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Abstract—This paper presents a comprehensive analysis of
various static word embeddings for the Hungarian language,
including traditional models such as Word2Vec, FastText, as well
as static embeddings derived from BERT-based models using
different extraction methods.

We evaluate these embeddings on both intrinsic and extrinsic
tasks to provide a holistic view of their performance. For
intrinsic evaluation, we employ a word analogy task, which
assesses the embeddings’ ability to capture semantic and syn-
tactic relationships. Our results indicate that traditional static
embeddings, particularly FastText, excel in this task, achieving
high accuracy and mean reciprocal rank (MRR) scores. Among
the BERT-based models, the X2Static method for extracting
static embeddings demonstrates superior performance compared
to decontextualized and aggregate methods, approaching the
effectiveness of traditional static embeddings.

For extrinsic evaluation, we utilize a bidirectional LSTM
model to perform Named Entity Recognition (NER) and Part-of-
Speech (POS) tagging tasks. The results reveal that embeddings
derived from dynamic models, especially those extracted using the
X2Static method, outperform purely static embeddings. Notably,
ELMo embeddings achieve the highest accuracy in both NER and
POS tagging tasks, underscoring the benefits of contextualized
representations even when used in a static form.

Our findings highlight the continued relevance of static word
embeddings in NLP applications and the potential of advanced
extraction methods to enhance the utility of BERT-based models.
This piece of research contributes to the understanding of
embedding performance in the Hungarian language and provides
valuable insights for future developments in the field. The
training scripts, evaluation codes, restricted vocabulary, and
extracted embeddings will be made publicly available to support
further research and reproducibility.

Index Terms—word embeddings, BERT, FastText, Word2Vec,
NLP, intrinsic evaluation, extrinsic evaluation

I. INTRODUCTION

Teaching machines to understand human language is a
crucial step toward developing intelligent systems. While one-
hot encoding can be effective for small-scale classification
tasks, it becomes impractical when the aim is to represent
thousands of words and their variations. This limitation led to
the development of word embeddings—dense vector represen-
tations of words in a continuous space. These embeddings not
only represent similar words with similar vectors but also are
able to capture complex semantic relationships between them.

Bengio et al. [1] introduced feedforward neural networks
with a single hidden layer for language modeling in 2003.
These models were capable of learning distributed word rep-
resentations but suffered from significant scalability issues,
limiting their ability to handle large vocabularies. Collobert
and Weston [2] addressed this bottleneck in 2008 by refining
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the training objective and demonstrating the effectiveness of
word embeddings pre-trained on large corpora for downstream
tasks. Their neural network architecture also served as an
inspiration for many subsequent approaches.

Building on the idea that words can be effectively pre-
dicted from their context, several word embedding models
emerged, including Word2Vec [3], GloVe [4], and FastText
[5]. These models proved highly effective in various natural
language processing (NLP) tasks. However, their primary
limitation lies in their static nature: each word is assigned a
single representation, making it impossible to capture context-
dependent meanings (e.g., polysemy). This shortcoming paved
the way for the development of dynamic, contextualized word
embeddings, exemplified by Transformer-based models [6]
such as BERT [7], GPT [8], and T5 [9], which generate word
representations that adapt based on surrounding text.

Despite the success of dynamic models, static word em-
beddings remain a viable option for numerous applications
due to their significantly lower computational requirements
compared to context-dependent embeddings. In this paper,
we analyze the performance of multiple pre-trained static
word embeddings for Hungarian, as well as static embeddings
extracted from BERT-based models, on both intrinsic and
extrinsic tasks.

The main contributions of this paper are as follows:
• A comprehensive analysis of the performance of multiple

static word embeddings for Hungarian.
• An evaluation of static embeddings extracted from BERT-

based models.
• Public release of the code used in the study1.
• Public release of the embeddings extracted from BERT-

based models2.
The rest of the paper is organized as follows: Section 2

provides an overview of related work, Section 3 presents
the embedding models employed, Section 4 introduces the
datasets used in the study, Section 5 describes the experiments
conducted, and Section 6 summarizes findings and outlines
future directions.

II. RELATED WORK

Multiple methods exist for extracting static embeddings
from BERT-based models. The simplest approach involves
averaging the token embeddings of a word, when inputting
only that word to the model (later referred to as decontex-
tualized method). Although easy, this method presents an
input to the model, which is different from the training
data, potentially leading to suboptimal embeddings. Therefore,
more sophisticated methods have been proposed. In this piece

1https://github.com/gedeonmate/hungarian_static_embeddings
2https://huggingface.co/gedeonmate/static_hungarian_bert
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method [10] and the X2Static method [11]. The aggregate
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appears in. This presents the model a more natural input than
the decontextualized method, but as it uses the embedding
of the whole context and not just the word itself, it still can
lead to suboptimal results. The X2Static method, on the other
hand, uses a CBOW-inspired static word-embedding approach,
leveraging contextual information from a teacher model to
generate static embeddings. This method has been shown to
outperform the aggregate method in multiple tasks.

A Turkish study [12] conducted an in-depth analysis of
static word embeddings in the language, which had a substan-
tial impact on the chosen methodology in this study. Their
findings were similar, finding the X2Static method to be the
most effective for extracting static embeddings from BERT-
based models.

Several studies have contributed to the evaluation of word
embeddings in Hungarian. A 2019 paper [13] assessed the
semantic accuracy of word embeddings through word analogy
tasks, revealing a substantial performance drop of 50–75%
compared to English. The authors attributed this decline to
the high morphological variation in Hungarian and the less
stable semantic representations that result from it.

Research on Hungarian contextual embeddings has also
gained traction. A comparative study [14] evaluating huBERT
against multilingual BERT models demonstrated that huBERT
outperformed its multilingual counterparts in morphological
probing, POS tagging, and NER tasks. On the same tasks, but
with a focus on the impact of subword pooling, Ács et al.
[15] conducted a comprehensive cross-linguistic analysis of
pooling strategies over several languages.
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embedding models. It is based on the idea that words ap-
pearing in similar contexts have similar meanings. Unlike
models focused solely on predicting the next word, Word2Vec
considers both preceding and succeeding words within a
fixed context window (e.g., five words). The model has two
architectures: Continuous Bag of Words (CBOW) and Skip-
gram. In CBOW, the goal is to predict a target word from its
context, disregarding word order. In Skip-gram, the objective
is to predict context words based on a given target word.

Several pre-trained embeddings exist for various languages,
including Hungarian. In this study, we used pre-trained em-
beddings developed for the EFNILEX3 project [16], trained on
the combined Hungarian Webcorpus [17] and the Hungarian
National Corpus [18] with 600 dimensions.

B. FastText

In 2018, Bojanowski et al. [5] introduced FastText, which
provides word embeddings for 157 languages. The model
was trained on Wikipedia dumps and the Common Crawl.
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FastText follows a training procedure similar to Word2Vec
but incorporates subword information. The Skip-gram model
uses character n-grams, assigning a vector representation to
each, and constructs word representations by summing the
vectors of the character n-grams present in the word. The full
word is included to maintain a unique vector for each word.
The CBOW model represents words as bags of character n-
grams with position-dependent weights to capture positional
information. For this study, we used the 300-dimensional
Hungarian embeddings published by FastText.

C. SpaCy

SpaCy [19] is a Natural Language Processing library imple-
mented in Python and Cython, supporting over 70 languages.
It provides pretrained pipelines for tasks such as tagging, pars-
ing, named entity recognition, and text classification. HuSpaCy
[20] is the Hungarian adaptation of SpaCy, including pre-
trained embedding models. We employed the 300-dimensional
Hungarian CBOW embeddings4 provided by HuSpaCy, trained
on the Hungarian Webcorpus 2.0.

D. ELMo

ELMo (Embeddings from Language Models) [21] generates
contextualized word embeddings using a bidirectional long
short-term memory (LSTM) language model. Unlike static
embeddings, ELMo captures polysemy and context-dependent
meanings, improving performance across multiple NLP tasks.
We used the Hungarian ELMo embeddings5 provided by
HIT-SCIR, trained on a Hungarian Wikipedia dump and the
Hungarian portion of the Common Crawl.

E. BERT-based models

BERT (Bidirectional Encoder Representations from Trans-
formers) [7] is a transformer-based model that, like ELMo,
generates contextualized word embeddings. It is trained using
a masked language model (MLM) objective, where the goal is
to predict masked words within a sentence, and a next sentence
prediction (NSP) objective, where the aim is to determine
whether two sentences are consecutive. As a base model, we
used huBERT [22], trained on the Hungarian Webcorpus 2.0.
To have a baseline, we also included XLM-RoBERTa (later
referred to as XLM-R) [23] with the same strategies.

For extracting static embeddings from BERT-based mod-
els, we employed the three methods mentioned in Related
Work. Decontextualized, where only the word is inputted to
the model, Aggregate, which pools embeddings of different
contexts the word appears in, and X2Static, which uses a
CBOW-inspired static word-embedding approach, leveraging
contextual information from a teacher model to generate static
embeddings. For both the Aggregate and X2Static methods, we
used the same training data, which was a text file, containing
one sentence in a line, collected from Hungarian Wikipedia
and the Hungarian Webcorpus6.
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ELMo (Embeddings from Language Models) [21] generates
contextualized word embeddings using a bidirectional long
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embeddings, ELMo captures polysemy and context-dependent
meanings, improving performance across multiple NLP tasks.
We used the Hungarian ELMo embeddings5 provided by
HIT-SCIR, trained on a Hungarian Wikipedia dump and the
Hungarian portion of the Common Crawl.

E. BERT-based models

BERT (Bidirectional Encoder Representations from Trans-
formers) [7] is a transformer-based model that, like ELMo,
generates contextualized word embeddings. It is trained using
a masked language model (MLM) objective, where the goal is
to predict masked words within a sentence, and a next sentence
prediction (NSP) objective, where the aim is to determine
whether two sentences are consecutive. As a base model, we
used huBERT [22], trained on the Hungarian Webcorpus 2.0.
To have a baseline, we also included XLM-RoBERTa (later
referred to as XLM-R) [23] with the same strategies.

For extracting static embeddings from BERT-based mod-
els, we employed the three methods mentioned in Related
Work. Decontextualized, where only the word is inputted to
the model, Aggregate, which pools embeddings of different
contexts the word appears in, and X2Static, which uses a
CBOW-inspired static word-embedding approach, leveraging
contextual information from a teacher model to generate static
embeddings. For both the Aggregate and X2Static methods, we
used the same training data, which was a text file, containing
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appears in. This presents the model a more natural input than
the decontextualized method, but as it uses the embedding
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lead to suboptimal results. The X2Static method, on the other
hand, uses a CBOW-inspired static word-embedding approach,
leveraging contextual information from a teacher model to
generate static embeddings. This method has been shown to
outperform the aggregate method in multiple tasks.

A Turkish study [12] conducted an in-depth analysis of
static word embeddings in the language, which had a substan-
tial impact on the chosen methodology in this study. Their
findings were similar, finding the X2Static method to be the
most effective for extracting static embeddings from BERT-
based models.

Several studies have contributed to the evaluation of word
embeddings in Hungarian. A 2019 paper [13] assessed the
semantic accuracy of word embeddings through word analogy
tasks, revealing a substantial performance drop of 50–75%
compared to English. The authors attributed this decline to
the high morphological variation in Hungarian and the less
stable semantic representations that result from it.

Research on Hungarian contextual embeddings has also
gained traction. A comparative study [14] evaluating huBERT
against multilingual BERT models demonstrated that huBERT
outperformed its multilingual counterparts in morphological
probing, POS tagging, and NER tasks. On the same tasks, but
with a focus on the impact of subword pooling, Ács et al.
[15] conducted a comprehensive cross-linguistic analysis of
pooling strategies over several languages.
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context, disregarding word order. In Skip-gram, the objective
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Table I provides an overview of the models used in the
study, including their dimensions and original vocabulary
sizes.

Model Dimensions Original Vocabulary

FastText 300 2,000,000
huBERT 768 -
EFNILEX 600 1,896,111
HuSpaCy 300 1,524,582
XLM-R 768 -
ELMo 1024 -

TABLE I: Model specifications

IV. DATASETS

A. Intrinsic Evaluation Datasets

Intrinsic evaluations assess the quality of embeddings in-
dependently, rather than through downstream tasks. They
typically measure word similarity or evaluate embeddings on
word analogy tasks.

Since no Hungarian word similarity datasets are available,
we used the word analogy dataset developed by Makrai [24]
for intrinsic evaluation. Inspired by the widely used analogy
task introduced by Mikolov et al. [25], this dataset consists of
structured word analogy questions in the form of A:B :: C:D,
where the relationship between words A and B is expected to
be analogous to the relationship between words C and D.

The dataset encompasses multiple linguistic and semantic
relations, including morphological (e.g., singular-plural forms,
verb conjugations), semantic (e.g., country-capital pairs), and
syntactic analogies (e.g., grammatical roles).

To make comparisons fair, we restricted the embeddings to
the vocabulary of their intersection, arriving at a vocabulary of
256 808 words. Table II provides a comparison of number of
questions by category as they were originally, opposed to after
the restrictions. There were three categories, where the ratio of
the restricted and original questions fell below 90%: capital-
world, family, and gram5-present-participle. For example, the
capital-world category contained all the country-capital pairs.
As smaller countries capital were not present in the vocabulary,
the number of questions in this category significantly reduced.

B. Extrinsic Evaluation Datasets

For extrinsic evaluation, we used NYTK-NerKor [26], a
Hungarian gold-standard named entity-annotated corpus con-
taining 1 million tokens. This dataset also includes POS
tags, making it suitable for both Named Entity Recognition
(NER) and Part-of-Speech (POS) tagging tasks. The corpus
is divided into training, development, and test sets using an
approximately 80-10-10 split. It comprises texts from diverse
genres, including fiction, legal documents, news, web sources,
and Wikipedia.

The fiction subcorpus includes novels from the Hungarian
Electronic Library (MEK) and Project Gutenberg, as well
as subtitles from OpenSubtitles. Legal texts originate from
sources such as the EU Constitution, documents from the

Category Original Restricted Ratio (%)

capital-common-countries 190 190 100.0%
capital-world 13695 5995 43.8%
county-ceter 171 171 100.0%
currency 435 406 93.3%
family 190 136 71.6%
gram1-adjective-to-adverb 780 780 100.0%
gram2-opposite 435 435 100.0%
gram3-comparative 780 780 100.0%
gram4-superlative 780 780 100.0%
gram5-present-participle 780 496 63.6%
gram6-nationality-adjective 820 741 90.4%
gram7-past-tense 780 780 100.0%
gram8-plural-noun 780 780 100.0%
gram9-plural-verb 780 780 100.0%

TABLE II: Comparison of Original and Restricted Number of
Questions by Categories

European Economic and Social Committee, DGT-Acquis, and
JRC-Acquis. The news subcorpus draws from the European
Commission’s Press Release Database, Global Voices, and the
NewsCrawl Corpus. Web texts are sourced from the Hungarian
Webcorpus 2.0.

Named entity annotations are divided into four categories:
Person, Location, Organization, and Miscellaneous. Although
an updated version of the corpus [27] introduces approxi-
mately 30 entity types, we used the original version, as these
four categories are most commonly utilized in NER tasks.

V. EXPERIMENTS

A. Intrinsic Evaluation

To assess performance on the analogy task, we employed
two evaluation metrics. The first metric was overall accuracy,
defined as the proportion of correctly answered questions,
where the most likely prediction aligns with the correct answer.
The second metric was the Mean Reciprocal Rank (MRR), a
widely adopted evaluation measure that rewards not only the
best prediction but also cases where the correct answer appears
among the top-ranked candidates. Given a set of queries, MRR
is computed as the average of the reciprocal ranks of the first
relevant result for each query:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki

where |Q| denotes the total number of queries, and ranki
represents the rank position of the first relevant document for
the ith query. To ensure computational feasibility, we restricted
analysis to the top 10 ranked answers per query, assigning a
score of 0 when the correct answer was absent. Given that
different categories contained varying numbers of questions,
we also report the average MRR across categories along with
the overall MRR (which is the weighted sum).

For static embedding extraction from BERT-based models,
we utilized three previously described methods: decontex-
tualized, aggregate, and X2Static. These are indicated by
subscripts in the model names. For instance, huBERTde refers
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of research, we employed two such methods: the aggregate
method [10] and the X2Static method [11]. The aggregate
method pools embeddings of different contexts the word
appears in. This presents the model a more natural input than
the decontextualized method, but as it uses the embedding
of the whole context and not just the word itself, it still can
lead to suboptimal results. The X2Static method, on the other
hand, uses a CBOW-inspired static word-embedding approach,
leveraging contextual information from a teacher model to
generate static embeddings. This method has been shown to
outperform the aggregate method in multiple tasks.

A Turkish study [12] conducted an in-depth analysis of
static word embeddings in the language, which had a substan-
tial impact on the chosen methodology in this study. Their
findings were similar, finding the X2Static method to be the
most effective for extracting static embeddings from BERT-
based models.

Several studies have contributed to the evaluation of word
embeddings in Hungarian. A 2019 paper [13] assessed the
semantic accuracy of word embeddings through word analogy
tasks, revealing a substantial performance drop of 50–75%
compared to English. The authors attributed this decline to
the high morphological variation in Hungarian and the less
stable semantic representations that result from it.

Research on Hungarian contextual embeddings has also
gained traction. A comparative study [14] evaluating huBERT
against multilingual BERT models demonstrated that huBERT
outperformed its multilingual counterparts in morphological
probing, POS tagging, and NER tasks. On the same tasks, but
with a focus on the impact of subword pooling, Ács et al.
[15] conducted a comprehensive cross-linguistic analysis of
pooling strategies over several languages.

III. EMBEDDING MODELS

A. Word2Vec

Word2Vec [3] is one of the most influential static word
embedding models. It is based on the idea that words ap-
pearing in similar contexts have similar meanings. Unlike
models focused solely on predicting the next word, Word2Vec
considers both preceding and succeeding words within a
fixed context window (e.g., five words). The model has two
architectures: Continuous Bag of Words (CBOW) and Skip-
gram. In CBOW, the goal is to predict a target word from its
context, disregarding word order. In Skip-gram, the objective
is to predict context words based on a given target word.

Several pre-trained embeddings exist for various languages,
including Hungarian. In this study, we used pre-trained em-
beddings developed for the EFNILEX3 project [16], trained on
the combined Hungarian Webcorpus [17] and the Hungarian
National Corpus [18] with 600 dimensions.

B. FastText

In 2018, Bojanowski et al. [5] introduced FastText, which
provides word embeddings for 157 languages. The model
was trained on Wikipedia dumps and the Common Crawl.

3http://corpus.nytud.hu/efnilex-vect/

FastText follows a training procedure similar to Word2Vec
but incorporates subword information. The Skip-gram model
uses character n-grams, assigning a vector representation to
each, and constructs word representations by summing the
vectors of the character n-grams present in the word. The full
word is included to maintain a unique vector for each word.
The CBOW model represents words as bags of character n-
grams with position-dependent weights to capture positional
information. For this study, we used the 300-dimensional
Hungarian embeddings published by FastText.

C. SpaCy

SpaCy [19] is a Natural Language Processing library imple-
mented in Python and Cython, supporting over 70 languages.
It provides pretrained pipelines for tasks such as tagging, pars-
ing, named entity recognition, and text classification. HuSpaCy
[20] is the Hungarian adaptation of SpaCy, including pre-
trained embedding models. We employed the 300-dimensional
Hungarian CBOW embeddings4 provided by HuSpaCy, trained
on the Hungarian Webcorpus 2.0.

D. ELMo

ELMo (Embeddings from Language Models) [21] generates
contextualized word embeddings using a bidirectional long
short-term memory (LSTM) language model. Unlike static
embeddings, ELMo captures polysemy and context-dependent
meanings, improving performance across multiple NLP tasks.
We used the Hungarian ELMo embeddings5 provided by
HIT-SCIR, trained on a Hungarian Wikipedia dump and the
Hungarian portion of the Common Crawl.

E. BERT-based models

BERT (Bidirectional Encoder Representations from Trans-
formers) [7] is a transformer-based model that, like ELMo,
generates contextualized word embeddings. It is trained using
a masked language model (MLM) objective, where the goal is
to predict masked words within a sentence, and a next sentence
prediction (NSP) objective, where the aim is to determine
whether two sentences are consecutive. As a base model, we
used huBERT [22], trained on the Hungarian Webcorpus 2.0.
To have a baseline, we also included XLM-RoBERTa (later
referred to as XLM-R) [23] with the same strategies.

For extracting static embeddings from BERT-based mod-
els, we employed the three methods mentioned in Related
Work. Decontextualized, where only the word is inputted to
the model, Aggregate, which pools embeddings of different
contexts the word appears in, and X2Static, which uses a
CBOW-inspired static word-embedding approach, leveraging
contextual information from a teacher model to generate static
embeddings. For both the Aggregate and X2Static methods, we
used the same training data, which was a text file, containing
one sentence in a line, collected from Hungarian Wikipedia
and the Hungarian Webcorpus6.

4https://huggingface.co/huspacy/hu_vectors_web_lg
5https://github.com/HIT-SCIR/ELMoForManyLangs
6http://mokk.bme.hu/resources/webcorpus/
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considers both preceding and succeeding words within a
fixed context window (e.g., five words). The model has two
architectures: Continuous Bag of Words (CBOW) and Skip-
gram. In CBOW, the goal is to predict a target word from its
context, disregarding word order. In Skip-gram, the objective
is to predict context words based on a given target word.

Several pre-trained embeddings exist for various languages,
including Hungarian. In this study, we used pre-trained em-
beddings developed for the EFNILEX3 project [16], trained on
the combined Hungarian Webcorpus [17] and the Hungarian
National Corpus [18] with 600 dimensions.

B. FastText

In 2018, Bojanowski et al. [5] introduced FastText, which
provides word embeddings for 157 languages. The model
was trained on Wikipedia dumps and the Common Crawl.

3http://corpus.nytud.hu/efnilex-vect/

FastText follows a training procedure similar to Word2Vec
but incorporates subword information. The Skip-gram model
uses character n-grams, assigning a vector representation to
each, and constructs word representations by summing the
vectors of the character n-grams present in the word. The full
word is included to maintain a unique vector for each word.
The CBOW model represents words as bags of character n-
grams with position-dependent weights to capture positional
information. For this study, we used the 300-dimensional
Hungarian embeddings published by FastText.

C. SpaCy

SpaCy [19] is a Natural Language Processing library imple-
mented in Python and Cython, supporting over 70 languages.
It provides pretrained pipelines for tasks such as tagging, pars-
ing, named entity recognition, and text classification. HuSpaCy
[20] is the Hungarian adaptation of SpaCy, including pre-
trained embedding models. We employed the 300-dimensional
Hungarian CBOW embeddings4 provided by HuSpaCy, trained
on the Hungarian Webcorpus 2.0.

D. ELMo

ELMo (Embeddings from Language Models) [21] generates
contextualized word embeddings using a bidirectional long
short-term memory (LSTM) language model. Unlike static
embeddings, ELMo captures polysemy and context-dependent
meanings, improving performance across multiple NLP tasks.
We used the Hungarian ELMo embeddings5 provided by
HIT-SCIR, trained on a Hungarian Wikipedia dump and the
Hungarian portion of the Common Crawl.

E. BERT-based models

BERT (Bidirectional Encoder Representations from Trans-
formers) [7] is a transformer-based model that, like ELMo,
generates contextualized word embeddings. It is trained using
a masked language model (MLM) objective, where the goal is
to predict masked words within a sentence, and a next sentence
prediction (NSP) objective, where the aim is to determine
whether two sentences are consecutive. As a base model, we
used huBERT [22], trained on the Hungarian Webcorpus 2.0.
To have a baseline, we also included XLM-RoBERTa (later
referred to as XLM-R) [23] with the same strategies.

For extracting static embeddings from BERT-based mod-
els, we employed the three methods mentioned in Related
Work. Decontextualized, where only the word is inputted to
the model, Aggregate, which pools embeddings of different
contexts the word appears in, and X2Static, which uses a
CBOW-inspired static word-embedding approach, leveraging
contextual information from a teacher model to generate static
embeddings. For both the Aggregate and X2Static methods, we
used the same training data, which was a text file, containing
one sentence in a line, collected from Hungarian Wikipedia
and the Hungarian Webcorpus6.

4https://huggingface.co/huspacy/hu_vectors_web_lg
5https://github.com/HIT-SCIR/ELMoForManyLangs
6http://mokk.bme.hu/resources/webcorpus/

Table I provides an overview of the models used in the
study, including their dimensions and original vocabulary
sizes.

Model Dimensions Original Vocabulary

FastText 300 2,000,000
huBERT 768 -
EFNILEX 600 1,896,111
HuSpaCy 300 1,524,582
XLM-R 768 -
ELMo 1024 -

TABLE I: Model specifications

IV. DATASETS

A. Intrinsic Evaluation Datasets

Intrinsic evaluations assess the quality of embeddings in-
dependently, rather than through downstream tasks. They
typically measure word similarity or evaluate embeddings on
word analogy tasks.

Since no Hungarian word similarity datasets are available,
we used the word analogy dataset developed by Makrai [24]
for intrinsic evaluation. Inspired by the widely used analogy
task introduced by Mikolov et al. [25], this dataset consists of
structured word analogy questions in the form of A:B :: C:D,
where the relationship between words A and B is expected to
be analogous to the relationship between words C and D.

The dataset encompasses multiple linguistic and semantic
relations, including morphological (e.g., singular-plural forms,
verb conjugations), semantic (e.g., country-capital pairs), and
syntactic analogies (e.g., grammatical roles).

To make comparisons fair, we restricted the embeddings to
the vocabulary of their intersection, arriving at a vocabulary of
256 808 words. Table II provides a comparison of number of
questions by category as they were originally, opposed to after
the restrictions. There were three categories, where the ratio of
the restricted and original questions fell below 90%: capital-
world, family, and gram5-present-participle. For example, the
capital-world category contained all the country-capital pairs.
As smaller countries capital were not present in the vocabulary,
the number of questions in this category significantly reduced.

B. Extrinsic Evaluation Datasets

For extrinsic evaluation, we used NYTK-NerKor [26], a
Hungarian gold-standard named entity-annotated corpus con-
taining 1 million tokens. This dataset also includes POS
tags, making it suitable for both Named Entity Recognition
(NER) and Part-of-Speech (POS) tagging tasks. The corpus
is divided into training, development, and test sets using an
approximately 80-10-10 split. It comprises texts from diverse
genres, including fiction, legal documents, news, web sources,
and Wikipedia.

The fiction subcorpus includes novels from the Hungarian
Electronic Library (MEK) and Project Gutenberg, as well
as subtitles from OpenSubtitles. Legal texts originate from
sources such as the EU Constitution, documents from the

Category Original Restricted Ratio (%)

capital-common-countries 190 190 100.0%
capital-world 13695 5995 43.8%
county-ceter 171 171 100.0%
currency 435 406 93.3%
family 190 136 71.6%
gram1-adjective-to-adverb 780 780 100.0%
gram2-opposite 435 435 100.0%
gram3-comparative 780 780 100.0%
gram4-superlative 780 780 100.0%
gram5-present-participle 780 496 63.6%
gram6-nationality-adjective 820 741 90.4%
gram7-past-tense 780 780 100.0%
gram8-plural-noun 780 780 100.0%
gram9-plural-verb 780 780 100.0%

TABLE II: Comparison of Original and Restricted Number of
Questions by Categories

European Economic and Social Committee, DGT-Acquis, and
JRC-Acquis. The news subcorpus draws from the European
Commission’s Press Release Database, Global Voices, and the
NewsCrawl Corpus. Web texts are sourced from the Hungarian
Webcorpus 2.0.

Named entity annotations are divided into four categories:
Person, Location, Organization, and Miscellaneous. Although
an updated version of the corpus [27] introduces approxi-
mately 30 entity types, we used the original version, as these
four categories are most commonly utilized in NER tasks.

V. EXPERIMENTS

A. Intrinsic Evaluation

To assess performance on the analogy task, we employed
two evaluation metrics. The first metric was overall accuracy,
defined as the proportion of correctly answered questions,
where the most likely prediction aligns with the correct answer.
The second metric was the Mean Reciprocal Rank (MRR), a
widely adopted evaluation measure that rewards not only the
best prediction but also cases where the correct answer appears
among the top-ranked candidates. Given a set of queries, MRR
is computed as the average of the reciprocal ranks of the first
relevant result for each query:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki

where |Q| denotes the total number of queries, and ranki
represents the rank position of the first relevant document for
the ith query. To ensure computational feasibility, we restricted
analysis to the top 10 ranked answers per query, assigning a
score of 0 when the correct answer was absent. Given that
different categories contained varying numbers of questions,
we also report the average MRR across categories along with
the overall MRR (which is the weighted sum).

For static embedding extraction from BERT-based models,
we utilized three previously described methods: decontex-
tualized, aggregate, and X2Static. These are indicated by
subscripts in the model names. For instance, huBERTde refers
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to static embeddings extracted using the decontextualized
method, while huBERTagg and huBERTx2 correspond to the
aggregate and X2Static methods, respectively.

Table III presents the results of the analogy tasks. FastText
exhibited superior performance, achieving an overall accuracy
of 71% and an MRR score of 0.77. The second-best model,
huBERT, attained 49% accuracy and an MRR of 0.58. The
remaining models formed two distinct groups based on overall
accuracy. The first group, comprising EFNILEX, HuSpaCy,
and XLM-Rx2, yielded an MRR of approximately 0.46 and
an accuracy of around 38%. The second group, including
huBERTagg, XLM-Ragg, ELMo, and huBERTde, exhibited an
MRR around 0.23 with an accuracy near 18%. XLM-Rde
performed the worst, with both metrics falling below 2%,
indicating that the decontextualized embedding extraction was
unsuitable for this task.

Analyzing overall accuracy, we observe that among the top
four models are the three static embedding models, along
with only one BERT-based model. This suggests that static
embeddings remain competitive for intrinsic tasks despite
their lack of contextual adaptability compared to transformer-
based models. Notably, huBERTx2 performed comparably to
static embeddings, indicating that the X2Static method is a
promising technique for deriving static representations from
BERT-based models.

The average MRR scores follow a similar pattern to overall
accuracy but reveal a more nuanced ranking, as it consid-
ers every category equally important, regardless of its size.
While the top five models remain consistent, the performance
gaps narrow. This discrepancy is likely due to category im-
balances, where some categories contain significantly more
questions than others. Among the lower-performing models,
ordering shifts: ELMo surpasses both aggregate models, while
huBERTde outperforms huBERTagg.

Examining the performance of the three embedding ex-
traction methods in terms of overall accuracy, a clear trend
emerges. The decontextualized method consistently underper-
forms in both huBERT and XLM-R. The aggregate method
offers a marginal improvement over decontextualized in hu-
BERT, yet it demonstrates a substantial boost in XLM-R. This
improvement may stem from XLM-R’s multilingual nature,
where isolated Hungarian words may provide insufficient
input, whereas contextualized sentences enable better repre-
sentations. The X2Static method outperforms both alternatives
across both models, approaching the effectiveness of dedicated
static embeddings. However, when considering average MRR
scores, while X2Static remains the best performer, huBERTde
surpasses huBERTagg.

Category-level results reveal substantial variation in model
performance. FastText dominates, achieving the highest
scores in 7 out of 14 categories, with the largest mar-
gins observed in capital-common-countries, capital-world,
and gram2-opposite. HuBERT prevails in three categories
(family, gram9-plural-verb, and gram7-past-tense), drawing
with EFNILEX in the latter. EFNILEX also leads in gram4-
superlative. HuSpaCy stands out in gram5-present-participle,
significantly outperforming other models. Notably, this cat-
egory experienced the most substantial question reduction

(37%) due to vocabulary constraints. HuSpaCy achieved a
72% MRR score in this category, despite its average MRR
of 0.56.

XLM-Rx2 demonstrates strong performance, leading in the
gram1-adjective-to-adverb category and slightly outperform-
ing others in gram3-comparative. An interesting observation
is that while ELMo and huBERTde exhibit similar overall
performance, their category-level results diverge significantly,
with each model excelling in different areas. In total, static
embeddings win 10 of 14 categories, BERT-based models
obtain three victories, and one category results in a tie. These
findings underscore that category-level performance can vary
considerably, making overall scores an incomplete representa-
tion of a models strengths.

When analyzing embedding extraction techniques for hu-
BERT at the category level, X2Static consistently outperforms
the other methods in all but one category (gram8-plural-noun),
where the decontextualized method proves to be superior.
Comparing aggregate and decontextualized approaches, results
are less conclusive. For huBERT, aggregate excels in only
four categories, while decontextualized leads in nine, with one
tie. XLM-R follows a more distinct hierarchy, with X2Static
outperforming all other methods, aggregate ranking second,
and decontextualized consistently underperforming.

These results collectively highlight the effectiveness of static
embeddings for analogy tasks, the viability of the X2Static
approach for extracting static embeddings from transformer-
based models, and the varying impact of embedding extraction
techniques across different linguistic categories.

B. Extrinsic Evaluation
For the extrinsic evaluation, we employed a single-layer

bidirectional LSTM with a dropout rate of 0.5. The bidirec-
tional LSTM was chosen for its ability to capture contextual
information from both directions, which is particularly bene-
ficial for tasks such as Named Entity Recognition (NER) and
Part-of-Speech (POS) tagging. To assess the performance of
the embeddings, we experimented with varying hidden sizes
(1, 2, 4, 8, 16, 32, and 64). While increasing the hidden size
generally enhances model performance, the objective was to
evaluate the embeddings themselves, including their behavior
under constrained settings.

To handle out-of-vocabulary words in the training data,
we represented them using vectors sampled from a normal
distribution with a mean of 0 and a standard deviation of 0.6
(N (0, 0.6)). The model architecture concluded with a softmax
activation function. Training was conducted for five epochs
with a batch size of 32, utilizing the Adam optimizer with
its default parameter settings. Categorical cross-entropy was
employed as the loss function.

Table IV summarizes the performance of the NER models
on the test set. As the primary objective was to assess the
quality of the embeddings rather than to achieve state-of-the-
art results, accuracy was selected as the evaluation metric.
While suitable for the purposes of our comparative analysis,
it should be noted that this metric is not directly comparable
to those reported by leading models in the field, which are
typically evaluated using the F1 score [28].
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Category FastText huBERTx2 EFNILEX HuSpaCy XLM-Rx2 huBERTagg XLM-Ragg ELMo huBERTde XLM-Rde

capital-common-countries 0.77 0.58 0.45 0.44 0.40 0.25 0.26 0.09 0.17 0.01
capital-world 0.83 0.50 0.28 0.25 0.30 0.23 0.17 0.03 0.08 0.00
county-center 0.88 0.76 0.31 0.47 0.25 0.18 0.07 0.09 0.24 0.00
currency 0.31 0.10 0.19 0.15 0.09 0.07 0.09 0.12 0.07 0.00
family 0.66 0.67 0.40 0.59 0.46 0.22 0.25 0.33 0.30 0.05
gram1-adjective-to-adverb 0.63 0.59 0.37 0.61 0.78 0.20 0.26 0.13 0.25 0.07
gram2-opposite 0.43 0.16 0.29 0.24 0.17 0.01 0.04 0.10 0.07 0.01
gram3-comparative 0.76 0.81 0.75 0.74 0.82 0.30 0.39 0.47 0.38 0.10
gram4-superlative 0.68 0.63 0.72 0.59 0.29 0.21 0.19 0.27 0.22 0.00
gram5-present-participle 0.55 0.17 0.11 0.72 0.12 0.02 0.02 0.01 0.15 0.00
gram6-nationality-adjective 0.91 0.87 0.68 0.61 0.64 0.37 0.37 0.09 0.22 0.01
gram7-past-tense 0.82 0.95 0.95 0.86 0.91 0.18 0.17 0.82 0.49 0.01
gram8-plural-noun 0.77 0.61 0.66 0.68 0.66 0.28 0.34 0.67 0.70 0.06
gram9-plural-verb 0.94 0.97 0.95 0.87 0.87 0.67 0.68 0.86 0.55 0.02

Average MRR 0.71 0.60 0.51 0.56 0.48 0.23 0.24 0.29 0.28 0.02
Overall MRR 0.77 0.58 0.46 0.46 0.45 0.24 0.23 0.22 0.22 0.02
Overall accuracy 0.71 0.49 0.39 0.38 0.37 0.18 0.18 0.18 0.17 0.01

TABLE III: Comparison of Performance Across Models (MRR)

Model Name Hidden Size

1 2 4 8 16 32 64

ELMo 94.81 96.11 96.44 97.01 97.39 97.54 97.62
huBERTx2 93.55 95.42 96.02 96.68 97.24 97.40 97.49
RoBERTax2 94.79 95.48 96.16 96.55 97.20 97.33 97.44
huBERTde 94.89 94.12 96.22 96.76 97.16 97.24 97.38
HuSpaCy 94.16 94.71 95.84 96.23 96.54 96.92 97.13
huBERTagg 94.92 94.97 95.16 95.95 96.61 96.94 97.01
EFNILEX 94.48 94.86 95.49 96.09 96.46 96.71 96.80
FastText 94.59 94.89 95.62 96.32 96.56 96.68 96.78
XLM-Ragg 85.39 94.67 94.37 95.07 95.12 95.30 95.68
XLM-Rde 94.79 88.59 94.97 95.03 95.10 95.22 95.37

TABLE IV: Model performance across hidden sizes for NER
(%)

As shown in Table IV, most models demonstrate a con-
sistent improvement in performance with increasing hidden
size. However, exceptions to this trend include XLM-Ragg
(between hidden sizes 2 and 4), as well as huBERTde and
XLM-Rde (between sizes 1 and 2), with the latter experiencing
a particularly sharp decline. To complement the tabular data,
Figure 1 offers a visual summary that aids intuitive compari-
son, albeit with a slight trade-off in numerical precision. For
clarity, hidden sizes 1 and 2 were excluded from the plot due to
their disproportionate effect on the plot scale, which hindered
the visibility of differences among the larger hidden sizes.

Regarding overall performance, XLM-Ragg and XLM-Rde
were the lowest-performing models, indicating their relative
inefficacy for this task. In contrast—and somewhat unexpect-
edly—ELMo emerges as the top-performing model across all
hidden sizes of two and above, despite its weaker results in
the analogy task. It may come from the fact, that ELMo is
originally trained using a bidirectional LSTM, similarly to
the model used in the extrinsic evaluations. For larger hidden
sizes, it is followed by the two X2Static models, huBERTx2
and XLM-Rx2, which maintain close performance levels but
exchange rankings depending on the hidden size. Notably, at
smaller hidden sizes, huBERTde outperforms both X2Static
models. The remaining four models—HuSpaCy, huBERTagg,
EFNILEX, and FastText—consistently occupy the middle
range, positioned between the top four and the bottom two,
with their relative rankings fluctuating based on hidden size.

Fig. 1: Model performance across hidden sizes for NER (%)

In terms of extraction methodologies, the X2Static approach
remains the most effective, consistent with the intrinsic task re-
sults. HuBERT performs better in its decontextualized config-
uration compared to its aggregate variant in most cases, likely
due to the aggregate model incorporating the full contextual
embedding rather than isolating word-level information. XLM-
R exhibits an opposite trend, albeit with a less pronounced
difference than in the analogy task.

These findings suggest that the top-performing four models
are all derived from dynamic embeddings, highlighting their
advantage for this task. Nevertheless, purely static embeddings
are not far behind in performance, demonstrating competitive-
ness. Notably, huBERTagg is the only BERT-based model to be
consistently outperformed—depending on the hidden size—by
static embedding models.

Table V summarizes the numerical results for the POS
tagging task, while Figure 2 offers a visual depiction of model
performance. As with Figure 1, hidden size 1 is excluded to
preserve visual clarity and enable more meaningful compari-
son across the remaining configurations.

Among the evaluated models, XLM-Ragg and XLM-Rde
exhibited the lowest performance, while huBERTagg outper-
formed them but remained behind the rest. Consistently,

Category FastText huBERTx2 EFNILEX HuSpaCy XLM-Rx2 huBERTagg XLM-Ragg ELMo huBERTde XLM-Rde

capital-common-countries 0.77 0.58 0.45 0.44 0.40 0.25 0.26 0.09 0.17 0.01
capital-world 0.83 0.50 0.28 0.25 0.30 0.23 0.17 0.03 0.08 0.00
county-center 0.88 0.76 0.31 0.47 0.25 0.18 0.07 0.09 0.24 0.00
currency 0.31 0.10 0.19 0.15 0.09 0.07 0.09 0.12 0.07 0.00
family 0.66 0.67 0.40 0.59 0.46 0.22 0.25 0.33 0.30 0.05
gram1-adjective-to-adverb 0.63 0.59 0.37 0.61 0.78 0.20 0.26 0.13 0.25 0.07
gram2-opposite 0.43 0.16 0.29 0.24 0.17 0.01 0.04 0.10 0.07 0.01
gram3-comparative 0.76 0.81 0.75 0.74 0.82 0.30 0.39 0.47 0.38 0.10
gram4-superlative 0.68 0.63 0.72 0.59 0.29 0.21 0.19 0.27 0.22 0.00
gram5-present-participle 0.55 0.17 0.11 0.72 0.12 0.02 0.02 0.01 0.15 0.00
gram6-nationality-adjective 0.91 0.87 0.68 0.61 0.64 0.37 0.37 0.09 0.22 0.01
gram7-past-tense 0.82 0.95 0.95 0.86 0.91 0.18 0.17 0.82 0.49 0.01
gram8-plural-noun 0.77 0.61 0.66 0.68 0.66 0.28 0.34 0.67 0.70 0.06
gram9-plural-verb 0.94 0.97 0.95 0.87 0.87 0.67 0.68 0.86 0.55 0.02

Average MRR 0.71 0.60 0.51 0.56 0.48 0.23 0.24 0.29 0.28 0.02
Overall MRR 0.77 0.58 0.46 0.46 0.45 0.24 0.23 0.22 0.22 0.02
Overall accuracy 0.71 0.49 0.39 0.38 0.37 0.18 0.18 0.18 0.17 0.01

TABLE III: Comparison of Performance Across Models (MRR)

Model Name Hidden Size

1 2 4 8 16 32 64

ELMo 94.81 96.11 96.44 97.01 97.39 97.54 97.62
huBERTx2 93.55 95.42 96.02 96.68 97.24 97.40 97.49
RoBERTax2 94.79 95.48 96.16 96.55 97.20 97.33 97.44
huBERTde 94.89 94.12 96.22 96.76 97.16 97.24 97.38
HuSpaCy 94.16 94.71 95.84 96.23 96.54 96.92 97.13
huBERTagg 94.92 94.97 95.16 95.95 96.61 96.94 97.01
EFNILEX 94.48 94.86 95.49 96.09 96.46 96.71 96.80
FastText 94.59 94.89 95.62 96.32 96.56 96.68 96.78
XLM-Ragg 85.39 94.67 94.37 95.07 95.12 95.30 95.68
XLM-Rde 94.79 88.59 94.97 95.03 95.10 95.22 95.37

TABLE IV: Model performance across hidden sizes for NER
(%)

As shown in Table IV, most models demonstrate a con-
sistent improvement in performance with increasing hidden
size. However, exceptions to this trend include XLM-Ragg
(between hidden sizes 2 and 4), as well as huBERTde and
XLM-Rde (between sizes 1 and 2), with the latter experiencing
a particularly sharp decline. To complement the tabular data,
Figure 1 offers a visual summary that aids intuitive compari-
son, albeit with a slight trade-off in numerical precision. For
clarity, hidden sizes 1 and 2 were excluded from the plot due to
their disproportionate effect on the plot scale, which hindered
the visibility of differences among the larger hidden sizes.

Regarding overall performance, XLM-Ragg and XLM-Rde
were the lowest-performing models, indicating their relative
inefficacy for this task. In contrast—and somewhat unexpect-
edly—ELMo emerges as the top-performing model across all
hidden sizes of two and above, despite its weaker results in
the analogy task. It may come from the fact, that ELMo is
originally trained using a bidirectional LSTM, similarly to
the model used in the extrinsic evaluations. For larger hidden
sizes, it is followed by the two X2Static models, huBERTx2
and XLM-Rx2, which maintain close performance levels but
exchange rankings depending on the hidden size. Notably, at
smaller hidden sizes, huBERTde outperforms both X2Static
models. The remaining four models—HuSpaCy, huBERTagg,
EFNILEX, and FastText—consistently occupy the middle
range, positioned between the top four and the bottom two,
with their relative rankings fluctuating based on hidden size.

Fig. 1: Model performance across hidden sizes for NER (%)

In terms of extraction methodologies, the X2Static approach
remains the most effective, consistent with the intrinsic task re-
sults. HuBERT performs better in its decontextualized config-
uration compared to its aggregate variant in most cases, likely
due to the aggregate model incorporating the full contextual
embedding rather than isolating word-level information. XLM-
R exhibits an opposite trend, albeit with a less pronounced
difference than in the analogy task.

These findings suggest that the top-performing four models
are all derived from dynamic embeddings, highlighting their
advantage for this task. Nevertheless, purely static embeddings
are not far behind in performance, demonstrating competitive-
ness. Notably, huBERTagg is the only BERT-based model to be
consistently outperformed—depending on the hidden size—by
static embedding models.

Table V summarizes the numerical results for the POS
tagging task, while Figure 2 offers a visual depiction of model
performance. As with Figure 1, hidden size 1 is excluded to
preserve visual clarity and enable more meaningful compari-
son across the remaining configurations.

Among the evaluated models, XLM-Ragg and XLM-Rde
exhibited the lowest performance, while huBERTagg outper-
formed them but remained behind the rest. Consistently,

Category FastText huBERTx2 EFNILEX HuSpaCy XLM-Rx2 huBERTagg XLM-Ragg ELMo huBERTde XLM-Rde

capital-common-countries 0.77 0.58 0.45 0.44 0.40 0.25 0.26 0.09 0.17 0.01
capital-world 0.83 0.50 0.28 0.25 0.30 0.23 0.17 0.03 0.08 0.00
county-center 0.88 0.76 0.31 0.47 0.25 0.18 0.07 0.09 0.24 0.00
currency 0.31 0.10 0.19 0.15 0.09 0.07 0.09 0.12 0.07 0.00
family 0.66 0.67 0.40 0.59 0.46 0.22 0.25 0.33 0.30 0.05
gram1-adjective-to-adverb 0.63 0.59 0.37 0.61 0.78 0.20 0.26 0.13 0.25 0.07
gram2-opposite 0.43 0.16 0.29 0.24 0.17 0.01 0.04 0.10 0.07 0.01
gram3-comparative 0.76 0.81 0.75 0.74 0.82 0.30 0.39 0.47 0.38 0.10
gram4-superlative 0.68 0.63 0.72 0.59 0.29 0.21 0.19 0.27 0.22 0.00
gram5-present-participle 0.55 0.17 0.11 0.72 0.12 0.02 0.02 0.01 0.15 0.00
gram6-nationality-adjective 0.91 0.87 0.68 0.61 0.64 0.37 0.37 0.09 0.22 0.01
gram7-past-tense 0.82 0.95 0.95 0.86 0.91 0.18 0.17 0.82 0.49 0.01
gram8-plural-noun 0.77 0.61 0.66 0.68 0.66 0.28 0.34 0.67 0.70 0.06
gram9-plural-verb 0.94 0.97 0.95 0.87 0.87 0.67 0.68 0.86 0.55 0.02

Average MRR 0.71 0.60 0.51 0.56 0.48 0.23 0.24 0.29 0.28 0.02
Overall MRR 0.77 0.58 0.46 0.46 0.45 0.24 0.23 0.22 0.22 0.02
Overall accuracy 0.71 0.49 0.39 0.38 0.37 0.18 0.18 0.18 0.17 0.01

TABLE III: Comparison of Performance Across Models (MRR)

Model Name Hidden Size

1 2 4 8 16 32 64

ELMo 94.81 96.11 96.44 97.01 97.39 97.54 97.62
huBERTx2 93.55 95.42 96.02 96.68 97.24 97.40 97.49
RoBERTax2 94.79 95.48 96.16 96.55 97.20 97.33 97.44
huBERTde 94.89 94.12 96.22 96.76 97.16 97.24 97.38
HuSpaCy 94.16 94.71 95.84 96.23 96.54 96.92 97.13
huBERTagg 94.92 94.97 95.16 95.95 96.61 96.94 97.01
EFNILEX 94.48 94.86 95.49 96.09 96.46 96.71 96.80
FastText 94.59 94.89 95.62 96.32 96.56 96.68 96.78
XLM-Ragg 85.39 94.67 94.37 95.07 95.12 95.30 95.68
XLM-Rde 94.79 88.59 94.97 95.03 95.10 95.22 95.37

TABLE IV: Model performance across hidden sizes for NER
(%)

As shown in Table IV, most models demonstrate a con-
sistent improvement in performance with increasing hidden
size. However, exceptions to this trend include XLM-Ragg
(between hidden sizes 2 and 4), as well as huBERTde and
XLM-Rde (between sizes 1 and 2), with the latter experiencing
a particularly sharp decline. To complement the tabular data,
Figure 1 offers a visual summary that aids intuitive compari-
son, albeit with a slight trade-off in numerical precision. For
clarity, hidden sizes 1 and 2 were excluded from the plot due to
their disproportionate effect on the plot scale, which hindered
the visibility of differences among the larger hidden sizes.

Regarding overall performance, XLM-Ragg and XLM-Rde
were the lowest-performing models, indicating their relative
inefficacy for this task. In contrast—and somewhat unexpect-
edly—ELMo emerges as the top-performing model across all
hidden sizes of two and above, despite its weaker results in
the analogy task. It may come from the fact, that ELMo is
originally trained using a bidirectional LSTM, similarly to
the model used in the extrinsic evaluations. For larger hidden
sizes, it is followed by the two X2Static models, huBERTx2
and XLM-Rx2, which maintain close performance levels but
exchange rankings depending on the hidden size. Notably, at
smaller hidden sizes, huBERTde outperforms both X2Static
models. The remaining four models—HuSpaCy, huBERTagg,
EFNILEX, and FastText—consistently occupy the middle
range, positioned between the top four and the bottom two,
with their relative rankings fluctuating based on hidden size.

Fig. 1: Model performance across hidden sizes for NER (%)

In terms of extraction methodologies, the X2Static approach
remains the most effective, consistent with the intrinsic task re-
sults. HuBERT performs better in its decontextualized config-
uration compared to its aggregate variant in most cases, likely
due to the aggregate model incorporating the full contextual
embedding rather than isolating word-level information. XLM-
R exhibits an opposite trend, albeit with a less pronounced
difference than in the analogy task.

These findings suggest that the top-performing four models
are all derived from dynamic embeddings, highlighting their
advantage for this task. Nevertheless, purely static embeddings
are not far behind in performance, demonstrating competitive-
ness. Notably, huBERTagg is the only BERT-based model to be
consistently outperformed—depending on the hidden size—by
static embedding models.

Table V summarizes the numerical results for the POS
tagging task, while Figure 2 offers a visual depiction of model
performance. As with Figure 1, hidden size 1 is excluded to
preserve visual clarity and enable more meaningful compari-
son across the remaining configurations.

Among the evaluated models, XLM-Ragg and XLM-Rde
exhibited the lowest performance, while huBERTagg outper-
formed them but remained behind the rest. Consistently,

Category FastText huBERTx2 EFNILEX HuSpaCy XLM-Rx2 huBERTagg XLM-Ragg ELMo huBERTde XLM-Rde

capital-common-countries 0.77 0.58 0.45 0.44 0.40 0.25 0.26 0.09 0.17 0.01
capital-world 0.83 0.50 0.28 0.25 0.30 0.23 0.17 0.03 0.08 0.00
county-center 0.88 0.76 0.31 0.47 0.25 0.18 0.07 0.09 0.24 0.00
currency 0.31 0.10 0.19 0.15 0.09 0.07 0.09 0.12 0.07 0.00
family 0.66 0.67 0.40 0.59 0.46 0.22 0.25 0.33 0.30 0.05
gram1-adjective-to-adverb 0.63 0.59 0.37 0.61 0.78 0.20 0.26 0.13 0.25 0.07
gram2-opposite 0.43 0.16 0.29 0.24 0.17 0.01 0.04 0.10 0.07 0.01
gram3-comparative 0.76 0.81 0.75 0.74 0.82 0.30 0.39 0.47 0.38 0.10
gram4-superlative 0.68 0.63 0.72 0.59 0.29 0.21 0.19 0.27 0.22 0.00
gram5-present-participle 0.55 0.17 0.11 0.72 0.12 0.02 0.02 0.01 0.15 0.00
gram6-nationality-adjective 0.91 0.87 0.68 0.61 0.64 0.37 0.37 0.09 0.22 0.01
gram7-past-tense 0.82 0.95 0.95 0.86 0.91 0.18 0.17 0.82 0.49 0.01
gram8-plural-noun 0.77 0.61 0.66 0.68 0.66 0.28 0.34 0.67 0.70 0.06
gram9-plural-verb 0.94 0.97 0.95 0.87 0.87 0.67 0.68 0.86 0.55 0.02

Average MRR 0.71 0.60 0.51 0.56 0.48 0.23 0.24 0.29 0.28 0.02
Overall MRR 0.77 0.58 0.46 0.46 0.45 0.24 0.23 0.22 0.22 0.02
Overall accuracy 0.71 0.49 0.39 0.38 0.37 0.18 0.18 0.18 0.17 0.01
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TABLE IV: Model performance across hidden sizes for NER
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As shown in Table IV, most models demonstrate a con-
sistent improvement in performance with increasing hidden
size. However, exceptions to this trend include XLM-Ragg
(between hidden sizes 2 and 4), as well as huBERTde and
XLM-Rde (between sizes 1 and 2), with the latter experiencing
a particularly sharp decline. To complement the tabular data,
Figure 1 offers a visual summary that aids intuitive compari-
son, albeit with a slight trade-off in numerical precision. For
clarity, hidden sizes 1 and 2 were excluded from the plot due to
their disproportionate effect on the plot scale, which hindered
the visibility of differences among the larger hidden sizes.

Regarding overall performance, XLM-Ragg and XLM-Rde
were the lowest-performing models, indicating their relative
inefficacy for this task. In contrast—and somewhat unexpect-
edly—ELMo emerges as the top-performing model across all
hidden sizes of two and above, despite its weaker results in
the analogy task. It may come from the fact, that ELMo is
originally trained using a bidirectional LSTM, similarly to
the model used in the extrinsic evaluations. For larger hidden
sizes, it is followed by the two X2Static models, huBERTx2
and XLM-Rx2, which maintain close performance levels but
exchange rankings depending on the hidden size. Notably, at
smaller hidden sizes, huBERTde outperforms both X2Static
models. The remaining four models—HuSpaCy, huBERTagg,
EFNILEX, and FastText—consistently occupy the middle
range, positioned between the top four and the bottom two,
with their relative rankings fluctuating based on hidden size.
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In terms of extraction methodologies, the X2Static approach
remains the most effective, consistent with the intrinsic task re-
sults. HuBERT performs better in its decontextualized config-
uration compared to its aggregate variant in most cases, likely
due to the aggregate model incorporating the full contextual
embedding rather than isolating word-level information. XLM-
R exhibits an opposite trend, albeit with a less pronounced
difference than in the analogy task.

These findings suggest that the top-performing four models
are all derived from dynamic embeddings, highlighting their
advantage for this task. Nevertheless, purely static embeddings
are not far behind in performance, demonstrating competitive-
ness. Notably, huBERTagg is the only BERT-based model to be
consistently outperformed—depending on the hidden size—by
static embedding models.

Table V summarizes the numerical results for the POS
tagging task, while Figure 2 offers a visual depiction of model
performance. As with Figure 1, hidden size 1 is excluded to
preserve visual clarity and enable more meaningful compari-
son across the remaining configurations.

Among the evaluated models, XLM-Ragg and XLM-Rde
exhibited the lowest performance, while huBERTagg outper-
formed them but remained behind the rest. Consistently,
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TABLE III: Comparison of Performance Across Models (MRR)

Model Name Hidden Size

1 2 4 8 16 32 64

ELMo 94.81 96.11 96.44 97.01 97.39 97.54 97.62
huBERTx2 93.55 95.42 96.02 96.68 97.24 97.40 97.49
RoBERTax2 94.79 95.48 96.16 96.55 97.20 97.33 97.44
huBERTde 94.89 94.12 96.22 96.76 97.16 97.24 97.38
HuSpaCy 94.16 94.71 95.84 96.23 96.54 96.92 97.13
huBERTagg 94.92 94.97 95.16 95.95 96.61 96.94 97.01
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TABLE IV: Model performance across hidden sizes for NER
(%)

As shown in Table IV, most models demonstrate a con-
sistent improvement in performance with increasing hidden
size. However, exceptions to this trend include XLM-Ragg
(between hidden sizes 2 and 4), as well as huBERTde and
XLM-Rde (between sizes 1 and 2), with the latter experiencing
a particularly sharp decline. To complement the tabular data,
Figure 1 offers a visual summary that aids intuitive compari-
son, albeit with a slight trade-off in numerical precision. For
clarity, hidden sizes 1 and 2 were excluded from the plot due to
their disproportionate effect on the plot scale, which hindered
the visibility of differences among the larger hidden sizes.

Regarding overall performance, XLM-Ragg and XLM-Rde
were the lowest-performing models, indicating their relative
inefficacy for this task. In contrast—and somewhat unexpect-
edly—ELMo emerges as the top-performing model across all
hidden sizes of two and above, despite its weaker results in
the analogy task. It may come from the fact, that ELMo is
originally trained using a bidirectional LSTM, similarly to
the model used in the extrinsic evaluations. For larger hidden
sizes, it is followed by the two X2Static models, huBERTx2
and XLM-Rx2, which maintain close performance levels but
exchange rankings depending on the hidden size. Notably, at
smaller hidden sizes, huBERTde outperforms both X2Static
models. The remaining four models—HuSpaCy, huBERTagg,
EFNILEX, and FastText—consistently occupy the middle
range, positioned between the top four and the bottom two,
with their relative rankings fluctuating based on hidden size.
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In terms of extraction methodologies, the X2Static approach
remains the most effective, consistent with the intrinsic task re-
sults. HuBERT performs better in its decontextualized config-
uration compared to its aggregate variant in most cases, likely
due to the aggregate model incorporating the full contextual
embedding rather than isolating word-level information. XLM-
R exhibits an opposite trend, albeit with a less pronounced
difference than in the analogy task.

These findings suggest that the top-performing four models
are all derived from dynamic embeddings, highlighting their
advantage for this task. Nevertheless, purely static embeddings
are not far behind in performance, demonstrating competitive-
ness. Notably, huBERTagg is the only BERT-based model to be
consistently outperformed—depending on the hidden size—by
static embedding models.

Table V summarizes the numerical results for the POS
tagging task, while Figure 2 offers a visual depiction of model
performance. As with Figure 1, hidden size 1 is excluded to
preserve visual clarity and enable more meaningful compari-
son across the remaining configurations.

Among the evaluated models, XLM-Ragg and XLM-Rde
exhibited the lowest performance, while huBERTagg outper-
formed them but remained behind the rest. Consistently,
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Model Name Hidden Size

1 2 4 8 16 32 64

ELMo 45.69 83.94 88.30 90.56 93.00 94.00 94.58
huBERTx2 60.40 73.06 84.59 91.34 92.50 93.38 93.95
RoBERTax2 40.89 72.65 87.38 90.21 92.36 93.46 93.76
HuSpaCy 51.20 69.16 83.09 89.31 91.26 92.47 93.33
huBERTde 15.53 72.69 86.80 88.86 91.05 92.98 93.17
EFNILEX 38.15 67.11 78.81 85.92 87.91 89.38 90.48
FastText 46.09 69.46 80.01 86.09 88.33 89.47 89.99
huBERTagg 25.87 48.99 65.64 76.76 82.40 85.60 87.39
XLM-Rde 32.19 45.43 54.20 60.57 67.95 71.20 78.37
XLM-Ragg 15.63 35.41 39.23 49.14 55.57 53.53 52.57

TABLE V: Performance of various models across different
hidden sizes in POS tagging (%)

ELMo achieved the highest accuracy across most hidden sizes,
followed closely by the two X2Static models, huBERTx2 and
XLM-Rx2.

The remaining models can be grouped into two perfor-
mance tiers. HuBERTde and HuSpaCy formed the stronger
pair, demonstrating similar results. EFNILEX and FastText
constituted the second tier, with FastText maintaining a slight
edge in configurations with less than 64 hidden sizes.

Fig. 2: Performance of various models across different hidden
sizes in POS tagging (%)

In alignment with findings from other experiments, the
X2Static method emerged as the best-performing approach.
Notably, both huBERT and XLM-R achieved superior results
when employing the decontextualized method rather than the
aggregate one.

As observed in the Named Entity Recognition (NER) task,
static embeddings derived from dynamic models consistently
outperformed purely static models. Despite this trend, the
gap in performance remained relatively small, reinforcing the
effectiveness of static embeddings in POS tagging tasks.

VI. CONCLUSION AND FUTURE WORK

In this paper, we conducted a comprehensive analysis of
various static word embeddings for Hungarian, alongside
static embeddings derived from BERT-based models, evalu-
ating them on both intrinsic and extrinsic tasks. To ensure
a fair comparison, all models were restricted to a common
vocabulary.

For intrinsic evaluation, we employed an analogy task,
where FastText demonstrated superior performance, achiev-
ing an overall accuracy of 71% and a Mean Reciprocal
Rank (MRR) score of 0.77. Among the BERT-based models,
huBERTx2 emerged as the best performer, with an accuracy
of 49% and an MRR score of 0.58. Notably, the X2Static
method for extracting static embeddings from BERT-based
models outperformed both the decontextualized and aggregate
methods, even rivaling traditional static embeddings in intrin-
sic evaluations.

For extrinsic evaluation, we utilized a single-layer bidi-
rectional LSTM with varying hidden sizes to assess the
effectiveness of the embeddings in downstream tasks. The
ELMo embeddings consistently outperformed other models
in both Named Entity Recognition (NER) and Part-of-Speech
(POS) tagging tasks. The X2Static method remained the most
effective for extracting static embeddings from BERT-based
models, while static embeddings derived from dynamic models
outperformed purely static models in both tasks.

This piece of research paves the way for multiple avenues of
future exploration. A key direction would be the development
of a new intrinsic evaluation dataset for Hungarian, as the
analogy question dataset remains the sole benchmark for
such evaluations. Additionally, investigating the impact of
dimensionality reduction on model performance could yield
insights into the trade-offs between efficiency and accuracy, as
the models analyzed in this study were trained with varying
dimensional settings. Furthermore, the methodology employed
here could be extended to evaluate other Hungarian BERT-
based models, broadening the scope of comparative analyses.
Another significant area of investigation is the exploration of
Hungarian GPT-based models ([29], [30]), which were not
included in this study due to the lack of a clear methodology
for extracting static embeddings from such architectures.

In the spirit of open science, the training scripts, evaluation
codes, restricted vocabulary, and the extracted huBERTx2
embeddings are made publicly available, facilitating further
research and reproducibility in the field.
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here could be extended to evaluate other Hungarian BERT-
based models, broadening the scope of comparative analyses.
Another significant area of investigation is the exploration of
Hungarian GPT-based models ([29], [30]), which were not
included in this study due to the lack of a clear methodology
for extracting static embeddings from such architectures.

In the spirit of open science, the training scripts, evaluation
codes, restricted vocabulary, and the extracted huBERTx2
embeddings are made publicly available, facilitating further
research and reproducibility in the field.
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dimensionality reduction on model performance could yield
insights into the trade-offs between efficiency and accuracy, as
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