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I. INTRODUCTION 
upport Vector Machine (SV), is one of the simplest and 

most refined classification methods in machine learning. 
Unlike neural networks, SVMs can work with very small 
datasets and are not inclined to overfitting. The SVM is used to 
classify each object by representing points in an N-dimensional 
space and the coordinates of these points, which are usually 
called features. [2] 

SVM perform the classification procedure by drawing a 
hyperplane that is a line in 2 or 3 dimensional in a plane such a 
way that all points of one category are on one side of the 
hyperplane and all points of other categories are on the other 
side. If there are multiple hyperplanes, SVM try to find the one 
that best separate the two categories, in the sense that 
maximizes the distance to points in either category [3-4]. This 
distance called the Margin and all the points fall exactly on the 
margin are called the Supporting Vectors. To find the 
hyperplane in the first place the SVM requires for training set 
or set of points that already labeled with the correct category, 
this is why SVM is said to be supervised learning algorithm. In 
the background SVM solve a convex optimization problem that 
maximize this margin and where constraints say that points for 
each category should be fall in the correct side of the 
hyperplane. [5-6] 

While it’s mainly used for binary classification, SVM can 
also handle multiclass problems by using strategies like one-vs-
all (comparing one class against all others) or one-vs-one 
(building a classifier for each pair of classes [7]. Originally 
presented by Vapnik, SVMs are well-known for their kernel-
based approach to classification and regression tasks [8–10]. In 
data mining, pattern recognition, and machine learning, their 

remarkable generalization capacity, optimal solutions, and 
discriminative power have attracted plenty of attention. 
Originally presented by Vapnik, SVM is well-known for its 
kernel-based method of handling regression and classification 
problems [8–10]. The data mining, pattern recognition, and 
machine learning groups in recent years have shown great 
interest in its exceptional generalization capacities, optimal 
solutions, and discriminative capability [11]. To maximize the 
separation margin in a high-dimensional feature space, SVMs 
optimize decision functions directly from training data [12–18]. 
This strategy not only minimizes training data errors but also 
improves generalization abilities. The support vector machine 
algorithm or SVM it looks at the extremes of the data sets and 
draws a decision boundary also known as a hyperplane near the 
extreme points in the data set so essentially the support vector 
machine algorithm is a frontier which best segregates the two 
classes. [19-20]. 

 

A. SVM Historical Perspective and their Evolution. 
Vladimir Vapnik and Alexey Chervonenkis's landmark 

paper, "A Theory of Learning from General Examples" (1964), 
laid the foundation for statistical learning theory. It emphasized 
minimizing generalization error rather than training error, a 
principle central to SVMs [21]. Vapnik and Boser further 
developed SVMs in their 1992 paper, "Pattern Recognition 
Using an Insensitive Loss Function," where they detailed 
classical SVM algorithms for binary classification and 
introduced the concept of support vectors [22]. The 
development of kernel methods by Christopher J.C. Burges in 
"A Tutorial on Support Vector Machines for Pattern 
Recognition" (1998) enabled SVMs to effectively handle non-
linearly separable data [23]. 

B. Application of SVN 
The late 1990s and early 2000s saw the development of 

robust SVM software libraries like LIBSVM and SMO, making 
them readily accessible to practitioners. This accessibility 
sparked a surge in SVM applications across various fields, 
including [24-25]: 

• Text classification: Spam filtering, sentiment analysis, 
topic modeling. 

• Image classification and object detection: Handwritten 
digit recognition, object detection, image segmentation. 

• Bioinformatics and computational biology: Gene 
classification, protein analysis, disease prediction. 

• Financial forecasting: Stock market prediction, credit 
risk assessment. 
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TABLE I
The summary of the Literature Review
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• Healthcare and medical diagnosis
• Cybersecurity and intrusion detection
• Environmental science and climate modeling.

C. SVMs Advantages and Disadvantages [26-28]:
Advantages:
• Particularly successful in high-dimensional 

environments.
• Memory effective: Makes only use of a subset of the 

training points.
• flexible: the kernel method helps here.
• Scalability and efficiency: advances in large-scale 

SVMs and mass dataset handling optimizing techniques.
• Multi-class and multi-label classification stretches 

SVMs beyond binary classification to address intricate 
data structures.

• Designs new kernel functions and investigates adaptive 
kernels automatically that learn from data automatically 
in kernel learning and adaptation.

• This method minimizes generalization error and 
improves performance with fresh data by concentrating 
on margin maximizing and capacity control.

• Robustness: Greater robustness results from larger 
margins lowering susceptibility to data changes or noise.
learning models.

Disadvantages:
• Not appropriate for big datasets: Long training 

times can be problematic.
• Sensitive to kernel and hyperparameter decisions: 

These can greatly affect results.
• Difficult Interpretability: Complicating knowledge 

are complex elements including high-dimensional 
decision limits and kernel modifications.

• Handling big datasets might result in major 
computational expenses and increase training times, 
hence computationally demanding.

• Correct parameter settings define performance; 
inadequate calibration can produce less than ideal 
results.

• Lack probabilistic outcomes: procedures like Platt 
scaling are required for probabilities; SVMs mostly 
produce binary classifications without direct 
probability estimations.

• Understanding complex models is challenging: 
Particularly with nonlinear kernels, intricate 
decision boundaries complicate models for 
interpretation.

• Scalability problems: Memory and computing 
restrictions can make training on very big datasets 
unworkable.

II. RECENT REVIEW ARTICLES AND SURVEYS ON SVMS

Table I. The summary of the Literature Review

Reference Description

[25-28] Introduces machine learning, focusing on supervised learning and SVMs. Explores SVM capabilities, 
applications, and future prospects.

[29] SVM for two-class classification, kernels, and penalty functions, furthermore covering multiclass methods, one-
class SVDD, and Support Vector Regression for handling outliers and non-linear data.

[30-31] Provides an overview of SVM applications, challenges, and emerging trends, highlighting their utility in various 
fields.

[32] Comprehensive review of SVMs, covering fundamental concepts, kernel methods, optimization algorithms, and 
applications.

[33] Surveys SVM applications in bioinformatics, healthcare, finance, image processing, and natural language 
processing.

[34] Focuses on interpretable SVMs, covering techniques like rule extraction, feature importance analysis, and model-
agnostic methods.

[35] Reviews challenges and solutions for large-scale SVM training, including stochastic gradient descent and 
distributed computing.

[36] Explores hybrid models combining SVMs with deep learning to improve performance and address individual 
limitations.

[37] Highlights emerging SVM applications in bioinformatics, healthcare, finance, and natural language processing.
[38] Develops an automated facial expression recognition system using SVM, MLP, and KNN classifiers with HOG 

and PCA for feature extraction.
[39] Examines linear SVM classification, focusing on solvers, improvements, empirical findings, and future research 

directions.
[40] Demonstrates SVM's effectiveness in predicting Alzheimer's disease using MRI data, emphasizing its potential 

in medical diagnosis.
[41] Proposes a bagged ensemble SVM technique for speech emotion recognition, contributing to Human-Computer 

Interaction research.
[42] Introduces an SVM-based intrusion detection framework with naive Bayes feature embedding, improving 

network security.
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[37] Highlights emerging SVM applications in bioinformatics, healthcare, finance, and natural language processing.
[38] Develops an automated facial expression recognition system using SVM, MLP, and KNN classifiers with HOG 

and PCA for feature extraction.
[39] Examines linear SVM classification, focusing on solvers, improvements, empirical findings, and future research 

directions.
[40] Demonstrates SVM's effectiveness in predicting Alzheimer's disease using MRI data, emphasizing its potential 

in medical diagnosis.
[41] Proposes a bagged ensemble SVM technique for speech emotion recognition, contributing to Human-Computer 

Interaction research.
[42] Introduces an SVM-based intrusion detection framework with naive Bayes feature embedding, improving 

network security.
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[43] Presents a U-Net-based method for melanoma classification in dermoscopy images, using segmentation, feature 
extraction, and SVM.

[44] Combines deep neural networks (DNN) and multiclass SVMs for classification, using K-means clustering for 
feature extraction.

[45] Enhances SVM classification capabilities by incorporating dynamic graph learning and self-paced learning.
[46] Highlights SVM's role in interpreting neuroimaging data for brain disorder research and precision psychiatry.
[47] Proposes a CNN-SVM hybrid model for diagnosing faults in rotating machinery, improving early-stage fault 

detection.
[48] Combines deep learning and SVM for identifying and predicting rice leaf diseases.
[49] Introduces a method for detecting malaria parasites using deep neural networks and SVM with transfer learning.
[50] Explores SVM's role in image classification, discussing its evolution, variants, and applications.
[51] Uses PSO, GA, and Grid Search to optimize SVM parameters for risk assessment in railway transportation 

systems.
[52] Addresses factors affecting SVM performance in classifying nonlinearly separable problems, providing insights 

for future research.
[53] Proposes a deep learning method for breast cancer detection using mammography, combining DNN and 

multiclass SVM.
[54] Introduces DeepSVM-fold, a computational predictor for protein fold recognition, offering improved accuracy 

over existing methods.

III. METHODOLOGY

One of the most well-known supervised learning methods is 
Support Vector Machine (SVM). Its main job is to sort things 
into groups, but it can also help with error problems in machine 
learning [24]. In n-dimensional space, the SVM algorithm tries 
to find the best line or decision boundary that splits it into 
classes. This makes it easy to put new data points into the right 
category. A hyperplane is the name for this best border. SVM 
finds the most important extreme points or vectors for defining 
this hyperplane [25–26].

The Core Concepts [27-30]
Support Vector Machines (SVMs) aim to identify a 
hyperplane with the largest possible margin, resulting in a 
robust classification model. The mathematical method 
maximizes the squared norm of the weight vector under 
constraints guaranteeing class separation. Lagrange 
multipliers help to simplify this optimization issue. Crucially 
important data points defining the decision-making range are 
support vectors. Then, depending on their feature vectors, a 
decision function groups newly occurring data points. 
Important notes: 
Hyperplanes are data point classification boundary. Points on 
opposing sides of the hyperplane fall into several categories. 
The number of features determines the hyperplane's 
dimension; for instance, a hyperplane with two features is a 
line and with three it becomes a plane. 

Margins: The margin is the distance between the 
hyperplane and the closest data points, known as support 
vectors. This distance can be mathematically expressed as:       
2/(||w||) . The Euclidean norm of the weight vector w is 
denoted as ∥w∥.
Maximizing Margins: SVMs strive to find the hyperplane 
with the widest margin, enhancing the classifier's 
generalization capabilities. 
Regularization: This technique helps prevent overfitting in 
SVMs by introducing a penalty term in the objective 

function, which encourages the model to prefer simpler 
decision boundaries over complex ones that perfectly fit the 
training data. 
Support Vectors: These are data points close to the 
hyperplane that significantly influence its position and 
orientation and are essential for constructing the SVM

Support Vectors: These are data points close to the 
hyperplane that significantly influence its position and 
orientation and are essential for constructing the SVM. 
Altering these points would shift the hyperplane, as 

illustrated in Figure 1.

Fig. 1. Support vectors

Kernel Functions: These functions transform the input data 
into a higher-dimensional feature space, making it easier for 
a linear classifier to separate the data. Kernels help capture 
complex, nonlinear patterns like curves and circles. Common 
types include linear, polynomial, radial basis function (RBF), 
and sigmoid. There are two different categories that are 
classified using a decision boundary or hyperplane as shown 
in Figure. 2.

x ⃗⃗ . w⃗⃗⃗ = c (the point lies on the decision boundary)
x ⃗⃗ . w⃗⃗⃗ > c (positive samples)
x ⃗⃗ . w⃗⃗⃗ < c (negative samples)
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A.  Types of Support Vector Machine
Based on the nature of the decision boundary, Support 
Vector Machines (SVM) can be divided into two main parts 
as shown in Figure 1:
Support Vector Machines (SVM) can be categorized into 
two main types based on the nature of the decision boundary
1.	 Linear SVM:
	 This type is applicable when the data is perfectly 

linearly separable. This means that the data points can 
be divided into two classes using a single straight line in 
a two-dimensional space, as shown in Figure 4.A.

2.	 Non-Linear SVM:
	 When the data is not linearly separable, a Non-Linear 

SVM is used. This occurs when the data points cannot 
be separated into two classes by a straight line. In 
such cases, advanced techniques like the kernel trick 
are employed to classify the data. Most real-world 
applications involve non-linearly separable data, hence 
the kernel trick is commonly used, as depicted in Figure 
4.B.

B.  Mathematical Formulation
1.	 Linear SVM:
	 This type is applicable when the data is perfectly 

linearly separable. This means that the data points can 
be divided into two classes using a single straight line in 
a two-dimensional space, as shown in Figure 4.A.
1.1.	Data: a dataset of points ({Xi}, {Yi}), where 

Xi is an n-dimensional vector representing the 
features of a data point and Yi is the class label  
(+1 or -1).

1.2.	Hyperplane Equation: The hyperplane is defined 
as: 

	 WT × X + b = 0 ......................	             (1)
	 Where W is a weight vector normal (perpendicular) 

to the hyperplane X is an input vector b is the bias 
term

1.3.	Constraints: For a data point to be correctly 
classified, we need:

	 Yi (WT ×Xi + b) ≥ 1 	 for Yi =+1        ...(2) 
	 Yi (WT ×Xi + b) ≤ –1 	 for Yi =–1        ...(3)
1.4.	Optimization Problem: Maximizing the margin is 

equivalent to minimizing the following objective 
function:                  (subject to the constraints 
above). This is a quadratic optimization problem, 
usually solved using techniques like Lagrange 
multipliers.

	
2.	 Non-Linear SVMs (The Kernel functions):
	 The popular kernel types that we can use transform the 

data into high dimensional feature space are polynomial 
kernel, radial basis function RPF or RBF kernel and 
sigmoid kernel [32]. Choosing the correct kernel is a 
non- trivial task and may depend on specific task at 
hand no matter which kernel we choose, just we need 
to tune the kernel parameters to get good performance 
from a classifier. A popular parameter tuning technique 
includes k-fold cross-validation. Some of the most 
common kernel functions for support vector machines 
include:
2.1.  The Linear Kernel: 
	 The linear kernel, or dot product kernel, is the 

simplest function. It calculates the dot product of 
input feature vectors in the original input space. 
Mathematically, it is expressed as in equation (4). 
K(xi, xj) = xiT × xj .......... (4)
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Fig. 2. The hyperplanes used to classify data points [30]

Consider a random point X, and determine whether it is 
above or below the hyperplane, or on it, as shown in Figure 
3. First, represent X as a vector. Then, construct a vector (w) 
perpendicular to the hyperplane. Suppose C is the distance 
from the origin to the decision boundary along (w). Project 
X onto (w) through a dot product. If the dot product exceeds 
C, X is above the plane; if less, below; if equal, on the 
decision boundary [31].
C

Fig. 3. The core concept of the SVM algorithm
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Fig.4. A: Linearly Separable Data B: Non-Linearly Separable Data

B. Mathematical Formulation 
1. Linear SVM

SVMs are not built on arbitrary heuristics. Their 
focus on finding the largest margin hyperplane stems 
from the core principles of SLT. This strategy aims to 
directly control model capacity, promoting 
generalization and avoiding overfitting [31].
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1.3. Constraints: For a data point to be correctly 
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is equivalent to minimizing the following 
objective function: W= ||𝑊𝑊2||
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optimization problem, usually solved using 
techniques like Lagrange multipliers.

2. Non-Linear SVMs (The Kernel functions)
The popular kernel types that we can use transform the 
data into high dimensional feature space are polynomial 
kernel, radial basis function RPF or RBF kernel and 
sigmoid kernel [32]. Choosing the correct kernel is a non-
trivial task and may depend on specific task at hand no 
matter which kernel we choose, just we need to tune the 
kernel parameters to get good performance from a 
classifier. A popular parameter tuning technique includes
k-fold cross-validation. Some of the most common kernel 
functions for support vector machines include:

2.1. The Linear Kernel:
The linear kernel, or dot product kernel, is the simplest 
function. It calculates the dot product of input feature 
vectors in the original input space. Mathematically, it is 
expressed as in equation (4).
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is equivalent to minimizing the following 
objective function: W= ||𝑊𝑊2||

2 (subject to the 
constraints above). This is a quadratic 
optimization problem, usually solved using 
techniques like Lagrange multipliers.

2. Non-Linear SVMs (The Kernel functions)
The popular kernel types that we can use transform the 
data into high dimensional feature space are polynomial 
kernel, radial basis function RPF or RBF kernel and 
sigmoid kernel [32]. Choosing the correct kernel is a non-
trivial task and may depend on specific task at hand no 
matter which kernel we choose, just we need to tune the 
kernel parameters to get good performance from a 
classifier. A popular parameter tuning technique includes
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2.1. The Linear Kernel:
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	 Advantages:
•	 Efficiency: The linear kernel excels in 

computational efficiency, involving only a 
simple dot product operation, making it suitable 
for high-dimensional data where other kernels 
might become computationally expensive.

•	 Interpretability: It offers the highest level of 
interpretability among kernel functions. The 
decision boundary learned by the SVM is a 
hyperplane in the original feature space, and 
the weights assigned to each feature reveal 
their relative importance for classification.

•	 No Hyperparameter Tuning: Unlike most 
other kernels, the linear kernel requires no 
hyperparameter tuning, making it easier to 
use and reducing the risk of overfitting due to 
poorly chosen hyperparameter.

	 Limitations:
•	 Limited to Linearly Separable Data: Its main 

limitation is that it can only handle data that 
is already linearly separable in the original 
feature space. If the data exhibits complex, 
non-linear relationships, the linear kernel will 
not effectively learn a separation boundary.

•	 Less Flexible: Due to its simplicity, the linear 
kernel is less flexible in modeling complex 
non-linear patterns compared to kernels like 
polynomial or RBF.

2.2.  Polynomial Kernel: 
	 The polynomial kernel calculates the similarity 

between two vectors by raising the dot product of 
the original vectors to a given power d, adding non-
linearity to the decision boundary. Mathematically, 
it is expressed as in equation (5).

	 K(xi, xj) = (xiT × xj + 1)d     .......... (5)

2.3.  Radial Basis Function (RBF) Kernel: 
	 A lot of users work with the RBF kernel, which is 

also known as the Gaussian kernel. The Gaussian 
distribution is used to measure the distance 
between two vectors in the feature space to find 
out how close they are. This is helpful when there 
isn't a clear line between the input data. It can be 
written mathematically as shown in equation (6). If 
you change the hyperparameter gamma, it changes 
how wide the Gaussian distribution is. Radial Basis 
Function (RBF) kernel is a popular and flexible 
choice for SVMs that work with data that is not 
linear.

	 Advantages:
•	 Useful for Non-Linear Data: The RBF kernel is 

great at turning data into a higher-dimensional 
feature space by using a Gaussian function. 
This change makes it possible for SVMs to see 
complicated, non-linear connections between 

traits that weren't possible in the original 
space.

•	 Stability: The RBF kernel is less likely to 
suffer from the curse of dimensionality than 
the polynomial kernel. It works well with data 
that has a lot of dimensions and doesn't have 
the same risk of overfitting.

•	 Fewer Hyperparameters: The RBF kernel 
only has one hyperparameter, called gamma. 
However, it is not as sensitive to setting 
hyperparameters as the degree parameter of 
the polynomial kernel. This can make the 
process of choosing a model easier.

	 Limitations:
•	 Interpretability: Like most non-linear kernels, 

the RBF kernel sacrifices some interpretability 
compared to the linear kernel. The decision 
boundary becomes less intuitive in the original 
feature space.

•	 Computational Cost: Although generally 
more efficient than the polynomial kernel for 
high dimensions, the RBF kernel can still be 
computationally expensive, especially for very 
large datasets.

•	 Hyperparameter Tuning: While less sensitive 
than the polynomial kernel, the RBF kernel's 
performance still depends on finding the 
optimal gamma value. Careful hyperparameter 
tuning is essential.

2.4.  Optimal Kernel Selection: 
	 An Empirical Methodology The effectiveness of 

SVMs relies on carefully choosing the right kernel 
function that suits the specific challenge. Here's 
an analysis of typical options and their practical 
applications:

	 1-   The linear kernel: 
	 Situation: Consider classifying emails as either 

spam or legitimate. Possible features include word 
frequency and the presence of spam keywords. The 
linear kernel is a good initial choice because the 
relationship between these features is likely linear (a 
higher frequency of spam keywords often indicates 
spam). This model is computationally efficient and 
interpretable, with the decision boundary being a 
straight line in the original feature space.

	 2-   The polynomial kernel: 
	 This is used when assessing handwritten digits 

for recognition. Pixels can serve as features, but 
defining a clear decision boundary to separate 
different digits (such as 6 and 8) with a linear plane 
is often challenging. A low-degree polynomial 
kernel, such as quadratic, can introduce non- 
linearity, enabling the SVM to more accurately 
capture the curved features of some digits. 
However, using a high-degree polynomial kernel 
may lead to overfitting, underscoring the need for 
careful parameter tuning.
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• Efficiency: The linear kernel excels in computational 

efficiency, involving only a simple dot product 
operation, making it suitable for high-dimensional 
data where other kernels might become 
computationally expensive.

• Interpretability: It offers the highest level of 
interpretability among kernel functions. The decision 
boundary learned by the SVM is a hyperplane in the 
original feature space, and the weights assigned to 
each feature reveal their relative importance for 
classification.

• No Hyperparameter Tuning: Unlike most other 
kernels, the linear kernel requires no hyperparameter 
tuning, making it easier to use and reducing the risk 
of overfitting due to poorly chosen hyperparameter.

Limitations:
• Limited to Linearly Separable Data: Its main 

limitation is that it can only handle data that is already 
linearly separable in the original feature space. If the 
data exhibits complex, non-linear relationships, the 
linear kernel will not effectively learn a separation 
boundary.

• Less Flexible: Due to its simplicity, the linear kernel 
is less flexible in modeling complex non-linear 
patterns compared to kernels like polynomial or RBF.

2.2. Polynomial Kernel:
The polynomial kernel calculates the similarity between 
two vectors by raising the dot product of the original 
vectors to a given power d, adding non-linearity to the 
decision boundary. Mathematically, it is expressed as in 
equation (5).

K(xi, xj) = (xiT × xj + 1)d ………. (5)

2.3. Radial Basis Function (RBF) Kernel
A lot of users work with the RBF kernel, which is also known 
as the Gaussian kernel. The Gaussian distribution is used to 
measure the distance between two vectors in the feature space 
to find out how close they are. This is helpful when there isn't a 
clear line between the input data. It can be written 
mathematically as shown in equation (6). If you change the 
hyperparameter gamma, it changes how wide the Gaussian 
distribution is. Radial Basis Function (RBF) kernel is a popular 
and flexible choice for SVMs that work with data that is not 
linear.

K(xi, xj) = e (-gamma || K(Xi, Xj) ||2) ……. (6)

Advantages:
• Useful for Non-Linear Data: The RBF kernel is great 

at turning data into a higher-dimensional feature space 
by using a Gaussian function. This change makes it 
possible for SVMs to see complicated, non-linear 
connections between traits that weren't possible in the 
original space.

• Stability: The RBF kernel is less likely to suffer from 
the curse of dimensionality than the polynomial 
kernel. It works well with data that has a lot of 
dimensions and doesn't have the same risk of 
overfitting.

• Fewer Hyperparameters: The RBF kernel only has one 
hyperparameter, called gamma. However, it is not as 
sensitive to setting hyperparameters as the degree 
parameter of the polynomial kernel. This can make the 
process of choosing a model easier.

Limitations:
• Interpretability: Like most non-linear kernels, the RBF 

kernel sacrifices some interpretability compared to the 
linear kernel. The decision boundary becomes less 
intuitive in the original feature space.

• Computational Cost: Although generally more efficient 
than the polynomial kernel for high dimensions, the 
RBF kernel can still be computationally expensive, 
especially for very large datasets.

• Hyperparameter Tuning: While less sensitive than the 
polynomial kernel, the RBF kernel's performance still 
depends on finding the optimal gamma value. Careful 
hyperparameter tuning is essential.

3.5. Optimal Kernel Selection: An Empirical Methodology
The effectiveness of SVMs relies on carefully choosing the 
right kernel function that suits the specific challenge. Here's 
an analysis of typical options and their practical 
applications:
1- The linear kernel:
Situation: Consider classifying emails as either spam or 
legitimate. Possible features include word frequency and the 
presence of spam keywords. The linear kernel is a good 
initial choice because the relationship between these 
features is likely linear (a higher frequency of spam 
keywords often indicates spam). This model is 
computationally efficient and interpretable, with the 
decision boundary being a straight line in the original feature 
space.
2- The polynomial kernel:
This is used when assessing handwritten digits for 
recognition. Pixels can serve as features, but defining a clear 
decision boundary to separate different digits (such as 6 and 
8) with a linear plane is often challenging. A low-degree 
polynomial kernel, such as quadratic, can introduce non-
linearity, enabling the SVM to more accurately capture the 
curved features of some digits. However, using a high-
degree polynomial kernel may lead to overfitting, 
underscoring the need for careful parameter tuning.

3.6. The Radial Basis Function (RBF)
Situation: Categorize photographs featuring various species of 

animals, such as cats, dogs, and birds. Pixel intensities and local 
features are used. However, it should be noted that the 
relationships between them exhibit a high degree of 
nonlinearity. The RBF kernel performs exceptionally well in 
this context. It turns input points into a space with an unlimited 
number of dimensions. This lets the SVM find complex spatial 
patterns, like the edges and textures that are unique to each 
species. The parameter (σ) controls how smooth the decision 
limit is. A higher π number makes the transition smoother, 
which could group animals that look alike, like all cats, even if 
they are in different positions. A lower number of σ allows for 
more complex differences, which could make it easier to tell the 
difference between different breeds.
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2.5.  The Radial Basis Function (RBF) 
	 Situation: Categorize photographs featuring 

various species of animals, such as cats, dogs, and 
birds. Pixel intensities and local features are used. 
However, it should be noted that the relationships 
between them exhibit a high degree of nonlinearity. 
The RBF kernel performs exceptionally well in 
this context. It turns input points into a space with 
an unlimited number of dimensions. This lets the 
SVM find complex spatial patterns, like the edges 
and textures that are unique to each species. The 
parameter (σ) controls how smooth the decision 
limit is. A higher π number makes the transition 
smoother, which could group animals that look 
alike, like all cats, even if they are in different 
positions. A lower number of σ allows for more 
complex differences, which could make it easier to 
tell the difference between different breeds.

2.6.  SVMs Constraints and Difficulties [25-27]: 
•	 It can be hard to work with very large 

datasets because SVMs can require a lot of 
processing power and memory, especially when 
working with very large datasets that are high 
dimensional.

• 	 Choosing the Kernel Function: Picking the 
correct kernel function and its values has a big 
impact on how well SVM works. Finding the 
best kernel and tweaking its settings, on the 
other hand, can be hard and needs specialized 
knowledge.

• 	 Noise Sensitivity: SVMs have great dataset 
outlier and noise sensitivity, overfitting can 
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limit. Sometimes preprocessing methods like 
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binary classification tasks, so multiclassification 
becomes difficult. Usually, they are adapted 
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•	 Lack of Interpretability: SVMs generate a black-
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data linkages. In sectors such banking and 
healthcare, interpretability is absolutely vital.

• 	 Unbalanced Datasets: SVMs may perform 
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	 Despite these challenges, SVMs remain a robust 
and widely used approach in machine learning for 
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detection. Researchers continue to explore ways 
to overcome these obstacles and improve the 
efficiency and scalability of SVMs in various fields.

2.7.  Why SVMs Are Computationally Expensive 
	 The following causes make the SVMs 

computationally expensive:
1.	 Kernel Computations: SVMs calculate the 

kernel matrix when employing non-linear 
kernels; this structure has a size of (n × n), so 
it is not viable for high n.

2.	 Dense Data Visualizations: The computational 
cost rises significantly for extremely 
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3.	 Memory Requirement: Large datasets 
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4. 	Time Complexity: The time complexity of 
solving the quadratic optimization problem 
in SVMs is typically within range O(n2) and 
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2.8.  SVM and large dataset. 
	 Using SVM with large datasets can be challenging 

due to computational complexity and memory 
requirements. The SGD-based SVMs, GPU 
acceleration, parallelization, Dimensionality 
reduction, and feature selection methods are 
utilized to overcome the scalability of SVMs for 
large datasets. The summary of these methods is 
summarized in Table II.

6

3.7. SVMs Constraints and Difficulties [25-27]:
• It can be hard to work with very large datasets because 

SVMs can require a lot of processing power and 
memory, especially when working with very large 
datasets that are high dimensional.

• Choosing the Kernel Function: Picking the correct 
kernel function and its values has a big impact on how 
well SVM works. Finding the best kernel and tweaking 
its settings, on the other hand, can be hard and needs 
specialized knowledge.

• Noise Sensitivity: SVMs have great dataset outlier and 
noise sensitivity, overfitting can result from this 
sensitivity upsetting the decision limit. Sometimes 
preprocessing methods like eliminating outliers and 
lowering noise are required.

• Binary Focus: SVMs are mostly meant for binary 
classification tasks, so multiclassification becomes 
difficult. Usually, they are adapted for 
multiclassification utilizing one-vs- one or one-vs- all 
approaches. These techniques, however, can have 
problems with scalability and lower performance, hence 
stressing SVMs' shortcomings.

• Lack of Interpretability: SVMs generate a black-box 
model that makes it challenging to grasp the learned 
decision bounds and the fundamental data linkages. In 
sectors such banking and healthcare, interpretability is 
absolutely vital.

• Unbalanced Datasets: SVMs may perform badly in 
imbalanced datasets, in which case cases across classes 
vary significantly. To solve this, one could need 
different evaluation measures, resampling, or class 
weighting.

Despite these challenges, SVMs remain a robust and widely 
used approach in machine learning for tasks like 
classification, regression, and anomaly detection. 
Researchers continue to explore ways to overcome these 
obstacles and improve the efficiency and scalability of SVMs 
in various fields.

3.8.  Why SVMs Are Computationally Expensive
The following causes make the SVMs computationally 
expensive: 

1. Kernel Computations: SVMs calculate the kernel 
matrix when employing non-linear kernels; this 
structure has a size of (n × n), so it is not viable for 
high n. 

2. Dense Data Visualizations: The computational cost 
rises significantly for extremely dimensional or 
sparse data such text data. 

3. Memory Requirement: Large datasets are blocked 
by storing the intermediate optimization variables 
and kernel matrix using a lot of RAM. 

4. Time Complexity: The time complexity of solving 
the quadratic optimization problem in SVMs is 
typically within range O(n2) and O(n3), where n is the 
number of training samples

3.9.  SVM and large dataset.
Using SVM with large datasets can be challenging due to 
computational complexity and memory requirements. The 
SGD-based SVMs, GPU acceleration, parallelization, 
Dimensionality reduction, and feature selection methods are 
utilized to overcome the scalability of SVMs for large datasets. 
The summary of these methods is summarized in Table II.

Table II.
Methods for overcoming the scalability of SVMs for large datasets

Methods Approach Advantages Trade-offs
SGD-Based 
SVMs

Incremental 
optimization 
using small 
batches.

scalability and 
efficiency.

Noisy 
updates, 
suboptimal 
solutions

Parallelization Allocate 
training across 
multi-
processors

Operates large 
datasets 
efficiently

Demands 
distributed 
computing 
resources

GPU 
Acceleration

Use GPUs to 
parallelize 
computations.
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speed-up for 
huge datasets

Needs 
GPUs and 
technical 
libraries.
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feature 
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feature 
number.

Deflates 
computational 
cost.

Loss of 
information

3.10 Types of SVM Based on Functionality
SVM techniques can be functionally categorized based on 
their type and purpose. Below are the main types of SVM 
functions as shown in Table III

IV. SVM AND SOME COMMON MACHINE LEARNING 
TECHNIQUES

Support Vector Machines (SVMs) provide a robust and 
interpretable classification technique that excels in processing 
high-dimensional data. Nevertheless, it is worth noting that 
alternative algorithms such as Logistic Regression, Decision
Trees, Random Forests, and Neural Networks may be more 
appropriate for addressing the particular problem and data 
attributes, as indicated in Table IV. Assessing various 
algorithms on a dataset is crucial for making a well-informed 
conclusion regarding the most efficient performance of a 
particular activity.

SVMs are renowned for their effectiveness in high-dimensional 
domains and their ability to mitigate some issues caused by the 
curse of dimensionality. 
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Table III:
Types of SVM Based on Functionality

Function Objective Approach Key Idea Use Case Example

Binary 
Classification

Separate two classes 
using a hyperplane that 
maximizes the margin.

Optimize hyperplane
𝑤𝑤 ⋅ 𝑥𝑥 + 𝑏𝑏 = 0

to maximize margin.

Maximize margin 
between two classes.

Spam detection, medical 
diagnosis.

Use kernel functions (e.g., linear, 
polynomial, RBF) for nonlinear 
boundaries.

Minimize 𝟏𝟏
𝟐𝟐 ‖𝒘𝒘‖

𝟐𝟐 subject to 
constraints.

Multiclass 
Classification

Classify data into more 
than two classes. OneVsOne: Train 𝒌𝒌 ∗ 𝒌𝒌−𝟏𝟏

𝟐𝟐
binary classifiers for pairwise 

comparisons.

Extend binary 
classification to 
multiple classes.

Handwritten digit 
recognition, image 

classification.

OneVsRest: Train K binary 
classifiers, one per class.

Native Multiclass SVM: Directly 
optimize multiclass objective.

Multilabel 
Classification

Assign multiple labels 
to each data point.

Binary Relevance: Train a binary 
classifier for each label.

Assign multiple labels 
to a single instance.

Stock price prediction, 
housing price estimation.

Classifier Chains: Use predictions 
from previous classifiers as 
features.

Adapted Algorithms: Modify loss 
function for multilabel tasks.

Regression 
(SVR)

Predict continuous 
values .

Find function 𝑓𝑓(𝑥𝑥) = 𝑤𝑤 ⋅ 𝑥𝑥 + 𝑏𝑏
that deviates from true values by 

at most ϵ.

Predict continuous 
values with a margin 

of tolerance.

Large-scale datasets, real-
time applications.

Use slack variables for errors 
outside ϵ - tube.

Apply kernel functions for 
nonlinear relationships.

TABLE IV:
SVM and some common machine learning techniques

Strength Limitation

SV
M Non-linearity: This can be efficiently addressed by employing kernel 

functions to handle non-linear data.
High dimensionality: Effective in feature spaces with a large number 
of dimensions.
Resistant to extreme values: Logistic regression is more vulnerable 

to outliers in the data than other statistical methods.
Enhanced computational efficiency: SVMs exhibit slower training 

times, particularly when dealing with extensive datasets.

The interpretability of the model is challenging due 
to the intricate decision boundaries in a high-
dimensional space, particularly when employing 
kernels.
Cost of computation: Training SVMs can be 
computationally demanding, particularly when 
dealing with extensive datasets using kernel 
approaches.
Parameter tuning poses a significant challenge 
when selecting the appropriate kernel function and 
its corresponding hyperparameter.
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V. CONCLUSION 

Support Vector Machine sometimes known as SVM is an 
example of a typical form of supervised learning algorithm that 
was designed expressly for classification problem. The basic 
objective is to locate the hyperplane that most effectively 
divides data points into those belonging to distinct classes while 
simultaneously increasing the margin. The margin is the 
distance that separates the hyperplane from the data points that 
are closest to it, which are referred to as the support vectors. 
SVM is one of the most fundamental approaches to machine 
learning, which are renowned for their robust theoretical 
underpinning and their capacity to generate appropriate 
decision boundaries for categorization. Because they make use 
of kernel functions, they are able to effectively manage 
complex and non-linear data, which enables them to be adapted 
to a wide variety of applications, including text classification 
and picture recognition.
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V. CONCLUSION 

Support Vector Machine sometimes known as SVM is an 
example of a typical form of supervised learning algorithm that 
was designed expressly for classification problem. The basic 
objective is to locate the hyperplane that most effectively 
divides data points into those belonging to distinct classes while 
simultaneously increasing the margin. The margin is the 
distance that separates the hyperplane from the data points that 
are closest to it, which are referred to as the support vectors. 
SVM is one of the most fundamental approaches to machine 
learning, which are renowned for their robust theoretical 
underpinning and their capacity to generate appropriate 
decision boundaries for categorization. Because they make use 
of kernel functions, they are able to effectively manage 
complex and non-linear data, which enables them to be adapted 
to a wide variety of applications, including text classification 
and picture recognition.
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