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Abstract—This work proposes serval sensor designs for a low- 
cost, highly-sensitive microwave sensor for identifying different 
liquid samples by monitoring the variation in S21 magnitude. The 
sensor is developed using an interdigital capacitor (IDC) in series 
connection with a circular spiral inductor (CSI) and connected 
directly to a photo-resistor (LDR). To enhance sensor insertion 
losses, the sensor is introduced to a Hilbert fractal open stub and 
coupled to an interdigital capacitor to operate at 1.22GHz. The 
accuracy of the sensor is significantly improved using a back loop 
trace, eliminating nonlinear effects from multi-layer diffractions. 
An analytical model based on circuit theory is suggested for the 
proposed sensor operation. The authors found an observable 
influence of varying the LDR value on sensor insertion losses, 
motivating the development of the sensor prototype. The sensor is 
manufactured and tested experimentally before and after samples 
introduction, with a human glucose sample mounted on the LDR 
patch to measure the effects of light intensity.

Index Terms—Microwave sensor, nondestructive biomedical 
measurements, Hilbert fractal structure, circular spiral, glucose, 
neural network.
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I. INTRODUCTION 
icrowave sensors play a crucial role in biomedical 
applications, including noninversion sensing processes 

and analysis of bio tissue dielectric properties [1]. The future 
outlook for medicine is directed towards personal treatment 
regimens, which aim to establish personalized treatment plans 
for each patient [2]. Microwave technologies offer low-cost and 
low-power sensitivity, especially in the complex combination 
of compounds found in human body fluids like blood, glucose, 
and spinal fluids [3]. This leads to a wide time gap between 
sample acquisition and associated results. The increasing 
prevalence of chronic diseases and the need for cost-effective 
healthcare are the main challenges facing researchers in this 
field [4]. To achieve good medical care at low costs, researchers 
are focusing on spreading awareness of prevention and 
effective treatment against diseases rather than focusing on 
advanced treatment systems [5]. Healthcare providers and 
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employers are increasingly adopting modern communication 
technologies, such as microwave sensors, to promote "e-health" 
monitoring, which provides accurate and early diagnosis 
without the need for external medical control [6]. 

Biosensors for microwaves depend on the characteristics 
that determine the electromagnetic fields interacting with 
materials based on their molecular structure [7]. Microwave 
biosensors are designed to mutate changes in wave spread speed 
during the biological environment into a quantifiable signal, 
providing the diversity of a specified bio-parameter [8]. 

RF/microwave resonators are essential in radio frequency 
(RF)/microwave frameworks for detection and quantization. 
For optimal channel plow insertion loss (IL), high return loss 
(RL), high frequency selectivity, low losses, more fetched, and 
compactness [6]. Microwave sensors advanced work with new 
sensing technologies to do multi-band operations. Such 
technology will make it possible for short-range, high-
information-rate connections [8]. Microchannel planning 
commonly uses microwave resonators based on microstrip lines 
because of their cost-effectiveness, simplicity, and ease of 
manufacture [5]. To make multi-band microwave resonators, 
designers have used several different techniques, including 
stepping-impedance microstrip resonators, multi-mode 
resonators, parallel-coupled line resonators, and transmission 
zeroes [9]. To make sensors simpler and smaller, we can use 
stepped-impedance resonators, which work well with two or 
more transmission lines that have different characteristic 
impedances [10]. 

Biosensors are essential components in medical and 
biological experiments and diagnostics, measuring the dose of 
various biochemical species in aqueous solutions [11]. They 
have become essential in fields such as diagnostics, 
pharmaceutical procedures, biomedical engineering, industry, 
agricultural, and food safety [12]. Researchers have proposed 
various techniques and results for detection in different 
materials. In [13], a waveguide cavity-based sensor was 
presented for measuring the concentration of liquid solutions. 
The sensor operates at 1.91GHz in the fundamental TE101 
resonant mode and has been tested on water-sodium chloride 
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and water sucrose combinations. However, the accuracy of the 
resonant frequency evaluation is directly related to the quality 
factor QF and conditions around the measured records. In [14], 
a substrate integrated wave-guide (SIW) sensor was proposed 
to measure the permittivity of liquids. The resonant parameters 
of the sensor are affected by liquids passing through a slot 
opened on the upper side of the sensor. The sensitivity sensor is 
tested on different percentages of water in ethanol. The arterial 
neural network was used to solve the problem with relative 
errors of 5% and 7%, respectively. In [15], a microwave 
resonator based on Complementary Circular Spiral Resonator 
(CCSR) was proposed, working at 4.72GHz. Through 
experimentation and analysis, the proposed sensor can 
determine the concentrations of ethanol-water mixtures by 
measuring the resonant frequency of the CCSR and the 
permittivity of sample under test (SUT). In [16], a microwave 
resonator based on the complementary split-ring resonator 
(CSRR) coupling with a microstrip and the microfluidic 
channel was proposed, working at 3.994GHz. The sensor can 
also determine the water content of glucose by measuring the 
resonant frequency of the CSRR and the permittivity of SUT. 
In [17], a microwave sensor with a coplanar waveguide semi-
lumped meandering open complementary split ring resonator 
(MOCSRR) was proposed, operating up to frequencies of 
approximately 200MHz. The sensor successfully detects 
branded and unbranded fuel oil samples, with the difference 
demonstrated by the fluctuation in the transmission coefficient 
resonant frequency amplitude. In [18], a Cesare fractal 
geometry based on a compact Electromagnetic Bandgap (EBG) 
structure was presented to measure the complex permittivity of 
various liquids (butan-1-ol, methanol, and water). The relative 
permittivity is 3.57 for butan-1-ol, 21.3 for methanol, and 78 
for water. 

In this work, the proposed sensor is realized for enhancing 
anomaly detection of RF bio-sensors using machine learning 
techniques. For this the theoretical considerations and design 
are discussed in section II. The experimental validation is 
considered in section III. In section IV, the neural network 
implementation is realized. The paper is concluded in section 
V. 

Fig.1: The simplified block diagram of the design based on reconfigurable 
technology. 

II. THEORETICAL STUDY TO DESIGN A MICROWAVE SENSOR 
FOR BIOMEDICAL DETECTIONS 

This paper presents new microwave sensors for biomedical 
detection using a two-port network for liquid characterizations. 
The main structure is a miniaturized microwave resonator based 
on a circular spiral inductor, which is used to increase 
sensitivity and concentrate current before being transferred to 

the SUT. The sensor is introduced to three inclusions: open 
stub, Minkowski filter, and Hilbert filter. Open stubs are used 
to eliminate measurement distortions and dispersion effects, 
while Minkowski filter is used to linearize measurements and 
remove the effects of frequencies before 0.5GHz. The Hilbert 
curve is used to remove the effects of frequencies before 
0.5GHz. The sensors are designed to be compatible with 
microprocessors and measure water content variation based on 
frequency shift. The research also explores the use of a photo 
resistor to control sensor performance and measure output 
voltage from a RF rectifier at the sensor's output port. A neural 
network model is presented to solve problems involving 
nonlinearities, multi-variables, and multi-resonances. 
 
A. Base Sensor Design 

The proposed sensor is mounted on a FR4 substrate with a 
thickness of 1.6 mm and is based on OS-CRLH. It consists of a 
transmission line connected to an RLC branch network, which 
is structured as input capacitor which are inspired from [19] in 
series with a circular spiral inductor Lse and connected directly 
to a photo-resistor LDR. The LDR is mounted between the LC 
branches at the middle of the sensor, and the back panel is 
covered with a metallic ground plane of 0.035 mm. The 
proposed sensor geometrical details are explained as seen in 
Fig.2. Consequently, the main structure of the proposed sensor 
is constructed from the same proposed sensor with Hilbert 
curve introduction. As maintained later, the proposed sensor is 
constructed from an inter digital capacitor to remove the effects 
of the imaginary component that is generated by the indictor 
structure which mainly stores the energy from the propagation 
[19]. The inductor structure is invoked to be a spiral geometry 
cause of being a highly sensitive stricter that concentrate the 
current before being transferred to SUT. 

 
Fig.2; The proposed sensor geometry: (a) front view and (b) back view. Note: 

all dimensions are in mm scale. 
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covered with a metallic ground plane of 0.035 mm. The 
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is constructed from the same proposed sensor with Hilbert 
curve introduction. As maintained later, the proposed sensor is 
constructed from an inter digital capacitor to remove the effects 
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structure which mainly stores the energy from the propagation 
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and water sucrose combinations. However, the accuracy of the 
resonant frequency evaluation is directly related to the quality 
factor QF and conditions around the measured records. In [14], 
a substrate integrated wave-guide (SIW) sensor was proposed 
to measure the permittivity of liquids. The resonant parameters 
of the sensor are affected by liquids passing through a slot 
opened on the upper side of the sensor. The sensitivity sensor is 
tested on different percentages of water in ethanol. The arterial 
neural network was used to solve the problem with relative 
errors of 5% and 7%, respectively. In [15], a microwave 
resonator based on Complementary Circular Spiral Resonator 
(CCSR) was proposed, working at 4.72GHz. Through 
experimentation and analysis, the proposed sensor can 
determine the concentrations of ethanol-water mixtures by 
measuring the resonant frequency of the CCSR and the 
permittivity of sample under test (SUT). In [16], a microwave 
resonator based on the complementary split-ring resonator 
(CSRR) coupling with a microstrip and the microfluidic 
channel was proposed, working at 3.994GHz. The sensor can 
also determine the water content of glucose by measuring the 
resonant frequency of the CSRR and the permittivity of SUT. 
In [17], a microwave sensor with a coplanar waveguide semi-
lumped meandering open complementary split ring resonator 
(MOCSRR) was proposed, operating up to frequencies of 
approximately 200MHz. The sensor successfully detects 
branded and unbranded fuel oil samples, with the difference 
demonstrated by the fluctuation in the transmission coefficient 
resonant frequency amplitude. In [18], a Cesare fractal 
geometry based on a compact Electromagnetic Bandgap (EBG) 
structure was presented to measure the complex permittivity of 
various liquids (butan-1-ol, methanol, and water). The relative 
permittivity is 3.57 for butan-1-ol, 21.3 for methanol, and 78 
for water. 

In this work, the proposed sensor is realized for enhancing 
anomaly detection of RF bio-sensors using machine learning 
techniques. For this the theoretical considerations and design 
are discussed in section II. The experimental validation is 
considered in section III. In section IV, the neural network 
implementation is realized. The paper is concluded in section 
V. 

Fig.1: The simplified block diagram of the design based on reconfigurable 
technology. 
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The suggested design examines the Hilbert-curve 
configuration to minimize sensor dimensions and enhance 
frequency resonances [20]. The examined fractal geometry is 
founded on the third-order Hilbert geometry, as seen in Fig. 2. 
The suggested equivalent circuit model for Hilbert geometry, as 
shown in Fig. 2, is developed from Richard Koch's theory [8]. 
The equivalent circuit model of the proposed unit cell is 
produced from the simulation results, as seen in Fig. 2. The 
equivalent capacitances of coupling between the unit cell and 
neighboring cells are denoted as the left-hand capacitor (CST), 
while the fractal slot is regarded as an inductor (LST), where 
the magnetic current mobility in the air traces may be amplified. 
This inductor corresponds to the magnetic field contained 
inside the fractal slots of the rings. The material loss is 
determined by the resistor RST [11]. The suggested sensor 
design has a feedback loop structure. The benefit of this 
introduction is to get a band reject filter response rather than a 
passband resonance. This alteration enhances the accuracy of 
the measurement findings [12]. 

The suggested sensor design is founded on an equivalent 
circuit model, which is analytically derived from an analogous 
circuit model based on the established RLC network, typically 
configured as an IDC in series with a CSI and the Hilbert 
fractal. The suggested structural equivalent circuit model is 
developed with the lumped elements Richard model [1]. The 
suggested circuit model consists of a 50Ω input impedance RF 
source connected in series with a parallel (R-L-C) branch, as 
seen in Fig.3. The primary transmission line was characterized 
by an inductive segment LT and capacitive air gaps Cgap, as 
previously seen in Fig.3(a). The proposed circuit model's S-
parameters, shown in Fig. 3(b), are analyzed and juxtaposed 
with those obtained via CST MWS. An effective agreement is 
attained based on the specified lumped components, which are 
modeled in Advanced Devices Simulator (ADS). The assessed 
RLC components are enumerated in Table I.  

 
(a) 

 
(b) 

Fig.3 Equivalent circuit analytical model of the proposed sensor: (a) circuit 
model and (b) S-parameters. 
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C.  Sensor Operation and Detection Process 
This section presents the operational and reconfiguration 

scenarios designed to illustrate the proposed technique for 
comprehending sensor functionality. By altering the resistance 
of the included LDR from 100Ω to 1000Ω, a notable shift in the 
spectra of the suggested sensor S21 is seen, as shown in Fig. 4. 
This change is ascribed to the voltage division effects between 
the overall impedance of the proposed sensor and the LDR [13]. 
The present motion would be substantially influenced and 
traverse the back loop structure to be diffused inside the 
suggested fractal form. Consequently, this dissipation will be 
very beneficial for sensing, as will be shown subsequently. 
Fig.4 illustrates three frequency resonances at 630MHz, 
1.22GHz, and 3.2GHz, all of which will be used in the sensing 
procedure of this study. 

 
Fig.4: Evaluated S21 spectra with respect to varying the LDR value. 

III. EXPERIMENTAL VALIDATIONS 
This paper presents a sensor design for glucose samples 

aimed at improving detection accuracy by generating an output 
voltage. The main limitation is the difficulty in linearizing 
measurements due to field fringing from boundary conductions. 
The proposed method uses a photo-resistor to control sensor 
performance, eliminating field fringing effects from 
discontinuities. The sensor is connected with a back loop 
structure, allowing for band reject filter response and 
controlling charging rise time until the photo-resistor reaches 
saturation. The sensor is fabricated and measured 
experimentally using a Professional Network Analyzer (Agilent 
PNA 8720) after a through transmission calibration process. 
The measurements are conducted to S11 and S21 spectra to 
eliminate possible errors. The sensor shows a well-defined 
resonance at 1.5GHz with S21= -27 dB. An excellent agreement 
is found between numerical results and measurements within 
frequencies from 0.1GHz up to 4GHz. 
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The sensor was tested by taking different samples of the 
glucose and water mixture and measured experimentally in 
terms of S21 spectra. The use of an LDR switch is conducted 
with a long glass slab to avoid direct contamination and 
linearize variation using the LDR switch. The sensor is 
fabricated using a wit chemical etching process and S21 spectra 
are measured before and after glucose introduction on top of the 
LDR spot using an Agilent vector network analyzer. For this, 
an experimental study was conducted to validate the 
effectiveness of glucose level variation on sensor performance 
at 1.22GHz. The results showed that the proposed sensor is an 
excellent candidate for glucose measurements and could be 
promising for other biological fluid characterizations. The 
sensor was introduced to 15 patients and measured glucose 
levels at three different times, about 7 days to 10 days apart. 
The results showed that the variation in output voltage 
increased rapidly with increasing glucose magnitude as listed in 
Table II. The glucose sample used was about 0.01cc to avoid 
contamination effects. 

Fig.5; Experimental validation: (a) Fabricated sensor and (b) S-parameter 
spectra.  

The proposed sensor is linked to an RF rectifier to gauge the 
output voltage across a resistor connected in parallel to the 
output terminals of the RF rectifier, as shown in Fig. 6(a).  This 
measurement is conducted by varying the light intensity on the 
photoresist from 100 Ω to 600 Ω.  This variance is analyzed 
quantitatively by examining the effective impedance change 
and its impact on the S21 value at 1.22GHz.  The fluctuation is 

experimentally monitored about an output voltage (Vout) for 
practical use.  The fluctuation in Vout has a linear trend, as seen 
in Table II.  This signifies that a satisfactory concordance has 
been attained between the experimental and simulated 
outcomes.  The proposed sensor variation in response may be 
attained by using an RF rectifier to assess the alteration in 
output voltage via an oscilloscope.  The input voltage is set at 
100 mV from the sources.  Fig.6(b) illustrates the fluctuation of 
the output voltage of the proposed RF rectifier in relation to the 
change in input power. 
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Case 
number BMI Age/ 
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level mV |S21| 

1 19.1 7 F 
102 72.2 0.106 
200 74.7 0.115 
156 73.9 0.111 

2 24.9 51 F 
111 72.8 0.109 
123 72.3 0.112 
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289 75.9 0.11 
234 75.2 0.112 
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The sensor was tested by taking different samples of the 
glucose and water mixture and measured experimentally in 
terms of S21 spectra. The use of an LDR switch is conducted 
with a long glass slab to avoid direct contamination and 
linearize variation using the LDR switch. The sensor is 
fabricated using a wit chemical etching process and S21 spectra 
are measured before and after glucose introduction on top of the 
LDR spot using an Agilent vector network analyzer. For this, 
an experimental study was conducted to validate the 
effectiveness of glucose level variation on sensor performance 
at 1.22GHz. The results showed that the proposed sensor is an 
excellent candidate for glucose measurements and could be 
promising for other biological fluid characterizations. The 
sensor was introduced to 15 patients and measured glucose 
levels at three different times, about 7 days to 10 days apart. 
The results showed that the variation in output voltage 
increased rapidly with increasing glucose magnitude as listed in 
Table II. The glucose sample used was about 0.01cc to avoid 
contamination effects. 

Fig.5; Experimental validation: (a) Fabricated sensor and (b) S-parameter 
spectra.  
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TABLE II
Measured glucose influence on the proposed sensor  

perforMance.
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Fig.6: (a) Experimental setup and (b) RF rectifier performance. 

IV. NEURAL NETWORK IMPLEMENTATION 
In this section, the variation in the measured S21 magnitude 

from is performed. The S21 variation with respect to the glucose 
level normalization are evaluated from measurement data. In 
such data, the detection process is performed according to the 
S21 change. For this, a comparison study between measured data 
is conducted to realize the trade-line regressions for 
measurements with a negative slop as seen in Fig.7. 

 
Fig.7: A comparison study between measured points. 

 
This study used the instances from Table II to derive the 

input data. The samples are categorized into training and testing 
sets. To find the best performance index (P.I.) for the ANN, the 
number of neurons, epochs, and learning rate will be changed. 
The neural network will then be trained five times, and the 
results will be averaged. There is one buried layer containing 
three neurons. The learning rate is set at 0.001, with a total of 
88 epochs. The mean P.I. of this network is 76.32%. The 
MATLAB code is used to categorize the input data from 

regression, demonstrating the categorization of the data based 
on their respective categories. The input data in this category is 
classified by the neural network into three periods, mostly 
based on the regression rate. In this categorization, the first third 
of the input data is designated as low glucose level. The second 
interval pertains to the intermediate glucose concentration. The 
last interval is regarded for elevated glucose levels. Figure 8 
demonstrates that the data regression aligns very well with the 
output data. Furthermore, the regression topic is notably 
relevant; the suggested sensor, based on the neural network, 
achieves exceptional alignment with classifications at both low 
and high glucose levels. This finding is confined to intermediate 
values, which may result in significant inaccuracy. To provide 
an effective solution, more data points are necessary to identify 
the optimal fit for this period. It is noteworthy that the disparity 
in the intermediate period is shown in Fig. 7, which depicts a 
breakpoint in the center of the values from the simulation that 
aligns with the actual data. Table III enumerates the optimal 
values achieved for the most frequently used neural network 
parameters. 

Fig.8: Findings from the regression analysis. 
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Table III: NN parameters 

NN parameters NN for simulation 
Number of Input layer nodes 5 
Number of Hidden layer nodes 3 
Number of Output Layer nodes 1 
Transfer function logsig 
Training function pureline 
Learning rate 0.001 
Maximum number of Epochs 88 

 
Finally, the proposed sensor is compared to the relatives 

published in the literature as listed in Table IV. The proposed 
work is compared interms of Q-factor, sensing type, and 
frequency. It is found that the proposed sensor provides the 
highest Q-factor with a resonance frequency of 1.22GHz. This 
frequency band is highly suitable for biomedical applications, 
particularly glucose level detection. Because it can balance 
penetration depth, sensitivity, and signal integrity, the 1.22GHz 
frequency is perfect for biomedical applications that need to 
find glucose levels [12]. Its dielectric properties, which vary 
with frequency, make it easier to detect variations in glucose 
concentrations. The frequency also keeps signal loss to a 
minimum, which makes it possible to use a non-invasive 
method that is still sensitive to changes in glucose levels. 
Additionally, it offers biomedical safety and non-invasiveness, 
as it doesn't require direct contact with blood. The high-Q 
sensor at 1.22GHz allows for compact microwave sensors with 
strong resonance characteristics, improving measurement 
precision. 

 
Table IV: A comparison between the proposed sensor and other published 

results 

Ref. Q-factor Sensing Fo/GHz 
[4] 280 Solid 2.4 
[5] 407.34 Solid 2.2 
[6] 345 Solid 3.2 
[7] 652 Solid 2.22 
[8] 446, 506 Solid 2.5 and 3.9 
[9] 458 Solid 1.5 

[10] 662 Solid 2.4 
[11] 265 Liquid 2.45 
[12] 398 Liquid 1.8, 2.45, and 3.5 
[13] 425 Liquid 5.3 and 5.8 
[14] 280, 160 Liquid 5.76 and 7.85 
[15] 111.56, 21.39 Liquid 2.45 and 5.8 
[16] 286.5 Powder 1 to 3 
[17] 385.6 Powder 1.0–3 

The proposed work 794.7 Liquid 1.22 
   

V. CONCLUSION 
The proposed sensor design utilizes a microwave resonator 

based on the CRLH structure of Hilbert geometry. It is tested 
with glucose from 11 different patients, and the way it works 
involves a new way of using an LDR part that makes the sensor 
work differently when the amount of glucose changes. We 
attribute this change to the transparency of the glucose under 
test, which alters the frequency shift and S21 magnitude. The 
writers found that the ratio in the S21 magnitude is critical at 
1.22GHz with linear variation. Because of the linear variation, 
the authors believe that this design is ideal for sensing. The 
proposed sensor circuit model is used to see what happens when 
the proposed sensor parts are added, and the outcomes are 
contrasted with the actual outcomes that were measured. We 
numerically test the sensor's performance using CST MWS and 
validate it with ADS. It was solved analytically with circuit 
model analysis, and the suggested sensor works in a straight 
line, but the way it works changes depending on what is being 
tested. Transmission line technology forms the suggested 
sensor. It has a transmission line that is linked to an RLC 
network, set up as an IDC in series with a CSI, and linked 
directly to an LDR. The sensor operates at 1.22GHz and detects 
water introductions successfully by changing the S21 
magnitude directly. 
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validate it with ADS. It was solved analytically with circuit 
model analysis, and the suggested sensor works in a straight 
line, but the way it works changes depending on what is being 
tested. Transmission line technology forms the suggested 
sensor. It has a transmission line that is linked to an RLC 
network, set up as an IDC in series with a CSI, and linked 
directly to an LDR. The sensor operates at 1.22GHz and detects 
water introductions successfully by changing the S21 
magnitude directly. 
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Table III: NN parameters 

NN parameters NN for simulation 
Number of Input layer nodes 5 
Number of Hidden layer nodes 3 
Number of Output Layer nodes 1 
Transfer function logsig 
Training function pureline 
Learning rate 0.001 
Maximum number of Epochs 88 

 
Finally, the proposed sensor is compared to the relatives 

published in the literature as listed in Table IV. The proposed 
work is compared interms of Q-factor, sensing type, and 
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concentrations. The frequency also keeps signal loss to a 
minimum, which makes it possible to use a non-invasive 
method that is still sensitive to changes in glucose levels. 
Additionally, it offers biomedical safety and non-invasiveness, 
as it doesn't require direct contact with blood. The high-Q 
sensor at 1.22GHz allows for compact microwave sensors with 
strong resonance characteristics, improving measurement 
precision. 

 
Table IV: A comparison between the proposed sensor and other published 

results 

Ref. Q-factor Sensing Fo/GHz 
[4] 280 Solid 2.4 
[5] 407.34 Solid 2.2 
[6] 345 Solid 3.2 
[7] 652 Solid 2.22 
[8] 446, 506 Solid 2.5 and 3.9 
[9] 458 Solid 1.5 

[10] 662 Solid 2.4 
[11] 265 Liquid 2.45 
[12] 398 Liquid 1.8, 2.45, and 3.5 
[13] 425 Liquid 5.3 and 5.8 
[14] 280, 160 Liquid 5.76 and 7.85 
[15] 111.56, 21.39 Liquid 2.45 and 5.8 
[16] 286.5 Powder 1 to 3 
[17] 385.6 Powder 1.0–3 

The proposed work 794.7 Liquid 1.22 
   

V. CONCLUSION 
The proposed sensor design utilizes a microwave resonator 

based on the CRLH structure of Hilbert geometry. It is tested 
with glucose from 11 different patients, and the way it works 
involves a new way of using an LDR part that makes the sensor 
work differently when the amount of glucose changes. We 
attribute this change to the transparency of the glucose under 
test, which alters the frequency shift and S21 magnitude. The 
writers found that the ratio in the S21 magnitude is critical at 
1.22GHz with linear variation. Because of the linear variation, 
the authors believe that this design is ideal for sensing. The 
proposed sensor circuit model is used to see what happens when 
the proposed sensor parts are added, and the outcomes are 
contrasted with the actual outcomes that were measured. We 
numerically test the sensor's performance using CST MWS and 
validate it with ADS. It was solved analytically with circuit 
model analysis, and the suggested sensor works in a straight 
line, but the way it works changes depending on what is being 
tested. Transmission line technology forms the suggested 
sensor. It has a transmission line that is linked to an RLC 
network, set up as an IDC in series with a CSI, and linked 
directly to an LDR. The sensor operates at 1.22GHz and detects 
water introductions successfully by changing the S21 
magnitude directly. 
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