
Evaluation of traditional and eBPF-based packet
processing in Kubernetes for network slicing

MARCH 2025 • VOLUME XVII • NUMBER 156

INFOCOMMUNICATIONS JOURNAL

Evaluation of traditional and eBPF-based packet
processing in Kubernetes for network slicing

Ákos Leiter†, Döme Matusovits‡†, and László Bokor‡§

Abstract—In recent years, the proliferation of cloud-native
technology enablers, such as microservice deployment and
management with Kubernetes, have presented new challenges for
telecommunications service providers. Strict data transmission
requirements have emerged in various areas, such as immediate
interventions in intelligent transportation, video conferencing,
etc. With the advent of 5G networks, this demand can also be
fulfilled thanks to an innovative technology called Network
Slicing. In terms of its operation, we can separate networks into
individual segments to continuously satisfy the desired service
requirements. However, packet processing on top of Kubernetes
may need to be changed to support the emerging number
of microservices during slicing. This is where the Extended
Berkeley Packet Filter (eBPF) comes into the picture to boost
the capacity of data centers and keep service guarantees. This
paper presents how eBPF can support network slicing through
its performance evaluation in a Kubernetes environment.

Index Terms—network slicing, eBPF, Kubernetes, 5G/6G
mobile cellular architectures, cloud-native applications

† Nokia Bell Labs Budapest, Bókay János u. 36-42, 1083 Hungary
‡ Department of Networked Systems and Services, Faculty of Electrical

Engineering and Informatics, Budapest University of Technology and Economics,
Műegyetem rkp. 3., H-1111 Budapest, Hungary

§ HUN-REN-BME Cloud Applications Research Group, Magyar Tudósok
Körútja 2, H-1117 Budapest, Hungary

(E-mail: akos.leiter@nokia-bell-labs.com; dome.matusovits@nokia.com;
bokorl@hit.bme.hu)

I. Introduction

Implementing end-to-end (E2E) network slicing is still
a heavily researched problem in the telco industry. It is
impossible to properly fulfill E2E network slicing requirements
if one segment or domain of the network does not deal with
service guarantees. For example, if the core network part of
the E2E network slice instance has proper resource assignment
and implementation, other network parts have to act similarly.
Radio, transport, and data center networking must also be
prepared for network slicing requirements. The end-to-
end network slicing concept is depicted in Figure 1. All the
network function elements are considered to run in the cloud
environment.

In this work, we focus on data center networking, especially
Kubernetes-based packet processing solutions, and whether
or not they can ensure a particular service level that requires
low latency and a guaranteed throughput during packet
traversal. In the fifth-generation mobile network standards,
communication with these constraints is called Ultra-reliable
Low-latency Communication service (URLLC) [1]. We
assume that the number of microservices (Kubernetes Services)
will be continuously increasing (due to autoscaling, edge

deployments, and further radio cloudification and decoupling
[2] [3] [4] [5]), so we examine how this will affect network
Key Performance Indicators (KPI) considering throughput
and latency. We evaluate this on two test environments: the
traditional Kubernetes packet processing method kube-proxy-
based on the top of iptables and the extended Berkley Packet
Filter (eBPF) [6] using the Cilium Container Networking
Interface (CNI) [7] in the context of network slicing.

eBPF is powerful because it makes the Linux operating
system programmable without modifying the kernel's source
code or writing a new kernel module. Consequently, it also
solves the complication of developing a monolithic Kernel,
which saves much time when adding new features to the OS
core. Furthermore, it provides an alternative to low-performed
Netfilter-based packet processing. This is why Kubernetes
has started to utilize eBPF in CNIs, which are responsible for
Kubernetes' internal and external networking. This includes
interface and IP address management and packet processing
mechanisms. There are two CNIs publicly available that
implement eBPF-based networking: Cilium and Calico [9].
Our test system relies on the Cilium-based solution.

This paper is organized as follows: Section II gives a
technological introduction to iptables and eBPF. Then,
Section III covers the most crucial technological background
of Kubernetes and Cilium. The related work is presented in
Section IV. The testbed details are explained in Section V,
while measurement results are elaborated in Section VI.
Conclusion and future work are drawn in Sections VII and
VIII, respectively.

II. Background behind iptables and Extended
Berkeley Packet Filter

Although in the Linux world, packet processing/filtering
technologies are already available (such as nftables [10]),
which can enhance the traditional Netfilter based approach,
in Kubernetes, the iptables is still the most widely used
option. It is developed under the Netfilter project [11], which
consists of community-driven collaboratives. It is built up with

Figure 1 – End-to-end network slicing concept [8]

DOI: 10.36244/ICJ.2025.1.7

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Evaluation of traditional and eBPF-based packet
processing in Kubernetes for network slicing

Ákos Leiter†
†Nokia Bell Labs

Budapest, Hungary
akos.leiter@nokia-bell-labs.com

Döme Matusovits‡†
‡Department of Networked Systems
and Services, Faculty of Electrical

Engineering and Informatics, Budapest
University of Technology and

Economics, Műegyetem rkp. 3.,
H-1111 Budapest, Hungary

†Nokia
Budapest, Hungary

dome.matusovits@nokia.com

László Bokor‡§
‡Department of Networked Systems
and Services, Faculty of Electrical

Engineering and Informatics, Budapest
University of Technology and

Economics, Műegyetem rkp. 3.,
H-1111 Budapest, Hungary

§HUN-REN-BME Cloud Applications
Research Group, Magyar Tudósok

Körútja 2, H-1117 Budapest, Hungary
bokorl@hit.bme.hu

Abstract—In recent years, the proliferation of cloud-native
technology enablers, such as microservice deployment and
management with Kubernetes, have presented new challenges
for telecommunications service providers. Strict data
transmission requirements have emerged in various areas, such
as immediate interventions in intelligent transportation, video
conferencing, etc. With the advent of 5G networks, this demand
can also be fulfilled thanks to an innovative technology called
Network Slicing. In terms of its operation, we can separate
networks into individual segments to continuously satisfy the
desired service requirements. However, packet processing on
top of Kubernetes may need to be changed to support the
emerging number of microservices during slicing. This is where
the Extended Berkeley Packet Filter (eBPF) comes into the
picture to boost the capacity of data centers and keep service
guarantees. This paper presents how eBPF can support network
slicing through its performance evaluation in a Kubernetes
environment.

Keywords—network slicing, eBPF, Kubernetes, 5G/6G mobile
cellular architectures, cloud-native applications

I. INTRODUCTION
Implementing end-to-end (E2E) network slicing is still a

heavily researched problem in the telco industry. It is
impossible to properly fulfill E2E network slicing
requirements if one segment or domain of the network does
not deal with service guarantees. For example, if the core
network part of the E2E network slice instance has proper
resource assignment and implementation, other network parts
have to act similarly. Radio, transport, and data center
networking must also be prepared for network slicing
requirements. The end-to-end network slicing concept is
depicted in Figure 1. All the network function elements are
considered to run in the cloud environment.

In this work, we focus on data center networking,
especially Kubernetes-based packet processing solutions, and
whether or not they can ensure a particular service level that
requires low latency and a guaranteed throughput during
packet traversal. In the fifth-generation mobile network
standards, communication with these constraints is called
Ultra-reliable Low-latency Communication service
(URLLC) [1]. We assume that the number of microservices
(Kubernetes Services) will be continuously increasing (due to
autoscaling, edge deployments, and further radio
cloudification and decoupling [2] [3] [4] [5]), so we examine
how this will affect network Key Performance Indicators

(KPI) considering throughput and latency. We evaluate this
on two test environments: the traditional Kubernetes packet
processing method kube-proxy-based on the top of iptables
and the extended Berkley Packet Filter (eBPF) [6] using the
Cilium Container Networking Interface (CNI) [7] in the
context of network slicing.

Figure 1 – End-to-end network slicing concept [8]

eBPF is powerful because it makes the Linux operating
system programmable without modifying the kernel's source
code or writing a new kernel module. Consequently, it also
solves the complication of developing a monolithic Kernel,
which saves much time when adding new features to the OS
core. Furthermore, it provides an alternative to low-
performed Netfilter-based packet processing. This is why
Kubernetes has started to utilize eBPF in CNIs, which are
responsible for Kubernetes' internal and external networking.
This includes interface and IP address management and
packet processing mechanisms. There are two CNIs publicly
available that implement eBPF-based networking: Cilium
and Calico [9]. Our test system relies on the Cilium-based
solution.

This paper is organized as follows: Section II gives a
technological introduction to iptables and eBPF. Then,
Section III covers the most crucial technological background
of Kubernetes and Cilium. The related work is presented in
Section IV. The testbed details are explained in Section V,
while measurement results are elaborated in Section VI.
Conclusion and future work are drawn in Sections VII and
VIII, respectively.

II. BACKGROUND BEHIND IPTABLES AND EXTENDED
BERKELEY PACKET FILTER

Although in the Linux world, packet processing/filtering
technologies are already available (such as nftables [10]),
which can enhance the traditional Netfilter based approach,
in Kubernetes, the iptables is still the most widely used
option. It is developed under the Netfilter project [11], which
consists of community-driven collaboratives. It is built up

mailto:akos.leiter%40nokia-bell-labs.com?subject=
mailto:dome.matusovits%40nokia.com?subject=
mailto:bokorl%40hit.bme.hu?subject=
https://doi.org/10.36244/ICJ.2025.1.7

Evaluation of traditional and eBPF-based packet
processing in Kubernetes for network slicing

INFOCOMMUNICATIONS JOURNAL

MARCH 2025 • VOLUME XVII • NUMBER 1 57

kernel modules linked to the kernel at runtime, extending the
monolithic kernel's functionality. The iptables framework
communicates (Figure 2) with different predefined hookpoints
of the kernel's protocol stack. These are where the Nework
Address Translation (NAT), Network Address and Port
Translation (NAPT), packet filtering, and other packet
manipulation procedures take place:

• NF_IP_PRE_ROUTING: This is where the
incoming traffic directly enters the kernel stack.
There isn't any routing processing at this point.

• NF_IP_LOCAL_IN: The routing procedures
have already been done, and the packet has been
forwarded to the local host.

• NF_IP_FORWARD: This is the same as the
previous case, except that the packet is destined
for a remote host.

• NF_IP_LOCAL_OUT: The traffic is locally
generated and destined to a remote host

• NF_IP_POST_ROUTING: Packet processing
procedures after routing

The iptables consists of rules, which contain targets. If
a rule is evaluated, then the target is the action that needs to
be executed (e.g., ACCEPT, DROP, RETURN, REJECT).
Rules are part of chains that have two types: built-in (by the
Linux OS) and custom (such as Kubernetes CNI-defined
ones). The built-in chains are triggered by the abovementioned
hookpoints respectively: PREROUTING (NF_IP_PRE_
ROUTING), INPUT (NF_IP_LOCAL_IN), FORWARD
(NF_IP_FORWARD), OUTPUT (NF_IP_LOCAL_OUT),
POSTROUTING (NF_IP_POST_ROUTING).

The chains are located in tables. They are separated
according to their appropriate functionality. For this reason,
we can differentiate between Filter, NAT, Mangle, Raw, and
Security tables. In the Filter table, the decision is made on
whether the packet should enter or leave the network. The
NAT rules can be found in the NAT table, as its name implies.
The Mangle table contains packet manipulation rules. For
configuration exemptions, where you do not want certain traffic

to be tracked, you use the Raw table. It is designed to set a mark
(NOTRACK) on a packet that has not wished to be tracked. For
stricter access management, some Linux distributions include
the security table. In order to achieve this, a mandatory access
control (MAC) has been implemented.

When the packet processing takes place, in the background
the appropriate chain is selected within the table. Also, the
desired rule should be applied in that chain. The problem
occurs during the lookup phase. The table elements are
not indexed; hence, the selection mechanism is sequential.
At a small number of entries, it won't cause any problems.
However, this number could be a significantly larger value
in a production environment. In this case, we will experience
substantial performance degradation in the packet processing.
It could seriously harm SLA attributes, such as throughput and
latency. That's why it is essential to develop a better solution
that can enhance processing performance and help meet the
requirements of URLLC communication.

Two well-known alternatives can boost packet processing:
Vector Packet Processor (VPP) [12] and extended Berkeley
Packet Filter (eBPF). The former solution implements a
network stack, bypassing the Linux kernel. The essence
here is that a new approach is being introduced to handling
incoming traffic. The traditional Linux kernel-based solution
is scalar processing, which typically processes one packet at
a time. In contrast, at VPP, multiple packets are processed by
their own network stack. These groups of packets are called
vectors. In Kubernetes, the Calico CNI [9] is an example of its
implementation. We do not go beyond this solution further, as
our scope only focuses on eBPF.

In eBPF, we use eBPF programs to be loaded into the kernel
from userspace (Figure 3). They are written in C language, but
multiple development libraries can provide higher abstraction
language levels, like bcc [13], libbpf [14], and eBPF Go[15].
Depending on the type of library, it uses a clang or Low Level
Virtual Machine (LLVM) compiler to produce the so-called
bytecodes from the source code. These are CPU-independent
instruction sets translated by a Just-in- Time (JIT) compiler into
machine-specific instruction sets. This way, we can optimize

Figure 2 – The iptables packet processing in a nutshell

Figure 3 – eBPF execution flow

with kernel modules linked to the kernel at runtime,
extending the monolithic kernel's functionality. The iptables
framework communicates (Figure 2) with different
predefined hookpoints of the kernel's protocol stack. These
are where the Nework Address Translation (NAT), Network
Address and Port Translation (NAPT), packet filtering, and
other packet manipulation procedures take place:

 NF_IP_PRE_ROUTING: This is where the
incoming traffic directly enters the kernel stack.
There isn't any routing processing at this point.

 NF_IP_LOCAL_IN: The routing procedures
have already been done, and the packet has been
forwarded to the local host.

 NF_IP_FORWARD: This is the same as the
previous case, except that the packet is destined
for a remote host.

 NF_IP_LOCAL_OUT: The traffic is locally
generated and destined to a remote host

 NF_IP_POST_ROUTING: Packet processing
procedures after routing

Figure 2 - The iptables packet processing in a nutshell

The iptables consists of rules, which contain targets. If a rule
is evaluated, then the target is the action that needs to be
executed (e.g., ACCEPT, DROP, RETURN, REJECT).
Rules are part of chains that have two types: built-in (by the
Linux OS) and custom (such as Kubernetes CNI-defined
ones). The built-in chains are triggered by the
abovementioned hookpoints respectively: PREROUTING
(NF_IP_PRE_ROUTING), INPUT (NF_IP_LOCAL_IN),
FORWARD (NF_IP_FORWARD), OUTPUT
(NF_IP_LOCAL_OUT), POSTROUTING
(NF_IP_POST_ROUTING).

The chains are located in tables. They are separated
according to their appropriate functionality. For this reason,
we can differentiate between Filter, NAT, Mangle, Raw, and
Security tables. In the Filter table, the decision is made on
whether the packet should enter or leave the network. The
NAT rules can be found in the NAT table, as its name implies.
The Mangle table contains packet manipulation rules. For
configuration exemptions, where you do not want certain
traffic to be tracked, you use the Raw table. It is designed to
set a mark (NOTRACK) on a packet that has not wished to
be tracked. For stricter access management, some Linux
distributions include the security table. In order to achieve

this, a mandatory access control (MAC) has been
implemented.

Figure 3- eBPF execution flow

When the packet processing takes place, in the
background the appropriate chain is selected within the table.
Also, the desired rule should be applied in that chain. The
problem occurs during the lookup phase. The table elements
are not indexed; hence, the selection mechanism is sequential.
At a small number of entries, it won't cause any problems.
However, this number could be a significantly larger value in
a production environment. In this case, we will experience
substantial performance degradation in the packet processing.
It could seriously harm SLA attributes, such as throughput
and latency. That's why it is essential to develop a better
solution that can enhance processing performance and help
meet the requirements of URLLC communication.

Two well-known alternatives can boost packet
processing: Vector Packet Processor (VPP) [12] and
extended Berkeley Packet Filter (eBPF). The former solution
implements a network stack, bypassing the Linux kernel. The
essence here is that a new approach is being introduced to
handling incoming traffic. The traditional Linux kernel-based
solution is scalar processing, which typically processes one
packet at a time. In contrast, at VPP, multiple packets are
processed by their own network stack. These groups of
packets are called vectors. In Kubernetes, the Calico CNI [9]
is an example of its implementation. We do not go beyond
this solution further, as our scope only focuses on eBPF.

In eBPF, we use eBPF programs to be loaded into the
kernel from userspace (Figure 3). They are written in C
language, but multiple development libraries can provide
higher abstraction language levels, like bcc [13], libbpf [14],
and eBPF Go[15]. Depending on the type of library, it uses a
clang or Low Level Virtual Machine (LLVM) compiler to
produce the so-called bytecodes from the source code. These
are CPU-independent instruction sets translated by a Just-in-
Time (JIT) compiler into machine-specific instruction sets.
This way, we can optimize the execution speed of the
program using a natively compiled kernel code or a kernel
module codebase. At a higher level abstraction, we can say
that a virtual machine is practically embedded into the Linux
kernel, where these eBPF programs run. They can be injected
and executed on any level of the protocol stack. These are
actually hookpoints, where certain events trigger the program
execution. There can be many hookpoints, like kernel
functions (kprobes) or user functions (uprobes) execution,
system calls, or any tracepoints at the kernel. Also, eBPF

with kernel modules linked to the kernel at runtime,
extending the monolithic kernel's functionality. The iptables
framework communicates (Figure 2) with different
predefined hookpoints of the kernel's protocol stack. These
are where the Nework Address Translation (NAT), Network
Address and Port Translation (NAPT), packet filtering, and
other packet manipulation procedures take place:

 NF_IP_PRE_ROUTING: This is where the
incoming traffic directly enters the kernel stack.
There isn't any routing processing at this point.

 NF_IP_LOCAL_IN: The routing procedures
have already been done, and the packet has been
forwarded to the local host.

 NF_IP_FORWARD: This is the same as the
previous case, except that the packet is destined
for a remote host.

 NF_IP_LOCAL_OUT: The traffic is locally
generated and destined to a remote host

 NF_IP_POST_ROUTING: Packet processing
procedures after routing

Figure 2 - The iptables packet processing in a nutshell

The iptables consists of rules, which contain targets. If a rule
is evaluated, then the target is the action that needs to be
executed (e.g., ACCEPT, DROP, RETURN, REJECT).
Rules are part of chains that have two types: built-in (by the
Linux OS) and custom (such as Kubernetes CNI-defined
ones). The built-in chains are triggered by the
abovementioned hookpoints respectively: PREROUTING
(NF_IP_PRE_ROUTING), INPUT (NF_IP_LOCAL_IN),
FORWARD (NF_IP_FORWARD), OUTPUT
(NF_IP_LOCAL_OUT), POSTROUTING
(NF_IP_POST_ROUTING).

The chains are located in tables. They are separated
according to their appropriate functionality. For this reason,
we can differentiate between Filter, NAT, Mangle, Raw, and
Security tables. In the Filter table, the decision is made on
whether the packet should enter or leave the network. The
NAT rules can be found in the NAT table, as its name implies.
The Mangle table contains packet manipulation rules. For
configuration exemptions, where you do not want certain
traffic to be tracked, you use the Raw table. It is designed to
set a mark (NOTRACK) on a packet that has not wished to
be tracked. For stricter access management, some Linux
distributions include the security table. In order to achieve

this, a mandatory access control (MAC) has been
implemented.

Figure 3- eBPF execution flow

When the packet processing takes place, in the
background the appropriate chain is selected within the table.
Also, the desired rule should be applied in that chain. The
problem occurs during the lookup phase. The table elements
are not indexed; hence, the selection mechanism is sequential.
At a small number of entries, it won't cause any problems.
However, this number could be a significantly larger value in
a production environment. In this case, we will experience
substantial performance degradation in the packet processing.
It could seriously harm SLA attributes, such as throughput
and latency. That's why it is essential to develop a better
solution that can enhance processing performance and help
meet the requirements of URLLC communication.

Two well-known alternatives can boost packet
processing: Vector Packet Processor (VPP) [12] and
extended Berkeley Packet Filter (eBPF). The former solution
implements a network stack, bypassing the Linux kernel. The
essence here is that a new approach is being introduced to
handling incoming traffic. The traditional Linux kernel-based
solution is scalar processing, which typically processes one
packet at a time. In contrast, at VPP, multiple packets are
processed by their own network stack. These groups of
packets are called vectors. In Kubernetes, the Calico CNI [9]
is an example of its implementation. We do not go beyond
this solution further, as our scope only focuses on eBPF.

In eBPF, we use eBPF programs to be loaded into the
kernel from userspace (Figure 3). They are written in C
language, but multiple development libraries can provide
higher abstraction language levels, like bcc [13], libbpf [14],
and eBPF Go[15]. Depending on the type of library, it uses a
clang or Low Level Virtual Machine (LLVM) compiler to
produce the so-called bytecodes from the source code. These
are CPU-independent instruction sets translated by a Just-in-
Time (JIT) compiler into machine-specific instruction sets.
This way, we can optimize the execution speed of the
program using a natively compiled kernel code or a kernel
module codebase. At a higher level abstraction, we can say
that a virtual machine is practically embedded into the Linux
kernel, where these eBPF programs run. They can be injected
and executed on any level of the protocol stack. These are
actually hookpoints, where certain events trigger the program
execution. There can be many hookpoints, like kernel
functions (kprobes) or user functions (uprobes) execution,
system calls, or any tracepoints at the kernel. Also, eBPF

Evaluation of traditional and eBPF-based packet
processing in Kubernetes for network slicing

MARCH 2025 • VOLUME XVII • NUMBER 158

INFOCOMMUNICATIONS JOURNAL

the execution speed of the program using a natively compiled
kernel code or a kernel module codebase. At a higher level
abstraction, we can say that a virtual machine is practically
embedded into the Linux kernel, where these eBPF programs
run. They can be injected and executed on any level of the
protocol stack. These are actually hookpoints, where certain
events trigger the program execution. There can be many
hookpoints, like kernel functions (kprobes) or user functions
(uprobes) execution, system calls, or any tracepoints at the
kernel. Also, eBPF programs can be attached to network
interfaces or sockets as well (the latter two examples will be
important in eBPF-based networking at Cilium). That's the
key because, with this approach, we can extend the kernel's
functionality without kernel source code modification or any
usage of kernel modules. Additional functionalities, such as
verification (depicted in Figure 3). improve and secure the
execution compared to pure kernel modules, where there is
no built-in and easy protection against, e.g., kernel panic.
Before we get into the details of how eBPF can enhance packet
processing in a Kubernetes environment, we introduce the
related works that describe the most important eBPF use cases.

III. Relevant parts of Kubernetes and Extended
Berkeley Packet Filter

One of the most essential parts of our proposed testing
environment is the Kubernetes integration of Cilium CNI,
where our measurement results were gathered, depicted
in Figure 4. It can leverage both iptables and eBPF-based
networking to the whole cluster, where the Master and Worker
nodes are located. The Master node is the control plane of
Kubernetes. That is the component that involves the resource
database (etcd) and the reconciliation loop mechanism (kube-
controller manager), which controls the entire operation of the
cluster. The API endpoint (apiserver) can also be found here,
providing the cluster with reachability via HTTPS. What's
more, the scheduling of workload resources (kube-scheduler)
is also specified here. The Worker node provides the cluster's
data plane. There, we could find the workloads that accomplish
the desired services to be up and running.

So far, all the cluster functionalities we mentioned have
been implemented in Kubernetes' smallest unit, called the pod.
Most of the time, a pod realizes a single container, but there can
be a case when more than one container is embedded in a pod

Figure 4 – High level architecture of Kubernetes with Cilium CNI

Figure 5 – iptables and eBPF-based Cilium data path [7]

(e.g., a sidecar container, which receives the traffic, and there is
another database container for information storage).

In both nodes, an entity should redirect control/data traffic to
the desired endpoint (i.e., pod). That is where the kube- proxy
comes into the picture. In most Kubernetes CNI solutions,
iptables is used for packet processing. The kube-proxy's task
is handling the appropriate chains, rules, and targets for traffic
routing and manipulation. We aim to enhance packet processing
performance by replacing iptables and hence, the kube-proxy.

eBPF also facilitates kernel programmability in Kubernetes
[16]. Since there is only one kernel on a host, any application
running in a container within a pod (in Kubernetes) must use
the kernel whenever it requests access to hardware, manages
files, or receives network messages. Regardless of the
number of pods deployed on a machine, the kernel is always
involved, whether we are talking about Bare Metal or a virtual
machine. Containers do not have their own kernel; they use
the existing kernel on the host machine. Thus, with proper
eBPF instrumentation in the kernel, an agent can monitor all
activities in the user space across all applications or cloud-
native functions (micro-services). This enables complex eBPF
tools to gain comprehensive observability across the entire
node, providing deep insights into the cluster.

The two data paths that are associated with our experiment are
shown in Figure 5. As a CNI, Cilium can deal with incoming
traffic from the network interface of a Kubernetes Worker node
or another Pod. Furthermore, the traffic destination can also be
a Pod or the network interface of the Kubernetes Worker node.
All the traffic goes through various iptables chains. The orange
chains represent the default iptables chains; the blue ones are
the Kubernetes-added ones. Cilium defines its own chains,
depicted in purple.
The PREROUTING chain in Figure 5 is responsible for
classifying whether traffic is local or must be forwarded.
KUBE-SERVICES chains manage Kubernetes Services.

As shown in Figure 5, the many iptables chains on the data
path can cause processing overhead and increased latency.
This is where eBPF comes into the picture to circumvent issues
with multiple iptables chains. An eBPF program can be loaded
into the kernel to intercept traffic before the iptables-based
processing starts. The hookpoint where the eBPF program is
attached is called Traffic Control (TC). For incoming traffic, it
is located before the PREROUTING, and for outgoing traffic,
it can be found after the POSTROUTING chain. All of these
mean that the eBPF- based solution intends to replace kube-
proxy in Worker nodes that utilize iptables.

programs can be attached to network interfaces or sockets as
well (the latter two examples will be important in eBPF-based
networking at Cilium). That's the key because, with this
approach, we can extend the kernel's functionality without
kernel source code modification or any usage of kernel
modules. Additional functionalities, such as verification
(depicted in Figure 3). improve and secure the execution
compared to pure kernel modules, where there is no built-in
and easy protection against, e.g., kernel panic. Before we get
into the details of how eBPF can enhance packet processing
in a Kubernetes environment, we introduce the related works
that describe the most important eBPF use cases.

III. RELEVANT PARTS OF KUBERNETES AND EXTENDED
BERKELEY PACKET FILTER

One of the most essential parts of our proposed testing
environment is the Kubernetes integration of Cilium CNI,
where our measurement results were gathered, depicted in
Figure 4. It can leverage both iptables and eBPF-based
networking to the whole cluster, where the Master and
Worker nodes are located. The Master node is the control
plane of Kubernetes. That is the component that involves the
resource database (etcd) and the reconciliation loop
mechanism (kube-controller manager), which controls the
entire operation of the cluster. The API endpoint (apiserver)
can also be found here, providing the cluster with reachability
via HTTPS. What's more, the scheduling of workload
resources (kube-scheduler) is also specified here. The
Worker node provides the cluster's data plane. There, we
could find the workloads that accomplish the desired services
to be up and running.

Figure 4 - High level architecture of Kubernetes with

Cilium CNI

So far, all the cluster functionalities we mentioned have
been implemented in Kubernetes' smallest unit, called the
pod. Most of the time, a pod realizes a single container, but
there can be a case when more than one container is
embedded in a pod (e.g., a sidecar container, which receives
the traffic, and there is another database container for
information storage).

In both nodes, an entity should redirect control/data traffic
to the desired endpoint (i.e., pod). That is where the kube-
proxy comes into the picture. In most Kubernetes CNI
solutions, iptables is used for packet processing. The kube-
proxy's task is handling the appropriate chains, rules, and
targets for traffic routing and manipulation. We aim to
enhance packet processing performance by replacing iptables
and hence, the kube-proxy.

eBPF also facilitates kernel programmability in
Kubernetes [16]. Since there is only one kernel on a host, any
application running in a container within a pod (in
Kubernetes) must use the kernel whenever it requests access
to hardware, manages files, or receives network messages.
Regardless of the number of pods deployed on a machine, the
kernel is always involved, whether we are talking about Bare
Metal or a virtual machine. Containers do not have their own
kernel; they use the existing kernel on the host machine.
Thus, with proper eBPF instrumentation in the kernel, an
agent can monitor all activities in the user space across all
applications or cloud-native functions (micro-services). This
enables complex eBPF tools to gain comprehensive
observability across the entire node, providing deep insights
into the cluster.

The two data paths that are associated with our experiment
are shown in Figure 5. As a CNI, Cilium can deal with
incoming traffic from the network interface of a Kubernetes
Worker node or another Pod. Furthermore, the traffic
destination can also be a Pod or the network interface of the
Kubernetes Worker node. All the traffic goes through various
iptables chains. The orange chains represent the default
iptables chains; the blue ones are the Kubernetes-added ones.
Cilium defines its own chains, depicted in purple.
The PREROUTING chain in Figure 5 is responsible for
classifying whether traffic is local or must be forwarded.
KUBE-SERVICES chains manage Kubernetes Services.

As shown in Figure 5, the many iptables chains on the
data path can cause processing overhead and increased
latency. This is where eBPF comes into the picture to
circumvent issues with multiple iptables chains. An eBPF
program can be loaded into the kernel to intercept traffic
before the iptables-based processing starts. The hookpoint
where the eBPF program is attached is called Traffic Control
(TC). For incoming traffic, it is located before the
PREROUTING, and for outgoing traffic, it can be found after
the POSTROUTING chain. All of these mean that the eBPF-
based solution intends to replace kube-proxy in Worker
nodes that utilize iptables.

Figure 5 – iptables and eBPF-based Cilium data path[7]

programs can be attached to network interfaces or sockets as
well (the latter two examples will be important in eBPF-based
networking at Cilium). That's the key because, with this
approach, we can extend the kernel's functionality without
kernel source code modification or any usage of kernel
modules. Additional functionalities, such as verification
(depicted in Figure 3). improve and secure the execution
compared to pure kernel modules, where there is no built-in
and easy protection against, e.g., kernel panic. Before we get
into the details of how eBPF can enhance packet processing
in a Kubernetes environment, we introduce the related works
that describe the most important eBPF use cases.

III. RELEVANT PARTS OF KUBERNETES AND EXTENDED
BERKELEY PACKET FILTER

One of the most essential parts of our proposed testing
environment is the Kubernetes integration of Cilium CNI,
where our measurement results were gathered, depicted in
Figure 4. It can leverage both iptables and eBPF-based
networking to the whole cluster, where the Master and
Worker nodes are located. The Master node is the control
plane of Kubernetes. That is the component that involves the
resource database (etcd) and the reconciliation loop
mechanism (kube-controller manager), which controls the
entire operation of the cluster. The API endpoint (apiserver)
can also be found here, providing the cluster with reachability
via HTTPS. What's more, the scheduling of workload
resources (kube-scheduler) is also specified here. The
Worker node provides the cluster's data plane. There, we
could find the workloads that accomplish the desired services
to be up and running.

Figure 4 - High level architecture of Kubernetes with

Cilium CNI

So far, all the cluster functionalities we mentioned have
been implemented in Kubernetes' smallest unit, called the
pod. Most of the time, a pod realizes a single container, but
there can be a case when more than one container is
embedded in a pod (e.g., a sidecar container, which receives
the traffic, and there is another database container for
information storage).

In both nodes, an entity should redirect control/data traffic
to the desired endpoint (i.e., pod). That is where the kube-
proxy comes into the picture. In most Kubernetes CNI
solutions, iptables is used for packet processing. The kube-
proxy's task is handling the appropriate chains, rules, and
targets for traffic routing and manipulation. We aim to
enhance packet processing performance by replacing iptables
and hence, the kube-proxy.

eBPF also facilitates kernel programmability in
Kubernetes [16]. Since there is only one kernel on a host, any
application running in a container within a pod (in
Kubernetes) must use the kernel whenever it requests access
to hardware, manages files, or receives network messages.
Regardless of the number of pods deployed on a machine, the
kernel is always involved, whether we are talking about Bare
Metal or a virtual machine. Containers do not have their own
kernel; they use the existing kernel on the host machine.
Thus, with proper eBPF instrumentation in the kernel, an
agent can monitor all activities in the user space across all
applications or cloud-native functions (micro-services). This
enables complex eBPF tools to gain comprehensive
observability across the entire node, providing deep insights
into the cluster.

The two data paths that are associated with our experiment
are shown in Figure 5. As a CNI, Cilium can deal with
incoming traffic from the network interface of a Kubernetes
Worker node or another Pod. Furthermore, the traffic
destination can also be a Pod or the network interface of the
Kubernetes Worker node. All the traffic goes through various
iptables chains. The orange chains represent the default
iptables chains; the blue ones are the Kubernetes-added ones.
Cilium defines its own chains, depicted in purple.
The PREROUTING chain in Figure 5 is responsible for
classifying whether traffic is local or must be forwarded.
KUBE-SERVICES chains manage Kubernetes Services.

As shown in Figure 5, the many iptables chains on the
data path can cause processing overhead and increased
latency. This is where eBPF comes into the picture to
circumvent issues with multiple iptables chains. An eBPF
program can be loaded into the kernel to intercept traffic
before the iptables-based processing starts. The hookpoint
where the eBPF program is attached is called Traffic Control
(TC). For incoming traffic, it is located before the
PREROUTING, and for outgoing traffic, it can be found after
the POSTROUTING chain. All of these mean that the eBPF-
based solution intends to replace kube-proxy in Worker
nodes that utilize iptables.

Figure 5 – iptables and eBPF-based Cilium data path[7]

Evaluation of traditional and eBPF-based packet
processing in Kubernetes for network slicing

INFOCOMMUNICATIONS JOURNAL

MARCH 2025 • VOLUME XVII • NUMBER 1 59

IV. Related Works

eBPF can be used in many application fields related to
security, observability, or performance enhancement scenarios.
A summarization of the related papers is depicted in Figure 6.

Regarding observability, eBPF can be used to monitor
certain events. Attaching the written eBPF code to the
appropriate hookpoints of the Linux kernel can trigger these
eBPF programs to collect analytical traffic stream data. David
Soldani et al. [17] used this approach to estimate cloud-
native functions' energy consumption and derive performance
counters and gauges for transport networks, 5G applications,
and non-access stratum protocols. Furthermore, Abderaouf
Khichane et al. [18] [19] have found a more profound way of
measuring the behavior of a network function or protocol. Also,
they could identify potential bottlenecks and SLA violations
more accurately. Carmine Scarpitta et al. [20] describe a
high-performance solution for end-to-end delay monitoring
for SRv6-based networks. It leverages the Simple Two-way
Active Measurement Protocol (STAMP) [21] to monitor the
delay between two nodes called STAMP Session-Sender and
Session-Reflector. The monitoring is implemented with eBPF
programs.

Packet filtering mechanisms could be achieved more
efficiently, like in the abovementioned paper by David Soldani
et al. [17], where they detected and responded to unauthorized
access to cloud-native resources in real time using eBPF.
Dominik Scholz et al. [22] give a brief overview of analyzing
the performance of eXpress Data Path (XDP), the lowest level
before the network stack. They used for installing application-
specific packet filtering configurations acting on the socket
level. It is implemented with eBPF programs that are attached
to the XDP hookpoint. It is well applicable for DoS prevention.
Their case studies focus on performance aspects. Their packet
filtering approach with eBPF doesn't have as much engineering
cost. The performance losses are below 20%, while security is
improved through better isolation between applications.

Attaching eBPF programs to the Linux kernel's protocol
stack could also enhance the packet processing performance. It
could be more efficient than the traditional netfiler [8] approach.

Figure 6 – eBPF use cases by summarized literatures

That's the key point, as our goal was to evaluate performance
using eBPF technology. Matteo Bertrone et al. [23] describe
how the acceleration of packet processing can be achieved
by emulating the iptables filtering semantic with eBPF, using
Traffic Control (TC) or XDP. Depending on their use cases,
such as delivering local traffic directly to the output port or
connection tracking, they configured the data path respectively.
This firewall solution is called bpf-iptables.

The paper by Sebastiano Miano et al. [24] extends the
above scope by diving deep into the overall architecture of bpf-
iptables, mentioning additional enhancements that make this
technology perform better. Nftables [11] is also considered a
relevant firewall alternative in these measurement scenarios.
These are similar measurements in that they consider the TC
hookpoint as we did. However, they only measure throughput,
and the testbed is not in a cloud- native environment. We will
also measure the latency and evaluate performance using a
virtualized network infrastructure. Besides the observability
aspect, in this previously mentioned approach by Carmine
Scarpitta et al. [20], they managed to build the monitoring
system where the eBPF implementation outperforms their
examined solutions with negligible impact on the forwarding
capability of the router. It uses XDP hookpoint, which differs
from our scenario. Also, they only considered the throughput,
similarly to paper [24].

Jung-Bok Lee et al. [25] implement an eBPF-based load-
balancer. They also compare the performance of their eBPF-
based solution to normal iptables, as we did in this paper. They
developed a containerized high-performance load balancer
that uses eBPF with the Linux kernel to distribute traffic,
which can be easily managed via Kubernetes. They conducted
tests simulating real-world traffic patterns using Internet
Mix (IMIX) traffic streams. Their experimental results show
that the proposed load balancer significantly outperforms
the Destination Network Address Translation-based iptables
solution, with the performance gap widening as packet size
decreases. The measurements were conducted in a cloud
environment, but their scope was only throughput performance
scenarios, as in the previous papers. Also, they used XDP,
instead of TC.

Federico Parola et al. show [26] a case study for Multi-
access Edge Computing (MEC) technology, which is relevant
in implementing the User Plane Function (UPF) deployed near
the Radio Access Network (RAN), enabling telcos to provide
services at close proximity to mobile users. In this scenario,
high-performance data plane technologies, such as Data
Plane Development Kit (DPDK) [27], may not be appropriate
because they require dedicated resources like CPU cores
and network interfaces. Furthermore, its proprietary drivers
make it challenging to maintain and integrate DPDK. For this
reason, they came up with a new idea to implement some of
the functionalities of Mobile Gateway with eBPF/XDP, such as
GPRS Tunneling Protocol Handling, QoS Management, Traffic
Classifying, and Routing. They evaluated this approach with
different Mobile Gateway data plane technologies like BESS
[28], OpenvSwitch-DPDK (OvS-DPDK), and OvS-kernel [29].

IV. RELATED WORKS
eBPF can be used in many application fields related to

security, observability, or performance enhancement
scenarios. A summarization of the related papers is depicted
in Figure 6.

Figure 6 – eBPF use cases by summarized literatures

Regarding observability, eBPF can be used to monitor certain
events. Attaching the written eBPF code to the appropriate
hookpoints of the Linux kernel can trigger these eBPF
programs to collect analytical traffic stream data. David
Soldani et al. [17] used this approach to estimate cloud-native
functions' energy consumption and derive performance
counters and gauges for transport networks, 5G applications,
and non-access stratum protocols. Furthermore, Abderaouf
Khichane et al. [18] [19] have found a more profound way of
measuring the behavior of a network function or protocol.
Also, they could identify potential bottlenecks and SLA
violations more accurately. Carmine Scarpitta et al. [20]
describe a high-performance solution for end-to-end delay
monitoring for SRv6-based networks. It leverages the Simple
Two-way Active Measurement Protocol (STAMP) [21] to
monitor the delay between two nodes called STAMP
Session-Sender and Session-Reflector. The monitoring is
implemented with eBPF programs.

 Packet filtering mechanisms could be achieved
more efficiently, like in the abovementioned paper by David
Soldani et al. [17], where they detected and responded to
unauthorized access to cloud-native resources in real time
using eBPF. Dominik Scholz et al. [22] give a brief overview
of analyzing the performance of eXpress Data Path (XDP),
the lowest level before the network stack. They used for
installing application-specific packet filtering configurations
acting on the socket level. It is implemented with eBPF
programs that are attached to the XDP hookpoint. It is well
applicable for DoS prevention. Their case studies focus on
performance aspects. Their packet filtering approach with
eBPF doesn't have as much engineering cost. The
performance losses are below 20%, while security is
improved through better isolation between applications.

 Attaching eBPF programs to the Linux kernel's protocol
stack could also enhance the packet processing performance.
It could be more efficient than the traditional netfiler [8]
approach. That's the key point, as our goal was to evaluate
performance using eBPF technology. Matteo Bertrone et al.
[23] describe how the acceleration of packet processing can
be achieved by emulating the iptables filtering semantic with

eBPF, using Traffic Control (TC) or XDP. Depending on
their use cases, such as delivering local traffic directly to the
output port or connection tracking, they configured the data
path respectively. This firewall solution is called bpf-iptables.

 The paper by Sebastiano Miano et al. [24] extends the
above scope by diving deep into the overall architecture of
bpf-iptables, mentioning additional enhancements that make
this technology perform better. Nftables [11] is also
considered a relevant firewall alternative in these
measurement scenarios. These are similar measurements in
that they consider the TC hookpoint as we did. However, they
only measure throughput, and the testbed is not in a cloud-
native environment. We will also measure the latency and
evaluate performance using a virtualized network
infrastructure. Besides the observability aspect, in this
previously mentioned approach by Carmine Scarpitta et al.
[20], they managed to build the monitoring system where the
eBPF implementation outperforms their examined solutions
with negligible impact on the forwarding capability of the
router. It uses XDP hookpoint, which differs from our
scenario. Also, they only considered the throughput, similarly
to paper [24].

 Jung-Bok Lee et al. [25] implement an eBPF-based load-
balancer. They also compare the performance of their eBPF-
based solution to normal iptables, as we did in this paper.
They developed a containerized high-performance load
balancer that uses eBPF with the Linux kernel to distribute
traffic, which can be easily managed via Kubernetes. They
conducted tests simulating real-world traffic patterns using
Internet Mix (IMIX) traffic streams. Their experimental
results show that the proposed load balancer significantly
outperforms the Destination Network Address Translation-
based iptables solution, with the performance gap widening
as packet size decreases. The measurements were conducted
in a cloud environment, but their scope was only throughput
performance scenarios, as in the previous papers. Also, they
used XDP, instead of TC.

 Federico Parola et al. show [26] a case study for Multi-
access Edge Computing (MEC) technology, which is relevant
in implementing the User Plane Function (UPF) deployed
near the Radio Access Network (RAN), enabling telcos to
provide services at close proximity to mobile users. In this
scenario, high-performance data plane technologies, such as
Data Plane Development Kit (DPDK) [27], may not be
appropriate because they require dedicated resources like
CPU cores and network interfaces. Furthermore, its
proprietary drivers make it challenging to maintain and
integrate DPDK. For this reason, they came up with a new
idea to implement some of the functionalities of Mobile
Gateway with eBPF/XDP, such as GPRS Tunneling Protocol
Handling, QoS Management, Traffic Classifying, and
Routing. They evaluated this approach with different Mobile
Gateway data plane technologies like BESS [28],
OpenvSwitch-DPDK (OvS-DPDK), and OvS-kernel [29].
The results show that eBPF competes with traditional kernel-
bypass technologies. Although some performance
degradation can be seen in some cases, it is still worth it
because of higher integration with the kernel and more
flexible resource usage. They used XDP hook as opposed to
our case. Likewise, latency wasn't taken into account in these
performance evaluations.

Dushyant Behl et al. [30] present a paper about the
feasibility of eBPF for efficient implementation of network

Evaluation of traditional and eBPF-based packet
processing in Kubernetes for network slicing

MARCH 2025 • VOLUME XVII • NUMBER 160

INFOCOMMUNICATIONS JOURNAL

Figure 7 – The high-level testbed design with implementation details

The results show that eBPF competes with traditional kernel-
bypass technologies. Although some performance degradation
can be seen in some cases, it is still worth it because of higher
integration with the kernel and more flexible resource usage.
They used XDP hook as opposed to our case. Likewise, latency
wasn't taken into account in these performance evaluations.

Dushyant Behl et al. [30] present a paper about the feasibility
of eBPF for efficient implementation of network functions.
They propose an eBPF-based framework to make the usage
of eBPF CNI-agnostic. Their approach allows for replacing
existing network functions with independent, eBPF-based
modules. They were using multiple hookpoints: TC, XDP, and
socket. We used only the TC hookpoint in our testbed. Also,
they focused on enhancing the packet processing on the socket
level by examining the throughput, where they could achieve a
consistent 50% increase per scenario. There weren't any other
attributes considered in their approach.

Code reusability is also an issue in the field of eBPF. Federico
Parola et al. [31] address this problem by using PolyCube [32]
[33]. PolyCube facilitates the development of efficient, modular,
and dynamically reconfigurable network functions that run
within the Linux kernel. This solution significantly improves
Pod-to-Pod, Pod-to-Service, and Internet-to-Service throughput
even in multi-node clusters compared to Flannel [21], Calico,
and Cilium. This is the closest approach to our measurement use
cases: it is based on Kubernetes, the traffic flow path is similar
(Pod-to-Service scenario at least), and the eBPF hookpoint is the
same (TC). They were even replacing the kube-proxy control
plane element with eBPF programs as we did (they also achieved
that with Cilium CNI in one of their test cases). However, they
were scaling the associated pods to the Kubernetes Services not
the number of Services itself. This is because they were curious
about the load-balancing performance attributes when using
eBPF. Also, as we can see in the previous papers, they only
examined the throughput as a KPI.

V. The implemented test environments

Based on Section III, we have created two test environments
(Figure 8 and Figure 9) to study the performance of both
solutions. The testbeds are built on OpenStack; the high-level
design can be seen in Figure 7.

A. General principles of the test environments
The blue line represents the incoming, and the purple line

shows the outgoing direction of the traffic (Figure 8, Figure
9). All the traffic originates from the ITGSend module of the
Distributed Internet Traffic Generator (D-ITG) [34] on the
client. The traffic is received by ITGRecv module, which is
embedded in a Kubernetes Pod. There is a dedicated signaling
port for connection establishment. To expose our D-ITG pod
outside of the cluster, we need Kubernetes services (actually,
ClusterIP is an exception because it makes the pod accessible
only within the cluster). We can choose between ClusterIP,
NodePort, LoadBalancer, and ExternalName. The latter option
isn't remarkable for us since it only applies to mapping a
service to a DNS name. Since the ITGSend module remains

in the client network, the pod will be accessible through the
Worker Node's interface with a private IP address. That means
the NodePort service will be enough as it opens a port on the
Worker node's interface and redirects the traffic to the pod. Note
that LoadBalancer is preferred in production. We can use more
protocols that can flow through it. Moreover, since it exposes
the pod by acquiring an IP address for the desired service,
we can make it accessible on the Internet (with a public IP
address). However, for simplicity, we used NodePorts instead.
Furthermore, the allocation of IPv4/v6 addresses for many
services would harden the building of the testbed. The data
ports were randomized. The maximum number of NodePorts
is 2767, so when all of the ports were reserved, the remaining
services were replaced with the type of ClusterIP during the
service number increase, detailed in Section VI. To preserve the
client's source IP, we use an annotation in the service definition
file called externalTrafficPolicy=Local. With this annotation,
the kube-proxy/eBPF program only proxies requests to local
endpoints, which means we can avoid SNAT translation to
node IP during any considered traffic flow.

B. High-level design
The client and the router VMs were placed in the client

network created by OpenStack. The Kubernetes cluster –
including the master and the worker node – was in the data
center network, which was also created by OpenStack. All
the elements in the test system (Client, Router, Master, and
Worker Node) are OpenStack-instantiated virtual machines.
We installed Ubuntu OS with version 20.04 (5.4.0 Linux kernel
version) for the VMs. Also, we reserved 20Gb virtual memory
with 1VCPU (1 core) and 2Gb RAM for the Client and the
Router. Regarding the Master and Worker node instances, the
setup was 40Gb memory with 2VCPUs (2 cores) and 4Gb
RAM. The CPU clock rate was configured with 1500 MHz
for each setup. There is also a management node to examine
the system behavior without affecting the measurements,
represented by orange lines. The black lines show the actual
traffic path to be measured.

functions. They propose an eBPF-based framework to make
the usage of eBPF CNI-agnostic. Their approach allows for
replacing existing network functions with independent,
eBPF-based modules. They were using multiple hookpoints:
TC, XDP, and socket. We used only the TC hookpoint in our
testbed. Also, they focused on enhancing the packet
processing on the socket level by examining the throughput,
where they could achieve a consistent 50% increase per
scenario. There weren't any other attributes considered in
their approach.

Code reusability is also an issue in the field of eBPF.
Federico Parola et al. [31] address this problem by using
PolyCube [32] [33]. PolyCube facilitates the development of
efficient, modular, and dynamically reconfigurable network
functions that run within the Linux kernel. This solution
significantly improves Pod-to-Pod, Pod-to-Service, and
Internet-to-Service throughput even in multi-node clusters
compared to Flannel [21], Calico, and Cilium. This is the
closest approach to our measurement use cases: it is based on
Kubernetes, the traffic flow path is similar (Pod-to-Service
scenario at least), and the eBPF hookpoint is the same (TC).
They were even replacing the kube-proxy control plane
element with eBPF programs as we did (they also achieved
that with Cilium CNI in one of their test cases). However,
they were scaling the associated pods to the Kubernetes
Services not the number of Services itself. This is because
they were curious about the load-balancing performance
attributes when using eBPF. Also, as we can see in the
previous papers, they only examined the throughput as a KPI.

V. THE IMPLEMENTED TEST ENVIRONMENTS
Based on Section III, we have created two test

environments (Figure 8 and Figure 9) to study the
performance of both solutions. The testbeds are built on
OpenStack; the high-level design can be seen in Figure 7.

A. General principles of the test environments
The blue line represents the incoming, and the purple line
shows the outgoing direction of the traffic (Figure 8, Figure
9). All the traffic originates from the ITGSend module of the
Distributed Internet Traffic Generator (D-ITG) [34] on the
client. The traffic is received by ITGRecv module, which is
embedded in a Kubernetes Pod. There is a dedicated signaling
port for connection establishment. To expose our D-ITG pod
outside of the cluster, we need Kubernetes services (actually,
ClusterIP is an exception because it makes the pod accessible
only within the cluster). We can choose between ClusterIP,
NodePort, LoadBalancer, and ExternalName. The latter
option isn't remarkable for us since it only applies to mapping
a service to a DNS name. Since the ITGSend module remains
in the client network, the pod will be accessible through the
Worker Node's interface with a private IP address. That
means the NodePort service will be enough as it opens a port
on the Worker node's interface and redirects the traffic to the
pod. Note that LoadBalancer is preferred in production. We
can use more protocols that can flow through it. Moreover,
since it exposes the pod by acquiring an IP address for the
desired service, we can make it accessible on the Internet
(with a public IP address). However, for simplicity, we used
NodePorts instead. Furthermore, the allocation of IPv4/v6
addresses for many services would harden the building of the
testbed. The data ports were randomized. The maximum
number of NodePorts is 2767, so when all of the ports were

reserved, the remaining services were replaced with the type
of ClusterIP during the service number increase, detailed in
Section VI. To preserve the client's source IP, we use an
annotation in the service definition file called
externalTrafficPolicy=Local. With this annotation, the kube-
proxy/eBPF program only proxies requests to local
endpoints, which means we can avoid SNAT translation to
node IP during any considered traffic flow.

B. High-level design
The client and the router VMs were placed in the client

network created by OpenStack. The Kubernetes cluster -
including the master and the worker node - was in the data
center network, which was also created by OpenStack. All the
elements in the test system (Client, Router, Master, and
Worker Node) are OpenStack-instantiated virtual machines.
We installed Ubuntu OS with version 20.04 (5.4.0 Linux
kernel version) for the VMs. Also, we reserved 20Gb virtual
memory with 1VCPU (1 core) and 2Gb RAM for the Client
and the Router. Regarding the Master and Worker node
instances, the setup was 40Gb memory with 2VCPUs (2
cores) and 4Gb RAM. The CPU clock rate was configured
with 1500 MHz for each setup. There is also a management
node to examine the system behavior without affecting the
measurements, represented by orange lines. The black lines
show the actual traffic path to be measured.

Figure 7 – The high-level testbed design with

implementation details

C. Test environment for kube-proxy (iptables)
The kube-proxy-based test environment is shown in Figure 8.
The red rectangles represent the relevant iptables chains
through which the traffic goes.

C. Test environment for kube-proxy (iptables)
The kube-proxy-based test environment is shown in Figure

8. The red rectangles represent the relevant iptables chains
through which the traffic goes.

Evaluation of traditional and eBPF-based packet
processing in Kubernetes for network slicing

INFOCOMMUNICATIONS JOURNAL

MARCH 2025 • VOLUME XVII • NUMBER 1 61

Figure 8 – Test environment #1: iptables-based forwarding

Figure 9 – Test environment #2: eBPF-based forwarding

Figure 10 – Summarized diagram of throughput measurements
between iptables and eBPF with IPv4

VI. Measurements descriptions and results

We have examined several aspects of packet processing
for our evaluation purposes. As we mentioned earlier, every
measurement uses Kubernetes Services with NodePorts. A port
number is associated with the node's IP address and will be

translated to the Pod's IP and port number where you can reach
the server. This Kubernetes object is responsible for routing
traffic from the worker node's interface to the Pod handled by
the kube-proxy/eBPF program. The traffic distribution between
NodePorts is random. D-ITG is used for traffic generation. The
test environments introduced in Section IV are applied.

We have continuously increased the number of Kubernetes
Services to conclude the related bottlenecks of Kubernetes.
Meanwhile, we evaluated two packet processing methods:
normal kube-proxy-based (iptables) and eBPF- based.

E. TCPthroughputmeasurements
We used a relative scale as it is tough to determine maximum

throughput in a virtualized environment. All the virtual links
have been limited to 500 Mbps. One hundred measurements
have been executed in every scenario – with 30-second-long
TCP streams – where the number of Kubernetes Services is
increased by 1000 (except from 1 to 1000). Altogether, 1100
measurements were evaluated overall.

Goal: Concluding the difference between kube-proxy
(iptables) and eBPF-based packet processing in the case of
IPv4 and IPv6 and within the context of throughput behavior.

Measurement results: From the data point of view, we
highlight the standard deviation (Table 1) as there is no
significant difference between the minimum, maximum,
average, and median values. These values are also represented
in Figure 10 and Figure 12, showcasing a different perspective
on the measurement data.

TABLE I
eBPF-Based throughPut standard deviation ratios comPared to

iPtaBles-Based in the case oF iPv4 and iPv6

Figure 8 – Test environment #1: iptables-based

forwarding

D. Test environment for eBPF
The eBPF-based test environment is depicted in Figure 9.

The green rectangle shows the hook points where the eBPF
program is attached. This means that after the packet arrives
at the node interface, the eBPF program is triggered, and the
packet processing and forwarding continue without iptables
interaction.

Figure 9 – Test environment #2: eBPF-based forwarding

VI. MEASUREMENTS DESCRIPTIONS AND RESULTS
We have examined several aspects of packet processing

for our evaluation purposes. As we mentioned earlier, every
measurement uses Kubernetes Services with NodePorts. A
port number is associated with the node's IP address and will
be translated to the Pod's IP and port number where you can

reach the server. This Kubernetes object is responsible for
routing traffic from the worker node's interface to the Pod
handled by the kube-proxy/eBPF program. The traffic
distribution between NodePorts is random. D-ITG is used for
traffic generation. The test environments introduced in
Section IV are applied.

We have continuously increased the number of
Kubernetes Services to conclude the related bottlenecks of
Kubernetes. Meanwhile, we evaluated two packet processing
methods: normal kube-proxy-based (iptables) and eBPF-
based.

E. TCP throughput measurements
We used a relative scale as it is tough to determine

maximum throughput in a virtualized environment. All the
virtual links have been limited to 500 Mbps. One hundred
measurements have been executed in every scenario – with
30-second-long TCP streams – where the number of
Kubernetes Services is increased by 1000 (except from 1 to
1000). Altogether, 1100 measurements were evaluated
overall.

Goal: Concluding the difference between kube-proxy
(iptables) and eBPF-based packet processing in the case of
IPv4 and IPv6 and within the context of throughput behavior.

Measurement results: From the data point of view, we
highlight the standard deviation (Table 1) as there is no
significant difference between the minimum, maximum,
average, and median values. These values are also
represented in Figure 10 and Figure 12, showcasing a
different perspective on the measurement data.

Number of
Kubernetes

Services

Standard deviation
ratio (IPv4)

Standard deviation
ratio (IPv6)

1 0.20 0.85
1000 1.01 0.78
2000 1.07 0.95
3000 1.41 1.22
4000 0.93 0.56
5000 3.05 1.33
6000 0.92 1.20
7000 0.68 0.74
8000 0.91 0.56
9000 0.67 1.07

10000 0.67 0.88
Table 1 – eBPF-based throughput standard deviation

ratios compared to iptables-based in the case of IPv4 and
IPv6

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ra
tio

 o
f e

BP
F

an
d

Ip
ta

bl
es

-b
as

ed
 s

ol
tu

tio
ns

Number of Kubernetes Services

MIN Median AVG MAX STDEV

Figure 10 – Summarized diagram of throughput
measurements between iptables and eBPF with IPv4

Figure 8 – Test environment #1: iptables-based

forwarding

D. Test environment for eBPF
The eBPF-based test environment is depicted in Figure 9.

The green rectangle shows the hook points where the eBPF
program is attached. This means that after the packet arrives
at the node interface, the eBPF program is triggered, and the
packet processing and forwarding continue without iptables
interaction.

Figure 9 – Test environment #2: eBPF-based forwarding

VI. MEASUREMENTS DESCRIPTIONS AND RESULTS
We have examined several aspects of packet processing

for our evaluation purposes. As we mentioned earlier, every
measurement uses Kubernetes Services with NodePorts. A
port number is associated with the node's IP address and will
be translated to the Pod's IP and port number where you can

reach the server. This Kubernetes object is responsible for
routing traffic from the worker node's interface to the Pod
handled by the kube-proxy/eBPF program. The traffic
distribution between NodePorts is random. D-ITG is used for
traffic generation. The test environments introduced in
Section IV are applied.

We have continuously increased the number of
Kubernetes Services to conclude the related bottlenecks of
Kubernetes. Meanwhile, we evaluated two packet processing
methods: normal kube-proxy-based (iptables) and eBPF-
based.

E. TCP throughput measurements
We used a relative scale as it is tough to determine

maximum throughput in a virtualized environment. All the
virtual links have been limited to 500 Mbps. One hundred
measurements have been executed in every scenario – with
30-second-long TCP streams – where the number of
Kubernetes Services is increased by 1000 (except from 1 to
1000). Altogether, 1100 measurements were evaluated
overall.

Goal: Concluding the difference between kube-proxy
(iptables) and eBPF-based packet processing in the case of
IPv4 and IPv6 and within the context of throughput behavior.

Measurement results: From the data point of view, we
highlight the standard deviation (Table 1) as there is no
significant difference between the minimum, maximum,
average, and median values. These values are also
represented in Figure 10 and Figure 12, showcasing a
different perspective on the measurement data.

Number of
Kubernetes

Services

Standard deviation
ratio (IPv4)

Standard deviation
ratio (IPv6)

1 0.20 0.85
1000 1.01 0.78
2000 1.07 0.95
3000 1.41 1.22
4000 0.93 0.56
5000 3.05 1.33
6000 0.92 1.20
7000 0.68 0.74
8000 0.91 0.56
9000 0.67 1.07

10000 0.67 0.88
Table 1 – eBPF-based throughput standard deviation

ratios compared to iptables-based in the case of IPv4 and
IPv6

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ra
tio

 o
f e

BP
F

an
d

Ip
ta

bl
es

-b
as

ed
 s

ol
tu

tio
ns

Number of Kubernetes Services

MIN Median AVG MAX STDEV

Figure 10 – Summarized diagram of throughput
measurements between iptables and eBPF with IPv4

D. Test environment for eBPF
The eBPF-based test environment is depicted in Figure 9.

The green rectangle shows the hook points where the eBPF
program is attached. This means that after the packet arrives
at the node interface, the eBPF program is triggered, and the
packet processing and forwarding continue without iptables
interaction.

Figure 8 – Test environment #1: iptables-based

forwarding

D. Test environment for eBPF
The eBPF-based test environment is depicted in Figure 9.

The green rectangle shows the hook points where the eBPF
program is attached. This means that after the packet arrives
at the node interface, the eBPF program is triggered, and the
packet processing and forwarding continue without iptables
interaction.

Figure 9 – Test environment #2: eBPF-based forwarding

VI. MEASUREMENTS DESCRIPTIONS AND RESULTS
We have examined several aspects of packet processing

for our evaluation purposes. As we mentioned earlier, every
measurement uses Kubernetes Services with NodePorts. A
port number is associated with the node's IP address and will
be translated to the Pod's IP and port number where you can

reach the server. This Kubernetes object is responsible for
routing traffic from the worker node's interface to the Pod
handled by the kube-proxy/eBPF program. The traffic
distribution between NodePorts is random. D-ITG is used for
traffic generation. The test environments introduced in
Section IV are applied.

We have continuously increased the number of
Kubernetes Services to conclude the related bottlenecks of
Kubernetes. Meanwhile, we evaluated two packet processing
methods: normal kube-proxy-based (iptables) and eBPF-
based.

E. TCP throughput measurements
We used a relative scale as it is tough to determine

maximum throughput in a virtualized environment. All the
virtual links have been limited to 500 Mbps. One hundred
measurements have been executed in every scenario – with
30-second-long TCP streams – where the number of
Kubernetes Services is increased by 1000 (except from 1 to
1000). Altogether, 1100 measurements were evaluated
overall.

Goal: Concluding the difference between kube-proxy
(iptables) and eBPF-based packet processing in the case of
IPv4 and IPv6 and within the context of throughput behavior.

Measurement results: From the data point of view, we
highlight the standard deviation (Table 1) as there is no
significant difference between the minimum, maximum,
average, and median values. These values are also
represented in Figure 10 and Figure 12, showcasing a
different perspective on the measurement data.

Number of
Kubernetes

Services

Standard deviation
ratio (IPv4)

Standard deviation
ratio (IPv6)

1 0.20 0.85
1000 1.01 0.78
2000 1.07 0.95
3000 1.41 1.22
4000 0.93 0.56
5000 3.05 1.33
6000 0.92 1.20
7000 0.68 0.74
8000 0.91 0.56
9000 0.67 1.07

10000 0.67 0.88
Table 1 – eBPF-based throughput standard deviation

ratios compared to iptables-based in the case of IPv4 and
IPv6

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ra
tio

 o
f e

BP
F

an
d

Ip
ta

bl
es

-b
as

ed
 s

ol
tu

tio
ns

Number of Kubernetes Services

MIN Median AVG MAX STDEV

Figure 10 – Summarized diagram of throughput
measurements between iptables and eBPF with IPv4

Figure 8 – Test environment #1: iptables-based

forwarding

D. Test environment for eBPF
The eBPF-based test environment is depicted in Figure 9.

The green rectangle shows the hook points where the eBPF
program is attached. This means that after the packet arrives
at the node interface, the eBPF program is triggered, and the
packet processing and forwarding continue without iptables
interaction.

Figure 9 – Test environment #2: eBPF-based forwarding

VI. MEASUREMENTS DESCRIPTIONS AND RESULTS
We have examined several aspects of packet processing

for our evaluation purposes. As we mentioned earlier, every
measurement uses Kubernetes Services with NodePorts. A
port number is associated with the node's IP address and will
be translated to the Pod's IP and port number where you can

reach the server. This Kubernetes object is responsible for
routing traffic from the worker node's interface to the Pod
handled by the kube-proxy/eBPF program. The traffic
distribution between NodePorts is random. D-ITG is used for
traffic generation. The test environments introduced in
Section IV are applied.

We have continuously increased the number of
Kubernetes Services to conclude the related bottlenecks of
Kubernetes. Meanwhile, we evaluated two packet processing
methods: normal kube-proxy-based (iptables) and eBPF-
based.

E. TCP throughput measurements
We used a relative scale as it is tough to determine

maximum throughput in a virtualized environment. All the
virtual links have been limited to 500 Mbps. One hundred
measurements have been executed in every scenario – with
30-second-long TCP streams – where the number of
Kubernetes Services is increased by 1000 (except from 1 to
1000). Altogether, 1100 measurements were evaluated
overall.

Goal: Concluding the difference between kube-proxy
(iptables) and eBPF-based packet processing in the case of
IPv4 and IPv6 and within the context of throughput behavior.

Measurement results: From the data point of view, we
highlight the standard deviation (Table 1) as there is no
significant difference between the minimum, maximum,
average, and median values. These values are also
represented in Figure 10 and Figure 12, showcasing a
different perspective on the measurement data.

Number of
Kubernetes

Services

Standard deviation
ratio (IPv4)

Standard deviation
ratio (IPv6)

1 0.20 0.85
1000 1.01 0.78
2000 1.07 0.95
3000 1.41 1.22
4000 0.93 0.56
5000 3.05 1.33
6000 0.92 1.20
7000 0.68 0.74
8000 0.91 0.56
9000 0.67 1.07

10000 0.67 0.88
Table 1 – eBPF-based throughput standard deviation

ratios compared to iptables-based in the case of IPv4 and
IPv6

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ra
tio

 o
f e

BP
F

an
d

Ip
ta

bl
es

-b
as

ed
 s

ol
tu

tio
ns

Number of Kubernetes Services

MIN Median AVG MAX STDEV

Figure 10 – Summarized diagram of throughput
measurements between iptables and eBPF with IPv4

Evaluation of traditional and eBPF-based packet
processing in Kubernetes for network slicing

MARCH 2025 • VOLUME XVII • NUMBER 162

INFOCOMMUNICATIONS JOURNAL

Figure 11 – Summarized diagram of throughput measurements between
iptables and eBPF with IPv6

Figure 12 – Summarized diagram of delay measurements between
iptables and eBPF with IPv4

Figure 13 – Summarized diagram of delay measurements between
iptables and eBPF with IPv6

TABLE II
eBPF-Based latency maximum and standard deviation ratio

comPared to iPtaBles-Based in the case oF iPv4

TABLE III
eBPF-Based latency maximum and standard deviation ratio

comPared to iPtaBles-Based in the case oF iPv6

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ra
tio

 o
f

eB
PF

 a
nd

 Ip
ta

bl
es

-b
as

ed
 so

lu
tio

ns

Number of Kubernetes Services

MIN Median AVG MAX STDEV

Figure 11 – Summarized diagram of throughput
measurements between iptables and eBPF with IPv6

Conclusion: In the case of a high number of Kubernetes
Services, the standard deviation of throughput is lower when
eBPF is used in most cases. IPv6-based throughput values are
more stable compared to IPv4 in both approaches, as the
standard deviation of the eBPF to iptables ratio is lower.

F. Latency measurements
We also use a relative scale, just as we did in the case of

throughput measurements. UDP traffic originated 100 times
in every scenario with a 30-second-long flow, with the same
service scaling as in the throughput measurements. This
means 1100 measurements were in summary.

Goal: Concluding the difference between kube-proxy
(iptables) and eBPF-based packet processing in the case of
IPv4 and IPv6 within the context of latency behavior.

Measurement results: From the data point of view, we
highlight the maximum and standard deviation (Table 2,
Table 3) as there is no significant difference between
minimum, average, and median values. The data is also
represented in the graphs of Figure 12 and Figure 13.

Number of
Kubernetes

Services
Maximum Standard deviation ratio

1 1.10 1.82
1000 1.21 1.91
2000 1.17 1.15
3000 1.18 1.49
4000 0.86 0.62
5000 0.90 0.47
6000 1.13 1.22
7000 0.80 0.50
8000 1.04 1.08
9000 0.91 0.54

10000 0.84 0.40
Table 2 – eBPF-based latency maximum and standard

deviation ratio compared to iptables-based in the case of
IPv4

Number of
Kubernetes

Services
Maximum Standard deviation ratio

1 1.08 1.01
1000 0.92 0.93
2000 0.95 0.93
3000 0.91 0.94
4000 0.86 0.87
5000 1.16 1.57
6000 1.05 1.00
7000 1.18 0.98
8000 0.65 0.74
9000 1.09 1.26

10000 0.87 0.82
Table 3 – eBPF-based latency maximum and standard

deviation ratio compared to iptables-based in the case of
IPv6

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ra
tio

 o
f e

BP
F

an
d

Ip
ta

bl
es

-b
as

ed
 s

ol
ut

io
n

Number of Kubernetes Services

MIN Median AVG MAX STDEV

Figure 12 – Summarized diagram of delay
measurements between iptables and eBPF with IPv4

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ra
tio

 o
f e

BP
F

an
d

Ip
ta

bl
es

-b
as

ed
 s

ol
ut

io
n

Number of Kubernetes Services

MIN Median AVG MAX STDEV

Figure 13 – Summarized diagram of delay
measurements between iptables and eBPF with IPv6

Conclusion: The maximum latency values are higher for
fewer Kubernetes services when using eBPF over IPv4.
However, for IPv6 traffic, eBPF performs better in the case
of fewer Kubernetes Services.
The standard deviation of latency for eBFP over IPv4 is lower
in the case of 5 out of 11 scenarios. However, the greater the
number of Kubernetes services used, the lower the standard
deviation trend-wise in the case of eBPF. For IPv6, the
standard deviation tends to be lower for eBPF with fewer
Kubernetes services. However, this is not so significant
compared to the IPv4 cases. Overall, IPv6 latency is more
stable than IPv4 from the standard deviation point of view as
the fluctuation of the values is lower.

G. Measurements conclusion
Generally, we can say that the eBPF-based solutions are

more "stable" as the standard deviation is lower.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ra
tio

 o
f

eB
PF

 a
nd

 Ip
ta

bl
es

-b
as

ed
 so

lu
tio

ns

Number of Kubernetes Services

MIN Median AVG MAX STDEV

Figure 11 – Summarized diagram of throughput
measurements between iptables and eBPF with IPv6

Conclusion: In the case of a high number of Kubernetes
Services, the standard deviation of throughput is lower when
eBPF is used in most cases. IPv6-based throughput values are
more stable compared to IPv4 in both approaches, as the
standard deviation of the eBPF to iptables ratio is lower.

F. Latency measurements
We also use a relative scale, just as we did in the case of

throughput measurements. UDP traffic originated 100 times
in every scenario with a 30-second-long flow, with the same
service scaling as in the throughput measurements. This
means 1100 measurements were in summary.

Goal: Concluding the difference between kube-proxy
(iptables) and eBPF-based packet processing in the case of
IPv4 and IPv6 within the context of latency behavior.

Measurement results: From the data point of view, we
highlight the maximum and standard deviation (Table 2,
Table 3) as there is no significant difference between
minimum, average, and median values. The data is also
represented in the graphs of Figure 12 and Figure 13.

Number of
Kubernetes

Services
Maximum Standard deviation ratio

1 1.10 1.82
1000 1.21 1.91
2000 1.17 1.15
3000 1.18 1.49
4000 0.86 0.62
5000 0.90 0.47
6000 1.13 1.22
7000 0.80 0.50
8000 1.04 1.08
9000 0.91 0.54

10000 0.84 0.40
Table 2 – eBPF-based latency maximum and standard

deviation ratio compared to iptables-based in the case of
IPv4

Number of
Kubernetes

Services
Maximum Standard deviation ratio

1 1.08 1.01
1000 0.92 0.93
2000 0.95 0.93
3000 0.91 0.94
4000 0.86 0.87
5000 1.16 1.57
6000 1.05 1.00
7000 1.18 0.98
8000 0.65 0.74
9000 1.09 1.26

10000 0.87 0.82
Table 3 – eBPF-based latency maximum and standard

deviation ratio compared to iptables-based in the case of
IPv6

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ra
tio

 o
f e

BP
F

an
d

Ip
ta

bl
es

-b
as

ed
 s

ol
ut

io
n

Number of Kubernetes Services

MIN Median AVG MAX STDEV

Figure 12 – Summarized diagram of delay
measurements between iptables and eBPF with IPv4

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ra
tio

 o
f e

BP
F

an
d

Ip
ta

bl
es

-b
as

ed
 s

ol
ut

io
n

Number of Kubernetes Services

MIN Median AVG MAX STDEV

Figure 13 – Summarized diagram of delay
measurements between iptables and eBPF with IPv6

Conclusion: The maximum latency values are higher for
fewer Kubernetes services when using eBPF over IPv4.
However, for IPv6 traffic, eBPF performs better in the case
of fewer Kubernetes Services.
The standard deviation of latency for eBFP over IPv4 is lower
in the case of 5 out of 11 scenarios. However, the greater the
number of Kubernetes services used, the lower the standard
deviation trend-wise in the case of eBPF. For IPv6, the
standard deviation tends to be lower for eBPF with fewer
Kubernetes services. However, this is not so significant
compared to the IPv4 cases. Overall, IPv6 latency is more
stable than IPv4 from the standard deviation point of view as
the fluctuation of the values is lower.

G. Measurements conclusion
Generally, we can say that the eBPF-based solutions are

more "stable" as the standard deviation is lower.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ra
tio

 o
f

eB
PF

 a
nd

 Ip
ta

bl
es

-b
as

ed
 so

lu
tio

ns

Number of Kubernetes Services

MIN Median AVG MAX STDEV

Figure 11 – Summarized diagram of throughput
measurements between iptables and eBPF with IPv6

Conclusion: In the case of a high number of Kubernetes
Services, the standard deviation of throughput is lower when
eBPF is used in most cases. IPv6-based throughput values are
more stable compared to IPv4 in both approaches, as the
standard deviation of the eBPF to iptables ratio is lower.

F. Latency measurements
We also use a relative scale, just as we did in the case of

throughput measurements. UDP traffic originated 100 times
in every scenario with a 30-second-long flow, with the same
service scaling as in the throughput measurements. This
means 1100 measurements were in summary.

Goal: Concluding the difference between kube-proxy
(iptables) and eBPF-based packet processing in the case of
IPv4 and IPv6 within the context of latency behavior.

Measurement results: From the data point of view, we
highlight the maximum and standard deviation (Table 2,
Table 3) as there is no significant difference between
minimum, average, and median values. The data is also
represented in the graphs of Figure 12 and Figure 13.

Number of
Kubernetes

Services
Maximum Standard deviation ratio

1 1.10 1.82
1000 1.21 1.91
2000 1.17 1.15
3000 1.18 1.49
4000 0.86 0.62
5000 0.90 0.47
6000 1.13 1.22
7000 0.80 0.50
8000 1.04 1.08
9000 0.91 0.54

10000 0.84 0.40
Table 2 – eBPF-based latency maximum and standard

deviation ratio compared to iptables-based in the case of
IPv4

Number of
Kubernetes

Services
Maximum Standard deviation ratio

1 1.08 1.01
1000 0.92 0.93
2000 0.95 0.93
3000 0.91 0.94
4000 0.86 0.87
5000 1.16 1.57
6000 1.05 1.00
7000 1.18 0.98
8000 0.65 0.74
9000 1.09 1.26

10000 0.87 0.82
Table 3 – eBPF-based latency maximum and standard

deviation ratio compared to iptables-based in the case of
IPv6

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ra
tio

 o
f e

BP
F

an
d

Ip
ta

bl
es

-b
as

ed
 s

ol
ut

io
n

Number of Kubernetes Services

MIN Median AVG MAX STDEV

Figure 12 – Summarized diagram of delay
measurements between iptables and eBPF with IPv4

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ra
tio

 o
f e

BP
F

an
d

Ip
ta

bl
es

-b
as

ed
 s

ol
ut

io
n

Number of Kubernetes Services

MIN Median AVG MAX STDEV

Figure 13 – Summarized diagram of delay
measurements between iptables and eBPF with IPv6

Conclusion: The maximum latency values are higher for
fewer Kubernetes services when using eBPF over IPv4.
However, for IPv6 traffic, eBPF performs better in the case
of fewer Kubernetes Services.
The standard deviation of latency for eBFP over IPv4 is lower
in the case of 5 out of 11 scenarios. However, the greater the
number of Kubernetes services used, the lower the standard
deviation trend-wise in the case of eBPF. For IPv6, the
standard deviation tends to be lower for eBPF with fewer
Kubernetes services. However, this is not so significant
compared to the IPv4 cases. Overall, IPv6 latency is more
stable than IPv4 from the standard deviation point of view as
the fluctuation of the values is lower.

G. Measurements conclusion
Generally, we can say that the eBPF-based solutions are

more "stable" as the standard deviation is lower.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ra
tio

 o
f

eB
PF

 a
nd

 Ip
ta

bl
es

-b
as

ed
 so

lu
tio

ns

Number of Kubernetes Services

MIN Median AVG MAX STDEV

Figure 11 – Summarized diagram of throughput
measurements between iptables and eBPF with IPv6

Conclusion: In the case of a high number of Kubernetes
Services, the standard deviation of throughput is lower when
eBPF is used in most cases. IPv6-based throughput values are
more stable compared to IPv4 in both approaches, as the
standard deviation of the eBPF to iptables ratio is lower.

F. Latency measurements
We also use a relative scale, just as we did in the case of

throughput measurements. UDP traffic originated 100 times
in every scenario with a 30-second-long flow, with the same
service scaling as in the throughput measurements. This
means 1100 measurements were in summary.

Goal: Concluding the difference between kube-proxy
(iptables) and eBPF-based packet processing in the case of
IPv4 and IPv6 within the context of latency behavior.

Measurement results: From the data point of view, we
highlight the maximum and standard deviation (Table 2,
Table 3) as there is no significant difference between
minimum, average, and median values. The data is also
represented in the graphs of Figure 12 and Figure 13.

Number of
Kubernetes

Services
Maximum Standard deviation ratio

1 1.10 1.82
1000 1.21 1.91
2000 1.17 1.15
3000 1.18 1.49
4000 0.86 0.62
5000 0.90 0.47
6000 1.13 1.22
7000 0.80 0.50
8000 1.04 1.08
9000 0.91 0.54

10000 0.84 0.40
Table 2 – eBPF-based latency maximum and standard

deviation ratio compared to iptables-based in the case of
IPv4

Number of
Kubernetes

Services
Maximum Standard deviation ratio

1 1.08 1.01
1000 0.92 0.93
2000 0.95 0.93
3000 0.91 0.94
4000 0.86 0.87
5000 1.16 1.57
6000 1.05 1.00
7000 1.18 0.98
8000 0.65 0.74
9000 1.09 1.26

10000 0.87 0.82
Table 3 – eBPF-based latency maximum and standard

deviation ratio compared to iptables-based in the case of
IPv6

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ra
tio

 o
f e

BP
F

an
d

Ip
ta

bl
es

-b
as

ed
 s

ol
ut

io
n

Number of Kubernetes Services

MIN Median AVG MAX STDEV

Figure 12 – Summarized diagram of delay
measurements between iptables and eBPF with IPv4

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ra
tio

 o
f e

BP
F

an
d

Ip
ta

bl
es

-b
as

ed
 s

ol
ut

io
n

Number of Kubernetes Services

MIN Median AVG MAX STDEV

Figure 13 – Summarized diagram of delay
measurements between iptables and eBPF with IPv6

Conclusion: The maximum latency values are higher for
fewer Kubernetes services when using eBPF over IPv4.
However, for IPv6 traffic, eBPF performs better in the case
of fewer Kubernetes Services.
The standard deviation of latency for eBFP over IPv4 is lower
in the case of 5 out of 11 scenarios. However, the greater the
number of Kubernetes services used, the lower the standard
deviation trend-wise in the case of eBPF. For IPv6, the
standard deviation tends to be lower for eBPF with fewer
Kubernetes services. However, this is not so significant
compared to the IPv4 cases. Overall, IPv6 latency is more
stable than IPv4 from the standard deviation point of view as
the fluctuation of the values is lower.

G. Measurements conclusion
Generally, we can say that the eBPF-based solutions are

more "stable" as the standard deviation is lower.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ra
tio

 o
f

eB
PF

 a
nd

 Ip
ta

bl
es

-b
as

ed
 so

lu
tio

ns

Number of Kubernetes Services

MIN Median AVG MAX STDEV

Figure 11 – Summarized diagram of throughput
measurements between iptables and eBPF with IPv6

Conclusion: In the case of a high number of Kubernetes
Services, the standard deviation of throughput is lower when
eBPF is used in most cases. IPv6-based throughput values are
more stable compared to IPv4 in both approaches, as the
standard deviation of the eBPF to iptables ratio is lower.

F. Latency measurements
We also use a relative scale, just as we did in the case of

throughput measurements. UDP traffic originated 100 times
in every scenario with a 30-second-long flow, with the same
service scaling as in the throughput measurements. This
means 1100 measurements were in summary.

Goal: Concluding the difference between kube-proxy
(iptables) and eBPF-based packet processing in the case of
IPv4 and IPv6 within the context of latency behavior.

Measurement results: From the data point of view, we
highlight the maximum and standard deviation (Table 2,
Table 3) as there is no significant difference between
minimum, average, and median values. The data is also
represented in the graphs of Figure 12 and Figure 13.

Number of
Kubernetes

Services
Maximum Standard deviation ratio

1 1.10 1.82
1000 1.21 1.91
2000 1.17 1.15
3000 1.18 1.49
4000 0.86 0.62
5000 0.90 0.47
6000 1.13 1.22
7000 0.80 0.50
8000 1.04 1.08
9000 0.91 0.54

10000 0.84 0.40
Table 2 – eBPF-based latency maximum and standard

deviation ratio compared to iptables-based in the case of
IPv4

Number of
Kubernetes

Services
Maximum Standard deviation ratio

1 1.08 1.01
1000 0.92 0.93
2000 0.95 0.93
3000 0.91 0.94
4000 0.86 0.87
5000 1.16 1.57
6000 1.05 1.00
7000 1.18 0.98
8000 0.65 0.74
9000 1.09 1.26

10000 0.87 0.82
Table 3 – eBPF-based latency maximum and standard

deviation ratio compared to iptables-based in the case of
IPv6

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ra
tio

 o
f e

BP
F

an
d

Ip
ta

bl
es

-b
as

ed
 s

ol
ut

io
n

Number of Kubernetes Services

MIN Median AVG MAX STDEV

Figure 12 – Summarized diagram of delay
measurements between iptables and eBPF with IPv4

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ra
tio

 o
f e

BP
F

an
d

Ip
ta

bl
es

-b
as

ed
 s

ol
ut

io
n

Number of Kubernetes Services

MIN Median AVG MAX STDEV

Figure 13 – Summarized diagram of delay
measurements between iptables and eBPF with IPv6

Conclusion: The maximum latency values are higher for
fewer Kubernetes services when using eBPF over IPv4.
However, for IPv6 traffic, eBPF performs better in the case
of fewer Kubernetes Services.
The standard deviation of latency for eBFP over IPv4 is lower
in the case of 5 out of 11 scenarios. However, the greater the
number of Kubernetes services used, the lower the standard
deviation trend-wise in the case of eBPF. For IPv6, the
standard deviation tends to be lower for eBPF with fewer
Kubernetes services. However, this is not so significant
compared to the IPv4 cases. Overall, IPv6 latency is more
stable than IPv4 from the standard deviation point of view as
the fluctuation of the values is lower.

G. Measurements conclusion
Generally, we can say that the eBPF-based solutions are

more "stable" as the standard deviation is lower.

Conclusion: In the case of a high number of Kubernetes
Services, the standard deviation of throughput is lower when
eBPF is used in most cases. IPv6-based throughput values
are more stable compared to IPv4 in both approaches, as the
standard deviation of the eBPF to iptables ratio is lower.

F. Latency measurements
We also use a relative scale, just as we did in the case of

throughput measurements. UDP traffic originated 100 times
in every scenario with a 30-second-long flow, with the same
service scaling as in the throughput measurements. This means
1100 measurements were in summary.

Goal: Concluding the difference between kube-proxy
(iptables) and eBPF-based packet processing in the case of
IPv4 and IPv6 within the context of latency behavior.

Measurement results: From the data point of view, we
highlight the maximum and standard deviation (Table 2, Table
3) as there is no significant difference between minimum,
average, and median values. The data is also represented in the
graphs of Figure 12 and Figure 13.

Conclusion: The maximum latency values are higher
for fewer Kubernetes services when using eBPF over IPv4.
However, for IPv6 traffic, eBPF performs better in the case of
fewer Kubernetes Services.
The standard deviation of latency for eBFP over IPv4 is lower
in the case of 5 out of 11 scenarios. However, the greater the
number of Kubernetes services used, the lower the standard
deviation trend-wise in the case of eBPF. For IPv6, the standard
deviation tends to be lower for eBPF with fewer Kubernetes
services. However, this is not so significant compared to the
IPv4 cases. Overall, IPv6 latency is more stable than IPv4 from
the standard deviation point of view as the fluctuation of the
values is lower.

Evaluation of traditional and eBPF-based packet
processing in Kubernetes for network slicing

INFOCOMMUNICATIONS JOURNAL

MARCH 2025 • VOLUME XVII • NUMBER 1 63

G. Measurements conclusion
Generally, we can say that the eBPF-based solutions are

more "stable" as the standard deviation is lower.

Generally, we can say that, based on the number of
Kubernetes services, it is worth considering which type of
Kubernetes packet processing is used because appropriate
solutions can be suggested for different cases.

This experience can be utilized in URLLC network
slices. Slicing SLAs always specify how reliably a particular
parameter has to be kept (e.g., 99.999% of the time). These
SLA requirements may be maintained better with lower latency
fluctuation in certain eBPF cases. This can also contribute to
telecommunication systems' overall software availability, as
Varga et al. detailed in [35] [36].

Voice over IP services can also consider the results as lower
jitter can be reached concerning the number of Kubernetes
services in the telco cloud hardware.

H. Lessons learned
There were several difficulties during the creation of the

test environment. Firstly, it is essential to differentiate the
architecture of the measurement tools. As for the iPerf [37], there
is a client and a server entity, and the connection establishment
happens at the same port through which the data traffic flows.
This means that the observed traffic is influenced by the
signaling messages. In the case of D-ITG, there are dedicated
ports for signaling and traffic generation, respectively. The
desired data port we want to use is sent over the control plane
as a plain-text message. Therefore, the NodePorts to pod's port
translation won't happen. This means we cannot send traffic
to the pod. Our solution was to choose the same port for the
pod's port and the NodePort, so we had to define the NodePort
to achieve that manually. Furthermore, there were some cases
when the server was shut down randomly. So, we had to handle
this and consider it inside the automatized shell script, which
we used for measurements. Moreover, D-ITG components are
more separated by their functionalities than iPerf. There are
several entities present: ITGSend (at the client, it establishes
the connection and generates the traffic), ITGRecv (at the
server, it receives the traffic), ITGDec (at the client, it decodes
the measurement result saved in a config file). Beyond the
scope of our testbed, other entities can still be used for different
scenarios, like ITGLog and ITGManager. So, we can see that
the overall architecture of D-ITG is more complex than that of
iPerf, which uses a simple point-to-point client-server model.
Even though it is hard to implement D-ITG measurement in
a cloud-native environment, this is still a valid solution as it is
very flexible and has accurate traffic generation [38] [39]. It is
also important to mention that the most unstable test scenarios
were the IPv6-based traffic generations, where we used eBPF
programs for packet processing. There were some cases
where the traffic generator crashed. Not to mention that the
higher the throughput was, the more time it took for ITGDec
to decode the config file. Unfortunately, it is a limitation of
the D-ITG software, which caused a massive impact on the

measurement time. Delay measurement test cases took about
8-9 hours, and for the throughput analysis, it was 16-18 hours.
All in all, generalizing the applied scripts required continuous
development and spared much time to be usable. In a cloud
environment – especially in public clouds – it is impossible
to fully isolate a particular workload. Background traffic and
other workloads may affect the measurement system and the
performance of network functions. This might add an additional
deviation in the results.

VII. Conclusion

In this paper, we have shown that there is room for eBPF
to improve network performance in several use cases of
Kubernetes-based telco cloud infrastructures. With the help of
our results, operators can choose the packet processing methods
that are the most suitable for their usage. With a significant
service number, the throughput and latency values are more
stable with IPv4 and eBPF. In IPv6-based measurements, the
use of eBPF gives more stable results in most of the cases.

eBPF is not just about performance improvements; it is a
complete framework supporting more straightforward and
secure software development. Telecommunication networks
can also benefit from better observability of network functions,
which supports a variety of fields to be measured, such as
energy consumption, SLA violation, logging, protocol analysis,
security, etc. We believe this holistic approach will affect the
whole telecommunication landscape. Even though there are
some cases where eBPF does not outperform iptables, the
application fields and feature sets mentioned above are worth
the cost.

eBPF can support network slicing itself due to the increased
observability, which leads to more control over particular
data paths. Thus, it is easier to fulfill slice availability and
performance requirements.

VIII. Future work

The scalability of Kubernetes is crucial, and it is not just
with Kubernetes services. It is worth examining how many
Worker Nodes, Ingress controllers, etc., can be safely used by
telecommunication applications or even in a regular IT cloud.
As an example, Calico Typha deals also with scalability [40].
This pertains to, e.g., regulatory requirements where advanced
logging is needed, which must also be scalable. In a Kubernetes-
based telco environment, it is worth examining how eBPF can
solve issues related to networking itself, such as assigning
multiple interfaces to a pod or eliminating Network Address
Translation (NAT) by Kubernetes services [41]. Furthermore,
additional measurement points can be added to identify which
packet processing section can cause increased volatility.

Acknowledgment

The authors thank Nandor Galambosi and Jozsef Varga
for their constructive criticism and valuable comments while
preparing the manuscript.

Evaluation of traditional and eBPF-based packet
processing in Kubernetes for network slicing

MARCH 2025 • VOLUME XVII • NUMBER 164

INFOCOMMUNICATIONS JOURNAL

 [1] IMT-2020 requirements. Accessed: Aug. 21, 2024. [Online].
Available: https://www.3gpp.org/technologies/3gpp-meets-imt-2020

 [2] G. Blinowski, A. Ojdowska, and A. Przybyłek, ‘Monolithic vs.
Microservice Architecture: A Performance and Scalability Evaluation’,
IEEE Access, vol. 10, pp. 20 357–20 374, 2022,

 doi: 10.1109/ACCESS.2022.3152803.
 [3] O. Al-Debagy and P. Martinek, ‘A Comparative Review of

Microservices and Monolithic Architectures’, in 2018 IEEE 18th
International Symposium on Computational Intelligence and
Informatics (CINTI), 2018, pp. 000 149–000 154.

 doi: 10.1109/CINTI.2018.8928192.
 [4] H. T. Nguyen, T. Van Do, and C. Rotter, ‘Scaling UPF Instances in

5G/6G Core With Deep Reinforcement Learning’, IEEE Access, vol.
9, pp. 165 892–165 906, 2021, doi: 10.1109/ACCESS.2021.3135315.

 [5] P. Mach and Z. Becvar, ‘Mobile Edge Computing: A Survey on
Architecture and Computation Offloading’, IEEE Communications
Surveys & Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017,

 doi: 10.1109/COMST.2017.2682318.
 [6] ‘Extended Berkeley Packet Filter (eBPF)’. [Online]. Available:

https://ebpf.io/
 [7] ‘Cilium Kubernetes CNI’. Accessed: Nov. 05, 2023. [Online].

Available: https://cilium.io/
 [8] ‘Nokia official documentation of Network Service Platform’.

Accessed: Jun. 26, 2024. [Online]. Available: https://documentation.
nokia.com/nsp/24-4/Transport_Slice_Controller/Overview.html

 [9] ‘Calico Kubernetes CNI’. Accessed: Nov. 05, 2023. [Online].
Available: https://docs.projectcalico.org/getting-started/kubernetes/

 [10] ‘Nftables’. Accessed: Jun. 28, 2024. [Online]. Available: https://
netfilter.org/projects/nftables/

 [11] Netfilter project. Accessed: Jul. 10, 2024. [Online]. Available: https://
www.netfilter.org/

 [12] ‘Vector Packet Processing’. Accessed: Feb. 04, 2025. [Online].
Available: https://fdio-vpp.readthedocs.io/en/latest/overview/
whatisvpp/what-is-vector-packet-processing.html

 [13] ‘BCC – Toolkit and library for efficient BPF-based kernel tracing’.
Accessed: May 10, 2024. [Online]. Available: https://ebpf.io/
applications/

 [14] ‘libbpf – C-based library’. Accessed: Mar. 22, 2024. [Online].
Available: https://docs.kernel.org/bpf/libbpf/libbpf_overview.html

 [15] ‘The eBPF Library for Go’. Accessed: Mar. 14, 2024. [Online].
Available: https://ebpf-go.dev/

 [16] L. Rise, Learning eBPF: Programming the Linux Kernel for
Enhanced Observability Networking and Security, pp. 218, 2023.
[Online]. Available: https://github.com/lizrice/learning-ebpf

 [17] D. Soldani et al., ‘eBPF: A New Approach to Cloud-Native
Observability, Networking and Security for Current (5G) and Future
Mobile Networks (6G and Beyond)’, IEEE Access, vol. 11, pp. 57
174– 57 202, 2023, doi: 10.1109/ACCESS.2023.3281480.

 [18] A. Khichane, I. Fajjari, N. Aitsaadi, and M. Gueroui, ‘5GC-Observer:
a Non-intrusive Observability Framework for Cloud Native 5G
System’, in NOMS 2023-2023 IEEE/IFIP Network Operations and
Management Symposium, 2023, pp. 1–10.

 doi: 10.1109/NOMS56928.2023.10154433.
[19] A. Khichane, I. Fajjari, N. Aitsaadi, and M. Gueroui, ‘5GC-Observer

Demonstrator: a Non-intrusive Observability Prototype for Cloud
Native 5G System’, in NOMS 2023-2023 IEEE/IFIP Network
Operations and Management Symposium, 2023, pp. 1–3.

 doi: 10.1109/NOMS56928.2023.10154369.
 [20] C. Scarpitta, G. Sidoretti, A. Mayer, S. Salsano, A. Abdelsalam, and

C. Filsfils, ‘High Performance Delay Monitoring for SRv6-Based SD-
WANs’, IEEE Transactions on Network and Service Management, vol.
21, no. 1, pp. 1067–1081, 2024, doi: 10.1109/TNSM.2023.3300151.

 [21] G. Mirsky, G. Jun, H. Nydell, and R. Foote, ‘Simple Two-Way Active
Measurement Protocol’. in Internet Request for Comments, no. 8762.
RFC Editor, Fremont, CA, USA, Mar. 2020. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc8762.txt

References [22] D. Scholz, D. Raumer, P. Emmerich, A. Kurtz, K. Lesiak, and G.
Carle, ‘Performance Implications of Packet Filtering with Linux
eBPF’, in 2018 30th International Teletraffic Congress (ITC 30),
2018, pp. 209–217. doi: 10.1109/ITC30.2018.00039.

 [23] M. Bertrone, S. Miano, F. Risso, and M. Tumolo, ‘Accelerating Linux
Security with eBPF iptables’, in Proceedings of the ACM SIGCOMM
2018 Conference on Posters and Demos, in SIGCOMM ’18. New
York, NY, USA: Association for Computing Machinery, 2018, pp.
108–110. doi: 10.1145/3234200.3234228.

 [24] S. Miano, M. Bertrone, F. Risso, M. V. Bernal, Y. Lu, and J. Pi,
‘Securing Linux with a faster and scalable iptables’, SIGCOMM
Comput. Commun. Rev., vol. 49, no. 3, pp. 2–17, Nov. 2019,

 doi: 10.1145/3371927.3371929.
 [25] J.-B. Lee, T.-H. Yoo, E.-H. Lee, B.-H. Hwang, S.-W. Ahn, and C.-

H. Cho, ‘High-Performance Software Load Balancer for Cloud-
Native Architecture’, IEEE Access, vol. 9, pp. 123704–123716, 2021,
doi: 10.1109/ACCESS.2021.3108801.

 [26] F. Parola, F. Risso, and S. Miano, ‘Providing Telco-oriented Network
Services with eBPF: the Case for a 5G Mobile Gateway’, in 2021 IEEE
7th International Conference on Network Softwarization (NetSoft),
2021, pp. 221–225. doi: 10.1109/NetSoft51509.2021.9492571.

 [27] ‘Data Plane Development Kit (DPDK)’. Accessed: Jul. 01, 2024.
[Online]. Available: https://www.dpdk.org/

 [28] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy,
‘SoftNIC: A software NIC to augment hardware’, EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2015-155,
2015.

 [29] B. Pfaff et al., ‘The design and implementation of open {vSwitch}’,
in 12th USENIX symposium on networked systems design and
implementation (NSDI 15), 2015, pp. 117–130.

[30] D. Behl, H. Huang, P. Kodeswaran, and S. Sen, ‘On eBPF extensions
to Kubernetes CNI datapath’, in 2023 15th International Conference
on COMmunication Systems & NETworkS (COMSNETS), 2023, pp.
207–209. doi: 10.1109/COMSNETS56262.2023.10041357.

[31] F. Parola, L. D. Giovanna, G. Ognibene, and F. Risso, ‘Creating
Disaggregated Network Services with eBPF: the Kubernetes Network
Provider Use Case’, in 2022 IEEE 8th International Conference on
Network Softwarization (NetSoft), 2022, pp. 254–258.

 doi: 10.1109/NetSoft54395.2022.9844062.
 [32] S. Miano, F. Risso, M. V. Bernal, M. Bertrone, and Y. Lu, ‘A Framework

for eBPF-Based Network Functions in an Era of Microservices’,
IEEE Transactions on Network and Service Management, vol. 18, no.
1, pp. 133–151, 2021, doi: 10.1109/TNSM.2021.3055676.

 [33] S. Miano, M. Bertrone, F. Risso, M. Tumolo, and M. V. Bernal,
‘Creating Complex Network Services with eBPF: Experience and
Lessons Learned’, in 2018 IEEE 19th International Conference on
High Performance Switching and Routing (HPSR), 2018, pp. 1–8.
doi: 10.1109/HPSR.2018.8850758.

[34] S. Avallone, S. Guadagno, D. Emma, A. Pescape, and G. Ventre,
‘D-ITG distributed Internet traffic generator’, in First International
Conference on the Quantitative Evaluation of Systems, 2004. QEST
2004. Proceedings., 2004, pp. 316–317.

 doi: 10.1109/QEST.2004.1348045.
 [35] J. Varga, A. Hilt, J. Bíró, C. Rotter, and G. Jaro, ‘Reducing operational

costs of ultra-reliable low latency services in 5G’, Infocommunications
Journal, vol. X, pp. 37–45, 2018, doi: 10.36244/ICJ.2018.4.6.

 [36] J. Varga, A. Hilt, C. Rotter, and G. Járó, ‘Providing Ultra-Reliable
Low Latency Services for 5G with Unattended Datacenters’, in 2018
11th International Symposium on Communication Systems, Networks
Digital Signal Processing (CSNDSP), 2018, pp. 1–4.

 doi: 10.1109/CSNDSP.2018.8471756.
 [37] ‘Iperf3 – traffic generator’. Accessed: Nov. 05, 2023. [Online].

Available: https://iperf.fr/iperf-download.php
 [38] G. Aceto, C. Guida, A. Montieri, V. Persico, and A. Pescapè, ‘A

First Look at Accurate Network Traffic Generation in Virtual
Environments’, in 2022 IEEE Symposium on Computers and
Communications (ISCC), 2022, pp. 1–6.

 doi: 10.1109/ISCC55528.2022.9913058.

https://doi.org/10.1109/ACCESS.2022.3152803
https://doi.org/10.1109/CINTI.2018.8928192
https://doi.org/10.1109/ACCESS.2021.3135315
https://doi.org/10.1109/COMST.2017.2682318
https://ebpf.io/
https://cilium.io/
https://documentation.nokia.com/nsp/24-4/Transport_Slice_Controller/Overview.html
https://documentation.nokia.com/nsp/24-4/Transport_Slice_Controller/Overview.html
https://docs.projectcalico.org/getting-started/kubernetes/
https://netfilter.org/projects/nftables/
https://netfilter.org/projects/nftables/
https://www.netfilter.org/
https://www.netfilter.org/
https://fdio-vpp.readthedocs.io/en/latest/overview/whatisvpp/what-is-vector-packet-processing.html
https://fdio-vpp.readthedocs.io/en/latest/overview/whatisvpp/what-is-vector-packet-processing.html
https://ebpf.io/applications/
https://ebpf.io/applications/
https://docs.kernel.org/bpf/libbpf/libbpf_overview.html
https://ebpf-go.dev/
https://github.com/lizrice/learning-ebpf
https://doi.org/10.1109/ACCESS.2023.3281480
https://doi.org/10.1109/NOMS56928.2023.10154433
https://doi.org/10.1109/NOMS56928.2023.10154369
https://doi.org/10.1109/TNSM.2023.3300151
https://www.rfc-editor.org/rfc/rfc8762.txt
https://doi.org/10.1109/ITC30.2018.00039
https://doi.org/10.1145/3234200.3234228
https://doi.org/10.1145/3371927.3371929
https://doi.org/10.1109/ACCESS.2021.3108801
https://doi.org/10.1109/NetSoft51509.2021.9492571
https://www.dpdk.org/
https://doi.org/10.1109/COMSNETS56262.2023.10041357
https://doi.org/10.1109/NetSoft54395.2022.9844062
https://doi.org/10.1109/TNSM.2021.3055676
https://doi.org/10.1109/HPSR.2018.8850758
https://doi.org/10.1109/QEST.2004.1348045
https://doi.org/10.36244/ICJ.2018.4.6
https://doi.org/10.1109/CSNDSP.2018.8471756
https://iperf.fr/iperf-download.php
https://doi.org/10.1109/ISCC55528.2022.9913058

Evaluation of traditional and eBPF-based packet
processing in Kubernetes for network slicing

INFOCOMMUNICATIONS JOURNAL

MARCH 2025 • VOLUME XVII • NUMBER 1 65

 [39] D. Perepelkin and M. Ivanchikova, ‘Problem of Network Traffic
Classification in Multiprovider Cloud Infrastructures Based on
Machine Learning Methods’, in 2021 10th Mediterranean Conference
on Embedded Computing (MECO), 2021, pp. 1–5.

 doi: 10.1109/MECO52532.2021.9460171.
 [40] ‘Calico Typha’. [Online]. Available: https://docs.tigera.io/calico/

latest/reference/typha/
 [41] Ákos Leiter et al., ‘Cloud-Native IP-Based Mobility Management: A

MIPv6 Home Agent Standalone Microservice Design’, presented at
the CSNDSP 2022

Ákos Leiter graduated as a Computer Engineer MSc
at the Department of Networked Systems and Ser-
vices (HIT), Budapest University of Technology and
Economics (BME) in 2015, specializing in Computer
Networks. His thesis was about proposing an operator-
centric, dynamic flow mobility protocol with IP in the
Evolved Packet Core. He is a PhD candidate at HIT's
Multimedia Networks and Services Laboratory (MEDI-
ANETS) and a research engineer at Nokia Bell Labs.
His main research field is Network Function Virtualiza-

tion and Software Defined Networking, including Orchestration and Network
Automation. His work-in-progress PhD thesis is about the cloudification of the
Mobile IPv6 protocol family on top of Kubernetes.

Döme Matusovits graduated from the Budapest Uni-
versity of Technology with a BSc in Electrical Engi-
neering in 2024. He is currently pursuing his MSc
degree at the Department of Networked Systems and
Services (HIT), specializing in computer and mobile
networks. His ongoing MSc thesis focuses on the Or-
chestration of Network Slices and Inter-Slice Handover.
His main research fields include 5G, Network Slicing,
and Software Defined Networking within the scope
of Network Automation. The research is conducted in

close collaboration with Nokia Bell Labs and HIT. Since 2023, he has been
working at Nokia in the Cloud and Network Services, developing 5G products.

László Bokor received his Ph.D. degree in computer en-
gineering from Budapest University of Technology and
Economics (BME) in 2014. He is currently an associate
professor at the Department of Networked Systems and
Services (HIT), where he leads the Vehicular Communi-
cations Research Group founded within strong industry-
academic cooperation. He is a member of the HTE (Sci-
entific Association for Infocommunications Hungary),
the Hungarian Standards Institution's Technical Commit-
tee for Intelligent Transport Systems (MSZT/MB 911),

the TPEGoverC-ITS Task Force within the TPEG Application Working Group
of TISA, the ITS Hungary Association (the Hungarian organization of ERTICO's
Network of National ITS Associations), and the BME's Multimedia Networks
and Services Laboratory, where he participates in different R&D projects. His
research interests include IPv6 mobility, SDN/NFV-based mobile networks, net-
work simulation, mobile healthcare infrastructures, and V2X communication in
cooperative intelligent transportation systems.

https://doi.org/10.1109/MECO52532.2021.9460171
https://docs.tigera.io/calico/latest/reference/typha/
https://docs.tigera.io/calico/latest/reference/typha/

