The results are shown in Fig. 3. Whereas the 
Linux kernel on 1 CPU core delivered 299,758 fps IPv4 packet 
forwarding and 288,704 fps IPv6 packet forwarding 
performance, the FD.io VPP with 1 worker thread delivered 
more than 2.8 million IPv4 packets and more than 2.5 million 
IPv6 packets. When the Linux system used all 16 CPU cores of 
the CPU, the performance was only 4.05 Mfps and 3.86 Mfps 
for IPv4 and IPv6 packet forwarding, respectively. In contrast, 
FD.io VPP, using only 2 CPU cores (4 and 6), achieved 5.87 
Mfps and 5.22 Mfps performance for IPv4 and IPv6 packet 

forwarding, respectively. 
The 3.2 GHz results are compared in Fig. 4. The single core 

system of Linux kernel delivered 746,706 fps IPv4 packet 
forwarding and 728,805 fps IPv6 packet forwarding 
performance, whereas the FD.io VPP on 1 worker thread 
delivered more than 6.95 million IPv4 packets and more than 
6.25 million IPv6 packets. Our results prove that FD.io VPP is 
indeed a high-performance solution for IP packet forwarding. 

G. Comparison of the results of the R620 and R730 Servers 
When comparing the two types of servers, it is important to 

note that the nominal CPU clock frequencies of the R620 and 
R730 servers are 2 GHz and 3.2 GHz, respectively. 

When comparing the median values of their Linux kernel 
IPv4 packet forwarding results measured at their nominal CPU 
frequencies, a single CPU core of the R730 server outperformed 
the single CPU core of the R620 server with a factor of 1.6864 
(746,706 fps vs. 442,782 fps) and similar statements can be 
made regarding their performances from 2 to 8 CPU cores. 
Alternatively, it can be noted that the performance of a single 
core of the E5-2667 v4 CPU at 3.2 GHz (746,706 fps) is nearly 

TABLE IX 
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4 

Used CPU cores 4th 6th 4th 6th 4th & 6th 
Number of workers 1 1 1 1 2 
CPU clock frequency 3.2 GHz 3.2GHz 1.2 GHz 1.2 GHz 1.2 GHz 
median (fps) 6,947,546 6,960,875 2,886,634 2,887,674 5,866,613 
minimum (fps) 6,942,869 6,937,499 2,874,999 2,885,736 5,859,374 
maximum (fps) 6,953,156 6,968,751 2,887,939 2,888,488 5,869,027 
average (fps) 6,948,498 6,959,671 2,886,116 2,887,500 5,866,099 
standard deviation 3,077 6,674 2,906 747 2,680 
dispersion (%) 0.15 0.45 0.45 0.10 0.16 

 
 

TABLE X 
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4 

Used CPU cores 4th 6th 4th 6th 4th & 6th 
Number of workers 1 1 1 1 2 
CPU clock frequency 3.2 GHz 3.2GHz 1.2 GHz 1.2 GHz 1.2 GHz 
median (fps) 6,250,366 6,253,601 2,559,248 2,555,627 5,215,632 
minimum (fps) 6,218,749 6,240,721 2,546,874 2,554,662 5,187,499 
maximum (fps) 6,258,057 6,264,577 2,559,815 2,556,732 5,220,337 
average (fps) 6,251,035 6,252,592 2,558,535 2,555,526 5,213,860 
standard deviation 3,195 4,308 3,023 666 3,670 
dispersion (%) 0.63 0.38 0.51 0.08 0.63 

 
 

 
 

  

Fig. 3. Performance and scalability comparison of the Linux kernel using 1-16 active CPU cores (left side) and FD.io VPP using one or two workers executed by the 
specified CPU cores (right side) of a Dell PowerEdge R730 server with two 8-core Intel Xeon E5-2667 v4 processors @ 1.2GHz. 
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the tests by setting the CPU clock frequency to 1.2 GHz (the 
lowest possible value). 

The IPv4 packet forwarding performance of the Linux kernel 
as a function of the number of active CPU cores using 1.2 GHz 
CPU clock frequency is shown in Table VI. The results show 
that the performance of the DUT scaled up well with the 
increase in the number of active CPU cores in the entire range. 
With a 16-core system, we can observe a 1.8654 times increase 
compared to 8 cores. On one hand, this is certainly an 
improvement (especially compared to 1.3374); however, it is 
still lower than the increases seen when scaling from 2 to 4 or 
from 4 to 8 cores in the same test series, despite the NIC 
capacity being higher than the measured throughput. We 
attribute this small degradation to the fact that the 16 cores were 
competing to access the NIC. Overall, the system performance 
scaled up well: when using 16 CPU cores instead of 1 CPU 
core, the throughput increased from 299,758 fps to 4,046,615 
fps by a factor of 13.5. 

The IPv6 packet forwarding performance of the Linux kernel 
as a function of the number of active CPU cores using 3.2 GHz 
CPU clock frequency is shown in Table VII. These results are 
basically very similar to those in Table V with the difference 
that IPv6 throughput is slightly lower than IPv4 throughput. 

Although IPv6 throughput is generally slightly lower than 
IPv4, the median values for 16 CPU cores are very similar 
(6,503,402 fps for IPv6 and 6,505,859 fps for IPv4). This 
suggests a hardware limitation, likely the network interface, in 
this case. 

The IPv6 packet forwarding performance of the Linux kernel 
as a function of the number of active CPU cores using 1.2 GHz 
CPU clock frequency is shown in Table VIII. Overall, the 
system performance scaled well: when using 16 CPU cores 
instead of 1 CPU core, the throughput increased from 288,704 
fps to 3,861,507 fps by a factor of 13.4. 

E. FD.io VPP Packet Forwarding Performance on R730 
The appropriate settings have been made using the methods 

described above. The measurement parameters used so far were 
also used for these measurements. 

In order to measure the throughput of the FD.io VPP IPv4 
and IPv6 packet forwarding, we used the CPU core 2 as the 
main core and 1 or 2 workers running on CPU cores with even 
serial numbers to examine the performance of the test system 
and to gain insight into its scalability. Previously, we also used 
CPU cores with odd serial numbers to examine the test system's 
performance. However, as discussed, there were no relevant 
differences in the results, aside from being lower due to their 
association with a different NUMA node than the NIC. This 
time, we focused on providing a clear comparison between 
different clock speeds (3.2 GHz and 1.2 GHz) and omitted the 
use of CPU cores with odd serial numbers.  

The results of our throughput measurements of the IPv4 
packet forwarding performance of FD.io VPP are shown in 
Table IX. Examining core 4 and core 6 at 3.2 GHz, we see that 
there is no significant difference in performance (6,947,546 fps 
and 6,960,875 fps) but compared to the results measured at 1.2 
GHz (2,886,634 fps and 2,887,674 fps), there is a nearly 2.5-
fold increase. For two workers, we can say that our results 
approximately doubled when comparing the single worker and 
the two worker results at 1.2 GHz.  

As for the quality of the results, they are highly stable and 
consistent because all of the dispersions are below 1%. 

The results of the throughput measurements of the IPv6 
packet forwarding performance of FD.io VPP are shown in 
Table X. These results are basically very similar to the results 
in Table IX with the difference that IPv6 throughput is slightly 
lower than IPv4 throughput. Overall, we have highly stable 
results because all of the dispersions are below 1%. 

It is salient that the results with FD.io VPP are more stable 
than those with the Linux kernel. The reason behind this is the 
following: during FD.io VPP measurements, the CPUs used for 
executing the workers were isolated (using the isolcpus 
kernel command line parameter). This means that no other task 

TABLE VII 
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 3.2 GHZ 

Number of CPU cores 1 2 4 8 16 
median (fps) 728,805 1,144,471 2,233,474 4,420,087 6,505,859 
minimum (fps) 718,749 1,140,602 2,124,968 4,374,999 6,374,999 
maximum (fps) 730,621 1,148,438 2,239,532 4,437,501 6,562,577 
average (fps) 728,192 1,143,963 2,226,907 4,417,140 6,505,697 
standard deviation 2,588 2,104 2,4466 1,4143 4,0059 
dispersion (%) 1,63 0,68 5,13 1,41 2,88 
relative to half as many cores -- 1.5703 1.9515 1.9790 1.4719 
relative scale-up 1 0.7852 0.7661 0.7581 0.5579 

 
 

TABLE VIII 
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE LINUX KERNEL AS A FUNCTION OF THE NUMBER OF ACTIVE CPU CORES, E5-2667 V4 @ 1.2 GHZ 

Number of CPU cores 1 2 4 8 16 
median (fps) 288,704 511,763 1,017,832 1,990,212 3,861,507 
minimum (fps) 281,249 499,999 1,007,688 1,937,483 3,749,999 
maximum (fps) 289,093 512,894 1,019,907 1,996,223 3,875,001 
average (fps) 288,348 511,299 1,016,904 1,988,055 3,856,157 
standard deviation 1,685 2,693 3,329 12,125 25,856 
dispersion (%) 2.72 2.52 1.20 2.95 3.24 
relative to half as many cores -- 1.7726 1.9889 1.9553 1.9402 
relative scale-up 1 0.8863 0.8814 0.8617 0.8360 
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could be scheduled to the isolated CPU cores by the kernel. 
Conversely, the Linux kernel used all CPU cores for packet 
forwarding and the scheduler occasionally assigned them other 
tasks, as well. 

F. Comparison of the performance of the Linux kernel and 
FD.io VPP using an R730 Server as DUT 

Unlike in the case of the R620 test system, the results of the 
Linux kernel and the FD.io VPP using the same CPU clock 
frequency on the R730 test system are directly comparable. 

First, we compare the results produced using 1.2 GHz CPU 
clock frequency. The results are shown in Fig. 3. Whereas the 
Linux kernel on 1 CPU core delivered 299,758 fps IPv4 packet 
forwarding and 288,704 fps IPv6 packet forwarding 
performance, the FD.io VPP with 1 worker thread delivered 
more than 2.8 million IPv4 packets and more than 2.5 million 
IPv6 packets. When the Linux system used all 16 CPU cores of 
the CPU, the performance was only 4.05 Mfps and 3.86 Mfps 
for IPv4 and IPv6 packet forwarding, respectively. In contrast, 
FD.io VPP, using only 2 CPU cores (4 and 6), achieved 5.87 
Mfps and 5.22 Mfps performance for IPv4 and IPv6 packet 

forwarding, respectively. 
The 3.2 GHz results are compared in Fig. 4. The single core 

system of Linux kernel delivered 746,706 fps IPv4 packet 
forwarding and 728,805 fps IPv6 packet forwarding 
performance, whereas the FD.io VPP on 1 worker thread 
delivered more than 6.95 million IPv4 packets and more than 
6.25 million IPv6 packets. Our results prove that FD.io VPP is 
indeed a high-performance solution for IP packet forwarding. 

G. Comparison of the results of the R620 and R730 Servers 
When comparing the two types of servers, it is important to 

note that the nominal CPU clock frequencies of the R620 and 
R730 servers are 2 GHz and 3.2 GHz, respectively. 

When comparing the median values of their Linux kernel 
IPv4 packet forwarding results measured at their nominal CPU 
frequencies, a single CPU core of the R730 server outperformed 
the single CPU core of the R620 server with a factor of 1.6864 
(746,706 fps vs. 442,782 fps) and similar statements can be 
made regarding their performances from 2 to 8 CPU cores. 
Alternatively, it can be noted that the performance of a single 
core of the E5-2667 v4 CPU at 3.2 GHz (746,706 fps) is nearly 

TABLE IX 
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4 

Used CPU cores 4th 6th 4th 6th 4th & 6th 
Number of workers 1 1 1 1 2 
CPU clock frequency 3.2 GHz 3.2GHz 1.2 GHz 1.2 GHz 1.2 GHz 
median (fps) 6,947,546 6,960,875 2,886,634 2,887,674 5,866,613 
minimum (fps) 6,942,869 6,937,499 2,874,999 2,885,736 5,859,374 
maximum (fps) 6,953,156 6,968,751 2,887,939 2,888,488 5,869,027 
average (fps) 6,948,498 6,959,671 2,886,116 2,887,500 5,866,099 
standard deviation 3,077 6,674 2,906 747 2,680 
dispersion (%) 0.15 0.45 0.45 0.10 0.16 

 
 

TABLE X 
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4 

Used CPU cores 4th 6th 4th 6th 4th & 6th 
Number of workers 1 1 1 1 2 
CPU clock frequency 3.2 GHz 3.2GHz 1.2 GHz 1.2 GHz 1.2 GHz 
median (fps) 6,250,366 6,253,601 2,559,248 2,555,627 5,215,632 
minimum (fps) 6,218,749 6,240,721 2,546,874 2,554,662 5,187,499 
maximum (fps) 6,258,057 6,264,577 2,559,815 2,556,732 5,220,337 
average (fps) 6,251,035 6,252,592 2,558,535 2,555,526 5,213,860 
standard deviation 3,195 4,308 3,023 666 3,670 
dispersion (%) 0.63 0.38 0.51 0.08 0.63 

 
 

 
 

  

Fig. 3. Performance and scalability comparison of the Linux kernel using 1-16 active CPU cores (left side) and FD.io VPP using one or two workers executed by the 
specified CPU cores (right side) of a Dell PowerEdge R730 server with two 8-core Intel Xeon E5-2667 v4 processors @ 1.2GHz. 
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could be scheduled to the isolated CPU cores by the kernel. 
Conversely, the Linux kernel used all CPU cores for packet 
forwarding and the scheduler occasionally assigned them other 
tasks, as well. 

F. Comparison of the performance of the Linux kernel and 
FD.io VPP using an R730 Server as DUT 

Unlike in the case of the R620 test system, the results of the 
Linux kernel and the FD.io VPP using the same CPU clock 
frequency on the R730 test system are directly comparable. 

First, we compare the results produced using 1.2 GHz CPU 
clock frequency. The results are shown in Fig. 3. Whereas the 
Linux kernel on 1 CPU core delivered 299,758 fps IPv4 packet 
forwarding and 288,704 fps IPv6 packet forwarding 
performance, the FD.io VPP with 1 worker thread delivered 
more than 2.8 million IPv4 packets and more than 2.5 million 
IPv6 packets. When the Linux system used all 16 CPU cores of 
the CPU, the performance was only 4.05 Mfps and 3.86 Mfps 
for IPv4 and IPv6 packet forwarding, respectively. In contrast, 
FD.io VPP, using only 2 CPU cores (4 and 6), achieved 5.87 
Mfps and 5.22 Mfps performance for IPv4 and IPv6 packet 

forwarding, respectively. 
The 3.2 GHz results are compared in Fig. 4. The single core 

system of Linux kernel delivered 746,706 fps IPv4 packet 
forwarding and 728,805 fps IPv6 packet forwarding 
performance, whereas the FD.io VPP on 1 worker thread 
delivered more than 6.95 million IPv4 packets and more than 
6.25 million IPv6 packets. Our results prove that FD.io VPP is 
indeed a high-performance solution for IP packet forwarding. 

G. Comparison of the results of the R620 and R730 Servers 
When comparing the two types of servers, it is important to 

note that the nominal CPU clock frequencies of the R620 and 
R730 servers are 2 GHz and 3.2 GHz, respectively. 

When comparing the median values of their Linux kernel 
IPv4 packet forwarding results measured at their nominal CPU 
frequencies, a single CPU core of the R730 server outperformed 
the single CPU core of the R620 server with a factor of 1.6864 
(746,706 fps vs. 442,782 fps) and similar statements can be 
made regarding their performances from 2 to 8 CPU cores. 
Alternatively, it can be noted that the performance of a single 
core of the E5-2667 v4 CPU at 3.2 GHz (746,706 fps) is nearly 

TABLE IX 
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4 

Used CPU cores 4th 6th 4th 6th 4th & 6th 
Number of workers 1 1 1 1 2 
CPU clock frequency 3.2 GHz 3.2GHz 1.2 GHz 1.2 GHz 1.2 GHz 
median (fps) 6,947,546 6,960,875 2,886,634 2,887,674 5,866,613 
minimum (fps) 6,942,869 6,937,499 2,874,999 2,885,736 5,859,374 
maximum (fps) 6,953,156 6,968,751 2,887,939 2,888,488 5,869,027 
average (fps) 6,948,498 6,959,671 2,886,116 2,887,500 5,866,099 
standard deviation 3,077 6,674 2,906 747 2,680 
dispersion (%) 0.15 0.45 0.45 0.10 0.16 

 
 

TABLE X 
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4 

Used CPU cores 4th 6th 4th 6th 4th & 6th 
Number of workers 1 1 1 1 2 
CPU clock frequency 3.2 GHz 3.2GHz 1.2 GHz 1.2 GHz 1.2 GHz 
median (fps) 6,250,366 6,253,601 2,559,248 2,555,627 5,215,632 
minimum (fps) 6,218,749 6,240,721 2,546,874 2,554,662 5,187,499 
maximum (fps) 6,258,057 6,264,577 2,559,815 2,556,732 5,220,337 
average (fps) 6,251,035 6,252,592 2,558,535 2,555,526 5,213,860 
standard deviation 3,195 4,308 3,023 666 3,670 
dispersion (%) 0.63 0.38 0.51 0.08 0.63 

 
 

 
 

  

Fig. 3. Performance and scalability comparison of the Linux kernel using 1-16 active CPU cores (left side) and FD.io VPP using one or two workers executed by the 
specified CPU cores (right side) of a Dell PowerEdge R730 server with two 8-core Intel Xeon E5-2667 v4 processors @ 1.2GHz. 
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could be scheduled to the isolated CPU cores by the kernel. 
Conversely, the Linux kernel used all CPU cores for packet 
forwarding and the scheduler occasionally assigned them other 
tasks, as well. 

F. Comparison of the performance of the Linux kernel and 
FD.io VPP using an R730 Server as DUT 

Unlike in the case of the R620 test system, the results of the 
Linux kernel and the FD.io VPP using the same CPU clock 
frequency on the R730 test system are directly comparable. 

First, we compare the results produced using 1.2 GHz CPU 
clock frequency. The results are shown in Fig. 3. Whereas the 
Linux kernel on 1 CPU core delivered 299,758 fps IPv4 packet 
forwarding and 288,704 fps IPv6 packet forwarding 
performance, the FD.io VPP with 1 worker thread delivered 
more than 2.8 million IPv4 packets and more than 2.5 million 
IPv6 packets. When the Linux system used all 16 CPU cores of 
the CPU, the performance was only 4.05 Mfps and 3.86 Mfps 
for IPv4 and IPv6 packet forwarding, respectively. In contrast, 
FD.io VPP, using only 2 CPU cores (4 and 6), achieved 5.87 
Mfps and 5.22 Mfps performance for IPv4 and IPv6 packet 

forwarding, respectively. 
The 3.2 GHz results are compared in Fig. 4. The single core 

system of Linux kernel delivered 746,706 fps IPv4 packet 
forwarding and 728,805 fps IPv6 packet forwarding 
performance, whereas the FD.io VPP on 1 worker thread 
delivered more than 6.95 million IPv4 packets and more than 
6.25 million IPv6 packets. Our results prove that FD.io VPP is 
indeed a high-performance solution for IP packet forwarding. 

G. Comparison of the results of the R620 and R730 Servers 
When comparing the two types of servers, it is important to 

note that the nominal CPU clock frequencies of the R620 and 
R730 servers are 2 GHz and 3.2 GHz, respectively. 

When comparing the median values of their Linux kernel 
IPv4 packet forwarding results measured at their nominal CPU 
frequencies, a single CPU core of the R730 server outperformed 
the single CPU core of the R620 server with a factor of 1.6864 
(746,706 fps vs. 442,782 fps) and similar statements can be 
made regarding their performances from 2 to 8 CPU cores. 
Alternatively, it can be noted that the performance of a single 
core of the E5-2667 v4 CPU at 3.2 GHz (746,706 fps) is nearly 

TABLE IX 
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4 
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median (fps) 6,947,546 6,960,875 2,886,634 2,887,674 5,866,613 
minimum (fps) 6,942,869 6,937,499 2,874,999 2,885,736 5,859,374 
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could be scheduled to the isolated CPU cores by the kernel. 
Conversely, the Linux kernel used all CPU cores for packet 
forwarding and the scheduler occasionally assigned them other 
tasks, as well. 

F. Comparison of the performance of the Linux kernel and 
FD.io VPP using an R730 Server as DUT 

Unlike in the case of the R620 test system, the results of the 
Linux kernel and the FD.io VPP using the same CPU clock 
frequency on the R730 test system are directly comparable. 

First, we compare the results produced using 1.2 GHz CPU 
clock frequency. The results are shown in Fig. 3. Whereas the 
Linux kernel on 1 CPU core delivered 299,758 fps IPv4 packet 
forwarding and 288,704 fps IPv6 packet forwarding 
performance, the FD.io VPP with 1 worker thread delivered 
more than 2.8 million IPv4 packets and more than 2.5 million 
IPv6 packets. When the Linux system used all 16 CPU cores of 
the CPU, the performance was only 4.05 Mfps and 3.86 Mfps 
for IPv4 and IPv6 packet forwarding, respectively. In contrast, 
FD.io VPP, using only 2 CPU cores (4 and 6), achieved 5.87 
Mfps and 5.22 Mfps performance for IPv4 and IPv6 packet 

forwarding, respectively. 
The 3.2 GHz results are compared in Fig. 4. The single core 

system of Linux kernel delivered 746,706 fps IPv4 packet 
forwarding and 728,805 fps IPv6 packet forwarding 
performance, whereas the FD.io VPP on 1 worker thread 
delivered more than 6.95 million IPv4 packets and more than 
6.25 million IPv6 packets. Our results prove that FD.io VPP is 
indeed a high-performance solution for IP packet forwarding. 

G. Comparison of the results of the R620 and R730 Servers 
When comparing the two types of servers, it is important to 

note that the nominal CPU clock frequencies of the R620 and 
R730 servers are 2 GHz and 3.2 GHz, respectively. 

When comparing the median values of their Linux kernel 
IPv4 packet forwarding results measured at their nominal CPU 
frequencies, a single CPU core of the R730 server outperformed 
the single CPU core of the R620 server with a factor of 1.6864 
(746,706 fps vs. 442,782 fps) and similar statements can be 
made regarding their performances from 2 to 8 CPU cores. 
Alternatively, it can be noted that the performance of a single 
core of the E5-2667 v4 CPU at 3.2 GHz (746,706 fps) is nearly 
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THROUGHPUT OF IPV4 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4 
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Number of workers 1 1 1 1 2 
CPU clock frequency 3.2 GHz 3.2GHz 1.2 GHz 1.2 GHz 1.2 GHz 
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standard deviation 3,077 6,674 2,906 747 2,680 
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could be scheduled to the isolated CPU cores by the kernel. 
Conversely, the Linux kernel used all CPU cores for packet 
forwarding and the scheduler occasionally assigned them other 
tasks, as well. 

F. Comparison of the performance of the Linux kernel and 
FD.io VPP using an R730 Server as DUT 

Unlike in the case of the R620 test system, the results of the 
Linux kernel and the FD.io VPP using the same CPU clock 
frequency on the R730 test system are directly comparable. 

First, we compare the results produced using 1.2 GHz CPU 
clock frequency. The results are shown in Fig. 3. Whereas the 
Linux kernel on 1 CPU core delivered 299,758 fps IPv4 packet 
forwarding and 288,704 fps IPv6 packet forwarding 
performance, the FD.io VPP with 1 worker thread delivered 
more than 2.8 million IPv4 packets and more than 2.5 million 
IPv6 packets. When the Linux system used all 16 CPU cores of 
the CPU, the performance was only 4.05 Mfps and 3.86 Mfps 
for IPv4 and IPv6 packet forwarding, respectively. In contrast, 
FD.io VPP, using only 2 CPU cores (4 and 6), achieved 5.87 
Mfps and 5.22 Mfps performance for IPv4 and IPv6 packet 

forwarding, respectively. 
The 3.2 GHz results are compared in Fig. 4. The single core 

system of Linux kernel delivered 746,706 fps IPv4 packet 
forwarding and 728,805 fps IPv6 packet forwarding 
performance, whereas the FD.io VPP on 1 worker thread 
delivered more than 6.95 million IPv4 packets and more than 
6.25 million IPv6 packets. Our results prove that FD.io VPP is 
indeed a high-performance solution for IP packet forwarding. 

G. Comparison of the results of the R620 and R730 Servers 
When comparing the two types of servers, it is important to 

note that the nominal CPU clock frequencies of the R620 and 
R730 servers are 2 GHz and 3.2 GHz, respectively. 

When comparing the median values of their Linux kernel 
IPv4 packet forwarding results measured at their nominal CPU 
frequencies, a single CPU core of the R730 server outperformed 
the single CPU core of the R620 server with a factor of 1.6864 
(746,706 fps vs. 442,782 fps) and similar statements can be 
made regarding their performances from 2 to 8 CPU cores. 
Alternatively, it can be noted that the performance of a single 
core of the E5-2667 v4 CPU at 3.2 GHz (746,706 fps) is nearly 

TABLE IX 
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4 

Used CPU cores 4th 6th 4th 6th 4th & 6th 
Number of workers 1 1 1 1 2 
CPU clock frequency 3.2 GHz 3.2GHz 1.2 GHz 1.2 GHz 1.2 GHz 
median (fps) 6,947,546 6,960,875 2,886,634 2,887,674 5,866,613 
minimum (fps) 6,942,869 6,937,499 2,874,999 2,885,736 5,859,374 
maximum (fps) 6,953,156 6,968,751 2,887,939 2,888,488 5,869,027 
average (fps) 6,948,498 6,959,671 2,886,116 2,887,500 5,866,099 
standard deviation 3,077 6,674 2,906 747 2,680 
dispersion (%) 0.15 0.45 0.45 0.10 0.16 
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could be scheduled to the isolated CPU cores by the kernel. 
Conversely, the Linux kernel used all CPU cores for packet 
forwarding and the scheduler occasionally assigned them other 
tasks, as well. 

F. Comparison of the performance of the Linux kernel and 
FD.io VPP using an R730 Server as DUT 

Unlike in the case of the R620 test system, the results of the 
Linux kernel and the FD.io VPP using the same CPU clock 
frequency on the R730 test system are directly comparable. 

First, we compare the results produced using 1.2 GHz CPU 
clock frequency. The results are shown in Fig. 3. Whereas the 
Linux kernel on 1 CPU core delivered 299,758 fps IPv4 packet 
forwarding and 288,704 fps IPv6 packet forwarding 
performance, the FD.io VPP with 1 worker thread delivered 
more than 2.8 million IPv4 packets and more than 2.5 million 
IPv6 packets. When the Linux system used all 16 CPU cores of 
the CPU, the performance was only 4.05 Mfps and 3.86 Mfps 
for IPv4 and IPv6 packet forwarding, respectively. In contrast, 
FD.io VPP, using only 2 CPU cores (4 and 6), achieved 5.87 
Mfps and 5.22 Mfps performance for IPv4 and IPv6 packet 

forwarding, respectively. 
The 3.2 GHz results are compared in Fig. 4. The single core 

system of Linux kernel delivered 746,706 fps IPv4 packet 
forwarding and 728,805 fps IPv6 packet forwarding 
performance, whereas the FD.io VPP on 1 worker thread 
delivered more than 6.95 million IPv4 packets and more than 
6.25 million IPv6 packets. Our results prove that FD.io VPP is 
indeed a high-performance solution for IP packet forwarding. 

G. Comparison of the results of the R620 and R730 Servers 
When comparing the two types of servers, it is important to 

note that the nominal CPU clock frequencies of the R620 and 
R730 servers are 2 GHz and 3.2 GHz, respectively. 

When comparing the median values of their Linux kernel 
IPv4 packet forwarding results measured at their nominal CPU 
frequencies, a single CPU core of the R730 server outperformed 
the single CPU core of the R620 server with a factor of 1.6864 
(746,706 fps vs. 442,782 fps) and similar statements can be 
made regarding their performances from 2 to 8 CPU cores. 
Alternatively, it can be noted that the performance of a single 
core of the E5-2667 v4 CPU at 3.2 GHz (746,706 fps) is nearly 

TABLE IX 
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4 

Used CPU cores 4th 6th 4th 6th 4th & 6th 
Number of workers 1 1 1 1 2 
CPU clock frequency 3.2 GHz 3.2GHz 1.2 GHz 1.2 GHz 1.2 GHz 
median (fps) 6,947,546 6,960,875 2,886,634 2,887,674 5,866,613 
minimum (fps) 6,942,869 6,937,499 2,874,999 2,885,736 5,859,374 
maximum (fps) 6,953,156 6,968,751 2,887,939 2,888,488 5,869,027 
average (fps) 6,948,498 6,959,671 2,886,116 2,887,500 5,866,099 
standard deviation 3,077 6,674 2,906 747 2,680 
dispersion (%) 0.15 0.45 0.45 0.10 0.16 
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could be scheduled to the isolated CPU cores by the kernel. 
Conversely, the Linux kernel used all CPU cores for packet 
forwarding and the scheduler occasionally assigned them other 
tasks, as well. 

F. Comparison of the performance of the Linux kernel and 
FD.io VPP using an R730 Server as DUT 

Unlike in the case of the R620 test system, the results of the 
Linux kernel and the FD.io VPP using the same CPU clock 
frequency on the R730 test system are directly comparable. 

First, we compare the results produced using 1.2 GHz CPU 
clock frequency. The results are shown in Fig. 3. Whereas the 
Linux kernel on 1 CPU core delivered 299,758 fps IPv4 packet 
forwarding and 288,704 fps IPv6 packet forwarding 
performance, the FD.io VPP with 1 worker thread delivered 
more than 2.8 million IPv4 packets and more than 2.5 million 
IPv6 packets. When the Linux system used all 16 CPU cores of 
the CPU, the performance was only 4.05 Mfps and 3.86 Mfps 
for IPv4 and IPv6 packet forwarding, respectively. In contrast, 
FD.io VPP, using only 2 CPU cores (4 and 6), achieved 5.87 
Mfps and 5.22 Mfps performance for IPv4 and IPv6 packet 

forwarding, respectively. 
The 3.2 GHz results are compared in Fig. 4. The single core 

system of Linux kernel delivered 746,706 fps IPv4 packet 
forwarding and 728,805 fps IPv6 packet forwarding 
performance, whereas the FD.io VPP on 1 worker thread 
delivered more than 6.95 million IPv4 packets and more than 
6.25 million IPv6 packets. Our results prove that FD.io VPP is 
indeed a high-performance solution for IP packet forwarding. 

G. Comparison of the results of the R620 and R730 Servers 
When comparing the two types of servers, it is important to 

note that the nominal CPU clock frequencies of the R620 and 
R730 servers are 2 GHz and 3.2 GHz, respectively. 

When comparing the median values of their Linux kernel 
IPv4 packet forwarding results measured at their nominal CPU 
frequencies, a single CPU core of the R730 server outperformed 
the single CPU core of the R620 server with a factor of 1.6864 
(746,706 fps vs. 442,782 fps) and similar statements can be 
made regarding their performances from 2 to 8 CPU cores. 
Alternatively, it can be noted that the performance of a single 
core of the E5-2667 v4 CPU at 3.2 GHz (746,706 fps) is nearly 

TABLE IX 
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Number of workers 1 1 1 1 2 
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median (fps) 6,947,546 6,960,875 2,886,634 2,887,674 5,866,613 
minimum (fps) 6,942,869 6,937,499 2,874,999 2,885,736 5,859,374 
maximum (fps) 6,953,156 6,968,751 2,887,939 2,888,488 5,869,027 
average (fps) 6,948,498 6,959,671 2,886,116 2,887,500 5,866,099 
standard deviation 3,077 6,674 2,906 747 2,680 
dispersion (%) 0.15 0.45 0.45 0.10 0.16 
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equivalent to the performance of two cores of the E5-2620 CPU 
at 2 GHz (765,223 fps). 

As for the FD.io VPP results of the two types of CPUs, those 
measured at 1.2 GHz are directly comparable. The 2.89 Mfps 
single core IPv4 throughput of the E5-2667 v4 CPU @ 1.2 GHz 
shows a 1.38-fold increase compared to the 2.09 Mfps single 
core IPv4 throughput of the E5-2620 CPU @ 1.2 GHz. The 
higher nominal clock frequency of the newer CPU further 
amplifies this difference. 

VII. DISCUSSION AND FUTURE RESEARCH 
In our research group's previous benchmarking effort, the 

number of CPU cores in the test system was equal to powers of 
2 (see [19]). This approach allowed us to consistently double 
the number of active CPU cores in each iteration and fully 
utilize all available CPU cores in the final test. During our first 
attempt to compare the performance of the Linux kernel and 
FD.io VPP, only servers with 12 CPU cores were available for 
the task. For this reason, we also conducted tests using 6 cores 
to provide a basis for comparison with the tests with 12 cores. 
Building on the success of our initial effort [6], we decided to 
repeat our experiments with 16-core servers, too. 

Our current measurements only included throughput tests. In 
the future, we also plan to examine the latency. Since latency is 
measured at the frame rate previously determined by the 
throughput tests, our hypothesis is that FD.io VPP will exhibit 
higher latency. This is due to its vector packet processing 
mechanism, where a substantial number of frames are first 
accumulated into a vector before being processed together as 
they traverse the nodes of the packet processing graph. The 
latency results will complement the throughput results to give a 
more comprehensive view of the performance of the tested IP 
packet forwarding solutions. 

Since both FD.io VPP and siitperf use DPDK, and siitperf 
only uses one core for sending and one core for receiving in 
each direction, we could evaluate the performance of FD.io 
VPP only up to two working threads. This remains the case even 
when using the trick of lowering the CPU clock frequency of 
the DUT. To be able to work with a significantly higher number 
of workers (4, 8, etc.) a more powerful Tester would be needed. 
The long-term plan of our research group includes the building 

of an FPGA-based tester that implements the functionalities of 
siitperf.  

Another interesting research direction could be to evaluate 
the performance of the Linux kernel when using NAPI polling 
mode [20]. 

It would also be worth comparing the performance of FD.io 
VPP to that of Open vSwitch with DPDK (OvS DPDK) and 
eXpress Data Path (XDP). 

Our results will encourage network operators to use FD.io 
VPP in production networks for IPv4 and IPv6 packet 
forwarding. Exhibiting high performance when running on 
commodity servers and being free software, FD.io VPP can be 
a good alternative to commercial routers. However, high 
performance and low cost are only two aspects. Network 
operators must consider at least two other ones: security and 
support. FD.io VPP runs on Linux, a general-purpose and 
widely used operating system. It is crucial to ensure the secure 
operation of the host machine. To that end, it must be carefully 
configured, and security updates must be regularly installed. 
Major version upgrades to the operating system could involve 
issues when DPDK and FD.io versions are upgraded. 
Fortunately, Debian and Ubuntu have long-term support (LTS) 
versions; thus, they can be operated for several years without 
changing the major version. Router vendors also provide 
support. As free software is basically provided “as is” without 
support, network operators either need to employ experts or buy 
support from a company that employs experts in Linux, DPDK 
and FD.io VPP. 

VIII. CONCLUSION 
We measured the performance of IPv4 and IPv6 packet 

forwarding of the Linux kernel and FD.io VPP. Regardless of 
the IP version, the Linux kernel’s packet forwarding 
performance showed a good scale-up with the increasing 
number of CPU cores, although minor performance variations 
were observed when utilizing different NUMA nodes. In 
contrast, FD.io VPP tests demonstrated exceptionally high 
performance with perfect scalability from 1 to 2 workers. 

When a Dell PowerEdge R620 server with two 6-core E5-
2620 CPUs was used as the DUT, FD.io VPP, using 2 workers 
executed by two CPU cores running at 1.2 GHz, outperformed 

  

Fig. 4. Performance and scalability comparison of the Linux kernel using 1-16 active CPU cores (left side) and FD.io VPP using one worker executed by the specified 
CPU cores (right side) of a Dell PowerEdge R730 server with two 8-core Intel Xeon E5-2667 v4 processors @ 3.2GHz. 
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could be scheduled to the isolated CPU cores by the kernel. 
Conversely, the Linux kernel used all CPU cores for packet 
forwarding and the scheduler occasionally assigned them other 
tasks, as well. 

F. Comparison of the performance of the Linux kernel and 
FD.io VPP using an R730 Server as DUT 

Unlike in the case of the R620 test system, the results of the 
Linux kernel and the FD.io VPP using the same CPU clock 
frequency on the R730 test system are directly comparable. 

First, we compare the results produced using 1.2 GHz CPU 
clock frequency. The results are shown in Fig. 3. Whereas the 
Linux kernel on 1 CPU core delivered 299,758 fps IPv4 packet 
forwarding and 288,704 fps IPv6 packet forwarding 
performance, the FD.io VPP with 1 worker thread delivered 
more than 2.8 million IPv4 packets and more than 2.5 million 
IPv6 packets. When the Linux system used all 16 CPU cores of 
the CPU, the performance was only 4.05 Mfps and 3.86 Mfps 
for IPv4 and IPv6 packet forwarding, respectively. In contrast, 
FD.io VPP, using only 2 CPU cores (4 and 6), achieved 5.87 
Mfps and 5.22 Mfps performance for IPv4 and IPv6 packet 

forwarding, respectively. 
The 3.2 GHz results are compared in Fig. 4. The single core 

system of Linux kernel delivered 746,706 fps IPv4 packet 
forwarding and 728,805 fps IPv6 packet forwarding 
performance, whereas the FD.io VPP on 1 worker thread 
delivered more than 6.95 million IPv4 packets and more than 
6.25 million IPv6 packets. Our results prove that FD.io VPP is 
indeed a high-performance solution for IP packet forwarding. 

G. Comparison of the results of the R620 and R730 Servers 
When comparing the two types of servers, it is important to 

note that the nominal CPU clock frequencies of the R620 and 
R730 servers are 2 GHz and 3.2 GHz, respectively. 

When comparing the median values of their Linux kernel 
IPv4 packet forwarding results measured at their nominal CPU 
frequencies, a single CPU core of the R730 server outperformed 
the single CPU core of the R620 server with a factor of 1.6864 
(746,706 fps vs. 442,782 fps) and similar statements can be 
made regarding their performances from 2 to 8 CPU cores. 
Alternatively, it can be noted that the performance of a single 
core of the E5-2667 v4 CPU at 3.2 GHz (746,706 fps) is nearly 

TABLE IX 
THROUGHPUT OF IPV4 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4 

Used CPU cores 4th 6th 4th 6th 4th & 6th 
Number of workers 1 1 1 1 2 
CPU clock frequency 3.2 GHz 3.2GHz 1.2 GHz 1.2 GHz 1.2 GHz 
median (fps) 6,947,546 6,960,875 2,886,634 2,887,674 5,866,613 
minimum (fps) 6,942,869 6,937,499 2,874,999 2,885,736 5,859,374 
maximum (fps) 6,953,156 6,968,751 2,887,939 2,888,488 5,869,027 
average (fps) 6,948,498 6,959,671 2,886,116 2,887,500 5,866,099 
standard deviation 3,077 6,674 2,906 747 2,680 
dispersion (%) 0.15 0.45 0.45 0.10 0.16 

 
 

TABLE X 
THROUGHPUT OF IPV6 PACKET FORWARDING OF THE FD.IO VPP AS A FUNCTION OF THE NUMBER AND INSTANCE OF THE ACTIVE CPU CORES, E5-2667 V4 

Used CPU cores 4th 6th 4th 6th 4th & 6th 
Number of workers 1 1 1 1 2 
CPU clock frequency 3.2 GHz 3.2GHz 1.2 GHz 1.2 GHz 1.2 GHz 
median (fps) 6,250,366 6,253,601 2,559,248 2,555,627 5,215,632 
minimum (fps) 6,218,749 6,240,721 2,546,874 2,554,662 5,187,499 
maximum (fps) 6,258,057 6,264,577 2,559,815 2,556,732 5,220,337 
average (fps) 6,251,035 6,252,592 2,558,535 2,555,526 5,213,860 
standard deviation 3,195 4,308 3,023 666 3,670 
dispersion (%) 0.63 0.38 0.51 0.08 0.63 

 
 

 
 

  

Fig. 3. Performance and scalability comparison of the Linux kernel using 1-16 active CPU cores (left side) and FD.io VPP using one or two workers executed by the 
specified CPU cores (right side) of a Dell PowerEdge R730 server with two 8-core Intel Xeon E5-2667 v4 processors @ 1.2GHz. 
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equivalent to the performance of two cores of the E5-2620 CPU 
at 2 GHz (765,223 fps). 

As for the FD.io VPP results of the two types of CPUs, those 
measured at 1.2 GHz are directly comparable. The 2.89 Mfps 
single core IPv4 throughput of the E5-2667 v4 CPU @ 1.2 GHz 
shows a 1.38-fold increase compared to the 2.09 Mfps single 
core IPv4 throughput of the E5-2620 CPU @ 1.2 GHz. The 
higher nominal clock frequency of the newer CPU further 
amplifies this difference. 

VII. DISCUSSION AND FUTURE RESEARCH 
In our research group's previous benchmarking effort, the 

number of CPU cores in the test system was equal to powers of 
2 (see [19]). This approach allowed us to consistently double 
the number of active CPU cores in each iteration and fully 
utilize all available CPU cores in the final test. During our first 
attempt to compare the performance of the Linux kernel and 
FD.io VPP, only servers with 12 CPU cores were available for 
the task. For this reason, we also conducted tests using 6 cores 
to provide a basis for comparison with the tests with 12 cores. 
Building on the success of our initial effort [6], we decided to 
repeat our experiments with 16-core servers, too. 

Our current measurements only included throughput tests. In 
the future, we also plan to examine the latency. Since latency is 
measured at the frame rate previously determined by the 
throughput tests, our hypothesis is that FD.io VPP will exhibit 
higher latency. This is due to its vector packet processing 
mechanism, where a substantial number of frames are first 
accumulated into a vector before being processed together as 
they traverse the nodes of the packet processing graph. The 
latency results will complement the throughput results to give a 
more comprehensive view of the performance of the tested IP 
packet forwarding solutions. 

Since both FD.io VPP and siitperf use DPDK, and siitperf 
only uses one core for sending and one core for receiving in 
each direction, we could evaluate the performance of FD.io 
VPP only up to two working threads. This remains the case even 
when using the trick of lowering the CPU clock frequency of 
the DUT. To be able to work with a significantly higher number 
of workers (4, 8, etc.) a more powerful Tester would be needed. 
The long-term plan of our research group includes the building 

of an FPGA-based tester that implements the functionalities of 
siitperf.  

Another interesting research direction could be to evaluate 
the performance of the Linux kernel when using NAPI polling 
mode [20]. 

It would also be worth comparing the performance of FD.io 
VPP to that of Open vSwitch with DPDK (OvS DPDK) and 
eXpress Data Path (XDP). 

Our results will encourage network operators to use FD.io 
VPP in production networks for IPv4 and IPv6 packet 
forwarding. Exhibiting high performance when running on 
commodity servers and being free software, FD.io VPP can be 
a good alternative to commercial routers. However, high 
performance and low cost are only two aspects. Network 
operators must consider at least two other ones: security and 
support. FD.io VPP runs on Linux, a general-purpose and 
widely used operating system. It is crucial to ensure the secure 
operation of the host machine. To that end, it must be carefully 
configured, and security updates must be regularly installed. 
Major version upgrades to the operating system could involve 
issues when DPDK and FD.io versions are upgraded. 
Fortunately, Debian and Ubuntu have long-term support (LTS) 
versions; thus, they can be operated for several years without 
changing the major version. Router vendors also provide 
support. As free software is basically provided “as is” without 
support, network operators either need to employ experts or buy 
support from a company that employs experts in Linux, DPDK 
and FD.io VPP. 

VIII. CONCLUSION 
We measured the performance of IPv4 and IPv6 packet 

forwarding of the Linux kernel and FD.io VPP. Regardless of 
the IP version, the Linux kernel’s packet forwarding 
performance showed a good scale-up with the increasing 
number of CPU cores, although minor performance variations 
were observed when utilizing different NUMA nodes. In 
contrast, FD.io VPP tests demonstrated exceptionally high 
performance with perfect scalability from 1 to 2 workers. 

When a Dell PowerEdge R620 server with two 6-core E5-
2620 CPUs was used as the DUT, FD.io VPP, using 2 workers 
executed by two CPU cores running at 1.2 GHz, outperformed 

  

Fig. 4. Performance and scalability comparison of the Linux kernel using 1-16 active CPU cores (left side) and FD.io VPP using one worker executed by the specified 
CPU cores (right side) of a Dell PowerEdge R730 server with two 8-core Intel Xeon E5-2667 v4 processors @ 3.2GHz. 
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equivalent to the performance of two cores of the E5-2620 CPU 
at 2 GHz (765,223 fps). 

As for the FD.io VPP results of the two types of CPUs, those 
measured at 1.2 GHz are directly comparable. The 2.89 Mfps 
single core IPv4 throughput of the E5-2667 v4 CPU @ 1.2 GHz 
shows a 1.38-fold increase compared to the 2.09 Mfps single 
core IPv4 throughput of the E5-2620 CPU @ 1.2 GHz. The 
higher nominal clock frequency of the newer CPU further 
amplifies this difference. 

VII. DISCUSSION AND FUTURE RESEARCH 
In our research group's previous benchmarking effort, the 

number of CPU cores in the test system was equal to powers of 
2 (see [19]). This approach allowed us to consistently double 
the number of active CPU cores in each iteration and fully 
utilize all available CPU cores in the final test. During our first 
attempt to compare the performance of the Linux kernel and 
FD.io VPP, only servers with 12 CPU cores were available for 
the task. For this reason, we also conducted tests using 6 cores 
to provide a basis for comparison with the tests with 12 cores. 
Building on the success of our initial effort [6], we decided to 
repeat our experiments with 16-core servers, too. 

Our current measurements only included throughput tests. In 
the future, we also plan to examine the latency. Since latency is 
measured at the frame rate previously determined by the 
throughput tests, our hypothesis is that FD.io VPP will exhibit 
higher latency. This is due to its vector packet processing 
mechanism, where a substantial number of frames are first 
accumulated into a vector before being processed together as 
they traverse the nodes of the packet processing graph. The 
latency results will complement the throughput results to give a 
more comprehensive view of the performance of the tested IP 
packet forwarding solutions. 

Since both FD.io VPP and siitperf use DPDK, and siitperf 
only uses one core for sending and one core for receiving in 
each direction, we could evaluate the performance of FD.io 
VPP only up to two working threads. This remains the case even 
when using the trick of lowering the CPU clock frequency of 
the DUT. To be able to work with a significantly higher number 
of workers (4, 8, etc.) a more powerful Tester would be needed. 
The long-term plan of our research group includes the building 

of an FPGA-based tester that implements the functionalities of 
siitperf.  

Another interesting research direction could be to evaluate 
the performance of the Linux kernel when using NAPI polling 
mode [20]. 

It would also be worth comparing the performance of FD.io 
VPP to that of Open vSwitch with DPDK (OvS DPDK) and 
eXpress Data Path (XDP). 

Our results will encourage network operators to use FD.io 
VPP in production networks for IPv4 and IPv6 packet 
forwarding. Exhibiting high performance when running on 
commodity servers and being free software, FD.io VPP can be 
a good alternative to commercial routers. However, high 
performance and low cost are only two aspects. Network 
operators must consider at least two other ones: security and 
support. FD.io VPP runs on Linux, a general-purpose and 
widely used operating system. It is crucial to ensure the secure 
operation of the host machine. To that end, it must be carefully 
configured, and security updates must be regularly installed. 
Major version upgrades to the operating system could involve 
issues when DPDK and FD.io versions are upgraded. 
Fortunately, Debian and Ubuntu have long-term support (LTS) 
versions; thus, they can be operated for several years without 
changing the major version. Router vendors also provide 
support. As free software is basically provided “as is” without 
support, network operators either need to employ experts or buy 
support from a company that employs experts in Linux, DPDK 
and FD.io VPP. 

VIII. CONCLUSION 
We measured the performance of IPv4 and IPv6 packet 

forwarding of the Linux kernel and FD.io VPP. Regardless of 
the IP version, the Linux kernel’s packet forwarding 
performance showed a good scale-up with the increasing 
number of CPU cores, although minor performance variations 
were observed when utilizing different NUMA nodes. In 
contrast, FD.io VPP tests demonstrated exceptionally high 
performance with perfect scalability from 1 to 2 workers. 

When a Dell PowerEdge R620 server with two 6-core E5-
2620 CPUs was used as the DUT, FD.io VPP, using 2 workers 
executed by two CPU cores running at 1.2 GHz, outperformed 

  

Fig. 4. Performance and scalability comparison of the Linux kernel using 1-16 active CPU cores (left side) and FD.io VPP using one worker executed by the specified 
CPU cores (right side) of a Dell PowerEdge R730 server with two 8-core Intel Xeon E5-2667 v4 processors @ 3.2GHz. 
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equivalent to the performance of two cores of the E5-2620 CPU 
at 2 GHz (765,223 fps). 

As for the FD.io VPP results of the two types of CPUs, those 
measured at 1.2 GHz are directly comparable. The 2.89 Mfps 
single core IPv4 throughput of the E5-2667 v4 CPU @ 1.2 GHz 
shows a 1.38-fold increase compared to the 2.09 Mfps single 
core IPv4 throughput of the E5-2620 CPU @ 1.2 GHz. The 
higher nominal clock frequency of the newer CPU further 
amplifies this difference. 

VII. DISCUSSION AND FUTURE RESEARCH 
In our research group's previous benchmarking effort, the 

number of CPU cores in the test system was equal to powers of 
2 (see [19]). This approach allowed us to consistently double 
the number of active CPU cores in each iteration and fully 
utilize all available CPU cores in the final test. During our first 
attempt to compare the performance of the Linux kernel and 
FD.io VPP, only servers with 12 CPU cores were available for 
the task. For this reason, we also conducted tests using 6 cores 
to provide a basis for comparison with the tests with 12 cores. 
Building on the success of our initial effort [6], we decided to 
repeat our experiments with 16-core servers, too. 

Our current measurements only included throughput tests. In 
the future, we also plan to examine the latency. Since latency is 
measured at the frame rate previously determined by the 
throughput tests, our hypothesis is that FD.io VPP will exhibit 
higher latency. This is due to its vector packet processing 
mechanism, where a substantial number of frames are first 
accumulated into a vector before being processed together as 
they traverse the nodes of the packet processing graph. The 
latency results will complement the throughput results to give a 
more comprehensive view of the performance of the tested IP 
packet forwarding solutions. 

Since both FD.io VPP and siitperf use DPDK, and siitperf 
only uses one core for sending and one core for receiving in 
each direction, we could evaluate the performance of FD.io 
VPP only up to two working threads. This remains the case even 
when using the trick of lowering the CPU clock frequency of 
the DUT. To be able to work with a significantly higher number 
of workers (4, 8, etc.) a more powerful Tester would be needed. 
The long-term plan of our research group includes the building 

of an FPGA-based tester that implements the functionalities of 
siitperf.  

Another interesting research direction could be to evaluate 
the performance of the Linux kernel when using NAPI polling 
mode [20]. 

It would also be worth comparing the performance of FD.io 
VPP to that of Open vSwitch with DPDK (OvS DPDK) and 
eXpress Data Path (XDP). 

Our results will encourage network operators to use FD.io 
VPP in production networks for IPv4 and IPv6 packet 
forwarding. Exhibiting high performance when running on 
commodity servers and being free software, FD.io VPP can be 
a good alternative to commercial routers. However, high 
performance and low cost are only two aspects. Network 
operators must consider at least two other ones: security and 
support. FD.io VPP runs on Linux, a general-purpose and 
widely used operating system. It is crucial to ensure the secure 
operation of the host machine. To that end, it must be carefully 
configured, and security updates must be regularly installed. 
Major version upgrades to the operating system could involve 
issues when DPDK and FD.io versions are upgraded. 
Fortunately, Debian and Ubuntu have long-term support (LTS) 
versions; thus, they can be operated for several years without 
changing the major version. Router vendors also provide 
support. As free software is basically provided “as is” without 
support, network operators either need to employ experts or buy 
support from a company that employs experts in Linux, DPDK 
and FD.io VPP. 

VIII. CONCLUSION 
We measured the performance of IPv4 and IPv6 packet 

forwarding of the Linux kernel and FD.io VPP. Regardless of 
the IP version, the Linux kernel’s packet forwarding 
performance showed a good scale-up with the increasing 
number of CPU cores, although minor performance variations 
were observed when utilizing different NUMA nodes. In 
contrast, FD.io VPP tests demonstrated exceptionally high 
performance with perfect scalability from 1 to 2 workers. 

When a Dell PowerEdge R620 server with two 6-core E5-
2620 CPUs was used as the DUT, FD.io VPP, using 2 workers 
executed by two CPU cores running at 1.2 GHz, outperformed 
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equivalent to the performance of two cores of the E5-2620 CPU 
at 2 GHz (765,223 fps). 

As for the FD.io VPP results of the two types of CPUs, those 
measured at 1.2 GHz are directly comparable. The 2.89 Mfps 
single core IPv4 throughput of the E5-2667 v4 CPU @ 1.2 GHz 
shows a 1.38-fold increase compared to the 2.09 Mfps single 
core IPv4 throughput of the E5-2620 CPU @ 1.2 GHz. The 
higher nominal clock frequency of the newer CPU further 
amplifies this difference. 

VII. DISCUSSION AND FUTURE RESEARCH 
In our research group's previous benchmarking effort, the 

number of CPU cores in the test system was equal to powers of 
2 (see [19]). This approach allowed us to consistently double 
the number of active CPU cores in each iteration and fully 
utilize all available CPU cores in the final test. During our first 
attempt to compare the performance of the Linux kernel and 
FD.io VPP, only servers with 12 CPU cores were available for 
the task. For this reason, we also conducted tests using 6 cores 
to provide a basis for comparison with the tests with 12 cores. 
Building on the success of our initial effort [6], we decided to 
repeat our experiments with 16-core servers, too. 

Our current measurements only included throughput tests. In 
the future, we also plan to examine the latency. Since latency is 
measured at the frame rate previously determined by the 
throughput tests, our hypothesis is that FD.io VPP will exhibit 
higher latency. This is due to its vector packet processing 
mechanism, where a substantial number of frames are first 
accumulated into a vector before being processed together as 
they traverse the nodes of the packet processing graph. The 
latency results will complement the throughput results to give a 
more comprehensive view of the performance of the tested IP 
packet forwarding solutions. 

Since both FD.io VPP and siitperf use DPDK, and siitperf 
only uses one core for sending and one core for receiving in 
each direction, we could evaluate the performance of FD.io 
VPP only up to two working threads. This remains the case even 
when using the trick of lowering the CPU clock frequency of 
the DUT. To be able to work with a significantly higher number 
of workers (4, 8, etc.) a more powerful Tester would be needed. 
The long-term plan of our research group includes the building 

of an FPGA-based tester that implements the functionalities of 
siitperf.  

Another interesting research direction could be to evaluate 
the performance of the Linux kernel when using NAPI polling 
mode [20]. 

It would also be worth comparing the performance of FD.io 
VPP to that of Open vSwitch with DPDK (OvS DPDK) and 
eXpress Data Path (XDP). 

Our results will encourage network operators to use FD.io 
VPP in production networks for IPv4 and IPv6 packet 
forwarding. Exhibiting high performance when running on 
commodity servers and being free software, FD.io VPP can be 
a good alternative to commercial routers. However, high 
performance and low cost are only two aspects. Network 
operators must consider at least two other ones: security and 
support. FD.io VPP runs on Linux, a general-purpose and 
widely used operating system. It is crucial to ensure the secure 
operation of the host machine. To that end, it must be carefully 
configured, and security updates must be regularly installed. 
Major version upgrades to the operating system could involve 
issues when DPDK and FD.io versions are upgraded. 
Fortunately, Debian and Ubuntu have long-term support (LTS) 
versions; thus, they can be operated for several years without 
changing the major version. Router vendors also provide 
support. As free software is basically provided “as is” without 
support, network operators either need to employ experts or buy 
support from a company that employs experts in Linux, DPDK 
and FD.io VPP. 

VIII. CONCLUSION 
We measured the performance of IPv4 and IPv6 packet 

forwarding of the Linux kernel and FD.io VPP. Regardless of 
the IP version, the Linux kernel’s packet forwarding 
performance showed a good scale-up with the increasing 
number of CPU cores, although minor performance variations 
were observed when utilizing different NUMA nodes. In 
contrast, FD.io VPP tests demonstrated exceptionally high 
performance with perfect scalability from 1 to 2 workers. 

When a Dell PowerEdge R620 server with two 6-core E5-
2620 CPUs was used as the DUT, FD.io VPP, using 2 workers 
executed by two CPU cores running at 1.2 GHz, outperformed 
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equivalent to the performance of two cores of the E5-2620 CPU 
at 2 GHz (765,223 fps). 

As for the FD.io VPP results of the two types of CPUs, those 
measured at 1.2 GHz are directly comparable. The 2.89 Mfps 
single core IPv4 throughput of the E5-2667 v4 CPU @ 1.2 GHz 
shows a 1.38-fold increase compared to the 2.09 Mfps single 
core IPv4 throughput of the E5-2620 CPU @ 1.2 GHz. The 
higher nominal clock frequency of the newer CPU further 
amplifies this difference. 

VII. DISCUSSION AND FUTURE RESEARCH 
In our research group's previous benchmarking effort, the 

number of CPU cores in the test system was equal to powers of 
2 (see [19]). This approach allowed us to consistently double 
the number of active CPU cores in each iteration and fully 
utilize all available CPU cores in the final test. During our first 
attempt to compare the performance of the Linux kernel and 
FD.io VPP, only servers with 12 CPU cores were available for 
the task. For this reason, we also conducted tests using 6 cores 
to provide a basis for comparison with the tests with 12 cores. 
Building on the success of our initial effort [6], we decided to 
repeat our experiments with 16-core servers, too. 

Our current measurements only included throughput tests. In 
the future, we also plan to examine the latency. Since latency is 
measured at the frame rate previously determined by the 
throughput tests, our hypothesis is that FD.io VPP will exhibit 
higher latency. This is due to its vector packet processing 
mechanism, where a substantial number of frames are first 
accumulated into a vector before being processed together as 
they traverse the nodes of the packet processing graph. The 
latency results will complement the throughput results to give a 
more comprehensive view of the performance of the tested IP 
packet forwarding solutions. 

Since both FD.io VPP and siitperf use DPDK, and siitperf 
only uses one core for sending and one core for receiving in 
each direction, we could evaluate the performance of FD.io 
VPP only up to two working threads. This remains the case even 
when using the trick of lowering the CPU clock frequency of 
the DUT. To be able to work with a significantly higher number 
of workers (4, 8, etc.) a more powerful Tester would be needed. 
The long-term plan of our research group includes the building 

of an FPGA-based tester that implements the functionalities of 
siitperf.  

Another interesting research direction could be to evaluate 
the performance of the Linux kernel when using NAPI polling 
mode [20]. 

It would also be worth comparing the performance of FD.io 
VPP to that of Open vSwitch with DPDK (OvS DPDK) and 
eXpress Data Path (XDP). 

Our results will encourage network operators to use FD.io 
VPP in production networks for IPv4 and IPv6 packet 
forwarding. Exhibiting high performance when running on 
commodity servers and being free software, FD.io VPP can be 
a good alternative to commercial routers. However, high 
performance and low cost are only two aspects. Network 
operators must consider at least two other ones: security and 
support. FD.io VPP runs on Linux, a general-purpose and 
widely used operating system. It is crucial to ensure the secure 
operation of the host machine. To that end, it must be carefully 
configured, and security updates must be regularly installed. 
Major version upgrades to the operating system could involve 
issues when DPDK and FD.io versions are upgraded. 
Fortunately, Debian and Ubuntu have long-term support (LTS) 
versions; thus, they can be operated for several years without 
changing the major version. Router vendors also provide 
support. As free software is basically provided “as is” without 
support, network operators either need to employ experts or buy 
support from a company that employs experts in Linux, DPDK 
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forwarding of the Linux kernel and FD.io VPP. Regardless of 
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number of CPU cores, although minor performance variations 
were observed when utilizing different NUMA nodes. In 
contrast, FD.io VPP tests demonstrated exceptionally high 
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2620 CPUs was used as the DUT, FD.io VPP, using 2 workers 
executed by two CPU cores running at 1.2 GHz, outperformed 
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equivalent to the performance of two cores of the E5-2620 CPU 
at 2 GHz (765,223 fps). 

As for the FD.io VPP results of the two types of CPUs, those 
measured at 1.2 GHz are directly comparable. The 2.89 Mfps 
single core IPv4 throughput of the E5-2667 v4 CPU @ 1.2 GHz 
shows a 1.38-fold increase compared to the 2.09 Mfps single 
core IPv4 throughput of the E5-2620 CPU @ 1.2 GHz. The 
higher nominal clock frequency of the newer CPU further 
amplifies this difference. 
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of an FPGA-based tester that implements the functionalities of 
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the Linux kernel, using 12 CPU cores running at 2 GHz.  
When a Dell PowerEdge R730 server with two 8-core E5-

2667 v4 CPUs was used as the DUT, the same two CPU clock 
speeds were used for testing both solutions. At 1.2 GHz CPU 
clock frequency, the Linux kernel on 1 CPU core delivered 
299,758 fps IPv4 packet forwarding and 288,704 fps IPv6 
packet forwarding performance, and the FD.io VPP with 1 
worker thread delivered more than 2.8 million IPv4 packets and 
more than 2.5 million IPv6 packets. When the Linux system 
used all 16 CPU cores of the CPU, the performance was only 
4.05 Mfps and 3.86 Mfps for IPv4 and IPv6 packet forwarding, 
respectively. In contrast, FD.io VPP, using only 2 CPU cores (4 
and 6), achieved 5.87 Mfps and 5.22 Mfps performance for 
IPv4 and IPv6 packet forwarding, respectively. At a CPU clock 
frequency of 3.2 GHz, the Linux kernel's single-core system 
achieved an IPv4 packet forwarding performance of 746,706 
fps and an IPv6 performance of 728,805 fps. In comparison, 
FD.io VPP, using a single worker thread, delivered over 6.95 
million IPv4 packets and more than 6.25 million IPv6 packets. 
Our results confirm that FD.io VPP is indeed a high-
performance solution for IP packet forwarding.  
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