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Abstract—In recent years, the proliferation of cloud-native 
technology enablers, such as microservice deployment and 
management with Kubernetes, have presented new challenges for 
telecommunications service providers. Strict data transmission 
requirements have emerged in various areas, such as immediate 
interventions in intelligent transportation, video conferencing, 
etc. With the advent of 5G networks, this demand can also be 
fulfilled thanks to an innovative technology called Network 
Slicing. In terms of its operation, we can separate networks into 
individual segments to continuously satisfy the desired service 
requirements. However, packet processing on top of Kubernetes 
may need to be changed to support the emerging number 
of microservices during slicing. This is where the Extended 
Berkeley Packet Filter (eBPF) comes into the picture to boost 
the capacity of data centers and keep service guarantees. This 
paper presents how eBPF can support network slicing through 
its performance evaluation in a Kubernetes environment.
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I.  Introduction

Implementing end-to-end (E2E) network slicing is still 
a heavily researched problem in the telco industry. It is 
impossible to properly fulfill E2E network slicing requirements 
if one segment or domain of the network does not deal with 
service guarantees. For example, if the core network part of 
the E2E network slice instance has proper resource assignment 
and implementation, other network parts have to act similarly. 
Radio, transport, and data center networking must also be 
prepared for network slicing requirements. The end-to-
end network slicing concept is depicted in Figure 1. All the 
network function elements are considered to run in the cloud 
environment.

In this work, we focus on data center networking, especially 
Kubernetes-based packet processing solutions, and whether 
or not they can ensure a particular service level that requires 
low latency and a guaranteed throughput during packet 
traversal. In the fifth-generation mobile network standards, 
communication with these constraints is called Ultra-reliable 
Low-latency Communication service (URLLC) [1]. We 
assume that the number of microservices (Kubernetes Services) 
will be continuously increasing (due to autoscaling, edge 

deployments, and further radio cloudification and decoupling 
[2] [3] [4] [5]), so we examine how this will affect network 
Key Performance Indicators (KPI) considering throughput 
and latency. We evaluate this on two test environments: the 
traditional Kubernetes packet processing method kube-proxy-
based on the top of iptables and the extended Berkley Packet 
Filter (eBPF) [6] using the Cilium Container Networking 
Interface (CNI) [7] in the context of network slicing.

eBPF is powerful because it makes the Linux operating 
system programmable without modifying the kernel's source 
code or writing a new kernel module. Consequently, it also 
solves the complication of developing a monolithic Kernel, 
which saves much time when adding new features to the OS 
core. Furthermore, it provides an alternative to low-performed 
Netfilter-based packet processing. This is why Kubernetes 
has started to utilize eBPF in CNIs, which are responsible for 
Kubernetes' internal and external networking. This includes 
interface and IP address management and packet processing 
mechanisms. There are two CNIs publicly available that 
implement eBPF-based networking: Cilium and Calico [9]. 
Our test system relies on the Cilium-based solution.

This paper is organized as follows: Section II gives a 
technological introduction to iptables and eBPF. Then, 
Section III covers the most crucial technological background 
of Kubernetes and Cilium. The related work is presented in 
Section IV. The testbed details are explained in Section V, 
while measurement results are elaborated in Section VI. 
Conclusion and future work are drawn in Sections VII and 
VIII, respectively.

II.  Background behind iptables and Extended 
Berkeley Packet Filter

Although in the Linux world, packet processing/filtering 
technologies are already available (such as nftables [10]), 
which can enhance the traditional Netfilter based approach, 
in Kubernetes, the iptables is still the most widely used 
option. It is developed under the Netfilter project [11], which 
consists of community-driven collaboratives. It is built up with  

Figure 1 – End-to-end network slicing concept [8]
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kernel modules linked to the kernel at runtime, extending the 
monolithic kernel's functionality. The iptables framework 
communicates (Figure 2) with different predefined hookpoints  
of the kernel's protocol stack. These are where the Nework 
Address Translation (NAT), Network Address and Port 
Translation (NAPT), packet filtering, and other packet 
manipulation procedures take place:

• NF_IP_PRE_ROUTING: This is where the 
incoming traffic directly enters the kernel stack. 
There isn't any routing processing at this point.

• NF_IP_LOCAL_IN: The routing procedures 
have already been done, and the packet has been 
forwarded to the local host.

• NF_IP_FORWARD: This is the same as the 
previous case, except that the packet is destined 
for a remote host.

• NF_IP_LOCAL_OUT: The traffic is locally 
generated and destined to a remote host

• NF_IP_POST_ROUTING: Packet processing 
procedures after routing

The iptables consists of rules, which contain targets. If 
a rule is evaluated, then the target is the action that needs to 
be executed (e.g., ACCEPT, DROP, RETURN, REJECT). 
Rules are part of chains that have two types: built-in (by the 
Linux OS) and custom (such as Kubernetes CNI-defined 
ones). The built-in chains are triggered by the abovementioned 
hookpoints respectively: PREROUTING (NF_IP_PRE_
ROUTING), INPUT (NF_IP_LOCAL_IN), FORWARD 
(NF_IP_FORWARD), OUTPUT (NF_IP_LOCAL_OUT), 
POSTROUTING (NF_IP_POST_ROUTING).

The chains are located in tables. They are separated 
according to their appropriate functionality. For this reason, 
we can differentiate between Filter, NAT, Mangle, Raw, and 
Security tables. In the Filter table, the decision is made on 
whether the packet should enter or leave the network. The 
NAT rules can be found in the NAT table, as its name implies. 
The Mangle table contains packet manipulation rules. For 
configuration exemptions, where you do not want certain traffic 

to be tracked, you use the Raw table. It is designed to set a mark 
(NOTRACK) on a packet that has not wished to be tracked. For 
stricter access management, some Linux distributions include 
the security table. In order to achieve this, a mandatory access 
control (MAC) has been implemented.

When the packet processing takes place, in the background 
the appropriate chain is selected within the table. Also, the 
desired rule should be applied in that chain. The problem 
occurs during the lookup phase. The table elements are 
not indexed; hence, the selection mechanism is sequential. 
At a small number of entries, it won't cause any problems. 
However, this number could be a significantly larger value 
in a production environment. In this case, we will experience 
substantial performance degradation in the packet processing. 
It could seriously harm SLA attributes, such as throughput and 
latency. That's why it is essential to develop a better solution 
that can enhance processing performance and help meet the 
requirements of URLLC communication.

Two well-known alternatives can boost packet processing: 
Vector Packet Processor (VPP) [12] and extended Berkeley 
Packet Filter (eBPF). The former solution implements a 
network stack, bypassing the Linux kernel. The essence 
here is that a new approach is being introduced to handling 
incoming traffic. The traditional Linux kernel-based solution 
is scalar processing, which typically processes one packet at 
a time. In contrast, at VPP, multiple packets are processed by 
their own network stack. These groups of packets are called 
vectors. In Kubernetes, the Calico CNI [9] is an example of its 
implementation. We do not go beyond this solution further, as 
our scope only focuses on eBPF.

In eBPF, we use eBPF programs to be loaded into the kernel 
from userspace (Figure 3). They are written in C language, but 
multiple development libraries can provide higher abstraction 
language levels, like bcc [13], libbpf [14], and eBPF Go[15]. 
Depending on the type of library, it uses a clang or Low Level 
Virtual Machine (LLVM) compiler to produce the so-called 
bytecodes from the source code. These are CPU-independent 
instruction sets translated by a Just-in- Time (JIT) compiler into 
machine-specific instruction sets. This way, we can optimize 
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the execution speed of the program using a natively compiled 
kernel code or a kernel module codebase. At a higher level 
abstraction, we can say that a virtual machine is practically 
embedded into the Linux kernel, where these eBPF programs 
run. They can be injected and executed on any level of the 
protocol stack. These are actually hookpoints, where certain 
events trigger the program execution. There can be many 
hookpoints, like kernel functions (kprobes) or user functions 
(uprobes) execution, system calls, or any tracepoints at the 
kernel. Also, eBPF programs can be attached to network 
interfaces or sockets as well (the latter two examples will be 
important in eBPF-based networking at Cilium). That's the 
key because, with this approach, we can extend the kernel's 
functionality without kernel source code modification or any 
usage of kernel modules. Additional functionalities, such as 
verification (depicted in Figure 3). improve and secure the 
execution compared to pure kernel modules, where there is 
no built-in and easy protection against, e.g., kernel panic. 
Before we get into the details of how eBPF can enhance packet 
processing in a Kubernetes environment, we introduce the 
related works that describe the most important eBPF use cases.

III.  Relevant parts of Kubernetes and Extended 
Berkeley Packet Filter

One of the most essential parts of our proposed testing 
environment is the Kubernetes integration of Cilium CNI, 
where our measurement results were gathered, depicted 
in Figure 4. It can leverage both iptables and eBPF-based 
networking to the whole cluster, where the Master and Worker 
nodes are located. The Master node is the control plane of 
Kubernetes. That is the component that involves the resource 
database (etcd) and the reconciliation loop mechanism (kube-
controller manager), which controls the entire operation of the 
cluster. The API endpoint (apiserver) can also be found here, 
providing the cluster with reachability via HTTPS. What's 
more, the scheduling of workload resources (kube-scheduler) 
is also specified here. The Worker node provides the cluster's 
data plane. There, we could find the workloads that accomplish 
the desired services to be up and running.

So far, all the cluster functionalities we mentioned have 
been implemented in Kubernetes' smallest unit, called the pod. 
Most of the time, a pod realizes a single container, but there can 
be a case when more than one container is embedded in a pod 

Figure 4 – High level architecture of Kubernetes with Cilium CNI

Figure 5 – iptables and eBPF-based Cilium data path [7]

(e.g., a sidecar container, which receives the traffic, and there is 
another database container for information storage).

In both nodes, an entity should redirect control/data traffic to 
the desired endpoint (i.e., pod). That is where the kube- proxy 
comes into the picture. In most Kubernetes CNI solutions, 
iptables is used for packet processing. The kube-proxy's task 
is handling the appropriate chains, rules, and targets for traffic 
routing and manipulation. We aim to enhance packet processing 
performance by replacing iptables and hence, the kube-proxy.

eBPF also facilitates kernel programmability in Kubernetes 
[16]. Since there is only one kernel on a host, any application 
running in a container within a pod (in Kubernetes) must use 
the kernel whenever it requests access to hardware, manages 
files, or receives network messages. Regardless of the 
number of pods deployed on a machine, the kernel is always 
involved, whether we are talking about Bare Metal or a virtual 
machine. Containers do not have their own kernel; they use 
the existing kernel on the host machine. Thus, with proper 
eBPF instrumentation in the kernel, an agent can monitor all 
activities in the user space across all applications or cloud-
native functions (micro-services). This enables complex eBPF 
tools to gain comprehensive observability across the entire 
node, providing deep insights into the cluster.

The two data paths that are associated with our experiment are 
shown in Figure 5. As a CNI, Cilium can deal with incoming 
traffic from the network interface of a Kubernetes Worker node 
or another Pod. Furthermore, the traffic destination can also be 
a Pod or the network interface of the Kubernetes Worker node. 
All the traffic goes through various iptables chains. The orange 
chains represent the default iptables chains; the blue ones are 
the Kubernetes-added ones. Cilium defines its own chains, 
depicted in purple.
The PREROUTING chain in Figure 5 is responsible for 
classifying whether traffic is local or must be forwarded. 
KUBE-SERVICES chains manage Kubernetes Services.

As shown in Figure 5, the many iptables chains on the data 
path can cause processing overhead and increased latency. 
This is where eBPF comes into the picture to circumvent issues 
with multiple iptables chains. An eBPF program can be loaded 
into the kernel to intercept traffic before the iptables-based 
processing starts. The hookpoint where the eBPF program is 
attached is called Traffic Control (TC). For incoming traffic, it 
is located before the PREROUTING, and for outgoing traffic, 
it can be found after the POSTROUTING chain. All of these 
mean that the eBPF- based solution intends to replace kube-
proxy in Worker nodes that utilize iptables.
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resource database (etcd) and the reconciliation loop 
mechanism (kube-controller manager), which controls the 
entire operation of the cluster. The API endpoint (apiserver) 
can also be found here, providing the cluster with reachability 
via HTTPS. What's more, the scheduling of workload 
resources (kube-scheduler) is also specified here. The 
Worker node provides the cluster's data plane. There, we 
could find the workloads that accomplish the desired services 
to be up and running. 
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So far, all the cluster functionalities we mentioned have 
been implemented in Kubernetes' smallest unit, called the 
pod. Most of the time, a pod realizes a single container, but 
there can be a case when more than one container is 
embedded in a pod (e.g., a sidecar container, which receives 
the traffic, and there is another database container for 
information storage).  

In both nodes, an entity should redirect control/data traffic 
to the desired endpoint (i.e., pod). That is where the kube-
proxy comes into the picture. In most Kubernetes CNI 
solutions, iptables is used for packet processing. The kube-
proxy's task is handling the appropriate chains, rules, and 
targets for traffic routing and manipulation. We aim to 
enhance packet processing performance by replacing iptables 
and hence, the kube-proxy. 

eBPF also facilitates kernel programmability in 
Kubernetes [16]. Since there is only one kernel on a host, any 
application running in a container within a pod (in 
Kubernetes) must use the kernel whenever it requests access 
to hardware, manages files, or receives network messages. 
Regardless of the number of pods deployed on a machine, the 
kernel is always involved, whether we are talking about Bare 
Metal or a virtual machine. Containers do not have their own 
kernel; they use the existing kernel on the host machine. 
Thus, with proper eBPF instrumentation in the kernel, an 
agent can monitor all activities in the user space across all 
applications or cloud-native functions (micro-services). This 
enables complex eBPF tools to gain comprehensive 
observability across the entire node, providing deep insights 
into the cluster. 

The two data paths that are associated with our experiment 
are shown in Figure 5. As a CNI, Cilium can deal with 
incoming traffic from the network interface of a Kubernetes 
Worker node or another Pod. Furthermore, the traffic 
destination can also be a Pod or the network interface of the 
Kubernetes Worker node. All the traffic goes through various 
iptables chains. The orange chains represent the default 
iptables chains; the blue ones are the Kubernetes-added ones. 
Cilium defines its own chains, depicted in purple. 
The PREROUTING chain in Figure 5 is responsible for 
classifying whether traffic is local or must be forwarded. 
KUBE-SERVICES chains manage Kubernetes Services. 

As shown in Figure 5, the many iptables chains on the 
data path can cause processing overhead and increased 
latency. This is where eBPF comes into the picture to 
circumvent issues with multiple iptables chains. An eBPF 
program can be loaded into the kernel to intercept traffic 
before the iptables-based processing starts. The hookpoint 
where the eBPF program is attached is called Traffic Control 
(TC). For incoming traffic, it is located before the 
PREROUTING, and for outgoing traffic, it can be found after 
the POSTROUTING chain. All of these mean that the eBPF-
based solution intends to replace kube-proxy in Worker 
nodes that utilize iptables. 
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IV.  Related Works

eBPF can be used in many application fields related to 
security, observability, or performance enhancement scenarios. 
A summarization of the related papers is depicted in Figure 6.

Regarding observability, eBPF can be used to monitor 
certain events. Attaching the written eBPF code to the 
appropriate hookpoints of the Linux kernel can trigger these 
eBPF programs to collect analytical traffic stream data. David 
Soldani et al. [17] used this approach to estimate cloud-
native functions' energy consumption and derive performance 
counters and gauges for transport networks, 5G applications, 
and non-access stratum protocols. Furthermore, Abderaouf 
Khichane et al. [18] [19] have found a more profound way of 
measuring the behavior of a network function or protocol. Also, 
they could identify potential bottlenecks and SLA violations 
more accurately. Carmine Scarpitta et al. [20] describe a 
high-performance solution for end-to-end delay monitoring 
for SRv6-based networks. It leverages the Simple Two-way 
Active Measurement Protocol (STAMP) [21] to monitor the 
delay between two nodes called STAMP Session-Sender and 
Session-Reflector. The monitoring is implemented with eBPF 
programs.

Packet filtering mechanisms could be achieved more 
efficiently, like in the abovementioned paper by David Soldani 
et al. [17], where they detected and responded to unauthorized 
access to cloud-native resources in real time using eBPF. 
Dominik Scholz et al. [22] give a brief overview of analyzing 
the performance of eXpress Data Path (XDP), the lowest level 
before the network stack. They used for installing application-
specific packet filtering configurations acting on the socket 
level. It is implemented with eBPF programs that are attached 
to the XDP hookpoint. It is well applicable for DoS prevention. 
Their case studies focus on performance aspects. Their packet 
filtering approach with eBPF doesn't have as much engineering 
cost. The performance losses are below 20%, while security is 
improved through better isolation between applications.

Attaching eBPF programs to the Linux kernel's protocol 
stack could also enhance the packet processing performance. It 
could be more efficient than the traditional netfiler [8] approach. 

Figure 6 – eBPF use cases by summarized literatures

That's the key point, as our goal was to evaluate performance 
using eBPF technology. Matteo Bertrone et al. [23] describe 
how the acceleration of packet processing can be achieved 
by emulating the iptables filtering semantic with eBPF, using 
Traffic Control (TC) or XDP. Depending on their use cases, 
such as delivering local traffic directly to the output port or 
connection tracking, they configured the data path respectively. 
This firewall solution is called bpf-iptables.

The paper by Sebastiano Miano et al. [24] extends the 
above scope by diving deep into the overall architecture of bpf-
iptables, mentioning additional enhancements that make this 
technology perform better. Nftables [11] is also considered a 
relevant firewall alternative in these measurement scenarios. 
These are similar measurements in that they consider the TC 
hookpoint as we did. However, they only measure throughput, 
and the testbed is not in a cloud- native environment. We will 
also measure the latency and evaluate performance using a 
virtualized network infrastructure. Besides the observability 
aspect, in this previously mentioned approach by Carmine 
Scarpitta et al. [20], they managed to build the monitoring 
system where the eBPF implementation outperforms their 
examined solutions with negligible impact on the forwarding 
capability of the router. It uses XDP hookpoint, which differs 
from our scenario. Also, they only considered the throughput, 
similarly to paper [24].

Jung-Bok Lee et al. [25] implement an eBPF-based load- 
balancer. They also compare the performance of their eBPF- 
based solution to normal iptables, as we did in this paper. They 
developed a containerized high-performance load balancer 
that uses eBPF with the Linux kernel to distribute traffic, 
which can be easily managed via Kubernetes. They conducted 
tests simulating real-world traffic patterns using Internet 
Mix (IMIX) traffic streams. Their experimental results show 
that the proposed load balancer significantly outperforms 
the Destination Network Address Translation-based iptables 
solution, with the performance gap widening as packet size 
decreases. The measurements were conducted in a cloud 
environment, but their scope was only throughput performance 
scenarios, as in the previous papers. Also, they used XDP, 
instead of TC.

Federico Parola et al. show [26] a case study for Multi- 
access Edge Computing (MEC) technology, which is relevant 
in implementing the User Plane Function (UPF) deployed near 
the Radio Access Network (RAN), enabling telcos to provide 
services at close proximity to mobile users. In this scenario, 
high-performance data plane technologies, such as Data 
Plane Development Kit (DPDK) [27], may not be appropriate 
because they require dedicated resources like CPU cores 
and network interfaces. Furthermore, its proprietary drivers 
make it challenging to maintain and integrate DPDK. For this 
reason, they came up with a new idea to implement some of 
the functionalities of Mobile Gateway with eBPF/XDP, such as 
GPRS Tunneling Protocol Handling, QoS Management, Traffic 
Classifying, and Routing. They evaluated this approach with 
different Mobile Gateway data plane technologies like BESS 
[28], OpenvSwitch-DPDK (OvS-DPDK), and OvS-kernel [29]. 
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previously mentioned approach by Carmine Scarpitta et al. 
[20], they managed to build the monitoring system where the 
eBPF implementation outperforms their examined solutions 
with negligible impact on the forwarding capability of the 
router. It uses XDP hookpoint, which differs from our 
scenario. Also, they only considered the throughput, similarly 
to paper [24]. 

 Jung-Bok Lee et al. [25] implement an eBPF-based load-
balancer. They also compare the performance of their eBPF-
based solution to normal iptables, as we did in this paper. 
They developed a containerized high-performance load 
balancer that uses eBPF with the Linux kernel to distribute 
traffic, which can be easily managed via Kubernetes. They 
conducted tests simulating real-world traffic patterns using 
Internet Mix (IMIX) traffic streams. Their experimental 
results show that the proposed load balancer significantly 
outperforms the Destination Network Address Translation-
based iptables solution, with the performance gap widening 
as packet size decreases. The measurements were conducted 
in a cloud environment, but their scope was only throughput 
performance scenarios, as in the previous papers. Also, they 
used XDP, instead of TC.  

 Federico Parola et al. show [26] a case study for Multi-
access Edge Computing (MEC) technology, which is relevant 
in implementing the User Plane Function (UPF) deployed 
near the Radio Access Network (RAN), enabling telcos to 
provide services at close proximity to mobile users. In this 
scenario, high-performance data plane technologies, such as 
Data Plane Development Kit (DPDK) [27], may not be 
appropriate because they require dedicated resources like 
CPU cores and network interfaces. Furthermore, its 
proprietary drivers make it challenging to maintain and 
integrate DPDK. For this reason, they came up with a new 
idea to implement some of the functionalities of Mobile 
Gateway with eBPF/XDP, such as GPRS Tunneling Protocol 
Handling, QoS Management, Traffic Classifying, and 
Routing. They evaluated this approach with different Mobile 
Gateway data plane technologies like BESS [28], 
OpenvSwitch-DPDK (OvS-DPDK), and OvS-kernel [29]. 
The results show that eBPF competes with traditional kernel-
bypass technologies. Although some performance 
degradation can be seen in some cases, it is still worth it 
because of higher integration with the kernel and more 
flexible resource usage. They used XDP hook as opposed to 
our case. Likewise, latency wasn't taken into account in these 
performance evaluations. 

Dushyant Behl et al. [30] present a paper about the 
feasibility of eBPF for efficient implementation of network 
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Figure 7 – The high-level testbed design with implementation details

The results show that eBPF competes with traditional kernel- 
bypass technologies. Although some performance degradation 
can be seen in some cases, it is still worth it because of higher 
integration with the kernel and more flexible resource usage. 
They used XDP hook as opposed to our case. Likewise, latency 
wasn't taken into account in these performance evaluations.

Dushyant Behl et al. [30] present a paper about the feasibility 
of eBPF for efficient implementation of network functions. 
They propose an eBPF-based framework to make the usage 
of eBPF CNI-agnostic. Their approach allows for replacing 
existing network functions with independent, eBPF-based 
modules. They were using multiple hookpoints: TC, XDP, and 
socket. We used only the TC hookpoint in our testbed. Also, 
they focused on enhancing the packet processing on the socket 
level by examining the throughput, where they could achieve a 
consistent 50% increase per scenario. There weren't any other 
attributes considered in their approach.

Code reusability is also an issue in the field of eBPF. Federico 
Parola et al. [31] address this problem by using PolyCube [32] 
[33]. PolyCube facilitates the development of efficient, modular, 
and dynamically reconfigurable network functions that run 
within the Linux kernel. This solution significantly improves 
Pod-to-Pod, Pod-to-Service, and Internet-to-Service throughput 
even in multi-node clusters compared to Flannel [21], Calico, 
and Cilium. This is the closest approach to our measurement use 
cases: it is based on Kubernetes, the traffic flow path is similar 
(Pod-to-Service scenario at least), and the eBPF hookpoint is the 
same (TC). They were even replacing the kube-proxy control 
plane element with eBPF programs as we did (they also achieved 
that with Cilium CNI in one of their test cases). However, they 
were scaling the associated pods to the Kubernetes Services not 
the number of Services itself. This is because they were curious 
about the load-balancing performance attributes when using 
eBPF. Also, as we can see in the previous papers, they only 
examined the throughput as a KPI.

V.  The implemented test environments

Based on Section III, we have created two test environments 
(Figure 8 and Figure 9) to study the performance of both 
solutions. The testbeds are built on OpenStack; the high-level 
design can be seen in Figure 7.

A.  General principles of the test environments
The blue line represents the incoming, and the purple line 

shows the outgoing direction of the traffic (Figure 8, Figure 
9). All the traffic originates from the ITGSend module of the 
Distributed Internet Traffic Generator (D-ITG) [34] on the 
client. The traffic is received by ITGRecv module, which is 
embedded in a Kubernetes Pod. There is a dedicated signaling 
port for connection establishment. To expose our D-ITG pod 
outside of the cluster, we need Kubernetes services (actually, 
ClusterIP is an exception because it makes the pod accessible 
only within the cluster). We can choose between ClusterIP, 
NodePort, LoadBalancer, and ExternalName. The latter option 
isn't remarkable for us since it only applies to mapping a 
service to a DNS name. Since the ITGSend module remains 

in the client network, the pod will be accessible through the 
Worker Node's interface with a private IP address. That means 
the NodePort service will be enough as it opens a port on the 
Worker node's interface and redirects the traffic to the pod. Note 
that LoadBalancer is preferred in production. We can use more 
protocols that can flow through it. Moreover, since it exposes 
the pod by acquiring an IP address for the desired service, 
we can make it accessible on the Internet (with a public IP 
address). However, for simplicity, we used NodePorts instead. 
Furthermore, the allocation of IPv4/v6 addresses for many 
services would harden the building of the testbed. The data 
ports were randomized. The maximum number of NodePorts 
is 2767, so when all of the ports were reserved, the remaining 
services were replaced with the type of ClusterIP during the 
service number increase, detailed in Section VI. To preserve the 
client's source IP, we use an annotation in the service definition 
file called externalTrafficPolicy=Local. With this annotation, 
the kube-proxy/eBPF program only proxies requests to local 
endpoints, which means we can avoid SNAT translation to 
node IP during any considered traffic flow.

B.  High-level design
The client and the router VMs were placed in the client 

network created by OpenStack. The Kubernetes cluster – 
including the master and the worker node – was in the data 
center network, which was also created by OpenStack. All 
the elements in the test system (Client, Router, Master, and 
Worker Node) are OpenStack-instantiated virtual machines. 
We installed Ubuntu OS with version 20.04 (5.4.0 Linux kernel 
version) for the VMs. Also, we reserved 20Gb virtual memory 
with 1VCPU (1 core) and 2Gb RAM for the Client and the 
Router. Regarding the Master and Worker node instances, the 
setup was 40Gb memory with 2VCPUs (2 cores) and 4Gb 
RAM. The CPU clock rate was configured with 1500 MHz 
for each setup. There is also a management node to examine 
the system behavior without affecting the measurements, 
represented by orange lines. The black lines show the actual 
traffic path to be measured.
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C. Test environment for kube-proxy (iptables) 
The kube-proxy-based test environment is shown in Figure 8. 
The red rectangles represent the relevant iptables chains 
through which the traffic goes. 

C. Test environment for kube-proxy (iptables)
The kube-proxy-based test environment is shown in Figure 

8. The red rectangles represent the relevant iptables chains 
through which the traffic goes.
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Figure 8 – Test environment #1: iptables-based forwarding

Figure 9 – Test environment #2: eBPF-based forwarding

Figure 10 – Summarized diagram of throughput measurements  
between iptables and eBPF with IPv4

VI.  Measurements descriptions and results

We have examined several aspects of packet processing 
for our evaluation purposes. As we mentioned earlier, every 
measurement uses Kubernetes Services with NodePorts. A port 
number is associated with the node's IP address and will be 

translated to the Pod's IP and port number where you can reach 
the server. This Kubernetes object is responsible for routing 
traffic from the worker node's interface to the Pod handled by 
the kube-proxy/eBPF program. The traffic distribution between 
NodePorts is random. D-ITG is used for traffic generation. The 
test environments introduced in Section IV are applied.

We have continuously increased the number of Kubernetes 
Services to conclude the related bottlenecks of Kubernetes. 
Meanwhile, we evaluated two packet processing methods: 
normal kube-proxy-based (iptables) and eBPF- based.

E.   TCPthroughputmeasurements
We used a relative scale as it is tough to determine maximum 

throughput in a virtualized environment. All the virtual links 
have been limited to 500 Mbps. One hundred measurements 
have been executed in every scenario – with 30-second-long 
TCP streams – where the number of Kubernetes Services is 
increased by 1000 (except from 1 to 1000). Altogether, 1100 
measurements were evaluated overall.

Goal: Concluding the difference between kube-proxy 
(iptables) and eBPF-based packet processing in the case of 
IPv4 and IPv6 and within the context of throughput behavior.

Measurement results: From the data point of view, we 
highlight the standard deviation (Table 1) as there is no 
significant difference between the minimum, maximum, 
average, and median values. These values are also represented 
in Figure 10 and Figure 12, showcasing a different perspective 
on the measurement data.
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D. Test environment for eBPF 
The eBPF-based test environment is depicted in Figure 9. 

The green rectangle shows the hook points where the eBPF 
program is attached. This means that after the packet arrives 
at the node interface, the eBPF program is triggered, and the 
packet processing and forwarding continue without iptables 
interaction. 
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Figure 10 – Summarized diagram of throughput 
measurements between iptables and eBPF with IPv4  
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Figure 10 – Summarized diagram of throughput 
measurements between iptables and eBPF with IPv4  
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Figure 10 – Summarized diagram of throughput 
measurements between iptables and eBPF with IPv4  
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Figure 11 – Summarized diagram of throughput measurements between 
iptables and eBPF with IPv6

Figure 12 – Summarized diagram of delay measurements between 
iptables and eBPF with IPv4

Figure 13 – Summarized diagram of delay measurements between 
iptables and eBPF with IPv6

TABLE II
eBPF-Based latency maximum and standard deviation ratio 

comPared to iPtaBles-Based in the case oF iPv4

TABLE III
eBPF-Based latency maximum and standard deviation ratio 

comPared to iPtaBles-Based in the case oF iPv6

 

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ra
tio

 o
f  

eB
PF

 a
nd

 Ip
ta

bl
es

-b
as

ed
 so

lu
tio

ns

Number of Kubernetes Services

MIN Median AVG MAX STDEV
 

Figure 11 – Summarized diagram of throughput 
measurements between iptables and eBPF with IPv6 

Conclusion: In the case of a high number of Kubernetes 
Services, the standard deviation of throughput is lower when 
eBPF is used in most cases. IPv6-based throughput values are 
more stable compared to IPv4 in both approaches, as the 
standard deviation of the eBPF to iptables ratio is lower.  

F. Latency measurements 
We also use a relative scale, just as we did in the case of 

throughput measurements. UDP traffic originated 100 times 
in every scenario with a 30-second-long flow, with the same 
service scaling as in the throughput measurements. This 
means 1100 measurements were in summary. 

Goal: Concluding the difference between kube-proxy 
(iptables) and eBPF-based packet processing in the case of 
IPv4 and IPv6 within the context of latency behavior. 

Measurement results: From the data point of view, we 
highlight the maximum and standard deviation (Table 2, 
Table 3) as there is no significant difference between 
minimum, average, and median values. The data is also 
represented in the graphs of Figure 12 and Figure 13. 

Number of 
Kubernetes 

Services 
Maximum Standard deviation ratio 

1 1.10 1.82 
1000 1.21 1.91 
2000 1.17 1.15 
3000 1.18 1.49 
4000 0.86 0.62 
5000 0.90 0.47 
6000 1.13 1.22 
7000 0.80 0.50 
8000 1.04 1.08 
9000 0.91 0.54 

10000 0.84 0.40 
Table 2 – eBPF-based latency maximum and standard 

deviation ratio compared to iptables-based in the case of 
IPv4 

Number of 
Kubernetes 

Services 
Maximum Standard deviation ratio 

1 1.08 1.01 
1000 0.92 0.93 
2000 0.95 0.93 
3000 0.91 0.94 
4000 0.86 0.87 
5000 1.16 1.57 
6000 1.05 1.00 
7000 1.18 0.98 
8000 0.65 0.74 
9000 1.09 1.26 

10000 0.87 0.82 
Table 3 – eBPF-based latency maximum and standard 

deviation ratio compared to iptables-based in the case of 
IPv6 
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Figure 12 – Summarized diagram of delay 
measurements between iptables and eBPF with IPv4 
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Figure 13 – Summarized diagram of delay 
measurements between iptables and eBPF with IPv6 

Conclusion: The maximum latency values are higher for 
fewer Kubernetes services when using eBPF over IPv4. 
However, for IPv6 traffic, eBPF performs better in the case 
of fewer Kubernetes Services. 
The standard deviation of latency for eBFP over IPv4 is lower 
in the case of 5 out of 11 scenarios. However, the greater the 
number of Kubernetes services used, the lower the standard 
deviation trend-wise in the case of eBPF. For IPv6, the 
standard deviation tends to be lower for eBPF with fewer 
Kubernetes services. However, this is not so significant 
compared to the IPv4 cases. Overall, IPv6 latency is more 
stable than IPv4 from the standard deviation point of view as 
the fluctuation of the values is lower. 

G. Measurements conclusion 
Generally, we can say that the eBPF-based solutions are 

more "stable" as the standard deviation is lower. 
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Figure 11 – Summarized diagram of throughput 
measurements between iptables and eBPF with IPv6 

Conclusion: In the case of a high number of Kubernetes 
Services, the standard deviation of throughput is lower when 
eBPF is used in most cases. IPv6-based throughput values are 
more stable compared to IPv4 in both approaches, as the 
standard deviation of the eBPF to iptables ratio is lower.  

F. Latency measurements 
We also use a relative scale, just as we did in the case of 

throughput measurements. UDP traffic originated 100 times 
in every scenario with a 30-second-long flow, with the same 
service scaling as in the throughput measurements. This 
means 1100 measurements were in summary. 

Goal: Concluding the difference between kube-proxy 
(iptables) and eBPF-based packet processing in the case of 
IPv4 and IPv6 within the context of latency behavior. 

Measurement results: From the data point of view, we 
highlight the maximum and standard deviation (Table 2, 
Table 3) as there is no significant difference between 
minimum, average, and median values. The data is also 
represented in the graphs of Figure 12 and Figure 13. 
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Figure 12 – Summarized diagram of delay 
measurements between iptables and eBPF with IPv4 
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Figure 13 – Summarized diagram of delay 
measurements between iptables and eBPF with IPv6 

Conclusion: The maximum latency values are higher for 
fewer Kubernetes services when using eBPF over IPv4. 
However, for IPv6 traffic, eBPF performs better in the case 
of fewer Kubernetes Services. 
The standard deviation of latency for eBFP over IPv4 is lower 
in the case of 5 out of 11 scenarios. However, the greater the 
number of Kubernetes services used, the lower the standard 
deviation trend-wise in the case of eBPF. For IPv6, the 
standard deviation tends to be lower for eBPF with fewer 
Kubernetes services. However, this is not so significant 
compared to the IPv4 cases. Overall, IPv6 latency is more 
stable than IPv4 from the standard deviation point of view as 
the fluctuation of the values is lower. 

G. Measurements conclusion 
Generally, we can say that the eBPF-based solutions are 

more "stable" as the standard deviation is lower. 
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Figure 11 – Summarized diagram of throughput 
measurements between iptables and eBPF with IPv6 

Conclusion: In the case of a high number of Kubernetes 
Services, the standard deviation of throughput is lower when 
eBPF is used in most cases. IPv6-based throughput values are 
more stable compared to IPv4 in both approaches, as the 
standard deviation of the eBPF to iptables ratio is lower.  

F. Latency measurements 
We also use a relative scale, just as we did in the case of 

throughput measurements. UDP traffic originated 100 times 
in every scenario with a 30-second-long flow, with the same 
service scaling as in the throughput measurements. This 
means 1100 measurements were in summary. 

Goal: Concluding the difference between kube-proxy 
(iptables) and eBPF-based packet processing in the case of 
IPv4 and IPv6 within the context of latency behavior. 

Measurement results: From the data point of view, we 
highlight the maximum and standard deviation (Table 2, 
Table 3) as there is no significant difference between 
minimum, average, and median values. The data is also 
represented in the graphs of Figure 12 and Figure 13. 
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Figure 12 – Summarized diagram of delay 
measurements between iptables and eBPF with IPv4 
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Figure 13 – Summarized diagram of delay 
measurements between iptables and eBPF with IPv6 

Conclusion: The maximum latency values are higher for 
fewer Kubernetes services when using eBPF over IPv4. 
However, for IPv6 traffic, eBPF performs better in the case 
of fewer Kubernetes Services. 
The standard deviation of latency for eBFP over IPv4 is lower 
in the case of 5 out of 11 scenarios. However, the greater the 
number of Kubernetes services used, the lower the standard 
deviation trend-wise in the case of eBPF. For IPv6, the 
standard deviation tends to be lower for eBPF with fewer 
Kubernetes services. However, this is not so significant 
compared to the IPv4 cases. Overall, IPv6 latency is more 
stable than IPv4 from the standard deviation point of view as 
the fluctuation of the values is lower. 

G. Measurements conclusion 
Generally, we can say that the eBPF-based solutions are 

more "stable" as the standard deviation is lower. 
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Figure 11 – Summarized diagram of throughput 
measurements between iptables and eBPF with IPv6 

Conclusion: In the case of a high number of Kubernetes 
Services, the standard deviation of throughput is lower when 
eBPF is used in most cases. IPv6-based throughput values are 
more stable compared to IPv4 in both approaches, as the 
standard deviation of the eBPF to iptables ratio is lower.  

F. Latency measurements 
We also use a relative scale, just as we did in the case of 

throughput measurements. UDP traffic originated 100 times 
in every scenario with a 30-second-long flow, with the same 
service scaling as in the throughput measurements. This 
means 1100 measurements were in summary. 

Goal: Concluding the difference between kube-proxy 
(iptables) and eBPF-based packet processing in the case of 
IPv4 and IPv6 within the context of latency behavior. 

Measurement results: From the data point of view, we 
highlight the maximum and standard deviation (Table 2, 
Table 3) as there is no significant difference between 
minimum, average, and median values. The data is also 
represented in the graphs of Figure 12 and Figure 13. 

Number of 
Kubernetes 

Services 
Maximum Standard deviation ratio 

1 1.10 1.82 
1000 1.21 1.91 
2000 1.17 1.15 
3000 1.18 1.49 
4000 0.86 0.62 
5000 0.90 0.47 
6000 1.13 1.22 
7000 0.80 0.50 
8000 1.04 1.08 
9000 0.91 0.54 

10000 0.84 0.40 
Table 2 – eBPF-based latency maximum and standard 

deviation ratio compared to iptables-based in the case of 
IPv4 

Number of 
Kubernetes 

Services 
Maximum Standard deviation ratio 

1 1.08 1.01 
1000 0.92 0.93 
2000 0.95 0.93 
3000 0.91 0.94 
4000 0.86 0.87 
5000 1.16 1.57 
6000 1.05 1.00 
7000 1.18 0.98 
8000 0.65 0.74 
9000 1.09 1.26 

10000 0.87 0.82 
Table 3 – eBPF-based latency maximum and standard 

deviation ratio compared to iptables-based in the case of 
IPv6 
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Figure 12 – Summarized diagram of delay 
measurements between iptables and eBPF with IPv4 
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Figure 13 – Summarized diagram of delay 
measurements between iptables and eBPF with IPv6 

Conclusion: The maximum latency values are higher for 
fewer Kubernetes services when using eBPF over IPv4. 
However, for IPv6 traffic, eBPF performs better in the case 
of fewer Kubernetes Services. 
The standard deviation of latency for eBFP over IPv4 is lower 
in the case of 5 out of 11 scenarios. However, the greater the 
number of Kubernetes services used, the lower the standard 
deviation trend-wise in the case of eBPF. For IPv6, the 
standard deviation tends to be lower for eBPF with fewer 
Kubernetes services. However, this is not so significant 
compared to the IPv4 cases. Overall, IPv6 latency is more 
stable than IPv4 from the standard deviation point of view as 
the fluctuation of the values is lower. 

G. Measurements conclusion 
Generally, we can say that the eBPF-based solutions are 

more "stable" as the standard deviation is lower. 
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Figure 11 – Summarized diagram of throughput 
measurements between iptables and eBPF with IPv6 

Conclusion: In the case of a high number of Kubernetes 
Services, the standard deviation of throughput is lower when 
eBPF is used in most cases. IPv6-based throughput values are 
more stable compared to IPv4 in both approaches, as the 
standard deviation of the eBPF to iptables ratio is lower.  

F. Latency measurements 
We also use a relative scale, just as we did in the case of 

throughput measurements. UDP traffic originated 100 times 
in every scenario with a 30-second-long flow, with the same 
service scaling as in the throughput measurements. This 
means 1100 measurements were in summary. 

Goal: Concluding the difference between kube-proxy 
(iptables) and eBPF-based packet processing in the case of 
IPv4 and IPv6 within the context of latency behavior. 

Measurement results: From the data point of view, we 
highlight the maximum and standard deviation (Table 2, 
Table 3) as there is no significant difference between 
minimum, average, and median values. The data is also 
represented in the graphs of Figure 12 and Figure 13. 
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Figure 12 – Summarized diagram of delay 
measurements between iptables and eBPF with IPv4 
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Figure 13 – Summarized diagram of delay 
measurements between iptables and eBPF with IPv6 

Conclusion: The maximum latency values are higher for 
fewer Kubernetes services when using eBPF over IPv4. 
However, for IPv6 traffic, eBPF performs better in the case 
of fewer Kubernetes Services. 
The standard deviation of latency for eBFP over IPv4 is lower 
in the case of 5 out of 11 scenarios. However, the greater the 
number of Kubernetes services used, the lower the standard 
deviation trend-wise in the case of eBPF. For IPv6, the 
standard deviation tends to be lower for eBPF with fewer 
Kubernetes services. However, this is not so significant 
compared to the IPv4 cases. Overall, IPv6 latency is more 
stable than IPv4 from the standard deviation point of view as 
the fluctuation of the values is lower. 

G. Measurements conclusion 
Generally, we can say that the eBPF-based solutions are 

more "stable" as the standard deviation is lower. 

Conclusion: In the case of a high number of Kubernetes 
Services, the standard deviation of throughput is lower when 
eBPF is used in most cases. IPv6-based throughput values 
are more stable compared to IPv4 in both approaches, as the 
standard deviation of the eBPF to iptables ratio is lower.

F.   Latency measurements
We also use a relative scale, just as we did in the case of 

throughput measurements. UDP traffic originated 100 times 
in every scenario with a 30-second-long flow, with the same 
service scaling as in the throughput measurements. This means 
1100 measurements were in summary.

Goal: Concluding the difference between kube-proxy 
(iptables) and eBPF-based packet processing in the case of 
IPv4 and IPv6 within the context of latency behavior.

Measurement results: From the data point of view, we 
highlight the maximum and standard deviation (Table 2, Table 
3) as there is no significant difference between minimum, 
average, and median values. The data is also represented in the 
graphs of Figure 12 and Figure 13.

Conclusion: The maximum latency values are higher 
for fewer Kubernetes services when using eBPF over IPv4. 
However, for IPv6 traffic, eBPF performs better in the case of 
fewer Kubernetes Services.
The standard deviation of latency for eBFP over IPv4 is lower 
in the case of 5 out of 11 scenarios. However, the greater the 
number of Kubernetes services used, the lower the standard 
deviation trend-wise in the case of eBPF. For IPv6, the standard 
deviation tends to be lower for eBPF with fewer Kubernetes 
services. However, this is not so significant compared to the 
IPv4 cases. Overall, IPv6 latency is more stable than IPv4 from 
the standard deviation point of view as the fluctuation of the 
values is lower.
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G.   Measurements conclusion
Generally, we can say that the eBPF-based solutions are 

more "stable" as the standard deviation is lower.

Generally, we can say that, based on the number of 
Kubernetes services, it is worth considering which type of 
Kubernetes packet processing is used because appropriate 
solutions can be suggested for different cases.

This experience can be utilized in URLLC network 
slices. Slicing SLAs always specify how reliably a particular 
parameter has to be kept (e.g., 99.999% of the time). These 
SLA requirements may be maintained better with lower latency 
fluctuation in certain eBPF cases. This can also contribute to 
telecommunication systems' overall software availability, as 
Varga et al. detailed in [35] [36].

Voice over IP services can also consider the results as lower 
jitter can be reached concerning the number of Kubernetes 
services in the telco cloud hardware.

H. Lessons learned
There were several difficulties during the creation of the 

test environment. Firstly, it is essential to differentiate the 
architecture of the measurement tools. As for the iPerf [37], there 
is a client and a server entity, and the connection establishment 
happens at the same port through which the data traffic flows. 
This means that the observed traffic is influenced by the 
signaling messages. In the case of D-ITG, there are dedicated 
ports for signaling and traffic generation, respectively. The 
desired data port we want to use is sent over the control plane 
as a plain-text message. Therefore, the NodePorts to pod's port 
translation won't happen. This means we cannot send traffic 
to the pod. Our solution was to choose the same port for the 
pod's port and the NodePort, so we had to define the NodePort 
to achieve that manually. Furthermore, there were some cases 
when the server was shut down randomly. So, we had to handle 
this and consider it inside the automatized shell script, which 
we used for measurements. Moreover, D-ITG components are 
more separated by their functionalities than iPerf. There are 
several entities present: ITGSend (at the client, it establishes 
the connection and generates the traffic), ITGRecv (at the 
server, it receives the traffic), ITGDec (at the client, it decodes 
the measurement result saved in a config file). Beyond the 
scope of our testbed, other entities can still be used for different 
scenarios, like ITGLog and ITGManager. So, we can see that 
the overall architecture of D-ITG is more complex than that of 
iPerf, which uses a simple point-to-point client-server model. 
Even though it is hard to implement D-ITG measurement in 
a cloud-native environment, this is still a valid solution as it is 
very flexible and has accurate traffic generation [38] [39]. It is 
also important to mention that the most unstable test scenarios 
were the IPv6-based traffic generations, where we used eBPF 
programs for packet processing. There were some cases 
where the traffic generator crashed. Not to mention that the 
higher the throughput was, the more time it took for ITGDec 
to decode the config file. Unfortunately, it is a limitation of 
the D-ITG software, which caused a massive impact on the 

measurement time. Delay measurement test cases took about 
8-9 hours, and for the throughput analysis, it was 16-18 hours. 
All in all, generalizing the applied scripts required continuous 
development and spared much time to be usable. In a cloud 
environment – especially in public clouds – it is impossible 
to fully isolate a particular workload. Background traffic and 
other workloads may affect the measurement system and the 
performance of network functions. This might add an additional 
deviation in the results.

VII.  Conclusion

In this paper, we have shown that there is room for eBPF 
to improve network performance in several use cases of 
Kubernetes-based telco cloud infrastructures. With the help of 
our results, operators can choose the packet processing methods 
that are the most suitable for their usage. With a significant 
service number, the throughput and latency values are more 
stable with IPv4 and eBPF. In IPv6-based measurements, the 
use of eBPF gives more stable results in most of the cases.

eBPF is not just about performance improvements; it is a 
complete framework supporting more straightforward and 
secure software development. Telecommunication networks 
can also benefit from better observability of network functions, 
which supports a variety of fields to be measured, such as 
energy consumption, SLA violation, logging, protocol analysis, 
security, etc. We believe this holistic approach will affect the 
whole telecommunication landscape. Even though there are 
some cases where eBPF does not outperform iptables, the 
application fields and feature sets mentioned above are worth 
the cost.

eBPF can support network slicing itself due to the increased 
observability, which leads to more control over particular 
data paths. Thus, it is easier to fulfill slice availability and 
performance requirements.

VIII.  Future work

The scalability of Kubernetes is crucial, and it is not just 
with Kubernetes services. It is worth examining how many 
Worker Nodes, Ingress controllers, etc., can be safely used by 
telecommunication applications or even in a regular IT cloud. 
As an example, Calico Typha deals also with scalability [40]. 
This pertains to, e.g., regulatory requirements where advanced 
logging is needed, which must also be scalable. In a Kubernetes-
based telco environment, it is worth examining how eBPF can 
solve issues related to networking itself, such as assigning 
multiple interfaces to a pod or eliminating Network Address 
Translation (NAT) by Kubernetes services [41]. Furthermore, 
additional measurement points can be added to identify which 
packet processing section can cause increased volatility.
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