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Welcome by the Editor

Pal Varga is the Head of Department of Telecom-
munications and Media Informatics at the Budapest 
University of Technology and Economics. His main 
research interests include communication systems, 
Cyber-Physical Systems and Industrial Internet of 
Things, network traffic analysis, end-to-end QoS and 
SLA issues – for which he is keen to apply hardware 
acceleration and artificial intelligence, machine learn-
ing techniques as well. Besides being a member of 
HTE, he is a senior member of IEEE, where he is ac-

tive both in the IEEE ComSoc (Communication Society) and IEEE IES (In-
dustrial Electronics Society) communities. He is Editorial Board member in 
many journals, and the Editor-in-Chief of the Infocommunications Journal.

From PocketQube to Glucose Monitoring – in ’24 
Pal Varga

Let's see what the first issue of ICJ in 2024 has brought.
The first paper is by Iqbal Jebril et. al., in which they address 

the pressing challenge of securing IoT networks against Distributed 
Denial-of-Service (DDoS) attacks. The authors introduce a robust 
detection model that integrates three advanced deep learning ap-
proaches – CNN, BiLSTM, and transfer learning techniques – en-
hanced further with regularization to optimize performance. Tthis 
model not only showcases a high detection accuracy of 99.9%, 
outperforming previous models, but also demonstrates superior ca-
pability in distinguishing between legitimate and malicious traffic 
across various DDoS attack classes.

Balázs Solymos and László Bacsárdi propose an innovative 
post-processing framework designed to enhance the reliability and 
security of optical quantum random number generators (QRNGs) 
that measure photon arrival times. This framework effectively com-
pensates for potential errors arising from non-ideal system com-
ponents or external attacks, utilizing minentropy estimation and 
universal hashing techniques. Their method ensures the generation 
of a high-quality, uniformly distributed bitstream, even under non-
ideal conditions. Results underscore the necessity of minimizing or 
precisely characterizing error sources to optimize the performance 
of this QRNG post-processing method in practical applications.

In their paper, Jyoti P. Patra, Bibhuti Bhusan Pradhan, and M.  
Rajendra Prasad address the computational challenges inherent in 
massive MIMO (m-MIMO) systems, which are exacerbated by the 
large number of antennas at the base station. The paper introduces 
two novel signal detection methods: QR Decompositions (QRD) 
and Ordered QRD (OQRD). These methods aim to reduce compu-
tational complexity while main-taining or improving performance 
compared to MMSE and other suboptimal methods like Gauss-Sei-
del and Jacobi. The effectiveness of these proposed techniques is 
demonstrated through simulations, which show a notable enhance-
ment in symbol error rate (SER) and a reduction in computational 
complexity. The results suggest that the OQRD method, in particu-
lar, offers substantial improvements over traditional approaches, 
making it a promising candidate for efficient signal detection in 
uplink massive MIMO systems.

Yasir A. I. Humad and Levente Dudás introduce a new method 
for tracking and identifying PocketQube satellites using a resonant 
radar reflector. Their approach utilizes a minimal power VHF/UHF 
antenna subsystem on the satellite, which does not emit RF signals 
but reflects a continuous wave RF signal sent from a ground-based 
illuminator. The onboard microcontroller switches a PIN diode 
to create BPSK-modulated reflections detectable by ground sta-
tions equipped with correlation receivers familiar with the specific 
BPSK code. The paper emphasizes the efficiency in terms of low 
power consumption, reduced weight, and compact size, making 
this method ideal for PocketQube satellites which adhere to global 
standardization and technology readiness levels.

In their survey on Advancements in Expressive Speech Synthe-
sis, Shaimaa Alwaisi and Géza Németh provide a detailed analysis 
of the progression and current trends in expressive text-to-speech 
(TTS) systems. It highlights the significant growth and acceptance 
of speech synthesis technology, particularly in enhancing the natu-
ralness and expressiveness of synthetic speech. The paper focuses 

on novel methodologies, such as style transfer and speaker vari-
ability enhancement among others, and discusses both subjective 
and objective metrics used to evaluate the quality of synthesized 
speech. A unique aspect of this paper is its emphasis on the under-
explored area of child speech synthesis, identifying it as a fertile 
ground for future research.

Frigyes Viktor Arthur and Tamás Gábor Csapó introduce sig-
nificant advancements in the field of Brain-Computer Interfaces 
(BCI). They demonstrate the feasibility of synthesizing speech 
from intracranial stereotactic electroencephalography (sEEG) re-
cordings using advanced deep neural network models and a neu-
ral vocoder. Their research present the application of FC-DNN,  
2D-CNN, and 3D-CNN architectures for converting sEEG data 
into Mel spectrograms, a critical step for achieving accurate 
speech synthesis. The subsequent use of the WaveGlow neural 
vocoder marks a novel approach, significantly enhancing the natu-
ralness and quality of the synthesized speech compared to tradi-
tional methods like the Griffin-Lim algorithm.

In their paper Taha A. Elwi and his co-authors present a novel 
approach to noninvasive glucose monitoring using a metamaterial 
(MTM) based antenna sensor. This sensor, integrating a defected 
patch antenna with an interdigital capacitor, enhances electric field 
fringing to penetrate the human skin effectively for glucose detec-
tion. Operating optimally at 0.6GHz with impressive S11 imped-
ance matching, the sensor demonstrates high efficiency in detecting 
blood glucose variations through direct skin contact. Experimental 
validations show the sensor’s ability to measure glucose levels ac-
curately. This technology promises a low-cost, efficient solution for 
continuous glucose monitoring, highlighting its potential impact on 
diabetes management.

The study by Attila Zoltán Jenei, Dávid Sztahó, and István Va-
lálik explores the potential of using multimodal datasets to improve 
Parkinson’s disease (PD) diagnosis. Focusing on both drawing and 
acceleration data, the research team applied pre-trained models to 
extract features from transformed spiral drawing images and visual 
motion data representations. Although motion data initially showed 
superior predictive performance, statistical analysis via the Mann-
Whitney U test indicated no significant difference in the diagnostic 
efficacy between the two modalities across various classification 
scenarios. The study’s main discovery is that combining predictions 
from both drawing and motion data significantly enhances disease 
recognition.

This again, is a colorful compilation of recent proceedings.
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Abstract— In recent days, with the rapid advancement of 

technology in informatics systems, the Internet of Things (IoT) 
becomes crucial in many aspects of daily life. IoT applications have 
gained popularity due to the availability of various IoT enabler 
gadgets, such as smartwatches, smartphones, and so on. However, 
the vulnerability of IoT devices has led to security challenges, 
including Distributed Denial-of-Service (DDoS) attacks. These 
limitations result from the dynamic communication between IoT 
devices due to their limited data storage and processing resources. 
The primary research challenge is to create a model that can 
recognize legitimate traffic while effectively protecting the 
network against various classes of DDoS attacks. This article 
proposes a CNN-BiLSTM DDoS detection model by combining 
three deep-learning algorithms. The models are evaluated using 
the CICIDS2017 dataset against commonly used performance 
criteria which the models perform well, achieving an accuracy of 
around 99.76%, except for the CNN model, which achieves an 
accuracy of 98.82%. The proposed model performs best, achieving 
an accuracy of 99.9%. 
 
Index Terms: Classification, CNN+BiLSTM, DDOS attacks, deep 
learning, IoT. 

I. INTRODUCTION 
The DDoS attacks are a major threat to wireless sensor 

networks (WSNs), which are networks of small and low-power 
devices that collect and transmit data from their surrounding 
environment. In a WSN, DDoS attacks can be launched to 
overwhelm the network's resources and disrupt its normal 
operations, leading to service degradation or complete failure. 
The WSNs are vulnerable to DDoS attacks due to their limited 
resources and their distributed nature, which makes it difficult 
to mitigate attacks. In addition, WSNs may be deployed in 
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harsh and unsecured environments, making them more 
susceptible to attacks. 

The IoT devices are interconnected objects that collect and 
communicate data over internet, and it often deployed in critical 
infrastructure such as healthcare, transportation, and industrial 
control systems. 

DDoS attacks in WSNs can take various forms, such as 
flooding attacks, resource depletion attacks, and sinkhole 
attacks. Flooding attacks involve creating the traffic, while 
resource depletion attacks target the network's resources, such 
as memory or battery, by sending malicious data packets. 
Sinkhole attacks involve redirecting network traffic to a 
malicious node, which can intercept or modify the data. 

To protect WSNs against DDoS attacks, various defense 
mechanisms have been proposed, such as intrusion detection 
systems, data aggregation, and collaborative filtering. These 
mechanisms aim to detect and mitigate attacks by analyzing 
network traffic, detecting anomalies, and filtering out malicious 
packets. The DDoS attacks in WSNs pose a significant threat to 
security and reliability. This require effective defense 
mechanisms to ensure their proper functioning. 

DDoS attacks in IoT can be launched to overwhelm the 
devices or network infrastructure with a large volume of traffic, 
leading to service degradation or complete failure. It can take 
various forms, such as botnet attacks, amplification attacks, and 
protocol attacks. Botnet attacks involve compromising a huge 
figure of IoT devices and using them to launch coordinated 
DDoS attacks. Protocol attacks involve targeting the 
vulnerabilities in the communication protocols used by IoT 
devices, such as the MQTT protocol. 

To defend IoT devices against DDoS attacks, various 
defense techniques have been proposed, such as anomaly 
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Abstract—In recent days, with the rapid advancement of 
technology in informatics systems, the Internet of Things (IoT) 
becomes crucial in many aspects of daily life. IoT applications 
have gained popularity due to the availability of various IoT 
enabler gadgets, such as smartwatches, smartphones, and 
so on. However, the vulnerability of IoT devices has led to 
security challenges, including Distributed Denial-of-Service 
(DDoS) attacks. These limitations result from the dynamic 
communication between IoT devices due to their limited data 
storage and processing resources. The primary research 
challenge is to create a model that can recognize legitimate traffic 
while effectively protecting the network against various classes 
of DDoS attacks. This article proposes a CNN-BiLSTM DDoS 
detection model by combining three deep-learning algorithms. 
The models are evaluated using the CICIDS2017 dataset 
against commonly used performance criteria which the models 
perform well, achieving an accuracy of around 99.76%, except 
for the CNN model, which achieves an accuracy of 98.82%. The 
proposed model performs best, achieving an accuracy of 99.9%.

Index Terms—Classification, CNN+BiLSTM, DDOS attacks, 
deep learning, IoT.
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detection, traffic filtering, and cloud-based defenses. These 
mechanisms aim to detect and mitigate attacks by analyzing 
network traffic, filtering out malicious traffic, and diverting 
traffic to cloud-based services for further analysis. Overall, to 
improve the reliability devices and networks, and require 
effective defense mechanisms to ensure their proper 
functioning. 

The authors in [1] proposed IDS for WSNs that uses a rule-
based approach to defend the DDoS attacks. The system 
monitors the traffic at each node and sends alerts to the base 
station when an attack is detected. 

Data aggregation involves collecting and processing data at 
the nodes near to BS which reduces the amount of traffic. This 
can help to prevent flooding attacks and reduce the impact of 
DDoS attacks. The authors in [2] proposed a data aggregation 
scheme for WSNs that uses a fuzzy logic- to identify and filter 
out malicious traffic. 

Collaborative filtering involves nodes in the network 
exchanging information to discover the malevolent traffic. 
Nodes can share information about the types of packets 
received and the sources of the traffic to defend the attacks. The 
authors in [3] proposed a collaborative filtering scheme for 
WSNs that uses a reputation-based approach to defend 
malevolent traffic. 

The ML techniques can be used to train the system to 
classify patterns in network traffic and detect the DDoS attacks 
[4]. Dynamic thresholding involves setting thresholds for 
network traffic based on the network conditions and adjusting 
them dynamically to accommodate changes in the traffic. The 
authors in [5] proposed a dynamic thresholding approach in 
WSNs using the moving average and standard deviation of the 
network traffic. 

II. RELATED WORKS 

To defend IoT devices against DDoS attacks, various defense 
techniques have been proposed. The paper [6] proposes various 
kind of DDoS attacks and the techniques used to launch them. 
It also provides an extensive review of different mechanisms 
used to diminish DDoS attacks. The paper classifies DDoS 
attacks into various categories, in which the authors discuss the 
attack characteristics, how they work, and the methods used to 
mitigate them. It also presents a survey of various tools and 
technologies used for DDoS attack detection and mitigation. 

The several defense mechanisms used to counter the DDoS 
attacks which include filtering techniques such as packet 
filtering, source address filtering, and rate limiting. They also 
discuss other approaches such as anomaly detection, traceback, 
and redirection. It highlights the limitations of existing defense 
mechanisms and suggesting areas for future research [6].  

Table 1 serves as a comprehensive comparison of literature, 
key parameters such as accuracy, precision, recall, and F1-
score, alongside other essential evaluation metrics for each 
dataset and corresponding model.  

The ML based DDoS detection and mitigation system for 
SDNs is proposed to categorize the normal or malicious traffic. 
The system is designed to work in SDNs, which allow for 
centralized network control and management [7]. From the 
performance of various ML algorithms, RF algorithm performs 

the best, with an accuracy of 98.2% and low FPR in SDN 
environment. It is compared with other IDS in which they find 
that it outperforms in terms of accuracy, detection rate, and 
FPR. They suggest that their system can be further improved by 
incorporating other features, such as flow-based features and 
temporal features. The paper demonstrates the possible of ML 
algorithms for DDoS mitigation in SDNs.  

Paper [8] proposes an anomaly-based approach to identify 
DDoS attacks using SVM classifiers. The performance of the 
SVM classifier is compared with DT and KNN in CAIDA using 
different evaluation metrics. They find that their SVM classifier 
can effectively detect attacks with a maximum DR and a 
minimum FPR. The authors also analyze the SVM classifier 
under different flooding attack scenarios in which it can detect 
these attacks with high accuracy and low FPR. This approach 
can be improved by incorporating additional parameters like 
packet entropy. 

The paper [9] proposes a semi-supervised approach for 
network traffic classification and fine-grained flow 
identification using hierarchical deep neural networks. The 
dataset of network traffic is used to train and test DNN models. 
Dataset includes both labeled and unlabeled traffic data. The 
FlowPrint technique is to extract fine-grained flow features 
from network traffic data.  FlowPrint is a representation 
learning technique that captures the underlying structure of 
network traffic flows. A hierarchical deep neural network 
architecture that uses the FlowPrint features for network traffic 
classification. The hierarchical architecture allows for 
interpretability and explainability of the classification results.  

The performance of the approach is evaluated using different 
evaluation. The proposed [9] results shows that the approach 
can accurately classify network traffic with high precision and 
recall. The authors Zhang et. al [9] conclude that their semi-
supervised approach using hierarchical deep neural networks 
and FlowPrint features is an effective technique for network 
traffic classification and fine-grained flow identification. 

The paper [10] highlights the importance of using big data 
analytics for DDoS detection, as DDoS attacks generate a large 
amount of traffic data that needs to be analyzed in real-time. 
This paper provides an overview about techniques and tools 
used for big data analytics in DDoS detection, including ML, 
DL, clustering, and rule-based approaches. It discusses the pros 
and cons of each technique and tool, and provides examples of 
recent studies that have used these techniques for DDoS 
detection. The paper also discusses the challenges and issues 
involved in DDoS detection, such as the high cost of data 
storage and processing, and the lack of standardization and 
interoperability among different tools and techniques. But more 
efficient and scalable big data analytics techniques for DDoS 
detection are needed, as well as on improving the accuracy and 
reliability of these techniques. 

The paper [11] provides the details of work carried recently 
in the field of DDoS attack mitigation techniques. The paper 
provides an outline of DDoS attacks, characteristics of each 
type of attack, the vulnerabilities they exploit, and their impacts 
on the target system. It reviews the different DDoS attack 
mitigation techniques, including network, host and hybrid level 
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detection, traffic filtering, and cloud-based defenses. These 
mechanisms aim to detect and mitigate attacks by analyzing 
network traffic, filtering out malicious traffic, and diverting 
traffic to cloud-based services for further analysis. Overall, to 
improve the reliability devices and networks, and require 
effective defense mechanisms to ensure their proper 
functioning. 

The authors in [1] proposed IDS for WSNs that uses a rule-
based approach to defend the DDoS attacks. The system 
monitors the traffic at each node and sends alerts to the base 
station when an attack is detected. 

Data aggregation involves collecting and processing data at 
the nodes near to BS which reduces the amount of traffic. This 
can help to prevent flooding attacks and reduce the impact of 
DDoS attacks. The authors in [2] proposed a data aggregation 
scheme for WSNs that uses a fuzzy logic- to identify and filter 
out malicious traffic. 

Collaborative filtering involves nodes in the network 
exchanging information to discover the malevolent traffic. 
Nodes can share information about the types of packets 
received and the sources of the traffic to defend the attacks. The 
authors in [3] proposed a collaborative filtering scheme for 
WSNs that uses a reputation-based approach to defend 
malevolent traffic. 

The ML techniques can be used to train the system to 
classify patterns in network traffic and detect the DDoS attacks 
[4]. Dynamic thresholding involves setting thresholds for 
network traffic based on the network conditions and adjusting 
them dynamically to accommodate changes in the traffic. The 
authors in [5] proposed a dynamic thresholding approach in 
WSNs using the moving average and standard deviation of the 
network traffic. 

II. RELATED WORKS 

To defend IoT devices against DDoS attacks, various defense 
techniques have been proposed. The paper [6] proposes various 
kind of DDoS attacks and the techniques used to launch them. 
It also provides an extensive review of different mechanisms 
used to diminish DDoS attacks. The paper classifies DDoS 
attacks into various categories, in which the authors discuss the 
attack characteristics, how they work, and the methods used to 
mitigate them. It also presents a survey of various tools and 
technologies used for DDoS attack detection and mitigation. 

The several defense mechanisms used to counter the DDoS 
attacks which include filtering techniques such as packet 
filtering, source address filtering, and rate limiting. They also 
discuss other approaches such as anomaly detection, traceback, 
and redirection. It highlights the limitations of existing defense 
mechanisms and suggesting areas for future research [6].  

Table 1 serves as a comprehensive comparison of literature, 
key parameters such as accuracy, precision, recall, and F1-
score, alongside other essential evaluation metrics for each 
dataset and corresponding model.  

The ML based DDoS detection and mitigation system for 
SDNs is proposed to categorize the normal or malicious traffic. 
The system is designed to work in SDNs, which allow for 
centralized network control and management [7]. From the 
performance of various ML algorithms, RF algorithm performs 

the best, with an accuracy of 98.2% and low FPR in SDN 
environment. It is compared with other IDS in which they find 
that it outperforms in terms of accuracy, detection rate, and 
FPR. They suggest that their system can be further improved by 
incorporating other features, such as flow-based features and 
temporal features. The paper demonstrates the possible of ML 
algorithms for DDoS mitigation in SDNs.  

Paper [8] proposes an anomaly-based approach to identify 
DDoS attacks using SVM classifiers. The performance of the 
SVM classifier is compared with DT and KNN in CAIDA using 
different evaluation metrics. They find that their SVM classifier 
can effectively detect attacks with a maximum DR and a 
minimum FPR. The authors also analyze the SVM classifier 
under different flooding attack scenarios in which it can detect 
these attacks with high accuracy and low FPR. This approach 
can be improved by incorporating additional parameters like 
packet entropy. 

The paper [9] proposes a semi-supervised approach for 
network traffic classification and fine-grained flow 
identification using hierarchical deep neural networks. The 
dataset of network traffic is used to train and test DNN models. 
Dataset includes both labeled and unlabeled traffic data. The 
FlowPrint technique is to extract fine-grained flow features 
from network traffic data.  FlowPrint is a representation 
learning technique that captures the underlying structure of 
network traffic flows. A hierarchical deep neural network 
architecture that uses the FlowPrint features for network traffic 
classification. The hierarchical architecture allows for 
interpretability and explainability of the classification results.  

The performance of the approach is evaluated using different 
evaluation. The proposed [9] results shows that the approach 
can accurately classify network traffic with high precision and 
recall. The authors Zhang et. al [9] conclude that their semi-
supervised approach using hierarchical deep neural networks 
and FlowPrint features is an effective technique for network 
traffic classification and fine-grained flow identification. 

The paper [10] highlights the importance of using big data 
analytics for DDoS detection, as DDoS attacks generate a large 
amount of traffic data that needs to be analyzed in real-time. 
This paper provides an overview about techniques and tools 
used for big data analytics in DDoS detection, including ML, 
DL, clustering, and rule-based approaches. It discusses the pros 
and cons of each technique and tool, and provides examples of 
recent studies that have used these techniques for DDoS 
detection. The paper also discusses the challenges and issues 
involved in DDoS detection, such as the high cost of data 
storage and processing, and the lack of standardization and 
interoperability among different tools and techniques. But more 
efficient and scalable big data analytics techniques for DDoS 
detection are needed, as well as on improving the accuracy and 
reliability of these techniques. 

The paper [11] provides the details of work carried recently 
in the field of DDoS attack mitigation techniques. The paper 
provides an outline of DDoS attacks, characteristics of each 
type of attack, the vulnerabilities they exploit, and their impacts 
on the target system. It reviews the different DDoS attack 
mitigation techniques, including network, host and hybrid level 
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detection, traffic filtering, and cloud-based defenses. These 
mechanisms aim to detect and mitigate attacks by analyzing 
network traffic, filtering out malicious traffic, and diverting 
traffic to cloud-based services for further analysis. Overall, to 
improve the reliability devices and networks, and require 
effective defense mechanisms to ensure their proper 
functioning. 

The authors in [1] proposed IDS for WSNs that uses a rule-
based approach to defend the DDoS attacks. The system 
monitors the traffic at each node and sends alerts to the base 
station when an attack is detected. 

Data aggregation involves collecting and processing data at 
the nodes near to BS which reduces the amount of traffic. This 
can help to prevent flooding attacks and reduce the impact of 
DDoS attacks. The authors in [2] proposed a data aggregation 
scheme for WSNs that uses a fuzzy logic- to identify and filter 
out malicious traffic. 

Collaborative filtering involves nodes in the network 
exchanging information to discover the malevolent traffic. 
Nodes can share information about the types of packets 
received and the sources of the traffic to defend the attacks. The 
authors in [3] proposed a collaborative filtering scheme for 
WSNs that uses a reputation-based approach to defend 
malevolent traffic. 

The ML techniques can be used to train the system to 
classify patterns in network traffic and detect the DDoS attacks 
[4]. Dynamic thresholding involves setting thresholds for 
network traffic based on the network conditions and adjusting 
them dynamically to accommodate changes in the traffic. The 
authors in [5] proposed a dynamic thresholding approach in 
WSNs using the moving average and standard deviation of the 
network traffic. 

II. RELATED WORKS 

To defend IoT devices against DDoS attacks, various defense 
techniques have been proposed. The paper [6] proposes various 
kind of DDoS attacks and the techniques used to launch them. 
It also provides an extensive review of different mechanisms 
used to diminish DDoS attacks. The paper classifies DDoS 
attacks into various categories, in which the authors discuss the 
attack characteristics, how they work, and the methods used to 
mitigate them. It also presents a survey of various tools and 
technologies used for DDoS attack detection and mitigation. 

The several defense mechanisms used to counter the DDoS 
attacks which include filtering techniques such as packet 
filtering, source address filtering, and rate limiting. They also 
discuss other approaches such as anomaly detection, traceback, 
and redirection. It highlights the limitations of existing defense 
mechanisms and suggesting areas for future research [6].  

Table 1 serves as a comprehensive comparison of literature, 
key parameters such as accuracy, precision, recall, and F1-
score, alongside other essential evaluation metrics for each 
dataset and corresponding model.  

The ML based DDoS detection and mitigation system for 
SDNs is proposed to categorize the normal or malicious traffic. 
The system is designed to work in SDNs, which allow for 
centralized network control and management [7]. From the 
performance of various ML algorithms, RF algorithm performs 

the best, with an accuracy of 98.2% and low FPR in SDN 
environment. It is compared with other IDS in which they find 
that it outperforms in terms of accuracy, detection rate, and 
FPR. They suggest that their system can be further improved by 
incorporating other features, such as flow-based features and 
temporal features. The paper demonstrates the possible of ML 
algorithms for DDoS mitigation in SDNs.  

Paper [8] proposes an anomaly-based approach to identify 
DDoS attacks using SVM classifiers. The performance of the 
SVM classifier is compared with DT and KNN in CAIDA using 
different evaluation metrics. They find that their SVM classifier 
can effectively detect attacks with a maximum DR and a 
minimum FPR. The authors also analyze the SVM classifier 
under different flooding attack scenarios in which it can detect 
these attacks with high accuracy and low FPR. This approach 
can be improved by incorporating additional parameters like 
packet entropy. 

The paper [9] proposes a semi-supervised approach for 
network traffic classification and fine-grained flow 
identification using hierarchical deep neural networks. The 
dataset of network traffic is used to train and test DNN models. 
Dataset includes both labeled and unlabeled traffic data. The 
FlowPrint technique is to extract fine-grained flow features 
from network traffic data.  FlowPrint is a representation 
learning technique that captures the underlying structure of 
network traffic flows. A hierarchical deep neural network 
architecture that uses the FlowPrint features for network traffic 
classification. The hierarchical architecture allows for 
interpretability and explainability of the classification results.  

The performance of the approach is evaluated using different 
evaluation. The proposed [9] results shows that the approach 
can accurately classify network traffic with high precision and 
recall. The authors Zhang et. al [9] conclude that their semi-
supervised approach using hierarchical deep neural networks 
and FlowPrint features is an effective technique for network 
traffic classification and fine-grained flow identification. 

The paper [10] highlights the importance of using big data 
analytics for DDoS detection, as DDoS attacks generate a large 
amount of traffic data that needs to be analyzed in real-time. 
This paper provides an overview about techniques and tools 
used for big data analytics in DDoS detection, including ML, 
DL, clustering, and rule-based approaches. It discusses the pros 
and cons of each technique and tool, and provides examples of 
recent studies that have used these techniques for DDoS 
detection. The paper also discusses the challenges and issues 
involved in DDoS detection, such as the high cost of data 
storage and processing, and the lack of standardization and 
interoperability among different tools and techniques. But more 
efficient and scalable big data analytics techniques for DDoS 
detection are needed, as well as on improving the accuracy and 
reliability of these techniques. 

The paper [11] provides the details of work carried recently 
in the field of DDoS attack mitigation techniques. The paper 
provides an outline of DDoS attacks, characteristics of each 
type of attack, the vulnerabilities they exploit, and their impacts 
on the target system. It reviews the different DDoS attack 
mitigation techniques, including network, host and hybrid level 
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detection, traffic filtering, and cloud-based defenses. These 
mechanisms aim to detect and mitigate attacks by analyzing 
network traffic, filtering out malicious traffic, and diverting 
traffic to cloud-based services for further analysis. Overall, to 
improve the reliability devices and networks, and require 
effective defense mechanisms to ensure their proper 
functioning. 

The authors in [1] proposed IDS for WSNs that uses a rule-
based approach to defend the DDoS attacks. The system 
monitors the traffic at each node and sends alerts to the base 
station when an attack is detected. 

Data aggregation involves collecting and processing data at 
the nodes near to BS which reduces the amount of traffic. This 
can help to prevent flooding attacks and reduce the impact of 
DDoS attacks. The authors in [2] proposed a data aggregation 
scheme for WSNs that uses a fuzzy logic- to identify and filter 
out malicious traffic. 

Collaborative filtering involves nodes in the network 
exchanging information to discover the malevolent traffic. 
Nodes can share information about the types of packets 
received and the sources of the traffic to defend the attacks. The 
authors in [3] proposed a collaborative filtering scheme for 
WSNs that uses a reputation-based approach to defend 
malevolent traffic. 

The ML techniques can be used to train the system to 
classify patterns in network traffic and detect the DDoS attacks 
[4]. Dynamic thresholding involves setting thresholds for 
network traffic based on the network conditions and adjusting 
them dynamically to accommodate changes in the traffic. The 
authors in [5] proposed a dynamic thresholding approach in 
WSNs using the moving average and standard deviation of the 
network traffic. 

II. RELATED WORKS 

To defend IoT devices against DDoS attacks, various defense 
techniques have been proposed. The paper [6] proposes various 
kind of DDoS attacks and the techniques used to launch them. 
It also provides an extensive review of different mechanisms 
used to diminish DDoS attacks. The paper classifies DDoS 
attacks into various categories, in which the authors discuss the 
attack characteristics, how they work, and the methods used to 
mitigate them. It also presents a survey of various tools and 
technologies used for DDoS attack detection and mitigation. 

The several defense mechanisms used to counter the DDoS 
attacks which include filtering techniques such as packet 
filtering, source address filtering, and rate limiting. They also 
discuss other approaches such as anomaly detection, traceback, 
and redirection. It highlights the limitations of existing defense 
mechanisms and suggesting areas for future research [6].  

Table 1 serves as a comprehensive comparison of literature, 
key parameters such as accuracy, precision, recall, and F1-
score, alongside other essential evaluation metrics for each 
dataset and corresponding model.  

The ML based DDoS detection and mitigation system for 
SDNs is proposed to categorize the normal or malicious traffic. 
The system is designed to work in SDNs, which allow for 
centralized network control and management [7]. From the 
performance of various ML algorithms, RF algorithm performs 

the best, with an accuracy of 98.2% and low FPR in SDN 
environment. It is compared with other IDS in which they find 
that it outperforms in terms of accuracy, detection rate, and 
FPR. They suggest that their system can be further improved by 
incorporating other features, such as flow-based features and 
temporal features. The paper demonstrates the possible of ML 
algorithms for DDoS mitigation in SDNs.  

Paper [8] proposes an anomaly-based approach to identify 
DDoS attacks using SVM classifiers. The performance of the 
SVM classifier is compared with DT and KNN in CAIDA using 
different evaluation metrics. They find that their SVM classifier 
can effectively detect attacks with a maximum DR and a 
minimum FPR. The authors also analyze the SVM classifier 
under different flooding attack scenarios in which it can detect 
these attacks with high accuracy and low FPR. This approach 
can be improved by incorporating additional parameters like 
packet entropy. 

The paper [9] proposes a semi-supervised approach for 
network traffic classification and fine-grained flow 
identification using hierarchical deep neural networks. The 
dataset of network traffic is used to train and test DNN models. 
Dataset includes both labeled and unlabeled traffic data. The 
FlowPrint technique is to extract fine-grained flow features 
from network traffic data.  FlowPrint is a representation 
learning technique that captures the underlying structure of 
network traffic flows. A hierarchical deep neural network 
architecture that uses the FlowPrint features for network traffic 
classification. The hierarchical architecture allows for 
interpretability and explainability of the classification results.  

The performance of the approach is evaluated using different 
evaluation. The proposed [9] results shows that the approach 
can accurately classify network traffic with high precision and 
recall. The authors Zhang et. al [9] conclude that their semi-
supervised approach using hierarchical deep neural networks 
and FlowPrint features is an effective technique for network 
traffic classification and fine-grained flow identification. 

The paper [10] highlights the importance of using big data 
analytics for DDoS detection, as DDoS attacks generate a large 
amount of traffic data that needs to be analyzed in real-time. 
This paper provides an overview about techniques and tools 
used for big data analytics in DDoS detection, including ML, 
DL, clustering, and rule-based approaches. It discusses the pros 
and cons of each technique and tool, and provides examples of 
recent studies that have used these techniques for DDoS 
detection. The paper also discusses the challenges and issues 
involved in DDoS detection, such as the high cost of data 
storage and processing, and the lack of standardization and 
interoperability among different tools and techniques. But more 
efficient and scalable big data analytics techniques for DDoS 
detection are needed, as well as on improving the accuracy and 
reliability of these techniques. 

The paper [11] provides the details of work carried recently 
in the field of DDoS attack mitigation techniques. The paper 
provides an outline of DDoS attacks, characteristics of each 
type of attack, the vulnerabilities they exploit, and their impacts 
on the target system. It reviews the different DDoS attack 
mitigation techniques, including network, host and hybrid level 
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defenses. The challenges and issues of each mitigation method, 
and provides examples of recent studies are discussed that have 
used for detection techniques. It also discusses the challenges 
and issues involved in DDoS attack mitigation, the difficulty of 
distinguishing between normal and illegitimate activity, and 
cost of implementing mitigation techniques. The more efficient 
and effective DDoS attack mitigation techniques, as well as on 
improving the collaboration and coordination among different 
stakeholders in the mitigation process. 

The paper [21] provides recent research in the field of DDoS 
attack mitigation techniques. It highlights the different kind of 
attacks and the vulnerabilities they exploit, and provide an 
overview of the different defense techniques that can be used to 

protect against these attacks. The paper also identifies the 
challenges and issues involved in DDoS attack mitigation and 
suggest future research directions to address these challenges.  

Analyzing the information presented in Table 1, the research 
demonstrates that the utilization of machine learning-based 
methods proves successful in identifying attacks. This 
effectiveness is notably enhanced when these approaches are 
combined with supplementary techniques such as feature 
selection and preprocessing. Moreover, the detection of DDoS 
attacks in wireless sensor networks introduces unique and 
specific challenges 

 

 
TABLE 1 Comparison of Literature 

 
 

Dataset/Model Author Details Accuracy Precision Recall F1-
Score 

Other Evaluation 
Metrics 

NSL-KDD Mohammed et al 
[7] 0.999 - - - FPR 0.01%, FNR 0% 

NSL-KDD Garcia et al [12] 0.991 0.972 0.992 0.982 DR 99.2%, FAR 0.8% 

CICIDS2017/CNN Hayyolalam et al 
[11] 0.99 0.997 0.995 0.996 - 

CICIDS2017/SAE Catak et al [13] 0.99 0.9978 0.999 0.9983 - 
CICIDS2017/CNN+L

STM Nguyen et al [14] 0.985 0.96 0.99 0.97 - 

DARPA/MLP Yin et al [15] 0.996 0.997 0.996 0.996 - 
DARPA/DBN Li et al [16] 0.987 0.991 0.982 0.986 - 

DARPA/RF Farukee et al [17] 0.9795 0.981 0.977 0.979 FPR 1.25%,  
FNR 2.3% 

KDD99/CNN Ye et al [18] 0.9984 0.998 0.998 0.9982 DR 99.86%,   
FPR 0.01% 

KDD99/GRU Alghazzawi et al 
[19] 0.999 - - - FPR 0.07%, 

 FNR 0.02% 

NSL-KDD/RNN Aswad et al [20] 0.9828 0.9738 0.981 0.9762 FPR 2.62%, 
FNR1.88% 

NSL-KDD/CNN Saini et al [21] 0.9933 0.9929 0.993 0.9927 DR 99.37%, 
 FPR 0.02% 

CICIDS2017/CNN Shang et al [22] 0.9991 - - - FPR 0.03%, 
 FNR 0.05% 

UNSW-NB15/LSTM Yousuf et al [23] 0.9967 0.9968 0.997 0.9967 FPR 0.1%,   
 FNR 0.23% 

UNSW-NB15/CNN Alshehadeh et al 
[24] 0.9936 0.9944 0.994 0.994 DR 99.4%, 

 FPR 0.04% 
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detection, traffic filtering, and cloud-based defenses. These 
mechanisms aim to detect and mitigate attacks by analyzing 
network traffic, filtering out malicious traffic, and diverting 
traffic to cloud-based services for further analysis. Overall, to 
improve the reliability devices and networks, and require 
effective defense mechanisms to ensure their proper 
functioning. 

The authors in [1] proposed IDS for WSNs that uses a rule-
based approach to defend the DDoS attacks. The system 
monitors the traffic at each node and sends alerts to the base 
station when an attack is detected. 

Data aggregation involves collecting and processing data at 
the nodes near to BS which reduces the amount of traffic. This 
can help to prevent flooding attacks and reduce the impact of 
DDoS attacks. The authors in [2] proposed a data aggregation 
scheme for WSNs that uses a fuzzy logic- to identify and filter 
out malicious traffic. 

Collaborative filtering involves nodes in the network 
exchanging information to discover the malevolent traffic. 
Nodes can share information about the types of packets 
received and the sources of the traffic to defend the attacks. The 
authors in [3] proposed a collaborative filtering scheme for 
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defenses. The challenges and issues of each mitigation method, 
and provides examples of recent studies are discussed that have 
used for detection techniques. It also discusses the challenges 
and issues involved in DDoS attack mitigation, the difficulty of 
distinguishing between normal and illegitimate activity, and 
cost of implementing mitigation techniques. The more efficient 
and effective DDoS attack mitigation techniques, as well as on 
improving the collaboration and coordination among different 
stakeholders in the mitigation process. 

The paper [21] provides recent research in the field of DDoS 
attack mitigation techniques. It highlights the different kind of 
attacks and the vulnerabilities they exploit, and provide an 
overview of the different defense techniques that can be used to 

protect against these attacks. The paper also identifies the 
challenges and issues involved in DDoS attack mitigation and 
suggest future research directions to address these challenges.  

Analyzing the information presented in Table 1, the research 
demonstrates that the utilization of machine learning-based 
methods proves successful in identifying attacks. This 
effectiveness is notably enhanced when these approaches are 
combined with supplementary techniques such as feature 
selection and preprocessing. Moreover, the detection of DDoS 
attacks in wireless sensor networks introduces unique and 
specific challenges 
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III. SYSTEM MODEL
A system model for DDoS attack detection using deep learning 
is shown in figure 1. It typically involves the first step as 
building a system is to collect data from the network. This data 
can include network traffic data, packet header data, and flow 
data. After data collection, it needs to be preprocessed to 
prepare it for analysis. The initial stage of the process involves 
extracting relevant features, normalizing the data, and filtering 
out unnecessary information. In the following phase, the 
preprocessed data is used to train DL model. The weights are 
adjusted to reduce the difference between expected and actual 
outputs. Once training is complete, a separate dataset is 
employed to evaluate the model and identify potential issues. 
Subsequently, the model can be utilized for real-time detection 
of DDoS attacks in a production setting, following successful 
training and testing.
At outset of the workflow, the input is obtained, either in its raw 
form or after preprocessing. Feature extraction is carried out, 
whereby significant characteristics are identified from the input 
data, including packet size, packet count, and protocol type. 
These extracted features are then entered into a deep neural 
network that may comprise a CNN, RNN, or a hybrid of both. 
The deep neural network processes the input data and 
assimilates the patterns and correlations between features that 
signify DDoS attacks.

Fig. 1 System model

Finally, the output of DNN is analyzed to decide the data as 
normal network traffic or a DDoS attack. If a DDoS attack is 
detected, appropriate mitigation strategies can be employed to 
prevent it from causing harm to the network.

A. CNN Algorithm
Let X be the input traffic data with shape (batch size,
sequence length, input dim), where batch size denotes samples count, 
sequence length is the time sequence length, and input dim denotes 
number of features in each time step.
The CNN-based deep learning algorithm can be represented as 
follows:
• Input layer: X with shape (batch size, sequence length, input dim)
• Convolutional layer: apply a set of filters with size

(filter size, input dim) to the input data X, resulting in a set of 
feature maps. 

• Max pooling layer: extract each feature map value to 
diminish the dimensionality of the feature maps.

• Flatten layer: 2D maps are renewed into a 1D vector.
• Fully connected layer: apply a set of weights to the flattened 

vector to acquire a hidden value of the input data.
• Output layer:  softmax is applied to the hidden representation 

to obtain predicted class probabilities.
Let W1, W2... Wk be the set of convolutional filters, where k 

is the number of filters. Each filter Wj can be represented as a 
2D matrix with size (filter size, input dim). The output feature map 
corresponding to filter Wj can be represented as follows

Fj=max(0,Wj*X+b j) (1)

where * denotes the convolution operation, bj is the bias term, 
and max(0, x) is ReLU function. Let V be the weight matrix 
with shape (num classes, hidden size). The output can be 
represented as follows:

H=relu(W*F+b) (2)

where W = V^T, b is the bias term, and relu(x) = max(0, x) is 
ReLU function.
The final predicted class probabilities can be calculated by 
applying the softmax to the output of the fully connected layer:

P=soft max(H) (3)

where P is a vector of length, representing the predicted class 
probabilities. The model parameters can be learned by 
minimizing a suitable loss function using SGD. One approach 
to train a model for detecting DDoS attacks is to use a labeled 
dataset of traffic data. In this dataset, each sample is marked as 
either normal or DDoS traffic.

B. Dataset
The CICIDS2017 [26] is a dataset of network traffic designed 
for intrusion detection research. It was created by the Canadian 
Institute for Cybersecurity at the University of New Brunswick 
in Canada. The dataset includes benign and malicious traffic 
captured in a real network environment. The malicious traffic 
includes various kind of attacks such as DoS, DDoS, brute-
force attacks, and more. The dataset also includes a variety of 
network protocols such as HTTP, FTP, TCP, UDP, ICMP, etc.

Data Collection

Data Preparation

Dataset Pre processing

Dataset Classification

Building Machine Learning 
Algorithms

Training Testing

Evaluation
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TABLE 2 CICIDS 2017 Dataset description 

 

C. CNN+BiLSTM based deep learning algorithm 
CNN+BiLSTM is a DL architecture that combines CNN and 
BiLSTM in which the CNN is responsible for feature extraction 
from input data. It consists of multiple filters that slide over the 
input data and extract local features. Then the output is fed to 
the BiLSTM layer which is a type of RNN that has the ability 
to form sequential data. This layer takes the output of the CNN 
layer and processes it in both forward and backward directions. 
This allows capturing both past and future contexts of the data. 
The output of the BiLSTM layer to a fixed number of classes, 
which in the case of DDoS attack detection corresponds to 
normal traffic and DDoS traffic. The output is then passed 
through a softmax function to calculate the final prediction 
probabilities for each class. The CNN+BiLSTM architecture 
can be trained using backpropagation and weights are updated 
iteratively during the training to optimize the model 
performance in shown in Fig 2. 
Let x be a wireless sensor network traffic sequence with m 
features and n time steps. Let y be the corresponding binary 
label sequence, where 0 represents non-attack traffic and 1 
represents DDoS attack traffic. The mathematical model for 
identifying DDoS attacks in WSN using CNN+BiLSTM based 
deep learning algorithm can be represented using the following 
equations. 
Apply a 1D CNN layer with k filters of size f on the input x to 
extract k feature maps of n-f+1 size. Use ReLU activation 
function and apply max pooling operation on each feature map 
to reduce the dimensionality by a factor of p. Let the input 
features be represented by X ∈ R^(n x m), where n is samples 
count and m is feature count. 
 

 
 

Fig 2. Proposed method workflow 
 

The CNN can be represented using the following equations 
Yi=max pool (W*Xi+b)    (4) 

Here, Yi denotes the output feature map of the ith filter, W 
represents the weight of the ith filter, Xi is the input feature 
map, b stands for the bias term, and poolmax  signifies the max-

pooling operation. 
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Apply a fully connected dense layer on the BiLSTM layer 
with o output units and sigmoid to generate o binary 
predictions. 
Let the output layer be represented by Ŷ ∈ R^n, where n is the 
number of samples. The output of the network can be 
represented using the following equation

Ŷ=softmax(WY*hn +by) (11)

where hn is the output of BiLSTM, WY is output layer 
weight, and by is the bias term. The DDoS detection can be done 
by comparing Ŷ with Y. If Ŷ is significantly different from the 
actual output Y, then it can be classified as a DDoS attack.

The mathematical model can be trained using 
backpropagation with cross-entropy loss as the objective 
function. The training process involves minimizing the 
objective function with respect to the model parameters. This 
can be done using gradient descent or any of its variants.

D. Algorithm
1 Load and preprocess the dataset.
2 Convert the text to numerical vectors using word 

embeddings. Let the input is X = (x1, x2, ..., xn), where 
each xi is a d-dimensional word embedding vector.

3 Split the data into training and testing sets.
4 Identify the CNN layer with filters of varying sizes. 

Let the filters have sizes f1, f2, ..., fk, where each fk is 
a vector of length h. Let the filters count be denoted by 
m. For each filter fk, convolve it with X to acquire 
feature maps: fk_i = relu((Wfk * X[i:i+h-1] + bfk)) 
where Wfk is the weight matrix and bfk is the bias 
vector associated with filter fk, and relu is the ReLU 
function.

5 Apply max pooling on the feature maps to get a fixed-
length output. For each feature map fk_i, apply max 
pooling to obtain the maximum value: gk = max(fk_1, 
fk_2, ..., fk_n-h+1)

6 Concatenate the output from the max pooling layer 
with BiLSTM layer. Let the concatenated output is Z  
where each zi is a scalar value obtained by 
concatenating gk with BiLSTM layer.

7 Define the BiLSTM layer with a certain number of 
hidden units. Let the hidden size of the BiLSTM layer 
be denoted by p. Apply a BiLSTM layer to the input 
sequence X to obtain the output sequence Y.

8 Concatenate the output from the BiLSTM layer with 
the output from the max pooling layer. Let the 
concatenated output be denoted by Z.

9 Add a fully connected layer with a softmax activation 
function for classification. Let the number of classes 
be denoted by C. Apply a Z to obtain the output vector 
o, where o = softmax(Wo * Z + bo), and Wo is the 
weight matrix and bo is the bias vector associated with 
the fully connected layer.

10 Train the model on the training set using cross-entropy 
loss. Let the training set be denoted by D and each yi 
is a one-hot encoded label vector. 

11 Calculate the model on the testing set using accuracy 
or other evaluation metrics.

12 Repeat steps 4-11 with different hyperparameters 
(e.g., number of filters, filter sizes, number of hidden 
units) to find the best model.

Some simulation parameters that shown in Table 3 could 
be used for DDoS detection using a CNN+BiLSTM 
algorithm.
The first step in setting up a simulation experiment is to 
choose a dataset. In order to train the CNN+BiLSTM 
model, a set of input features must be selected. These 
features could include information such as the IP 
addresses, the protocol used, and time stamp of each 
network packet. The hyperparameters of the 
CNN+BiLSTM model must be defined. These include the 
number and size of filters in CNN layer, the hidden units 
in BiLSTM layer, and learning rate used during training. In 
order to train, a choice of parameters need to be specified, 
and optimizer to be utilized. Once the model is trained, its 
performance can be assessed using a separate testing set, 
with evaluation metrics for classifying a network flow as 
normal or an attack being among the testing parameters.
The Longer simulation duration may be required to achieve 
higher accuracy levels. Finally, the specifications used to 
run the simulation should be taken into account. The 
specifications can include the CPU and GPU, the memory, 
and the disk space required to store the dataset and model.

IV. RESULTS AND DISCUSSIONS

TABLE 3 Simulation parameters
Parameter Value
Dataset DARPA 1998

Pre processing One-hot encoding, 
normalization

Training-Validation split 70-30
Model Architecture CNN+BiLSTM
Number of layers CNN:2; BiLSTM:128
Number of filters CNN:64, 128; BiLSTM:128
Filter Size CNN: 3x3, 5x5; BiLSTM: N/A
Dropout rate 0.5
Learning rate 0.001
Batch Size 128
Number of epochs 50
Loss function Binary cross-entropy

Evaluation metric Accuracy, precision, recall, 
F1-score

Hardware NVIDIA GeForce GTX1080 Ti
Software Python 3.7, Tensor Flow 2.3.1

TABLE III
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The simulation parameters will help in conducting experiments 
to test the performance of the proposed model for DDoS 
detection. The aim should be to optimize the hyperparameters 
and training parameters to achieve the results.
The parameters mentioned above can be customized according 
to the unique attributes and needs of both the dataset and the 
model. The confusion matrix presents the counts of TP, FP, FN 
and TN. Meanwhile, the ROC curve AUC score is utilized to 
gauge probability thresholds.

Accuracy: The proportion of correctly classified samples out of 
the total number of samples.

(12)
FN) + FP + TN + (TP

 TN) + (TP
 =Accuracy 

Precision: It measures the ability of the model to correctly 
identify positive samples.

(13) 
FP) + (TP

TP
 =Precision 

Recall: It measures the ability of the model to identify all 
positive samples.

(14) 
FN) + (TP

TP
 = Recall
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RNN and Proposed models exhibited superior accuracy at 
99.9%, closely followed by the BiLSTM model at 99.8%, while 
the LSTM and CNN models achieved slightly lower accuracies 
at 99.7% and 98.8% respectively. Concerning the error rate in 
figure 4, the Proposed, RNN, and BiLSTM models maintained 
impressively low values at 1.1-1.8%, signifying their 
robustness in the classification task. In terms of precision the 
figure 5 shows, the BiLSTM and Proposed models performed 
exceptionally well at 99%, closely followed by the RNN and 
CNN models, which achieved high precision values of 98%. In 
figure 6, the recall values were consistent across most models, 
with the Proposed, RNN, BiLSTM, and CNN models 
showcasing strong recall rates at 98-99%. Similarly, the figure 
6 shows the F1-score reflected the models' overall performance, 
with the BiLSTM, Proposed, and RNN models demonstrating 
the highest scores at 98-99%, followed closely by the CNN and 
KNN models, which achieved competitive F1-scores at 98%. 
According to the result in Table 4, the accuracy of the proposed 
method is 99.9 % which can be improved by increasing the 
training samples. Error is 1.16%, precision is 99.8%, recall is 
99.9% an F-1 score 
is 99.7%.

TABLE 5. Confusion matrix for the proposed method

Table 5 displays a confusion matrix, which serves as an 
assessment tool for a classification model's effectiveness. It 
operates by contrasting the forecasted labels with the genuine 
labels of a test dataset. The composition of the confusion matrix 
for the CNN+BiLSTM approach will be influenced by the 
specific task at hand and the quantity of classifications present 
in the data collection.

V. CONCLUSIONS
DDoS attacks are a significant threat and they are difficult to 

detect because attackers use spoofing technology. Traditional 
detection systems have been ineffective against historically 
potent botnets like Mirai and Bashlite. IoT networks, in 
particular, are at risk of cyberattacks and require strong 
protective measures. The proposed model achieves an average 
accuracy of 99.76% in identifying DDoS attacks, surpassing the 
performance of other tested models. However, the authors 
caution against overlooking the accuracy of the other three 
classifiers, which achieve an average accuracy of 99.16%. The 
research also examines the weaknesses of IoT network 
construction and identifies potential reasons for its 
susceptibility to DDoS attacks. Furthermore, the article
highlights gaps in prior research on DDoS attacks. The 
promising results of the proposed model demonstrate its 

potential to effectively secure IoT network systems in real-
world scenarios. Nonetheless, the study's primary limitation is 
the unavailability of a realistic testing platform, which raises 
questions about testing reliability. Future research will 
concentrate on identifying the bottlenecks of IoT network 
systems concerning their susceptibility to DDoS attacks.
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RNN and Proposed models exhibited superior accuracy at 
99.9%, closely followed by the BiLSTM model at 99.8%, while 
the LSTM and CNN models achieved slightly lower accuracies 
at 99.7% and 98.8% respectively. Concerning the error rate in 
figure 4, the Proposed, RNN, and BiLSTM models maintained 
impressively low values at 1.1-1.8%, signifying their 
robustness in the classification task. In terms of precision the 
figure 5 shows, the BiLSTM and Proposed models performed 
exceptionally well at 99%, closely followed by the RNN and 
CNN models, which achieved high precision values of 98%. In 
figure 6, the recall values were consistent across most models, 
with the Proposed, RNN, BiLSTM, and CNN models 
showcasing strong recall rates at 98-99%. Similarly, the figure 
6 shows the F1-score reflected the models' overall performance, 
with the BiLSTM, Proposed, and RNN models demonstrating 
the highest scores at 98-99%, followed closely by the CNN and 
KNN models, which achieved competitive F1-scores at 98%. 
According to the result in Table 4, the accuracy of the proposed 
method is 99.9 % which can be improved by increasing the 
training samples. Error is 1.16%, precision is 99.8%, recall is 
99.9% an F-1 score 
is 99.7%.

TABLE 5. Confusion matrix for the proposed method

Table 5 displays a confusion matrix, which serves as an 
assessment tool for a classification model's effectiveness. It 
operates by contrasting the forecasted labels with the genuine 
labels of a test dataset. The composition of the confusion matrix 
for the CNN+BiLSTM approach will be influenced by the 
specific task at hand and the quantity of classifications present 
in the data collection.

V. CONCLUSIONS
DDoS attacks are a significant threat and they are difficult to 

detect because attackers use spoofing technology. Traditional 
detection systems have been ineffective against historically 
potent botnets like Mirai and Bashlite. IoT networks, in 
particular, are at risk of cyberattacks and require strong 
protective measures. The proposed model achieves an average 
accuracy of 99.76% in identifying DDoS attacks, surpassing the 
performance of other tested models. However, the authors 
caution against overlooking the accuracy of the other three 
classifiers, which achieve an average accuracy of 99.16%. The 
research also examines the weaknesses of IoT network 
construction and identifies potential reasons for its 
susceptibility to DDoS attacks. Furthermore, the article
highlights gaps in prior research on DDoS attacks. The 
promising results of the proposed model demonstrate its 

potential to effectively secure IoT network systems in real-
world scenarios. Nonetheless, the study's primary limitation is 
the unavailability of a realistic testing platform, which raises 
questions about testing reliability. Future research will 
concentrate on identifying the bottlenecks of IoT network 
systems concerning their susceptibility to DDoS attacks.
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Secure post-processing for non-ideal photon arrival
time based quantum random number generator

Balázs Solymos, László Bacsárdi, Member, IEEE

Abstract—Utilizing the inherently unpredictable nature of
quantum mechanics, quantum random number generators
(QRNGs) can provide randomness for applications where quality
entropy (like in the case of cryptography) is essential. We
present a post-processing scheme utilizing min-entropy estimation
and hashing for optical QRNGs based on measuring individual
photon arrival times. Our method allows for the handling of
possible errors due to non-ideal components or even a potential
attacker, given some basic assumptions to reliably produce a
safe, good quality, uniformly distributed bitstream as output. We
validate our results with an intentionally non-ideal measurement
setup to show robustness, while also statistically testing our final
output with four popular statistical test suites.

Index Terms—quantum communication, quantum random
number generation, statistical testing, hashing, entropy.

I. INTRODUCTION

QUALITY randomness is used as a resource in a wide
variety of applications, from numerical simulations to

classical and even some quantum cryptography protocols [1],
[2], that rely on entropy sources as fundamental building
blocks. Due to this reliance, using a lower-quality source
presents the danger of compromising the correctness of the
schemes utilizing its output [3], especially in the field of
cryptography. While pseudorandom number generators can
provide fast and cheap random-like output, due to their inher-
ently deterministic nature (use of complex but deterministic
algorithms) are often considered a liability [4].

Quantum random number generators (QRNGs) [5] aim to
harness the unpredictability of quantum mechanical processes.
They have the advantage of relying on phenomena proved to
be random by the laws of physics, thus giving a solid guarantee
of quality in theory. Practical realization of these devices is
a formidable engineering challenge, however, as the various
imperfections and error sources potentially influencing the
measurement have to also be handled. Due to advancements
in quantum optics, architectures based on measuring various
random properties of light, like path superposition of a photon
[6], [7], photon number [8]–[10] or arrival time statistics [11]–
[14], amplified spontaneous emission [15], [16], vacuum or
phase fluctuations [17], [18], or even Raman scattering [19]
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have been proposed, while there are already some commer-
cially available products on the market [20] and new chip-
based solutions [21]–[23] are also emerging.

We use a simple generator architecture based on photon
arrival times, with a continuously running clock, which is
different from the ideal case of using a restartable clock
but permits simpler and cheaper hardware. Even in the ideal
case, the measurement statistics (exponential) differ from the
expected uniformly distributed output, so a post-processing
step is necessary. For this, various methods can be used, from
simply comparing records [11] to utilizing complex algorithms
based on entropy estimation and privacy amplification [24],
[25]. In this work, we present a post-processing framework that
can incorporate possible errors due to non-ideal components
or even a potential attacker given some basic assumptions
to reliably produce safe, quality output based on universal
hashing and entropy estimation. Our framework potentially
also enables us to relax minimum hardware requirements at the
cost of output speed and the need for robust post-processing.
This may prove especially useful for cases, where hardware
options are limited either due to physical constraints (e.g.,
integrated optics), or any other reason (e. g. low budget to
spend on quality components.).

II. CONCEPT

A. Generator architecture

Our generator is based on time differences between photon
arrival times of an attenuated laser source, counting the
number of elapsed clock cycles between detections. Ideally,
this statistic follows a geometric distribution, governed by the
underlying exponential distribution of the physical process of
photon emission, which is different from the expected uniform
output, already mandating the need for post-processing. Ad-
ditionally, effects from the concrete physical realizations and
non-idealities further distort the measured statistic, making the
generation of guaranteed quality output non-trivial.

In the following sections, we rely heavily on the concept
of H∞(D) min-entropy to characterize the safely extractable
randomness from our measurement results:

H∞(D) = min
n

(− log2 pn) = − log2 max
n

pn, (1)

where maxn pn = pmax is the probability of the most likely
measurement result. It is important to note, that attempting
to create a uniform output corresponding to more entropy
than contained in the measurement results, yields poor quality
or even insecure output, while underestimating extractable
entropy may only lead to suboptimal output rate, but preserves
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I. INTRODUCTION

QUALITY randomness is used as a resource in a wide
variety of applications, from numerical simulations to

classical and even some quantum cryptography protocols [1],
[2], that rely on entropy sources as fundamental building
blocks. Due to this reliance, using a lower-quality source
presents the danger of compromising the correctness of the
schemes utilizing its output [3], especially in the field of
cryptography. While pseudorandom number generators can
provide fast and cheap random-like output, due to their inher-
ently deterministic nature (use of complex but deterministic
algorithms) are often considered a liability [4].

Quantum random number generators (QRNGs) [5] aim to
harness the unpredictability of quantum mechanical processes.
They have the advantage of relying on phenomena proved to
be random by the laws of physics, thus giving a solid guarantee
of quality in theory. Practical realization of these devices is
a formidable engineering challenge, however, as the various
imperfections and error sources potentially influencing the
measurement have to also be handled. Due to advancements
in quantum optics, architectures based on measuring various
random properties of light, like path superposition of a photon
[6], [7], photon number [8]–[10] or arrival time statistics [11]–
[14], amplified spontaneous emission [15], [16], vacuum or
phase fluctuations [17], [18], or even Raman scattering [19]
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have been proposed, while there are already some commer-
cially available products on the market [20] and new chip-
based solutions [21]–[23] are also emerging.

We use a simple generator architecture based on photon
arrival times, with a continuously running clock, which is
different from the ideal case of using a restartable clock
but permits simpler and cheaper hardware. Even in the ideal
case, the measurement statistics (exponential) differ from the
expected uniformly distributed output, so a post-processing
step is necessary. For this, various methods can be used, from
simply comparing records [11] to utilizing complex algorithms
based on entropy estimation and privacy amplification [24],
[25]. In this work, we present a post-processing framework that
can incorporate possible errors due to non-ideal components
or even a potential attacker given some basic assumptions
to reliably produce safe, quality output based on universal
hashing and entropy estimation. Our framework potentially
also enables us to relax minimum hardware requirements at the
cost of output speed and the need for robust post-processing.
This may prove especially useful for cases, where hardware
options are limited either due to physical constraints (e.g.,
integrated optics), or any other reason (e. g. low budget to
spend on quality components.).

II. CONCEPT

A. Generator architecture

Our generator is based on time differences between photon
arrival times of an attenuated laser source, counting the
number of elapsed clock cycles between detections. Ideally,
this statistic follows a geometric distribution, governed by the
underlying exponential distribution of the physical process of
photon emission, which is different from the expected uniform
output, already mandating the need for post-processing. Ad-
ditionally, effects from the concrete physical realizations and
non-idealities further distort the measured statistic, making the
generation of guaranteed quality output non-trivial.

In the following sections, we rely heavily on the concept
of H∞(D) min-entropy to characterize the safely extractable
randomness from our measurement results:

H∞(D) = min
n

(− log2 pn) = − log2 max
n

pn, (1)

where maxn pn = pmax is the probability of the most likely
measurement result. It is important to note, that attempting
to create a uniform output corresponding to more entropy
than contained in the measurement results, yields poor quality
or even insecure output, while underestimating extractable
entropy may only lead to suboptimal output rate, but preserves
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quality. Our goal is, therefore, to give a safe lower bound for
min-entropy (upper bound for pmax), which holds even in non-
ideal conditions.

B. Hashing for post-processing

Universal hash functions can be used for post-processing
[25], since, with them, we can construct a (ke, ϵ, ne, de,me)
extractor, so that

Ext : {0, 1}ne × {0, 1}de → {0, 1}me (2)

for every probability distribution D on {0, 1}ne with at
least H∞(D) ≥ ke min-entropy, the probability distribution
Ext(D,Ude

) is ϵ-close statistically to the uniform distribution
on {0, 1}me . This means, that with the help of a random
Ude

seed of de bits, we can take a longer, but only partially
random stream of ne bits and create a smaller, but close
to uniform output. The reusability of this seed is a crucial
requirement for extractors (Since the randomness needed for
continual reseeding would exceed the randomness extracted.).
Fortunately, universal hash functions are proven to be strong
extractors by the Leftover Hash Lemma [26], stating this
reusability.

From these, we chose the popular Toeplitz hash to serve as
a basis for our randomness extraction method. An me+ne−1
bit long random seed is needed for initialization to construct
a random Toeplitz matrix of ne ×me. Then during operation,
we split our data into ne long input vectors, and one-by-one
multiply them with the initialized random Toeplitz matrix to
get me long output vectors, which we then assemble into an
output bitstream. The ke extractable entropy contained in the
ne long input defines the possible values for me according to

me = ke + 2 log ϵ. (3)

Given a target ϵ, from H∞(D) and ne all the other param-
eters can be derived, so our goal is to present a framework for
safely determining these.

C. Error sources

1) Additive noise: Coherent light sources based on stimu-
lated emission like lasers are generally assumed to be Poisso-
nian photon sources [27] (meaning exponentially distributed
arrival time differences between photon emissions ), due to the
underlying physical working principle. In reality, photons from
spontaneous emission (e.g. thermal effects) may also have a
small superpoissonian contribution to the output distribution of
the source, though this effect has been shown to be vanishing
with increasing attenuation [28]. Still, we can model this un-
wanted process by introducing additional photon counts mixed
with the ideal exponential statistics. This idea can be extended
to include any additive error sources, like afterpulsing effects,
or even a potential attacker.

With this in mind, we assume that our count statistic is made
up of photons coming from an underlying true exponential
source with Cexp number of independent counts for a given
time period, responsible for the majority of the total counts,
and a smaller at most Cnoise amount of counts coming from
noise processes or even potential attackers. This essentially

means a limit on noise/attacker intensity, while also assuming
an attacker is not capable of influencing photons from the
trusted exponential photon source.1

The goal is to give a worst-case lower estimate for min-
entropy. For this, we propose that there exists an interval series
in the joint exponential and noise statistic for which

H∞(D) = −(Cexp − Cnoise) log2 p
′
max

= −(Cexp − Cnoise) log2

(
pmaxCexp + Cnoise

Cexp − Cnoise

)
(4)

is a lower bound in min-entropy2.
Let S0, S1, ..., Si, ..., SCexp−1 be the arrival times of photons

from our ideal source, with D0, D1, ..., Di, ..., DCexp−1 cycle
long measured intervals between them and note arrival times of
noise/attacker photons with N0, N1, ..., Ni, ..., NCnoise−1 Since
we allow the noise to have any distribution and use any
strategy, even allowing dependence on other counts, we do
not consider the min-entropy contribution of intervals where
noise counts are involved (see Fig. 1), only the entropy con-
tribution of intervals from the sub-series {Dj}j∈J , where
J = {j | ∄Ni : Sj−1 < Ni < Sj} (the intervals not affected
by noise counts)

We also have to consider the possible distorting effect the
noise can have on the overall distribution and, therefore, the
distribution of our remaining considered series. From the point
of min-entropy, this means the possible change of the original
pmax to a new p′max (change in the probability of the most
frequent result). Assuming a worst-case scenario, additional
noise counts can have the following effects:

• Noise is positioned so that all original counts correspond-
ing to pmax (originally most likely outcome of the ideal
source) are kept in the considered sub-series.

• Interval statistics from noise counts further increase pmax
for at most an additional Cnoise new counts contributing
to the measurement result corresponding to pmax.

While the actual physical feasibility of these worst-case effects
may at times be questionable, we still consider them, to give
a safe lower estimate guaranteed to hold for any possibility.
This way, Eq. (4) is a lower bound in min-entropy for the
considered sub-series, therefore it is a valid lower bound for
the whole series too.

2) Effect of continuous clock and dead time: We can model
the effects of using a continuous clock and dead time of the
detector on the min-entropy as previously presented in more
detail in [29]. Assuming photons arrive according to a Poisson
process with rate λ, in the continuous clock case we can divide
time into consecutive τ long grids, where τ is the length of a
clock cycle, Si the time of the ith arrival, Ti = Si −Si−1 the
ith inter-arrival and γi the time between Si and its preceding
τ grid (0 ≤ γi < τ ). We measure Di, the number of τ grids
(clock cycles) between Si−1 and Si. An explanatory example
case of the model can be seen in Fig. 2. For the distribution

1This also means, that, quantum operations, like entangling additional
photons with photons from the trusted source, are not allowed either.

2For larger values of Cnoise, where pmaxCexp +Cnoise > Cexp −Cnoise Eq.
(4) can result in negative output. H∞(D) should be considered 0 in these
cases.
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Fig. 1. Example of handling additive noise. Times noted with Si are counts from the assumed underlying ideal distribution, with Di intervals between them. Af-
ter introducing Ni noise counts, we only consider the entropy contribution of intervals not affected by the noise, which are {D1, D2, D3, D6, D7, D9, D10}
in this pictured example case.

S0 S1

T1 (D1 = 2)

τ

S2

T2 (D2 = 3) T3 (D3 = 1)

γ0 γ1 γ2 γ3

S3

Fig. 2. Continuous clock example from [29]. Photons arrive at times Si and are counted by a τ resolution running clock. Ti notes the true exponential time
between detections and Di the associated number of counts (our measurement result), while γi notes the varying internal starting phases of the counting
process.

of D without dead time, we can write

pn = Pr(D = n | γ = y)

=


Pr(y + T < τ) if n = 0,
Pr(nτ ≤ y + T < (n+ 1)τ) if n > 0,

=


1− e−λ(τ−y) if n = 0,�
1− e−λτ


e−λ(nτ−y) if n > 0.

(5)

To calculate worst-case min-entropy we then maximize pn:

max
n,y

( Pr(D = n | γ = y))

= max
n,y


1− e−λ(τ−y) if n = 0,
eλy

�
1− e−λτ


e−λnτ if n > 0,

= max
n,y

 �
1− e−λτ


if n = 0, y → 0,

eλτ
�
1− e−λτ


e−λnτ if n > 0, y → τ,

= max
n,y


1− e−λτ if n = 0, y → 0,
1− e−λτ if n = 1, y → τ,

= 1− e−λτ ,
(6)

so then the min-entropy is:

H∞(D) = − log2


max
n,y

pn


= − log2

�
1− e−λτ


. (7)

Dead time is a time of detector insensitivity after successful
photon detection. Assuming τd dead time to be in the form:
τd = kτ+δ, where k is a non negative integer and 0 ≤ δ < τ ,

we can rewrite Eq. (5):

Pr(D = n | γ = y)

=




0 if n < k,
Pr(y + T + δ < τ) if n = k,
Pr ((n− k)τ ≤ y + T + δ < (n− k + 1)τ) if n = k + 1,
Pr ((n− k)τ ≤ y + T + δ < (n− k + 1)τ) if n > k + 1,

=




0 if n < k,
1− e−λ(τ−y−δ) if y < τ − δ, n = k,
0 if y ≥ τ − δ, n = k,
e−λ(τ−y−δ)

�
1− e−λτ


if y < τ − δ, n = k + 1,

1− e−λ(2τ−y−δ) if y ≥ τ − δ, n = k + 1,�
e−λ((n−k)τ−y−δ)

 �
1− e−λτ


if n > k + 1.

(8)
Maximizing pn for min-entropy, we then get:

H∞(D) = − log2 max
n,y,τd

(Pr(D = n | γ = y))

= − log2
�
1− e−λτ


,

(9)

which is the same result as in the case without dead time.3

Since this result is also the same as in the ”restartable clock
without dead time” case [30], we conclude, that using a
continuous clock has no adverse effect on extractable min-
entropy.

Dead time also has an effect on the detectable photon rate,
since during τd no detections are possible. Since the bound
for min-entropy is calculated using the original λ, and not the
λd observed rate with dead time, we have to account for this,
giving4:

λ =
λmax

1− λmaxτd
. (10)

3Note that in this calculation of H∞(D) we do not restrict τd in any
way as in (9) we maximize over all possible τd. Due to this, H∞(D) =
− log2

(
1− e−λτ

)
≤ H∞(D | τd = Z) will hold for any possible Z

distribution of τd.
4Note, that λd is maximized in 1/τd, so the nominator here always stays

positive.
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3) Fluctuating λ: The actual value of λ may fluctuate due
to various physical imperfections. Since H∞(D) is monotonic
in λ we can give a lower bound H∞(D)L for min-entropy if
we know a λmax upper bound for λ, such that

H∞(D)L = − log2
(
1− e−λτ

)
≤ H∞(D)

= − log2
(
1− e−λτ

)
.

(11)

pmax = 1− e−λτ (12)

This also means, that by giving an upper bound for τd in
Eq. (10), we also upper bound λ and lower bound the min-
entropy, so this way we can also account for unknown dead
time distributions as long as a maximum value for τd is known.

4) Attenuation and detector efficiency: The µ quantum ef-
ficiency of detectors (the probability of successfully detecting
an incoming photon) is analogous to the Ta transmissivity of
attenuators. Due to the memoryless property of the exponential
distribution, we can account for these effects so that our de-
tected photons arrive according to an Exp(λTaµ) distribution.

D. Framework for extractor parameter selection

To give a combined min-entropy lower bound for a case
containing all the previously investigated noise effects, we can
use the following steps:

1) Apply methods from Sections II-C2 and II-C3 to account
for the effects of dead time and fluctuations in λ to get
a lower bound for min-entropy and, therefore, an upper
bound for pmax of the individual intervals corresponding
to the ideal operation of the source.5

2) Use Eq. (4) with this pmax and appropriately selected
Cnoise, Cexp values to calculate the final H∞(D) for the
interval series corresponding to the ne bit long extractor
input.

Note that in the second step, we use the overestimation of
pmax of the intervals corresponding to Cexp. The reasoning
presented in Sec. II-C1 is still valid as potential dependence
between intervals due to non-ideal effects during measurement
of photons of the ideal source is already accounted for in the
overestimated pmax (see Sec. II-C2), therefore, the ability to
sum interval min-entropies in Eq. 4 remains.

Also note, that counts from additive noise sources raise the
experimentally detected λ, but this overestimation of λ does
not lead to any additional security weaknesses, as presented
in Sec. II-C3.

Other than min-entropy, we need to choose ne to fully
parameterize the extractor. Generally, choosing ne to be larger
is advantageous, as the scheme becomes more robust against
bursty noise, as well as providing a better output ratio for a
given ϵ according to Eq. (3). This comes at a cost of increased
computational need, however.

5Since we usually base estimation on measurement results of the detector,
attenuation from attenuators and detector efficiency discussed in II-C4 are
already included in these.

Fig. 3. Photo of the physical setup. uC: microcontroller controlling VOAs,
BS: beam splitter, VOA: variable optical attenuator, PMT: photomultiplier
tube. Photons travel along the Laser-VOA1-BS-VOA2-PMT optical path.

III. EXPERIMENT

A. Physical setup

Our physical setup presented in Fig. 3 is the same as in
[31] and [29]. A Thorlabs LP520-SF15 semiconducting laser
(central wavelength 519.9 nm) is attenuated using two suc-
cessive voltage-controlled variable optical attenuators (Thor-
labs V450F) and an optical splitter (Thorlabs TW560R1F1),
where the splitter functions as an additional 20 dB attenuator.
Photons are then detected by a PicoQuant PMA-175 NANO
photomultiplier tube with a µ = 21% quantum efficiency.
The detector’s output voltage pulses are time-tagged by a
PicoQuant TimeHarp 260 time-to-digital converter (TDC) card
with a base resolution of τ = 250 ps integrated into the PC
controlling the measurement and running post-processing. Our
detection system (detector and TDC) has a dead time of around
2 ns, very low afterpulsing probability (∼ 0%), and measured
dark count rates around 1-10 cps.

B. Parameter selection

We collect and process 2× 1010 intervals to investigate the
validity of our presented framework. During data acquisition,
the measured detection rate was around λd = 1.3 × 106 cps
(counts per second) and between λmin = 1.08 × 106 cps and
λmax = 1.37 × 106 cps at all times. We chose not to try
mitigating this fluctuation as our goal is to show robustness.
We also completely forego using available protective covers
made for severely limiting counts from the environment,
leading to a λn = 20000 cps noise rate at our detector. We
overestimate our relatively low detector dead time of around
10τ with a conservative τd = 50τ . In practice, afterpulsing
effects are often neutralized by the longer detector dead times
compared to them, which is also the case for our hardware,
showing negligible afterpulsing probability. To present an
example of handling this effect in our framework, we assume
a maximum probability of counts caused by afterpulsing of
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Pafter = 10−4 nonetheless. Due to the quality of laser sources,
another quantity often considered experimentally negligible is
the number of photons created in the source not via stimulated
emission. Similarly to the previous case of afterpulsing, this
effect could be considered negligible in our setup, but we
still assume an exemplary maximum probability for it to be
Pnonstim = 10−6.

Utilizing our framework presented in Sec. II-D, we can
calculate a lower bound for min-entropy using the presented
measurement parameters: First, calculate λ from λmax accord-
ing to Eq. (10), giving λ = 1.3215 × 106 cps. From this,
calculate pmax = 1 − e−λτ = 3.3031 × 10−4. Utilizing
that count numbers in Eq. (4) can be expressed in terms of
detection rate over the investigated timeframe, we can use
λid = λmin(1 − Pnonstim)(1 − Pafter) − λn to underestimate
the number of counts from the ideal source, and λnoise =
λn + Pnonstimλmax + Pafterλmax to overestimate noise.

To be able to determine the Cnoise counts in a processed data
block, we have to first choose ne. As stated before, higher
values are beneficial, but since our hashing implementation
currently runs on CPU and not on dedicated hardware as its
main goal is to serve as proof of concept, we settle for ne =
2048 bits, due to our limited computational resources. With
16-bit long measurement records, 128 records are processed
together at once in a block. This means an average Cnoise of
3 and Cexp of 125 (To additionally protect from burst errors
Cnoise can be chosen to be higher if needed.). Using (4) this
yields H∞(D) = ke = 649.682 bits for an me = 544 bits with
ϵ = 2−52.841 < 2−50.

For initialization of the Toeplitz hash algorithm (to create
the n ×m Toeplitz matrix), we need a de = ne +me − 1 =
2479 bit long random string, which can come from a different
trusted source or can even be a ”baked in” string due to its
reusability. We used random data collected during a previous
different experiment [31] with our setup for initialization.

To further test our framework, we modified our initial
measurement record file by artificially inserting counts every
50000 cycles simulating a perfect periodic noise/attacker (and
thereby considerably changing the detected distribution too,
as there can be no recorded time intervals longer than this
inserted periodicity). This accounted for an additional noise
source with a 80000 cps rate. Accounting for this (change
in λd, λmax, λmin, λn), the newly calculated parameters for
the hash function, in this case, are: ne = 2048 bits, ke =
246.8593 bits, me = 144 bits for an ϵ < 2−51 and 1.125 output
bits per measurement record accordingly. Note the heavily
reduced output efficiency, which is mainly due to the increased
unknown noise considered according to Sec. II-C1.

C. Randomness testing

We assess our output files of 8.4 GB and 2.8 GB for the
previously mentioned measurement cases with four of the most
widely used statistical test suites, namely the NIST STS [32],
Dieharder [33], TestU01 [34] and ENT [35] suites. Statistical
tests typically try to refute the hypothesis that a source is
random, by looking for signs of different kinds of possible
non-randomness. Suites are, therefore, composed of batteries

of individual tests, each looking for different non-random
patterns. Due to the fact that a properly random output contains
every possible string, a good generator is also expected to
fail some proportion of these tests, so verifying proper oper-
ation is tricky and cannot be based on test results alone. To
demonstrate this, we also tested unprocessed and not properly
parametrized processed versions of our initial measurement
data. Still, statistical testing of the output is a handy tool for
checking for potential oversights or implementation errors (An
uncharacteristically poor performance on tests almost surely
indicates some error in operation.).

Results from the NIST STS suite for our first output file are
shown in Table I omitting variants of the NonOverlappingTem-
plate, RandomExcursions and RandomExcursionsVariant tests
as these are families of multiple tests producing too many
results to be easily presentable in table format. We ran the
suite with default settings and 2048 streams to test for both
of our files. According to the manual, a case is considered
passing if at least 2014 of the streams pass. We found that our
data passed all the tests in the assessment.

TABLE I
RESULTS FOR NIST STS TESTS

Test Name p-value Proportion Assessment
Frequency 0.4564 2032/2048 Pass
BlockFrequency 0.7979 2031/2048 Pass
CumulativeSums 1 0.9195 2029/2048 Pass
CumulativeSums 2 0.1850 2025/2048 Pass
Runs 0.5862 2025/2048 Pass
LongestRun 0.6920 2026/2048 Pass
Rank 0.7041 2021/2048 Pass
DFT 0.5450 2022/2048 Pass
OverlappingTemplate 0.1885 2031/2048 Pass
Universal 0.1608 2024/2048 Pass
ApproximateEntropy 0.3294 2025/2048 Pass
Serial 1 0.7997 2025/2048 Pass
Serial 2 0.2548 2028/2048 Pass
LinearComplexity 0.1053 2027/2048 Pass

The Dieharder suite is a collection of many tests expanding
upon the original Diehard tests [36]. We present results for
our first measurement case from these original (Diehard) tests
in Table II. 6 The suit additionally contains other tests, which
our data also successfully passed for both of the output files.

We used the Alphabit and Rabbit batteries recommended
for use with hardware RNGs as well as the SmallCrush test
battery from the TestU01 software library to assess our data.
Results from the SmallCrush battery for the first output file
are presented in Table III. We found that both of our data files
passed all these assessments.

The ENT program can test random files in byte and
bit modes, and calculates statistics like symbol occurrences,
entropy, approximation of π, and correlation, to assess the
randomness of a bitstream. Our files passed these assessments
in both modes.

6Due to the occasional expected test failures of proper random operation,
the dieharder suite also has a WEAK assessment result, where the manual
advises further investigation. In our case, the tests diehard squeeze and
diehard sums originally produced this result, so we ran them with lengthier
than standard input data for a stronger examination to make sure of correctness
and found them passing.
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TABLE II
RESULTS FOR DIEHARD TESTS

Test Name p-value Assessment
diehard birthdays 0.48117807 Pass
diehard operm5 0.72724586 Pass
diehard rank 32x32 0.18749969 Pass
diehard rank 6x8 0.20228745 Pass
diehard bitstream 0.13044230 Pass
diehard opso 0.92784321 Pass
diehard oqso 0.091542557 Pass
diehard dna 0.60242889 Pass
diehard count 1s str 0.30601543 Pass
diehard count 1s byt 0.63839715 Pass
diehard parking lot 0.91059716 Pass
diehard 2dsphere 0.18188938 Pass
diehard 3dsphere 0.91144842 Pass
diehard squeeze 0.51632824 Pass
diehard sums 0.03411320 Pass
diehard runs 1 0.90873329 Pass
diehard runs 2 0.86353873 Pass
diehard craps 1 0.86019516 Pass
diehard craps 2 0.39312891 Pass

TABLE III
RESULTS FOR TESTU01 TESTS

Test Name p-value Assessment
smarsa BirthdaySpacings 0.86 Pass
sknuth Multinomial 0.60 Pass
sknuth Gap 0.76 Pass
sknuth SimpPoker 0.74 Pass
sknuth CouponCollector 0.61 Pass
sknuth MaxOft 1 0.73 Pass
sknuth MaxOft 2 0.85 Pass
svaria WeightDistrib 0.82 Pass
smarsa MatrixRank 0.13 Pass
sstring HammingIndep 0.97 Pass
swalk RandomWalk1 H 0.78 Pass
swalk RandomWalk1 M 0.47 Pass
swalk RandomWalk1 J 0.20 Pass
swalk RandomWalk1 R 0.10 Pass
swalk RandomWalk1 C 0.80 Pass

To demonstrate the nature of statistical testing and the need
for proper analysis in addition to passing test results, we
also tested unprocessed data (binary datafile only containing
the unprocessed 16-bit records) and an additional test case,
where we incorrectly parametrized the hash function with
me = 2048. For the first unprocessed case, the ENT test
already showed some weaknesses, with an estimated entropy
of 7.247 bits per byte (well above the estimated min-entropy
in Sec. III-B, below expected 8 of ideal uniform output),
and compressibility of 9 percent, while all the other test
suites summarily failed the data (which is expected since raw
measurement data correspond to a not uniform distribution).
Interestingly, the wrongly parametrized processed data also
passed our statistical trials, demonstrating, that passing the
tests is not a guarantee for secure randomness in itself. This
is probably due to the fact that the hashing operation in itself
shows behavior similar to pseudo-random number generators,
as its main aim is to produce random-like output from any
input. While this wrongly parametrized output is clearly not
suitable for quality and security-critical use cases, it may still
prove useful in cases with less strict output quality criteria,
essentially enabling an operation mode realizing a rapidly
reseeded pseudo-random number generator, with higher output

efficiency. We leave further investigation of such a scheme up
for future study.

D. Achievable output rates
The achievable output efficiency and, consequently, the final

output rate are heavily influenced by the magnitude of noise
effects. Fig. 4. shows that in our test setup, increasing noise can

Fig. 4. Effect of different λnoise noise intensities on achievable output bit and
entropy rates, with the parameter set presented at the beginning of Sec. III-B,
while maintaining ϵ < 2−50.

lead to cases where we can no longer guarantee our goal ϵ for
any parameter set (from λnoise ≥ 219352), or even any secure
output at all (from λnoise ≥ 354339). Furthermore, introducing
even small amounts of noise to the system leads to a steep
decline in the achievable output rate. For the completely
noiseless case, our test setup would have an efficiency of
10.6875 output bits per record, leading to a theoretical max
output speed of 13.863 Mbps, while introducing only the
example noise from afterpulsing effects and photons not from
stimulated emission (λnoise = 138) already drops efficiency to
6 output bits per record and output speed to 7.8 Mbps. The
two noisy example cases presented before at the start and end
of Section III-B have output efficiencies of 4.25 and 1.6875
bits per record and output speeds of 6.598 Mbps and 2.193
Mbps, respectively.

Unfortunately, our current practical implementation presents
a computational bottleneck of ∼ 105 records processed per
second, limiting our current practically achievable output
speeds. This can likely be overcome in the future with a new
implementation utilizing either an FPGA or GPU as it has
been demonstrated in the literature [37], [38] and therefore,
the implementation of a new post-processing program is our
next logical practical goal. Better and stricter characterization
of possible noise sources is another worthwhile direction to
pursue for possible future development, especially for cases
with concrete, well-characterized measurement setups, as it
may be possible to find tighter lower bounds than Eq. (4)
when using less general assumptions.

IV. CONCLUSION

We presented a post-processing framework for optical
QRNGs based on the measurement of photon arrival times,
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that can be used to safely account for typical distortion effects
and hard-to-characterize error sources or attackers given a sim-
ple upper limitation on intensity, by strictly underestimating
the min-entropy of the measurement results and utilizing this
estimate to parameterize a Toeplitz hash-based extractor to
provide a guaranteed quality, safe output bitstream. We demon-
strated the use of our framework on intentionally non-ideal
measurement data, showing its robustness, and assessed the
processed outputs with statistical test suites to experimentally
verify our proposal’s correctness.

We conclude that our method can be used to provide quality
output even when paired with noisy and imperfect measure-
ment setups, although at a cost of reduced output efficiency.
This drop in efficiency is especially prevalent when adjusting
for the effects of error sources considered as unknown, so in
practical realizations minimizing or adequately characterizing
these should still remain a priority with our framework too.
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Abstract—Signal detection turns out to be a critical challenge
in massive MIMO (m-MIMO) system due to the deployment
of large number of antennas at the base station. Although, the
minimum mean square error (MMSE) is one of the popular
signal detection method, but, it requires matrix inversion with
cubic complexity. In order to reduce computational complexity,
several suboptimal signal detection methods were proposed such
as Gauss-Seidel, successive over relaxation, Jacobi, Richardson
methods. Although, these methods provide low complexity but
their performance are limited to MMSE method. In this paper,
we have proposed two signal detection techniques namely QR
decompositions (QRD) and ordered QRD (OQRD). Finally, the
performances of proposed signal detection methods are compared
with various conventional methods in terms of symbol error
rate (SER) and computational complexity. The simulation results
validate that the proposed methods outperform the MMSE
method with substantially lower computational complexity.

Index Terms—Massive MIMO, Signal detction, QRD, OQRD,
MMSE, Low complexity.

I. INTRODUCTION
Massive multiple-input multiple-output (m-MIMO) is the

most promising technique in 5G and beyond 5G (B5G) due to
its high spectrum and energy efficiency, high spatial resolution,
and simple transceiver design. In m-MIMO, a large number
of antennas are employed at the base station (BS) [1, 2]. In
the uplink transmission, the signals transmitted from mobile
terminals are superimposed at the BS which cause interference
and reduces the data rate. Due to deployments of large number
of antennas, it requires advanced signal processing for data
detection. The maximum-likelihood (ML) detection provides
optimum bit error rate performance [1, 2]. However, it is
not practically possible to employ the maximum likelihood
(ML) detector due to its huge computational complexity as
it searches all possible combination while performing data
detection . The problem is also becoming more complicated
when high-order modulation schemes are used and more
users are multiplexed. Therefore, many nonlinear signal data
detection methods are proposed which includes sphere decoder
(SD) [3], tabu search (TS) [4], dirty paper coding [5] etc.
Unfortunately, for massive MIMO systems with large num-
ber of antennas and higher-order modulation schemes, such
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methods need still very huge computation complexity. For
spatially correlated massive MIMO system, random matrix
theory based algorithms such as principal component analysis,
eigen analysis, Karhunen-Loeve decomposition, were applied
for signal detection [6–8]. However, Most researchers focused
on linear signal detection algorithm rather non-linear methods
for spatially uncorrelated m-MIMO system. Although, zero
forcing and minimum mean square error (MMSE) are the two
popular linear signal detection methods, they require matrix
inversion with cubic complexity. Even though linear signal
detection methods may not offer sufficient performance, still
most of the researchers focused on linear methods because of
reduced computational complexity. Several linear signal detec-
tion methods were proposed by exploiting the Gramian matrix
to avoid matrix inversion which include Gauss-Seidel (GS) [9],
the Neumann series (NS) [10], the successive overrelaxation
(SOR) [11, 12], the Jacobi method [13], the conjugate gradient
(CG) [14], the optimized coordinate descent (OCD), and the
Richardson (RI) [15]. It has been observed that NS method is
lower than the complexity of the detector based on GS, JA,
RI and SOR methods, however its performance is the least.
A hybrid pseudo-stationary iterative detection algorithm based
on Chebyshev polynomial and Weyls inequality was proposed
in [16] for uplink massive MIMO systems. This method
provides near to ZF method. The authors in [17] proposed
a weighted two stage (WTS) method which achieves similar
performance to ZF method with lower complexity. Latter, a
modified weighted two stage (MWTS) method was proposed
in [18] which outperforms the WTS method. However, its
performance is lower as compared to MMSE method. In [19],
Cayley-Hamilton theorem-based two low complexity signal
detection have been proposed to avoid the matrix inversion.
This method has lower computational complexity as it does
not involve in Gramian matrix. The authors in [20] performed
signal detection by QR decomposition of Gram matrix G =
HHH . This method has performance limitation to ZF method
because the QR decomposition was applied to ZF Gramian
matrix. Similarly, in [21], the author applied several matrix
decomposition technique such as QR, LDL and Cholesky.
These matrix decomposition algorithm were applied to MMSE
Grammian matrix, therefore their performances are limited to
MMSE method.

In this paper, we proposed two signal detection methods
namely QR decomposition (QRD) and order QRD (OQRD)
methods for m-MIMO uplink communication system. The QR
decomposition is directly applied to original channel matrix H
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to obtain estimated transmitted signal. Thus, it outperforms
other QR decomposition methods [20, 21] where the ZF
and MMSE Gramain matrix are decomposed by QR method.
Furthermore, the performance of QRD method increases by
ordering the column norm of channel matrix in ascending
manner. We call this method as OQRD method. The pro-
posed QRD and OQRD methods are compared with various
conventional method such as Gauss-Seidel, successive over
relaxation, Jacobi, Richardson and MMSE methods in terms
of symbol error rate and computational complexity.

We organize our paper as follows. In Section II, we describe
the massive MIMO uplink system model. In Section III, we
discuss various signal detection methods. In Section IV, we
present the proposed signal detection methods. In Section
V, we show simulation results of proposed and conventional
methods in terms of symbol error rate. Finally, Section VI
concludes the paper.

Fig. 1: Block diagram of uplink massive MIMO system with
M number of base station antenna and N number of users

II. SYSTEM MODEL

The uplink channel is used to transmit data symbols from
the user terminal to the base station. In a multiuser uplink
massive MIMO system, M number of base station antennas
are employed to serve N number of users simultaneously as
shown in the Fig 1. Let x denote the complex valued N × 1
simultaneously transmitted signal vector from the N users to
the base station. The received signal vector y at the BS can
be given by

y = Hx + n (1)

where H is the channel matrix between the user terminal
and the base station with size M × N and M > N . The
parameter n is the M × 1 additive white Gaussian noise
(AWGN). Although, the maximum likelihood (ML) method
is the optimal signal detection method, it is not preferable
from the hardware implementation perspective due to its
high computational complexity. Therefore, suboptimal linear
signal detection techniques such as zero forcing and minimum
mean square error (MMSE) methods are widely accepted due
to their near-optimal performance with lower computational
complexity as compared to ML method. The signal detection
based on MMSE method is given by

x̂ =

(
HHH +

N

SNR
IN

)−1

HHy = A−1x̂MF (2)

where A =
(

HHH + N
SNR IN

)−1

and x̂MF = HHy. The
matrix IN is the N × N identity matrix and SNR is the
signal to noise ratio. The MMSE method involves large
matrix inversion operations with cubic complexity. To achieve
close performance of MMSE with reduce complexity, several
signal detection methods have been proposed such as Jacobi,
Richardson, Gauss-Seidel, successive over relaxation methods
by exploiting the Gram matrix.

III. CONVENTIONAL SIGNAL DETECTION METHOD

In this section, we have discussed various signal detection
methods namely Jacobi, Richardson, Gauss-Seidel, successive
over relaxation methods for massive MIMO uplink system.

A. Jacobi Method

The Jacobi method was proposed for m-MIMO uplink
system in [13]. The Jacobi method approximate the matrix
inversion with reduces complexity. The Jacobi method is an
iterative approach for finding the solution to a diagonally
dominant system. The equation (2) can be rewritten as

Ax̂ = x̂MF (3)

Note that when N/M is large, matrix A becomes diagonally
dominant. The estimated signal can be obtained as

x̂(n) = D−1
[
x̂MF + (D−A)x̂(n−1)

]
(4)

where D is the digonal matrix of A. The initial values can be
selected as

x̂(0) = D−1x̂MF . (5)

It can be verified that the first iteration of JA method does not
involve matrix multiplication, thus computational complexity
decreases.

B. Richardson Method

The Richardson method was proposed in [15]. In this
method, the signal detection is performed by iterative process
through the exploitation of Gramian matrix G = HHH. Here
the convergence rate is very sensitive to a selection of relax-
ation parameter (ω) where 0 < ω ≤ 2

λmax
and the optimum

value of ω is defined as w = 2
λmin+λmax

. The parameter
λmax and λmin are the maximum and minimum eigenvalues
of the symmetric positive definite matrix A respectively.The
estimated signal is obtained as

x(n+1) = x(n) + ω
[
y −Hx(n)

]
n = 0, 1, 2, · · · (6)

If a prior knowledge of x(0) is missing, a zero vector can be
considered without loss of generality. It can also be selected
as x̂(0) = D−1x̂MF and iteratively refined. The accuracy and
the number of computations are highly affected by the value
of ω.
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iterative approach for finding the solution to a diagonally
dominant system. The equation (2) can be rewritten as

Ax̂ = x̂MF (3)

Note that when N/M is large, matrix A becomes diagonally
dominant. The estimated signal can be obtained as

x̂(n) = D−1
[
x̂MF + (D−A)x̂(n−1)

]
(4)

where D is the digonal matrix of A. The initial values can be
selected as

x̂(0) = D−1x̂MF . (5)

It can be verified that the first iteration of JA method does not
involve matrix multiplication, thus computational complexity
decreases.

B. Richardson Method

The Richardson method was proposed in [15]. In this
method, the signal detection is performed by iterative process
through the exploitation of Gramian matrix G = HHH. Here
the convergence rate is very sensitive to a selection of relax-
ation parameter (ω) where 0 < ω ≤ 2

λmax
and the optimum

value of ω is defined as w = 2
λmin+λmax

. The parameter
λmax and λmin are the maximum and minimum eigenvalues
of the symmetric positive definite matrix A respectively.The
estimated signal is obtained as

x(n+1) = x(n) + ω
[
y −Hx(n)

]
n = 0, 1, 2, · · · (6)

If a prior knowledge of x(0) is missing, a zero vector can be
considered without loss of generality. It can also be selected
as x̂(0) = D−1x̂MF and iteratively refined. The accuracy and
the number of computations are highly affected by the value
of ω.
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C. Gauss-Sidel Method

The Gauss Sidel method computes the solution by an
iterative behaviour where the Hermitian positive semi-definite
matrix (A) is decomposed to a lower triangular matrix (L),
upper triangular elements (U), and the diagonal entries (D).
In other words, the matrix A can be written as

A = D+ L+U. (7)

This method performs the signal detection in an iterative
process as given by

x̂(n) = [D+ L]−1
[
x̂MF −Ux̂(n−1)

]
, n = 1, 2, · · · IT

(8)
where IT is the total number of iterations. Typically, the
initial data signal x̂(0) is considered as a zero vector for
simplification.

D. Successive Over Relaxation Method

In order to avoid the large dimension inversion matrix, the
successive over relaxation(SOR) is a best choice in signal
detection. It improves the accuracy of GS method by using
a relaxation parameter (ω). The signal is estimated as

x̂(n) =

[
1

ω
D+ L

]−1 [
x̂MF +

[[
1

ω
− 1

]
D−U

]
x̂[n−1]

]

(9)
Convergence of the SOR method is highly affected by

the relaxation parameter (ω). In the MIMO framework, the
relaxation parameter (ω) of the SOR technique is typically
good when 0 < ω < 2. The optimum value is given by

w = 2
1+

√
1−a2

where a =
(
1 +

√
N
M

)2

− 1. This value of
w is fixed throughout the iteration process.

IV. PROPOSED SIGNAL DETECTION METHODS

In this section, the proposed signal detection methods
namely QRD and OQRD are discussed for uplink massive
MIMO system.

A. QRD Method

In this paper, we have applied QR decomposition to the
channel matrix H for performing signal detection. The relation
between received and transmitted signal can be written in
matrix form as given by




y1
y2
...

yM


 =




h11 h12 · · · h1N

h21 h22 · · · h2N

...
. . . . . .

...
...

. . . . . .
...

hM1 hM2 · · · hMN







x1

x2

...
xN


+




w1

w2

...
wM




(10)
where hij is channel impulse response between jth transmit-
ting antenna to the ith receiving antenna and j = 1, 2, ..., N−1
and i = 1, 2, ...,M − 1. The channel matrix H can be
decomposed into QR factors as H = QR where QM×N is an

orthonormal matrix and RN×N is an upper triangular matrix.
Substituting H = QR, the received signal can be written as

y = Hx + n = QRx + n (11)

After multiplying QH with the received signal vector y,
equation (11) can be modified to

ỹ = QHy = QH(Hx+ n) = Rx+ ñ (12)

The equation (12) can be expressed in matrix form as



ỹ1
ỹ2
...

ỹN


 =




R11 R12 · · · R1N

0 R22 · · · R2N

...
...

. . .
...

0 0 · · · RNN







x1

x2

...
xN


+




ñ1

ñ2

...
ñN




(13)
Since, R is a lower triangular matrix, backward substitution
method can be applied to obtain the estimated transmitted
signal vector and can be written as

x̂N = Π[ỹN/RNN ] (14)

x̂k = Π



ỹk −

N∑
j=k+1

ỹkjxj

Rkk


 , k = N − 1 : −1 : 1 (15)

where Π() denotes the hard decision function. The detail
steps of QRD method is summarized below.

[Step 1]: Initialization: y, H , x; y = Hx + n

[Step 2]: Decomposition of channel matrix H = QR,
y = Hx + n = QRx + n

[Step 3]: Multiplication of QH with y
ỹ = QHy = Rx+ ñ

[Step 4]: Obtaining the transmitted signal using backward
substitution method

x̂N = Π[ỹN/RNN ]

x̂k = Π




ỹk−
N∑

j=k+1

ỹkjxj

Rkk


 , k = N − 1 : −1 : 1

B. OQRD Method

The QRD method may suffer from error propagation prob-
lem if the initial signal is not detected correctly. Therefore,
an order QRD (OQRD) method is proposed which orders
the column vector of the channel matrix H. The relationship
between received and transmitted signal can be written in the
column form as

y = Hx + w = h1x1 + h2x2 + · · · + hNxN + n (16)

where hk is the kth column vector of channel matrix H and
xk is the kth element of the transmitted signal vector x. To
perform the ordering of column vector in an ascending manner,
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the procedure is as given follows. At first, we calculate the
norm of each column vector of the H matrix as given by

normk = ∥hk∥ k = 1, 2, ....., N (17)

Then, we sort vector norm =[
norm1, norm2, · · · , normN

]
in an ascending

manner and find the index term

index = sort(norm) (18)

The column vectors are arranged according to the indices to
obtain the ordered banded CFR matrix Ho

ho,k = Ho(:, k) = H(:, indexk) k = 1, 2, ....., N (19)

where ho,k is the kth column vector of Ho matrix and indexk

denotes the kth element of index vector. The ordering of the
transmitted signal vector can also be represented in terms of
the indices as given by

xo,k = x(indexk) k = 1, 2...N (20)

Substituting the ordered channel matrix Ho as defined in (19)
and ordered transmitted signal vector xo (20), the received
signal vector y can be expressed as

y = Hoxo + n (21)

The order channel matrix Ho can be decomposed into QR
factorization Ho = QoR0. After multiplication QH

o on both
sides of (21), it yields

ỹ = QH
o y = QH

o (Hoxo + n)
= QH

o (QoRoxo + n) = Roxo + ñ
(22)

The transmitted signal is obtained after performing the
backward substitution method. The detail steps of QRD
method is summarized below.

[Step 1]: Initialization: y, H , x

y = Hx + w = h1x1 + h2x2 + · · · + hNxN + n

[Step 2]: Calculating norm of Channel matrix H and index
the norm in ascending order
normk = ∥hk∥ , k = 1, 2, ....., N
index = sort(norm)

[Step 3]: Modifying the channel matrix H and signal vector
x in terms of ascending order

Ho(:, k) = H(:, indexk) k = 1, 2, ..., N
xo,k = x(indexk) k = 1, 2..., N

[Step 4]: Decomposition of channel matrix Ho = QoR0,
y = Hoxo + n = QoRoxo + n

[Step 5]: Multiplication of QH
o with y

ỹ = QH
o y = Roxo + ñ

[Step 6]: Obtaining the transmitted signal using backward
substitution method

x̂oN = Π[ỹoN/RoNN ]

x̂ok = Π




ỹok−
N∑

j=k+1

ỹokjxoj

Rokk


 , k = N − 1 : −1 : 1

This method eliminates the error propagation problem of
QRD by detecting the stronger signal at first and then cancels
its effects before detection of weaker signal.

C. Computational Complexity

In this section, the computational complexity of the pro-
posed QRD, OQRD methods are analysed in terms of multipli-
cations. Then, the complexity of the proposed metod is com-
pared with various signal detection methods which includes
MMSE, Jacobi, Richardson, Gauss Seidel and SOR methods.
The QR decomposition of channel matrix H requires N2.529

[22]. Multiplying QH with Y requires NM2 complexity. To
obtain the estimated transmitted data signal requires backward
substitution algorithm as given in [step 4] of the proposed
QR method requires 2N(N − 1) complexity. Thus, the QRD
method requires a total of N2.529 + 4NM2 + 2N(N − 1)
complexity. The ordered QRD (OQRD) require same com-
plexity as QRD method. In addition to that, OQRD method
requires to find the norm of the column vector of matrix H
which needs 4MN operations. Thus, total complexity involves
in OQRD method is N2.529 +4NM2 +2N(N − 1)+ 4MN .
The computational complexity of the proposed methods are
compared with conventional methods and is given in Table 1.

TABLE I: Computational Complexity

Method Multiplications
MMSE 2MN2 + (10/3)N3 + 4MN + 4N2

Jacobi [13] (4M + 4IT + 1)N2 + 2NM
Richardson [15] (4M + 4IT )N2 + 2NM
GS [9] (4M + 4IT − 2)N2 + 2(N − 2IT + 1)N
SOR [12] (4M + 4IT − 2)N2 + 2(M − IT + 1)N
QRD N2.529 + 4NM2 + 2N(N − 1)
OQRD N2.529 + 4NM2 + 2N(N − 1) + 4MN
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the indices as given by
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and ordered transmitted signal vector xo (20), the received
signal vector y can be expressed as
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The order channel matrix Ho can be decomposed into QR
factorization Ho = QoR0. After multiplication QH
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sides of (21), it yields

ỹ = QH
o y = QH
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= QH
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The transmitted signal is obtained after performing the
backward substitution method. The detail steps of QRD
method is summarized below.
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This method eliminates the error propagation problem of
QRD by detecting the stronger signal at first and then cancels
its effects before detection of weaker signal.

C. Computational Complexity
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obtain the estimated transmitted data signal requires backward
substitution algorithm as given in [step 4] of the proposed
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sides of (21), it yields
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= QH
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The transmitted signal is obtained after performing the
backward substitution method. The detail steps of QRD
method is summarized below.

[Step 1]: Initialization: y, H , x

y = Hx + w = h1x1 + h2x2 + · · · + hNxN + n
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Fig. 3: SER performance comparison of various signal
detection method for NR = 36, NT = 64

V. RESULTS

In this section, the performance of proposed QRD and
OQRD methods are compared with various conventional signal
detection methods for uplink massive MIMO system in terms
of symbol error rate (SER) and computational complexity.
The SER performance of various signal detection methods are
carried out based on Monte Carlo simulation using MATLAB.
We have considered M = 64 number of receiving antennas
at the base station and N number of users with each user
equipped with single transmitting antenna. For simulation,
the antenna configuration (N ×M) are as follows: 24 × 64,
36×64 and 48×64. The baseband signal modulation technique
uses 16QAM, and for each SNR value, we simulate at least
48000 symbols. The transmission channel is considered as
non-correlated Rayleigh fading channel. The perfect channel
state information (CSI) is assumed to be known at the receiver
terminal.
Fig 2, Fig.3 and Fig 4 show the SER performance comparison
of proposed QRD and OQRD methods with various conven-
tional signal detection methods for number of users N = 24,
N = 36 and N = 48 respectively. From the simulation
results it is seen that the Jacobi method has significantly lower
performance. It is observed that the performance of Richardson
method is much better Jacobi methods. The simulation results
shows that the performance of SOR significantly improves and
outperforms all the conventional methods when the number
of users increases. The GS method is much better than
Jacobi and Richardson methods. The performance of SOR
provides slightly better when the ratio between user to BS i.e.
N/M increases. Since, all the signal detection methods are
derived from MMSE method based on several approximate
matrix inversion methods, therefore, their performance are
always lower than the MMSE methods. The performance of
proposed QRD significantly outperforms the MMSE method.
It is observed that the performance of OQRD method gives
better performance than QRD method as it performs addition
ordering of the channel matrix.

The SER vs number of users (N) performance comparison
for various signal detection methods at 20dB SNR is shown in

0 5 10 15 20 25
10−4

10−3

10−2

10−1

100

SNR (dB)

Sy
m

bo
l E

rro
r R

at
e

MMSE
Jacobi
Richardson
GS
SOR
QRD
OQRD

Fig. 4: SER performance comparison of various signal
detection method for NR = 48, NT = 64

10 15 20 25 30 35 40 45 50

10−4

10−3

10−2

10−1

100

Number of users

Sy
m

bo
l E

rro
r R

at
e

MMSE
Jacobi
Richardson
GS
SOR
QRD
OQRD

Fig. 5: SER Vs number of user (N)performance comparison
of various signal detection method at 20dB SNR

the Fig 5. The simulation results shows Jacobi and Richardson
achieves considerable performance for lower number of users.
But, as the number of users increases their performance
significantly decreases. It is observed that the performance of
GS and SOR methods performs close to MMSE method for
lower number of users and the performance gap increase with
a large number of users. It can be seen that the performance
of proposed QRD method outperforms the MMSE method for
lower to medium number of users. From the result, it is also
observed that the performance of proposed OQRD method
significantly outperform the MMSE method. Although the gap
between OQRD and MMSE method decreases with very high
number of users but still the OQRD method is significantly
outperforms the MMSE method.

VI. CONCLUSION
In this paper, we have proposed QRD and OQRD based

signal detection methods for massive MIMO uplink system.
The QRD method is based on the QR factorization of the
original channel matrix to obtain estimated transmitted signal.
Furthermore, the OQRD method is proposed which enhances
the performance of QRD method. The OQRD method is based
on the QR decomposition of the column norm ordering of the

5

0 5 10 15 20 25
10−4

10−3

10−2

10−1

100

SNR (dB)

Sy
m

bo
l E

rro
r R

at
e

MMSE
Jacobi
Richardson
GS
SOR
QRD
OQRD

Fig. 3: SER performance comparison of various signal
detection method for NR = 36, NT = 64

V. RESULTS

In this section, the performance of proposed QRD and
OQRD methods are compared with various conventional signal
detection methods for uplink massive MIMO system in terms
of symbol error rate (SER) and computational complexity.
The SER performance of various signal detection methods are
carried out based on Monte Carlo simulation using MATLAB.
We have considered M = 64 number of receiving antennas
at the base station and N number of users with each user
equipped with single transmitting antenna. For simulation,
the antenna configuration (N ×M) are as follows: 24 × 64,
36×64 and 48×64. The baseband signal modulation technique
uses 16QAM, and for each SNR value, we simulate at least
48000 symbols. The transmission channel is considered as
non-correlated Rayleigh fading channel. The perfect channel
state information (CSI) is assumed to be known at the receiver
terminal.
Fig 2, Fig.3 and Fig 4 show the SER performance comparison
of proposed QRD and OQRD methods with various conven-
tional signal detection methods for number of users N = 24,
N = 36 and N = 48 respectively. From the simulation
results it is seen that the Jacobi method has significantly lower
performance. It is observed that the performance of Richardson
method is much better Jacobi methods. The simulation results
shows that the performance of SOR significantly improves and
outperforms all the conventional methods when the number
of users increases. The GS method is much better than
Jacobi and Richardson methods. The performance of SOR
provides slightly better when the ratio between user to BS i.e.
N/M increases. Since, all the signal detection methods are
derived from MMSE method based on several approximate
matrix inversion methods, therefore, their performance are
always lower than the MMSE methods. The performance of
proposed QRD significantly outperforms the MMSE method.
It is observed that the performance of OQRD method gives
better performance than QRD method as it performs addition
ordering of the channel matrix.

The SER vs number of users (N) performance comparison
for various signal detection methods at 20dB SNR is shown in

0 5 10 15 20 25
10−4

10−3

10−2

10−1

100

SNR (dB)

Sy
m

bo
l E

rro
r R

at
e

MMSE
Jacobi
Richardson
GS
SOR
QRD
OQRD

Fig. 4: SER performance comparison of various signal
detection method for NR = 48, NT = 64

10 15 20 25 30 35 40 45 50

10−4

10−3

10−2

10−1

100

Number of users

Sy
m

bo
l E

rro
r R

at
e

MMSE
Jacobi
Richardson
GS
SOR
QRD
OQRD

Fig. 5: SER Vs number of user (N)performance comparison
of various signal detection method at 20dB SNR

the Fig 5. The simulation results shows Jacobi and Richardson
achieves considerable performance for lower number of users.
But, as the number of users increases their performance
significantly decreases. It is observed that the performance of
GS and SOR methods performs close to MMSE method for
lower number of users and the performance gap increase with
a large number of users. It can be seen that the performance
of proposed QRD method outperforms the MMSE method for
lower to medium number of users. From the result, it is also
observed that the performance of proposed OQRD method
significantly outperform the MMSE method. Although the gap
between OQRD and MMSE method decreases with very high
number of users but still the OQRD method is significantly
outperforms the MMSE method.

VI. CONCLUSION
In this paper, we have proposed QRD and OQRD based

signal detection methods for massive MIMO uplink system.
The QRD method is based on the QR factorization of the
original channel matrix to obtain estimated transmitted signal.
Furthermore, the OQRD method is proposed which enhances
the performance of QRD method. The OQRD method is based
on the QR decomposition of the column norm ordering of the

5

0 5 10 15 20 25
10−4

10−3

10−2

10−1

100

SNR (dB)

Sy
m

bo
l E

rro
r R

at
e

MMSE
Jacobi
Richardson
GS
SOR
QRD
OQRD

Fig. 3: SER performance comparison of various signal
detection method for NR = 36, NT = 64

V. RESULTS

In this section, the performance of proposed QRD and
OQRD methods are compared with various conventional signal
detection methods for uplink massive MIMO system in terms
of symbol error rate (SER) and computational complexity.
The SER performance of various signal detection methods are
carried out based on Monte Carlo simulation using MATLAB.
We have considered M = 64 number of receiving antennas
at the base station and N number of users with each user
equipped with single transmitting antenna. For simulation,
the antenna configuration (N ×M) are as follows: 24 × 64,
36×64 and 48×64. The baseband signal modulation technique
uses 16QAM, and for each SNR value, we simulate at least
48000 symbols. The transmission channel is considered as
non-correlated Rayleigh fading channel. The perfect channel
state information (CSI) is assumed to be known at the receiver
terminal.
Fig 2, Fig.3 and Fig 4 show the SER performance comparison
of proposed QRD and OQRD methods with various conven-
tional signal detection methods for number of users N = 24,
N = 36 and N = 48 respectively. From the simulation
results it is seen that the Jacobi method has significantly lower
performance. It is observed that the performance of Richardson
method is much better Jacobi methods. The simulation results
shows that the performance of SOR significantly improves and
outperforms all the conventional methods when the number
of users increases. The GS method is much better than
Jacobi and Richardson methods. The performance of SOR
provides slightly better when the ratio between user to BS i.e.
N/M increases. Since, all the signal detection methods are
derived from MMSE method based on several approximate
matrix inversion methods, therefore, their performance are
always lower than the MMSE methods. The performance of
proposed QRD significantly outperforms the MMSE method.
It is observed that the performance of OQRD method gives
better performance than QRD method as it performs addition
ordering of the channel matrix.

The SER vs number of users (N) performance comparison
for various signal detection methods at 20dB SNR is shown in

0 5 10 15 20 25
10−4

10−3

10−2

10−1

100

SNR (dB)

Sy
m

bo
l E

rro
r R

at
e

MMSE
Jacobi
Richardson
GS
SOR
QRD
OQRD

Fig. 4: SER performance comparison of various signal
detection method for NR = 48, NT = 64

10 15 20 25 30 35 40 45 50

10−4

10−3

10−2

10−1

100

Number of users

Sy
m

bo
l E

rro
r R

at
e

MMSE
Jacobi
Richardson
GS
SOR
QRD
OQRD

Fig. 5: SER Vs number of user (N)performance comparison
of various signal detection method at 20dB SNR

the Fig 5. The simulation results shows Jacobi and Richardson
achieves considerable performance for lower number of users.
But, as the number of users increases their performance
significantly decreases. It is observed that the performance of
GS and SOR methods performs close to MMSE method for
lower number of users and the performance gap increase with
a large number of users. It can be seen that the performance
of proposed QRD method outperforms the MMSE method for
lower to medium number of users. From the result, it is also
observed that the performance of proposed OQRD method
significantly outperform the MMSE method. Although the gap
between OQRD and MMSE method decreases with very high
number of users but still the OQRD method is significantly
outperforms the MMSE method.

VI. CONCLUSION
In this paper, we have proposed QRD and OQRD based

signal detection methods for massive MIMO uplink system.
The QRD method is based on the QR factorization of the
original channel matrix to obtain estimated transmitted signal.
Furthermore, the OQRD method is proposed which enhances
the performance of QRD method. The OQRD method is based
on the QR decomposition of the column norm ordering of the

5

0 5 10 15 20 25
10−4

10−3

10−2

10−1

100

SNR (dB)

Sy
m

bo
l E

rro
r R

at
e

MMSE
Jacobi
Richardson
GS
SOR
QRD
OQRD

Fig. 3: SER performance comparison of various signal
detection method for NR = 36, NT = 64

V. RESULTS

In this section, the performance of proposed QRD and
OQRD methods are compared with various conventional signal
detection methods for uplink massive MIMO system in terms
of symbol error rate (SER) and computational complexity.
The SER performance of various signal detection methods are
carried out based on Monte Carlo simulation using MATLAB.
We have considered M = 64 number of receiving antennas
at the base station and N number of users with each user
equipped with single transmitting antenna. For simulation,
the antenna configuration (N ×M) are as follows: 24 × 64,
36×64 and 48×64. The baseband signal modulation technique
uses 16QAM, and for each SNR value, we simulate at least
48000 symbols. The transmission channel is considered as
non-correlated Rayleigh fading channel. The perfect channel
state information (CSI) is assumed to be known at the receiver
terminal.
Fig 2, Fig.3 and Fig 4 show the SER performance comparison
of proposed QRD and OQRD methods with various conven-
tional signal detection methods for number of users N = 24,
N = 36 and N = 48 respectively. From the simulation
results it is seen that the Jacobi method has significantly lower
performance. It is observed that the performance of Richardson
method is much better Jacobi methods. The simulation results
shows that the performance of SOR significantly improves and
outperforms all the conventional methods when the number
of users increases. The GS method is much better than
Jacobi and Richardson methods. The performance of SOR
provides slightly better when the ratio between user to BS i.e.
N/M increases. Since, all the signal detection methods are
derived from MMSE method based on several approximate
matrix inversion methods, therefore, their performance are
always lower than the MMSE methods. The performance of
proposed QRD significantly outperforms the MMSE method.
It is observed that the performance of OQRD method gives
better performance than QRD method as it performs addition
ordering of the channel matrix.

The SER vs number of users (N) performance comparison
for various signal detection methods at 20dB SNR is shown in

0 5 10 15 20 25
10−4

10−3

10−2

10−1

100

SNR (dB)

Sy
m

bo
l E

rro
r R

at
e

MMSE
Jacobi
Richardson
GS
SOR
QRD
OQRD

Fig. 4: SER performance comparison of various signal
detection method for NR = 48, NT = 64

10 15 20 25 30 35 40 45 50

10−4

10−3

10−2

10−1

100

Number of users

Sy
m

bo
l E

rro
r R

at
e

MMSE
Jacobi
Richardson
GS
SOR
QRD
OQRD

Fig. 5: SER Vs number of user (N)performance comparison
of various signal detection method at 20dB SNR

the Fig 5. The simulation results shows Jacobi and Richardson
achieves considerable performance for lower number of users.
But, as the number of users increases their performance
significantly decreases. It is observed that the performance of
GS and SOR methods performs close to MMSE method for
lower number of users and the performance gap increase with
a large number of users. It can be seen that the performance
of proposed QRD method outperforms the MMSE method for
lower to medium number of users. From the result, it is also
observed that the performance of proposed OQRD method
significantly outperform the MMSE method. Although the gap
between OQRD and MMSE method decreases with very high
number of users but still the OQRD method is significantly
outperforms the MMSE method.

VI. CONCLUSION
In this paper, we have proposed QRD and OQRD based

signal detection methods for massive MIMO uplink system.
The QRD method is based on the QR factorization of the
original channel matrix to obtain estimated transmitted signal.
Furthermore, the OQRD method is proposed which enhances
the performance of QRD method. The OQRD method is based
on the QR decomposition of the column norm ordering of the

5

0 5 10 15 20 25
10−4

10−3

10−2

10−1

100

SNR (dB)

Sy
m

bo
l E

rro
r R

at
e

MMSE
Jacobi
Richardson
GS
SOR
QRD
OQRD

Fig. 3: SER performance comparison of various signal
detection method for NR = 36, NT = 64

V. RESULTS

In this section, the performance of proposed QRD and
OQRD methods are compared with various conventional signal
detection methods for uplink massive MIMO system in terms
of symbol error rate (SER) and computational complexity.
The SER performance of various signal detection methods are
carried out based on Monte Carlo simulation using MATLAB.
We have considered M = 64 number of receiving antennas
at the base station and N number of users with each user
equipped with single transmitting antenna. For simulation,
the antenna configuration (N ×M) are as follows: 24 × 64,
36×64 and 48×64. The baseband signal modulation technique
uses 16QAM, and for each SNR value, we simulate at least
48000 symbols. The transmission channel is considered as
non-correlated Rayleigh fading channel. The perfect channel
state information (CSI) is assumed to be known at the receiver
terminal.
Fig 2, Fig.3 and Fig 4 show the SER performance comparison
of proposed QRD and OQRD methods with various conven-
tional signal detection methods for number of users N = 24,
N = 36 and N = 48 respectively. From the simulation
results it is seen that the Jacobi method has significantly lower
performance. It is observed that the performance of Richardson
method is much better Jacobi methods. The simulation results
shows that the performance of SOR significantly improves and
outperforms all the conventional methods when the number
of users increases. The GS method is much better than
Jacobi and Richardson methods. The performance of SOR
provides slightly better when the ratio between user to BS i.e.
N/M increases. Since, all the signal detection methods are
derived from MMSE method based on several approximate
matrix inversion methods, therefore, their performance are
always lower than the MMSE methods. The performance of
proposed QRD significantly outperforms the MMSE method.
It is observed that the performance of OQRD method gives
better performance than QRD method as it performs addition
ordering of the channel matrix.

The SER vs number of users (N) performance comparison
for various signal detection methods at 20dB SNR is shown in

0 5 10 15 20 25
10−4

10−3

10−2

10−1

100

SNR (dB)

Sy
m

bo
l E

rro
r R

at
e

MMSE
Jacobi
Richardson
GS
SOR
QRD
OQRD

Fig. 4: SER performance comparison of various signal
detection method for NR = 48, NT = 64

10 15 20 25 30 35 40 45 50

10−4

10−3

10−2

10−1

100

Number of users

Sy
m

bo
l E

rro
r R

at
e

MMSE
Jacobi
Richardson
GS
SOR
QRD
OQRD

Fig. 5: SER Vs number of user (N)performance comparison
of various signal detection method at 20dB SNR

the Fig 5. The simulation results shows Jacobi and Richardson
achieves considerable performance for lower number of users.
But, as the number of users increases their performance
significantly decreases. It is observed that the performance of
GS and SOR methods performs close to MMSE method for
lower number of users and the performance gap increase with
a large number of users. It can be seen that the performance
of proposed QRD method outperforms the MMSE method for
lower to medium number of users. From the result, it is also
observed that the performance of proposed OQRD method
significantly outperform the MMSE method. Although the gap
between OQRD and MMSE method decreases with very high
number of users but still the OQRD method is significantly
outperforms the MMSE method.

VI. CONCLUSION
In this paper, we have proposed QRD and OQRD based

signal detection methods for massive MIMO uplink system.
The QRD method is based on the QR factorization of the
original channel matrix to obtain estimated transmitted signal.
Furthermore, the OQRD method is proposed which enhances
the performance of QRD method. The OQRD method is based
on the QR decomposition of the column norm ordering of the

Fig. 3: SER performance comparison of various signal detection method 
for NR = 36, NT = 64

Fig. 4: SER performance comparison of various signal detection method 
for NR = 48, NT = 64

Fig. 5: SER Vs number of user (N)performance comparison of various 
signal detection method at 20dB SNR



An Ordered QR Decomposition based Signal Detection  
Technique for Uplink Massive MIMO System

INFOCOMMUNICATIONS JOURNAL

MARCH 2024 • VOLUME XVI • NUMBER 1 25

6

channel matrix. These proposed methods are compared with
various conventional signal detection methods which include
Jacobi, Richardson, Gauss-Sidel, SOR and MMSE in terms
of SER and computational complexity. The simulation results
show that the proposed methods significantly outperforms
conventional signal detection method with complexity lower
than MMSE method. Therefore, the proposed OQRD method
can be considered as a suitable signal detection technique for
uplink massive MIMO system.
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backscattered Binary Phase Shift Keying (BPSK) modulated
signal. Also, it can detect the satellite if the ground station
receiver can use a matched filter like a correlation receiver. If
the ground station receiver knows the BPSK code of the satellite,
it can detect it. If not, there is no way to detect the satellite.
This method is similar to Radio Frequency Identification (RFID)
applications, but the reader is the ground station, and the tag is
the satellite.

Index Terms—PocketQube, Student Satellite, Resonant Radar
Reflector, Ground Station.

I. INTRODUCTION

MOST launches in the past involved a single large
satellite being launched on a specialized launch

vehicle. Small satellites were sometimes ’ dropped off ’ on
the route to the primary payload’s orbit or rode along with the
primary payload to the final orbit. In either case, identifying
primary and secondary payloads based on size and operational
parameters was usually clear. By launching CubeSats close
together in space, they are difficult to differentiate from one
another; by launching them close together in time, Sorting
out which object is which can take weeks or months at times,
and some objects may never be individually identified at all.
After launch, it is difficult to identify the satellite if there
is no radio connection between the satellite and the ground
station [1], [3], [4], [14].
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This paper’s primary goal is to present a novel method
for tracking and identifying PocketQuebe satellites without
needing a costly tracking system. This method considers
the satellites’ weight, size, and power consumption while
maintaining compatibility with the technology readiness level
(TRL) and the global standardization of the PocketQube
satellite’s standard. The most recent satellite mission from
BME University is the MRC-100 satellite, which is shown
in the following sections to demonstrate the ability to identify
and track the PocketQube satellites based on the resonant radar
reflector described.

Little research has been done on the topic; the most closely
related work in this field finds the French radar surveillance
system’s reflected signal (GRAVES). The radar-based space
surveillance system Graves emits continuous waves at 143,05
MHz on the VHF band [15]. In this article, the authors could
detect many hundred-kilogram satellites in low Earth orbit.
PocketQube satellite has a much smaller radar-cross section
(RCS) compared with hundred-kilogram satellites, so although
it seems possible, research has to be done to determine the
feasibility of small targets.

The PocketQube Satellite is the most recent type of
nano-satellite to be proposed. It limits developers to a
volume of roughly (5 × 5 × 5) cm for one unit and a
mass range of 0.1 to 1 kilogram. The Microwave Remote
Sensing Laboratory at BME University, in the Department
of Broadband Info-communications and Electromagnetic
Theory, developed various PocketQube Satellites experiments.
MRC-100 is the new PocketQube Satellite and was developed
over three years through the collaboration of lecturers,
researchers, and students. It was given that name in honor
of the Muegyetemi Radio Club (MRC), which will celebrate
its 100th anniversary in 2024 [16]. All small satellites were
developed with significant help from the club [2], [6], [11].

MRC-100 is a 3-PQ (PocketQube) satellite with (50 ×
50 × 178) mm dimension and 587 grams total mass. The
main subsystems of MRC-100 are COM - Communication
System, OBC - On-Board Computer, and EPS - Electrical
Power System. MRC-100 contains several scientific payloads:
Resonant Radar Reflector, spectrum analyzer 30 - 2600
MHz, 1 Mbit/s S-band down-link, automatic identification sys-
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tem receiver for vessel traffic services, memory-based single
event detector, special thermal insulator test, UHF-band LoRa-
GPS Tracking, total ionizing dose measurement system, active
magnetic attitude control, horizon + Sun camera, and satellite
GPS + LoRa downlink (satellite identification) [1], [3], [4].
The three dimension model and the cross-sectional view of
MRC-100 subsystems can be seen in Fig. 1. and Fig. 2.

The article is structured as follows: Section I overviews
the introduction of the PocketQube satellite and the base
sub-systems of the MRC-100 satellite. Section II discusses
the power budget estimation and the orbital motion estimation
of MRC-100 satellite. Section III discusses the MRC-100
communication system and ground stations. Section IV
discusses the concept of the proposed resonant radar reflector
based on BPSK modulation. Section V discusses the link
budget estimation of the proposed System. Section VI
shows the preliminary idea of the reflector and laboratory
measurements results. Finally, the article’s conclusion
and prospects for the MRC-100 satellite are presented in
Section VII.

Fig. 1: MRC-100 flight module

Fig. 2: Cross-sectional view of MRC-100 subsystems.

II. POWER BUDGET AND ORBITAL MOTION ESTIMATION
OF MRC-100

The MRC-100 satellite trajectory is scheduled to follow a
polar, circular, and sun-synchronous Low Earth Orbit (LEO)
with 600-kilometer apogee and perigee distances.

A. Power budget estimation

About 150 million kilometers is the distance between the
Sun and the Earth. 1360 W

m2 is the average power density
around the Earth. As shown in Fig. 3. MRC-100 is covered
with eight (80 × 40) mm three-layer solar panels from
AzurSpace [7].

Due to the atmosphere, the solar power density on Earth’s
surface is only 1000 W

m2 (mainly by the ozone layer). The
MRC-100’s three-layer solar cells have a 40 mm × 80 mm
size, a 28% efficiency, and 1.1 W of DC (Direct Current)
output. The LEO of MRC-100 lasts 90 minutes, spending 60%
of that time in light and 40% in darkness. As a result, the DC
input averages 0.68 W with a peak of 1.7 W (on LEO, the
DC input will be 36% higher) [3], [5], [12], [13]. The onboard
systems of the MRC-100 is a single-point-failure tolerant and
cold-redundant.

The three-layer solar cell dimension (80× 40) mm and the
cut-off edge of the solar cell (13.5× 13.5) mm for a 1U cube
(100× 100) mm are both important factors in estimating the
peak power of 1.7 W .

[(80× 40)− (13.5× 13.5)] · 2
(100× 100)

= 60% (1)

The solar power density around the Earth’s surface equals
1000 W

m2 ( for 10 cm2 cube equal to 10 W
cm2 ). In equations

(2) - (5) the estimation of overall DC power, the maximum
DC input, the mean DC power, and the mean DC input in one
orbital period (90 minutes) [3].

Overall DC power = 10 W · 60% = 6 W (2)

Maximum DC input = 6 W · 28.5% = 1.71 W (3)

Mean DC power = 1.71 W

(
4 sides

6 sides

)
= 1.14 W (4)

Mean DC input = 1.14 W · 60% = 0.684 W (5)

Fig. 3: MRC-100’s solar cells

mailto:yasirahmedidris.humad%40edu.bme.hu?subject=
mailto:dudas.levente%40vik.bme.hu?subject=
https://doi.org/10.36244/ICJ.2024.1.4


Resonant Radar Reflector On VHF / UHF Band Based on  
BPSK Modulation at LEO Orbit by MRC-100 Satellite

INFOCOMMUNICATIONS JOURNAL

MARCH 2024 • VOLUME XVI • NUMBER 1 27

2

tem receiver for vessel traffic services, memory-based single
event detector, special thermal insulator test, UHF-band LoRa-
GPS Tracking, total ionizing dose measurement system, active
magnetic attitude control, horizon + Sun camera, and satellite
GPS + LoRa downlink (satellite identification) [1], [3], [4].
The three dimension model and the cross-sectional view of
MRC-100 subsystems can be seen in Fig. 1. and Fig. 2.

The article is structured as follows: Section I overviews
the introduction of the PocketQube satellite and the base
sub-systems of the MRC-100 satellite. Section II discusses
the power budget estimation and the orbital motion estimation
of MRC-100 satellite. Section III discusses the MRC-100
communication system and ground stations. Section IV
discusses the concept of the proposed resonant radar reflector
based on BPSK modulation. Section V discusses the link
budget estimation of the proposed System. Section VI
shows the preliminary idea of the reflector and laboratory
measurements results. Finally, the article’s conclusion
and prospects for the MRC-100 satellite are presented in
Section VII.

Fig. 1: MRC-100 flight module

Fig. 2: Cross-sectional view of MRC-100 subsystems.

II. POWER BUDGET AND ORBITAL MOTION ESTIMATION
OF MRC-100

The MRC-100 satellite trajectory is scheduled to follow a
polar, circular, and sun-synchronous Low Earth Orbit (LEO)
with 600-kilometer apogee and perigee distances.

A. Power budget estimation

About 150 million kilometers is the distance between the
Sun and the Earth. 1360 W

m2 is the average power density
around the Earth. As shown in Fig. 3. MRC-100 is covered
with eight (80 × 40) mm three-layer solar panels from
AzurSpace [7].

Due to the atmosphere, the solar power density on Earth’s
surface is only 1000 W

m2 (mainly by the ozone layer). The
MRC-100’s three-layer solar cells have a 40 mm × 80 mm
size, a 28% efficiency, and 1.1 W of DC (Direct Current)
output. The LEO of MRC-100 lasts 90 minutes, spending 60%
of that time in light and 40% in darkness. As a result, the DC
input averages 0.68 W with a peak of 1.7 W (on LEO, the
DC input will be 36% higher) [3], [5], [12], [13]. The onboard
systems of the MRC-100 is a single-point-failure tolerant and
cold-redundant.

The three-layer solar cell dimension (80× 40) mm and the
cut-off edge of the solar cell (13.5× 13.5) mm for a 1U cube
(100× 100) mm are both important factors in estimating the
peak power of 1.7 W .

[(80× 40)− (13.5× 13.5)] · 2
(100× 100)

= 60% (1)

The solar power density around the Earth’s surface equals
1000 W

m2 ( for 10 cm2 cube equal to 10 W
cm2 ). In equations

(2) - (5) the estimation of overall DC power, the maximum
DC input, the mean DC power, and the mean DC input in one
orbital period (90 minutes) [3].

Overall DC power = 10 W · 60% = 6 W (2)

Maximum DC input = 6 W · 28.5% = 1.71 W (3)

Mean DC power = 1.71 W

(
4 sides

6 sides

)
= 1.14 W (4)

Mean DC input = 1.14 W · 60% = 0.684 W (5)

Fig. 3: MRC-100’s solar cells

2

tem receiver for vessel traffic services, memory-based single
event detector, special thermal insulator test, UHF-band LoRa-
GPS Tracking, total ionizing dose measurement system, active
magnetic attitude control, horizon + Sun camera, and satellite
GPS + LoRa downlink (satellite identification) [1], [3], [4].
The three dimension model and the cross-sectional view of
MRC-100 subsystems can be seen in Fig. 1. and Fig. 2.

The article is structured as follows: Section I overviews
the introduction of the PocketQube satellite and the base
sub-systems of the MRC-100 satellite. Section II discusses
the power budget estimation and the orbital motion estimation
of MRC-100 satellite. Section III discusses the MRC-100
communication system and ground stations. Section IV
discusses the concept of the proposed resonant radar reflector
based on BPSK modulation. Section V discusses the link
budget estimation of the proposed System. Section VI
shows the preliminary idea of the reflector and laboratory
measurements results. Finally, the article’s conclusion
and prospects for the MRC-100 satellite are presented in
Section VII.

Fig. 1: MRC-100 flight module

Fig. 2: Cross-sectional view of MRC-100 subsystems.

II. POWER BUDGET AND ORBITAL MOTION ESTIMATION
OF MRC-100

The MRC-100 satellite trajectory is scheduled to follow a
polar, circular, and sun-synchronous Low Earth Orbit (LEO)
with 600-kilometer apogee and perigee distances.

A. Power budget estimation

About 150 million kilometers is the distance between the
Sun and the Earth. 1360 W

m2 is the average power density
around the Earth. As shown in Fig. 3. MRC-100 is covered
with eight (80 × 40) mm three-layer solar panels from
AzurSpace [7].

Due to the atmosphere, the solar power density on Earth’s
surface is only 1000 W

m2 (mainly by the ozone layer). The
MRC-100’s three-layer solar cells have a 40 mm × 80 mm
size, a 28% efficiency, and 1.1 W of DC (Direct Current)
output. The LEO of MRC-100 lasts 90 minutes, spending 60%
of that time in light and 40% in darkness. As a result, the DC
input averages 0.68 W with a peak of 1.7 W (on LEO, the
DC input will be 36% higher) [3], [5], [12], [13]. The onboard
systems of the MRC-100 is a single-point-failure tolerant and
cold-redundant.

The three-layer solar cell dimension (80× 40) mm and the
cut-off edge of the solar cell (13.5× 13.5) mm for a 1U cube
(100× 100) mm are both important factors in estimating the
peak power of 1.7 W .

[(80× 40)− (13.5× 13.5)] · 2
(100× 100)

= 60% (1)

The solar power density around the Earth’s surface equals
1000 W

m2 ( for 10 cm2 cube equal to 10 W
cm2 ). In equations

(2) - (5) the estimation of overall DC power, the maximum
DC input, the mean DC power, and the mean DC input in one
orbital period (90 minutes) [3].

Overall DC power = 10 W · 60% = 6 W (2)

Maximum DC input = 6 W · 28.5% = 1.71 W (3)

Mean DC power = 1.71 W

(
4 sides

6 sides

)
= 1.14 W (4)

Mean DC input = 1.14 W · 60% = 0.684 W (5)

Fig. 3: MRC-100’s solar cells

Fig. 1: MRC-100 flight module

2

tem receiver for vessel traffic services, memory-based single
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magnetic attitude control, horizon + Sun camera, and satellite
GPS + LoRa downlink (satellite identification) [1], [3], [4].
The three dimension model and the cross-sectional view of
MRC-100 subsystems can be seen in Fig. 1. and Fig. 2.

The article is structured as follows: Section I overviews
the introduction of the PocketQube satellite and the base
sub-systems of the MRC-100 satellite. Section II discusses
the power budget estimation and the orbital motion estimation
of MRC-100 satellite. Section III discusses the MRC-100
communication system and ground stations. Section IV
discusses the concept of the proposed resonant radar reflector
based on BPSK modulation. Section V discusses the link
budget estimation of the proposed System. Section VI
shows the preliminary idea of the reflector and laboratory
measurements results. Finally, the article’s conclusion
and prospects for the MRC-100 satellite are presented in
Section VII.
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B. The estimation of orbital motion

Fig. 4: Graphical depiction of the satellite horizon.

MRC-100 maximum distance from the ground station (com-
munication in zero degrees elevation angle - horizon) is
calculated by equation (6) at 600 km apogee/perigee of the
orbit. Fig. 4. explains the graphical depiction of the satellite
horizon and the theoretical estimation of the maximal distance
between the MRC-100 satellite and the ground station, as well
as the speed of the MRC-100 satellite in a circular orbit.

d =
√

(R+ h)2 −R2 (6)

Where d is the maximal distance between the satellite and
the ground station (where h = 600 km, R = 6,371 km, and d
= 2830 km).

In a circular orbit, the speed of a satellite is calculated by
equation (7).

v =

√
g ·R

1 +H/R
= 7.55

km

s
(7)

Where g is the gravitational acceleration on the Earth’s
surface.

III. MRC-100 COMMUNICATION SYSTEM AND GROUND
STATIONS

The communication system of the MRC-100 is based
on an external microcontroller and Acsip LoRa and FSK
radio module type S68F. As shown in Fig. 7 and Fig. 8, the
communication antenna is a V-shaped dipole type 2 x quarter
wavelength radiator made by space-qualified bicycle brake
Bowden that emits a ”quasi”-omnidirectional 3D radiation
pattern. This eliminates the fading effect brought on by
the 3-PQ’s uncontrolled movement on the LEO. The 3D
radiation pattern of the antenna on the cube-skeleton and the
communication subsystem antenna can be seen in Fig. 6.
As shown in Fig. 5. two independent telecommand receivers

and two independent telemetry transmitters are linked to the
antenna realizing cold-redundant, half-duplex functioning
on the UHF radio amateur band due to the subsystem-level
redundancy [9], [10], [12].

Fig. 5: The printed circuit board of the flight module.

The MRC-100 telecommand and telemetry system uses
OOK (On-Off Keying), 2-GMSK (Gaussian Minimal Shift
Keying as Frequency Shift Keying), and LoRa-type linear
FM (Frequency Modulation) chirp. The 5000 bit

s 2-GMSK
modulation and OOK (Morse code) is used to establish a
slow basic telemetry data connection. The bandwidth of the
communication system of MRC-100 is licensed for operation
at 12.5 kHz for uplink and 20 kHz for downlink in accordance
with the international amateur radio union (IARU), and the
international telecommunication union (ITU). [12], [13].

Fig. 6: The radiation pattern of the communication subsystem
on Horizontal and Vertical plane.

The primary ground station (GND) is in Budapest (BME)
University, as shown in Fig. 9. It has a 4.5-meter parabolic
reflector-type aperture antenna with a circular back-fire
helix primary radiator operating within the UHF 437 MHz
band. This antenna has a notably focused main lobe, with
angular dimensions of 8 degrees (-3 dB), 18 degrees (-10
dB), and 22 degrees (between null points). The antenna

Fig. 4: Graphical depiction of the satellite horizon.

Fig. 5: The printed circuit board of the flight module.

Fig. 6: The radiation pattern of the communication subsystem on Horizontal 
and Vertical plane.
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Fig. 7: The radiation pattern of the 2 meters Band on Hori-
zontal and Vertical plane.

Fig. 8: The antenna on cube-skeleton and the 3D radiation
pattern.

gains 21 dBi for linearly polarized RF signals (or 24 dBi
for circular polarization) within the region between the null
points. In addition to the BME main ground station, Fig. 10.
The secondary GND is located in Erd, approximately 20
kilometers from Budapest. [8], [9].

The main ground stations (GNDs) are fully automated
and remote-controlled through the Internet. The core of their
control system is a Raspberry PI single-board computer (SBC),
capable of performing a wide range of functions. This includes
the accurate azimuth-elevation antenna rotation, the detailed
tracking of the satellite’s path, the calculation of the Doppler
shift in the RF signal, and the control of the complete radio
transceiver suite including a low noise amplifier (LNA), power
amplifier (PA), and coaxial relay. The primary GND’s output
RF power is 400 W RF + 21 dBi antenna gain, while the
secondary GND’s output RF power is 120 W RF + 16
dBi antenna gain. These GNDs are known about the actual
operational digital data link of the MRC-100 3-PQ (5th)
Hungarian satellite. [8], [9].

IV. RESONANT RADAR REFLECTOR BASED ON BPSK
The main idea of the resonant radar reflector: the antenna of

the communicational system can be used as a resonant reflector
if the loading RF PIN diode can form short-circuit reflection
(-1 ) and open-loop reflection (+1 ) as BPSK modulation of
its Radar Cross Section (similar to the conventional RFID,
but the distance between the reader and the tag can reach
3000 km). From the Earth Station, it is necessary to have
an illuminator RF CW signal. This signal will be reflected
by the onboard antenna with binary code modulation, and

Fig. 9: Automated satellite tracking and remote-control. [6].

Fig. 10: The secondary GND satellite tracking [6].

other ground stations with SDRs can sense this signal. If the
code is known by the ground station (GND), it can detect and
identify the satellite. The satellite has no RF radiation, and the
consumed DC power is a few mW. We devised this resonant
radar reflector and have designed a demonstrational system
using a transmitter & receiver of software-defined radio (TX-
RX SDR).

A. The proposed system concept

The idea behind the proposed resonant reflector is to use
an antenna for a VHF/UHF communication subsystem. No
radio frequency signal is radiated onboard the satellite, so
power consumption is reduced to a few milliamperes (mA).
Only +3 mA is used if the loading RF PIN diode can form
the shape of a short-circuit, and 0 mA if the PIN diode is
open-loop. With a regulated standard bus voltage of +3.3V,
the power usage is under ten mW or an average of +3.5
mA. The continuous wave (CW) illuminator RF source used
by the system is based on the ground, and the onboard
antenna receives the CW RF signal from the Earth. Then, the
microcontroller (uC) onboard the satellite alternates the PIN
diode regularly to produce binary phase shift keying (BPSK)
modulated signal reflection, which enables the backscattered
signal to be received by additional ground stations.
Additionally, the system can detect the satellite if the ground
station receiver uses a matching filter to determine the
satellite’s BPSK code. On the other hand, only if the receiver

4
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radar reflector and have designed a demonstrational system
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Only +3 mA is used if the loading RF PIN diode can form
the shape of a short-circuit, and 0 mA if the PIN diode is
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knows the satellite’s BPSK code can the satellite be identified.
Fig. 11. and Fig. 12. explains the proposed system’s block
diagrams and the ground illuminator RF source.

Fig. 11: Block diagram of the proposed system.

Fig. 12: Block diagram of the illuminator RF source.

The receiver part (ground segment) is realized within the
proposed system as a coherent receiver, with a matched filter
to precisely identify the satellite’s Binary Phase Shift Keying
(BPSK) code. This single-sideband (SSB) receiver receives
and processes the backscattered modulated signals. It operates
with an audio generator with an input signal that has a
bandwidth of 2700 Hz. This signal is interfaced with an
analog-to-digital converter (ADC), with seamless integration
facilitated through the computer’s sound card. The resulting
outcome is the construction of the ’Received Vector Range
and Velocity (R.V.) matrix.’ In this matrix, the ’range’ part is
the time delay, while the ’velocity’ part is the Doppler shift.
This matrix contains the received BPSK code after performing
a thorough and precise analysis of the received backscattered
signal. Fig. 13. Shows the block diagram of the receiver.

V. LINK BUDGET ESTIMATION OF THE PROPOSED SYSTEM

As mentioned before, the proposed trajectory of MRC-100
is polar and circular, with 600 kilometers of distance (apogee
and perigee). The maximum distance of the satellite from
the ground station is approximately 3000 kilometers (on
the horizon), and 600 kilometers where the satellite is

Fig. 13: Block diagram of the receiver.

perpendicular to the ground station (on the zenith). So,
estimating the link budget on the UHF band (437 MHz) of
the reflected BPSK modulated signal from the satellite is
necessary.

The transmitted power from the ground station will be 100
W (+50 dBm). The gain of the ground station (Gtx) is 21 dBi,
the antenna’s gain onboard the satellite is 0 dBi, and (Grx) is
16 dBi. The modulation loss is 10 dB, and equation (8) can
estimate the free space loss on the horizon:

a0 = 20 lg
4πd

λ
= 155 dB (8)

The received power (Prx ) by the onboard satellite’s antenna
(0 dBi), where the satellite is at the horizon (3000 km) with
free space loss 155 dB, and the transmitted power from the
ground station is 100 W (+50 dBm) with antenna gain (21
dBi), can be estimated by equation(9).

Prx = Ptx +Gtx − a0 = −84 dBm (9)

According to the estimated received power (-84 dBm) by
the onboard satellite’s antenna, we can estimate the reflected
power from the satellite to the ground station when the
modulation loss is 10 dB and the satellite at the horizon.

Preflected = Prx −Modulation Loss = −94 dBm (10)

The reflected power from the satellite to the ground station
when the modulation loss of 10 dB is (-94 dBm), So the re-
ceived reflected power by the ground station can be estimated
by (11), the antenna gain of the ground station 16 dBi.

Prx = Preflected +Ggnd +Gsat − a0 = −233 dBm (11)

The ground station can receive thermal noise power (Pn)
radiated by the environment. (12):

Pn = 10 lg(kTB) + 30 = −144 dBm (12)

Where k is the Boltzmann-constant, B is the bandwidth
(1000 Hz), and T is the 300 K noise power level of the Earth.

The signal-to-noise ratio (SNR) can be estimated by (13) :

SNR = Prx − Pn = −89 dB (13)

The gold code generator inside the satellite’s microcon-
troller is a linear feedback shift register (LSFR) with 10 bits
length and the code length will be estimated by equation(14)
.
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power from the satellite to the ground station when the
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.

Fig. 13: Block diagram of the receiver.

Fig. 11: Block diagram of the proposed system.

Fig. 12: Block diagram of the illuminator RF source.
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Code Length = 210 bits − 1 = 1023 (14)

The processing gain can be estimated by (15) :

Processing Gain = 10 lg(Code Length) = 30 dB (15)

The received reflected power by the ground station is (-233
dBm), and the processing gain is 30 dB; the received power
at the matched filter can be calculated by (16):

Prx = Prxgnd+ Processing Gain = −202 dBm (16)

After the matched filter, we can estimate the bandwidth of
the received signal, the thermal noise power level, and the
signal-to-noise ratio (17) - (19) .

BWMF =
1000 Hz

Code Length
≃ 1 Hz (17)

Pn = 10 lg(kTB) + 30 = −174 dBm (18)

Where B is the Bandwidth of the received signal after the
matched filter (1 Hz), k is the Boltzmann-constant, and T is
the 300 K noise power level of the Earth.

The signal-to-noise ratio after the matched filter can be
calculated by (19):

SNR = Prx − Pn = −29 dB (19)

The code length time can be estimated by (20) :

CodeT =
Code Length

BW
= 1.024 s (20)

TABLE I: Horizon / Zenith Link Budget Estimation on UHF
Band.

Parameters Horizon Zenith
3000 Km 600 Km

Frequency 437 MHz 437 MHz
Wavelength 0.69 m 0.69 m

Ptx +50 dBm +50 dBm
Ggnd1 21 dBi 21 dBi
Gsat 0 dBi 0 dBi
Ggnd2 16 dBi 16 dBi

a0 to Satellite 155 dB 141 dB
Prx@ sat -84 dBm -70 dBm

modulation loss 10 dB 10 dB
Preffrom sat -94 dBm -80 dBm
Prx@ gnd -233 dBm -205 dBm
Bandwidth 1000 Hz 1000 Hz

Noise Temp 300 K 300 K
Thermal Noise Power -144 dBm -144 dBm

SNR -89 dBm -61 dBm
Gold Code Generator Length 10 bits 10 bits

Code Length 1024 chips 1024 chips
Processing Gain 30 dB 30 dB

Code Time 1.024 s 1.024 s
Prx@ MFout -202 dBm -175 dBm
BW@ MFout 1 Hz 1 Hz
Pn@ MFout -174 dBm -174 dBm

SNR@ MFout -29 dB -1 dB

The proposed reflector’s system can be evaluated within
the Very High Frequency (VHF) band when the satellite is
at a distance of 3,000 kilometers. The transmitted power
from the ground station amounts to 100 watts, equivalent to
+50 decibels-milliwatts (dBm). The ground station exhibits
a transmit gain (Gtx) of 16 decibels isotropic (dBi) and a
receive gain (Grx) of 13 dBi, and the satellite’s antenna gain
is measured at 0 dBi. The modulation loss introduces an
attenuation of 10 decibels (dB), while the Gold code length
is 10 bits. Consequently, the estimation of the link budget is
summarized in Table II.

TABLE II: Horizon / Zenith Link Budget Estimation on VHF
Band.

Parameters Horizon Zenith
3000 Km 600 Km

Frequency 144 MHz 144 MHz
Wavelength 2.08 m 2.08 m

Ptx +50 dBm +50 dBm
Ggnd1 16 dBi 16 dBi
Gsat 0 dBi 0 dBi
Ggnd2 13 dBi 13 dBi

a0 to Satellite 145 dB 131 dB
Prx@ sat -79 dBm -65 dBm

modulation loss 10 dB 10 dB
Preffrom sat -89 dBm -75 dBm
Prx@ gnd -221 dBm -193 dBm
Bandwidth 1000 Hz 1000 Hz

Noise Temp 300 K 300 K
Thermal Noise Power -144 dBm -114 dBm

SNR -77 dBm -80 dBm
Gold Code Generator Length 10 bits 10 bits

Code Length 1024 chips 1024 chips
Processing Gain 30 dB 30 dB

Code Time 1.024 s 1.024 s
Prx@ MFout -191 dBm -163 dBm
BW@ MFout 1 Hz 1 Hz
Pn@ MFout -174 dBm -174 dBm

SNR@ MFout -17 dB +11 dB

Considering the orbital movement and Two-Line Element
(TLE) data, MRC-100 passes over Hungary three to six times
daily, lasting approximately 10 minutes. Consequently, it be-
comes imperative to gauge the integration time required for the
back-scattered Binary Phase Shift Keying (BPSK) modulated
signal. Our experiment operates for 10 seconds every minute,
equating to 100 seconds during one pass. Thus, the cumulative
experimentation duration totals 300 seconds for three passes
and 600 seconds for six passes. The overall integration time
(Ti) on the horizon equals 10000 seconds. Referencing equa-
tion (21)., we determine the optimal Integration Gain (IG) for
the received back-scattered BPSK modulated signal after the
matched filter according to our experiment time.

IG = 10 log10 ·(
Ti

CodeT ime
) = 40 dB (21)

Based on Equation (21), the integration gain (IG) is based
on the measurement time, considering that the 1024 BPSK
samples correspond to a bit time of one millisecond, resulting
in a total code time of 1024 milliseconds. Consequently,
IG is equivalent to +40 dB, signifying that the receiver can
effectively discern the backscattered BPSK code.
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the Very High Frequency (VHF) band when the satellite is
at a distance of 3,000 kilometers. The transmitted power
from the ground station amounts to 100 watts, equivalent to
+50 decibels-milliwatts (dBm). The ground station exhibits
a transmit gain (Gtx) of 16 decibels isotropic (dBi) and a
receive gain (Grx) of 13 dBi, and the satellite’s antenna gain
is measured at 0 dBi. The modulation loss introduces an
attenuation of 10 decibels (dB), while the Gold code length
is 10 bits. Consequently, the estimation of the link budget is
summarized in Table II.

TABLE II: Horizon / Zenith Link Budget Estimation on VHF
Band.

Parameters Horizon Zenith
3000 Km 600 Km

Frequency 144 MHz 144 MHz
Wavelength 2.08 m 2.08 m

Ptx +50 dBm +50 dBm
Ggnd1 16 dBi 16 dBi
Gsat 0 dBi 0 dBi
Ggnd2 13 dBi 13 dBi

a0 to Satellite 145 dB 131 dB
Prx@ sat -79 dBm -65 dBm
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Code Length 1024 chips 1024 chips
Processing Gain 30 dB 30 dB
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Prx@ MFout -191 dBm -163 dBm
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Considering the orbital movement and Two-Line Element
(TLE) data, MRC-100 passes over Hungary three to six times
daily, lasting approximately 10 minutes. Consequently, it be-
comes imperative to gauge the integration time required for the
back-scattered Binary Phase Shift Keying (BPSK) modulated
signal. Our experiment operates for 10 seconds every minute,
equating to 100 seconds during one pass. Thus, the cumulative
experimentation duration totals 300 seconds for three passes
and 600 seconds for six passes. The overall integration time
(Ti) on the horizon equals 10000 seconds. Referencing equa-
tion (21)., we determine the optimal Integration Gain (IG) for
the received back-scattered BPSK modulated signal after the
matched filter according to our experiment time.

IG = 10 log10 ·(
Ti

CodeT ime
) = 40 dB (21)

Based on Equation (21), the integration gain (IG) is based
on the measurement time, considering that the 1024 BPSK
samples correspond to a bit time of one millisecond, resulting
in a total code time of 1024 milliseconds. Consequently,
IG is equivalent to +40 dB, signifying that the receiver can
effectively discern the backscattered BPSK code.

TABLE I
Horizon / Zenith Link Budget Estimation on UHF Band.

TABLE II
Horizon / Zenith Link Budget Estimation on VHF Band.
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VI. PRELIMINARY CONCEPT OF THE REFLECTOR AND
LABORATORY MEASUREMENTS RESULTS

The resonant radar reflector system was functionally val-
idated using a proof-of-concept technique based on labora-
tory measurements. The proposed scenario refers explicitly
to creating the demonstrational system using a transmitter
and receiver of software-defined radio ( B200 Tx/Rx SDR)
connected to two log periodic antennas. The log periodic
antenna works in the range of the DVB-T band with linear
gain (6 dBi). The reflector’s system consists of a Raspberry Pi
loaded with an RF PIN diode and a quarter-wave antenna.
The RF PIN diode form short-circuits (-1 reflection) and
open-loop (+1 reflection) as BPSK modulation. The maximum
distance between the transmitter and the reflector’s system
is 22 meters, and the transmitted power (Ptx) is -43 dBm.
Fig. 14. Explains the block diagram of the experimental model,
Fig. 15 and Fig. 16. Shows the realized experimental model
of the reflector’s system with the antenna.

Fig. 14: Block diagram of the experimental model.

The realized measurement - SDR screen, as shown in
Fig. 17. the upper part represents a waterfall diagram of
the received reflected signal from the reflector, the middle
part represents the real and imaginary part of the received
reflected signal, and the bottom one represents the spectrum
of the received reflected signal.

As shown in Fig. 18., the upper part is a waterfall diagram
of the received reflected signal from the reflector when the
transmitter is sending a continuous wave (CW) at 437 MHz
(signal variation in time). The middle is the real and imaginary
part of the received reflected signal. The fundamental part
of the signal is higher than the imaginary part because the
received backscattered signal is BPSK modulated signal. The

Fig. 15: The realized experimental model of the reflector’s
system.

Fig. 16: The realized reflector model with the antenna.

bottom one is the spectrum of the received reflected signal,
which seems like sinx

x .

Fig. 19. Shows the peak sidelobe level (PSL) of the received
BPSK code from the reflector after the matched filter at the
receiver part, and also it can be estimated theoretically by (22)
, when the code length is equal to 1024.

PSL = 20 logCode Length = 60.21 dB (22)

Fig. 17: The realized measurement - SDR screen.
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Fig. 18: 2 Figures of received reflected signal from the
reflector’s.
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VII. CONCLUSION

The work presented in this paper described how to identify
and track PocketQube satellites based on a resonant radar
reflector, and the MRC-100 satellite is a model. The goal
of this paper was to establish a new method to track and
identify PocketQube satellites without an expensive tracking
system from the perspective of power consumption, weight,
and size compatible with the global standardization of the
PocketQube satellite’s standard and the technology readiness
level (TRL). We estimated the link budget of the system on the
VHF/UHF band when the satellite on the horizon region like
communication in zero degrees elevation angle and the zenith
region when the satellite is perpendicular to the ground station,
and we estimated the optimal integration gain that the re-
ceiver could effectively discern the backscattered BPSK code.
Furthermore, the Resonant Radar Reflector was functionally
validated at the laboratory. It can receive a continuous wave
(CW) from the ground stations and backscatter the received
signal as a Binary Phase Shift Keying (BPSK) modulated
signal with a maximum distance between the transmitter and
the reflector’s system of 22 meters. The transmitted power is
-43 dBm, and the Doppler shift is 0 Hz. We started to record
the received backscattered BPSK modulated signal from the
MRC-100 satellite, and the extended version will contain the
Range and Velocity matrix (time delay and Doppler shift). The
MRC-100 was successfully installed on the satellite platform
in February 2023 and launched into outer space via a Falcon-9
rocket from the USA on 12 June 2023. The first signal from
the MRC-100 was received on 22 June 2023.
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I. INTRODUCTION 
HE objective of this study is to explore the latest 
advancements in speech synthesis research. It is primarily 

intended for researchers involved in the development and 
enhancement of Text-to-Speech (TTS) systems, as well as 
professionals in various fields that utilize TTS applications, 
including such as customer service, navigation systems, and 
language education [1].  
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TTS is a process that converts written text into speech like that 
of humans [2]. Speech serves is a crucial element in human 
interaction and verbal communication. Throughout history, 
people have relied on speech as an effective means of 
conveying information, expressing themselves, and revealing 
their emotional state [3]. We communicate using various speech 
styles, which can differ based on factors such as the subject, 
environment, and culture [2]. In other words, speech styles 
depend on the content, context, and audience. They can range 
from formal to casual. 

In recent years, advancements in speech technology have led to 
the development of artificial speech that closely resembles 
human speech in terms of naturalness and intelligibility. This 
technology, also known as speech synthesis, takes text as input 
and generates speech as output. Modern TTS systems have 
evolved from a long history of efforts to create synthesized 
human language from written text. 

Numerous TTS applications have achieved impressive levels of 
naturalness and intelligibility. Key factors contributing to 
naturalness include expressiveness, emotion, and speech style. 
Modern TTS systems need to deliver synthesized speech in the 
desired style for users. Expressivity pertains to the manner in 
which thoughts, emotions, and information are conveyed 
through a specific expressive style [1] [4]. 

Speech style in speech synthesis is influenced by various 
factors, such as the topic, language, speech rate and intensity, 
and regional culture of the spoken language. Linguistically, 
expressivity refers to communicating positive or negative ideas 
or emotions in a style that is relevant to the listener. Emotional 
expression serves as a vocal indicator of emotions, which is 
evident in the speech waveform [5]. In addition to speech styles, 
emotions are also considered expressions. Different expressive 
styles can be generated based on two approaches: corpus-driven 
and prosodic-phonology approaches. The corpus-driven 
approach involves analyzing large datasets of speech to extract 
patterns of prosody associated with different emotions. This 
data is then used to train a machine learning model to predict 
the appropriate prosody for a given text. 
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data is then used to train a machine learning model to predict 
the appropriate prosody for a given text. 

The prosodic-phonology approach, on the other hand, involves 
modeling the underlying linguistic and phonological features of 
speech that give rise to different emotional expressions. This 
approach involves analyzing the sound units such as 
fundamental frequency F0 and duration [6]. 

Neutral Speech Synthesis Systems (NSS) generate speech from 
written text in a single style, often referred to as neutral or flat 
sound [7]. Fig 1. presents a framework for a Neutral Speech 
Synthesis System (NSS). The text analysis and processing stage 
known as front-end involves the analysis of the written text to 
extracting linguistic features. This stage provides linguistic and 
acoustic features to the back-end stage, where the acoustic 
features of the speech signal are generated. 

The back-end stage is where the speech signal is synthesized 
from the linguistic features extracted in the text analysis and 
processing stage. This stage involves converting the linguistic 
features into acoustic features, such as pitch, duration, intensity, 
and spectral characteristics, to generate a natural-sounding 
speech signal [8]. Linguistic features are derived through 
syntactic, semantic, and lexical analysis steps, which guide the 
synthesis process to produce neutral speech [9]. To generate 
speech with a specific expressive style, the desired expressive 
style is incorporated as an additional input to the TTS model, as 
depicted in Fig. 1 [10] [11]. 

 
 

 

 

 

 

 

 

Fig 1: TTS and Expressive TTS System Architecture. On the left side, a 
schematic diagram illustrates the expressive TTS system. This system 
processes input text along with the desired expressive elements. On the 
right side, natural speech is generated by a natural TTS system [12]. 

The benchmark for evaluating speech technologies is human 
ratings. Traditionally, listeners are tasked with listening to 
speech samples and providing ratings, either in isolation or 
within a context. However, researchers face challenges in 
evaluation of the new system, since Ratings are subjective, 
varying from person to person. This subjectivity becomes more 

pronounced when listeners have limited context and training 
[13]. 

The most common method of evaluation is the MOS (Mean 
Opinion Score) test [14]. This test involves collecting MOS 
scores from listeners who evaluate each utterance in isolation. 
In this method, listeners assign scores to individual utterances, 
typically on a five-point scale, with 5 score representing highly 
natural speech and 1 score representing highly unnatural 
speech. Unlike MOS tests, where ratings are provided in 
isolation, the Multiple Stimuli with Hidden Reference and 
Anchor (MUSHRA) test involve listeners in a multiple 
comparison test. MUSHRA test offers enhanced the sensitivity 
to subtle differences between stimuli compared to MOS tests 
[13]. 

This paper follows the following structure: Section II, since 
current TTS systems based on the advance Deep learning 
algorithms, we first introduce several Deep learning models 
widely used in TTS systems. In Section III and IV, we review 
some of subjective and objective metrics that are used for 
evaluating TTS models. In Section V, we summarize  style 
representation and transfer methods. Section VI. discusses 
prosody modelling in speech synthesis. In Section VII. we take 
attempt to point out some challenges in child speech synthesis. 
Finally, in Section VIII, the paper concludes with a summary of 
the findings and possible future directions. 

II. DEEP LEARNING BASED SPEECH SYNTHESIS 
Deep Neural Networks (DNNs) [15] play a crucial role in 
modern speech synthesis approaches, such as WaveNet [16] 
and Tacotron [17]. The shift from decision trees to deep 
learning methods has led to significant improvements in the 
quality of synthesized speech. This shift also involves a move 
from (HMM) to frame prediction using deep learning models, 
contributing to the notable improvements in speech synthesis 
quality. However, a closer examination of the literature reveals 
several challenges, including the need for substantial 
computational resources and large speech datasets to train TTS 
models. Moreover, recording speech datasets with professional 
speakers can be costly. These challenges have been addressed 
through various knowledge transfer approaches, such as fine-
tuning, transfer learning, and multi-task learning [18]. 

A. Back-End Synthesizer 
WaveNet, proposed by Google DeepMind in 2016, is a deep 
learning-based autoregressive approach. This fully probabilistic 
and autoregressive model generates synthesized speech that 
closely resembles natural audio waveforms. WaveNet's 
architecture is based on a Convolutional Neural Network 
(CNN) trained with speech samples to predict natural speech, 
with each sample depending on the previously generated ones. 
WaveNet serves as a vocoder for TTS models, with inputs 

mailto:shaima.alwaisi%40edu.bme.hu?subject=
mailto:nemeth%40tmit.bme.hu?subject=
https://doi.org/10.36244/ICJ.2024.1.5


Advancements in Expressive Speech Synthesis:  
a Review

MARCH 2024 • VOLUME XVI • NUMBER 136

INFOCOMMUNICATIONS JOURNAL

 2 

data is then used to train a machine learning model to predict 
the appropriate prosody for a given text. 

The prosodic-phonology approach, on the other hand, involves 
modeling the underlying linguistic and phonological features of 
speech that give rise to different emotional expressions. This 
approach involves analyzing the sound units such as 
fundamental frequency F0 and duration [6]. 

Neutral Speech Synthesis Systems (NSS) generate speech from 
written text in a single style, often referred to as neutral or flat 
sound [7]. Fig 1. presents a framework for a Neutral Speech 
Synthesis System (NSS). The text analysis and processing stage 
known as front-end involves the analysis of the written text to 
extracting linguistic features. This stage provides linguistic and 
acoustic features to the back-end stage, where the acoustic 
features of the speech signal are generated. 

The back-end stage is where the speech signal is synthesized 
from the linguistic features extracted in the text analysis and 
processing stage. This stage involves converting the linguistic 
features into acoustic features, such as pitch, duration, intensity, 
and spectral characteristics, to generate a natural-sounding 
speech signal [8]. Linguistic features are derived through 
syntactic, semantic, and lexical analysis steps, which guide the 
synthesis process to produce neutral speech [9]. To generate 
speech with a specific expressive style, the desired expressive 
style is incorporated as an additional input to the TTS model, as 
depicted in Fig. 1 [10] [11]. 

 
 

 

 

 

 

 

 

Fig 1: TTS and Expressive TTS System Architecture. On the left side, a 
schematic diagram illustrates the expressive TTS system. This system 
processes input text along with the desired expressive elements. On the 
right side, natural speech is generated by a natural TTS system [12]. 

The benchmark for evaluating speech technologies is human 
ratings. Traditionally, listeners are tasked with listening to 
speech samples and providing ratings, either in isolation or 
within a context. However, researchers face challenges in 
evaluation of the new system, since Ratings are subjective, 
varying from person to person. This subjectivity becomes more 

pronounced when listeners have limited context and training 
[13]. 

The most common method of evaluation is the MOS (Mean 
Opinion Score) test [14]. This test involves collecting MOS 
scores from listeners who evaluate each utterance in isolation. 
In this method, listeners assign scores to individual utterances, 
typically on a five-point scale, with 5 score representing highly 
natural speech and 1 score representing highly unnatural 
speech. Unlike MOS tests, where ratings are provided in 
isolation, the Multiple Stimuli with Hidden Reference and 
Anchor (MUSHRA) test involve listeners in a multiple 
comparison test. MUSHRA test offers enhanced the sensitivity 
to subtle differences between stimuli compared to MOS tests 
[13]. 

This paper follows the following structure: Section II, since 
current TTS systems based on the advance Deep learning 
algorithms, we first introduce several Deep learning models 
widely used in TTS systems. In Section III and IV, we review 
some of subjective and objective metrics that are used for 
evaluating TTS models. In Section V, we summarize  style 
representation and transfer methods. Section VI. discusses 
prosody modelling in speech synthesis. In Section VII. we take 
attempt to point out some challenges in child speech synthesis. 
Finally, in Section VIII, the paper concludes with a summary of 
the findings and possible future directions. 

II. DEEP LEARNING BASED SPEECH SYNTHESIS 
Deep Neural Networks (DNNs) [15] play a crucial role in 
modern speech synthesis approaches, such as WaveNet [16] 
and Tacotron [17]. The shift from decision trees to deep 
learning methods has led to significant improvements in the 
quality of synthesized speech. This shift also involves a move 
from (HMM) to frame prediction using deep learning models, 
contributing to the notable improvements in speech synthesis 
quality. However, a closer examination of the literature reveals 
several challenges, including the need for substantial 
computational resources and large speech datasets to train TTS 
models. Moreover, recording speech datasets with professional 
speakers can be costly. These challenges have been addressed 
through various knowledge transfer approaches, such as fine-
tuning, transfer learning, and multi-task learning [18]. 

A. Back-End Synthesizer 
WaveNet, proposed by Google DeepMind in 2016, is a deep 
learning-based autoregressive approach. This fully probabilistic 
and autoregressive model generates synthesized speech that 
closely resembles natural audio waveforms. WaveNet's 
architecture is based on a Convolutional Neural Network 
(CNN) trained with speech samples to predict natural speech, 
with each sample depending on the previously generated ones. 
WaveNet serves as a vocoder for TTS models, with inputs 

 2 

data is then used to train a machine learning model to predict 
the appropriate prosody for a given text. 

The prosodic-phonology approach, on the other hand, involves 
modeling the underlying linguistic and phonological features of 
speech that give rise to different emotional expressions. This 
approach involves analyzing the sound units such as 
fundamental frequency F0 and duration [6]. 

Neutral Speech Synthesis Systems (NSS) generate speech from 
written text in a single style, often referred to as neutral or flat 
sound [7]. Fig 1. presents a framework for a Neutral Speech 
Synthesis System (NSS). The text analysis and processing stage 
known as front-end involves the analysis of the written text to 
extracting linguistic features. This stage provides linguistic and 
acoustic features to the back-end stage, where the acoustic 
features of the speech signal are generated. 

The back-end stage is where the speech signal is synthesized 
from the linguistic features extracted in the text analysis and 
processing stage. This stage involves converting the linguistic 
features into acoustic features, such as pitch, duration, intensity, 
and spectral characteristics, to generate a natural-sounding 
speech signal [8]. Linguistic features are derived through 
syntactic, semantic, and lexical analysis steps, which guide the 
synthesis process to produce neutral speech [9]. To generate 
speech with a specific expressive style, the desired expressive 
style is incorporated as an additional input to the TTS model, as 
depicted in Fig. 1 [10] [11]. 

 
 

 

 

 

 

 

 

Fig 1: TTS and Expressive TTS System Architecture. On the left side, a 
schematic diagram illustrates the expressive TTS system. This system 
processes input text along with the desired expressive elements. On the 
right side, natural speech is generated by a natural TTS system [12]. 

The benchmark for evaluating speech technologies is human 
ratings. Traditionally, listeners are tasked with listening to 
speech samples and providing ratings, either in isolation or 
within a context. However, researchers face challenges in 
evaluation of the new system, since Ratings are subjective, 
varying from person to person. This subjectivity becomes more 

pronounced when listeners have limited context and training 
[13]. 

The most common method of evaluation is the MOS (Mean 
Opinion Score) test [14]. This test involves collecting MOS 
scores from listeners who evaluate each utterance in isolation. 
In this method, listeners assign scores to individual utterances, 
typically on a five-point scale, with 5 score representing highly 
natural speech and 1 score representing highly unnatural 
speech. Unlike MOS tests, where ratings are provided in 
isolation, the Multiple Stimuli with Hidden Reference and 
Anchor (MUSHRA) test involve listeners in a multiple 
comparison test. MUSHRA test offers enhanced the sensitivity 
to subtle differences between stimuli compared to MOS tests 
[13]. 

This paper follows the following structure: Section II, since 
current TTS systems based on the advance Deep learning 
algorithms, we first introduce several Deep learning models 
widely used in TTS systems. In Section III and IV, we review 
some of subjective and objective metrics that are used for 
evaluating TTS models. In Section V, we summarize  style 
representation and transfer methods. Section VI. discusses 
prosody modelling in speech synthesis. In Section VII. we take 
attempt to point out some challenges in child speech synthesis. 
Finally, in Section VIII, the paper concludes with a summary of 
the findings and possible future directions. 

II. DEEP LEARNING BASED SPEECH SYNTHESIS 
Deep Neural Networks (DNNs) [15] play a crucial role in 
modern speech synthesis approaches, such as WaveNet [16] 
and Tacotron [17]. The shift from decision trees to deep 
learning methods has led to significant improvements in the 
quality of synthesized speech. This shift also involves a move 
from (HMM) to frame prediction using deep learning models, 
contributing to the notable improvements in speech synthesis 
quality. However, a closer examination of the literature reveals 
several challenges, including the need for substantial 
computational resources and large speech datasets to train TTS 
models. Moreover, recording speech datasets with professional 
speakers can be costly. These challenges have been addressed 
through various knowledge transfer approaches, such as fine-
tuning, transfer learning, and multi-task learning [18]. 

A. Back-End Synthesizer 
WaveNet, proposed by Google DeepMind in 2016, is a deep 
learning-based autoregressive approach. This fully probabilistic 
and autoregressive model generates synthesized speech that 
closely resembles natural audio waveforms. WaveNet's 
architecture is based on a Convolutional Neural Network 
(CNN) trained with speech samples to predict natural speech, 
with each sample depending on the previously generated ones. 
WaveNet serves as a vocoder for TTS models, with inputs 

Fig 1: TTS and Expressive TTS System Architecture. On the left side, 
a schematic diagram illustrates the expressive TTS system. This system 

processes input text along with the desired expressive elements. On the right 
side, natural speech is generated by a natural TTS system [12].

 2 

data is then used to train a machine learning model to predict 
the appropriate prosody for a given text. 

The prosodic-phonology approach, on the other hand, involves 
modeling the underlying linguistic and phonological features of 
speech that give rise to different emotional expressions. This 
approach involves analyzing the sound units such as 
fundamental frequency F0 and duration [6]. 

Neutral Speech Synthesis Systems (NSS) generate speech from 
written text in a single style, often referred to as neutral or flat 
sound [7]. Fig 1. presents a framework for a Neutral Speech 
Synthesis System (NSS). The text analysis and processing stage 
known as front-end involves the analysis of the written text to 
extracting linguistic features. This stage provides linguistic and 
acoustic features to the back-end stage, where the acoustic 
features of the speech signal are generated. 

The back-end stage is where the speech signal is synthesized 
from the linguistic features extracted in the text analysis and 
processing stage. This stage involves converting the linguistic 
features into acoustic features, such as pitch, duration, intensity, 
and spectral characteristics, to generate a natural-sounding 
speech signal [8]. Linguistic features are derived through 
syntactic, semantic, and lexical analysis steps, which guide the 
synthesis process to produce neutral speech [9]. To generate 
speech with a specific expressive style, the desired expressive 
style is incorporated as an additional input to the TTS model, as 
depicted in Fig. 1 [10] [11]. 

 
 

 

 

 

 

 

 

Fig 1: TTS and Expressive TTS System Architecture. On the left side, a 
schematic diagram illustrates the expressive TTS system. This system 
processes input text along with the desired expressive elements. On the 
right side, natural speech is generated by a natural TTS system [12]. 

The benchmark for evaluating speech technologies is human 
ratings. Traditionally, listeners are tasked with listening to 
speech samples and providing ratings, either in isolation or 
within a context. However, researchers face challenges in 
evaluation of the new system, since Ratings are subjective, 
varying from person to person. This subjectivity becomes more 

pronounced when listeners have limited context and training 
[13]. 

The most common method of evaluation is the MOS (Mean 
Opinion Score) test [14]. This test involves collecting MOS 
scores from listeners who evaluate each utterance in isolation. 
In this method, listeners assign scores to individual utterances, 
typically on a five-point scale, with 5 score representing highly 
natural speech and 1 score representing highly unnatural 
speech. Unlike MOS tests, where ratings are provided in 
isolation, the Multiple Stimuli with Hidden Reference and 
Anchor (MUSHRA) test involve listeners in a multiple 
comparison test. MUSHRA test offers enhanced the sensitivity 
to subtle differences between stimuli compared to MOS tests 
[13]. 

This paper follows the following structure: Section II, since 
current TTS systems based on the advance Deep learning 
algorithms, we first introduce several Deep learning models 
widely used in TTS systems. In Section III and IV, we review 
some of subjective and objective metrics that are used for 
evaluating TTS models. In Section V, we summarize  style 
representation and transfer methods. Section VI. discusses 
prosody modelling in speech synthesis. In Section VII. we take 
attempt to point out some challenges in child speech synthesis. 
Finally, in Section VIII, the paper concludes with a summary of 
the findings and possible future directions. 
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modern speech synthesis approaches, such as WaveNet [16] 
and Tacotron [17]. The shift from decision trees to deep 
learning methods has led to significant improvements in the 
quality of synthesized speech. This shift also involves a move 
from (HMM) to frame prediction using deep learning models, 
contributing to the notable improvements in speech synthesis 
quality. However, a closer examination of the literature reveals 
several challenges, including the need for substantial 
computational resources and large speech datasets to train TTS 
models. Moreover, recording speech datasets with professional 
speakers can be costly. These challenges have been addressed 
through various knowledge transfer approaches, such as fine-
tuning, transfer learning, and multi-task learning [18]. 

A. Back-End Synthesizer 
WaveNet, proposed by Google DeepMind in 2016, is a deep 
learning-based autoregressive approach. This fully probabilistic 
and autoregressive model generates synthesized speech that 
closely resembles natural audio waveforms. WaveNet's 
architecture is based on a Convolutional Neural Network 
(CNN) trained with speech samples to predict natural speech, 
with each sample depending on the previously generated ones. 
WaveNet serves as a vocoder for TTS models, with inputs 
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data is then used to train a machine learning model to predict 
the appropriate prosody for a given text. 

The prosodic-phonology approach, on the other hand, involves 
modeling the underlying linguistic and phonological features of 
speech that give rise to different emotional expressions. This 
approach involves analyzing the sound units such as 
fundamental frequency F0 and duration [6]. 

Neutral Speech Synthesis Systems (NSS) generate speech from 
written text in a single style, often referred to as neutral or flat 
sound [7]. Fig 1. presents a framework for a Neutral Speech 
Synthesis System (NSS). The text analysis and processing stage 
known as front-end involves the analysis of the written text to 
extracting linguistic features. This stage provides linguistic and 
acoustic features to the back-end stage, where the acoustic 
features of the speech signal are generated. 

The back-end stage is where the speech signal is synthesized 
from the linguistic features extracted in the text analysis and 
processing stage. This stage involves converting the linguistic 
features into acoustic features, such as pitch, duration, intensity, 
and spectral characteristics, to generate a natural-sounding 
speech signal [8]. Linguistic features are derived through 
syntactic, semantic, and lexical analysis steps, which guide the 
synthesis process to produce neutral speech [9]. To generate 
speech with a specific expressive style, the desired expressive 
style is incorporated as an additional input to the TTS model, as 
depicted in Fig. 1 [10] [11]. 
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right side, natural speech is generated by a natural TTS system [12]. 
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consisting of linguistic features, predicted log fundamental 
frequency (F0), and phoneme durations [18].

For expressiveness prediction, non-autoregressive WaveNet 
blocks outperform the original WaveNet [19]. Multi-speaker 
WaveNet vocoders have demonstrated higher performance 
compared to traditional methods [20]. Parallel WaveNet 
combines WaveNet and the Inverse Autoregressive Flow (IAF) 
method. Inverse-autoregressive flows (IAFs) are generative 
models used for high dimensional observable samples. High-
dimensional observable samples typically refer to a large set of 
acoustic features that are extracted from speech signals, such as 
the fundamental frequency, spectral envelope, and time-varying 
spectral parameters [21]. Capable of generating speech in a 
wide range of styles (emotional, neutral, conversational, long-
form reading, news briefing, and singing), Parallel WaveNet 
[22] uses a vocoder trained on a multi-speaker emotional 
dataset to convert Mel spectrograms from a neutral style to 
various emotional styles [23].

A novel speech synthesis system called Autovocoder has been 
proposed by [24] to generates high-quality audio and 
outperforms other waveform generation systems in terms of 
computational cost. Autovocoder is trained as a denoising 
autoencoder and generates a waveform at a speed 5 times 
greater than Griffin-Lim algorithm [25] and 14 times faster than 
the neural vocoder HiFi-GAN [26].
Autovocoder utilized parallel computing and data parallelism 
techniques by leveraging fast, Differentiable Digital Signal 
Processing DSP operations, a purely convolutional residual 
network, and a learned representation to achieve efficient and 
fast waveform generation.
Generative Adversarial Networks (GANs) have emerged as a 
powerful tool for generating high-quality audio, including 
speech synthesis. GAN-based vocoders are a type of vocoder 
that uses GANs to generate raw waveform audio from acoustic 
features and linguistic information. This approach offers 
several advantages over traditional vocoders, such as improved 
audio quality, expressiveness, and robustness to noise. Among 
the various GAN-based vocoders that have been developed, 
prominent instances of well-known models include HiFi-GAN
[26], SnakeGAN [27],Parallel WaveGAN [28], and BigVGAN
[29].

B. Linguistic Analysis and Prosody Front-End
Front-end models play a crucial role in processing input text 
into intermediate representations, often involving linguistic 
features or phonetic information. Tacotron is an end-to-end 
Text-to-Speech (TTS) system that uses deep neural networks to 
generate natural-sounding speech from text input. It operates by 
predicting mel-spectrograms from text characters, which are 
then converted into time-domain waveforms using a vocoder

[30]. Tacotron2 is a generative model that combines an 
encoder-decoder architecture with a soft attention mechanism 
to generate spectrograms from a given text [31]. The primary 
concept of the attention mechanism is to identify the most 
relevant characters for each Mel spectrogram frame and 
determine weights for each character embedding [31].

Tacotron2 has been employed to enhance the expressivity of 
multi-speaker end-to-end TTS models. The expressivity of 
latent representation is used for predictions made by the 
encoder to derive emotion [32]. Text-Predicting Global Style 
Token (TP-GST) is combined with Tacotron to generate speech 
in a specific style. Style attention, prosody encoder, and style 
embedding are added to Tacotron. During the training phase, a 
combination of trainable embeddings is extracted to be shared 
across the entire text, driving the Global Style Tokens [33].

FastSpeech [34], another notable front-end model, introduces a
novel feed-forward network that generates mel-spectrograms in 

parallel, utilizing feed-forward Transformer blocks, a length 
regulator, and a duration predictor. FastSpeech incorporates a 
phoneme duration predictor to ensure hard alignments between 

phonemes and mel-spectrograms, reducing the ratio of skipped 
words and repeated words and contributing to high audio 
quality. FastSpeech aims to address several challenges present 
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data is then used to train a machine learning model to predict 
the appropriate prosody for a given text. 

The prosodic-phonology approach, on the other hand, involves 
modeling the underlying linguistic and phonological features of 
speech that give rise to different emotional expressions. This 
approach involves analyzing the sound units such as 
fundamental frequency F0 and duration [6]. 

Neutral Speech Synthesis Systems (NSS) generate speech from 
written text in a single style, often referred to as neutral or flat 
sound [7]. Fig 1. presents a framework for a Neutral Speech 
Synthesis System (NSS). The text analysis and processing stage 
known as front-end involves the analysis of the written text to 
extracting linguistic features. This stage provides linguistic and 
acoustic features to the back-end stage, where the acoustic 
features of the speech signal are generated. 

The back-end stage is where the speech signal is synthesized 
from the linguistic features extracted in the text analysis and 
processing stage. This stage involves converting the linguistic 
features into acoustic features, such as pitch, duration, intensity, 
and spectral characteristics, to generate a natural-sounding 
speech signal [8]. Linguistic features are derived through 
syntactic, semantic, and lexical analysis steps, which guide the 
synthesis process to produce neutral speech [9]. To generate 
speech with a specific expressive style, the desired expressive 
style is incorporated as an additional input to the TTS model, as 
depicted in Fig. 1 [10] [11]. 
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right side, natural speech is generated by a natural TTS system [12]. 
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speech samples and providing ratings, either in isolation or 
within a context. However, researchers face challenges in 
evaluation of the new system, since Ratings are subjective, 
varying from person to person. This subjectivity becomes more 

pronounced when listeners have limited context and training 
[13]. 

The most common method of evaluation is the MOS (Mean 
Opinion Score) test [14]. This test involves collecting MOS 
scores from listeners who evaluate each utterance in isolation. 
In this method, listeners assign scores to individual utterances, 
typically on a five-point scale, with 5 score representing highly 
natural speech and 1 score representing highly unnatural 
speech. Unlike MOS tests, where ratings are provided in 
isolation, the Multiple Stimuli with Hidden Reference and 
Anchor (MUSHRA) test involve listeners in a multiple 
comparison test. MUSHRA test offers enhanced the sensitivity 
to subtle differences between stimuli compared to MOS tests 
[13]. 

This paper follows the following structure: Section II, since 
current TTS systems based on the advance Deep learning 
algorithms, we first introduce several Deep learning models 
widely used in TTS systems. In Section III and IV, we review 
some of subjective and objective metrics that are used for 
evaluating TTS models. In Section V, we summarize  style 
representation and transfer methods. Section VI. discusses 
prosody modelling in speech synthesis. In Section VII. we take 
attempt to point out some challenges in child speech synthesis. 
Finally, in Section VIII, the paper concludes with a summary of 
the findings and possible future directions. 

II. DEEP LEARNING BASED SPEECH SYNTHESIS 
Deep Neural Networks (DNNs) [15] play a crucial role in 
modern speech synthesis approaches, such as WaveNet [16] 
and Tacotron [17]. The shift from decision trees to deep 
learning methods has led to significant improvements in the 
quality of synthesized speech. This shift also involves a move 
from (HMM) to frame prediction using deep learning models, 
contributing to the notable improvements in speech synthesis 
quality. However, a closer examination of the literature reveals 
several challenges, including the need for substantial 
computational resources and large speech datasets to train TTS 
models. Moreover, recording speech datasets with professional 
speakers can be costly. These challenges have been addressed 
through various knowledge transfer approaches, such as fine-
tuning, transfer learning, and multi-task learning [18]. 

A. Back-End Synthesizer 
WaveNet, proposed by Google DeepMind in 2016, is a deep 
learning-based autoregressive approach. This fully probabilistic 
and autoregressive model generates synthesized speech that 
closely resembles natural audio waveforms. WaveNet's 
architecture is based on a Convolutional Neural Network 
(CNN) trained with speech samples to predict natural speech, 
with each sample depending on the previously generated ones. 
WaveNet serves as a vocoder for TTS models, with inputs 
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consisting of linguistic features, predicted log fundamental 
frequency (F0), and phoneme durations [18].

For expressiveness prediction, non-autoregressive WaveNet 
blocks outperform the original WaveNet [19]. Multi-speaker 
WaveNet vocoders have demonstrated higher performance 
compared to traditional methods [20]. Parallel WaveNet 
combines WaveNet and the Inverse Autoregressive Flow (IAF) 
method. Inverse-autoregressive flows (IAFs) are generative 
models used for high dimensional observable samples. High-
dimensional observable samples typically refer to a large set of 
acoustic features that are extracted from speech signals, such as 
the fundamental frequency, spectral envelope, and time-varying 
spectral parameters [21]. Capable of generating speech in a 
wide range of styles (emotional, neutral, conversational, long-
form reading, news briefing, and singing), Parallel WaveNet 
[22] uses a vocoder trained on a multi-speaker emotional 
dataset to convert Mel spectrograms from a neutral style to 
various emotional styles [23].

A novel speech synthesis system called Autovocoder has been 
proposed by [24] to generates high-quality audio and 
outperforms other waveform generation systems in terms of 
computational cost. Autovocoder is trained as a denoising 
autoencoder and generates a waveform at a speed 5 times 
greater than Griffin-Lim algorithm [25] and 14 times faster than 
the neural vocoder HiFi-GAN [26].
Autovocoder utilized parallel computing and data parallelism 
techniques by leveraging fast, Differentiable Digital Signal 
Processing DSP operations, a purely convolutional residual 
network, and a learned representation to achieve efficient and 
fast waveform generation.
Generative Adversarial Networks (GANs) have emerged as a 
powerful tool for generating high-quality audio, including 
speech synthesis. GAN-based vocoders are a type of vocoder 
that uses GANs to generate raw waveform audio from acoustic 
features and linguistic information. This approach offers 
several advantages over traditional vocoders, such as improved 
audio quality, expressiveness, and robustness to noise. Among 
the various GAN-based vocoders that have been developed, 
prominent instances of well-known models include HiFi-GAN
[26], SnakeGAN [27],Parallel WaveGAN [28], and BigVGAN
[29].

B. Linguistic Analysis and Prosody Front-End
Front-end models play a crucial role in processing input text 
into intermediate representations, often involving linguistic 
features or phonetic information. Tacotron is an end-to-end 
Text-to-Speech (TTS) system that uses deep neural networks to 
generate natural-sounding speech from text input. It operates by 
predicting mel-spectrograms from text characters, which are 
then converted into time-domain waveforms using a vocoder

[30]. Tacotron2 is a generative model that combines an 
encoder-decoder architecture with a soft attention mechanism 
to generate spectrograms from a given text [31]. The primary 
concept of the attention mechanism is to identify the most 
relevant characters for each Mel spectrogram frame and 
determine weights for each character embedding [31].

Tacotron2 has been employed to enhance the expressivity of 
multi-speaker end-to-end TTS models. The expressivity of 
latent representation is used for predictions made by the 
encoder to derive emotion [32]. Text-Predicting Global Style 
Token (TP-GST) is combined with Tacotron to generate speech 
in a specific style. Style attention, prosody encoder, and style 
embedding are added to Tacotron. During the training phase, a 
combination of trainable embeddings is extracted to be shared 
across the entire text, driving the Global Style Tokens [33].

FastSpeech [34], another notable front-end model, introduces a
novel feed-forward network that generates mel-spectrograms in 

parallel, utilizing feed-forward Transformer blocks, a length 
regulator, and a duration predictor. FastSpeech incorporates a 
phoneme duration predictor to ensure hard alignments between 

phonemes and mel-spectrograms, reducing the ratio of skipped 
words and repeated words and contributing to high audio 
quality. FastSpeech aims to address several challenges present 
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models used for high dimensional observable samples. High-
dimensional observable samples typically refer to a large set of 
acoustic features that are extracted from speech signals, such as 
the fundamental frequency, spectral envelope, and time-varying 
spectral parameters [21]. Capable of generating speech in a 
wide range of styles (emotional, neutral, conversational, long-
form reading, news briefing, and singing), Parallel WaveNet 
[22] uses a vocoder trained on a multi-speaker emotional 
dataset to convert Mel spectrograms from a neutral style to 
various emotional styles [23].

A novel speech synthesis system called Autovocoder has been 
proposed by [24] to generates high-quality audio and 
outperforms other waveform generation systems in terms of 
computational cost. Autovocoder is trained as a denoising 
autoencoder and generates a waveform at a speed 5 times 
greater than Griffin-Lim algorithm [25] and 14 times faster than 
the neural vocoder HiFi-GAN [26].
Autovocoder utilized parallel computing and data parallelism 
techniques by leveraging fast, Differentiable Digital Signal 
Processing DSP operations, a purely convolutional residual 
network, and a learned representation to achieve efficient and 
fast waveform generation.
Generative Adversarial Networks (GANs) have emerged as a 
powerful tool for generating high-quality audio, including 
speech synthesis. GAN-based vocoders are a type of vocoder 
that uses GANs to generate raw waveform audio from acoustic 
features and linguistic information. This approach offers 
several advantages over traditional vocoders, such as improved 
audio quality, expressiveness, and robustness to noise. Among 
the various GAN-based vocoders that have been developed, 
prominent instances of well-known models include HiFi-GAN
[26], SnakeGAN [27],Parallel WaveGAN [28], and BigVGAN
[29].

B. Linguistic Analysis and Prosody Front-End
Front-end models play a crucial role in processing input text 
into intermediate representations, often involving linguistic 
features or phonetic information. Tacotron is an end-to-end 
Text-to-Speech (TTS) system that uses deep neural networks to 
generate natural-sounding speech from text input. It operates by 
predicting mel-spectrograms from text characters, which are 
then converted into time-domain waveforms using a vocoder

[30]. Tacotron2 is a generative model that combines an 
encoder-decoder architecture with a soft attention mechanism 
to generate spectrograms from a given text [31]. The primary 
concept of the attention mechanism is to identify the most 
relevant characters for each Mel spectrogram frame and 
determine weights for each character embedding [31].

Tacotron2 has been employed to enhance the expressivity of 
multi-speaker end-to-end TTS models. The expressivity of 
latent representation is used for predictions made by the 
encoder to derive emotion [32]. Text-Predicting Global Style 
Token (TP-GST) is combined with Tacotron to generate speech 
in a specific style. Style attention, prosody encoder, and style 
embedding are added to Tacotron. During the training phase, a 
combination of trainable embeddings is extracted to be shared 
across the entire text, driving the Global Style Tokens [33].

FastSpeech [34], another notable front-end model, introduces a
novel feed-forward network that generates mel-spectrograms in 

parallel, utilizing feed-forward Transformer blocks, a length 
regulator, and a duration predictor. FastSpeech incorporates a 
phoneme duration predictor to ensure hard alignments between 

phonemes and mel-spectrograms, reducing the ratio of skipped 
words and repeated words and contributing to high audio 
quality. FastSpeech aims to address several challenges present 
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in traditional autoregressive text-to-speech (TTS) models. 
These challenges include slow inference speed, lack of 
robustness leading to word skipping and repeating, and limited 
controllability over voice speed and prosody. 

FastPitch [35], a fully parallel text-to-speech model, draws its 
foundation from Fast Speech. FastPitch conditioned on 
fundamental frequency contours.  It predicts pitch contours 
during inference, allowing for more expressive and engaging 
speech. The model retains the favorable, fully parallel 
Transformer architecture.  

On the other hand, FastSpeech2 [36] represents a paradigm shift 
in text-to-speech modeling as a non-autoregressive system. 
FastSpeech2 simplifies the training pipeline, improves voice 
quality, and introduces more variation information of speech, 
such as pitch and energy, as conditional inputs. It provides 
variance information such as pitch, energy, and more accurate 
duration. The model architecture includes a pitch predictor, 
pitch contour, and pitch spectrogram, allowing for manual 
manipulation of pitch, duration, and energy in synthesized 
speech. 

III. SUBJECTIVE METRICS  
1- Mean Opinion Score (MOS): This is a widely used 
subjective measurement for evaluating the quality of 
synthesized speech. Listeners rate the speech using a numerical 
scale ranging from 1 to 5, where 5 signifies excellent speech 
quality and 1 represents the lowest quality. MOS is a subjective 
method recommended by standardization bodies such as IEEE 
Subcommittee. During the listening test, listeners complete a 
questionnaire that may include sections on overall impression, 
listening effort, pronunciation, speaking rate, articulation, and 
voice pleasantness [37]. 

2- AB Preference Test: In AB Preference Test, participants are 
presented with audio samples from two distinct speech 
synthesis models, denoted as model A and model B. 
Participants listen to samples from both systems and express 
their preference [38]. 

3- ABX Preference Test: Participants listen to three speech 
versions—A, B, and X—with X being the target speech and A 
and B being two synthesized speech sentences generated by 
different models. Test subjects are asked to choose which 
synthesized version is closer to the target speech X[38].  

4- MUSHRA (Multiple Stimuli with Hidden Reference and 
Anchor): In a MUSHRA test, participants evaluate systems on 
a scale ranging from 1 to 100. They accomplish this by listening 
to stimuli for the same text presented side-by-side, in 
comparison to a high-quality reference. This method facilitates 

a comprehensive assessment of multiple systems, allowing for 
a nuanced ranking based on perceived quality [39]. 

IV. OBJECTIVE METRICS   
Objective measurements involve the quantitative evaluation of 
speech synthesis systems, providing a mathematical assessment 
of the quality of synthesized speech. 

A. Itakura-Saito measure  
This method is like most objective methods for the evaluation 
of TTS Models divides the speech signal into frames. Let 𝑠𝑠(𝑖𝑖)   
and 𝑠𝑠′(𝑖𝑖)  be two sampled speech signals, and 𝑥𝑥𝑛𝑛(𝑖𝑖) and 
𝑥𝑥′𝑛𝑛 (𝑖𝑖) are two windowed frames generated from implementing 
a window equation 𝑤𝑤(𝑖𝑖), where  𝑛𝑛 is the frame index 
designating the window location. 

𝑥𝑥𝑛𝑛(𝑖𝑖)  =  𝑤𝑤(𝑖𝑖)𝑠𝑠(𝑖𝑖 +  𝑛𝑛)                          (1) 

𝑐𝑐 =  𝑤𝑤(𝑖𝑖)𝑠𝑠′(𝑖𝑖 +  𝑛𝑛)                               (2) 

We indicate the z-transform of 𝑥𝑥𝑛𝑛(𝑖𝑖) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑛𝑛(𝑖𝑖) by  𝑋𝑋𝑛𝑛 (z) and 
𝑋𝑋′𝑛𝑛 (z) . The Fourier transform is derived by assessing the z-
transform on the unit circle, i.e., z = 𝑒𝑒𝑗𝑗𝑗𝑗 . The  𝑋𝑋𝑛𝑛 (𝑒𝑒𝑗𝑗𝑗𝑗) and 
𝑋𝑋′𝑛𝑛 (𝑒𝑒𝑗𝑗𝑗𝑗) are utilized to represent the Fourier transforms of two 
signals that have been windowed, respectively. Then for each 
pair of 𝑋𝑋𝑛𝑛 (𝑒𝑒𝑗𝑗𝑗𝑗) and 𝑋𝑋′𝑛𝑛 (𝑒𝑒𝑗𝑗𝑗𝑗) , spectral distortion 𝑝𝑝[𝑋𝑋𝑋𝑋, 𝑋𝑋’] is 
defiend as the dissimilarity among 𝑋𝑋𝑛𝑛 (𝑒𝑒𝑗𝑗𝑗𝑗) and 𝑋𝑋′𝑛𝑛 (𝑒𝑒𝑗𝑗𝑗𝑗), the 
Itakura-Saito formula for speech analysis is defined as below 
[40]. 

 

𝑝𝑝𝑖𝑖𝑖𝑖[𝑋𝑋𝑛𝑛, 𝑋𝑋′
𝑛𝑛] ≜ ∫−𝜋𝜋

𝜋𝜋 [( |X𝑛𝑛(ejω )|2

|𝑋𝑋′𝑛𝑛(ejω )|2)   − Ʌ(𝜔𝜔)  −  1] 𝑑𝑑𝜔𝜔
2𝜋𝜋          (3)        

 

where 
Ʌ(𝜔𝜔)   =  𝑙𝑙𝑙𝑙𝑙𝑙 |𝑋𝑋𝑛𝑛(𝑒𝑒𝑗𝑗𝜔𝜔)|2 𝑙𝑙𝑙𝑙𝑙𝑙 |𝑋𝑋′𝑛𝑛(𝑒𝑒𝑗𝑗𝜔𝜔)|2           (4) 

 

B. Root mean square (RMSE) 

RMSE is a mathematical measure used to evaluate log 𝑓𝑓0 
trajectories produced by TTS models, it is stated as 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑁𝑁 ∑ (log(𝐹𝐹0𝑖𝑖) − log(𝐹𝐹0𝑖𝑖

′))2𝑁𝑁
𝑖𝑖=1           (5)           

Where 𝐹𝐹0𝑖𝑖  and 𝐹𝐹0𝑖𝑖
′ stand for the original and predicted F0 

features, respectively. and N is the length of the F0 sequence 
[41].    

C. Gross pitch error (GPE)  
 GPE is the proportion of segments that are measured as voiced 
for natural and generated speech having relative pitch error 
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consisting of linguistic features, predicted log fundamental 
frequency (F0), and phoneme durations [18].

For expressiveness prediction, non-autoregressive WaveNet 
blocks outperform the original WaveNet [19]. Multi-speaker 
WaveNet vocoders have demonstrated higher performance 
compared to traditional methods [20]. Parallel WaveNet 
combines WaveNet and the Inverse Autoregressive Flow (IAF) 
method. Inverse-autoregressive flows (IAFs) are generative 
models used for high dimensional observable samples. High-
dimensional observable samples typically refer to a large set of 
acoustic features that are extracted from speech signals, such as 
the fundamental frequency, spectral envelope, and time-varying 
spectral parameters [21]. Capable of generating speech in a 
wide range of styles (emotional, neutral, conversational, long-
form reading, news briefing, and singing), Parallel WaveNet 
[22] uses a vocoder trained on a multi-speaker emotional 
dataset to convert Mel spectrograms from a neutral style to 
various emotional styles [23].

A novel speech synthesis system called Autovocoder has been 
proposed by [24] to generates high-quality audio and 
outperforms other waveform generation systems in terms of 
computational cost. Autovocoder is trained as a denoising 
autoencoder and generates a waveform at a speed 5 times 
greater than Griffin-Lim algorithm [25] and 14 times faster than 
the neural vocoder HiFi-GAN [26].
Autovocoder utilized parallel computing and data parallelism 
techniques by leveraging fast, Differentiable Digital Signal 
Processing DSP operations, a purely convolutional residual 
network, and a learned representation to achieve efficient and 
fast waveform generation.
Generative Adversarial Networks (GANs) have emerged as a 
powerful tool for generating high-quality audio, including 
speech synthesis. GAN-based vocoders are a type of vocoder 
that uses GANs to generate raw waveform audio from acoustic 
features and linguistic information. This approach offers 
several advantages over traditional vocoders, such as improved 
audio quality, expressiveness, and robustness to noise. Among 
the various GAN-based vocoders that have been developed, 
prominent instances of well-known models include HiFi-GAN
[26], SnakeGAN [27],Parallel WaveGAN [28], and BigVGAN
[29].

B. Linguistic Analysis and Prosody Front-End
Front-end models play a crucial role in processing input text 
into intermediate representations, often involving linguistic 
features or phonetic information. Tacotron is an end-to-end 
Text-to-Speech (TTS) system that uses deep neural networks to 
generate natural-sounding speech from text input. It operates by 
predicting mel-spectrograms from text characters, which are 
then converted into time-domain waveforms using a vocoder

[30]. Tacotron2 is a generative model that combines an 
encoder-decoder architecture with a soft attention mechanism 
to generate spectrograms from a given text [31]. The primary 
concept of the attention mechanism is to identify the most 
relevant characters for each Mel spectrogram frame and 
determine weights for each character embedding [31].

Tacotron2 has been employed to enhance the expressivity of 
multi-speaker end-to-end TTS models. The expressivity of 
latent representation is used for predictions made by the 
encoder to derive emotion [32]. Text-Predicting Global Style 
Token (TP-GST) is combined with Tacotron to generate speech 
in a specific style. Style attention, prosody encoder, and style 
embedding are added to Tacotron. During the training phase, a 
combination of trainable embeddings is extracted to be shared 
across the entire text, driving the Global Style Tokens [33].

FastSpeech [34], another notable front-end model, introduces a
novel feed-forward network that generates mel-spectrograms in 

parallel, utilizing feed-forward Transformer blocks, a length 
regulator, and a duration predictor. FastSpeech incorporates a 
phoneme duration predictor to ensure hard alignments between 

phonemes and mel-spectrograms, reducing the ratio of skipped 
words and repeated words and contributing to high audio 
quality. FastSpeech aims to address several challenges present 
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consisting of linguistic features, predicted log fundamental 
frequency (F0), and phoneme durations [18].

For expressiveness prediction, non-autoregressive WaveNet 
blocks outperform the original WaveNet [19]. Multi-speaker 
WaveNet vocoders have demonstrated higher performance 
compared to traditional methods [20]. Parallel WaveNet 
combines WaveNet and the Inverse Autoregressive Flow (IAF) 
method. Inverse-autoregressive flows (IAFs) are generative 
models used for high dimensional observable samples. High-
dimensional observable samples typically refer to a large set of 
acoustic features that are extracted from speech signals, such as 
the fundamental frequency, spectral envelope, and time-varying 
spectral parameters [21]. Capable of generating speech in a 
wide range of styles (emotional, neutral, conversational, long-
form reading, news briefing, and singing), Parallel WaveNet 
[22] uses a vocoder trained on a multi-speaker emotional 
dataset to convert Mel spectrograms from a neutral style to 
various emotional styles [23].

A novel speech synthesis system called Autovocoder has been 
proposed by [24] to generates high-quality audio and 
outperforms other waveform generation systems in terms of 
computational cost. Autovocoder is trained as a denoising 
autoencoder and generates a waveform at a speed 5 times 
greater than Griffin-Lim algorithm [25] and 14 times faster than 
the neural vocoder HiFi-GAN [26].
Autovocoder utilized parallel computing and data parallelism 
techniques by leveraging fast, Differentiable Digital Signal 
Processing DSP operations, a purely convolutional residual 
network, and a learned representation to achieve efficient and 
fast waveform generation.
Generative Adversarial Networks (GANs) have emerged as a 
powerful tool for generating high-quality audio, including 
speech synthesis. GAN-based vocoders are a type of vocoder 
that uses GANs to generate raw waveform audio from acoustic 
features and linguistic information. This approach offers 
several advantages over traditional vocoders, such as improved 
audio quality, expressiveness, and robustness to noise. Among 
the various GAN-based vocoders that have been developed, 
prominent instances of well-known models include HiFi-GAN
[26], SnakeGAN [27],Parallel WaveGAN [28], and BigVGAN
[29].

B. Linguistic Analysis and Prosody Front-End
Front-end models play a crucial role in processing input text 
into intermediate representations, often involving linguistic 
features or phonetic information. Tacotron is an end-to-end 
Text-to-Speech (TTS) system that uses deep neural networks to 
generate natural-sounding speech from text input. It operates by 
predicting mel-spectrograms from text characters, which are 
then converted into time-domain waveforms using a vocoder

[30]. Tacotron2 is a generative model that combines an 
encoder-decoder architecture with a soft attention mechanism 
to generate spectrograms from a given text [31]. The primary 
concept of the attention mechanism is to identify the most 
relevant characters for each Mel spectrogram frame and 
determine weights for each character embedding [31].

Tacotron2 has been employed to enhance the expressivity of 
multi-speaker end-to-end TTS models. The expressivity of 
latent representation is used for predictions made by the 
encoder to derive emotion [32]. Text-Predicting Global Style 
Token (TP-GST) is combined with Tacotron to generate speech 
in a specific style. Style attention, prosody encoder, and style 
embedding are added to Tacotron. During the training phase, a 
combination of trainable embeddings is extracted to be shared 
across the entire text, driving the Global Style Tokens [33].

FastSpeech [34], another notable front-end model, introduces a
novel feed-forward network that generates mel-spectrograms in 

parallel, utilizing feed-forward Transformer blocks, a length 
regulator, and a duration predictor. FastSpeech incorporates a 
phoneme duration predictor to ensure hard alignments between 

phonemes and mel-spectrograms, reducing the ratio of skipped 
words and repeated words and contributing to high audio 
quality. FastSpeech aims to address several challenges present 
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consisting of linguistic features, predicted log fundamental 
frequency (F0), and phoneme durations [18].

For expressiveness prediction, non-autoregressive WaveNet 
blocks outperform the original WaveNet [19]. Multi-speaker 
WaveNet vocoders have demonstrated higher performance 
compared to traditional methods [20]. Parallel WaveNet 
combines WaveNet and the Inverse Autoregressive Flow (IAF) 
method. Inverse-autoregressive flows (IAFs) are generative 
models used for high dimensional observable samples. High-
dimensional observable samples typically refer to a large set of 
acoustic features that are extracted from speech signals, such as 
the fundamental frequency, spectral envelope, and time-varying 
spectral parameters [21]. Capable of generating speech in a 
wide range of styles (emotional, neutral, conversational, long-
form reading, news briefing, and singing), Parallel WaveNet 
[22] uses a vocoder trained on a multi-speaker emotional 
dataset to convert Mel spectrograms from a neutral style to 
various emotional styles [23].

A novel speech synthesis system called Autovocoder has been 
proposed by [24] to generates high-quality audio and 
outperforms other waveform generation systems in terms of 
computational cost. Autovocoder is trained as a denoising 
autoencoder and generates a waveform at a speed 5 times 
greater than Griffin-Lim algorithm [25] and 14 times faster than 
the neural vocoder HiFi-GAN [26].
Autovocoder utilized parallel computing and data parallelism 
techniques by leveraging fast, Differentiable Digital Signal 
Processing DSP operations, a purely convolutional residual 
network, and a learned representation to achieve efficient and 
fast waveform generation.
Generative Adversarial Networks (GANs) have emerged as a 
powerful tool for generating high-quality audio, including 
speech synthesis. GAN-based vocoders are a type of vocoder 
that uses GANs to generate raw waveform audio from acoustic 
features and linguistic information. This approach offers 
several advantages over traditional vocoders, such as improved 
audio quality, expressiveness, and robustness to noise. Among 
the various GAN-based vocoders that have been developed, 
prominent instances of well-known models include HiFi-GAN
[26], SnakeGAN [27],Parallel WaveGAN [28], and BigVGAN
[29].

B. Linguistic Analysis and Prosody Front-End
Front-end models play a crucial role in processing input text 
into intermediate representations, often involving linguistic 
features or phonetic information. Tacotron is an end-to-end 
Text-to-Speech (TTS) system that uses deep neural networks to 
generate natural-sounding speech from text input. It operates by 
predicting mel-spectrograms from text characters, which are 
then converted into time-domain waveforms using a vocoder

[30]. Tacotron2 is a generative model that combines an 
encoder-decoder architecture with a soft attention mechanism 
to generate spectrograms from a given text [31]. The primary 
concept of the attention mechanism is to identify the most 
relevant characters for each Mel spectrogram frame and 
determine weights for each character embedding [31].

Tacotron2 has been employed to enhance the expressivity of 
multi-speaker end-to-end TTS models. The expressivity of 
latent representation is used for predictions made by the 
encoder to derive emotion [32]. Text-Predicting Global Style 
Token (TP-GST) is combined with Tacotron to generate speech 
in a specific style. Style attention, prosody encoder, and style 
embedding are added to Tacotron. During the training phase, a 
combination of trainable embeddings is extracted to be shared 
across the entire text, driving the Global Style Tokens [33].

FastSpeech [34], another notable front-end model, introduces a
novel feed-forward network that generates mel-spectrograms in 

parallel, utilizing feed-forward Transformer blocks, a length 
regulator, and a duration predictor. FastSpeech incorporates a 
phoneme duration predictor to ensure hard alignments between 

phonemes and mel-spectrograms, reducing the ratio of skipped 
words and repeated words and contributing to high audio 
quality. FastSpeech aims to address several challenges present 
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in traditional autoregressive text-to-speech (TTS) models. 
These challenges include slow inference speed, lack of 
robustness leading to word skipping and repeating, and limited 
controllability over voice speed and prosody. 

FastPitch [35], a fully parallel text-to-speech model, draws its 
foundation from Fast Speech. FastPitch conditioned on 
fundamental frequency contours.  It predicts pitch contours 
during inference, allowing for more expressive and engaging 
speech. The model retains the favorable, fully parallel 
Transformer architecture.  

On the other hand, FastSpeech2 [36] represents a paradigm shift 
in text-to-speech modeling as a non-autoregressive system. 
FastSpeech2 simplifies the training pipeline, improves voice 
quality, and introduces more variation information of speech, 
such as pitch and energy, as conditional inputs. It provides 
variance information such as pitch, energy, and more accurate 
duration. The model architecture includes a pitch predictor, 
pitch contour, and pitch spectrogram, allowing for manual 
manipulation of pitch, duration, and energy in synthesized 
speech. 

III. SUBJECTIVE METRICS  
1- Mean Opinion Score (MOS): This is a widely used 
subjective measurement for evaluating the quality of 
synthesized speech. Listeners rate the speech using a numerical 
scale ranging from 1 to 5, where 5 signifies excellent speech 
quality and 1 represents the lowest quality. MOS is a subjective 
method recommended by standardization bodies such as IEEE 
Subcommittee. During the listening test, listeners complete a 
questionnaire that may include sections on overall impression, 
listening effort, pronunciation, speaking rate, articulation, and 
voice pleasantness [37]. 

2- AB Preference Test: In AB Preference Test, participants are 
presented with audio samples from two distinct speech 
synthesis models, denoted as model A and model B. 
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features, respectively. and N is the length of the F0 sequence 
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 GPE is the proportion of segments that are measured as voiced 
for natural and generated speech having relative pitch error 
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These challenges include slow inference speed, lack of 
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foundation from Fast Speech. FastPitch conditioned on 
fundamental frequency contours.  It predicts pitch contours 
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speech. The model retains the favorable, fully parallel 
Transformer architecture.  

On the other hand, FastSpeech2 [36] represents a paradigm shift 
in text-to-speech modeling as a non-autoregressive system. 
FastSpeech2 simplifies the training pipeline, improves voice 
quality, and introduces more variation information of speech, 
such as pitch and energy, as conditional inputs. It provides 
variance information such as pitch, energy, and more accurate 
duration. The model architecture includes a pitch predictor, 
pitch contour, and pitch spectrogram, allowing for manual 
manipulation of pitch, duration, and energy in synthesized 
speech. 

III. SUBJECTIVE METRICS  
1- Mean Opinion Score (MOS): This is a widely used 
subjective measurement for evaluating the quality of 
synthesized speech. Listeners rate the speech using a numerical 
scale ranging from 1 to 5, where 5 signifies excellent speech 
quality and 1 represents the lowest quality. MOS is a subjective 
method recommended by standardization bodies such as IEEE 
Subcommittee. During the listening test, listeners complete a 
questionnaire that may include sections on overall impression, 
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voice pleasantness [37]. 
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comparison to a high-quality reference. This method facilitates 

a comprehensive assessment of multiple systems, allowing for 
a nuanced ranking based on perceived quality [39]. 

IV. OBJECTIVE METRICS   
Objective measurements involve the quantitative evaluation of 
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higher than a certain threshold (usually taken as 20% in speech 
analysis) [42]. 
 

V. STYLE REPRESENTATION AND TRANSFER 

A. Global Style Token 
In text-to-speech, Global Style Tokens (GSTs) are a recently 
proposed method for extracting style embedding features that 
reflect specific speech styles. GSTs introduce an auxiliary input 
vector to the speech synthesis model to control the global style 
of the synthesized speech. Style tokens are global features of 
speech style that can be adjusted to synthesize speech in a target 
style. Modern GST architectures have been developed to learn 
latent representations of high-dimensional speech data [43] . An 
attention mechanism calculates attention weights for style 
tokens, and the sum of style tokens is used for style 
embeddings. During the training phase, style tokens are initially 
created randomly, and they learn speech styles in an 
unsupervised manner. 

In  [44], a Global Style Token (GST) network is combined with 
an augmented version of Tacotron to capture expressive 
variations in speech style. The GST network processes GST 
combination style embeddings as expressive style labels that 
are jointly predicted within Tacotron. The TP-GST network 
extracts weights or style embedding space from text alone, 
without explicit labels during training phases. Two text-
prediction pathways, Predicting Combination Weights (TPCW) 
and Predicting Style Embeddings (TPSE), are used to extract 
style tokens during inference time. TP-GST methods 
successfully generate expressive speech without background 
noise. Other studies [45] [46] [47] [48] have also utilized GSTs 
in various ways to synthesize expressive speech, control 
speaking styles, and explore fine-grained control of speech 
generation. 

Inspired by the GST module, [49] proposes using global 
speaker embeddings (GSEs) to control the style of synthesized 
speech. GSE has a unique purpose and functionality that differs 
from GST such as focusing on capturing the speaker-specific 
characteristics within a given text, enabling the identification of 
speakers from their speech patterns. In contrast, GSTs are 
designed to capture the stylistic elements of a text, such as 
reading or formal styles. They enable the modification of text 
style while preserving its content.  

In general, GSTs are an effective method for controlling global 
stylistic features of synthesized speech. However, they have 
limitations and challenges, such as requiring a sufficient 
amount of speech samples during the training step to effectively 
synthesize speech in the desired style. As GSTs are designed to 
capture global style features, they may not be an effective tool 

for controlling the nuances of the desired style, such as 
intonation or rhythm. 

B. Style disentanglement 
Speech style disentanglement refers to the process of extracting 
various style factors, such as prosody, speaker, and linguistic-
related factors, which enables fine-grained control of multi-
reference speech style on separate speech datasets. 
Disentangling different informative factors in speech synthesis 
is essential for highly controllable speech style transfer. One of 
the significant challenges in speech technology is separating 
intertwined informative factors. Therefore, separating 
representations of these factors can enhance the robustness of 
expressive speech synthesis systems [50]. Traditional latent 
space representation learning algorithms predict general style 
embeddings with limited fine-grained control. 

In [51], disentangled latent space representations based on 
adversarial learning are adopted to improve the robustness of 
highly controllable style transfer in voice conversion (VC). An 
Adversarial Mask-And-Predict (MAP) network is designed to 
explicitly disentangle the extracted speech representations, 
which include content, timbre, and two additional factors 
related to prosody, rhythm, and pitch. (MAP) network consists 
of a gradient reverse layer (GRL) and a stack of prediction head 
layers. During training, one of the four speech representations 
is randomly masked, and the adversarial network attempts to 
infer the masked representation from the other three 
representations. The prediction head layers in the MAP module 
are composed of a fully connected layer, GeLU activation, layer 
normalization, and another fully connected layer. The MAP 
network is trained to predict the masked representation as 
accurately as possible by minimizing the adversarial loss. 
However, during backward propagation, the gradient is 
reversed, which encourages the representations learned by the 
encoder to contain as little mutual information as possible.  

The adversarial MAP network aims to increase the correlation 
between the masked and other speech representations, while the 
speech representation encoders try to disentangle the 
representations to decrease the correlation using the inversed 
gradient of the adversarial MAP network. The proposed method 
enhances the quality of synthesized speech in voice conversion 
across multiple factors [52]. A single model is trained for 
multiple speakers using the adversarial learning framework, 
instead of building a separate model for each target speaker. 
The proposed method has two training phases, resulting in 
significant improvements in the quality of synthesized voice. In  
[53], a zero-shot style transfer approach using disentangled 
speech representation learning is adopted to transfer speech 
styles with non-parallel datasets. The disentanglement process 
improves style transfer accuracy. 
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IV. OBJECTIVE METRICS   
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𝑝𝑝𝑖𝑖𝑖𝑖[𝑋𝑋𝑛𝑛, 𝑋𝑋′
𝑛𝑛] ≜ ∫−𝜋𝜋

𝜋𝜋 [( |X𝑛𝑛(ejω )|2

|𝑋𝑋′𝑛𝑛(ejω )|2)   − Ʌ(𝜔𝜔)  −  1] 𝑑𝑑𝜔𝜔
2𝜋𝜋          (3)        

 

where 
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B. Root mean square (RMSE) 

RMSE is a mathematical measure used to evaluate log 𝑓𝑓0 
trajectories produced by TTS models, it is stated as 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑁𝑁 ∑ (log(𝐹𝐹0𝑖𝑖) − log(𝐹𝐹0𝑖𝑖

′))2𝑁𝑁
𝑖𝑖=1           (5)           

Where 𝐹𝐹0𝑖𝑖  and 𝐹𝐹0𝑖𝑖
′ stand for the original and predicted F0 

features, respectively. and N is the length of the F0 sequence 
[41].    

C. Gross pitch error (GPE)  
 GPE is the proportion of segments that are measured as voiced 
for natural and generated speech having relative pitch error 
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higher than a certain threshold (usually taken as 20% in speech 
analysis) [42]. 
 

V. STYLE REPRESENTATION AND TRANSFER 

A. Global Style Token 
In text-to-speech, Global Style Tokens (GSTs) are a recently 
proposed method for extracting style embedding features that 
reflect specific speech styles. GSTs introduce an auxiliary input 
vector to the speech synthesis model to control the global style 
of the synthesized speech. Style tokens are global features of 
speech style that can be adjusted to synthesize speech in a target 
style. Modern GST architectures have been developed to learn 
latent representations of high-dimensional speech data [43] . An 
attention mechanism calculates attention weights for style 
tokens, and the sum of style tokens is used for style 
embeddings. During the training phase, style tokens are initially 
created randomly, and they learn speech styles in an 
unsupervised manner. 

In  [44], a Global Style Token (GST) network is combined with 
an augmented version of Tacotron to capture expressive 
variations in speech style. The GST network processes GST 
combination style embeddings as expressive style labels that 
are jointly predicted within Tacotron. The TP-GST network 
extracts weights or style embedding space from text alone, 
without explicit labels during training phases. Two text-
prediction pathways, Predicting Combination Weights (TPCW) 
and Predicting Style Embeddings (TPSE), are used to extract 
style tokens during inference time. TP-GST methods 
successfully generate expressive speech without background 
noise. Other studies [45] [46] [47] [48] have also utilized GSTs 
in various ways to synthesize expressive speech, control 
speaking styles, and explore fine-grained control of speech 
generation. 

Inspired by the GST module, [49] proposes using global 
speaker embeddings (GSEs) to control the style of synthesized 
speech. GSE has a unique purpose and functionality that differs 
from GST such as focusing on capturing the speaker-specific 
characteristics within a given text, enabling the identification of 
speakers from their speech patterns. In contrast, GSTs are 
designed to capture the stylistic elements of a text, such as 
reading or formal styles. They enable the modification of text 
style while preserving its content.  

In general, GSTs are an effective method for controlling global 
stylistic features of synthesized speech. However, they have 
limitations and challenges, such as requiring a sufficient 
amount of speech samples during the training step to effectively 
synthesize speech in the desired style. As GSTs are designed to 
capture global style features, they may not be an effective tool 

for controlling the nuances of the desired style, such as 
intonation or rhythm. 

B. Style disentanglement 
Speech style disentanglement refers to the process of extracting 
various style factors, such as prosody, speaker, and linguistic-
related factors, which enables fine-grained control of multi-
reference speech style on separate speech datasets. 
Disentangling different informative factors in speech synthesis 
is essential for highly controllable speech style transfer. One of 
the significant challenges in speech technology is separating 
intertwined informative factors. Therefore, separating 
representations of these factors can enhance the robustness of 
expressive speech synthesis systems [50]. Traditional latent 
space representation learning algorithms predict general style 
embeddings with limited fine-grained control. 

In [51], disentangled latent space representations based on 
adversarial learning are adopted to improve the robustness of 
highly controllable style transfer in voice conversion (VC). An 
Adversarial Mask-And-Predict (MAP) network is designed to 
explicitly disentangle the extracted speech representations, 
which include content, timbre, and two additional factors 
related to prosody, rhythm, and pitch. (MAP) network consists 
of a gradient reverse layer (GRL) and a stack of prediction head 
layers. During training, one of the four speech representations 
is randomly masked, and the adversarial network attempts to 
infer the masked representation from the other three 
representations. The prediction head layers in the MAP module 
are composed of a fully connected layer, GeLU activation, layer 
normalization, and another fully connected layer. The MAP 
network is trained to predict the masked representation as 
accurately as possible by minimizing the adversarial loss. 
However, during backward propagation, the gradient is 
reversed, which encourages the representations learned by the 
encoder to contain as little mutual information as possible.  

The adversarial MAP network aims to increase the correlation 
between the masked and other speech representations, while the 
speech representation encoders try to disentangle the 
representations to decrease the correlation using the inversed 
gradient of the adversarial MAP network. The proposed method 
enhances the quality of synthesized speech in voice conversion 
across multiple factors [52]. A single model is trained for 
multiple speakers using the adversarial learning framework, 
instead of building a separate model for each target speaker. 
The proposed method has two training phases, resulting in 
significant improvements in the quality of synthesized voice. In  
[53], a zero-shot style transfer approach using disentangled 
speech representation learning is adopted to transfer speech 
styles with non-parallel datasets. The disentanglement process 
improves style transfer accuracy. 
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In general, disentanglement speech representation learning is a 
promising approach for highly controllable speech style 
transfer. However, this method comes with computational 
complexity that requires substantial computing power. This 
issue needs to be carefully considered. 

C. Cross-speaker style transfer 
Cross-speaker style transfer (CSST) is a cutting-edge technique 
for synthesizing expressive speech. It aims to transfer multiple 
speaking styles from various supporting speakers to a target 
speaker while maintaining the target speaker's identity and 
timbre  [54]. Unlike traditional speaking style transfer methods 
that collect style embeddings from reference speech and use 
them as auxiliary inputs to synthesize stylized speech  [55], 
[56], modern cross-speaker style transfer conveys different 
speaking styles between speakers without requiring text-paired 
reference speech  [57]. Numerous studies have adopted CSST 
to transfer speech styles between multiple speakers. 

In [58], a chunk-wise multi-scale cross-speaker style and 
adversarial classifiers are proposed for style transfer. Multi-
scale cross-speaker style is trained in two phases to predict both 
global style embeddings (GSE) and local prosody embeddings 
using an adversarial training approach. An adequate amount of 
speech style data from non-target speakers is needed during the 
training process. In  [59], a multi-speaker acoustic system called 
Daft-Expert is employed to transfer highly expressive prosodic 
styles from both seen and unseen speakers. FiLM conditioning 
layers are used to embed prosody information in the TTS 
system. FiLM conditioning layers is a general-purpose 
conditioning technique for neural networks known as FiLM 
(Feature-wise Linear Modulation) proposed by [60]. FiLM 
layers influence neural network computations through a 
straightforward feature-wise affine transformation, utilizing 
conditioning information. The proposed model is combined 
with both FiLM layers and adversarial learning for highly 
accurate cross-speaker transfer. 

Cross-speaker transfer with data augmentation techniques has 
been successfully used in low-resource expressive TTS 
systems. A recent study [61] applied data voice conversion VC-
based augmentation for cross-speaker style transfer, where 
expressive speech datasets are not available for the target 
speaker. The adopted method uses two models: Pitch-Shift PS-
based data augmentation and voice conversion VC-based data 
augmentation. Pitch-shift PS-based augmentation involves 
altering the fundamental frequency of the speech signal, 
providing a technique to modify the perceived pitch without 
changing the speaker identity .PS-based augmentation is used 
for source and target speaker samples to enhance the stability 
of the training stage, while short-time Fourier transform 
(STFT)-based optimization is adopted for the voice conversion 
training stage. 

FastSpeech Multi-language TTS system [62] applied cross-
language style transfer to synthesize speech in any speaker style 
in the target language, overcoming the challenge of non-
authentic accent issues in cross-speaker style transfer. 
Conditional variational encoder and adversarial learning are 
used in the training process. Cross-speaker style transfer still 
faces challenges since multiple speakers have varying styles 
and timbres. Several studies have applied different techniques, 
such as speaker normalization  [63] [64] [65] to model speaker 
attributes, data augmentation [66] [67] [68] [69] , and multi-
task learning  [70] [71], to generalize TTS systems to new 
speakers.

D. Speaker adaptation  
TTS systems that employ speaker adaptation techniques aim to 
adjust a pre-trained model with a large-scale corpus to 
accommodate unseen speakers during the training process, even 
when there is a limited amount of speech data. Speaker 
adaptation is an effective technique when only a few minutes of 
target style data are available, as its primary role is to transfer 
speaking styles from a source speaker to a new speaker with 
limited adaptation data [72]. Adaptation strategies can be 
divided into two main categories. The first category of TTS 
systems uses pre-trained additional encoding networks to 
predict speaker attributes, which are then combined with 
linguistic characteristics as inputs to the synthesizer model  [73] 
[74] [75] [76]. On the other hand, the second category fine-
tunes the weights of the pre-trained multi-speaker TTS system 
to mimic a new speaker [77] [78]. Bayesian optimization (BO) 
has achieved high performance in fine-tuning TTS models. 

A novel method called BOFFIN TTS (Bayesian Optimization 
for Fine-tuning Neural TTS) has been able to transfer styles for 
voice cloning in TTS systems under data-scarcity constraints 
[79]. This proposed method finds the optimal weights for 
hyperparameters for any target speaker in a functional and 
automatic manner. One of the critical aspects of this approach 
is its ability to intelligently search the hyperparameter space 
while minimizing the required computational resources. This is 
achieved through the use of Gaussian processes, which model 
the target function and provide a measure of uncertainty to 
guide the search for optimal hyperparameters. By exploiting 
this uncertainty, the algorithm can effectively balance 
exploration and exploitation during optimization. Another 
advantage of the Bayesian optimization approach is its 
flexibility in incorporating various constraints and domain 
knowledge into the optimization process. For example, one can 
introduce regularization terms or prior information on the 
hyperparameters to improve the adaptation performance. This 
can be particularly useful when dealing with challenging 
scenarios, such as limited data or highly diverse speaker 
characteristics. 
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Some recent works have also explored the combination of 
Bayesian optimization with other machine learning techniques, 
such as transfer learning and multi-task learning, to further 
improve the adaptation process [80]. By leveraging the shared 
information between different speakers or tasks, these 
approaches can achieve better performance, even with limited 
adaptation data. Despite the promising results, there are still 
challenges in applying Bayesian optimization for speaker 
adaptation in TTS systems. One of the main issues is the 
scalability of the optimization process, as the complexity of 
Gaussian process regression grows with the number of 
observations. This can limit the applicability of the method to 
large-scale problems or high-dimensional hyperparameter 
spaces. Moreover, the choice of the surrogate model and 
acquisition function, as well as the initialization of the 
optimization process, can significantly impact the overall 
performance. 

VI. PROSODY MODELLING IN SPEECH SYNTHESIS 
Prosody is a crucial aspect of speech synthesis that focuses on 
the rhythmic, melodic, and expressive features of speech  [76]. 
The primary components of prosody include pitch, duration, 
intensity, and pauses, which collectively contribute to the 
overall expressiveness and naturalness of synthetic speech. 
Prosody helps convey emotions, emphasis, and linguistic 
structure in spoken language, thus playing a significant role in 
making synthetic speech sound more natural [77]. Hidden 
Markov Models (HMMs) have been used for capturing 
prosodic and linguistic features of speech, where decision trees 
are used to tie contextual features to individual nodes of the 
decision tree [81]. This approach enables more accurate 
modeling of prosody, allowing for generating natural and 
expressive synthetic speech. A new approach has been applied 
for prosody modeling  [82]. This approach enhances prosody 
by integrating pre-trained cross- utterance (CU) representations 
from Wav2Vec2.0 and BERT into Fastspeech2. It improves 
speech naturalness and expressiveness in Mandarin and English 
but heavily relies on pre-trained models and lacks evaluation on 
other languages. Further investigation into model layers is 
needed for better prosody modeling. 

A. Pitch Contour Modeling  
Pitch contour modeling is the process of estimating and 
generating the fundamental frequency (F0) of speech, which 
corresponds to the perceived pitch. Accurate pitch contour 
modeling is essential for achieving natural-sounding prosody in 
speech synthesis. Many studies have been conducted to enhance 
the robustness of pitch. Among them, FastPitch [35]  has gained 
popularity for its ability to control pitch and duration at the 
phoneme level during the synthesis of speech by conditioning 
these values. VocGAN-PS [83] and the FastPitch training 
algorithms have been proposed to improving pitch 

controllability. VocGAN-PS is a timbre-preserving pitch shift 
method that expands the pitch range without altering vocal 
characteristics. It avoids the need for additional algorithms like 
pitch tracking, however, may struggle with precise pitch 
estimation during transitions. The FastPitch training algorithm 
utilizes pitch-augmented speech data generated by VocGAN-
PS to enhance FastPitch's pitch control and robustness, but its 
effectiveness relies on the quality and diversity of the 
augmented datasets. 

There are different techniques for pitch contour modeling, 
including rule-based methods, statistical parametric methods  
[84], and deep learning approaches [81]. Rule-based methods 
use linguistic and phonetic rules to generate pitch contours, 
while statistical parametric methods (e.g., hidden Markov 
models or Gaussian mixture models) learn the relationship 
between linguistic features and pitch contours from data. 
Recently, deep learning methods like recurrent neural networks 
(RNNs) and convolutional neural networks (CNNs) have also 
been employed for pitch contour modeling, leveraging their 
ability to learn complex patterns and capture long-range 
dependencies in the data [67].  

B. Duration Modeling  
Duration modeling deals with predicting the duration of 
phonemes, syllables, or words in synthetic speech. Accurate 
duration modeling is vital for natural-sounding speech, as it 
contributes to the overall rhythm and pace of the spoken 
language  [85]. 

Reference [86] propose an unsupervised text-to-speech (UTTS) 
system. In this system, a Speaker-Aware Duration Prediction 
module takes the phoneme sequence and speaker embedding as 
input to predict the speaker-aware duration for each phoneme. 
The phoneme sequence is first passed into a trainable look-up 
table to obtain the phoneme embeddings. Then, a multi-layer 
attention module is used to extract the latent phoneme 
representation, followed by a conv-1D module to combine the 
latent phoneme representation with the speaker embedding. A 
linear layer is then applied to generate the predicted duration in 
the logarithmic domain. During training, the Mean Squared 
Error (MSE) is utilized to calculate the difference between the 
predicted duration and the target duration obtained from forced 
alignment extracted by Montreal Forced Alignment (MFA). 

During inference, the duration predictor rounds up the predicted 
duration and expands the phoneme sequence to form an 
estimated forced alignment. This estimated forced alignment is 
then used in the UTTS system for speech synthesis. 

In [87] zero-shot TTS model utilized duration modeling as part 
of the conditioning process, enabling rhythm transfer and 
extracts disentangled embeddings between rhythm-based 
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speaker characteristics and acoustic-feature-based ones.The 
proposed method captures rhythm-based speaker 
characteristics , leading to higher perceived speaker similarity. 

Another study [88] proposed two approaches to improve 
duration modeling in TTS systems. The first approach is a 
duration model conditioned on phrasing, which enhances 
predicted durations and provides better modeling of pauses. The 
second approach is a multi-speaker duration model called 
Cauliflow, which utilizes normalizing flows to predict 
durations that better match the target duration distribution. The 
proposed models improved naturalness of speech and variable 
durations for the same prompt, as well as variable levels of 
expressiveness. 

C. Intensity Modeling
Intensity modeling is concerned with estimating and generating 
the energy or intensity of speech signals. Intensity contributes 
to the perceived loudness and stress patterns of synthetic speech 
and is an essential factor for natural-sounding prosody. 

Different approaches have been proposed for intensity 
modeling, ranging from rule-based approaches to statistical 
methods and deep learning techniques. Rule-based methods 
rely on linguistic and phonetic rules to generate intensity 
patterns, while statistical methods, such as Gaussian mixture 
models or hidden Markov models, learn the relationship 
between linguistic features and intensity from data. Recently, 
deep learning methods, including recurrent neural networks 
(RNNs) and convolutional neural networks (CNNs), have been 
employed for intensity modeling, leveraging their capacity to 
learn complex patterns in the data [80]. 

D.  Pause Modeling 
Pauses play a crucial role in speech synthesis, as they help 
convey the structure of spoken language, provide time for the 
listener to process information, and contribute to the naturalness 
of synthetic speech. Pause modeling involves predicting the 
timing and duration of pauses in speech synthesis. 

Many techniques have been proposed for pause modeling, 
including rule-based approaches, statistical methods, and deep 
learning techniques. Rule-based methods rely on linguistic and 
syntactic rules to predict pause locations and durations, while 
statistical methods learn these relationships from data [89]. 
Deep learning techniques, such as recurrent neural networks 
(RNNs) and convolutional neural networks (CNNs), can also be 
employed for pause modeling, as they are capable of learning 
complex patterns and capturing long-range dependencies in the 
data. 

 

VII. CHILDREN SPEECH SYNTHESIS 
Children's speech synthesis is the process of creating artificial 
voices that sound like children, which is useful in developing 
interactive systems and robots for children's education and 
entertainment [81], [90]. However, this area of research poses 
several challenges. First, obtaining high-quality and 
phonetically balanced speech data from children is difficult. 
Additionally, children's voices have distinct characteristics that 
set it apart from adult speech. Mispronounced words, 
disfluencies, and ungrammatical utterances often characterize 
child speech. Furthermore, children exhibit linguistic 
differences compared to adult speech across different levels, 
such as prosody, vocabulary, grammar, and sizeable acoustic 
variability of child speech [91]. Moreover, synthesizing 
expressive conversational speech is a further challenge, as it 
requires the inclusion of paralinguistics and emotions in the 
synthesized speech [92]. Evaluating the quality of children's 
speech synthesis is also not straightforward, as it involves 
prolonged exposure to the synthetic voice. 

 Despite these challenges, researchers are exploring various 
approaches, such as speaker adaptive. a study conducted by [93] 
explored the acoustic characteristics of children's speech, 
encompassing aspects such as duration and pitch the results 
indicated that certain vowel sounds have longer durations in 
children compared to adults. Moreover, synthesizing expressive 
conversational speech is a further challenge, as it requires the 
inclusion of paralinguistics and emotions in the synthesized 
speech  [92].  

Evaluating the quality of children's speech synthesis is also not 
straightforward, as it involves prolonged exposure to the 
synthetic voice. Despite these challenges, researchers are 
exploring various approaches, such as speaker-adaptive HMM-
based speech synthesis and deep learning techniques, to 
develop efficient and accurate methods for children's speech 
synthesis.  

The goal is to make dialogue systems more inclusive and 
accessible for younger users. Hidden Markov Models (HMMs) 
have been used in child speech synthesis to find suitable initial 
models and speaker adaptation methods [94], [95]. 
Nevertheless, HMM-based systems for synthesizing child 
speech often face difficulties in achieving high naturalness and 
accurately replicating the subtleties of children's speech. In this 
study [91],  

The researchers introduced deep neural vocoders within a TTS 
framework to achieve child speech synthesis. Their method 
involves fine-tuning both the acoustic model Tacotron2 and a 
pre-trained WaveRNN vocoder. Moreover, they performed 
additional fine-tuning of the WaveRNN vocoder on a dedicated 
child speech dataset, improving the quality of child speech 
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synthesis [96]. In [97], a hybrid system that combines DNN 
with HMM was utilized for automatic speech recognition, using 
approximately 10 hours of Italian child speech data. This hybrid 
DNN-HMM approach proved effective in enhancing speech 
recognition accuracy specifically for Italian child speech. 

VIII. DISCUSSION AND CONCLUSION 
Speech synthesis has come a long way since the early days of 
simple rule-based systems. Today, there are a variety of 
approaches and techniques that can be used to generate natural-
sounding synthetic speech. This survey offers an overview of 
the development of expressive Text-to-Speech (TTS) systems 
and the diverse methodologies employed to synthesize 
expressive speech from written text. The selected articles 
presented a range of TTS and speech synthesis models that aim 
to enhance the quality and expressiveness of synthetic speech. 
This survey encapsulates the contemporary as well as 
conventional methods that are utilized in TTS systems. We 
discussed   deep learning-based speech synthesis, emotional 
speech synthesis and style transfer in speech synthesis. 
Additionally, we have reviewed several   objective metrics such 
as Itakura-Saito measure, Root mean square (RMSE), Gross 
pitch error (GPE) and subjective metrics such as MOS and 
MUSHRA utilized to access the quality of the synthesized 
speech are examined.  In addition, our focus was on the 
representation and transfer approaches for style to 
comprehensively illustrate the significance of style 
representation in enhancing the expressiveness of synthesized 
speech in Text-to-Speech (TTS) systems. Further, we reviewed 
both deep learning-based autoregressive model such as Parallel 
WaveNet and non-autoregressive model such as FastSpeech 
that are used in the front-end and back-end of TTS system.  

Finally, we point out the challenges in child speech synthesis, 
which involves the difficulty of obtaining high-quality and 
phonetically balanced speech data from children. Additionally, 
we address the unique characteristics of children's speech, 
differentiating it from adult speech, including linguistic 
variations and expressive conversational patterns. 

We hope this paper will offer a clear overview for readers to 
understand the current status of expressive speech synthesis 
models, inspiring continuous research efforts on expressive 
TTS systems. This, in turn, aims to promote future modern in 
the field of study expressive TTS systems, especially in the field 
of child speech synthesis. 

IX. ACKNOWLEDGEMENTS 
This paper is supported by the European Union’s HORIZON 
Research and Innovation Programme under grant agreement No 
101120657, project ENFIELD (European Lighthouse to 
Manifest Trustworthy and Green AI) and by the Ministry of 

Innovation and Culture and the National Research, 
Development and Innovation Office of Hungary within the 
framework of the National Laboratory of Artificial Intelligence. 
Views and opinions expressed are however those of the 
author(s) only and do not necessarily reflect those of the 
European Union and the granting authorities. Neither the 
European Union nor the granting authorities can be held 
responsible for them. 

REFERENCES 

[1] X. Tan, T. Qin, F. Soong, and T.-Y. Liu, “A Survey on Neural Speech 
Synthesis,” Jun. 2021, [Online]. Available: doi: 
http://arxiv.org/abs/2106.15561 

[2] N. Tits, “Controlling the emotional expressiveness of synthetic speech: a 
deep learning approach,” 4OR, vol. 20, no. 1, pp. 165–166, Mar. 2022, 
doi: 10.1007/s10288-021-00473-2. 

[3] P. Alexander. Taylor, Text-to-speech synthesis. Cambridge University 
Press, 2009. https://doi.org/10.1017/CBO9780511816338 

[4] Y. Ning, S. He, Z. Wu, C. Xing, and L. J. Zhang, “Review of deep 
learning-based speech synthesis,” Applied Sciences (Switzerland), vol. 9, 
no. 19. MDPI AG, Oct. 01, 2019. doi: 10.3390/app9194050. 

[5] K. R. Scherer, “Vocal affect expression: a review and a model for future 
research.,” Psychol Bull, vol. 99, no. 2, p. 143, 1986. 
https://doi.org/10.1037/0033-2909.99.2.143 

[6] J. F. Pitrelli, R. Bakis, E. M. Eide, R. Fernandez, W. Hamza, and M. A. 
Picheny, “The IBM expressive text-to-speech synthesis system for 
american english,” IEEE Trans Audio Speech Lang Process, vol. 14, no. 
4, pp. 1099–1108, Jul. 2006, doi: 10.1109/TASL.2006.876123. 

[7] M. Mahrishi, K. K. Hiran, G. Meena, and P. Sharma, Machine learning 
and deep learning in real-time applications. IGI global, 2020. DOI: 
10.4018/978-1-7998-3095-5.ch009 

[8] D. H. Klatt, “Review of text‐to‐speech conversion for English,” J Acoust 
Soc Am, vol. 82, no. 3, pp. 737–793, 1987. 
https://doi.org/10.1121/1.395275 

[9] D. H. Klatt, “Software for a cascade/parallel formant synthesizer.” 
Acoust Soc Am, vol. 67, no. 3, pp. 971–995, 1980 
https://doi.org/10.1121/1.383940 

[10] J. Tao, Y. Kang, and A. Li, “Prosody conversion from neutral speech to 
emotional speech,” IEEE Trans Audio Speech Lang Process, vol. 14, no. 
4, pp. 1145–1153, Jul. 2006, https://doi.org/10.1109/tasl.2006.876113 

[11] N. Campbell, W. Hamza, H. Hoge, J. Tao, and G. Bailly, “Editorial 
Special Section on Expressive Speech Synthesis,” IEEE Trans Audio 
Speech Lang Process, vol. 14, no. 4, pp. 1097–1098, Jun. 2006, doi: 
10.1109/tasl.2006.878306. 

[12] D. Govind and S. R. M. Prasanna, “Expressive speech synthesis: a 
review,” Int J Speech Technol, vol. 16, pp. 237–260, 2013. 
https://doi.org/10.1007/s10772-012-9180-2 

[13] C. Valentini-Botinhao, M. S. Ribeiro, O. Watts, K. Richmond, and G. E. 
Henter, “Predicting pairwise preferences between TTS audio stimuli 
using parallel ratings data and anti-symmetric twin neural networks,” 
International Speech Communication Association, INTERSPEECH, 
2022. https://doi.org/10.21437/interspeech.2022-10132 

[14] International Telecommunication Union (ITU), “Methods for subjective 
determination of transmission quality,” 1996. doi: 10.18356/16e04175-
en. 

[15] H. Zen, A. Senior, and M. S. Google, “Statistical Parametric Speech 
Synthesis Using Deep Neural Networks.” International Conference on 
Acoustics, Speech and Signal Processing (ICASSP) 2013. 
https://doi.org/10.1109/icassp.2013.6639215 

[16] A. van den Oord et al., “WaveNet: A Generative Model for Raw Audio,” 
Sep. 2016, Sep. 2016, https://doi.org/10.48550/arXiv.1609.03499 

[17] Y. Wang et al., “Tacotron: Towards End-to-End Speech Synthesis,” 
International Speech Communication Association, INTERSPEECH, 
2017, https://doi.org/10.21437/interspeech.2017- 1452 

[18] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE 
Transactions on Knowledge and Data Engineering, vol. 22, no. 10. pp. 
1345–1359, 2010. doi: 10.1109/TKDE.2009.191. 

[19] X. Zhuang, T. Jiang, S. Y. Chou, B. Wu, P. Hu, and S. Lui, “Litesing: 
Towards Fast, Lightweight And Expressive Singing Voice Synthesis,” 
in ICASSP, IEEE International Conference on Acoustics, Speech and 

References

 9 

synthesis [96]. In [97], a hybrid system that combines DNN 
with HMM was utilized for automatic speech recognition, using 
approximately 10 hours of Italian child speech data. This hybrid 
DNN-HMM approach proved effective in enhancing speech 
recognition accuracy specifically for Italian child speech. 

VIII. DISCUSSION AND CONCLUSION 
Speech synthesis has come a long way since the early days of 
simple rule-based systems. Today, there are a variety of 
approaches and techniques that can be used to generate natural-
sounding synthetic speech. This survey offers an overview of 
the development of expressive Text-to-Speech (TTS) systems 
and the diverse methodologies employed to synthesize 
expressive speech from written text. The selected articles 
presented a range of TTS and speech synthesis models that aim 
to enhance the quality and expressiveness of synthetic speech. 
This survey encapsulates the contemporary as well as 
conventional methods that are utilized in TTS systems. We 
discussed   deep learning-based speech synthesis, emotional 
speech synthesis and style transfer in speech synthesis. 
Additionally, we have reviewed several   objective metrics such 
as Itakura-Saito measure, Root mean square (RMSE), Gross 
pitch error (GPE) and subjective metrics such as MOS and 
MUSHRA utilized to access the quality of the synthesized 
speech are examined.  In addition, our focus was on the 
representation and transfer approaches for style to 
comprehensively illustrate the significance of style 
representation in enhancing the expressiveness of synthesized 
speech in Text-to-Speech (TTS) systems. Further, we reviewed 
both deep learning-based autoregressive model such as Parallel 
WaveNet and non-autoregressive model such as FastSpeech 
that are used in the front-end and back-end of TTS system.  

Finally, we point out the challenges in child speech synthesis, 
which involves the difficulty of obtaining high-quality and 
phonetically balanced speech data from children. Additionally, 
we address the unique characteristics of children's speech, 
differentiating it from adult speech, including linguistic 
variations and expressive conversational patterns. 

We hope this paper will offer a clear overview for readers to 
understand the current status of expressive speech synthesis 
models, inspiring continuous research efforts on expressive 
TTS systems. This, in turn, aims to promote future modern in 
the field of study expressive TTS systems, especially in the field 
of child speech synthesis. 

IX. ACKNOWLEDGEMENTS 
This paper is supported by the European Union’s HORIZON 
Research and Innovation Programme under grant agreement No 
101120657, project ENFIELD (European Lighthouse to 
Manifest Trustworthy and Green AI) and by the Ministry of 

Innovation and Culture and the National Research, 
Development and Innovation Office of Hungary within the 
framework of the National Laboratory of Artificial Intelligence. 
Views and opinions expressed are however those of the 
author(s) only and do not necessarily reflect those of the 
European Union and the granting authorities. Neither the 
European Union nor the granting authorities can be held 
responsible for them. 

REFERENCES 

[1] X. Tan, T. Qin, F. Soong, and T.-Y. Liu, “A Survey on Neural Speech 
Synthesis,” Jun. 2021, [Online]. Available: doi: 
http://arxiv.org/abs/2106.15561 

[2] N. Tits, “Controlling the emotional expressiveness of synthetic speech: a 
deep learning approach,” 4OR, vol. 20, no. 1, pp. 165–166, Mar. 2022, 
doi: 10.1007/s10288-021-00473-2. 

[3] P. Alexander. Taylor, Text-to-speech synthesis. Cambridge University 
Press, 2009. https://doi.org/10.1017/CBO9780511816338 

[4] Y. Ning, S. He, Z. Wu, C. Xing, and L. J. Zhang, “Review of deep 
learning-based speech synthesis,” Applied Sciences (Switzerland), vol. 9, 
no. 19. MDPI AG, Oct. 01, 2019. doi: 10.3390/app9194050. 

[5] K. R. Scherer, “Vocal affect expression: a review and a model for future 
research.,” Psychol Bull, vol. 99, no. 2, p. 143, 1986. 
https://doi.org/10.1037/0033-2909.99.2.143 

[6] J. F. Pitrelli, R. Bakis, E. M. Eide, R. Fernandez, W. Hamza, and M. A. 
Picheny, “The IBM expressive text-to-speech synthesis system for 
american english,” IEEE Trans Audio Speech Lang Process, vol. 14, no. 
4, pp. 1099–1108, Jul. 2006, doi: 10.1109/TASL.2006.876123. 

[7] M. Mahrishi, K. K. Hiran, G. Meena, and P. Sharma, Machine learning 
and deep learning in real-time applications. IGI global, 2020. DOI: 
10.4018/978-1-7998-3095-5.ch009 

[8] D. H. Klatt, “Review of text‐to‐speech conversion for English,” J Acoust 
Soc Am, vol. 82, no. 3, pp. 737–793, 1987. 
https://doi.org/10.1121/1.395275 

[9] D. H. Klatt, “Software for a cascade/parallel formant synthesizer.” 
Acoust Soc Am, vol. 67, no. 3, pp. 971–995, 1980 
https://doi.org/10.1121/1.383940 

[10] J. Tao, Y. Kang, and A. Li, “Prosody conversion from neutral speech to 
emotional speech,” IEEE Trans Audio Speech Lang Process, vol. 14, no. 
4, pp. 1145–1153, Jul. 2006, https://doi.org/10.1109/tasl.2006.876113 

[11] N. Campbell, W. Hamza, H. Hoge, J. Tao, and G. Bailly, “Editorial 
Special Section on Expressive Speech Synthesis,” IEEE Trans Audio 
Speech Lang Process, vol. 14, no. 4, pp. 1097–1098, Jun. 2006, doi: 
10.1109/tasl.2006.878306. 

[12] D. Govind and S. R. M. Prasanna, “Expressive speech synthesis: a 
review,” Int J Speech Technol, vol. 16, pp. 237–260, 2013. 
https://doi.org/10.1007/s10772-012-9180-2 

[13] C. Valentini-Botinhao, M. S. Ribeiro, O. Watts, K. Richmond, and G. E. 
Henter, “Predicting pairwise preferences between TTS audio stimuli 
using parallel ratings data and anti-symmetric twin neural networks,” 
International Speech Communication Association, INTERSPEECH, 
2022. https://doi.org/10.21437/interspeech.2022-10132 

[14] International Telecommunication Union (ITU), “Methods for subjective 
determination of transmission quality,” 1996. doi: 10.18356/16e04175-
en. 

[15] H. Zen, A. Senior, and M. S. Google, “Statistical Parametric Speech 
Synthesis Using Deep Neural Networks.” International Conference on 
Acoustics, Speech and Signal Processing (ICASSP) 2013. 
https://doi.org/10.1109/icassp.2013.6639215 

[16] A. van den Oord et al., “WaveNet: A Generative Model for Raw Audio,” 
Sep. 2016, Sep. 2016, https://doi.org/10.48550/arXiv.1609.03499 

[17] Y. Wang et al., “Tacotron: Towards End-to-End Speech Synthesis,” 
International Speech Communication Association, INTERSPEECH, 
2017, https://doi.org/10.21437/interspeech.2017- 1452 

[18] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE 
Transactions on Knowledge and Data Engineering, vol. 22, no. 10. pp. 
1345–1359, 2010. doi: 10.1109/TKDE.2009.191. 

[19] X. Zhuang, T. Jiang, S. Y. Chou, B. Wu, P. Hu, and S. Lui, “Litesing: 
Towards Fast, Lightweight And Expressive Singing Voice Synthesis,” 
in ICASSP, IEEE International Conference on Acoustics, Speech and 

	 [1]	 X. Tan, T. Qin, F. Soong, and T.-Y. Liu, “A Survey on Neural Speech 
Synthesis,” Jun. 2021, [Online]. arXiv preprint arXiv:2106.15561, 
2021. Available: http://arxiv.org/abs/2106.15561.

	 [2]	 N. Tits, “Controlling the emotional expressiveness of synthetic 
speech: a deep learning approach,” 4OR, vol. 20, no. 1, pp. 165–166, 
Mar. 2022, doi: 10.1007/s10288-021-00473-2.

	 [3]	 P. Alexander. Taylor, Text-to-speech synthesis. Cambridge University 
Press, 2009. doi: 10.1017/CBO9780511816338

	 [4]	 Y. Ning, S. He, Z. Wu, C. Xing, and L. J. Zhang, “Review of deep 
learning-based speech synthesis,” Applied Sciences (Switzerland), 
vol. 9, no. 19. MDPI AG, Oct. 01, 2019. doi: 10.3390/app9194050.

	 [5]	 K. R. Scherer, “Vocal affect expression: a review and a model for 
future research.,” Psychol Bull, vol. 99, no. 2, p. 143, 1986. 

		  doi: 10.1037/0033-2909.99.2.143
	 [6]	 J. F. Pitrelli, R. Bakis, E. M. Eide, R. Fernandez, W. Hamza, and M. 

A. Picheny, “The IBM expressive text-to-speech synthesis system for 
american english,” IEEE Trans Audio Speech Lang Process, vol. 14, 
no. 4, pp. 1099–1108, Jul. 2006, doi: 10.1109/TASL.2006.876123.

	 [7]	 M. Mahrishi, K. K. Hiran, G. Meena, and P. Sharma, Machine learning 
and deep learning in real-time applications. IGI global, 2020. 

		  doi: 10.4018/978-1-7998-3095-5.ch009
	 [8]	 D. H. Klatt, “Review of text-to-speech conversion for English,” J 

Acoust Soc Am, vol. 82, no. 3, pp. 737–793, 1987. 
		  doi: 10.1121/1.395275
	 [9]	 D. H. Klatt, “Software for a cascade/parallel formant synthesizer.” 

Acoust Soc Am, vol. 67, no. 3, pp. 971–995, 1980, 
		  doi: 10.1121/1.383940
	[10]	 J. Tao, Y. Kang, and A. Li, “Prosody conversion from neutral speech 

to emotional speech,” IEEE Trans Audio Speech Lang Process, vol. 
14, no. 4, pp. 1145–1153, Jul. 2006, doi: 10.1109/tasl.2006.876113

	[11]	 N. Campbell, W. Hamza, H. Hoge, J. Tao, and G. Bailly, “Editorial 
Special Section on Expressive Speech Synthesis,” IEEE Trans Audio 
Speech Lang Process, vol. 14, no. 4, pp. 1097–1098, Jun. 2006, 

		  doi: 10.1109/tasl.2006.878306.
[12] D. Govind and S. R. M. Prasanna, “Expressive speech synthesis: a 

review,” Int J Speech Technol, vol. 16, pp. 237–260, 2013. 
		  doi: 10.1007/s10772-012-9180-2
[13]	 C. Valentini-Botinhao, M. S. Ribeiro, O. Watts, K. Richmond, and 

G. E. Henter, “Predicting pairwise preferences between TTS audio 
stimuli using parallel ratings data and anti-symmetric twin neural 
networks,” International Speech Communication Association, 
INTERSPEECH, 2022. doi: 10.21437/interspeech.2022-10132

[14]	 International Telecommunication Union (ITU), “Methods 
for subjective determination of transmission quality,” 1996.  
doi: 10.18356/16e04175-en.

[15]	 H. Zen, A. Senior, and M. S. Google, “Statistical Parametric Speech 
Synthesis Using Deep Neural Networks.” International Conference 
on Acoustics, Speech and Signal Processing (ICASSP) 2013. 
doi: 10.1109/icassp.2013.6639215 

[16]	 A. van den Oord et al., “WaveNet: A Generative Model for Raw 
Audio,” Sep. 2016, arXiv preprint arXiv:1609.03499,

		  doi: 10.48550/arXiv.1609.03499
	[17]	 Y. Wang et al., “Tacotron: Towards End-to-End Speech Synthesis,” 

International Speech Communication Association, INTERSPEECH, 
2017, doi: 10.21437/interspeech.2017-1452

http://arxiv.org/abs/2106.15561
http://arxiv.org/abs/2106.15561
https://doi.org/10.1007/s10288-021-00473-2
https://doi.org/10.1017/CBO9780511816338
https://doi.org/10.3390/app9194050
https://doi.org/10.1037/0033-2909.99.2.143
https://doi.org/10.1109/TASL.2006.876123
https://doi.org/10.4018/978-1-7998-3095-5.ch009
https://doi.org/10.1121/1.395275
https://doi.org/10.1121/1.383940
https://doi.org/10.1109/tasl.2006.876113
https://doi.org/10.1109/tasl.2006.878306
https://doi.org/10.1007/s10772-012-9180-2
https://doi.org/10.21437/interspeech.2022-10132
https://doi.org/10.18356/16e04175-en
https://doi.org/10.1109/icassp.2013.6639215
https://arxiv.org/abs/1609.03499
https://doi.org/10.48550/arXiv.1609.03499
https://doi.org/10.21437/interspeech.2017-1452


Advancements in Expressive Speech Synthesis:  
a Review

MARCH 2024 • VOLUME XVI • NUMBER 144

INFOCOMMUNICATIONS JOURNAL

[34]	 Y. Ren et al., “Fastspeech: Fast, Robust And Controllable Text To 
Speech,” Advances in neural information processing systems Adv 
Neural Inf Process Syst, vol. 32, 2019. https://proceedings.neurips.cc/
paper_files/paper/2019/hash/f63f65b503e22cb970527f23c9ad7db1-
Abstract.html

[35]	 A. Łańcucki, “Fastpitch: Parallel Text-To-Speech With Pitch 
Prediction,” in ICASSP 2021-2021 IEEE International Conference on 
Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2021, pp. 
6588–6592. doi: 10.1109/icassp39728.2021.9413889

[36]	 Y. Ren et al., “Fastspeech 2: Fast And High-Quality End-To-End Text 
To Speech,” 2020, arXiv preprint arXiv:2006.04558,

		  doi: 10.48550/arXiv.2006.04558.
[37]	 P . C. Loizou, "Speech quality assessment." Multimedia analysis, 

processing and communications 2011, pp. 623–654. 
		  doi: 10.1007/978-3-642-19551-8_23
[38]	 B. Sabine, J. Latorre, and K. Yanagisawa. "Crowdsourced assessment 

of speech synthesis." Crowdsourcing for Speech Processing: 
Applications to Data Collection, Transcription and Assessment 
(2013): 173–216, doi: 10.1002/9781118541241.ch7

[39]	 I. Recommendation, “1534-1,‘Method for the Subjective Assessment 
of Intermediate Sound Quality (MUSHRA),’” International 
Telecommunications Union, Geneva, Switzerland, vol. 2, 2001. 
https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1534-3-
201510-I!!PDF-E.pdf

[40]	 B.‐H Juang, “On Using the Itakura‐Saito Measures for Speech Coder 
Performance Evaluation,” AT&T Bell Laboratories Technical Journal, 
vol. 63, no. 8, pp. 1477–1498, 1984,

		  doi: 10.1002/j.1538-7305.1984.tb00047.x
[41]	 C.-C. Wang, Z.-H. Ling, B.-F. Zhang, and L.-R. Dai, “Multi-Layer 

F0 Modeling For HMM-Based Speech Synthesis,” in 2008 6th 
International symposium on Chinese spoken language processing, 
IEEE, 2008, pp. 1–4. doi: 10.1109/chinsl.2008.ecp.44

[42]	 O. Babacan, T. Drugman, N. d’Alessandro, N. Henrich, and T. Dutoit, 
“A Comparative Study of Pitch Extraction Algorithms on a Large 
Variety of Singing Sounds,” Dec. 2019, 

		  doi: 10.1109/icassp.2013.6639185
[43]	 Y. Wang et al., “Style Tokens: Unsupervised Style Modeling, Control 

and Transfer in End-to-End Speech Synthesis,” in ICML 2018. https://
proceedings.mlr.press/v80/wang18h.html?ref=https://githubhelp.com

[44] D. Stanton, Y. Wang, and R. Skerry-Ryan, “Predicting Expressive 
Speaking Style From Text In End-To-End Speech Synthesis,” In IEEE 
Spoken Language Technology Workshop (SLT), 2018.

		  doi: 10.1109/slt.2018.8639682
[45]	 Y. Wang et al., “Style Tokens: Unsupervised Style Modeling, 

Control and Transfer in End-to-End Speech Synthesis,” 2018.  
https://proceedings.mlr.press/v80/wang18h.html

[46]	 S. Liu, S. Yang, D. Su, and D. Yu, “Referee: Towards Reference-Free 
Cross-Speaker Style Transfer With Low-Quality Data For Expressive 
Speech Synthesis,” In ICASSP ,IEEE International Conference on 
Acoustics Speech and Signal , Processing (ICASSP), pp. 6307–6311. 
IEEE, 2022. doi: 10.1109/icassp43922.2022.9746858

[47]	 C. Yu et al., “DurIAN: Duration Informed Attention Network for 
Multimodal Synthesis,” International Speech Communication 
Association, INTERSPEECH, 2019, pp. 2027–2031,

		  doi: 10.21437/interspeech.2020-2968
[48]	 Y. Lee and T. Kim, “Robust And Fine-Grained Prosody Control Of 

End-To-End Speech Synthesis,” IEEE International Conference on 
Acoustics, Speech and Signal Processing (ICASSP), pp. 5911–5915. 
IEEE, 2019. doi: 10.1109/icassp.2019.8683501

[49]	 W. Lu et al., “One-Shot Emotional Voice Conversion Based On 
Feature Separation,” Speech Commun, vol. 143, pp. 1–9, Sep. 2022, 
doi: 10.1016/j.specom.2022.07.001.

[50]	 D. Wang, L. Li, Y. Shi, Y. Chen, and Z. Tang, “Deep Factorization 
for Speech Signal,” ” IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP), pp. 5094–5098. IEEE, 2018. 
doi: 10.1109/icassp.2018.8462169

[51]	 J. Wang, J. Li, X. Zhao, Z. Wu, S. Kang, and H. Meng, “Adversarially 
Learning Disentangled Speech Representations For Robust Multi-
Factor Voice Conversion,” International Speech Communication 
Association, INTERSPEECH, 2021, pp. 846–850,

		  doi: 10.21437/interspeech.2021-1990

[18]	 S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE 
Transactions on Knowledge and Data Engineering, vol. 22, no. 10. 
pp. 1345–1359, 2010. doi: 10.1109/TKDE.2009.191.

	[19]	 X. Zhuang, T. Jiang, S. Y. Chou, B. Wu, P. Hu, and S. Lui, “Litesing: 
Towards Fast, Lightweight And Expressive Singing Voice Synthesis,” 
in ICASSP, IEEE International Conference on Acoustics, Speech 
and Signal Processing - Proceedings, Institute of Electrical and 
Electronics Engineers Inc., 2021, pp. 7078–7082.

		  doi: 10.1109/icassp39728.2021.9414043.
	[20]	 T. Okamoto, K. Tachibana, T. Toda, Y. Shiga, and H. Kawai, “An 

Investigation Of Subband Wavenet Vocoder Covering Entire Audible 
Frequency Range With Limited Acoustic Features,” in 2018 IEEE 
International Conference on Acoustics, Speech and Signal Processing 
(ICASSP), IEEE, 2018, pp. 5654–5658. 

		  doi: 10.1109/icassp.2018.8462237
	[21]	 A. Van Den Oord et al., “Parallel WaveNet: Fast High-Fidelity 

Speech Synthesis,” In International conference on machine learning 
(pp. 3918–3926). PMLR, 2018. arXiv preprint arXiv:1711.10433 
doi: 10.48550/arXiv.1711.10433

	[22]	 Y. Jiao, A. Gabryś, G. Tinchev, B. Putrycz, D. Korzekwa, and V. 
Klimkov, “Universal Neural Vocoding with Parallel Wavenet,” In 
ICASSP 2021-2021 IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP), IEEE, 2021, pp. 6044–6048. 
6048. doi: 10.1109/icassp39728.2021.9414444

[23]	 H. Choi, S. Park, J. Park, and M. Hahn, “Emotional Speech Synthesis 
For Multi-Speaker Emotional Dataset Using Wavenet Vocoder,” 
In 2019 IEEE International Conference on Consumer Electronics 
(ICCE), IEEE, 2019, pp. 1–2.  doi: 10.1109/icce.2019.8661919

[24]	 J. J. Webber, C. Valentini-Botinhao, E. Williams, G. E. Henter, and 
S. King, “Autovocoder: Fast Waveform Generation from a Learned 
Speech Representation Using Differentiable Digital Signal Process-
ing,” In ICASSP – 2023 IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP), IEEE, Jun. 2023, pp. 1–5. 
doi: 10.1109/ICASSP49357.2023.10095729.

	[25]	 D. Griffin and J. Lim, “Signal Estimation from Modified Short-Time 
Fourier Transform,” IEEE Trans Acoust, vol. 32, no. 2, pp. 236–243, 
1984. doi: 10.1109/tassp.1984.1164317 

	[26]	 J. Kong, J. Kim, and J. Bae, “Hifi-Gan: Generative Adversarial 
Networks for Efficient and High Fidelity Speech Synthesis,” Adv 
Neural Inf Process Syst, vol. 33, pp. 17022–17033, 2020.  https://
proceedings.neurips.cc/paper/2020/hash/c5d736809766d46260d 
816d8dbc9eb44-Abstract.html

	[27]	 S. Li et al., “SnakeGAN: A Universal Vocoder Leveraging DDSP Prior 
Knowledge and Periodic Inductive Bias,” in 2023 IEEE International 
Conference on Multimedia and Expo (ICME), IEEE, 2023, pp. 1703– 
1708. doi: 10.1109/icme55011.2023.00293

	[28]	 R. Yamamoto, E. Song, and J.-M. Kim, “Parallel Wavegan: A Fast 
Waveform Generation Model Based on Generative Adversarial 
Networks with Multi-Resolution Spectrogram,” in ICASSP 2020, - 
2020 IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP), IEEE, May 2020, pp. 6199–6203. 

		  doi: 10.1109/ICASSP40776.2020.9053795.
[29]	 S. Lee, W. Ping, B. Ginsburg, B. Catanzaro, and S. Yoon, “Bigvgan: 

A Universal Neural V ocoder With Large-Scale Training,”, 2022. 
doi: 10.48550/arXiv.2206.04658

[30]	 Y. Zheng, J. Tao, Z. Wen, and J. Yi, “Forward-backward decoding 
sequence for regularizing end-to-end TTS,” IEEE/ACM Trans Audio 
Speech Lang Process, vol. 27, no. 12, pp. 2067–2079, Dec. 2019,  
doi: 10.1109/taslp.2019.2935807.

[31]	 J. Shen et al., “Natural TTS Synthesis By Conditioning Wavenet On 
Mel Spectrogram Predictions,” in 2018 IEEE international conference 
on acoustics, speech and signal processing (ICASSP), IEEE, 2018, 
pp. 4779–4783. https://doi.org/10.1109/icassp.2018.8461368

[32]	 A. Kulkarni, V. Colotte, and D. Jouvet, "Improving Transfer 
of Expressivity For End-To-End Multispeaker Text-To-Speech 
Synthesis." In 2021 29th European Signal Processing Conference 
(EUSIPCO), pp. 31–35. IEEE, 2021. 

		  doi: 10.23919/eusipco54536.2021.9616249
[33]	 R. J. Skerry-Ryan et al., “Towards End-to-End Prosody Transfer 

for Expressive Speech Synthesis with Tacotron,” in ICML 2018.  
http://proceedings.mlr.press/v80/skerry-ryan18a.html

https://proceedings.neurips.cc/paper_files/paper/2019/hash/f63f65b503e22cb970527f23c9ad7db1-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/f63f65b503e22cb970527f23c9ad7db1-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2019/hash/f63f65b503e22cb970527f23c9ad7db1-Abstract.html
https://doi.org/10.1109/icassp39728.2021.9413889
https://arxiv.org/abs/2006.04558
https://doi.org/10.48550/arXiv.2006.04558
https://doi.org/10.1007/978-3-642-19551-8_23
https://doi.org/10.1002/9781118541241.ch7
https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1534-3-201510-I!!PDF-E.pdf
https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1534-3-201510-I!!PDF-E.pdf
https://doi.org/10.1002/j.1538-7305.1984.tb00047.x
https://doi.org/10.1109/chinsl.2008.ecp.44
https://doi.org/10.1109/icassp.2013.6639185
https://proceedings.mlr.press/v80/wang18h.html?ref=https://githubhelp.com
https://proceedings.mlr.press/v80/wang18h.html?ref=https://githubhelp.com
https://doi.org/10.1109/slt.2018.8639682
https://proceedings.mlr.press/v80/wang18h.html
https://doi.org/10.1109/icassp43922.2022.9746858
https://doi.org/10.21437/interspeech.2020-2968
https://doi.org/10.1109/icassp.2019.8683501
https://doi.org/10.1016/j.specom.2022.07.001
https://doi.org/10.1109/icassp.2018.8462169
https://doi.org/10.21437/interspeech.2021-1990
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/icassp39728.2021.9414043
https://doi.org/10.1109/icassp.2018.8462237
https://arxiv.org/abs/1609.03499
https://doi.org/10.48550/arXiv.1711.10433
https://doi.org/10.1109/icassp39728.2021.9414444
https://doi.org/10.1109/icce.2019.8661919
https://doi.org/10.1109/ICASSP49357.2023.10095729
https://doi.org/10.1109/tassp.1984.1164317
https://proceedings.neurips.cc/paper/2020/hash/c5d736809766d46260d 816d8dbc9eb44-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c5d736809766d46260d 816d8dbc9eb44-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c5d736809766d46260d 816d8dbc9eb44-Abstract.html
https://doi.org/10.1109/icme55011.2023.00293
https://doi.org/10.1109/ICASSP40776.2020.9053795
https://doi.org/10.48550/arXiv.2206.04658
https://doi.org/10.1109/taslp.2019.2935807
https://doi.org/10.1109/icassp.2018.8461368
https://doi.org/10.23919/eusipco54536.2021.9616249
http://proceedings.mlr.press/v80/skerry-ryan18a.html


Advancements in Expressive Speech Synthesis:  
a Review

INFOCOMMUNICATIONS JOURNAL

MARCH 2024 • VOLUME XVI • NUMBER 1 45

[52]	 J. Chou, C. Yeh, H. Lee, and L. Lee, “Multi-target Voice Conversion 
without Parallel Data by Adversarially Learning Disentangled Audio 
Representations,” International Speech Communication Association, 
INTERSPEECH, 2018, pp. 501–505,

		  doi: 10.21437/interspeech.2018-1830
[53]	 S. Yuan, P. Cheng, R. Zhang, W. Hao, Z. Gan, and L. Carin, “Improving 

Zero-shot V oice Style Transfer via Disentangled Representation 
Learning,” International Conference on learning representation 2021, 
https://openreview.net/forum?id=TgSVWXw22FQ

[54]	 Y. Shin, Y. Lee, S. Jo, Y. Hwang, and T. Kim, “Text-driven Emotional 
Style Control and Cross-speaker Style Transfer in Neural TTS,” 
International Speech Communication Association, INTERSPEECH, 
2022, pp. 2313–2317, doi: 10.21437/interspeech.2022-10131

[55]	 Y. Bian, C. Chen, Y. Kang, and Z. Pan, “Multi-reference Tacotron by 
Intercross Training for Style Disentangling,Transfer and Control in 
Speech Synthesis,” Apr. 2019, arXiv preprint arXiv:1904.02373

		  doi: 10.48550/arXiv.1904.02373
[56]	 M. Whitehill, S. Ma, D. McDuff, and Y. Song, “Multi-Reference 

Neural TTS Stylization with Adversarial Cycle Consistency,” 
International Speech Communication Association, INTERSPEECH, 
2020, pp. 4442–4446, doi: 10.21437/interspeech.2020-2985

[57]	 S. Pan, “Cross-speaker Style Transfer with Prosody Bottleneck in 
Neural Speech Synthesis.” International Speech Communication 
Association, INTERSPEECH, 2021, pp. 4678–4682 

		  doi: 10.21437/interspeech.2021-979
[58]	 X. Li, C. Song, X. Wei, Z. Wu, J. Jia, and H. Meng, “Towards Cross- 

speaker Reading Style Transfer on Audiobook Dataset,” International 
Speech Communication Association, INTERSPEECH, 2022, pp. 
5528–5532, doi: 10.21437/interspeech.2022-11223

[59] J. Zaïdi, H. Seuté, B. van Niekerk, and M.-A. Carbonneau, “Daft-
Exprt: Cross-Speaker Prosody Transfer on Any Text for Expressive 
Speech Synthesis,” International Speech Communication Association, 
INTERSPEECH, 2022, pp. 4591–4595, 

		  doi: 10.21437/interspeech.2022-10761
[60]	 E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville, 

“Film: Visual Reasoning with A General Conditioning Layer,” in 
Proceedings of the AAAI conference on artificial intelligence, 2018. 
doi: 10.1609/aaai.v32i1.11671

[61]	 R. Terashima et al., “Cross-Speaker Emotion Transfer for Low-
Resource Text-to-Speech Using Non-Parallel Voice Conversion 
with Pitch-Shift Data Augmentation,” International Speech 
Communication Association, INTERSPEECH, 2022, pp. 3018–3022, 

		  doi: 10.21437/interspeech.2022-11278
[62]	 Z. Shang, Z. Huang, H. Zhang, P. Zhang, and Y. Yan, “Incorporating 

Cross-Speaker Style Transfer For Multi-Language Text-To-Speech,” 
in Proceedings of the Annual Conference of the International Speech 
Communication Association, INTERSPEECH, 2021, pp. 3406–3410. 
doi: 10.21437/Interspeech.2021-1265.

[63] P. Wu et al., “Cross-speaker Emotion Transfer Based on Speaker 
Condition Layer Normalization and Semi-Supervised Training in  
Text-To-Speech,” Oct. 2021, arXiv preprint arXiv:2110.04153,

		  doi: 10.48550/arXiv.2110.04153
[64]	 C. Qiang, P. Yang, H. Che, X. Wang, and Z. Wang, “Style-Label-Free: 

Cross-Speaker Style Transfer by Quantized VAE and Speaker-wise 
Normalization in Speech Synthesis,” Dec. 2022, in 13th International 
Symposium on Chinese Spoken Language Processing (ISCSLP) Dec. 
2022, doi: 10.1109/iscslp57327.2022.10038135

[65]	 S. Aryal and R. Gutierrez-Osuna, “Accent Conversion Through 
Cross-Speaker Articulatory Synthesis,” in 2014 IEEE International 
Conference on Acoustics, Speech and Signal Processing (ICASSP), 
IEEE, 2014, pp. 7694–7698. doi: 10.1109/icassp.2014.6855097

[66]	 G. Huybrechts, T. Merritt, G. Comini, B. Perz, R. Shah, and J. 
Lorenzo-Trueba, “Low-Resource Expressive Text-To-Speech Using 
Data Augmentation,” IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP), pp. 6593–6597. IEEE, 2021. 
doi: 10.1109/icassp39728.2021.9413466

[67]	 J. Wu, A. Polyak, Y. Taigman, J. Fong, P. Agrawal, and Q. He, “Mul-
tilingual Text-To-Speech Training Using Cross Language Voice Con-
version And Self-Supervised Learning Of Speech Representations,” 
in ICASSP 2022-2022 IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP), IEEE, 2022, pp. 8017–8021. 

		  doi: 10.1109/icassp43922.2022.9746282
[68]	 Z. Byambadorj, R. Nishimura, A. Ayush, K. Ohta, and N. Kitaoka, 

“Multi-Speaker TTS System For Low-Resource Language Using 
Cross- Lingual Transfer Learning And Data Augmentation,” in 2021 
Asia- Pacific Signal and Information Processing Association Annual 
Summit and Conference (APSIP A ASC), IEEE, 2021, pp. 849–853. 
https://ieeexplore.ieee.org/abstract/document/9689505

[69]	 Z. Zhang, Y. Zheng, X. Li, and L. Lu, “WeSinger: Data-augmented 
Singing Voice Synthesis with Auxiliary Losses,” International Speech 
Communication Association, INTERSPEECH, 2022, pp. 4252–4256, 
doi: 10.21437/interspeech.2022-454

[70]	 Y. Nakai, Y. Saito, K. Udagawa, and H. Saruwatari, “Multi-Task 
Adversarial Training Algorithm for Multi-Speaker Neural Text-
to- Speech,” in Asia-Pacific Signal and Information Processing 
Association Annual Summit and Conference (APSIPA ASC), IEEE, 
2022, pp. 743–748 doi: 10.23919/apsipaasc55919.2022.9980331

[71]	 X. Zhang, J. Wang, N. Cheng, and J. Xiao, “TDASS: Target Domain 
Adaptation Speech Synthesis Framework for Multi-speaker Low-
Resource TTS,” International Joint Conference on Neural Networks 
(IJCNN), pp. 1–7. IEEE, 2022, 

		  doi: 10.1109/ijcnn55064.2022.9892596
[72]	 K. Inoue, S. Hara, and M. Abe, “Module Comparison of Transformer- 

TTS For Speaker Adaptation Based On Fine-Tuning,” in 2020 Asia- 
Pacific Signal and Information Processing Association Annual 
Summit and Conference (APSIP A ASC), IEEE, 2020, pp. 826–830. 

		  https://ieeexplore.ieee.org/abstract/document/9306250
[73]	 C. Du, Y. Guo, X. Chen, and K. Yu, “Speaker Adaptive Text-to-Speech 

with Timbre-Normalized Vector-Quantized Feature,” IEEE/ACM 
Transactions on Audio, Speech, and Language Processing (2023). 
doi: 10.1109/taslp.2023.3308374

[74]	 A. R. Mandeel, M. S. Al-Radhi, and T. G. Csapó, “Speaker Adaptation 
Experiments with Limited Data for End-to-End Text-To-Speech 
Synthesis using Tacotron2,” Infocommunications Journal, vol. 14, no. 
3, pp. 55–62, 2022. doi: 10.36244/icj.2022.3.7

[75]	 C.-P. Hsieh, S. Ghosh, and B. Ginsburg, “Adapter-Based Extension 
of Multi-Speaker Text-to-Speech Model for New Speakers,” 
International Speech Communication Association, INTERSPEECH, 
2023, pp. 3028–3032 doi: 10.21437/interspeech.2023-2313

[76]	 Y. Jia et al., “Transfer Learning from Speaker V erification to Multi-
speaker Text-To-Speech Synthesis.” Advances in neural information 
processing systems, 2018. https://proceedings.neurips.cc/paper_files/
paper/2018/hash/6832a7b24bc06775d02b7406880b93fc-Abstract.
html

[77]	 K. Inoue, S. Hara, M. Abe, T. Hayashi, R. Yamamoto, and S. 
Watanabe, “Semi-Supervised Speaker Adaptation For End-To-End 
Speech Synthesis With Pretrained Models,” in ICASSP 2020-2020 
IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP), pp. 7634–7638. IEEE, 2020. 

		  doi: 10.1109/icassp40776.2020.9053371
[78]	 M. Zhang, X. Zhou, Z. Wu, and H. Li, “Towards Zero-Shot Multi-

Speaker Multi-Accent Text-to-Speech Synthesis,” IEEE Signal 
Processing Letters 2023. doi: 10.1109/lsp.2023.3292740

[79]	 H. B. Moss, V. Aggarwal, N. Prateek, J. González, and R. Barra-
Chicote, “BOFFIN TTS: Few-Shot Speaker Adaptation by Bayesian 
Optimization,” In ICASSP IEEE International Conference on 
Acoustics, Speech and Signal Processing (ICASSP), pp. 7639–7643. 
IEEE, 2020. doi: 10.1109/icassp40776.2020.9054301

[80]	 J. P. H. Van Santen, R. Sproat, J. Olive, and J. Hirschberg, Progress in 
speech synthesis. Springer Science & Business Media, 2013. 

		  doi: 10.1007/978-1-4612-1894-4_15
[81] N. Kaur and P. Singh, “Conventional and contemporary approaches 

used in text to speech synthesis: a review,” Artif Intell Rev, vol. 56, 
no. 7, pp. 5837–5880, Jul. 2023, doi: 10.1007/s10462-022-10315-0.

https://doi.org/10.48550/arXiv.2006.04558

https://doi.org/10.21437/interspeech.2018-1830
https://openreview.net/forum?id=TgSVWXw22FQ
https://doi.org/10.21437/interspeech.2022-10131
https://arxiv.org/abs/1904.02373
https://doi.org/10.48550/arXiv.1904.02373
https://doi.org/10.21437/interspeech.2020-2985
https://doi.org/10.21437/interspeech.2021-979
https://doi.org/10.21437/interspeech.2022-11223
https://doi.org/10.21437/interspeech.2022-10761
https://doi.org/10.1609/aaai.v32i1.11671
https://doi.org/10.21437/interspeech.2022-11278
https://doi.org/10.21437/Interspeech.2021-1265
https://arxiv.org/abs/1904.02373
https://doi.org/10.48550/arXiv.2110.04153
https://doi.org/10.1109/iscslp57327.2022.10038135
https://doi.org/10.1109/icassp.2014.6855097
https://doi.org/10.1109/icassp39728.2021.9413466
https://doi.org/10.1109/icassp43922.2022.9746282
https://ieeexplore.ieee.org/abstract/document/9689505
https://doi.org/10.21437/interspeech.2022-454
https://doi.org/10.23919/apsipaasc55919.2022.9980331
https://doi.org/10.1109/ijcnn55064.2022.9892596
https://ieeexplore.ieee.org/abstract/document/9306250
https://doi.org/10.1109/taslp.2023.3308374
https://doi.org/10.36244/icj.2022.3.7
https://doi.org/10.21437/interspeech.2023-2313
https://proceedings.neurips.cc/paper_files/paper/2018/hash/6832a7b24bc06775d02b7406880b93fc-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2018/hash/6832a7b24bc06775d02b7406880b93fc-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2018/hash/6832a7b24bc06775d02b7406880b93fc-Abstract.html
https://doi.org/10.1109/icassp40776.2020.9053371
https://doi.org/10.1109/lsp.2023.3292740
https://doi.org/10.1109/icassp40776.2020.9054301
https://doi.org/10.1007/978-1-4612-1894-4_15
https://doi.org/10.1007/s10462-022-10315-0


Advancements in Expressive Speech Synthesis:  
a Review

MARCH 2024 • VOLUME XVI • NUMBER 146

INFOCOMMUNICATIONS JOURNAL

[82]	 Y. J. Zhang, C. Zhang, W. Song, Z. Zhang, Y. Wu, and X. He, “Prosody 
Modelling with Pre-Trained Cross-Utterance Representations for 
Improved Speech Synthesis,” IEEE/ACM Trans Audio Speech Lang 
Process, vol. 31, pp. 2812–2823, 2023, 

		  doi: 10.1109/TASLP.2023.3278184.
[83] H. Bae and Y.-S. Joo, “Enhancement of Pitch Controllability using 

Timbre-Preserving Pitch Augmentation in FastPitch,” International 
Speech Communication Association, INTERSPEECH, 2022, pp. 6–10 
doi: 10.21437/interspeech.2022-55

[84]	 N. Adiga and S. R. M. Prasanna, “Acoustic Features Modelling for 
Statistical Parametric Speech Synthesis: A Review,” IETE Technical 
Review, vol. 36, no. 2, pp. 130–149, 2019. 

		  doi: 10.1080/02564602.2018.1432422
[85]	 J. Ni, Y. Shiga, and H. Kawai, “Duration Modeling with Global 

Phoneme- Duration Vectors.,” International Speech Communication 
Association, INTERSPEECH, 2019, pp. 4465–4469. 

		  doi: 10.21437/interspeech.2019-2126
[86]	 J. Lian, C. Zhang, G. K. Anumanchipalli, and D. Yu, “Unsupervised 

TTS Acoustic Modeling for TTS with Conditional Disentangled 
Sequential V AE,” IEEE/ACM Trans Audio Speech Lang Process, 
2023. doi: 10.1109/taslp.2023.3290423

[87]	 K. Fujita, T. Ashihara, H. Kanagawa, T. Moriya, and Y. Ijima, “Zero-
Shot Text-To-Speech Synthesis Conditioned Using Self-Supervised 
Speech Representation Model,” in IEEE International Conference 
on Acoustics, Speech, and Signal Processing Workshops (ICASSPW) 
2023. doi: 10.1109/icasspw59220.2023.10193459

[88]	 A. Abbas et al., “Expressive, variable, and controllable duration 
modelling in TTS,” International Speech Communication Association, 
INTERSPEECH, 2022. doi: 10.21437/interspeech.2022-384

[89]	 Y. Stylianou, “Applying the Harmonic Plus Noise Model in 
Concatenative Speech Synthesis,” 2001. doi: 10.1109/89.890068

[90]	 J. Y. Zhang, A. W. Black, and R. Sproat, “Identifying Speakers 
in Children’s Stories for Speech Synthesis.” In Eighth European 
Conference on Speech Communication and Technology. 2003.  
doi: 10.21437/eurospeech.2003-586

[91]	 R. Jain, M. Y. Yiwere, D. Bigioi, P. Corcoran, and H. Cucu, “A 
Text-to-Speech Pipeline, Evaluation Methodology, and Initial  
Fine-Tuning Results for Child Speech Synthesis,” IEEE Access, vol. 
10, pp. 47 628–47 642, 2022, doi: 10.1109/access.2022.3170836

[92]	 A. Borgh, K. ; Dickson, W. Patrick, K. Borgh, and W. P. Dickson, 
“DOCUMENT RESUME ED 277 007 CS 210 188 The Effects on 
Children’s Writing of Adding Speech Synthesis "permission to 
reproduce this material has been granted by,” 1986. 

		  doi: 10.1080/08886504.1992.10782629
[93]	 C. Terblanche, M. Harty, M. Pascoe, and B. V Tucker, “A Situational 

Analysis of Current Speech-Synthesis Systems for Child Voices: A 
Scoping Review of Qualitative and Quantitative Evidence,” Applied 
Sciences, vol. 12, no. 11, p. 5623, 2022.

Shaimaa Alwaisi was born in, Iraq. She got a BSc 
degree in Computer Engineering at Diyala University, 
higher Diploma from Iraqi commission for computer 
and informatics ICCI and a MSc degree in Computer 
Engineering at Selcuk University, Turkey. She cur-
rently PhD student at the Speech Technology and Smart 
Interactions Laboratory in the Budapest University of 
Technology and Economics. She is working on neural 
vocoders and acoustic models for speech synthesis. 
her current interests are signal processing, expressive 

speech synthesis, Child speech synthesis, Deep learning, acoustic models, and 
voice conversion.

Géza Németh was born in 1959. He obtained his MSc 
in electrical engineering, major in Telecommunications 
at the Faculty of Electrical Engineering of BME in 
1983. Also, at BME: dr. univ., 1987, PhD 1997. He is 
an associate professor at BME. He is the author or co-
author of more than 170 scientific publications and 4 
patents. His research fields include speech technology, 
service automation, multilingual speech and multimodal 
information systems, mobile user interfaces and 
applications. He is the Head of the Speech Technology 

and Smart Interactions Laboratory of BME TMIT.

[94]	 A. Govender, F. de Wet, and J.-R. Tapamo, “HMM Adaptation 
For Child Speech Synthesis,” in Sixteenth Annual Conference 
of the International Speech Communication Association, 2015.  
doi: 10.21437/interspeech.2015-379

[95]	 A. Govender and F. De Wet, “Objective Measures To Improve 
The Selection Of Training Speakers In HMM-Based Child Speech 
Synthesis,” in Pattern Recognition Association of South Africa and 
Robotics and Mechatronics International Conference (PRASA-
RobMech), IEEE, 2016, pp. 1–6.

		  doi: 10.1109/robomech.2016.7813193
[96]	 D. Giuliani and B. BabaAli, “Large Vocabulary Children’s Speech 

Recognition with DNN-HMM and SGMM Acoustic Modeling,” 
in Sixteenth Annual Conference of the International Speech 
Communication Association, 2015. 

		  doi: 10.21437/interspeech.2015-378
[97]	 P. Cosi, “A Kaldi-Dnn-Based Asr System For Italian,” in International 

Joint Conference On Neural Networks (IJCNN), IEEE, 2015, pp. 1–5. 
doi: 10.1109/ijcnn.2015.7280336

[98]	 Matsumoto, Kento, Sunao Hara, and Masanobu Abe. "Speech-
Like Emotional Sound Generation Using WaveNet." IEICE 
TRANSACTIONS on Information and Systems 105, no. 9 (2022): 
1581–1589. doi: 10.1587/transinf.2021edp7236

https://doi.org/10.1109/TASLP.2023.3278184
https://doi.org/10.21437/interspeech.2022-55
https://doi.org/10.1080/02564602.2018.1432422
https://doi.org/10.21437/interspeech.2019-2126
https://doi.org/10.1109/taslp.2023.3290423
https://doi.org/10.1109/icasspw59220.2023.10193459
https://doi.org/10.21437/interspeech.2022-384
https://doi.org/10.1109/89.890068
https://doi.org/10.21437/eurospeech.2003-586
https://doi.org/10.1109/access.2022.3170836
https://doi.org/10.1080/08886504.1992.10782629
https://doi.org/10.21437/interspeech.2015-379
https://doi.org/10.1109/robomech.2016.7813193
https://doi.org/10.21437/interspeech.2015-378
https://doi.org/10.1109/ijcnn.2015.7280336
https://doi.org/10.1587/transinf.2021edp7236


Speech synthesis from intracranial stereotactic
Electroencephalography using a neural vocoder

INFOCOMMUNICATIONS JOURNAL

MARCH 2024 • VOLUME XVI • NUMBER 1 47

DOI: 10.36244/ICJ.2024.1.6

Budapest University of Technology and Economics Department of Telecom- 
munications and Media Informatics (BME), Hungary

corresponding author (e-mail: arthur@tmit.bme.hu) (e-mail: csapot@tmit.
bme.hu)

Speech synthesis from intracranial stereotactic
Electroencephalography using a neural vocoder

Frigyes Viktor Arthur and Tamás Gábor Csapó

Abstract—Speech is one of the most important human biosig-
nals. However, only some speech production characteristics are 
fully understood, which are required for a successful speech-
based Brain-Computer Interface (BCI). A proper brain-to-
speech system that can generate the speech of full sentences 
intelligibly and naturally poses a great challenge. In our study, we 
used the SingleWordProduction-Dutch-iBIDS dataset, in which 
speech and intracranial stereotactic electroencephalography 
(sEEG) signals of the brain were recorded simultaneously 
during a single word production task. We apply deep neural 
networks (FC-DNN, 2D-CNN, and 3D-CNN) on the ten 
speakers’ data for sEEG-to-Mel spectrogram prediction. Next, 
we synthesize speech using the WaveGlow neural vocoder. Our 
objective and subjective evaluations have shown that the DNN-
based approaches with neural vocoder outperform the baseline 
linear regression model using Griffin-Lim. The synthesized 
samples resemble the original speech but are still not intelligible, 
and the results are clearly speaker dependent. In the long term, 
speech-based BCI applications might be useful for the speaking 
impaired or those having neurological disorders.
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I. INTRODUCTION

It is expected that 0.4% of the European population suf-
fers from a speech impairment [1], [2], [3]. Digital ap-
plications using speech technology could significantly help
their everyday communication. Loss of speech can cause
social isolation, and feelings of loss of identity and can
lead to clinical depression [4]. Augmentative and alternative
communication (AAC) technologies, such as brain-computer
interfaces (BCIs) might directly read brain signals to restore
lost speech capabilities [5]. In the future, the application of
speech neuroprostheses have the potential to help patients with
neurological disorders or speech impairment.

Brain-computer interfaces enable direct control of comput-
ers without physical activity, with potential applications as
rehabilitation devices for motor-impaired persons (e.g., input
system for writing, prosthetic control). Ideally, BCI applica-
tions operate in naturalistic scenarios, requiring a neural input
with good temporal resolution, minimal preprocessing needs
and relative ease of measurement. There are several available
modalities for neuroimaging, including electroencephalogra-
phy (EEG) [6], stereotactic depth electrodes [7], intracranial
electrocorticography (ECoG) [8], Magnetoencephalography
(MEG) [9], Local Field Potential (LFP) [8].
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From the above, EEG has been the most widely studied
one for BCI [6], [10]. EEG is a non-invasive method for
measuring small electrical currents on the scalp, which reflect
brain activity. It allows one to assess cortical excitability and
effective connectivity in clinical and basic research without
extensive invasive surgical installation. However, obtaining
clean and usable EEG recordings (e.g., signals, data) is chal-
lenging due to the various bio-physiology-related artifacts that
contaminate the electroencephalographic signal. In biomedical
applications, such as monitoring brain activity during surgery
or in sleep studies, EEG measurements typically utilize mul-
tiple electrodes, ranging from 32 to 256, with sampling rates
around 256–2048 Hz. Relative to other methods recording
electric potentials from the brain (ECoG, MEG, LFP), at the
cost of poorer SNR and lower spatial resolution [8], EEG is
non-invasive, cheap, and can be obtained even with wearable
devices that allow for measurements outside the lab [11].

Csapó et al. [12] present a novel multimodal analysis
method that combines EEG, articulatory movements, and
speech signals for multimodal analysis, combining brain signal
analysis during speech with ultrasound-based articulatory data.
This study developed a fully connected deep neural network
(FC-DNN) to predict articulatory movements using EEG sig-
nals. The study has demonstrated a clear relationship between
EEG and articulatory movements and therefore provides valu-
able insights for future research in speech BCI.

Arthur and Csapó [13] discuss using deep learning to
process EEG brain signals and synthesize speech. EEG signals
were processed and used in this study to estimate the mel-
spectral parameters of speech using deep learning models.
Although not intelligible, the synthesized speech resembled
the original speech signal, presenting a promising avenue for
further investigation.

While initial results are encouraging, it is important to
recognize the current limitations and challenges facing EEG-
based BCI systems in the context of speech synthesis. Al-
though these systems show potential, especially for aiding
individuals with speech impairments, the extent of their effec-
tiveness and practical applicability remains an area of ongoing
research. The journey towards refining these technologies to
reliably and effectively synthesize speech involves overcoming
significant technical and scientific hurdles. Continued research
and development are crucial to enhance our understanding and
to push the boundaries of what is achievable with EEG-based
BCIs. Ultimately, the goal is to leverage these advancements
to improve the quality of life for those facing communication
challenges, but it is essential to maintain a realistic perspective
on the current state of the technology and the work that still

INFOCOMMUNICATIONS JOURNAL 1
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lies ahead.
More invasive methods offer increased insights into brain

activity compared to EEG. Still, invasive EEG-based speech-
BCIs (e.g., brain-to-speech and brain-to-text) are not yet
successful due to the fact that the input brain signal and
the target speech signal or text are spatially, acoustically, and
temporally too distant from each other. All studies related to
this topic [14], [15], [16], [17], [18], except for a feasibility
experiment [19], use estimated or "indirect" articulatory
information, meaning that they consider the articulatory data
derived from the speech signal or the textual content. Recently,
a novel database featuring parallel speech and intracranial
stereotactic Electroencephalography recordings has been in-
troduced (SingleWordProduction-Dutch-iBIDS dataset, [7]).
This dataset employs a baseline linear regression method for
sEEG-to-speech mapping, utilizing the Griffin-Lim algorithm
for speech generation. As highlighted by Verwoert et al. in
[7], the application of neural vocoders in conjunction with
deep neural networks for sEEG-to-speech prediction has not
been previously explored.

A. Goal of the current study

Speech is one of the most important human biosignals,
but not all the characteristics of speech production are fully
understood, which are required for a successful speech-based
BCI [20]. A proper brain-to-speech system capable of generat-
ing full sentences in an intelligible and natural manner presents
significant challenges and necessitates multidisciplinary ap-
proaches. In this paper, we apply deep neural networks for
sEEG-to-speech synthesis, using neural vocoders.

In our study, we employed the Griffin-Lim algorithm as a
baseline method for speech generation and used linear regres-
sion for mapping brain signals to speech features, following
the methodology of Verwoert et al. [7]. This choice maintains
consistency with existing literature and enables direct compar-
ison of our results. The simplicity and ease of implementation
of both techniques provide easily replicable and interpretable
baselines, highlighting the improvements offered by advanced
methods, such as deep learning-based solutions compared to
traditional techniques.

II. RELATED WORK

A. Brain-to-speech synthesis

There has been some research on non-invasive EEG-to-
speech synthesis [21], [22]. As EEG provides information
only from the surface of the scalp, this process is extremely
difficult, and until now there has been no successful approach
to predict fully intelligible synthesized speech. On the other
hand, typically more invasive methods have been tested for
speech BCI [20]. With participants implanted using sEEG,
audible speech could be reliably generated in real-time [23].

With intracranial electrocorticography (ECoG), another
highly invasive procedure, continuous speech decoding could
be solved [15]. Verwoert et al. [7] applied the Griffin-Lim
algorithm in combination with linear regression to show that
sEEG-to-speech mapping is feasible. According to the correla-
tions that they received during cross-validation and comparison

of 10 speakers, the results are highly dependent on the speaker,
most probably because of the location of the sEEG electrodes
in the individual subjects.

Another recent article, Lesaja et al. [24] presents brain2vec,
a self-supervised model for learning speech-related hidden
unit representations from unlabeled intracranial EEG data.
Brain2vec’s performance rivals that of competitive supervised
learning methods on speech activity detection and word clas-
sification tasks, indicating potential practical applications in
speech decoding using intracranial EEG data.

The BrainBERT model, introduced as a transformer-based
model, marks a significant advancement in analyzing neural
signals recorded from the human brain for natural language de-
coding [25]. This model, an adaptation of the well-established
BERT (Bidirectional Encoder Representations from Trans-
formers) in Natural Language Processing, is specifically de-
signed to translate brain signals into natural language. Unlike
traditional methods that predominantly rely on labeled data,
BrainBERT employs self-supervised learning from extensive
unlabeled data, potentially enhancing its performance. As per
the original BERT model, BrainBERT records context from
both directions of the input data (in this case, brain signals),
which allows it to understand the temporal dependency be-
tween signals [26]. Recent studies have examined BrainBERT
using sEEG data, with promising results [25].

B. Neural vocoders in speech synthesis

Since the introduction of WaveNet in 2016 [27], neural
vocoders have been instrumental in generating highly natural
raw samples of speech. These vocoders, including recent
variants like WaveGlow [28], synthesize high-quality speech
by transforming mel-spectrograms or other spectral feature
inputs into audio waveforms. WaveGlow, in particular, stands
out as a flow-based network capable of real-time, high-quality
speech synthesis from mel-spectrograms. Its simplicity and
efficiency in speech generation offer considerable advantages.
This approach has been effectively utilized in various ap-
plications, such as in the work of Csapó et al. [29], who
integrated WaveGlow into an ultrasound-based articulatory-
to-acoustic conversion process. Similarly, Cao and colleagues
demonstrated the successful use of WaveGlow for synthesizing
speech from Electromagnetic Articulography (EMA) data of
tongue movements [30].

C. Speaker adaptation in Text-To-Speech synthesis

A significant area of research in this field has focused on
the development of natural-sounding speech synthesis. Csapó
et al. have extensively explored the role of prosodic variability
methods in a corpus-based unit selection text-to-speech sys-
tem [31], and have worked on enhancing the naturalness of
synthesized speech [32]. More recently, Mandeel et al. [33]
demonstrate successful speaker adaptation experiments using
Tacotron2, a state-of-the-art text-to-speech synthesis system.

These advances together show rapid progress in brain-to-
speech synthesis, neural vocoders, and text-to-speech syn-
thesis. It is anticipated that the integration of cutting-edge
methods and innovative approaches will provide significant
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Fig. 1. The electrode locations of each participant were visualized on the surface reconstruction of their native anatomical MRI, as sourced from the
SingleWordProduction-Dutch-iBIDS [7] dataset. Each red sphere in the figure represents an implanted electrode channel. This visualization is pivotal to our
study as it illustrates the diverse and individualized placement of sEEG electrodes across participants, all of whom are part of the dataset used in this research.
The variation in electrode placement is dictated by clinical requirements for treating epilepsy.

advancements in communications technology in the future,
particularly for individuals with speech impairments.

III. METHODS

A. Data

We used the SingleWordProduction-Dutch-iBIDS dataset
([7], https://osf.io/nrgx6/) that contains in total 10 speakers
with drug-resistant epilepsy (mean age 32.4 +/- 12.6 years; 5
male, 5 female). sEEG electrodes (Fig. 1.) were implanted
as part of the clinical management of their epilepsy. The
location of the electrodes was determined solely on the basis
of clinical need. All participants were native Dutch speakers.
Participants’ voices were pitch-shifted to ensure anonymity. A
total of 100 words were recorded for each participant, resulting
in a total recording time of 300 seconds. Participants were
implanted with platinum-iridium sEEG electrode arrays. Neu-
ral data were recorded using one or two Micromed SD LTM
amplifier(s) with 128 channels each. Electrode connections
were mapped to a common white matter contact. Data were
recorded at 1024 Hz or 2048 Hz and downsampled to 1024
Hz. The audio was recorded at 48 kHz.

Recording of brain and speech signals using separate but
time-aligned devices was already provided with the dataset.
Synchronization is essential to ensure that each segment of
EEG data corresponds to the specific speech output. This
is achieved through a precise time-stamping process during

recording, which aligns the EEG signals with the respective
speech segments.

B. Preprocessing the brain and speech signals

On the sEEG brain signal, we followed a detailed
preprocessing protocol as described in the publication we
acquired the data set from [7], using the tools at https://github.
com/neuralinterfacinglab/SingleWordProductionDutch/.
Specifically, we executed several steps to refine the EEG data:

Extraction of the Hilbert Envelope: We targeted the high-
frequency activity (70–170Hz) for each electrode contact using
a bandpass filter (4th order IIR). This step was crucial for iso-
lating significant neural activity relevant to speech processes.
Hilbert transform provides several advantages for sEEG sig-
nal analysis, including the construction of analytic signals,
extraction of instantaneous amplitude and phase information,
improved time-frequency analysis, envelope detection, cross-
frequency coupling analysis, and applicability to non-linear
and non-stationary signals. These advantages can help better
understand the underlying brain activity.

Attenuation of Line Noise: To minimize electrical inter-
ference, particularly the harmonics of 50Hz line noise, we
employed two bandstop filters (4th order IIR).

Temporal Windowing and Stacking: We averaged the filtered
signal over 50ms windows with a 10ms frameshift. To incor-
porate temporal context, which is vital for understanding the
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dynamics of brain activity, we stack features from multiple
time windows. Specifically, for each time window of interest,
we include features from the 4 preceding and 4 succeeding
windows alongside the current window, totaling nine windows
per feature set.

Normalization: For each feature, we normalized the data
to zero mean and unit variance using the statistics from the
training data. This normalization was then consistently applied
to the evaluation data to maintain data integrity across different
sets.

After preprocessing the sEEG signal, we calculate 80-
dimensional mel-spectrogram of the speech using the
’librosa’ library. During synthesis, we obtain the esti-
mated speech using the WaveGlow model with inverse
STFT transform [28], using a pre-trained model provided
by NVIDIA, https://drive.google.com/file/d/1cjKPHbtAMh_
4HTHmuIGNkbOkPBD9qwhj/view?usp=sharing.

Regarding the database split, we used a standard approach
where the dataset was divided into training and testing subsets.
Specifically, 80% of the data was used for training, and the
remaining 20% for testing. This split was performed on a per-
speaker basis, ensuring that the model’s performance could be
evaluated on unseen data from each subject.

C. Linear regression (baseline)

The baseline study [7] reconstructed the log-mel spectro-
gram from the high-gamma features using linear regression
models. In these models, the high-gamma feature vector is
multiplied with a weight matrix to reconstruct the log-mel
spectrogram. The weights are determined using a least-squares
approach. For the waveform reconstruction, they utilized the
Griffin-Lim method.

D. Deep learning architectures

Next, we train the deep learning algorithms, which receive
windowed sEEG Hilbert transformed components as input and
produce 80-dimensional mel-spectral coefficients as output.

As for the hyperparameters, the learning rate, number of
epochs, and other training parameters were selected through a
series of preliminary experiments aimed at optimizing model
performance. The number of epochs was set to 100, with early
stopping using a patience of three, to prevent overfitting. The
learning rate was initially set to a standard value of 0.001
and was adjusted based on the model’s performance during
the validation phase. Regarding learning rate scheduling, we
used a dynamic approach where the learning rate was halved
if there was no improvement in model performance on the
validation set for two epochs.

Our method is illustrated in Figure 2, which shows the
general flow from the raw sEEG input to the final synthetic
speech. In order to obtain an analytical signal from the
sEEG data, the Hilbert transform is used to acquire both
amplitude and phase information (as detailed in Sec. III-B).
We then apply the transformed signal as the input of our neural
network models, including FC-DNN, 2D-CNN, and 3D-CNN.
Based on the sEEG input, these models are trained to predict
the mel-spectrograms of speech, thereby creating a mapping

sEEG

Predicted speech

Hilbert transform

FC-DNN
2D-CNN
3D-CNN

Mel-spectrogram

WaveGlow

Fig. 2. General block diagram of our methods: from sEEG input, we predict
mel-spectrogram of speech, which is synthesized to audio using a neural
vocoder.

between brain activity and acoustic representations of speech.
WaveGlow neural vocoder is used to convert the predicted
mel-spectrogram into audible speech.

1) FC-DNN Architecture: We utilized a Fully Connected,
Feed-Forward Deep Neural Network (FC-DNN) as our foun-
dational model. This architecture incorporates five hidden
layers, each consisting of 1000 neurons. We employed a
Rectified Linear Unit (ReLU) as the activation function. The
network’s input layer has a dimensionality of 1143, which
represents features calculated from a combination of 127 EEG
channels and 9 temporal windows, as detailed in Section III-B.
The output layer features 80 neurons, corresponding to the
number of mel-spectral coefficients.

2) 2D-CNN: Our 2D convolutional network starts with two
convolutional layers, each equipped with a 5x5 kernel size,
having swish activation. The input data is formatted as 9x127
dimensions (9 temporal windows with 127 features in each).
After a maxpooling layer, there is a third convolutional layer.
The filter sizes are 30, 60 and 70. Dropout layers with a rate
of 0.2 are used. Subsequent to the convolutional layers, the
network architecture includes two fully connected layers. The
first fully connected layer contains 1000 neurons. The final
layer in our 2D-CNN model is the output layer, having linear
activation, and designed with 80 neurons to match the number
of mel-spectral bands for the waveform reconstruction.

3) 3D-CNN: Standard CNN considers 2D images to extract
features by convolving 2D filters over images. Therefore, to
model temporal information, a third dimension has to be
considered [34], [35]. Here we use a 3D-CNN variation by
adding a third dimension as (2+1)D CNN which shows good
performance in video action recognition task [36]. It also
shows good results when used with ultrasound images and
it could be considered as a substitute of CNN+LSTM [37].
This network processed 5 frames of input that were 6 frames
apart (6 is the stride parameter of the convolution along the
time axis) [37]. Following the concept of (2+1)D convolution,
the 5 frames were first processed only spatially, and then got
combined along the time axis just below the uppermost dense
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TABLE I
MCD SCORES ON THE TEST SET.

Mel-Cepstral Distortion (dB)
Linear Regression FC-DNN 3D-CNN 2D-CNN

Speaker with Griffin-Lim with WaveGlow with WaveGlow with WaveGlow
sub-01 6.25 4.63 4.86 4.64
sub-02 6.41 4.95 5.19 4.98
sub-03 5.52 4.39 4.50 4.51
sub-04 5.28 4.16 4.86 4.50
sub-05 6.20 6.12 6.08 6.39
sub-06 4.36 3.63 4.16 4.10
sub-07 5.50 4.32 5.39 4.31
sub-08 5.03 5.00 5.50 5.13
sub-09 5.12 4.29 5.56 5.15
sub-10 4.26 4.01 4.34 4.13
Mean 5.39 4.55 5.04 4.78

layer.
Our 3D model begins with an input layer that handles the

reshaped sEEG data, formatted into a 9x127 dimension. To
accommodate the 3D processing, the data is expanded into
a five-dimensional structure, ensuring compatibility with the
subsequent 3D convolutional layers. The core of our 3D-CNN
comprises three convolutional layers, each utilizing a kernel
size of (5, 13, 13), strides set to (6, 2, 2), and having swish
activation. These layers are designed to extract and analyze
both spatial and temporal features from the sEEG data. There
is a maxpooling layer after the second convolution. The filter
sizes are 30, 60 and 70. Dropout layers with a rate of 0.2
are used. Subsequent to the convolutional layers, the network
architecture includes two fully connected layers, similarly
to the 2D-CNN, finally predicting the 80-dimensional mel-
spectrogram.

After the trainings with the above deep neural networks, the
predicted spectrograms of the test data are used to synthesize
speech using the WaveGlow vocoder (Sec. III-B).

IV. RESULTS

A. Demonstration sample

Fig. 3 a) shows the spectrogram of a natural utterance
and b–e) those of synthesized speech from sEEG input with
linear regression (baseline from [7]) and various DNNs. The
synthesized speech has a similar envelope as the natural
speech, but few of the spectral details are included. Although
the speech reconstructed from the mel-spectral parameters
estimated on the test pile resembles the original speech,
it is noisy and difficult to understand. However, in some
parts, sections of synthesized speech (e.g. vowels) are similar
to the original audio. Synthesized samples are available at
http://smartlab.tmit.bme.hu/icj2023_sEEG.

B. Objective evaluation

To check whether the proposed DNNs can reproduce the
features of the original speech, we evaluated the spectral
differences between natural speech and synthesized speech
using Mel-Cepstral Distortion (MCD) [38], which is a standard
metric for text-to-speech synthesis evaluation. As MCD is an
error measure, lower values indicate higher similarity between
the original and synthesized speech. Table I displays the
MCD values calculated on the test data for each speaker. In

Original

Linear Regression

FC-DNN

2D-CNN

3D-CNN

Fig. 3. Speech samples from speaker sub-06: a) original, b) synthesized using
LR (baseline) c) FC-DNN, d) 2D-CNN, e) 3D-CNN.
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combination with a WaveGlow vocoder, the Fully Connected
Deep Neural Network (FC-DNN) model consistently produced
the lowest MCD values across all speakers tested. Therefore,
this combination of models and vocoders is the most effective
means of reproducing speech that is resembling the original.

It is interesting to note the variation in MCD values among
different speakers. For instance, speaker sub-06 consistently
showed lower MCD values across all models, indicating that
the acoustic features of this speaker might be easier for the
models to learn and reproduce. This observation suggests that
individual characteristics of each speaker’s data, and most
probably, the electrode positions can significantly influence the
performance of speech synthesis models. The comparison with
the correlations in [7] provided intriguing insights. Speakers
with higher brain-speech signal correlation generally had lower
MCD values, reinforcing the potential link between these two
metrics. Prior studies [15] have also suggested a possible
connection between neural correlates and the quality of speech
synthesis.

C. Subjective evaluation

In order to determine which proposed version is closer
to natural speech, we conducted an online MUSHRA-like
test [39].

Our aim was to compare the natural words with the syn-
thesized words of the baseline and the proposed approaches.
In the test, the listeners had to rate the naturalness of each
stimulus in a randomized order relative to the reference (which
was the natural utterance), from 0 (very unnatural) to 100 (very
natural). Out of the 10 speakers used in the earlier analysis,
we selected four speakers for the listening test, based on the
correlation analysis between brain and speech signals (Fig. 4
of [7]): ’sub-04/F’, ’sub-06/M’ (high correlation), and ’sub-
01/F’, ’sub-02/M’ (low correlation). We selected four words
from the test set of each speaker (altogether 16 words, each
being 2 seconds long). The variants appeared in randomized
order (different for each listener).

Each word was rated by non-Dutch speakers: altogether 9
listeners participated in the test; 7 males, 2 females; ages: 23-
39 (avg: 32). The test took 5–28 minutes (avg: 11 minutes)
to complete. Fig. 4 top shows the average naturalness scores
for the tested approaches. The benchmark (Linear Regression)
version achieved the lowest scores, while the natural words
were rated the highest, as expected. The proposed DNN
and neural vocoder based versions were performed over the
baseline system for all speakers. In the overall figure, we can
see a slight preference towards the FC-DNN, compared to the
convolutional neural networks. To check the statistical signifi-
cances, we conducted Mann-Whitney-Wilcoxon ranksum tests
with a 95% confidence level. Based on this, the differences
between FC-DNN, 2D-CNN, and 3D-CNN are not statistically
significant.

When vizualizing the results speaker by speaker (Fig. 4
bottom), we can see the following trends: for the female
speakers (sub-01 and sub-04), the 2D-CNN was preferred
most, whereas this is not the case for the male speakers (sub-
02 and sub-06). Based on the earlier correlation analysis on

Fig. 4. Results of the subjective evaluation with respect to naturalness,
speaker by speaker (top) and average (bottom). The errorbars show the 95%
confidence intervals.

the speakers in [7] we have seen that sub-04 and sub-06
had a higher overall correlation between brain and speech
signals, and this is clearly reflected in the speaker-by-speaker
results of the listening test: both of them achieved reasonably
higher naturalness scores compared to sub-01 and sub-02.
Regarding MWM ranksum tests, the only case when the results
are statistically significant, is sub-06: here, the 2D-CNN was
ranked significantly lower than FC-DNN and 3D-CNN, while
the difference between the latter two is not significant, but
3D-CNN is slightly preferred.

As a summary of the evaluation, the objective MCD score
was not always found to be helpful in our case (i.e, it does not
highly correspond to the correlations of [7]), but clearly, the
subjective listening test could show the differences between
the speakers of low and high correlation. The relatively low
naturalness scores (18–29) indicate that sEEG-based synthe-
sized speech is far from being intelligible, but at least, has
properties similar to the natural speech signal.

V. DISCUSSION AND CONCLUSIONS

In this paper, we applied deep neural networks (FC-DNN,
2D-CNN, and 3D-CNN) for sEEG-to-melspectrogram pre-
diction. Next, we synthesized speech using the WaveGlow
neural vocoder. Our objective evaluation (Mel-Cepstral Distor-
tion) has shown that the DNN-based approaches with neural
vocoder outperform the baseline linear regression model using
Griffin-Lim for speech generation [7].

Various studies have demonstrated the feasibility of ECoG-
to-text [40] and ECoG-to-speech [15] conversion using dif-
ferent methodological approaches, such as linear regression
and deep neural networks. However, their applicability in
sEEG-to-speech conversion remained largely unexplored. Our
work, therefore, complements these efforts and provides an
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alternative approach to sEEG-to-speech synthesis. Compared
to traditional methods such as Griffin-Lim, neural vocoders
represent an advance in generating more natural-sounding
speech than traditional methods. While the complexity of
sEEG data presented significant challenges, our approach
utilizing deep neural networks and a neural vocoder showed
promising results in comparison to the baseline linear regres-
sion model.

However, we acknowledge that the quality of synthesized
speech remains an area for improvement. Our models pro-
duced speech that has distinct speech-like characteristics but
was not yet fully understandable. This is a common issue
encountered in the field of brain-to-speech synthesis, including
studies utilizing EEG and ECoG data.

The reason why the 2D-CNNs and 3D-CNNs produced
samples with larger errors in the current study might be
that the amount of training data is extremely limited (i.e.,
only 100 words / 300 seconds), and more complex networks
cannot learn the necessary mapping. Another explanation for
the low 2D-CNN and 3D-CNN results might be that as
our sEEG input data is put together in a specific way (i.e,
brain signal is windowed, and Hilbert-transformed values are
stacked together), this type of image is difficult to process
for a convolutional neural network. On the other hand, the
differences are highly dependent on the speaker (and thus,
most probably on the electrode positioning) : with sub-06, who
had the highest correlations in [7], the 3D-CNN performed
best, indicating that there is potential in applying convolutional
neural networks for this task.

Both the subjective listening tests and objective evaluations
show that the neural network-based approaches outperformed
the linear regression baseline. The relatively low naturalness
scores (18–29) indicate that sEEG-based synthesized speech is
far from being intelligible, but clearly, has properties similar
to the natural speech signal, both visually on the spectrograms,
and when listening to the samples. Therefore, we expect that
our results might help future speech-based Brain-Computer
Interfaces.

VI. FUTURE WORK

Deep learning is vast and ever-evolving, providing ample
opportunity to refine our sEEG-to-speech prediction mod-
els. One approach to enhance the current results could in-
volve experimenting with different architectures and types of
deep learning models. For instance, Transformer models [41],
known for their effectiveness in various natural language pro-
cessing tasks, could be explored for sEEG-to-speech synthesis.
We may be able to gain valuable insights into how different
brain regions contribute to speech production through the
attention mechanism in Transformers, potentially enabling us
to improve our predictive abilities [41]. We acknowledge that
the efficacy of complex models like Transformers is contingent
on the availability of substantial training data. However, we
expect that as more and more research groups are dealing with
speech and brain signal recording and processing, such larger
datasets might be available in the future.

Our feature extraction process currently involves window-
ing the raw sEEG data and applying the Hilbert transform.

However, future work could involve more sophisticated feature
extraction techniques like Wavelet Transform [42] or Fourier
Transform [43]. These techniques could capture different as-
pects of the sEEG signals, leading to improved performance
of the models [44].

In terms of data, our current study is based on the Sin-
gleSpeechProductionDutch dataset [7]. While this dataset has
provided valuable insights, we recognize the potential benefits
of using a more extensive and diverse dataset. Consequently,
we intend to record our database, expanding the pool of
speakers and potentially improving the generalizability and
robustness of the model. Nevertheless, it is important to note
that we will use EEG signals rather than sEEG for our planned
dataset, which may present new challenges and opportunities.

Furthermore, it may be beneficial to explore applying more
advanced post-processing techniques. The WaveGlow neural
vocoder is currently employed for speech synthesis, but future
work could investigate the use of more recent vocoding
techniques, like AutoVocoder [45], to enhance the quality of
the speech synthesised.

The positions of sEEG electrodes in the dataset were
determined by clinical needs in the treatment of epilepsy,
which can influence the quality of synthesized speech [7].
This is supported by existing literature, which shows that
electrodes placed closer to key speech areas, particularly in
the left frontal lobe, are more likely to capture neural signals
that are crucial for accurate speech synthesis. This theoretical
understanding, underpinned by neurophysiological insights
into speech production processes, suggests that variations
in electrode arrangements could result in differences in the
quality of synthesized speech. However, a detailed correlation
analysis between electrode positions and synthesized speech
quality was beyond the scope of our current study, presenting
a valuable direction for future research.

Finally, we see many potential applications for sEEG-to-
speech synthesis in the future. Due to rapid advances in deep
learning, we anticipate improving our models and contributing
to the development of speech-based Brain-Computer Interfaces
in the future, as well as improving their performance.
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Abstract— Due to the urgent need to develop technologies for 

continuous glucose monitoring in diabetes individuals, potential 
research has been applied by invoking the microwave techniques. 
Therefore, this work presents a novel technique based on a single 
port microwave circuit, antenna structure, based on Metamaterial 
(MTM) transmission line defected patch for sensing the blood 
glucose level in noninvasive process. For that, the proposed 
antenna is invoked to measure the blood glucose through the field 
leakages penetrated to the human blood through the skin. The 
proposed sensor is constructed from a closed loop connected to an 
interdigital capacitor to magnify the electric field fringing at the 
patch center. The proposed antenna sensor is found to operate 
excellently at the first mode, 0.6GHz, with S11 impedance 
matching less than -10dB. The proposed sensor performance is 
tested experimentally with 15 cases, different patients, through 
measuring the change in the S11 spectra after direct touching to 
the sensor a finger print of a patient. The proposed sensor is found 
to be effectively very efficient detector for blood glucose variation 
with a low manufacturing cost when printed on an FR-4 substrate. 
The experimental measurements are analyzed mathematically to 
obtain the calibration equation of the sensor from the curve fitting. 
Finally, the theoretical and the experimental results are found to 
be agreed very well with a percentage of error less than 10%. 
 

Index Terms— Glucose, sensor, MTM, noninvasive. 

I. INTRODUCTION 
iktor Veselago first presented metamaterials (MTM) in 
1967 [1]. Such structures may be called artificial materials 

with nontraditional properties [2]. These materials possess 
negative permittivity (ε) and negative permeability (μ) that in 
turn support the backward wave propagation of electromagnetic 
waves [3]. In 1999 an interesting subwavelength element 
realized as split ring resonator (SRR) to achieve negative 
permeability was proposed by Pendry [4]. Basically, SRR can 
be represented as tank of LC circuit possessing equivalent 
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inductance (L) and the capacitance (C) between two concentric 
rings resonating at specific frequency [4]. The SRR has 
normally a size much less than, around wavelength (λ/10), the 
guided wavelength. Therefore, many researchers applied SRR 
as technique to retrieve the characterizations of materials [4]. 

In such process, the changes in the scattering parameters (S-
parameters) with respect to a sample under test (SUT) 
introduction can be transferred through certain algorithm to 
retrieve the materials characterizations. 

Microwave sensing is a reliable method for liquid 
characterization that has been employed in the past decade [5]. 
SRRs [6], complementary SRRs (CSRRs) [3], open CSRRs 
(OCSRRs) [4], closed ring resonator [5] and other miniaturized 
microwave resonators [6] based on transmission lines attracted 
a considerable attention of researchers for biomedical 
applications [6]. The electromagnetic properties of these 
structures depend on their operation frequency and quality 
factor changes with respect to different liquid introductions [7]. 
Through measuring S-parameters coefficients, complex 
dielectric parameters of SUT, the liquid characterizations can 
be addressed [8]. This has provided a new sensing platform for 
the biological, pharmaceutical, and fuel industries [9]. Most 
microwave biological sensors are mounted under ultra-thin 
cylindrical pipes [10] or slotted cylindrical tubes [11]. Based on 
measuring S-parameters magnitudes at certain frequency, 
materials under test losses can be extracted for quality detection 
[12]. Such technology, however, the resolution of high-losses 
was found a significant concern due to the issue of skin depth 
penetration [13]. On the other hand, most suggested methods 
require micro fluidic channel tubes to contain SUT; that add 
extra losses and difficulty of penetrations [14]. Nevertheless, 
many sensors detection process is based on certain volume of 
SUT that limits their use for real-time monitoring applications 
[15]. Moreover, an additional size and fabrication cost could be 
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Abstract—Due to the urgent need to develop technologies for 
continuous glucose monitoring in diabetes individuals, poten-
tial research has been applied by invoking the microwave tech-
niques. Therefore, this work presents a novel technique based 
on a single port microwave circuit, antenna structure, based 
on Metamaterial (MTM) transmission line defected patch for 
sensing the blood glucose level in noninvasive process. For that, 
the proposed antenna is invoked to measure the blood glu-
cose through the field leakages penetrated to the human blood 
through the skin. The proposed sensor is constructed from a 
closed loop connected to an interdigital capacitor to magnify 
the electric field fringing at the patch center. The proposed an-
tenna sensor is found to operate excellently at the first mode, 
0.6GHz, with S11 impedance matching less than -10dB. The 
proposed sensor performance is tested experimentally with 15 
cases, different patients, through measuring the change in the 
S11 spectra after direct touching to the sensor a finger print of 
a patient. The proposed sensor is found to be effectively very 
efficient detector for blood glucose variation with a low manu-
facturing cost when printed on an FR-4 substrate. The experi-
mental measurements are analyzed mathematically to obtain 
the calibration equation of the sensor from the curve fitting. 
Finally, the theoretical and the experimental results are found 
to be agreed very well with a percentage of error less than 10%.

Index Terms—Glucose, sensor, MTM, noninvasive.

DOI: 10.36244/ICJ.2024.1.7

  
Abstract— Due to the urgent need to develop technologies for 

continuous glucose monitoring in diabetes individuals, potential 
research has been applied by invoking the microwave techniques. 
Therefore, this work presents a novel technique based on a single 
port microwave circuit, antenna structure, based on Metamaterial 
(MTM) transmission line defected patch for sensing the blood 
glucose level in noninvasive process. For that, the proposed 
antenna is invoked to measure the blood glucose through the field 
leakages penetrated to the human blood through the skin. The 
proposed sensor is constructed from a closed loop connected to an 
interdigital capacitor to magnify the electric field fringing at the 
patch center. The proposed antenna sensor is found to operate 
excellently at the first mode, 0.6GHz, with S11 impedance 
matching less than -10dB. The proposed sensor performance is 
tested experimentally with 15 cases, different patients, through 
measuring the change in the S11 spectra after direct touching to 
the sensor a finger print of a patient. The proposed sensor is found 
to be effectively very efficient detector for blood glucose variation 
with a low manufacturing cost when printed on an FR-4 substrate. 
The experimental measurements are analyzed mathematically to 
obtain the calibration equation of the sensor from the curve fitting. 
Finally, the theoretical and the experimental results are found to 
be agreed very well with a percentage of error less than 10%. 
 

Index Terms— Glucose, sensor, MTM, noninvasive. 

I. INTRODUCTION 
iktor Veselago first presented metamaterials (MTM) in 
1967 [1]. Such structures may be called artificial materials 

with nontraditional properties [2]. These materials possess 
negative permittivity (ε) and negative permeability (μ) that in 
turn support the backward wave propagation of electromagnetic 
waves [3]. In 1999 an interesting subwavelength element 
realized as split ring resonator (SRR) to achieve negative 
permeability was proposed by Pendry [4]. Basically, SRR can 
be represented as tank of LC circuit possessing equivalent 

 
1,*Al-Ma’moon University College, Baghdad, Iraq  
2International Applied and Theoretical Research Center (IATRC), Baghdad 
Quarter-Iraq, taelwi82@gmail.com 
3Laser and Optoelectronics Engineering Department, University of 
Technology- Iraq, Computer Techniques Engineering, 
4Al Hikma University College Iraq - Baghdad 
5Department of Information and Communications Engineering, Al-Khwarizmi 
college, University of Baghdad, Iraq 
 

inductance (L) and the capacitance (C) between two concentric 
rings resonating at specific frequency [4]. The SRR has 
normally a size much less than, around wavelength (λ/10), the 
guided wavelength. Therefore, many researchers applied SRR 
as technique to retrieve the characterizations of materials [4]. 

In such process, the changes in the scattering parameters (S-
parameters) with respect to a sample under test (SUT) 
introduction can be transferred through certain algorithm to 
retrieve the materials characterizations. 

Microwave sensing is a reliable method for liquid 
characterization that has been employed in the past decade [5]. 
SRRs [6], complementary SRRs (CSRRs) [3], open CSRRs 
(OCSRRs) [4], closed ring resonator [5] and other miniaturized 
microwave resonators [6] based on transmission lines attracted 
a considerable attention of researchers for biomedical 
applications [6]. The electromagnetic properties of these 
structures depend on their operation frequency and quality 
factor changes with respect to different liquid introductions [7]. 
Through measuring S-parameters coefficients, complex 
dielectric parameters of SUT, the liquid characterizations can 
be addressed [8]. This has provided a new sensing platform for 
the biological, pharmaceutical, and fuel industries [9]. Most 
microwave biological sensors are mounted under ultra-thin 
cylindrical pipes [10] or slotted cylindrical tubes [11]. Based on 
measuring S-parameters magnitudes at certain frequency, 
materials under test losses can be extracted for quality detection 
[12]. Such technology, however, the resolution of high-losses 
was found a significant concern due to the issue of skin depth 
penetration [13]. On the other hand, most suggested methods 
require micro fluidic channel tubes to contain SUT; that add 
extra losses and difficulty of penetrations [14]. Nevertheless, 
many sensors detection process is based on certain volume of 
SUT that limits their use for real-time monitoring applications 
[15]. Moreover, an additional size and fabrication cost could be 

6Department of Mechatronics, Al-Kawarizmi College of Engineering, Baghdad 
University 
7Media technology and communication engineering Department/College of 
Engineering, University of Information Technology and communications-Iraq 
8Electrical Engineering Department, College of Engineering, Mustansiriyah 
University 
9Electrical Electronics Engineering Department, Gaziantep University 
10Department of Information and Communication Engineering, College of 
information engineering, Al-Nahrain University, Baghdad, Iraq. 

On the Performance of Metamaterial based 
Printed Circuit Antenna for Blood Glucose 
Level Sensing Applications: A Case Study 

Taha A. Elwi1,2,*, Hayder H. Al-Khaylani3,4, Wasan S. Rasheed5, Sana A. Al-Salim6, Mohammed H. 
Khalil7, Lubna Abbas Ali8, Omar Almukhtar Tawfeeq6, Saba T. Al-Hadeethi7, Dhulfiqar Ali1, Zainab 

S. Muqdad8, Serkan Özbay9, Marwah.M. Ismael10 

V 

mailto:taelwi82%40gmail.com?subject=
https://doi.org/10.36244/ICJ.2024.1.7


On the Performance of Metamaterial based Printed Circuit Antenna  
for Blood Glucose Level Sensing Applications: A Case Study

INFOCOMMUNICATIONS JOURNAL

MARCH 2024 • VOLUME XVI • NUMBER 1 57

  
Abstract— Due to the urgent need to develop technologies for 

continuous glucose monitoring in diabetes individuals, potential 
research has been applied by invoking the microwave techniques. 
Therefore, this work presents a novel technique based on a single 
port microwave circuit, antenna structure, based on Metamaterial 
(MTM) transmission line defected patch for sensing the blood 
glucose level in noninvasive process. For that, the proposed 
antenna is invoked to measure the blood glucose through the field 
leakages penetrated to the human blood through the skin. The 
proposed sensor is constructed from a closed loop connected to an 
interdigital capacitor to magnify the electric field fringing at the 
patch center. The proposed antenna sensor is found to operate 
excellently at the first mode, 0.6GHz, with S11 impedance 
matching less than -10dB. The proposed sensor performance is 
tested experimentally with 15 cases, different patients, through 
measuring the change in the S11 spectra after direct touching to 
the sensor a finger print of a patient. The proposed sensor is found 
to be effectively very efficient detector for blood glucose variation 
with a low manufacturing cost when printed on an FR-4 substrate. 
The experimental measurements are analyzed mathematically to 
obtain the calibration equation of the sensor from the curve fitting. 
Finally, the theoretical and the experimental results are found to 
be agreed very well with a percentage of error less than 10%. 
 

Index Terms— Glucose, sensor, MTM, noninvasive. 

I. INTRODUCTION 
iktor Veselago first presented metamaterials (MTM) in 
1967 [1]. Such structures may be called artificial materials 

with nontraditional properties [2]. These materials possess 
negative permittivity (ε) and negative permeability (μ) that in 
turn support the backward wave propagation of electromagnetic 
waves [3]. In 1999 an interesting subwavelength element 
realized as split ring resonator (SRR) to achieve negative 
permeability was proposed by Pendry [4]. Basically, SRR can 
be represented as tank of LC circuit possessing equivalent 

 
1,*Al-Ma’moon University College, Baghdad, Iraq  
2International Applied and Theoretical Research Center (IATRC), Baghdad 
Quarter-Iraq, taelwi82@gmail.com 
3Laser and Optoelectronics Engineering Department, University of 
Technology- Iraq, Computer Techniques Engineering, 
4Al Hikma University College Iraq - Baghdad 
5Department of Information and Communications Engineering, Al-Khwarizmi 
college, University of Baghdad, Iraq 
 

inductance (L) and the capacitance (C) between two concentric 
rings resonating at specific frequency [4]. The SRR has 
normally a size much less than, around wavelength (λ/10), the 
guided wavelength. Therefore, many researchers applied SRR 
as technique to retrieve the characterizations of materials [4]. 

In such process, the changes in the scattering parameters (S-
parameters) with respect to a sample under test (SUT) 
introduction can be transferred through certain algorithm to 
retrieve the materials characterizations. 

Microwave sensing is a reliable method for liquid 
characterization that has been employed in the past decade [5]. 
SRRs [6], complementary SRRs (CSRRs) [3], open CSRRs 
(OCSRRs) [4], closed ring resonator [5] and other miniaturized 
microwave resonators [6] based on transmission lines attracted 
a considerable attention of researchers for biomedical 
applications [6]. The electromagnetic properties of these 
structures depend on their operation frequency and quality 
factor changes with respect to different liquid introductions [7]. 
Through measuring S-parameters coefficients, complex 
dielectric parameters of SUT, the liquid characterizations can 
be addressed [8]. This has provided a new sensing platform for 
the biological, pharmaceutical, and fuel industries [9]. Most 
microwave biological sensors are mounted under ultra-thin 
cylindrical pipes [10] or slotted cylindrical tubes [11]. Based on 
measuring S-parameters magnitudes at certain frequency, 
materials under test losses can be extracted for quality detection 
[12]. Such technology, however, the resolution of high-losses 
was found a significant concern due to the issue of skin depth 
penetration [13]. On the other hand, most suggested methods 
require micro fluidic channel tubes to contain SUT; that add 
extra losses and difficulty of penetrations [14]. Nevertheless, 
many sensors detection process is based on certain volume of 
SUT that limits their use for real-time monitoring applications 
[15]. Moreover, an additional size and fabrication cost could be 

6Department of Mechatronics, Al-Kawarizmi College of Engineering, Baghdad 
University 
7Media technology and communication engineering Department/College of 
Engineering, University of Information Technology and communications-Iraq 
8Electrical Engineering Department, College of Engineering, Mustansiriyah 
University 
9Electrical Electronics Engineering Department, Gaziantep University 
10Department of Information and Communication Engineering, College of 
information engineering, Al-Nahrain University, Baghdad, Iraq. 

On the Performance of Metamaterial based 
Printed Circuit Antenna for Blood Glucose 
Level Sensing Applications: A Case Study 

Taha A. Elwi1,2,*, Hayder H. Al-Khaylani3,4, Wasan S. Rasheed5, Sana A. Al-Salim6, Mohammed H. 
Khalil7, Lubna Abbas Ali8, Omar Almukhtar Tawfeeq6, Saba T. Al-Hadeethi7, Dhulfiqar Ali1, Zainab 

S. Muqdad8, Serkan Özbay9, Marwah.M. Ismael10 

V 

added to permeate the microwave reach to SUT [16]. In such 
technique, at certain liquid height such process is validated to 
ensure field retardation and phase change to analyze the 
dielectric characterization [17] in specific for biological solvent 
detection. 

Based on the current development of microwave sensors 
technologies, fractal based MTM structures attracted 
researchers to realize effective and efficient sensors to achieve 
a high selectivity [18]. On top of that, MTM realizes excellent 
performance in the microwave ranges due to their 
nontraditional properties [19]. Moreover, MTM based fractal 
geometries use remain very excellent candidates in the 
biomedical aspects due to their size reduction in comparison to 
traditional microwave structures. For example, a MTM 
defected patch-based monopole antenna was presented in [20] 
for pollution detections. Authors in [21] proposed a study of 
using a traditional microstrip transmission line for liquid 
properties detection. Then, an extended study based on a fractal 
MTM structure was presented for blood glucose sensing using 
a microstrip transmission line loaded with carbon nanotube 
patch in [22]. The use of MTM patch-based nanoscale 
structures was introduced for gas detection in [23] and [24]. 
MTM based fractal structures were applied to realize as MTM 
defect on the ground plane for cancer cell detection based on 
their electrical properties' changes [25]. 

In this work, the proposed work is a design of a sensor 
antenna structure based on MTM inclusion for sensing 
applications. This paper, a new approach based on a single port 
antenna element via MTM transmission line structure is 
proposed for blood glucose level detection. The MTM is 
constructed from an interdigital capacitor structure with a 
closed loop ring. The proposed structure is designed for glucose 
detection. The paper is organized as follows: The geometrical 
details are discussed in section II. The analysis process and the 
parametric study are presented in section III. The experimental 
measurements are explained in section IV after conducting 15 
cases for the proposed study. The paper is concluded in section 
V. 

II. SENSOR DESIGN AND DETAILS 
The proposed antenna is mounted on an FR-4 substrate of a 

dielectric constant ε_r=4.3 and loss tangent tanδ=0.025 with 
thickness h=1.6 mm. The copper metal is 35µm. The proposed 
antenna is compacted on 30×30 mm2 size. The antenna is fed 
with a 50Ω microstrip transmission line of 7.25mm width and 
extended to touch the patch at length of 1.5mm to be connected 
directly to the radiating structure. The proposed closed loop 
design details are shown in Fig1(a). The back panel is covered 
completely copper as appeared in Fig1(b). 

In addition to the proposed closed loop in this design, a 
copper interdigital capacitor (Cint), see Fig1(c), is conducted to 
maximize the electrical field intensity [12] at the center of the 
patch where SUT would be positioned. All geometrical details 
of Fig1 are listed in Table 1. 

III. MTM PATCH THEORETICAL ANALYSIS  
As mentioned later, the proposed radiating patch consists 

of a closed loop coupled with Cint. Therefore, the proposed 
patch is structured in such way to provide maximum fringing 
from the Cint edges. The Cint unit cell is constructed as interfaced 
strip lines with an effective length (Ln) to provide the desirable 
resonant frequency (fr). The resulted capacitance value of the 
used Cint can be calculated analytically from the following 
equation [26]:  
𝐶𝐶 = 𝜀𝜀𝑟𝑟𝑟𝑟×10−3
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where C is the capacitance in pF, εre is the effective relative 
permittivity, n is the capacitor figure number, L is the finger 
length, K and K’ are elliptical integral coefficients and they are 
given as [27]: 
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2
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where, k is the argument and can be calculated as [26]: 

𝑘𝑘 = (𝑡𝑡𝑡𝑡𝑡𝑡 (𝑎𝑎𝑎𝑎4𝑏𝑏))
2
                 (4) 

where: 
𝑎𝑎 = 𝑊𝑊

2  and 𝑏𝑏 = 𝑊𝑊+𝑍𝑍1
2                (5) 

where, W is the finger width and S is the separation distance 
between fingers. 
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where: 
𝑎𝑎 = 𝑊𝑊

2  and 𝑏𝑏 = 𝑊𝑊+𝑍𝑍1
2                (5) 

where, W is the finger width and S is the separation distance 
between fingers. 

 
Fig1; Antenna design: (a) Front view, (b) Back view, and (c) Interdigital 

capacitor design. 
 

TABLE 1; GEOMETRICAL DETAILS OF THE PROPOSED ANTENNA SENSOR. 
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Now, the proposed sensor is analytically decomposed from 
the equivalent circuit diagram that is shown in Fig2. From Fig2, 
the proposed Cint is connected to two strip lines. The strip lines 
provide L-C branch (Lstrip and Cstrip) connection in parallel with 
Cint. OCSSR structure is connected to Cint through three shoring 
posts to be presented by (Lshort) in the equivalent circuit 
diagram. It is good to mention that the effects of the inherent 
stray inductors (Ls) and stray capacitors (Cs) are proposed in the 
equivalent circuit diagram. Nevertheless, the feed line 
equivalently is considered as an inductor (Lfeed). The equivalent 
representation for the closed loop (CL) is considered as an 
inductor (LCL) and can be calculated according to the following 
equation [23]:
𝐿𝐿 = 𝜇𝜇𝑜𝑜𝑎𝑎 {𝑙𝑙𝑙𝑙 (

8𝑎𝑎
𝑍𝑍1) − 2} (6)

Based on the circuit model in Fig2, the authors calculated 
the relative lumped elements with an initial gauss from 
equations (1 and 6) for the proposed design at the desired 
frequency band using ADS software package parametrically. 
The S-parameters are calculated from the circuit model to be 
shown in Fig. 2. It is found that the proposed sensor shows a 
resonance mode at 0.63GHz from the lumped elements that are 
listed in Table 2.

Fig2; Equivalent circuit for the proposed resonator.

TABLE 2; CALCULATED LUMPED ELEMENTS.

Lumped element Value

L1 1.01nH
L2 1.89nH
L3 11.6mH
L4 23.04nH
L5 17.45nH
C1 11.12pF
C2 2.06pF
C3 1.91pF

From the proposed circuit model, the equivalent impedance 
is calculated based on the second branch to be described by L2
and C2 be noted as ZT,2 following:
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In Fig. 2, the equivalent circuit of the proposed patch can be 
represented as two series of L1Cc circuits and one parallel L2C2
circuit and the total impedance, ZT,1 in addition to the band pass 
resonant frequency, fr,1 which can be given as following:   
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ZT,1 in relation (5) has two resonant frequencies, lower and 
upper frequencies which are represented by ωr,1 and ωr,2
respectively. When ω = ωr,1 a maximum transmission could 
occur, where minimum ZT,1 is (ZT,1 ≥ jωL2), while zero 
transmission occurs at ω = ωr,2 where ZT,1 maximum is 
achieved. In order to confirm prior discussion, an 
electromagnetic 3D simulation based on CST software 
packages in invoked to validate the obtained results from the 
circuit model. In Fig3, the patch is simulated when mounted in 
closed to a transmission line to evaluate the S11 spectrum. It is 
found that there are three resonant frequencies, fr,1, fr,2 and fr,3,
all these frequencies are the same resonant frequencies of the 
proposed patch. Therefore, these frequencies can be used as 
indicators for characterizing SUT after applying sensitivity 
analysis at the resonant frequencies.

Fig 3; S11 spectra comparison between ADS and CST software packages.

IV. SENSITIVITY ANALYSIS

The proposed sensor is invented based on a quasi-static 
small antenna [12] in which designed with an interdigital 
capacitor surrounded with closed loop. Due to such 
combination a current circulation occurs at three legs of 
connection between the capacitor and the closed loop. The 
variation in the capacitance of the structure generally concerns 
on the variation in the permittivity of SUT. Therefore, the 
performance variation in the proposed structure with 
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A 30 K 14
B 30 Z 0.25
C 27 Z1 0.5
D 27 I 5.5
E 24 S 0.5
F 24 N 1
G 7.25 V1 2.25

W1 3 V2 2
W2 2.5 V3 2.25
W3 3.75 V 2.75
W4 2 P1 2.25
O 0.5 P2 0.75
L1 14.75 T 2.25
L2 11.75 M 4.5
L3 11.5 X 4.25

Now, the proposed sensor is analytically decomposed from 
the equivalent circuit diagram that is shown in Fig2. From Fig2, 
the proposed Cint is connected to two strip lines. The strip lines 
provide L-C branch (Lstrip and Cstrip) connection in parallel with 
Cint. OCSSR structure is connected to Cint through three shoring 
posts to be presented by (Lshort) in the equivalent circuit 
diagram. It is good to mention that the effects of the inherent 
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shown in Fig. 2. It is found that the proposed sensor shows a 
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listed in Table 2.
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ZT,1 in relation (5) has two resonant frequencies, lower and 
upper frequencies which are represented by ωr,1 and ωr,2
respectively. When ω = ωr,1 a maximum transmission could 
occur, where minimum ZT,1 is (ZT,1 ≥ jωL2), while zero 
transmission occurs at ω = ωr,2 where ZT,1 maximum is 
achieved. In order to confirm prior discussion, an 
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packages in invoked to validate the obtained results from the 
circuit model. In Fig3, the patch is simulated when mounted in 
closed to a transmission line to evaluate the S11 spectrum. It is 
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all these frequencies are the same resonant frequencies of the 
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ZT,1 in relation (5) has two resonant frequencies, lower and 
upper frequencies which are represented by ωr,1 and ωr,2
respectively. When ω = ωr,1 a maximum transmission could 
occur, where minimum ZT,1 is (ZT,1 ≥ jωL2), while zero 
transmission occurs at ω = ωr,2 where ZT,1 maximum is 
achieved. In order to confirm prior discussion, an 
electromagnetic 3D simulation based on CST software 
packages in invoked to validate the obtained results from the 
circuit model. In Fig3, the patch is simulated when mounted in 
closed to a transmission line to evaluate the S11 spectrum. It is 
found that there are three resonant frequencies, fr,1, fr,2 and fr,3,
all these frequencies are the same resonant frequencies of the 
proposed patch. Therefore, these frequencies can be used as 
indicators for characterizing SUT after applying sensitivity 
analysis at the resonant frequencies.
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IV. SENSITIVITY ANALYSIS

The proposed sensor is invented based on a quasi-static 
small antenna [12] in which designed with an interdigital 
capacitor surrounded with closed loop. Due to such 
combination a current circulation occurs at three legs of 
connection between the capacitor and the closed loop. The 
variation in the capacitance of the structure generally concerns 
on the variation in the permittivity of SUT. Therefore, the 
performance variation in the proposed structure with 

Parameter Value (mm) Parameter Value (mm)
A 30 K 14
B 30 Z 0.25
C 27 Z1 0.5
D 27 I 5.5
E 24 S 0.5
F 24 N 1
G 7.25 V1 2.25

W1 3 V2 2
W2 2.5 V3 2.25
W3 3.75 V 2.75
W4 2 P1 2.25
O 0.5 P2 0.75
L1 14.75 T 2.25
L2 11.75 M 4.5
L3 11.5 X 4.25

TABLE I
Geometrical details of the proposed antenna sensor.

TABLE II
Calculated lumped elements
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introducing different permittivity values is discussed as 
following:

A. Resonant frequencies analysis
After introducing different SUT in the CST MWS 

environment, the frequency shifts are recorded to be tested later 
experimentally. Therefore, SUT must cover the whole area for 
the efficient perturbation of the E-field. The resonant 
frequencies of S11 in Fig.4 are considered as the reference of 
unloaded filter (fr,1 and fr,2). The proposed sensor is then loaded 
with the SUT, where the dielectric constant of the sample is 
changed randomly in a broad range from 76 to 90. The resonant 
frequencies (fr,1 andfr,2) corresponding to each sample are 
extracted, which are also plotted with variation of the dielectric 
constant as shown in Fig. 4 (a). For preferable conception the 
change in the resonant frequencies (∆fr= unloaded (fr,1 and fr,2)
– corresponding loaded (fr,1and fr,2)) is plotted in Fig. 4 (b).

Fig. 4 Performance variation in terms of frequency resonance of the proposed 
sensor with changing εr: (a) fr change and (b) ∆fr

-1.

From Fig. 4 (a) it can be noted that the resonant frequency, fr,1is 
about 170 MHz greater than resonant frequency, fr,2. Moreover, 
the relative change fr,1 with dielectric constant is about 150 MHz 
greater than fr,2 as depicted in Fig. 4 (b). In another meaning, for 
these resonant frequencies, fr,1 shows to be a good preference to 
obtain high sensitivity for supposed dielectric constant as 
compared to that of resonant frequency, fr,1.           

B. Quality factor analysis
For general resonators the quality factor, Q may be presented 
as [34]:

L
o P

WQ = (12)

where, ω0 is the angular resonant frequency, W is the electric 
and magnetic stored energy and PL represents the average power 
dissipated per cycle. The previous equation also can be 
rewritten as:

f
fQ r


= (13)

where fr is the resonant frequency and ∆f represents the relative 
3dB bandwidth of the resonator frequency response. The 
proposed sensor performance is simulated with different values 

of loss tangent from 0.01 to 0.15 and corresponding εʹr variation 
from 76 to 90. The relative quality factor is computed and 
depicted in Fig. 5.

Fig. 5; Quality factor variation of the proposed sensor calculated for fr,1 andfr,2.

From Fig. 5, it is fully interesting to observe that the slope of 
quality factor is identical to resonant fr,1 in comparison to fr,2 
slope with loss tangent change. While the slope of quality factor 
relative to fr,1 is greater than in fr,2 for the same condition. Hence 
the resonant fr,1 is utilized for characterizing the SUT.

V. DATA ANALYSIS

Now, the obtained results from the previous section are 
analyzed to evaluate the calibration sensitivity to be compared 
to the experimental results. In order to describe the tested 
samples, a numerical type is desired which generally plots the 
measured parameters (e.g., the resonant frequency and the 
quality factor) to the relative permittivity of the SUT.

A. Real permittivity calibration effects
The proposed sensor frequency resonance is found to be 

changed due to samples loading as can be observed in Fig.6; in 
which the inverse square of the resonant frequency (fr) is 
extracted from the S11 spectra. The results with the 
corresponding real permittivity (εʹr) of SUT are depicted in Fig. 
6.

Fig. 6.  f -2
r,1variation with respect of changing εʹr.

The obtained results in Fig. 6 confirm the results in 
equation (10) that is achieved from the equivalent circuit model. 
From equation (10), the values of L2 and C2 are supposed to be 
constant due to the solid values of the overall length of OCSRRs 
and εr of the substrate. It is interesting to note that the inverse 
square of the resonant frequency is directly proportional to the 
real permittivity of the SUT. Thus, in order to combine all the 
above effects, the dielectric constant of the SUT is 
mathematically expressed in terms of the resonant frequency 
(fr) as following:
𝜀𝜀𝑟𝑟′ = −3.519(𝑓𝑓𝑟𝑟−2)2 + 23.84(𝑓𝑓𝑟𝑟−2) − 5.007 (14)

The above relation is obtained from employing the curve 
fitting tools, which supplies a numerical model of the proposed 
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sensor to determine the real permittivity of SUT in terms of the 
measured resonant frequency (fr,1). It should be noted that all 
SUT has with a fixed 3mm thickness.

B. Imaginary permittivity calibration effects
After founding the numerical relations to determine the 

dielectric constant of SUT, an identical analysis is completed to 
find a numerical relation for computing the loss tangent (tanδ)
of SUT. As explained earlier that the resonant fr,1 provides a 
quality factor greater than those obtained at fr,2. Hence, the 
resonant fr,1 is employed for calculating tanδ of SUT. Therefore, 
at first, the dielectric constant in the range of 76 to 90 are 
possessed and the tanδ values combatable for each dielectric 
SUT is changed from 0 to 0.15, and the relative simulated 
results of fr,1change is depicted in Fig. 7.

Fig. 7. Inverse of Q-factor in terms of tanδ for various values of εʹr (Linear 
relevance between Q-1

SUT and tanδ for all values of εʹr).

The quality factor (QSUT) for each case is determined from 
the simulated response of S11spectra, after that the inverse of 
QSUT values and the corresponding tanδ are depicted in Fig. 7. 
The relation between the tanδ and the QSUT can be specified as 
following [12]:
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where εr’ and εr” are the real and imaginary parts of the relative 
permittivity in equation (15). From Fig. 7, it is noted that the 
alteration of Q-1

SUT with tanδ is linear compound with a rising 
values depend on εʹr of SUT. Thus, to deduce the tanδ of SUT, 
which relies on the loaded quality factor as well as the εʹr of 
SUT, a curve fitting tool is utilized to conclude the numerical 
model as presented below:
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After deciding the εʹr from equation (14) and tanδ from (16), the 
imaginary part of the complex permittivity can be determined 
using (15).

VI. SENSOR FABRICATION

The proposed sensor is fabricated using printed circuit 
board technology as shown in Fig. 9. The sensor is fabricated 
from using chemical wit etching process in the laboratory. The 
FR4 substrate is considered as the plate form layer for the 
proposed sensor.

Fig. 8; Fabricated sensor structure: (a) front view and (b) back view.

Now, the proposed sensor performance is measured in 
terms of S11 spectrum as seen in Fig. 10 without introducing any 
SUT. The obtained results from measurements are compared to 
those obtained from simulation results to show excellent 
agreement as seen in Fig. 9. 

Fig 9; Experimental validation.

The measurement results are conducted to PNA8720 
network analyzer after applying a single port calibration 
process. From the measured S11 spectra, the proposed sensor 
shows a frequency resonance at 0.63 GHz with |S11|=16dB, and 
a bandwidth from 0.6GHz to 0.65GHz. This frequency is 
considered to ensure excellent penetration through the human 
tissues with minimum skin depth loss [6].

VII. MEASUREMENTS AND VALIDATIONS

In this section, the proposed sensor measurement operation 
is based on placing a finger on the interdigital capacitor part to 
monitor the variation in the S11 magnitude and frequency 
resonance shift. The field penetration through the finger skin is 
affected by the blood glucose variation [12]. Such variation is 
attributed to the blood glucose change that could be reflected 
on the effective permittivity of the blood as discussed [23]. 
Therefore, the effects of touching the proposed sensor by 15 
patients at three different times to realize 45 recorders are listed 
in Table 3 to analyze the sensor performance. The recorded data 
in Table 3 are collected based on S11 spectra change in terms of 
S11 magnitude, frequency resonance, phase change, bandwidth, 
and quality factor. 

A. Sensing Process
The S11 spectra of the proposed sensor are obtained 

according to the samples listed in Table 3. The sensor is 
designed to ensure that the first resonant position is located 
around 0.63 GHz. Therefore, the fabricated sensor S11 spectra 
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changes are evaluated after introducing the patient finger touch. 
Thus, the prepared design is experimentally tested using the 
PNA8720 network analyzer. The obtained changes in the S11
spectra are monitored in terms of |S11|, frequency shift, phase 
change, quality factor, and bandwidth.

TABLE 3; CLARIFICATION OF THE RESULTS OF MEASURING DIFFERENT BLOOD 
SAMPLES.

Case BMI Age Sex Glucose 
level

fr,1

shift/ 
GHz

QSUT/
% εr' εr"

1 18.9 8 M
112 0.1091 12 25.91 0.311
210 0.112 11 25.76 0.283
150 0.115 11 25.59 0.281

2 23.1 49 M
119 0.106 12 26.08 0.313
103 0.115 15 25.59 0.3833
210 0.111 22 25.81 0.567

3 22.9 65 F
250 0.123 9 25.16 0.226
225 0.193 8 21.59 0.172
245 0.191 21 21.69 0.455

4 27.8 50 F
131 0.103 31 26.25 0.813
159 0.109 9 25.92 0.233
177 0.108 12 25.97 0.311

5 26.5 59 F
331 0.121 11 25.27 0.278
193 0.111 13 25.81 0.335
168 0.156 17 23.43 0.398

6 29.9 38 F
102 0.116 15 25.54 0.383
131 0.182 10 22.13 0.221
109 0.174 9 22.52 0.202

7 30.2 44 M
158 0.091 16 26.9 0.43
146 0.098 13 26.52 0.344
126 0.092 10 26.85 0.268

8 28.5 43 M
110 0.109 11 25.92 0.282
191 0.106 12 26.08 0.313
198 0.110 11 25.87 0.284

9 24.1 48 F
104 0.122 7 25.22 0.176
107 0.133 7 24.63 0.172
115 0.124 9 25.11 0.226

10 32.6 41 F
119 0.111 11 25.81 0.283
131 0.110 13 25.87 0.336
114 0.113 12 25.7 0.308

11 36.1 53 M
121 0.091 10 26.9 0.269
180 0.094 7 26.74 0.187
140 0.092 11 26.85 0.295

12 32.6 67 F
390 0.109 9 25.92 0.233
331 0.101 7 26.36 0.184
378 0.105 12 26.14 0.313

13 22.4 61 F
190 0.189 11 21.79 0.239
143 0.188 10 21.83 0.218
126 0.177 9 22.37 0.201

14 23.5 62 M
129 0.109 12 25.92 0.311
130 0.110 11 25.87 0.284
120 0.112 9 25.76 0.231

15 24.9 54 M
121 0.195 4 21.5 0.086
189 0.196 5 21.45 0.107
134 0.179 8 22.28 0.178

B. Sensing Validation
The variation in the S11 spectra of the proposed sensor is 

measured after placing a finger on it as a non-invasive 
technique. Therefore, the glucose level is monitored through a 
normal device glucose meter, PRODIGY Autocode, and the 
results are recorded in Table 3. Then, the patient finger is placed 
on the proposed sensor and the frequency resonance shift and 
S11 magnitude change are listed in Table 3. Next, the measured 
glucose level is compared with respect to the relative values of 
εr’ and εr” that are listed in Table 3. Therefore, the measured fr,1 
and QSUT values are applied in equation (14) to (15) to calculate 
the relative values of εr’ and εr” from the measured data. The 
calculated values of εr’ and εr” are compared to their relatives 
from measurements in Table 3. Thus, in Table 4, the relative 
errors between the measured and calculated εr’ and εr” values 
are calculated. It is found a good agreement between the 
measured and calculated values. Therefore, from this 

comparison between the relative values of εr’ and εr”, the 
glucose level can be detected according to Table 4. 

Table 4; Comparison relative errors between the measured and calculated εr’ 
and εr” values.

Case 
number

Measured 
values

Calculated 
values

Error 
rate for

εr'

Error 
rate for

εr"

Total 
error 
rateεr' εr" εr' εr"

1
25.91 0.311 26.84 0.322 3.46% 3.41% 6.87%
25.76 0.283 25.87 0.284 0.42% 0.35% 0.77%
25.59 0.281 26.52 0.291 3.5% 3.43% 6.93%

2
26.08 0.313 27.01 0.324 3.44% 3.39% 6.83%
25.59 0.383 26.52 0.397 3.5% 3.52% 7.02%
25.81 0.567 26.73 0.588 3.44% 3.57% 7.02%

3
25.16 0.226 26.09 0.234 3.56% 3.41% 6.97%
21.59 0.172 22.51 0.180 4.08% 4.44% 8.52%
21.69 0.455 22.61 0.474 4.06% 4% 8.06%

4
26.25 0.813 27.17 0.842 3.38% 3.44% 6.82%
25.92 0.233 26.84 0.241 3.42% 3.31% 6.73%
25.97 0.311 26.90 0.322 3.45% 3.41% 6.86%

5
25.27 0.278 26.19 0.288 3.51% 3.47% 6.98%
25.81 0.335 26.73 0.347 3.44% 3.45% 6.89%
23.43 0.398 24.36 0.414 3.81% 3.86% 7.67%

6
25.54 0.383 26.46 0.396 3.47% 3.28% 6.75%
22.13 0.221 23.05 0.230 3.99% 3.91% 7.90%
22.52 0.202 23.45 0.211 3.96% 4.26% 8.22%

7
26.9 0.43 27.83 0.445 3.34% 3.37% 6.71%
26.52 0.344 27.44 0.356 3.35% 3.37% 6.72%
26.85 0.268 27.77 0.277 3.31% 3.24% 6.55%

8
25.92 0.285 26.84 0.295 3.46% 3.38% 6.84%
26.08 0.313 27.01 0.324 3.44% 3.39% 6.83%
25.87 0.284 26.79 0.182 3.43% 56.04% 59.47%

9
25.22 0.176 26.14 0.230 3.51% 23.47% 26.98%
24.63 0.172 25.56 0.234 3.63% 26.49% 30.12%
25.11 0.226 26.03 0.294 3.53% 23.12% 26.65%

10
25.81 0.283 26.73 0.348 3.44% 18.67% 22.11%
25.87 0.336 26.79 0.319 3.43% 5.32% 8.75%
25.7 0.308 26.63 0.319 3.49% 3.44% 6.93%

11
26.9 0.269 27.83 0.278 3.34% 3.23% 6.57%
26.74 0.187 27.66 0.193 3.32% 3.26% 6.58%
26.85 0.295 27.77 0.305 3.31% 3.27% 6.58%

12
25.92 0.233 26.84 0.241 3.42% 3.31% 6.73%
26.36 0.184 27.28 0.190 3.37% 3.15% 6.52%
26.14 0.313 27.06 0.324 3.39% 3.39% 6.78%

13
21.79 0.239 22.71 0.249 4.05% 4.01% 8.06%
21.83 0.218 22.76 0.227 4.08% 3.96% 8.04%
22.37 0.201 23.30 0.209 3.99% 3.77% 7.76%

14
25.92 0.311 26.84 0.322 3.42% 3.41% 6.83%
25.87 0.284 26.79 0.294 3.25% 3.40% 6.65%
25.76 0.231 25.82 0.232 0.23% 0.43% 0.66%

15
21.5 0.086 22.42 0.089 4.23% 3.37% 7.60%
21.45 0.107 22.37 0.111 4.11% 3.60% 7.71%
22.28 0.178 23.20 0.185 3.96% 3.78% 7.74%

Total error ratio for 
all measurements 9.76%

The total calculated error is evaluated from Table 4 according 
to the following equation:

*error = ∥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ∥
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 × 100 (17)

It is found the maximum error from the total values is less than 
10%.

VIII. CONCLUSION

The proposed sensor is presented to characterize blood 
glucose level through measuring the relative values of εr’ and 
εr” for different blood samples. The proposed sensor is 
constructed as a single-port network; therefore, it is designed 
based on an interdigital capacitor patch to sense the blood 
glucose level non-invasively. The reason of that, the field 
fringing from the proposed sensor is found to be magnified and 
easy to penetrate through the human skin to the blood vassals. 
It is found that the proposed sensor shows different frequency 
resonances within the band of interest. However, it is decided 
to consider only the first frequency resonance (fr,1) for sensing 

changes are evaluated after introducing the patient finger touch. 
Thus, the prepared design is experimentally tested using the 
PNA8720 network analyzer. The obtained changes in the S11
spectra are monitored in terms of |S11|, frequency shift, phase 
change, quality factor, and bandwidth.

TABLE 3; CLARIFICATION OF THE RESULTS OF MEASURING DIFFERENT BLOOD 
SAMPLES.

Case BMI Age Sex Glucose 
level

fr,1

shift/ 
GHz

QSUT/
% εr' εr"

1 18.9 8 M
112 0.1091 12 25.91 0.311
210 0.112 11 25.76 0.283
150 0.115 11 25.59 0.281

2 23.1 49 M
119 0.106 12 26.08 0.313
103 0.115 15 25.59 0.3833
210 0.111 22 25.81 0.567

3 22.9 65 F
250 0.123 9 25.16 0.226
225 0.193 8 21.59 0.172
245 0.191 21 21.69 0.455

4 27.8 50 F
131 0.103 31 26.25 0.813
159 0.109 9 25.92 0.233
177 0.108 12 25.97 0.311

5 26.5 59 F
331 0.121 11 25.27 0.278
193 0.111 13 25.81 0.335
168 0.156 17 23.43 0.398

6 29.9 38 F
102 0.116 15 25.54 0.383
131 0.182 10 22.13 0.221
109 0.174 9 22.52 0.202

7 30.2 44 M
158 0.091 16 26.9 0.43
146 0.098 13 26.52 0.344
126 0.092 10 26.85 0.268

8 28.5 43 M
110 0.109 11 25.92 0.282
191 0.106 12 26.08 0.313
198 0.110 11 25.87 0.284

9 24.1 48 F
104 0.122 7 25.22 0.176
107 0.133 7 24.63 0.172
115 0.124 9 25.11 0.226

10 32.6 41 F
119 0.111 11 25.81 0.283
131 0.110 13 25.87 0.336
114 0.113 12 25.7 0.308

11 36.1 53 M
121 0.091 10 26.9 0.269
180 0.094 7 26.74 0.187
140 0.092 11 26.85 0.295

12 32.6 67 F
390 0.109 9 25.92 0.233
331 0.101 7 26.36 0.184
378 0.105 12 26.14 0.313

13 22.4 61 F
190 0.189 11 21.79 0.239
143 0.188 10 21.83 0.218
126 0.177 9 22.37 0.201

14 23.5 62 M
129 0.109 12 25.92 0.311
130 0.110 11 25.87 0.284
120 0.112 9 25.76 0.231

15 24.9 54 M
121 0.195 4 21.5 0.086
189 0.196 5 21.45 0.107
134 0.179 8 22.28 0.178

B. Sensing Validation
The variation in the S11 spectra of the proposed sensor is 

measured after placing a finger on it as a non-invasive 
technique. Therefore, the glucose level is monitored through a 
normal device glucose meter, PRODIGY Autocode, and the 
results are recorded in Table 3. Then, the patient finger is placed 
on the proposed sensor and the frequency resonance shift and 
S11 magnitude change are listed in Table 3. Next, the measured 
glucose level is compared with respect to the relative values of 
εr’ and εr” that are listed in Table 3. Therefore, the measured fr,1 
and QSUT values are applied in equation (14) to (15) to calculate 
the relative values of εr’ and εr” from the measured data. The 
calculated values of εr’ and εr” are compared to their relatives 
from measurements in Table 3. Thus, in Table 4, the relative 
errors between the measured and calculated εr’ and εr” values 
are calculated. It is found a good agreement between the 
measured and calculated values. Therefore, from this 

comparison between the relative values of εr’ and εr”, the 
glucose level can be detected according to Table 4. 

Table 4; Comparison relative errors between the measured and calculated εr’ 
and εr” values.

Case 
number

Measured 
values

Calculated 
values

Error 
rate for

εr'

Error 
rate for

εr"

Total 
error 
rateεr' εr" εr' εr"

1
25.91 0.311 26.84 0.322 3.46% 3.41% 6.87%
25.76 0.283 25.87 0.284 0.42% 0.35% 0.77%
25.59 0.281 26.52 0.291 3.5% 3.43% 6.93%

2
26.08 0.313 27.01 0.324 3.44% 3.39% 6.83%
25.59 0.383 26.52 0.397 3.5% 3.52% 7.02%
25.81 0.567 26.73 0.588 3.44% 3.57% 7.02%

3
25.16 0.226 26.09 0.234 3.56% 3.41% 6.97%
21.59 0.172 22.51 0.180 4.08% 4.44% 8.52%
21.69 0.455 22.61 0.474 4.06% 4% 8.06%

4
26.25 0.813 27.17 0.842 3.38% 3.44% 6.82%
25.92 0.233 26.84 0.241 3.42% 3.31% 6.73%
25.97 0.311 26.90 0.322 3.45% 3.41% 6.86%

5
25.27 0.278 26.19 0.288 3.51% 3.47% 6.98%
25.81 0.335 26.73 0.347 3.44% 3.45% 6.89%
23.43 0.398 24.36 0.414 3.81% 3.86% 7.67%

6
25.54 0.383 26.46 0.396 3.47% 3.28% 6.75%
22.13 0.221 23.05 0.230 3.99% 3.91% 7.90%
22.52 0.202 23.45 0.211 3.96% 4.26% 8.22%

7
26.9 0.43 27.83 0.445 3.34% 3.37% 6.71%
26.52 0.344 27.44 0.356 3.35% 3.37% 6.72%
26.85 0.268 27.77 0.277 3.31% 3.24% 6.55%

8
25.92 0.285 26.84 0.295 3.46% 3.38% 6.84%
26.08 0.313 27.01 0.324 3.44% 3.39% 6.83%
25.87 0.284 26.79 0.182 3.43% 56.04% 59.47%

9
25.22 0.176 26.14 0.230 3.51% 23.47% 26.98%
24.63 0.172 25.56 0.234 3.63% 26.49% 30.12%
25.11 0.226 26.03 0.294 3.53% 23.12% 26.65%

10
25.81 0.283 26.73 0.348 3.44% 18.67% 22.11%
25.87 0.336 26.79 0.319 3.43% 5.32% 8.75%
25.7 0.308 26.63 0.319 3.49% 3.44% 6.93%

11
26.9 0.269 27.83 0.278 3.34% 3.23% 6.57%
26.74 0.187 27.66 0.193 3.32% 3.26% 6.58%
26.85 0.295 27.77 0.305 3.31% 3.27% 6.58%

12
25.92 0.233 26.84 0.241 3.42% 3.31% 6.73%
26.36 0.184 27.28 0.190 3.37% 3.15% 6.52%
26.14 0.313 27.06 0.324 3.39% 3.39% 6.78%

13
21.79 0.239 22.71 0.249 4.05% 4.01% 8.06%
21.83 0.218 22.76 0.227 4.08% 3.96% 8.04%
22.37 0.201 23.30 0.209 3.99% 3.77% 7.76%

14
25.92 0.311 26.84 0.322 3.42% 3.41% 6.83%
25.87 0.284 26.79 0.294 3.25% 3.40% 6.65%
25.76 0.231 25.82 0.232 0.23% 0.43% 0.66%

15
21.5 0.086 22.42 0.089 4.23% 3.37% 7.60%
21.45 0.107 22.37 0.111 4.11% 3.60% 7.71%
22.28 0.178 23.20 0.185 3.96% 3.78% 7.74%

Total error ratio for 
all measurements 9.76%

The total calculated error is evaluated from Table 4 according 
to the following equation:

*error = ∥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ∥
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 × 100 (17)

It is found the maximum error from the total values is less than 
10%.

VIII. CONCLUSION

The proposed sensor is presented to characterize blood 
glucose level through measuring the relative values of εr’ and 
εr” for different blood samples. The proposed sensor is 
constructed as a single-port network; therefore, it is designed 
based on an interdigital capacitor patch to sense the blood 
glucose level non-invasively. The reason of that, the field 
fringing from the proposed sensor is found to be magnified and 
easy to penetrate through the human skin to the blood vassals. 
It is found that the proposed sensor shows different frequency 
resonances within the band of interest. However, it is decided 
to consider only the first frequency resonance (fr,1) for sensing 

changes are evaluated after introducing the patient finger touch. 
Thus, the prepared design is experimentally tested using the 
PNA8720 network analyzer. The obtained changes in the S11
spectra are monitored in terms of |S11|, frequency shift, phase 
change, quality factor, and bandwidth.

TABLE 3; CLARIFICATION OF THE RESULTS OF MEASURING DIFFERENT BLOOD 
SAMPLES.

Case BMI Age Sex Glucose 
level

fr,1

shift/ 
GHz

QSUT/
% εr' εr"

1 18.9 8 M
112 0.1091 12 25.91 0.311
210 0.112 11 25.76 0.283
150 0.115 11 25.59 0.281

2 23.1 49 M
119 0.106 12 26.08 0.313
103 0.115 15 25.59 0.3833
210 0.111 22 25.81 0.567

3 22.9 65 F
250 0.123 9 25.16 0.226
225 0.193 8 21.59 0.172
245 0.191 21 21.69 0.455

4 27.8 50 F
131 0.103 31 26.25 0.813
159 0.109 9 25.92 0.233
177 0.108 12 25.97 0.311

5 26.5 59 F
331 0.121 11 25.27 0.278
193 0.111 13 25.81 0.335
168 0.156 17 23.43 0.398

6 29.9 38 F
102 0.116 15 25.54 0.383
131 0.182 10 22.13 0.221
109 0.174 9 22.52 0.202

7 30.2 44 M
158 0.091 16 26.9 0.43
146 0.098 13 26.52 0.344
126 0.092 10 26.85 0.268

8 28.5 43 M
110 0.109 11 25.92 0.282
191 0.106 12 26.08 0.313
198 0.110 11 25.87 0.284

9 24.1 48 F
104 0.122 7 25.22 0.176
107 0.133 7 24.63 0.172
115 0.124 9 25.11 0.226

10 32.6 41 F
119 0.111 11 25.81 0.283
131 0.110 13 25.87 0.336
114 0.113 12 25.7 0.308

11 36.1 53 M
121 0.091 10 26.9 0.269
180 0.094 7 26.74 0.187
140 0.092 11 26.85 0.295

12 32.6 67 F
390 0.109 9 25.92 0.233
331 0.101 7 26.36 0.184
378 0.105 12 26.14 0.313

13 22.4 61 F
190 0.189 11 21.79 0.239
143 0.188 10 21.83 0.218
126 0.177 9 22.37 0.201

14 23.5 62 M
129 0.109 12 25.92 0.311
130 0.110 11 25.87 0.284
120 0.112 9 25.76 0.231

15 24.9 54 M
121 0.195 4 21.5 0.086
189 0.196 5 21.45 0.107
134 0.179 8 22.28 0.178

B. Sensing Validation
The variation in the S11 spectra of the proposed sensor is 

measured after placing a finger on it as a non-invasive 
technique. Therefore, the glucose level is monitored through a 
normal device glucose meter, PRODIGY Autocode, and the 
results are recorded in Table 3. Then, the patient finger is placed 
on the proposed sensor and the frequency resonance shift and 
S11 magnitude change are listed in Table 3. Next, the measured 
glucose level is compared with respect to the relative values of 
εr’ and εr” that are listed in Table 3. Therefore, the measured fr,1 
and QSUT values are applied in equation (14) to (15) to calculate 
the relative values of εr’ and εr” from the measured data. The 
calculated values of εr’ and εr” are compared to their relatives 
from measurements in Table 3. Thus, in Table 4, the relative 
errors between the measured and calculated εr’ and εr” values 
are calculated. It is found a good agreement between the 
measured and calculated values. Therefore, from this 

comparison between the relative values of εr’ and εr”, the 
glucose level can be detected according to Table 4. 

Table 4; Comparison relative errors between the measured and calculated εr’ 
and εr” values.

Case 
number

Measured 
values

Calculated 
values

Error 
rate for

εr'

Error 
rate for

εr"

Total 
error 
rateεr' εr" εr' εr"

1
25.91 0.311 26.84 0.322 3.46% 3.41% 6.87%
25.76 0.283 25.87 0.284 0.42% 0.35% 0.77%
25.59 0.281 26.52 0.291 3.5% 3.43% 6.93%

2
26.08 0.313 27.01 0.324 3.44% 3.39% 6.83%
25.59 0.383 26.52 0.397 3.5% 3.52% 7.02%
25.81 0.567 26.73 0.588 3.44% 3.57% 7.02%

3
25.16 0.226 26.09 0.234 3.56% 3.41% 6.97%
21.59 0.172 22.51 0.180 4.08% 4.44% 8.52%
21.69 0.455 22.61 0.474 4.06% 4% 8.06%

4
26.25 0.813 27.17 0.842 3.38% 3.44% 6.82%
25.92 0.233 26.84 0.241 3.42% 3.31% 6.73%
25.97 0.311 26.90 0.322 3.45% 3.41% 6.86%

5
25.27 0.278 26.19 0.288 3.51% 3.47% 6.98%
25.81 0.335 26.73 0.347 3.44% 3.45% 6.89%
23.43 0.398 24.36 0.414 3.81% 3.86% 7.67%

6
25.54 0.383 26.46 0.396 3.47% 3.28% 6.75%
22.13 0.221 23.05 0.230 3.99% 3.91% 7.90%
22.52 0.202 23.45 0.211 3.96% 4.26% 8.22%

7
26.9 0.43 27.83 0.445 3.34% 3.37% 6.71%
26.52 0.344 27.44 0.356 3.35% 3.37% 6.72%
26.85 0.268 27.77 0.277 3.31% 3.24% 6.55%

8
25.92 0.285 26.84 0.295 3.46% 3.38% 6.84%
26.08 0.313 27.01 0.324 3.44% 3.39% 6.83%
25.87 0.284 26.79 0.182 3.43% 56.04% 59.47%

9
25.22 0.176 26.14 0.230 3.51% 23.47% 26.98%
24.63 0.172 25.56 0.234 3.63% 26.49% 30.12%
25.11 0.226 26.03 0.294 3.53% 23.12% 26.65%

10
25.81 0.283 26.73 0.348 3.44% 18.67% 22.11%
25.87 0.336 26.79 0.319 3.43% 5.32% 8.75%
25.7 0.308 26.63 0.319 3.49% 3.44% 6.93%

11
26.9 0.269 27.83 0.278 3.34% 3.23% 6.57%
26.74 0.187 27.66 0.193 3.32% 3.26% 6.58%
26.85 0.295 27.77 0.305 3.31% 3.27% 6.58%

12
25.92 0.233 26.84 0.241 3.42% 3.31% 6.73%
26.36 0.184 27.28 0.190 3.37% 3.15% 6.52%
26.14 0.313 27.06 0.324 3.39% 3.39% 6.78%

13
21.79 0.239 22.71 0.249 4.05% 4.01% 8.06%
21.83 0.218 22.76 0.227 4.08% 3.96% 8.04%
22.37 0.201 23.30 0.209 3.99% 3.77% 7.76%

14
25.92 0.311 26.84 0.322 3.42% 3.41% 6.83%
25.87 0.284 26.79 0.294 3.25% 3.40% 6.65%
25.76 0.231 25.82 0.232 0.23% 0.43% 0.66%

15
21.5 0.086 22.42 0.089 4.23% 3.37% 7.60%
21.45 0.107 22.37 0.111 4.11% 3.60% 7.71%
22.28 0.178 23.20 0.185 3.96% 3.78% 7.74%

Total error ratio for 
all measurements 9.76%

The total calculated error is evaluated from Table 4 according 
to the following equation:

*error = ∥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ∥
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 × 100 (17)

It is found the maximum error from the total values is less than 
10%.

VIII. CONCLUSION

The proposed sensor is presented to characterize blood 
glucose level through measuring the relative values of εr’ and 
εr” for different blood samples. The proposed sensor is 
constructed as a single-port network; therefore, it is designed 
based on an interdigital capacitor patch to sense the blood 
glucose level non-invasively. The reason of that, the field 
fringing from the proposed sensor is found to be magnified and 
easy to penetrate through the human skin to the blood vassals. 
It is found that the proposed sensor shows different frequency 
resonances within the band of interest. However, it is decided 
to consider only the first frequency resonance (fr,1) for sensing 

changes are evaluated after introducing the patient finger touch. 
Thus, the prepared design is experimentally tested using the 
PNA8720 network analyzer. The obtained changes in the S11
spectra are monitored in terms of |S11|, frequency shift, phase 
change, quality factor, and bandwidth.

TABLE 3; CLARIFICATION OF THE RESULTS OF MEASURING DIFFERENT BLOOD 
SAMPLES.

Case BMI Age Sex Glucose 
level

fr,1

shift/ 
GHz

QSUT/
% εr' εr"

1 18.9 8 M
112 0.1091 12 25.91 0.311
210 0.112 11 25.76 0.283
150 0.115 11 25.59 0.281

2 23.1 49 M
119 0.106 12 26.08 0.313
103 0.115 15 25.59 0.3833
210 0.111 22 25.81 0.567

3 22.9 65 F
250 0.123 9 25.16 0.226
225 0.193 8 21.59 0.172
245 0.191 21 21.69 0.455

4 27.8 50 F
131 0.103 31 26.25 0.813
159 0.109 9 25.92 0.233
177 0.108 12 25.97 0.311

5 26.5 59 F
331 0.121 11 25.27 0.278
193 0.111 13 25.81 0.335
168 0.156 17 23.43 0.398

6 29.9 38 F
102 0.116 15 25.54 0.383
131 0.182 10 22.13 0.221
109 0.174 9 22.52 0.202

7 30.2 44 M
158 0.091 16 26.9 0.43
146 0.098 13 26.52 0.344
126 0.092 10 26.85 0.268

8 28.5 43 M
110 0.109 11 25.92 0.282
191 0.106 12 26.08 0.313
198 0.110 11 25.87 0.284

9 24.1 48 F
104 0.122 7 25.22 0.176
107 0.133 7 24.63 0.172
115 0.124 9 25.11 0.226

10 32.6 41 F
119 0.111 11 25.81 0.283
131 0.110 13 25.87 0.336
114 0.113 12 25.7 0.308

11 36.1 53 M
121 0.091 10 26.9 0.269
180 0.094 7 26.74 0.187
140 0.092 11 26.85 0.295

12 32.6 67 F
390 0.109 9 25.92 0.233
331 0.101 7 26.36 0.184
378 0.105 12 26.14 0.313

13 22.4 61 F
190 0.189 11 21.79 0.239
143 0.188 10 21.83 0.218
126 0.177 9 22.37 0.201

14 23.5 62 M
129 0.109 12 25.92 0.311
130 0.110 11 25.87 0.284
120 0.112 9 25.76 0.231

15 24.9 54 M
121 0.195 4 21.5 0.086
189 0.196 5 21.45 0.107
134 0.179 8 22.28 0.178

B. Sensing Validation
The variation in the S11 spectra of the proposed sensor is 

measured after placing a finger on it as a non-invasive 
technique. Therefore, the glucose level is monitored through a 
normal device glucose meter, PRODIGY Autocode, and the 
results are recorded in Table 3. Then, the patient finger is placed 
on the proposed sensor and the frequency resonance shift and 
S11 magnitude change are listed in Table 3. Next, the measured 
glucose level is compared with respect to the relative values of 
εr’ and εr” that are listed in Table 3. Therefore, the measured fr,1 
and QSUT values are applied in equation (14) to (15) to calculate 
the relative values of εr’ and εr” from the measured data. The 
calculated values of εr’ and εr” are compared to their relatives 
from measurements in Table 3. Thus, in Table 4, the relative 
errors between the measured and calculated εr’ and εr” values 
are calculated. It is found a good agreement between the 
measured and calculated values. Therefore, from this 

comparison between the relative values of εr’ and εr”, the 
glucose level can be detected according to Table 4. 

Table 4; Comparison relative errors between the measured and calculated εr’ 
and εr” values.

Case 
number

Measured 
values

Calculated 
values

Error 
rate for

εr'

Error 
rate for

εr"

Total 
error 
rateεr' εr" εr' εr"

1
25.91 0.311 26.84 0.322 3.46% 3.41% 6.87%
25.76 0.283 25.87 0.284 0.42% 0.35% 0.77%
25.59 0.281 26.52 0.291 3.5% 3.43% 6.93%

2
26.08 0.313 27.01 0.324 3.44% 3.39% 6.83%
25.59 0.383 26.52 0.397 3.5% 3.52% 7.02%
25.81 0.567 26.73 0.588 3.44% 3.57% 7.02%

3
25.16 0.226 26.09 0.234 3.56% 3.41% 6.97%
21.59 0.172 22.51 0.180 4.08% 4.44% 8.52%
21.69 0.455 22.61 0.474 4.06% 4% 8.06%

4
26.25 0.813 27.17 0.842 3.38% 3.44% 6.82%
25.92 0.233 26.84 0.241 3.42% 3.31% 6.73%
25.97 0.311 26.90 0.322 3.45% 3.41% 6.86%

5
25.27 0.278 26.19 0.288 3.51% 3.47% 6.98%
25.81 0.335 26.73 0.347 3.44% 3.45% 6.89%
23.43 0.398 24.36 0.414 3.81% 3.86% 7.67%

6
25.54 0.383 26.46 0.396 3.47% 3.28% 6.75%
22.13 0.221 23.05 0.230 3.99% 3.91% 7.90%
22.52 0.202 23.45 0.211 3.96% 4.26% 8.22%

7
26.9 0.43 27.83 0.445 3.34% 3.37% 6.71%
26.52 0.344 27.44 0.356 3.35% 3.37% 6.72%
26.85 0.268 27.77 0.277 3.31% 3.24% 6.55%

8
25.92 0.285 26.84 0.295 3.46% 3.38% 6.84%
26.08 0.313 27.01 0.324 3.44% 3.39% 6.83%
25.87 0.284 26.79 0.182 3.43% 56.04% 59.47%

9
25.22 0.176 26.14 0.230 3.51% 23.47% 26.98%
24.63 0.172 25.56 0.234 3.63% 26.49% 30.12%
25.11 0.226 26.03 0.294 3.53% 23.12% 26.65%

10
25.81 0.283 26.73 0.348 3.44% 18.67% 22.11%
25.87 0.336 26.79 0.319 3.43% 5.32% 8.75%
25.7 0.308 26.63 0.319 3.49% 3.44% 6.93%

11
26.9 0.269 27.83 0.278 3.34% 3.23% 6.57%
26.74 0.187 27.66 0.193 3.32% 3.26% 6.58%
26.85 0.295 27.77 0.305 3.31% 3.27% 6.58%

12
25.92 0.233 26.84 0.241 3.42% 3.31% 6.73%
26.36 0.184 27.28 0.190 3.37% 3.15% 6.52%
26.14 0.313 27.06 0.324 3.39% 3.39% 6.78%

13
21.79 0.239 22.71 0.249 4.05% 4.01% 8.06%
21.83 0.218 22.76 0.227 4.08% 3.96% 8.04%
22.37 0.201 23.30 0.209 3.99% 3.77% 7.76%

14
25.92 0.311 26.84 0.322 3.42% 3.41% 6.83%
25.87 0.284 26.79 0.294 3.25% 3.40% 6.65%
25.76 0.231 25.82 0.232 0.23% 0.43% 0.66%

15
21.5 0.086 22.42 0.089 4.23% 3.37% 7.60%
21.45 0.107 22.37 0.111 4.11% 3.60% 7.71%
22.28 0.178 23.20 0.185 3.96% 3.78% 7.74%

Total error ratio for 
all measurements 9.76%

The total calculated error is evaluated from Table 4 according 
to the following equation:

*error = ∥𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ∥
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 × 100 (17)

It is found the maximum error from the total values is less than 
10%.

VIII. CONCLUSION

The proposed sensor is presented to characterize blood 
glucose level through measuring the relative values of εr’ and 
εr” for different blood samples. The proposed sensor is 
constructed as a single-port network; therefore, it is designed 
based on an interdigital capacitor patch to sense the blood 
glucose level non-invasively. The reason of that, the field 
fringing from the proposed sensor is found to be magnified and 
easy to penetrate through the human skin to the blood vassals. 
It is found that the proposed sensor shows different frequency 
resonances within the band of interest. However, it is decided 
to consider only the first frequency resonance (fr,1) for sensing 

TABLE III
Clarification of the results of measuring different blood samples.

TABLE IV
Comparison relative errors between the measured and  

calculated εr’ and εr” values.
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where the maximum sensitivity can be achieved. In this case, 
fr,1 and QSUT measurement are gathered from different patients. 
Therefore, from the measured values, an analytical model is 
synthesized based on curve fitting analysis. In such process, 
fifteen patients are submitted to the proposed sensor for 
estimating the level of glucose in the blood, ending with results 
very similar to the results measured by traditional commercial 
methods. The measured values of εr’ and εr” are found to be 
agree very well with those obtained from the calculated results 
based on curve fitting analysis with less than 15% errors. It is 
found that the proposed sensor is a suitable choice for 
biomedical applications including blood glucose 
measurements. The proposed measurements point out the total 
error is about 10%. Finally, a future work on metamaterial-
based printed circuit antennas for blood glucose level sensing 
applications includes optimizing antenna design, integrating 
with biosensors, miniaturization for wearable devices, ensuring 
biocompatibility, employing advanced signal processing 
techniques, conducting clinical validation, ensuring long-term 
stability, improving cost-effectiveness, and exploring 
multiparameter sensing capabilities. These efforts aim to 
enhance accuracy, reliability, and practicality for diabetes 
management and healthcare monitoring. 
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 
Abstract — Parkinson's disease is one of the most common 

neurodegenerative diseases, which is incurable according to recent 
clinical knowledge. Evaluating motor symptoms across diverse 
modalities such as speech, handwriting, and movement composes 
a conventional diagnostic approach. However, concurrently 
utilizing multimodal datasets encompassing drawing and 
acceleration data remains an underexplored field. Our 
investigation involved examining drawing and movement data of
45 Parkinson's disease (PD) patients and 47 healthy individuals 
(HC). The PD group presented mild symptoms in the right hand. 
We transformed drawing data into spiral images and used visual 
representations of motion data, employing pre-trained models for 
feature extraction and classifiers. While motion representations 
exhibited superior performance compared to drawing images, a 
comprehensive evaluation with the Mann-Whitney U test at a 
significance level of 0.05 revealed no statistically significant 
difference between the efficacy of movement and drawing data in 
all classification scenarios. Significant improvements were made 
by combining the drawing data predictions with the motion data 
predictions. The key finding of the research is that the recognition 
of the disease can be improved by connecting (post-model) the two 
modalities. Furthermore, it can be concluded that with the present 
approach, neither the drawing nor the movement data produced
lower results on average.

Index Terms—Acceleration Data, Classification, Parkinson’s 
disease, Pre-trained Models, Mann-Whitney U Test

I. INTRODUCTION
Parkinson's disease (PD) is one of the most common 
neurological disorders, which affects mainly the aging 
population. According to current clinical knowledge, the 
disease is incurable, promoting this area as an extensive 
research field. The goal is typically to recognize the disease 
early enough to alleviate symptoms, slow disease progression,
and maintain quality of life.

Its prevalence is 1% in people over 60 and 3% in people over 
80 [1]. These values tend to increase due to aging societies, 
environmental factors, and accessibility of health care (more 
people get recognized). The tendency to the disease is increased 
by the male sex, certain chemicals, and genetic factors [2].
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The destruction of dopaminergic neurons with subsequent 
depigmentation of the susbtantia nigra pars compacta (SNpc) 
and the appearance of Lewy bodies can be observed in the 
development of PD [1]. The importance of early detection of 
PD is shown by the fact that with the current diagnostic 
procedure, 60% of the dopamine-producing cells are already 
dead and cause problematic symptoms.

Non-motor symptoms appear earlier on the onset of PD.
These include, for example, loss of smell, memory loss, 
digestive problems, and difficulty with sleeping [3]. These 
symptoms can appear even years earlier than motor symptoms. 
However, using these symptoms is difficult because they can 
indicate other illnesses, and not everyone develops the same 
symptoms.

In addition, the motor symptoms appear later in time, of 
which the three main are slowed movement (bradykinesia),
muscle stiffness, and limb tremors at rest (resting tremor) [4].
These are vital symptoms taken into account by the neurologist 
to a large extent when establishing the diagnosis. It is important 
to emphasize that the diagnostic procedure relies heavily on the 
visual assessment of symptoms, imaging procedures, and drug 
tests. Still, there is currently no objective test for PD.
Furthermore, the assessment can be influenced by the 
physician’s subjectivity [5].

Because of the former, many researchers use AI and 
different modalities of data to recognize the disease using motor 
symptoms that help to increase the diagnosis accuracy and 
objectivity. Moreover, it allows the possibility of personalized 
care. Speech can be such a modality since 70% of PD patients 
develop dysphonic speech [6]. In addition, 
drawings/handwriting [7][8] and different forms of movement
[9][10] are often used to analyze limb symptoms and help the 
diagnosis process.

In the present research, we investigate whether drawing 
(more precisely, drawing a spiral pattern) as pictorial 
information or the acceleration data measured during drawing 
provides a better recognition of the disease. Furthermore, we 
attempt to use the two modalities jointly to see whether
recognition performance improves.

The paper's main contributions are 1) comparing the spiral 
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drawing and the simultaneously recorded movement data as 
image representation with the same processing approach to 
detect PD and 2) attempting to improve PD detection with the 
joint usage of the drawing and the simultaneously recorded 
motion data.

The following section presents the literature on the 
problem statement, highlighting the key points. Then, in the 
methods section, we discuss the applied procedure. In the 
results and discussion section, we present and consider the 
possible outcomes. Finally, in the summary and conclusion
section, we recap our work and highlight the essential findings 
and concerns.

II. LITERATURE STUDY

A requirement for technology to support diagnosis is that it 
does not overtax the patient. Ideally, this means short-in-time, 
simple, non-invasive tests. The machine learning algorithm 
makes these automatic evaluations possible, which can provide 
an objective output. This can significantly contribute to the 
physician's opinion and provide a universal measurement 
procedure.

One such test could be the recording and analysis of drawing 
or handwriting, which tries to capture the motor symptoms in 
PD patients’ hands. Currently, this is not part of the criteria for 
diagnosis. However, McLennan et al. pointed out that 5% of 
patients have handwriting difficulties before the onset of motor 
symptoms, and 30% of those patients report deteriorating 
handwriting later [11].

Changes in fine motor skills, such as writing/drawing speed, 
continuity, and text or shape size, can be seen in PD patients. 
The reduction of the writing size is called micrography, of 
which two categories are consistent and progressive 
micrography [12]. Presumably, one and the other develop 
depending on the involvement of different brain areas and 
respond differently to dopaminergic drug treatment [13].
Similar changes appear in the drawings as well.

Many patterns are common, such as spirals, waves, or lines. 
They are mostly made on a tablet device, while it was more 
common to use traditional pen and paper in the past. The 
drawing should be simple so that it does not require special 
drawing skills but complex so that fine motor changes can be 
detected.

Kotsavasiloglou and his colleagues [14] conducted 
experiments involving 20 healthy (Healthy Control - HC) and 
24 PD individuals by drawing a horizontal line. They extracted 
a number of features related to the speed of the pen tip and 
vertical deviations (deviations from a straight line). With 
multiple classifiers (Naïve Bayes, AdaBoost, Log. Regression, 
Support Vector Machine [SVM], Random Forest [RF], J48), 
79.4-88.5% accuracy was achieved.

Sharma et al. [15] investigated the recognizability of PD by 
involving several databases using the Modified Gray Wolf 
Optimization algorithm on classifiers. Their drawing database 
was the Hand PD database created by Botucatu Medical School, 
São Paulo State University, which included 105 PD patients and 
53 HC individuals (mean age 44.2 and 58.8, respectively). The 

classification algorithms were k-Nearest Neighbors (k-NN),
RF, and Decision Tree (DT). With the help of predetermined 
features, 73.4-92.4% accuracy was achieved on the spiral 
drawings and 72.8-93.0% accuracy on the meander drawings.

In addition, further research deals with monitoring the 
drawing task with acceleration sensors and examining the 
usability of the data generated in this way for recognition.

Ali et al. [16] investigated Essential Tremor (ET) with 
acceleration data acquired while drawing spiral patterns. 17 ET 
patients and 18 HC individuals were included in the databases. 
Three sensors were placed at three points: on the dorsum of the 
hand, on the posterior forearm, and the posterior upper arm. 
SVM was used to classify the power spectral density (calculated 
from the acceleration data after creating a single vector 
magnitude). 74.3-85.7% accuracy was achieved.

Pereira et al. [17] used time series data from sensors mounted 
in a pen to detect PD. Their research used the HandPD database 
with 14 PD patients and 21 HC. Images were created from the 
sensor data (sound, finger grip, axial pressure of ink,
acceleration and tilt data in X, Y, and Z directions). These were 
classified using image processing algorithms (ImageNet, 
CIRAF-10, LeNet) and a baseline model (Optimum-Path Forest
[OPF]) on the raw data. 85.0-87.1% accuracy was achieved 
with ImageNet on meander data, and 77.9-83.8% accuracy with 
OPF on spiral drawings as the best performance.

Savalia and his colleagues [18] similarly used digital pen-
provided time signals as images with image processing 
algorithms. They named their database newHandPD, which 
included 35 HC and 31 PD patients. With the help of 
Convolutional Neural Network (CNN) and EffNet-based
classifiers, they achieved 84.8-88.8% accuracy.

Taleb et al. [19] experimented with several approaches: 
classification of raw signals from a pen and classification with 
a spectrogram (a 2D representation of the raw signals). They 
pointed out that combining several writing tasks improves the 
classifier's performance. Their best result with data 
augmentation was 97.6% accuracy.

Cascarano and his colleagues [20] examined the drawing 
patterns of 21 PD and 11 HC individuals. Descriptive 
characteristics were calculated from geometric, dynamic, and 
muscle activity data. 90.8% accuracy was achieved with spiral 
drawing without feature selection, while 93.8% accuracy was 
achieved with selection (with Multi-Objective Genetic 
Algorithm).

The literature study shows that the performance of the 
classifiers varies widely and may result from the database, 
feature extraction, and classification algorithms. Paper-based
drawing also created a need to record dynamic data, which 
nowadays is easier to do with the help of tablets and digital 
pens. With this, the drawn pattern can be used as an image (the 
drawing itself) and as a set of time series. We also saw an 
approach where the researchers created images (2D 
representations) from time series, taking advantage of the 
performance of image processing algorithms. We could also 
find examples where combining several time signals/drawing 
tasks improves recognition. We wish to contribute to this with 
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drawing and the simultaneously recorded movement data as 
image representation with the same processing approach to 
detect PD and 2) attempting to improve PD detection with the 
joint usage of the drawing and the simultaneously recorded 
motion data.

The following section presents the literature on the 
problem statement, highlighting the key points. Then, in the 
methods section, we discuss the applied procedure. In the 
results and discussion section, we present and consider the 
possible outcomes. Finally, in the summary and conclusion
section, we recap our work and highlight the essential findings 
and concerns.
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simple, non-invasive tests. The machine learning algorithm 
makes these automatic evaluations possible, which can provide 
an objective output. This can significantly contribute to the 
physician's opinion and provide a universal measurement 
procedure.
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or handwriting, which tries to capture the motor symptoms in 
PD patients’ hands. Currently, this is not part of the criteria for 
diagnosis. However, McLennan et al. pointed out that 5% of 
patients have handwriting difficulties before the onset of motor 
symptoms, and 30% of those patients report deteriorating 
handwriting later [11].

Changes in fine motor skills, such as writing/drawing speed, 
continuity, and text or shape size, can be seen in PD patients. 
The reduction of the writing size is called micrography, of 
which two categories are consistent and progressive 
micrography [12]. Presumably, one and the other develop 
depending on the involvement of different brain areas and 
respond differently to dopaminergic drug treatment [13].
Similar changes appear in the drawings as well.

Many patterns are common, such as spirals, waves, or lines. 
They are mostly made on a tablet device, while it was more 
common to use traditional pen and paper in the past. The 
drawing should be simple so that it does not require special 
drawing skills but complex so that fine motor changes can be 
detected.
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24 PD individuals by drawing a horizontal line. They extracted 
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drawing and the simultaneously recorded movement data as 
image representation with the same processing approach to 
detect PD and 2) attempting to improve PD detection with the 
joint usage of the drawing and the simultaneously recorded 
motion data.

The following section presents the literature on the 
problem statement, highlighting the key points. Then, in the 
methods section, we discuss the applied procedure. In the 
results and discussion section, we present and consider the 
possible outcomes. Finally, in the summary and conclusion
section, we recap our work and highlight the essential findings 
and concerns.

II. LITERATURE STUDY

A requirement for technology to support diagnosis is that it 
does not overtax the patient. Ideally, this means short-in-time, 
simple, non-invasive tests. The machine learning algorithm 
makes these automatic evaluations possible, which can provide 
an objective output. This can significantly contribute to the 
physician's opinion and provide a universal measurement 
procedure.

One such test could be the recording and analysis of drawing 
or handwriting, which tries to capture the motor symptoms in 
PD patients’ hands. Currently, this is not part of the criteria for 
diagnosis. However, McLennan et al. pointed out that 5% of 
patients have handwriting difficulties before the onset of motor 
symptoms, and 30% of those patients report deteriorating 
handwriting later [11].

Changes in fine motor skills, such as writing/drawing speed, 
continuity, and text or shape size, can be seen in PD patients. 
The reduction of the writing size is called micrography, of 
which two categories are consistent and progressive 
micrography [12]. Presumably, one and the other develop 
depending on the involvement of different brain areas and 
respond differently to dopaminergic drug treatment [13].
Similar changes appear in the drawings as well.

Many patterns are common, such as spirals, waves, or lines. 
They are mostly made on a tablet device, while it was more 
common to use traditional pen and paper in the past. The 
drawing should be simple so that it does not require special 
drawing skills but complex so that fine motor changes can be 
detected.

Kotsavasiloglou and his colleagues [14] conducted 
experiments involving 20 healthy (Healthy Control - HC) and 
24 PD individuals by drawing a horizontal line. They extracted 
a number of features related to the speed of the pen tip and 
vertical deviations (deviations from a straight line). With 
multiple classifiers (Naïve Bayes, AdaBoost, Log. Regression, 
Support Vector Machine [SVM], Random Forest [RF], J48), 
79.4-88.5% accuracy was achieved.

Sharma et al. [15] investigated the recognizability of PD by 
involving several databases using the Modified Gray Wolf 
Optimization algorithm on classifiers. Their drawing database 
was the Hand PD database created by Botucatu Medical School, 
São Paulo State University, which included 105 PD patients and 
53 HC individuals (mean age 44.2 and 58.8, respectively). The 

classification algorithms were k-Nearest Neighbors (k-NN),
RF, and Decision Tree (DT). With the help of predetermined 
features, 73.4-92.4% accuracy was achieved on the spiral 
drawings and 72.8-93.0% accuracy on the meander drawings.

In addition, further research deals with monitoring the 
drawing task with acceleration sensors and examining the 
usability of the data generated in this way for recognition.

Ali et al. [16] investigated Essential Tremor (ET) with 
acceleration data acquired while drawing spiral patterns. 17 ET 
patients and 18 HC individuals were included in the databases. 
Three sensors were placed at three points: on the dorsum of the 
hand, on the posterior forearm, and the posterior upper arm. 
SVM was used to classify the power spectral density (calculated 
from the acceleration data after creating a single vector 
magnitude). 74.3-85.7% accuracy was achieved.

Pereira et al. [17] used time series data from sensors mounted 
in a pen to detect PD. Their research used the HandPD database 
with 14 PD patients and 21 HC. Images were created from the 
sensor data (sound, finger grip, axial pressure of ink,
acceleration and tilt data in X, Y, and Z directions). These were 
classified using image processing algorithms (ImageNet, 
CIRAF-10, LeNet) and a baseline model (Optimum-Path Forest
[OPF]) on the raw data. 85.0-87.1% accuracy was achieved 
with ImageNet on meander data, and 77.9-83.8% accuracy with 
OPF on spiral drawings as the best performance.

Savalia and his colleagues [18] similarly used digital pen-
provided time signals as images with image processing 
algorithms. They named their database newHandPD, which 
included 35 HC and 31 PD patients. With the help of 
Convolutional Neural Network (CNN) and EffNet-based
classifiers, they achieved 84.8-88.8% accuracy.

Taleb et al. [19] experimented with several approaches: 
classification of raw signals from a pen and classification with 
a spectrogram (a 2D representation of the raw signals). They 
pointed out that combining several writing tasks improves the 
classifier's performance. Their best result with data 
augmentation was 97.6% accuracy.

Cascarano and his colleagues [20] examined the drawing 
patterns of 21 PD and 11 HC individuals. Descriptive 
characteristics were calculated from geometric, dynamic, and 
muscle activity data. 90.8% accuracy was achieved with spiral 
drawing without feature selection, while 93.8% accuracy was 
achieved with selection (with Multi-Objective Genetic 
Algorithm).

The literature study shows that the performance of the 
classifiers varies widely and may result from the database, 
feature extraction, and classification algorithms. Paper-based
drawing also created a need to record dynamic data, which 
nowadays is easier to do with the help of tablets and digital 
pens. With this, the drawn pattern can be used as an image (the 
drawing itself) and as a set of time series. We also saw an 
approach where the researchers created images (2D 
representations) from time series, taking advantage of the 
performance of image processing algorithms. We could also 
find examples where combining several time signals/drawing 
tasks improves recognition. We wish to contribute to this with 
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our present research, in which the participants draw a spiral 
pattern. During the process, a sensor attached to the wrist 
records the acceleration data. We examine these two modalities 
separately and together.

III. METHODOLOGY

A. Database 
The database contains drawing and drawing-related sensor data 

of 45 PD patients and 47 HC individuals. All participants were 
informed beforehand about the research details and gave their 
consent by signing a consent form. Participants volunteered to 
participate in the research and were informed that their 
participation could be withdrawn without explanation.

There are 37 men and eight women in the PD class, whose 
average age is 66.0 years with a standard deviation of 14.2 years. 
Twenty-one people were recorded with drug onset, 18 people with 
Deep Brain Stimulation (DBS) switched on (10 people belonged 
to both categories). The severity score of PD patients was defined
based on the Unified Parkinson's Disease Rating Scale (UPDRS)
scale. The resting tremor (3.17), postural tremor (3.15), rigidity 
(3.3), and finger tapping (3.4) tasks were evaluated by the 
neurologist. The average severity was 1.10, where 0 means a 
healthy (normal) stage, and 4 means the severe stage. Severity 
scores for the right hand are presented since data from the right 
hand were examined.

There were 20 men and 27 women in the HC class, with an 
average age of 56.7 years and a standard deviation of 15.2.  
According to their admission, the members of the HC class did not 
have Parkinson's disease or any other disease that affects their 
movement.

The drawing and motion recordings were made using an 
application developed for Android tablets. In the case of the 
drawing, the participants followed the pattern of an Archimedean 
spiral by moving between the lines from the inside to the outside 
of the spiral template. The drawing data was sampled at a 
maximum of 110 Hz. A sensor attached to the wrist provided 
acceleration data in three dimensions (X, Y, and Z) with a sampling 
frequency of 50 Hz to record the movement.

Recordings were anonymized before use. Their metadata, such 
as gender and age, were used only to describe the classes.

B. Preprocessing 
The drawings were plotted along X and Y coordinates and 

resized to 224x224 pixels with 24-bit depth. The average along the 
corresponding coordinate was subtracted from the acceleration 
data as standardization (remove the bias of the measurement 
device). Furthermore, a 4-order bandpass Butterworth filter was 
applied to the signals between 2 and 15 Hz. Finally, one data vector 
was created from the three coordinates, which contained the length 
of the vector pointing to the point described by the three 
coordinates at each instant of time. Two-dimensional 
representations were made, as shown in Fig. 1, such as 
MarkovTransitionField, RecurrencePlot, and 
GramianAngularField. For this data representation, the pyts 
(v0.12.0) Python package was used with default parameters [21].

These images were also resized to 224x224 pixels with 24-bit 
depth.

The feature vectors from the resulted input images were derived 
from the feature extraction part of pre-trained deep learning 
algorithms. For this, the Keras API was used with the Tensorflow
(v2.0.0) machine learning platform. Among the available models, 
Xception [22], ResNet50 [23], and MobileNet [24] were used. We 
removed the classification (Dense) layer from the end of each 
model and assigned a GlobalAveragePooling2D layer to get one-
dimensional feature vectors. Finally, the feature vectors were 
standardized using the StandardScaler function of sklearn 
(v0.0.post7).

Fig. 1. The spiral drawing and the 2D movement 
representations for an HC person (upper images) and a PD 
patient (lower images).

C. Classification and Evaluation 
To classify the feature vectors, SVM, RF, and k-NN classifiers 
were used with nested cross-validation at 10-fold numbers.

The test set (10% of the database) was separated in the outer 
cycle, independent of the model learning. On the remaining data, 
the best 100 features were selected based on ANOVA F-value
[25]. The same features were selected in the test set accordingly.

The validation set (10% of the 90% data) was separated from 
the training dataset in the internal cycle. This training set was used 
to train the classifiers, and the optimization was carried out with 
the validation set. The parameters below were probed available for 
sklearn [26] models:

 kernel (linear, rbf), C value (0.001, 0.01, 0.1, 1, 10, 100),
and gamma (10, 1, 0.1, 0.01, 0.001, 0.0001) for SVM,

 the max_depth (10, 30, 50, 70, 90, None), max_features
(auto, sqrt), and min_samples_leaf (1, 2, 4) for RF,

 the number of neighbors (2, 3, 5, 10, 20) for k-NN.

The test sets were finally estimated with the models trained with 
the best parameters (on 90% of the data). The sensitivity, 
specificity, macro f1 score, and area under the receiver operating 
characteristic (ROC) curve (AUC) values were derived from the 
estimates.

The predictions of the two different modalities (drawing and 
movement) were aggregated according to Eq. 1, where 𝑦𝑦𝑠𝑠 ∈ {0,1}
is the prediction from spiral drawing and 𝑦𝑦𝑚𝑚 ∈ {0,1} is the 
prediction from the movement data. 𝑄𝑄 ∈ {0,1} is the weight factor 
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drawing and the simultaneously recorded movement data as 
image representation with the same processing approach to 
detect PD and 2) attempting to improve PD detection with the 
joint usage of the drawing and the simultaneously recorded 
motion data.

The following section presents the literature on the 
problem statement, highlighting the key points. Then, in the 
methods section, we discuss the applied procedure. In the 
results and discussion section, we present and consider the 
possible outcomes. Finally, in the summary and conclusion
section, we recap our work and highlight the essential findings 
and concerns.

II. LITERATURE STUDY

A requirement for technology to support diagnosis is that it 
does not overtax the patient. Ideally, this means short-in-time, 
simple, non-invasive tests. The machine learning algorithm 
makes these automatic evaluations possible, which can provide 
an objective output. This can significantly contribute to the 
physician's opinion and provide a universal measurement 
procedure.

One such test could be the recording and analysis of drawing 
or handwriting, which tries to capture the motor symptoms in 
PD patients’ hands. Currently, this is not part of the criteria for 
diagnosis. However, McLennan et al. pointed out that 5% of 
patients have handwriting difficulties before the onset of motor 
symptoms, and 30% of those patients report deteriorating 
handwriting later [11].

Changes in fine motor skills, such as writing/drawing speed, 
continuity, and text or shape size, can be seen in PD patients. 
The reduction of the writing size is called micrography, of 
which two categories are consistent and progressive 
micrography [12]. Presumably, one and the other develop 
depending on the involvement of different brain areas and 
respond differently to dopaminergic drug treatment [13].
Similar changes appear in the drawings as well.

Many patterns are common, such as spirals, waves, or lines. 
They are mostly made on a tablet device, while it was more 
common to use traditional pen and paper in the past. The 
drawing should be simple so that it does not require special 
drawing skills but complex so that fine motor changes can be 
detected.

Kotsavasiloglou and his colleagues [14] conducted 
experiments involving 20 healthy (Healthy Control - HC) and 
24 PD individuals by drawing a horizontal line. They extracted 
a number of features related to the speed of the pen tip and 
vertical deviations (deviations from a straight line). With 
multiple classifiers (Naïve Bayes, AdaBoost, Log. Regression, 
Support Vector Machine [SVM], Random Forest [RF], J48), 
79.4-88.5% accuracy was achieved.

Sharma et al. [15] investigated the recognizability of PD by 
involving several databases using the Modified Gray Wolf 
Optimization algorithm on classifiers. Their drawing database 
was the Hand PD database created by Botucatu Medical School, 
São Paulo State University, which included 105 PD patients and 
53 HC individuals (mean age 44.2 and 58.8, respectively). The 

classification algorithms were k-Nearest Neighbors (k-NN),
RF, and Decision Tree (DT). With the help of predetermined 
features, 73.4-92.4% accuracy was achieved on the spiral 
drawings and 72.8-93.0% accuracy on the meander drawings.

In addition, further research deals with monitoring the 
drawing task with acceleration sensors and examining the 
usability of the data generated in this way for recognition.

Ali et al. [16] investigated Essential Tremor (ET) with 
acceleration data acquired while drawing spiral patterns. 17 ET 
patients and 18 HC individuals were included in the databases. 
Three sensors were placed at three points: on the dorsum of the 
hand, on the posterior forearm, and the posterior upper arm. 
SVM was used to classify the power spectral density (calculated 
from the acceleration data after creating a single vector 
magnitude). 74.3-85.7% accuracy was achieved.

Pereira et al. [17] used time series data from sensors mounted 
in a pen to detect PD. Their research used the HandPD database 
with 14 PD patients and 21 HC. Images were created from the 
sensor data (sound, finger grip, axial pressure of ink,
acceleration and tilt data in X, Y, and Z directions). These were 
classified using image processing algorithms (ImageNet, 
CIRAF-10, LeNet) and a baseline model (Optimum-Path Forest
[OPF]) on the raw data. 85.0-87.1% accuracy was achieved 
with ImageNet on meander data, and 77.9-83.8% accuracy with 
OPF on spiral drawings as the best performance.

Savalia and his colleagues [18] similarly used digital pen-
provided time signals as images with image processing 
algorithms. They named their database newHandPD, which 
included 35 HC and 31 PD patients. With the help of 
Convolutional Neural Network (CNN) and EffNet-based
classifiers, they achieved 84.8-88.8% accuracy.

Taleb et al. [19] experimented with several approaches: 
classification of raw signals from a pen and classification with 
a spectrogram (a 2D representation of the raw signals). They 
pointed out that combining several writing tasks improves the 
classifier's performance. Their best result with data 
augmentation was 97.6% accuracy.

Cascarano and his colleagues [20] examined the drawing 
patterns of 21 PD and 11 HC individuals. Descriptive 
characteristics were calculated from geometric, dynamic, and 
muscle activity data. 90.8% accuracy was achieved with spiral 
drawing without feature selection, while 93.8% accuracy was 
achieved with selection (with Multi-Objective Genetic 
Algorithm).

The literature study shows that the performance of the 
classifiers varies widely and may result from the database, 
feature extraction, and classification algorithms. Paper-based
drawing also created a need to record dynamic data, which 
nowadays is easier to do with the help of tablets and digital 
pens. With this, the drawn pattern can be used as an image (the 
drawing itself) and as a set of time series. We also saw an 
approach where the researchers created images (2D 
representations) from time series, taking advantage of the 
performance of image processing algorithms. We could also 
find examples where combining several time signals/drawing 
tasks improves recognition. We wish to contribute to this with 
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drawing and the simultaneously recorded movement data as 
image representation with the same processing approach to 
detect PD and 2) attempting to improve PD detection with the 
joint usage of the drawing and the simultaneously recorded 
motion data.

The following section presents the literature on the 
problem statement, highlighting the key points. Then, in the 
methods section, we discuss the applied procedure. In the 
results and discussion section, we present and consider the 
possible outcomes. Finally, in the summary and conclusion
section, we recap our work and highlight the essential findings 
and concerns.

II. LITERATURE STUDY

A requirement for technology to support diagnosis is that it 
does not overtax the patient. Ideally, this means short-in-time, 
simple, non-invasive tests. The machine learning algorithm 
makes these automatic evaluations possible, which can provide 
an objective output. This can significantly contribute to the 
physician's opinion and provide a universal measurement 
procedure.

One such test could be the recording and analysis of drawing 
or handwriting, which tries to capture the motor symptoms in 
PD patients’ hands. Currently, this is not part of the criteria for 
diagnosis. However, McLennan et al. pointed out that 5% of 
patients have handwriting difficulties before the onset of motor 
symptoms, and 30% of those patients report deteriorating 
handwriting later [11].

Changes in fine motor skills, such as writing/drawing speed, 
continuity, and text or shape size, can be seen in PD patients. 
The reduction of the writing size is called micrography, of 
which two categories are consistent and progressive 
micrography [12]. Presumably, one and the other develop 
depending on the involvement of different brain areas and 
respond differently to dopaminergic drug treatment [13].
Similar changes appear in the drawings as well.

Many patterns are common, such as spirals, waves, or lines. 
They are mostly made on a tablet device, while it was more 
common to use traditional pen and paper in the past. The 
drawing should be simple so that it does not require special 
drawing skills but complex so that fine motor changes can be 
detected.

Kotsavasiloglou and his colleagues [14] conducted 
experiments involving 20 healthy (Healthy Control - HC) and 
24 PD individuals by drawing a horizontal line. They extracted 
a number of features related to the speed of the pen tip and 
vertical deviations (deviations from a straight line). With 
multiple classifiers (Naïve Bayes, AdaBoost, Log. Regression, 
Support Vector Machine [SVM], Random Forest [RF], J48), 
79.4-88.5% accuracy was achieved.

Sharma et al. [15] investigated the recognizability of PD by 
involving several databases using the Modified Gray Wolf 
Optimization algorithm on classifiers. Their drawing database 
was the Hand PD database created by Botucatu Medical School, 
São Paulo State University, which included 105 PD patients and 
53 HC individuals (mean age 44.2 and 58.8, respectively). The 

classification algorithms were k-Nearest Neighbors (k-NN),
RF, and Decision Tree (DT). With the help of predetermined 
features, 73.4-92.4% accuracy was achieved on the spiral 
drawings and 72.8-93.0% accuracy on the meander drawings.

In addition, further research deals with monitoring the 
drawing task with acceleration sensors and examining the 
usability of the data generated in this way for recognition.

Ali et al. [16] investigated Essential Tremor (ET) with 
acceleration data acquired while drawing spiral patterns. 17 ET 
patients and 18 HC individuals were included in the databases. 
Three sensors were placed at three points: on the dorsum of the 
hand, on the posterior forearm, and the posterior upper arm. 
SVM was used to classify the power spectral density (calculated 
from the acceleration data after creating a single vector 
magnitude). 74.3-85.7% accuracy was achieved.

Pereira et al. [17] used time series data from sensors mounted 
in a pen to detect PD. Their research used the HandPD database 
with 14 PD patients and 21 HC. Images were created from the 
sensor data (sound, finger grip, axial pressure of ink,
acceleration and tilt data in X, Y, and Z directions). These were 
classified using image processing algorithms (ImageNet, 
CIRAF-10, LeNet) and a baseline model (Optimum-Path Forest
[OPF]) on the raw data. 85.0-87.1% accuracy was achieved 
with ImageNet on meander data, and 77.9-83.8% accuracy with 
OPF on spiral drawings as the best performance.

Savalia and his colleagues [18] similarly used digital pen-
provided time signals as images with image processing 
algorithms. They named their database newHandPD, which 
included 35 HC and 31 PD patients. With the help of 
Convolutional Neural Network (CNN) and EffNet-based
classifiers, they achieved 84.8-88.8% accuracy.

Taleb et al. [19] experimented with several approaches: 
classification of raw signals from a pen and classification with 
a spectrogram (a 2D representation of the raw signals). They 
pointed out that combining several writing tasks improves the 
classifier's performance. Their best result with data 
augmentation was 97.6% accuracy.

Cascarano and his colleagues [20] examined the drawing 
patterns of 21 PD and 11 HC individuals. Descriptive 
characteristics were calculated from geometric, dynamic, and 
muscle activity data. 90.8% accuracy was achieved with spiral 
drawing without feature selection, while 93.8% accuracy was 
achieved with selection (with Multi-Objective Genetic 
Algorithm).

The literature study shows that the performance of the 
classifiers varies widely and may result from the database, 
feature extraction, and classification algorithms. Paper-based
drawing also created a need to record dynamic data, which 
nowadays is easier to do with the help of tablets and digital 
pens. With this, the drawn pattern can be used as an image (the 
drawing itself) and as a set of time series. We also saw an 
approach where the researchers created images (2D 
representations) from time series, taking advantage of the 
performance of image processing algorithms. We could also 
find examples where combining several time signals/drawing 
tasks improves recognition. We wish to contribute to this with 
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our present research, in which the participants draw a spiral 
pattern. During the process, a sensor attached to the wrist 
records the acceleration data. We examine these two modalities 
separately and together.

III. METHODOLOGY

A. Database 
The database contains drawing and drawing-related sensor data 

of 45 PD patients and 47 HC individuals. All participants were 
informed beforehand about the research details and gave their 
consent by signing a consent form. Participants volunteered to 
participate in the research and were informed that their 
participation could be withdrawn without explanation.

There are 37 men and eight women in the PD class, whose 
average age is 66.0 years with a standard deviation of 14.2 years. 
Twenty-one people were recorded with drug onset, 18 people with 
Deep Brain Stimulation (DBS) switched on (10 people belonged 
to both categories). The severity score of PD patients was defined
based on the Unified Parkinson's Disease Rating Scale (UPDRS)
scale. The resting tremor (3.17), postural tremor (3.15), rigidity 
(3.3), and finger tapping (3.4) tasks were evaluated by the 
neurologist. The average severity was 1.10, where 0 means a 
healthy (normal) stage, and 4 means the severe stage. Severity 
scores for the right hand are presented since data from the right 
hand were examined.

There were 20 men and 27 women in the HC class, with an 
average age of 56.7 years and a standard deviation of 15.2.  
According to their admission, the members of the HC class did not 
have Parkinson's disease or any other disease that affects their 
movement.

The drawing and motion recordings were made using an 
application developed for Android tablets. In the case of the 
drawing, the participants followed the pattern of an Archimedean 
spiral by moving between the lines from the inside to the outside 
of the spiral template. The drawing data was sampled at a 
maximum of 110 Hz. A sensor attached to the wrist provided 
acceleration data in three dimensions (X, Y, and Z) with a sampling 
frequency of 50 Hz to record the movement.

Recordings were anonymized before use. Their metadata, such 
as gender and age, were used only to describe the classes.

B. Preprocessing 
The drawings were plotted along X and Y coordinates and 

resized to 224x224 pixels with 24-bit depth. The average along the 
corresponding coordinate was subtracted from the acceleration 
data as standardization (remove the bias of the measurement 
device). Furthermore, a 4-order bandpass Butterworth filter was 
applied to the signals between 2 and 15 Hz. Finally, one data vector 
was created from the three coordinates, which contained the length 
of the vector pointing to the point described by the three 
coordinates at each instant of time. Two-dimensional 
representations were made, as shown in Fig. 1, such as 
MarkovTransitionField, RecurrencePlot, and 
GramianAngularField. For this data representation, the pyts 
(v0.12.0) Python package was used with default parameters [21].

These images were also resized to 224x224 pixels with 24-bit 
depth.

The feature vectors from the resulted input images were derived 
from the feature extraction part of pre-trained deep learning 
algorithms. For this, the Keras API was used with the Tensorflow
(v2.0.0) machine learning platform. Among the available models, 
Xception [22], ResNet50 [23], and MobileNet [24] were used. We 
removed the classification (Dense) layer from the end of each 
model and assigned a GlobalAveragePooling2D layer to get one-
dimensional feature vectors. Finally, the feature vectors were 
standardized using the StandardScaler function of sklearn 
(v0.0.post7).

Fig. 1. The spiral drawing and the 2D movement 
representations for an HC person (upper images) and a PD 
patient (lower images).

C. Classification and Evaluation 
To classify the feature vectors, SVM, RF, and k-NN classifiers 
were used with nested cross-validation at 10-fold numbers.

The test set (10% of the database) was separated in the outer 
cycle, independent of the model learning. On the remaining data, 
the best 100 features were selected based on ANOVA F-value
[25]. The same features were selected in the test set accordingly.

The validation set (10% of the 90% data) was separated from 
the training dataset in the internal cycle. This training set was used 
to train the classifiers, and the optimization was carried out with 
the validation set. The parameters below were probed available for 
sklearn [26] models:

 kernel (linear, rbf), C value (0.001, 0.01, 0.1, 1, 10, 100),
and gamma (10, 1, 0.1, 0.01, 0.001, 0.0001) for SVM,

 the max_depth (10, 30, 50, 70, 90, None), max_features
(auto, sqrt), and min_samples_leaf (1, 2, 4) for RF,

 the number of neighbors (2, 3, 5, 10, 20) for k-NN.

The test sets were finally estimated with the models trained with 
the best parameters (on 90% of the data). The sensitivity, 
specificity, macro f1 score, and area under the receiver operating 
characteristic (ROC) curve (AUC) values were derived from the 
estimates.

The predictions of the two different modalities (drawing and 
movement) were aggregated according to Eq. 1, where 𝑦𝑦𝑠𝑠 ∈ {0,1}
is the prediction from spiral drawing and 𝑦𝑦𝑚𝑚 ∈ {0,1} is the 
prediction from the movement data. 𝑄𝑄 ∈ {0,1} is the weight factor 
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our present research, in which the participants draw a spiral 
pattern. During the process, a sensor attached to the wrist 
records the acceleration data. We examine these two modalities 
separately and together.

III. METHODOLOGY

A. Database 
The database contains drawing and drawing-related sensor data 

of 45 PD patients and 47 HC individuals. All participants were 
informed beforehand about the research details and gave their 
consent by signing a consent form. Participants volunteered to 
participate in the research and were informed that their 
participation could be withdrawn without explanation.

There are 37 men and eight women in the PD class, whose 
average age is 66.0 years with a standard deviation of 14.2 years. 
Twenty-one people were recorded with drug onset, 18 people with 
Deep Brain Stimulation (DBS) switched on (10 people belonged 
to both categories). The severity score of PD patients was defined
based on the Unified Parkinson's Disease Rating Scale (UPDRS)
scale. The resting tremor (3.17), postural tremor (3.15), rigidity 
(3.3), and finger tapping (3.4) tasks were evaluated by the 
neurologist. The average severity was 1.10, where 0 means a 
healthy (normal) stage, and 4 means the severe stage. Severity 
scores for the right hand are presented since data from the right 
hand were examined.

There were 20 men and 27 women in the HC class, with an 
average age of 56.7 years and a standard deviation of 15.2.  
According to their admission, the members of the HC class did not 
have Parkinson's disease or any other disease that affects their 
movement.

The drawing and motion recordings were made using an 
application developed for Android tablets. In the case of the 
drawing, the participants followed the pattern of an Archimedean 
spiral by moving between the lines from the inside to the outside 
of the spiral template. The drawing data was sampled at a 
maximum of 110 Hz. A sensor attached to the wrist provided 
acceleration data in three dimensions (X, Y, and Z) with a sampling 
frequency of 50 Hz to record the movement.

Recordings were anonymized before use. Their metadata, such 
as gender and age, were used only to describe the classes.

B. Preprocessing 
The drawings were plotted along X and Y coordinates and 

resized to 224x224 pixels with 24-bit depth. The average along the 
corresponding coordinate was subtracted from the acceleration 
data as standardization (remove the bias of the measurement 
device). Furthermore, a 4-order bandpass Butterworth filter was 
applied to the signals between 2 and 15 Hz. Finally, one data vector 
was created from the three coordinates, which contained the length 
of the vector pointing to the point described by the three 
coordinates at each instant of time. Two-dimensional 
representations were made, as shown in Fig. 1, such as 
MarkovTransitionField, RecurrencePlot, and 
GramianAngularField. For this data representation, the pyts 
(v0.12.0) Python package was used with default parameters [21].

These images were also resized to 224x224 pixels with 24-bit 
depth.

The feature vectors from the resulted input images were derived 
from the feature extraction part of pre-trained deep learning 
algorithms. For this, the Keras API was used with the Tensorflow
(v2.0.0) machine learning platform. Among the available models, 
Xception [22], ResNet50 [23], and MobileNet [24] were used. We 
removed the classification (Dense) layer from the end of each 
model and assigned a GlobalAveragePooling2D layer to get one-
dimensional feature vectors. Finally, the feature vectors were 
standardized using the StandardScaler function of sklearn 
(v0.0.post7).

Fig. 1. The spiral drawing and the 2D movement 
representations for an HC person (upper images) and a PD 
patient (lower images).

C. Classification and Evaluation 
To classify the feature vectors, SVM, RF, and k-NN classifiers 
were used with nested cross-validation at 10-fold numbers.

The test set (10% of the database) was separated in the outer 
cycle, independent of the model learning. On the remaining data, 
the best 100 features were selected based on ANOVA F-value
[25]. The same features were selected in the test set accordingly.

The validation set (10% of the 90% data) was separated from 
the training dataset in the internal cycle. This training set was used 
to train the classifiers, and the optimization was carried out with 
the validation set. The parameters below were probed available for 
sklearn [26] models:

 kernel (linear, rbf), C value (0.001, 0.01, 0.1, 1, 10, 100),
and gamma (10, 1, 0.1, 0.01, 0.001, 0.0001) for SVM,

 the max_depth (10, 30, 50, 70, 90, None), max_features
(auto, sqrt), and min_samples_leaf (1, 2, 4) for RF,

 the number of neighbors (2, 3, 5, 10, 20) for k-NN.

The test sets were finally estimated with the models trained with 
the best parameters (on 90% of the data). The sensitivity, 
specificity, macro f1 score, and area under the receiver operating 
characteristic (ROC) curve (AUC) values were derived from the 
estimates.

The predictions of the two different modalities (drawing and 
movement) were aggregated according to Eq. 1, where 𝑦𝑦𝑠𝑠 ∈ {0,1}
is the prediction from spiral drawing and 𝑦𝑦𝑚𝑚 ∈ {0,1} is the 
prediction from the movement data. 𝑄𝑄 ∈ {0,1} is the weight factor 
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our present research, in which the participants draw a spiral 
pattern. During the process, a sensor attached to the wrist 
records the acceleration data. We examine these two modalities 
separately and together.

III. METHODOLOGY

A. Database 
The database contains drawing and drawing-related sensor data 

of 45 PD patients and 47 HC individuals. All participants were 
informed beforehand about the research details and gave their 
consent by signing a consent form. Participants volunteered to 
participate in the research and were informed that their 
participation could be withdrawn without explanation.

There are 37 men and eight women in the PD class, whose 
average age is 66.0 years with a standard deviation of 14.2 years. 
Twenty-one people were recorded with drug onset, 18 people with 
Deep Brain Stimulation (DBS) switched on (10 people belonged 
to both categories). The severity score of PD patients was defined
based on the Unified Parkinson's Disease Rating Scale (UPDRS)
scale. The resting tremor (3.17), postural tremor (3.15), rigidity 
(3.3), and finger tapping (3.4) tasks were evaluated by the 
neurologist. The average severity was 1.10, where 0 means a 
healthy (normal) stage, and 4 means the severe stage. Severity 
scores for the right hand are presented since data from the right 
hand were examined.

There were 20 men and 27 women in the HC class, with an 
average age of 56.7 years and a standard deviation of 15.2.  
According to their admission, the members of the HC class did not 
have Parkinson's disease or any other disease that affects their 
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The drawing and motion recordings were made using an 
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drawing, the participants followed the pattern of an Archimedean 
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acceleration data in three dimensions (X, Y, and Z) with a sampling 
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Recordings were anonymized before use. Their metadata, such 
as gender and age, were used only to describe the classes.
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data as standardization (remove the bias of the measurement 
device). Furthermore, a 4-order bandpass Butterworth filter was 
applied to the signals between 2 and 15 Hz. Finally, one data vector 
was created from the three coordinates, which contained the length 
of the vector pointing to the point described by the three 
coordinates at each instant of time. Two-dimensional 
representations were made, as shown in Fig. 1, such as 
MarkovTransitionField, RecurrencePlot, and 
GramianAngularField. For this data representation, the pyts 
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dimensional feature vectors. Finally, the feature vectors were 
standardized using the StandardScaler function of sklearn 
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the best 100 features were selected based on ANOVA F-value
[25]. The same features were selected in the test set accordingly.

The validation set (10% of the 90% data) was separated from 
the training dataset in the internal cycle. This training set was used 
to train the classifiers, and the optimization was carried out with 
the validation set. The parameters below were probed available for 
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 kernel (linear, rbf), C value (0.001, 0.01, 0.1, 1, 10, 100),
and gamma (10, 1, 0.1, 0.01, 0.001, 0.0001) for SVM,

 the max_depth (10, 30, 50, 70, 90, None), max_features
(auto, sqrt), and min_samples_leaf (1, 2, 4) for RF,

 the number of neighbors (2, 3, 5, 10, 20) for k-NN.

The test sets were finally estimated with the models trained with 
the best parameters (on 90% of the data). The sensitivity, 
specificity, macro f1 score, and area under the receiver operating 
characteristic (ROC) curve (AUC) values were derived from the 
estimates.

The predictions of the two different modalities (drawing and 
movement) were aggregated according to Eq. 1, where 𝑦𝑦𝑠𝑠 ∈ {0,1}
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of the vector pointing to the point described by the three 
coordinates at each instant of time. Two-dimensional 
representations were made, as shown in Fig. 1, such as 
MarkovTransitionField, RecurrencePlot, and 
GramianAngularField. For this data representation, the pyts 
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dimensional feature vectors. Finally, the feature vectors were 
standardized using the StandardScaler function of sklearn 
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representations for an HC person (upper images) and a PD 
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C. Classification and Evaluation 
To classify the feature vectors, SVM, RF, and k-NN classifiers 
were used with nested cross-validation at 10-fold numbers.

The test set (10% of the database) was separated in the outer 
cycle, independent of the model learning. On the remaining data, 
the best 100 features were selected based on ANOVA F-value
[25]. The same features were selected in the test set accordingly.

The validation set (10% of the 90% data) was separated from 
the training dataset in the internal cycle. This training set was used 
to train the classifiers, and the optimization was carried out with 
the validation set. The parameters below were probed available for 
sklearn [26] models:

 kernel (linear, rbf), C value (0.001, 0.01, 0.1, 1, 10, 100),
and gamma (10, 1, 0.1, 0.01, 0.001, 0.0001) for SVM,

 the max_depth (10, 30, 50, 70, 90, None), max_features
(auto, sqrt), and min_samples_leaf (1, 2, 4) for RF,

 the number of neighbors (2, 3, 5, 10, 20) for k-NN.

The test sets were finally estimated with the models trained with 
the best parameters (on 90% of the data). The sensitivity, 
specificity, macro f1 score, and area under the receiver operating 
characteristic (ROC) curve (AUC) values were derived from the 
estimates.

The predictions of the two different modalities (drawing and 
movement) were aggregated according to Eq. 1, where 𝑦𝑦𝑠𝑠 ∈ {0,1}
is the prediction from spiral drawing and 𝑦𝑦𝑚𝑚 ∈ {0,1} is the 
prediction from the movement data. 𝑄𝑄 ∈ {0,1} is the weight factor 
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between the two predictions, 𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∈ {0,1} is the final prediction. 
If the value of 𝑄𝑄 is 0, then the final prediction is equal to the 
prediction from the movement. In the case of 𝑄𝑄 𝑄 𝑄 , the final 
prediction is equal to the prediction from the drawing. The final 
prediction for 𝑄𝑄 between 0 and 1 is a ratio between the two 
modalities. 

𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑦𝑦𝑠𝑠𝑄𝑄 + 𝑦𝑦𝑚𝑚(1 − 𝑄𝑄) (1)

The samples are assigned to classes based on the models' 
estimates with a decision limit 0.5. If the estimate is above this, the 
sample is classified as positive (PD) and below it as negative (HC).

Mann-Whitney U non-parametric test [27] was used to compare 
the performance of modalities and aggregations. The comparison 
was made with the macro f1 scores. The significance level was 
chosen as 0.05 [28].

IV. RESULTS

A. Separate Classification of Drawings and Movements 
TABLE I shows the results achieved on the spiral drawings and 

the representation of the movement. The marking of the spiral 
drawing is Spiral, while the representations are named according 
to the names described in the III. Methodology section. The 
second column contains the names of the feature extractors, and 
the third column contains the classification algorithms. The last 
four columns contain the sensitivity (sens), specificity (spec),
macro f1 (f1), and AUC (auc) values, respectively. The best results 
per representation are marked with bold style.

In the case of the Spiral, the MobileNet feature extractor
resulted in the highest macro f1 score on average (67.9%). 
ResNet50 and Xception achieved an average of 59.7% and 
57.6% macro f1, respectively. Regarding the classification 
algorithms, RB achieved the best macro f1 score on average 
(66.7%), while k-NN and SVM achieved macro f1 values of 
59.5% and 59.0%, respectively. The best result among all cases 
was achieved with the MobileNet feature extractor and RF 
classification model for the spiral drawing (macro f1 score
70.6%).

In the case of ReccurancePlot, the feature extractors' results
no longer deviate spectacularly from each other. MobileNet, 
ResNet50, and Xception achieved 67.8%, 63.9%, and 66.6% 
macro f1 scores, respectively. The result is similar according to 
the classifiers: 64.4% (k-NN), 65.2% (RF), and 68.8% (SVM).
Compared with the data of the Spiral drawing, it can be seen 
that the values have improved on average, whether examining 
the feature extractors or the classifiers. The average difference 
between the two modalities is 4.4% in the macro f1 score. The 
RecurrencePlot approach obtained the best result with the 
MobileNet feature extractor and SVM classification model 
(74.9% macro f1 score). Compared to Spiral's best result, it 
provided a 4.3% better result. Regarding the other metrics, the 
specificity improved by an average of 0.7%, the sensitivity by 
8.1%, and the auc value by 0.088 compared to the Spiral
metrics.

In the GramianAngularField cases, the averages according to 
the feature extractors are 67.7% (MobileNet), 59.7% 
(ResNet50), and 61.2% (Xception) in macro f1 score. 

According to the classifiers, the average values are 61.1% (k-
NN), 65.9% (RF) and 60.9% (SVM). In this case, the average 
difference compared to the Spiral is 0.9% in the macro f1 score. 
The best result was achieved with MobileNet feature extraction 
and RF classifier with a macro f1 score of 72.7%. This is 2.1% 
better than the Spiral’s best result. Regarding the other metrics, 
the sensitivity improved by an average of 7.7% and the auc 
value by 0.039 compared to the Spiral metrics, but the 
specificity decreased by an average of 5.9%.

TABLE I
RESULTS OBTAINED WITH DIFFERENT MODALITIES, FEATURE 

EXTRACTORS, AND CLASSIFICATION ALGORITHMS.
Extractor Classifier sens spec f1 auc

Sp
ira

l

MobileNet
k-NN 55.6% 78.7% 66.8% 0.686
RF 71.1% 70.2% 70.6% 0.757

SVM 64.4% 68.1% 66.3% 0.720

ResNet50
k-NN 46.7% 78.7% 61.9% 0.574

RF 60.0% 59.6% 59.8% 0.650
SVM 53.3% 61.7% 57.5% 0.619

Xception
k-NN 46.7% 53.2% 49.9% 0.533

RF 68.9% 70.2% 69.6% 0.699
SVM 53.3% 53.2% 53.3% 0.576

R
ec

ur
re

nc
eP

lo
t MobileNet

k-NN 51.1% 80.9% 65.4% 0.752
RF 64.4% 61.7% 63.0% 0.750

SVM 71.1% 78.7% 74.9% 0.834

ResNet50
k-NN 71.1% 46.8% 58.2% 0.689

RF 66.7% 70.2% 68.4% 0.749
SVM 64.4% 66.0% 65.2% 0.710

Xception
k-NN 66.7% 72.3% 69.5% 0.721

RF 71.1% 57.4% 64.0% 0.709
SVM 66.7% 66.0% 66.3% 0.689

G
ra

m
ia

nA
ng

ul
ar

Fi
el

d MobileNet
k-NN 75.6% 59.6% 67.3% 0.774
RF 80.0% 66.0% 72.7% 0.768

SVM 64.4% 61.7% 63.0% 0.720

ResNet50
k-NN 62.2% 46.8% 54.2% 0.606

RF 64.4% 66.0% 65.2% 0.685
SVM 57.8% 57.4% 57.6% 0.635

Xception
k-NN 60.0% 63.8% 61.9% 0.653

RF 64.4% 55.3% 59.7% 0.664
SVM 60.0% 63.8% 61.9% 0.659

M
ar

ko
vT

ra
ns

iti
on

Fi
el

d

MobileNet
k-NN 71.1% 51.1% 60.6% 0.635

RF 75.6% 61.7% 68.4% 0.749
SVM 51.1% 63.8% 57.4% 0.661

ResNet50
k-NN 68.9% 70.2% 69.6% 0.757
RF 77.8% 74.5% 76.1% 0.802

SVM 75.6% 72.3% 73.9% 0.822

Xception
k-NN 71.1% 55.3% 62.9% 0.634

RF 64.4% 74.5% 69.4% 0.736
SVM 66.7% 76.6% 71.6% 0.727

In the case of MarkovTransitionField, the average macro f1 
scores are 62.1% for MobileNet, 73.2% for ResNet50 and 
68.0% for Xception. Regarding to the classifiers, k-NN
achieved 64.3%, RF 71.3%, and SVM 67.6% macro f1 score.
Compared to the Spiral, ResNet50 and Xception performed 
better with 13.5% and 10.4% macro f1 scores, respectively. 
When comparing classification algorithms, on average, all three 
performed better (4.8%, 4.6%, and 8.6% better results for k-
NN, RF, and SVM) in MarkovTransitionField representation 
than in the Spiral. Overall, this approach outperformed the 
Spiral by 6.0% in macro f1 score. The best result was obtained
with the ResNet50 feature extractor with the RF classifier 
(76.1% macro f1 value). This is better with a 5.4% macro f1 
score than the Spiral’s best result. Regarding the other metrics, 

Fig. 1. The spiral drawing and the 2D movement representations for an HC 
person (upper images) and a PD patient (lower images).
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between the two predictions, 𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∈ {0,1} is the final prediction. 
If the value of 𝑄𝑄 is 0, then the final prediction is equal to the 
prediction from the movement. In the case of 𝑄𝑄 𝑄 𝑄 , the final 
prediction is equal to the prediction from the drawing. The final 
prediction for 𝑄𝑄 between 0 and 1 is a ratio between the two 
modalities. 

𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑦𝑦𝑠𝑠𝑄𝑄 + 𝑦𝑦𝑚𝑚(1 − 𝑄𝑄) (1)

The samples are assigned to classes based on the models' 
estimates with a decision limit 0.5. If the estimate is above this, the 
sample is classified as positive (PD) and below it as negative (HC).

Mann-Whitney U non-parametric test [27] was used to compare 
the performance of modalities and aggregations. The comparison 
was made with the macro f1 scores. The significance level was 
chosen as 0.05 [28].

IV. RESULTS

A. Separate Classification of Drawings and Movements 
TABLE I shows the results achieved on the spiral drawings and 

the representation of the movement. The marking of the spiral 
drawing is Spiral, while the representations are named according 
to the names described in the III. Methodology section. The 
second column contains the names of the feature extractors, and 
the third column contains the classification algorithms. The last 
four columns contain the sensitivity (sens), specificity (spec),
macro f1 (f1), and AUC (auc) values, respectively. The best results 
per representation are marked with bold style.

In the case of the Spiral, the MobileNet feature extractor
resulted in the highest macro f1 score on average (67.9%). 
ResNet50 and Xception achieved an average of 59.7% and 
57.6% macro f1, respectively. Regarding the classification 
algorithms, RB achieved the best macro f1 score on average 
(66.7%), while k-NN and SVM achieved macro f1 values of 
59.5% and 59.0%, respectively. The best result among all cases 
was achieved with the MobileNet feature extractor and RF 
classification model for the spiral drawing (macro f1 score
70.6%).

In the case of ReccurancePlot, the feature extractors' results
no longer deviate spectacularly from each other. MobileNet, 
ResNet50, and Xception achieved 67.8%, 63.9%, and 66.6% 
macro f1 scores, respectively. The result is similar according to 
the classifiers: 64.4% (k-NN), 65.2% (RF), and 68.8% (SVM).
Compared with the data of the Spiral drawing, it can be seen 
that the values have improved on average, whether examining 
the feature extractors or the classifiers. The average difference 
between the two modalities is 4.4% in the macro f1 score. The 
RecurrencePlot approach obtained the best result with the 
MobileNet feature extractor and SVM classification model 
(74.9% macro f1 score). Compared to Spiral's best result, it 
provided a 4.3% better result. Regarding the other metrics, the 
specificity improved by an average of 0.7%, the sensitivity by 
8.1%, and the auc value by 0.088 compared to the Spiral
metrics.

In the GramianAngularField cases, the averages according to 
the feature extractors are 67.7% (MobileNet), 59.7% 
(ResNet50), and 61.2% (Xception) in macro f1 score. 

According to the classifiers, the average values are 61.1% (k-
NN), 65.9% (RF) and 60.9% (SVM). In this case, the average 
difference compared to the Spiral is 0.9% in the macro f1 score. 
The best result was achieved with MobileNet feature extraction 
and RF classifier with a macro f1 score of 72.7%. This is 2.1% 
better than the Spiral’s best result. Regarding the other metrics, 
the sensitivity improved by an average of 7.7% and the auc 
value by 0.039 compared to the Spiral metrics, but the 
specificity decreased by an average of 5.9%.
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k-NN 62.2% 46.8% 54.2% 0.606

RF 64.4% 66.0% 65.2% 0.685
SVM 57.8% 57.4% 57.6% 0.635

Xception
k-NN 60.0% 63.8% 61.9% 0.653

RF 64.4% 55.3% 59.7% 0.664
SVM 60.0% 63.8% 61.9% 0.659
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MobileNet
k-NN 71.1% 51.1% 60.6% 0.635

RF 75.6% 61.7% 68.4% 0.749
SVM 51.1% 63.8% 57.4% 0.661

ResNet50
k-NN 68.9% 70.2% 69.6% 0.757
RF 77.8% 74.5% 76.1% 0.802

SVM 75.6% 72.3% 73.9% 0.822

Xception
k-NN 71.1% 55.3% 62.9% 0.634

RF 64.4% 74.5% 69.4% 0.736
SVM 66.7% 76.6% 71.6% 0.727

In the case of MarkovTransitionField, the average macro f1 
scores are 62.1% for MobileNet, 73.2% for ResNet50 and 
68.0% for Xception. Regarding to the classifiers, k-NN
achieved 64.3%, RF 71.3%, and SVM 67.6% macro f1 score.
Compared to the Spiral, ResNet50 and Xception performed 
better with 13.5% and 10.4% macro f1 scores, respectively. 
When comparing classification algorithms, on average, all three 
performed better (4.8%, 4.6%, and 8.6% better results for k-
NN, RF, and SVM) in MarkovTransitionField representation 
than in the Spiral. Overall, this approach outperformed the 
Spiral by 6.0% in macro f1 score. The best result was obtained
with the ResNet50 feature extractor with the RF classifier 
(76.1% macro f1 value). This is better with a 5.4% macro f1 
score than the Spiral’s best result. Regarding the other metrics, 

TABLE I
Results obtained with different modalities, feature

extractors, and classification algorithms.
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between the two predictions, 𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∈ {0,1} is the final prediction. 
If the value of 𝑄𝑄 is 0, then the final prediction is equal to the 
prediction from the movement. In the case of 𝑄𝑄 𝑄 𝑄 , the final 
prediction is equal to the prediction from the drawing. The final 
prediction for 𝑄𝑄 between 0 and 1 is a ratio between the two 
modalities. 

𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑦𝑦𝑠𝑠𝑄𝑄 + 𝑦𝑦𝑚𝑚(1 − 𝑄𝑄) (1)

The samples are assigned to classes based on the models' 
estimates with a decision limit 0.5. If the estimate is above this, the 
sample is classified as positive (PD) and below it as negative (HC).

Mann-Whitney U non-parametric test [27] was used to compare 
the performance of modalities and aggregations. The comparison 
was made with the macro f1 scores. The significance level was 
chosen as 0.05 [28].

IV. RESULTS

A. Separate Classification of Drawings and Movements 
TABLE I shows the results achieved on the spiral drawings and 

the representation of the movement. The marking of the spiral 
drawing is Spiral, while the representations are named according 
to the names described in the III. Methodology section. The 
second column contains the names of the feature extractors, and 
the third column contains the classification algorithms. The last 
four columns contain the sensitivity (sens), specificity (spec),
macro f1 (f1), and AUC (auc) values, respectively. The best results 
per representation are marked with bold style.

In the case of the Spiral, the MobileNet feature extractor
resulted in the highest macro f1 score on average (67.9%). 
ResNet50 and Xception achieved an average of 59.7% and 
57.6% macro f1, respectively. Regarding the classification 
algorithms, RB achieved the best macro f1 score on average 
(66.7%), while k-NN and SVM achieved macro f1 values of 
59.5% and 59.0%, respectively. The best result among all cases 
was achieved with the MobileNet feature extractor and RF 
classification model for the spiral drawing (macro f1 score
70.6%).

In the case of ReccurancePlot, the feature extractors' results
no longer deviate spectacularly from each other. MobileNet, 
ResNet50, and Xception achieved 67.8%, 63.9%, and 66.6% 
macro f1 scores, respectively. The result is similar according to 
the classifiers: 64.4% (k-NN), 65.2% (RF), and 68.8% (SVM).
Compared with the data of the Spiral drawing, it can be seen 
that the values have improved on average, whether examining 
the feature extractors or the classifiers. The average difference 
between the two modalities is 4.4% in the macro f1 score. The 
RecurrencePlot approach obtained the best result with the 
MobileNet feature extractor and SVM classification model 
(74.9% macro f1 score). Compared to Spiral's best result, it 
provided a 4.3% better result. Regarding the other metrics, the 
specificity improved by an average of 0.7%, the sensitivity by 
8.1%, and the auc value by 0.088 compared to the Spiral
metrics.

In the GramianAngularField cases, the averages according to 
the feature extractors are 67.7% (MobileNet), 59.7% 
(ResNet50), and 61.2% (Xception) in macro f1 score. 

According to the classifiers, the average values are 61.1% (k-
NN), 65.9% (RF) and 60.9% (SVM). In this case, the average 
difference compared to the Spiral is 0.9% in the macro f1 score. 
The best result was achieved with MobileNet feature extraction 
and RF classifier with a macro f1 score of 72.7%. This is 2.1% 
better than the Spiral’s best result. Regarding the other metrics, 
the sensitivity improved by an average of 7.7% and the auc 
value by 0.039 compared to the Spiral metrics, but the 
specificity decreased by an average of 5.9%.

TABLE I
RESULTS OBTAINED WITH DIFFERENT MODALITIES, FEATURE 

EXTRACTORS, AND CLASSIFICATION ALGORITHMS.
Extractor Classifier sens spec f1 auc
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l

MobileNet
k-NN 55.6% 78.7% 66.8% 0.686
RF 71.1% 70.2% 70.6% 0.757

SVM 64.4% 68.1% 66.3% 0.720

ResNet50
k-NN 46.7% 78.7% 61.9% 0.574

RF 60.0% 59.6% 59.8% 0.650
SVM 53.3% 61.7% 57.5% 0.619

Xception
k-NN 46.7% 53.2% 49.9% 0.533

RF 68.9% 70.2% 69.6% 0.699
SVM 53.3% 53.2% 53.3% 0.576
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t MobileNet

k-NN 51.1% 80.9% 65.4% 0.752
RF 64.4% 61.7% 63.0% 0.750

SVM 71.1% 78.7% 74.9% 0.834

ResNet50
k-NN 71.1% 46.8% 58.2% 0.689

RF 66.7% 70.2% 68.4% 0.749
SVM 64.4% 66.0% 65.2% 0.710

Xception
k-NN 66.7% 72.3% 69.5% 0.721

RF 71.1% 57.4% 64.0% 0.709
SVM 66.7% 66.0% 66.3% 0.689
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d MobileNet
k-NN 75.6% 59.6% 67.3% 0.774
RF 80.0% 66.0% 72.7% 0.768

SVM 64.4% 61.7% 63.0% 0.720

ResNet50
k-NN 62.2% 46.8% 54.2% 0.606

RF 64.4% 66.0% 65.2% 0.685
SVM 57.8% 57.4% 57.6% 0.635

Xception
k-NN 60.0% 63.8% 61.9% 0.653

RF 64.4% 55.3% 59.7% 0.664
SVM 60.0% 63.8% 61.9% 0.659
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MobileNet
k-NN 71.1% 51.1% 60.6% 0.635

RF 75.6% 61.7% 68.4% 0.749
SVM 51.1% 63.8% 57.4% 0.661

ResNet50
k-NN 68.9% 70.2% 69.6% 0.757
RF 77.8% 74.5% 76.1% 0.802

SVM 75.6% 72.3% 73.9% 0.822

Xception
k-NN 71.1% 55.3% 62.9% 0.634

RF 64.4% 74.5% 69.4% 0.736
SVM 66.7% 76.6% 71.6% 0.727

In the case of MarkovTransitionField, the average macro f1 
scores are 62.1% for MobileNet, 73.2% for ResNet50 and 
68.0% for Xception. Regarding to the classifiers, k-NN
achieved 64.3%, RF 71.3%, and SVM 67.6% macro f1 score.
Compared to the Spiral, ResNet50 and Xception performed 
better with 13.5% and 10.4% macro f1 scores, respectively. 
When comparing classification algorithms, on average, all three 
performed better (4.8%, 4.6%, and 8.6% better results for k-
NN, RF, and SVM) in MarkovTransitionField representation 
than in the Spiral. Overall, this approach outperformed the 
Spiral by 6.0% in macro f1 score. The best result was obtained
with the ResNet50 feature extractor with the RF classifier 
(76.1% macro f1 value). This is better with a 5.4% macro f1 
score than the Spiral’s best result. Regarding the other metrics, 

4
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

between the two predictions, 𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∈ {0,1} is the final prediction. 
If the value of 𝑄𝑄 is 0, then the final prediction is equal to the 
prediction from the movement. In the case of 𝑄𝑄 𝑄 𝑄 , the final 
prediction is equal to the prediction from the drawing. The final 
prediction for 𝑄𝑄 between 0 and 1 is a ratio between the two 
modalities. 

𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑦𝑦𝑠𝑠𝑄𝑄 + 𝑦𝑦𝑚𝑚(1 − 𝑄𝑄) (1)

The samples are assigned to classes based on the models' 
estimates with a decision limit 0.5. If the estimate is above this, the 
sample is classified as positive (PD) and below it as negative (HC).

Mann-Whitney U non-parametric test [27] was used to compare 
the performance of modalities and aggregations. The comparison 
was made with the macro f1 scores. The significance level was 
chosen as 0.05 [28].

IV. RESULTS

A. Separate Classification of Drawings and Movements 
TABLE I shows the results achieved on the spiral drawings and 

the representation of the movement. The marking of the spiral 
drawing is Spiral, while the representations are named according 
to the names described in the III. Methodology section. The 
second column contains the names of the feature extractors, and 
the third column contains the classification algorithms. The last 
four columns contain the sensitivity (sens), specificity (spec),
macro f1 (f1), and AUC (auc) values, respectively. The best results 
per representation are marked with bold style.

In the case of the Spiral, the MobileNet feature extractor
resulted in the highest macro f1 score on average (67.9%). 
ResNet50 and Xception achieved an average of 59.7% and 
57.6% macro f1, respectively. Regarding the classification 
algorithms, RB achieved the best macro f1 score on average 
(66.7%), while k-NN and SVM achieved macro f1 values of 
59.5% and 59.0%, respectively. The best result among all cases 
was achieved with the MobileNet feature extractor and RF 
classification model for the spiral drawing (macro f1 score
70.6%).

In the case of ReccurancePlot, the feature extractors' results
no longer deviate spectacularly from each other. MobileNet, 
ResNet50, and Xception achieved 67.8%, 63.9%, and 66.6% 
macro f1 scores, respectively. The result is similar according to 
the classifiers: 64.4% (k-NN), 65.2% (RF), and 68.8% (SVM).
Compared with the data of the Spiral drawing, it can be seen 
that the values have improved on average, whether examining 
the feature extractors or the classifiers. The average difference 
between the two modalities is 4.4% in the macro f1 score. The 
RecurrencePlot approach obtained the best result with the 
MobileNet feature extractor and SVM classification model 
(74.9% macro f1 score). Compared to Spiral's best result, it 
provided a 4.3% better result. Regarding the other metrics, the 
specificity improved by an average of 0.7%, the sensitivity by 
8.1%, and the auc value by 0.088 compared to the Spiral
metrics.

In the GramianAngularField cases, the averages according to 
the feature extractors are 67.7% (MobileNet), 59.7% 
(ResNet50), and 61.2% (Xception) in macro f1 score. 

According to the classifiers, the average values are 61.1% (k-
NN), 65.9% (RF) and 60.9% (SVM). In this case, the average 
difference compared to the Spiral is 0.9% in the macro f1 score. 
The best result was achieved with MobileNet feature extraction 
and RF classifier with a macro f1 score of 72.7%. This is 2.1% 
better than the Spiral’s best result. Regarding the other metrics, 
the sensitivity improved by an average of 7.7% and the auc 
value by 0.039 compared to the Spiral metrics, but the 
specificity decreased by an average of 5.9%.

TABLE I
RESULTS OBTAINED WITH DIFFERENT MODALITIES, FEATURE 

EXTRACTORS, AND CLASSIFICATION ALGORITHMS.
Extractor Classifier sens spec f1 auc
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MobileNet
k-NN 55.6% 78.7% 66.8% 0.686
RF 71.1% 70.2% 70.6% 0.757

SVM 64.4% 68.1% 66.3% 0.720

ResNet50
k-NN 46.7% 78.7% 61.9% 0.574

RF 60.0% 59.6% 59.8% 0.650
SVM 53.3% 61.7% 57.5% 0.619

Xception
k-NN 46.7% 53.2% 49.9% 0.533

RF 68.9% 70.2% 69.6% 0.699
SVM 53.3% 53.2% 53.3% 0.576
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k-NN 51.1% 80.9% 65.4% 0.752
RF 64.4% 61.7% 63.0% 0.750

SVM 71.1% 78.7% 74.9% 0.834

ResNet50
k-NN 71.1% 46.8% 58.2% 0.689

RF 66.7% 70.2% 68.4% 0.749
SVM 64.4% 66.0% 65.2% 0.710

Xception
k-NN 66.7% 72.3% 69.5% 0.721

RF 71.1% 57.4% 64.0% 0.709
SVM 66.7% 66.0% 66.3% 0.689
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k-NN 75.6% 59.6% 67.3% 0.774
RF 80.0% 66.0% 72.7% 0.768

SVM 64.4% 61.7% 63.0% 0.720

ResNet50
k-NN 62.2% 46.8% 54.2% 0.606

RF 64.4% 66.0% 65.2% 0.685
SVM 57.8% 57.4% 57.6% 0.635

Xception
k-NN 60.0% 63.8% 61.9% 0.653

RF 64.4% 55.3% 59.7% 0.664
SVM 60.0% 63.8% 61.9% 0.659
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MobileNet
k-NN 71.1% 51.1% 60.6% 0.635

RF 75.6% 61.7% 68.4% 0.749
SVM 51.1% 63.8% 57.4% 0.661

ResNet50
k-NN 68.9% 70.2% 69.6% 0.757
RF 77.8% 74.5% 76.1% 0.802

SVM 75.6% 72.3% 73.9% 0.822

Xception
k-NN 71.1% 55.3% 62.9% 0.634

RF 64.4% 74.5% 69.4% 0.736
SVM 66.7% 76.6% 71.6% 0.727

In the case of MarkovTransitionField, the average macro f1 
scores are 62.1% for MobileNet, 73.2% for ResNet50 and 
68.0% for Xception. Regarding to the classifiers, k-NN
achieved 64.3%, RF 71.3%, and SVM 67.6% macro f1 score.
Compared to the Spiral, ResNet50 and Xception performed 
better with 13.5% and 10.4% macro f1 scores, respectively. 
When comparing classification algorithms, on average, all three 
performed better (4.8%, 4.6%, and 8.6% better results for k-
NN, RF, and SVM) in MarkovTransitionField representation 
than in the Spiral. Overall, this approach outperformed the 
Spiral by 6.0% in macro f1 score. The best result was obtained
with the ResNet50 feature extractor with the RF classifier 
(76.1% macro f1 value). This is better with a 5.4% macro f1 
score than the Spiral’s best result. Regarding the other metrics, 
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the specificity improved by an average of 0.7%, the sensitivity
by 11.4%, and the auc value by 0.079 compared to the Spiral
metrics.

Overall, it can be seen that the image representation of the 
movement provides a better result in average value: 4.4% 
(RecurrencePlot), 0.9% (GramianAngularField), 6.0% 
(MarkovTransitionField) in macro f1 score. According to the 
best results, better results were also achieved with movement 
representations by 4.3% (RecurrencePlot), 2.1%
(GramianAngularField), and 5.4% (MarkovTransitionField)
macro f1 score. However, no significant difference between 
the two modalities can be established with the Mann-Whitney 
U statistical test. The p-values of the tests are 0.331 (Spiral vs 
RecurrencePlot), 0.791 (Spiral vs GramianAngularField), and
0.102 (Spiral vs MarkovTransitionField). This probably stems 
from the observation that the two modalities have no clear trend
according to the performance.

B. Joint examination of the modalities 
Aggregating the predictions achieved on the modalities were

based on Eq. 1. Fig. 2 shows the progression of macro f1 scores
by connecting Spiral and RecurracePlot. The weight factor or 
voting factor (𝑄𝑄) is shown on the horizontal axis. If 𝑄𝑄 is zero, 
then only the prediction of the movement. If 𝑄𝑄 = 1, then the 
prediction of the drawing applies as the two extreme points of 
the axis. The macro f1 scores between 0.5 and 0.9 are shown on 
the vertical axis.

The average macro f1 score achieved with RecurrencePlot is 
66.1%, while with Spiral it is 61.7%. The average of the 
maximum points shown in the figure was 71.4% macro f1 
score. The average of the maximum deviation (maximum point 
– modality with lower performance) was 11.7% macro f1 score,
while the average of the minimum deviation (maximum point –
modality with higher performance) was 3.2%. In two cases, no 
improvement was observed by combining the two modalities: 
Xception with k-NN classifier and Xception with SVM 
classifier. The possible reason is that the difference between the 
two modalities is high (19.6% and 13.0%). In the other cases, 
the difference between the modalities was minor (6.2% on 
average). The most considerable improvement was achieved 
with the MobileNet and SVM classifier. The macro f1 score on 

the RecurrencePlot is 74.9%. On the Spiral it is 66.3%, while 
the maximum value is 82.5%. By comparing the modalities 
with the maximum points pairwise using the Mann-Whitney U 
test, we experienced a significant improvement. The p-value is 
0.010 between the maximum and the Spiral, and 0.047 between 
the maximum and the RecurrencePlot.

Fig. 3 shows the result of aggregating Spiral and 
GramianAngularField. The markings in the figure are the same 
as those in Fig. 2. In this case, the average macro f1 score of the 
GramianAngularField is 62.6%. This macro f1 score for the
Spiral is 61.7%. The average of the maximum scores is 69.1%. 
In all cases, improvement was observed with the prediction 
aggregation. The maximum improvement is an average of 9.6% 
macro f1 score, and the minimum improvement is an average 
of 4.1%. With the present approach, the highest macro f1 score
was provided by MobileNet and RF, with 76.1%. The same case 
achieved 72.7% on GramianAngularField and 70.6% on Spiral.
ResNet50 achieved the most significant improvement (from 
both modalities) with the SVM classifier. It achieved 57.6%
macro f1 score on movement data, 57.5% on drawing data, and 
66.3% at the maximum point. We found a significant 
improvement by combining the modalities using the Mann-
Whitney U test. The p-values are 0.030 between the maximum 

Fig. 4. The aggregated macro f1 scores of Spiral and 
RecurrencePlot in proportion to the voting factor.

Fig. 2. The aggregated macro f1 scores of Spiral and 
GramianAngularField in proportion to the voting factor.

Fig. 3. The aggregated macro f1 scores of Spiral and 
MarkovTransitionField in proportion to the voting factor.
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between the two predictions, 𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∈ {0,1} is the final prediction. 
If the value of 𝑄𝑄 is 0, then the final prediction is equal to the 
prediction from the movement. In the case of 𝑄𝑄 𝑄 𝑄 , the final 
prediction is equal to the prediction from the drawing. The final 
prediction for 𝑄𝑄 between 0 and 1 is a ratio between the two 
modalities. 

𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑦𝑦𝑠𝑠𝑄𝑄 + 𝑦𝑦𝑚𝑚(1 − 𝑄𝑄) (1)

The samples are assigned to classes based on the models' 
estimates with a decision limit 0.5. If the estimate is above this, the 
sample is classified as positive (PD) and below it as negative (HC).

Mann-Whitney U non-parametric test [27] was used to compare 
the performance of modalities and aggregations. The comparison 
was made with the macro f1 scores. The significance level was 
chosen as 0.05 [28].

IV. RESULTS

A. Separate Classification of Drawings and Movements 
TABLE I shows the results achieved on the spiral drawings and 

the representation of the movement. The marking of the spiral 
drawing is Spiral, while the representations are named according 
to the names described in the III. Methodology section. The 
second column contains the names of the feature extractors, and 
the third column contains the classification algorithms. The last 
four columns contain the sensitivity (sens), specificity (spec),
macro f1 (f1), and AUC (auc) values, respectively. The best results 
per representation are marked with bold style.

In the case of the Spiral, the MobileNet feature extractor
resulted in the highest macro f1 score on average (67.9%). 
ResNet50 and Xception achieved an average of 59.7% and 
57.6% macro f1, respectively. Regarding the classification 
algorithms, RB achieved the best macro f1 score on average 
(66.7%), while k-NN and SVM achieved macro f1 values of 
59.5% and 59.0%, respectively. The best result among all cases 
was achieved with the MobileNet feature extractor and RF 
classification model for the spiral drawing (macro f1 score
70.6%).

In the case of ReccurancePlot, the feature extractors' results
no longer deviate spectacularly from each other. MobileNet, 
ResNet50, and Xception achieved 67.8%, 63.9%, and 66.6% 
macro f1 scores, respectively. The result is similar according to 
the classifiers: 64.4% (k-NN), 65.2% (RF), and 68.8% (SVM).
Compared with the data of the Spiral drawing, it can be seen 
that the values have improved on average, whether examining 
the feature extractors or the classifiers. The average difference 
between the two modalities is 4.4% in the macro f1 score. The 
RecurrencePlot approach obtained the best result with the 
MobileNet feature extractor and SVM classification model 
(74.9% macro f1 score). Compared to Spiral's best result, it 
provided a 4.3% better result. Regarding the other metrics, the 
specificity improved by an average of 0.7%, the sensitivity by 
8.1%, and the auc value by 0.088 compared to the Spiral
metrics.

In the GramianAngularField cases, the averages according to 
the feature extractors are 67.7% (MobileNet), 59.7% 
(ResNet50), and 61.2% (Xception) in macro f1 score. 

According to the classifiers, the average values are 61.1% (k-
NN), 65.9% (RF) and 60.9% (SVM). In this case, the average 
difference compared to the Spiral is 0.9% in the macro f1 score. 
The best result was achieved with MobileNet feature extraction 
and RF classifier with a macro f1 score of 72.7%. This is 2.1% 
better than the Spiral’s best result. Regarding the other metrics, 
the sensitivity improved by an average of 7.7% and the auc 
value by 0.039 compared to the Spiral metrics, but the 
specificity decreased by an average of 5.9%.

TABLE I
RESULTS OBTAINED WITH DIFFERENT MODALITIES, FEATURE 

EXTRACTORS, AND CLASSIFICATION ALGORITHMS.
Extractor Classifier sens spec f1 auc
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MobileNet
k-NN 55.6% 78.7% 66.8% 0.686
RF 71.1% 70.2% 70.6% 0.757

SVM 64.4% 68.1% 66.3% 0.720

ResNet50
k-NN 46.7% 78.7% 61.9% 0.574

RF 60.0% 59.6% 59.8% 0.650
SVM 53.3% 61.7% 57.5% 0.619

Xception
k-NN 46.7% 53.2% 49.9% 0.533

RF 68.9% 70.2% 69.6% 0.699
SVM 53.3% 53.2% 53.3% 0.576
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k-NN 51.1% 80.9% 65.4% 0.752
RF 64.4% 61.7% 63.0% 0.750

SVM 71.1% 78.7% 74.9% 0.834

ResNet50
k-NN 71.1% 46.8% 58.2% 0.689

RF 66.7% 70.2% 68.4% 0.749
SVM 64.4% 66.0% 65.2% 0.710

Xception
k-NN 66.7% 72.3% 69.5% 0.721

RF 71.1% 57.4% 64.0% 0.709
SVM 66.7% 66.0% 66.3% 0.689
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d MobileNet
k-NN 75.6% 59.6% 67.3% 0.774
RF 80.0% 66.0% 72.7% 0.768

SVM 64.4% 61.7% 63.0% 0.720

ResNet50
k-NN 62.2% 46.8% 54.2% 0.606

RF 64.4% 66.0% 65.2% 0.685
SVM 57.8% 57.4% 57.6% 0.635

Xception
k-NN 60.0% 63.8% 61.9% 0.653

RF 64.4% 55.3% 59.7% 0.664
SVM 60.0% 63.8% 61.9% 0.659
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MobileNet
k-NN 71.1% 51.1% 60.6% 0.635

RF 75.6% 61.7% 68.4% 0.749
SVM 51.1% 63.8% 57.4% 0.661

ResNet50
k-NN 68.9% 70.2% 69.6% 0.757
RF 77.8% 74.5% 76.1% 0.802

SVM 75.6% 72.3% 73.9% 0.822

Xception
k-NN 71.1% 55.3% 62.9% 0.634

RF 64.4% 74.5% 69.4% 0.736
SVM 66.7% 76.6% 71.6% 0.727

In the case of MarkovTransitionField, the average macro f1 
scores are 62.1% for MobileNet, 73.2% for ResNet50 and 
68.0% for Xception. Regarding to the classifiers, k-NN
achieved 64.3%, RF 71.3%, and SVM 67.6% macro f1 score.
Compared to the Spiral, ResNet50 and Xception performed 
better with 13.5% and 10.4% macro f1 scores, respectively. 
When comparing classification algorithms, on average, all three 
performed better (4.8%, 4.6%, and 8.6% better results for k-
NN, RF, and SVM) in MarkovTransitionField representation 
than in the Spiral. Overall, this approach outperformed the 
Spiral by 6.0% in macro f1 score. The best result was obtained
with the ResNet50 feature extractor with the RF classifier 
(76.1% macro f1 value). This is better with a 5.4% macro f1 
score than the Spiral’s best result. Regarding the other metrics, 
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between the two predictions, 𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∈ {0,1} is the final prediction. 
If the value of 𝑄𝑄 is 0, then the final prediction is equal to the 
prediction from the movement. In the case of 𝑄𝑄 𝑄 𝑄 , the final 
prediction is equal to the prediction from the drawing. The final 
prediction for 𝑄𝑄 between 0 and 1 is a ratio between the two 
modalities. 

𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑦𝑦𝑠𝑠𝑄𝑄 + 𝑦𝑦𝑚𝑚(1 − 𝑄𝑄) (1)

The samples are assigned to classes based on the models' 
estimates with a decision limit 0.5. If the estimate is above this, the 
sample is classified as positive (PD) and below it as negative (HC).

Mann-Whitney U non-parametric test [27] was used to compare 
the performance of modalities and aggregations. The comparison 
was made with the macro f1 scores. The significance level was 
chosen as 0.05 [28].

IV. RESULTS

A. Separate Classification of Drawings and Movements 
TABLE I shows the results achieved on the spiral drawings and 

the representation of the movement. The marking of the spiral 
drawing is Spiral, while the representations are named according 
to the names described in the III. Methodology section. The 
second column contains the names of the feature extractors, and 
the third column contains the classification algorithms. The last 
four columns contain the sensitivity (sens), specificity (spec),
macro f1 (f1), and AUC (auc) values, respectively. The best results 
per representation are marked with bold style.

In the case of the Spiral, the MobileNet feature extractor
resulted in the highest macro f1 score on average (67.9%). 
ResNet50 and Xception achieved an average of 59.7% and 
57.6% macro f1, respectively. Regarding the classification 
algorithms, RB achieved the best macro f1 score on average 
(66.7%), while k-NN and SVM achieved macro f1 values of 
59.5% and 59.0%, respectively. The best result among all cases 
was achieved with the MobileNet feature extractor and RF 
classification model for the spiral drawing (macro f1 score
70.6%).

In the case of ReccurancePlot, the feature extractors' results
no longer deviate spectacularly from each other. MobileNet, 
ResNet50, and Xception achieved 67.8%, 63.9%, and 66.6% 
macro f1 scores, respectively. The result is similar according to 
the classifiers: 64.4% (k-NN), 65.2% (RF), and 68.8% (SVM).
Compared with the data of the Spiral drawing, it can be seen 
that the values have improved on average, whether examining 
the feature extractors or the classifiers. The average difference 
between the two modalities is 4.4% in the macro f1 score. The 
RecurrencePlot approach obtained the best result with the 
MobileNet feature extractor and SVM classification model 
(74.9% macro f1 score). Compared to Spiral's best result, it 
provided a 4.3% better result. Regarding the other metrics, the 
specificity improved by an average of 0.7%, the sensitivity by 
8.1%, and the auc value by 0.088 compared to the Spiral
metrics.

In the GramianAngularField cases, the averages according to 
the feature extractors are 67.7% (MobileNet), 59.7% 
(ResNet50), and 61.2% (Xception) in macro f1 score. 

According to the classifiers, the average values are 61.1% (k-
NN), 65.9% (RF) and 60.9% (SVM). In this case, the average 
difference compared to the Spiral is 0.9% in the macro f1 score. 
The best result was achieved with MobileNet feature extraction 
and RF classifier with a macro f1 score of 72.7%. This is 2.1% 
better than the Spiral’s best result. Regarding the other metrics, 
the sensitivity improved by an average of 7.7% and the auc 
value by 0.039 compared to the Spiral metrics, but the 
specificity decreased by an average of 5.9%.

TABLE I
RESULTS OBTAINED WITH DIFFERENT MODALITIES, FEATURE 

EXTRACTORS, AND CLASSIFICATION ALGORITHMS.
Extractor Classifier sens spec f1 auc
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Xception
k-NN 66.7% 72.3% 69.5% 0.721

RF 71.1% 57.4% 64.0% 0.709
SVM 66.7% 66.0% 66.3% 0.689
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k-NN 75.6% 59.6% 67.3% 0.774
RF 80.0% 66.0% 72.7% 0.768

SVM 64.4% 61.7% 63.0% 0.720

ResNet50
k-NN 62.2% 46.8% 54.2% 0.606

RF 64.4% 66.0% 65.2% 0.685
SVM 57.8% 57.4% 57.6% 0.635

Xception
k-NN 60.0% 63.8% 61.9% 0.653

RF 64.4% 55.3% 59.7% 0.664
SVM 60.0% 63.8% 61.9% 0.659
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k-NN 71.1% 51.1% 60.6% 0.635

RF 75.6% 61.7% 68.4% 0.749
SVM 51.1% 63.8% 57.4% 0.661

ResNet50
k-NN 68.9% 70.2% 69.6% 0.757
RF 77.8% 74.5% 76.1% 0.802

SVM 75.6% 72.3% 73.9% 0.822

Xception
k-NN 71.1% 55.3% 62.9% 0.634

RF 64.4% 74.5% 69.4% 0.736
SVM 66.7% 76.6% 71.6% 0.727

In the case of MarkovTransitionField, the average macro f1 
scores are 62.1% for MobileNet, 73.2% for ResNet50 and 
68.0% for Xception. Regarding to the classifiers, k-NN
achieved 64.3%, RF 71.3%, and SVM 67.6% macro f1 score.
Compared to the Spiral, ResNet50 and Xception performed 
better with 13.5% and 10.4% macro f1 scores, respectively. 
When comparing classification algorithms, on average, all three 
performed better (4.8%, 4.6%, and 8.6% better results for k-
NN, RF, and SVM) in MarkovTransitionField representation 
than in the Spiral. Overall, this approach outperformed the 
Spiral by 6.0% in macro f1 score. The best result was obtained
with the ResNet50 feature extractor with the RF classifier 
(76.1% macro f1 value). This is better with a 5.4% macro f1 
score than the Spiral’s best result. Regarding the other metrics, 
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our present research, in which the participants draw a spiral 
pattern. During the process, a sensor attached to the wrist 
records the acceleration data. We examine these two modalities 
separately and together.

III. METHODOLOGY

A. Database 
The database contains drawing and drawing-related sensor data 

of 45 PD patients and 47 HC individuals. All participants were 
informed beforehand about the research details and gave their 
consent by signing a consent form. Participants volunteered to 
participate in the research and were informed that their 
participation could be withdrawn without explanation.

There are 37 men and eight women in the PD class, whose 
average age is 66.0 years with a standard deviation of 14.2 years. 
Twenty-one people were recorded with drug onset, 18 people with 
Deep Brain Stimulation (DBS) switched on (10 people belonged 
to both categories). The severity score of PD patients was defined
based on the Unified Parkinson's Disease Rating Scale (UPDRS)
scale. The resting tremor (3.17), postural tremor (3.15), rigidity 
(3.3), and finger tapping (3.4) tasks were evaluated by the 
neurologist. The average severity was 1.10, where 0 means a 
healthy (normal) stage, and 4 means the severe stage. Severity 
scores for the right hand are presented since data from the right 
hand were examined.

There were 20 men and 27 women in the HC class, with an 
average age of 56.7 years and a standard deviation of 15.2.  
According to their admission, the members of the HC class did not 
have Parkinson's disease or any other disease that affects their 
movement.

The drawing and motion recordings were made using an 
application developed for Android tablets. In the case of the 
drawing, the participants followed the pattern of an Archimedean 
spiral by moving between the lines from the inside to the outside 
of the spiral template. The drawing data was sampled at a 
maximum of 110 Hz. A sensor attached to the wrist provided 
acceleration data in three dimensions (X, Y, and Z) with a sampling 
frequency of 50 Hz to record the movement.

Recordings were anonymized before use. Their metadata, such 
as gender and age, were used only to describe the classes.

B. Preprocessing 
The drawings were plotted along X and Y coordinates and 

resized to 224x224 pixels with 24-bit depth. The average along the 
corresponding coordinate was subtracted from the acceleration 
data as standardization (remove the bias of the measurement 
device). Furthermore, a 4-order bandpass Butterworth filter was 
applied to the signals between 2 and 15 Hz. Finally, one data vector 
was created from the three coordinates, which contained the length 
of the vector pointing to the point described by the three 
coordinates at each instant of time. Two-dimensional 
representations were made, as shown in Fig. 1, such as 
MarkovTransitionField, RecurrencePlot, and 
GramianAngularField. For this data representation, the pyts 
(v0.12.0) Python package was used with default parameters [21].

These images were also resized to 224x224 pixels with 24-bit 
depth.

The feature vectors from the resulted input images were derived 
from the feature extraction part of pre-trained deep learning 
algorithms. For this, the Keras API was used with the Tensorflow
(v2.0.0) machine learning platform. Among the available models, 
Xception [22], ResNet50 [23], and MobileNet [24] were used. We 
removed the classification (Dense) layer from the end of each 
model and assigned a GlobalAveragePooling2D layer to get one-
dimensional feature vectors. Finally, the feature vectors were 
standardized using the StandardScaler function of sklearn 
(v0.0.post7).

Fig. 1. The spiral drawing and the 2D movement 
representations for an HC person (upper images) and a PD 
patient (lower images).

C. Classification and Evaluation 
To classify the feature vectors, SVM, RF, and k-NN classifiers 
were used with nested cross-validation at 10-fold numbers.

The test set (10% of the database) was separated in the outer 
cycle, independent of the model learning. On the remaining data, 
the best 100 features were selected based on ANOVA F-value
[25]. The same features were selected in the test set accordingly.

The validation set (10% of the 90% data) was separated from 
the training dataset in the internal cycle. This training set was used 
to train the classifiers, and the optimization was carried out with 
the validation set. The parameters below were probed available for 
sklearn [26] models:

 kernel (linear, rbf), C value (0.001, 0.01, 0.1, 1, 10, 100),
and gamma (10, 1, 0.1, 0.01, 0.001, 0.0001) for SVM,

 the max_depth (10, 30, 50, 70, 90, None), max_features
(auto, sqrt), and min_samples_leaf (1, 2, 4) for RF,

 the number of neighbors (2, 3, 5, 10, 20) for k-NN.

The test sets were finally estimated with the models trained with 
the best parameters (on 90% of the data). The sensitivity, 
specificity, macro f1 score, and area under the receiver operating 
characteristic (ROC) curve (AUC) values were derived from the 
estimates.

The predictions of the two different modalities (drawing and 
movement) were aggregated according to Eq. 1, where 𝑦𝑦𝑠𝑠 ∈ {0,1}
is the prediction from spiral drawing and 𝑦𝑦𝑚𝑚 ∈ {0,1} is the 
prediction from the movement data. 𝑄𝑄 ∈ {0,1} is the weight factor 
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the specificity improved by an average of 0.7%, the sensitivity
by 11.4%, and the auc value by 0.079 compared to the Spiral
metrics.

Overall, it can be seen that the image representation of the 
movement provides a better result in average value: 4.4% 
(RecurrencePlot), 0.9% (GramianAngularField), 6.0% 
(MarkovTransitionField) in macro f1 score. According to the 
best results, better results were also achieved with movement 
representations by 4.3% (RecurrencePlot), 2.1%
(GramianAngularField), and 5.4% (MarkovTransitionField)
macro f1 score. However, no significant difference between 
the two modalities can be established with the Mann-Whitney 
U statistical test. The p-values of the tests are 0.331 (Spiral vs 
RecurrencePlot), 0.791 (Spiral vs GramianAngularField), and
0.102 (Spiral vs MarkovTransitionField). This probably stems 
from the observation that the two modalities have no clear trend
according to the performance.

B. Joint examination of the modalities 
Aggregating the predictions achieved on the modalities were

based on Eq. 1. Fig. 2 shows the progression of macro f1 scores
by connecting Spiral and RecurracePlot. The weight factor or 
voting factor (𝑄𝑄) is shown on the horizontal axis. If 𝑄𝑄 is zero, 
then only the prediction of the movement. If 𝑄𝑄 = 1, then the 
prediction of the drawing applies as the two extreme points of 
the axis. The macro f1 scores between 0.5 and 0.9 are shown on 
the vertical axis.

The average macro f1 score achieved with RecurrencePlot is 
66.1%, while with Spiral it is 61.7%. The average of the 
maximum points shown in the figure was 71.4% macro f1 
score. The average of the maximum deviation (maximum point 
– modality with lower performance) was 11.7% macro f1 score,
while the average of the minimum deviation (maximum point –
modality with higher performance) was 3.2%. In two cases, no 
improvement was observed by combining the two modalities: 
Xception with k-NN classifier and Xception with SVM 
classifier. The possible reason is that the difference between the 
two modalities is high (19.6% and 13.0%). In the other cases, 
the difference between the modalities was minor (6.2% on 
average). The most considerable improvement was achieved 
with the MobileNet and SVM classifier. The macro f1 score on 

the RecurrencePlot is 74.9%. On the Spiral it is 66.3%, while 
the maximum value is 82.5%. By comparing the modalities 
with the maximum points pairwise using the Mann-Whitney U 
test, we experienced a significant improvement. The p-value is 
0.010 between the maximum and the Spiral, and 0.047 between 
the maximum and the RecurrencePlot.

Fig. 3 shows the result of aggregating Spiral and 
GramianAngularField. The markings in the figure are the same 
as those in Fig. 2. In this case, the average macro f1 score of the 
GramianAngularField is 62.6%. This macro f1 score for the
Spiral is 61.7%. The average of the maximum scores is 69.1%. 
In all cases, improvement was observed with the prediction 
aggregation. The maximum improvement is an average of 9.6% 
macro f1 score, and the minimum improvement is an average 
of 4.1%. With the present approach, the highest macro f1 score
was provided by MobileNet and RF, with 76.1%. The same case 
achieved 72.7% on GramianAngularField and 70.6% on Spiral.
ResNet50 achieved the most significant improvement (from 
both modalities) with the SVM classifier. It achieved 57.6%
macro f1 score on movement data, 57.5% on drawing data, and 
66.3% at the maximum point. We found a significant 
improvement by combining the modalities using the Mann-
Whitney U test. The p-values are 0.030 between the maximum 

Fig. 4. The aggregated macro f1 scores of Spiral and 
RecurrencePlot in proportion to the voting factor.

Fig. 2. The aggregated macro f1 scores of Spiral and 
GramianAngularField in proportion to the voting factor.

Fig. 3. The aggregated macro f1 scores of Spiral and 
MarkovTransitionField in proportion to the voting factor.
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the specificity improved by an average of 0.7%, the sensitivity
by 11.4%, and the auc value by 0.079 compared to the Spiral
metrics.

Overall, it can be seen that the image representation of the 
movement provides a better result in average value: 4.4% 
(RecurrencePlot), 0.9% (GramianAngularField), 6.0% 
(MarkovTransitionField) in macro f1 score. According to the 
best results, better results were also achieved with movement 
representations by 4.3% (RecurrencePlot), 2.1%
(GramianAngularField), and 5.4% (MarkovTransitionField)
macro f1 score. However, no significant difference between 
the two modalities can be established with the Mann-Whitney 
U statistical test. The p-values of the tests are 0.331 (Spiral vs 
RecurrencePlot), 0.791 (Spiral vs GramianAngularField), and
0.102 (Spiral vs MarkovTransitionField). This probably stems 
from the observation that the two modalities have no clear trend
according to the performance.

B. Joint examination of the modalities 
Aggregating the predictions achieved on the modalities were

based on Eq. 1. Fig. 2 shows the progression of macro f1 scores
by connecting Spiral and RecurracePlot. The weight factor or 
voting factor (𝑄𝑄) is shown on the horizontal axis. If 𝑄𝑄 is zero, 
then only the prediction of the movement. If 𝑄𝑄 = 1, then the 
prediction of the drawing applies as the two extreme points of 
the axis. The macro f1 scores between 0.5 and 0.9 are shown on 
the vertical axis.

The average macro f1 score achieved with RecurrencePlot is 
66.1%, while with Spiral it is 61.7%. The average of the 
maximum points shown in the figure was 71.4% macro f1 
score. The average of the maximum deviation (maximum point 
– modality with lower performance) was 11.7% macro f1 score,
while the average of the minimum deviation (maximum point –
modality with higher performance) was 3.2%. In two cases, no 
improvement was observed by combining the two modalities: 
Xception with k-NN classifier and Xception with SVM 
classifier. The possible reason is that the difference between the 
two modalities is high (19.6% and 13.0%). In the other cases, 
the difference between the modalities was minor (6.2% on 
average). The most considerable improvement was achieved 
with the MobileNet and SVM classifier. The macro f1 score on 

the RecurrencePlot is 74.9%. On the Spiral it is 66.3%, while 
the maximum value is 82.5%. By comparing the modalities 
with the maximum points pairwise using the Mann-Whitney U 
test, we experienced a significant improvement. The p-value is 
0.010 between the maximum and the Spiral, and 0.047 between 
the maximum and the RecurrencePlot.

Fig. 3 shows the result of aggregating Spiral and 
GramianAngularField. The markings in the figure are the same 
as those in Fig. 2. In this case, the average macro f1 score of the 
GramianAngularField is 62.6%. This macro f1 score for the
Spiral is 61.7%. The average of the maximum scores is 69.1%. 
In all cases, improvement was observed with the prediction 
aggregation. The maximum improvement is an average of 9.6% 
macro f1 score, and the minimum improvement is an average 
of 4.1%. With the present approach, the highest macro f1 score
was provided by MobileNet and RF, with 76.1%. The same case 
achieved 72.7% on GramianAngularField and 70.6% on Spiral.
ResNet50 achieved the most significant improvement (from 
both modalities) with the SVM classifier. It achieved 57.6%
macro f1 score on movement data, 57.5% on drawing data, and 
66.3% at the maximum point. We found a significant 
improvement by combining the modalities using the Mann-
Whitney U test. The p-values are 0.030 between the maximum 

Fig. 4. The aggregated macro f1 scores of Spiral and 
RecurrencePlot in proportion to the voting factor.

Fig. 2. The aggregated macro f1 scores of Spiral and 
GramianAngularField in proportion to the voting factor.

Fig. 3. The aggregated macro f1 scores of Spiral and 
MarkovTransitionField in proportion to the voting factor.

Fig. 4. The aggregated macro f1 scores of Spiral and MarkovTransitionField in 
proportion to the voting factor.

Fig. 2. The aggregated macro f1 scores of Spiral and RecurrencePlot in 
proportion to the voting factor.
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the specificity improved by an average of 0.7%, the sensitivity
by 11.4%, and the auc value by 0.079 compared to the Spiral
metrics.

Overall, it can be seen that the image representation of the 
movement provides a better result in average value: 4.4% 
(RecurrencePlot), 0.9% (GramianAngularField), 6.0% 
(MarkovTransitionField) in macro f1 score. According to the 
best results, better results were also achieved with movement 
representations by 4.3% (RecurrencePlot), 2.1%
(GramianAngularField), and 5.4% (MarkovTransitionField)
macro f1 score. However, no significant difference between 
the two modalities can be established with the Mann-Whitney 
U statistical test. The p-values of the tests are 0.331 (Spiral vs 
RecurrencePlot), 0.791 (Spiral vs GramianAngularField), and
0.102 (Spiral vs MarkovTransitionField). This probably stems 
from the observation that the two modalities have no clear trend
according to the performance.

B. Joint examination of the modalities 
Aggregating the predictions achieved on the modalities were

based on Eq. 1. Fig. 2 shows the progression of macro f1 scores
by connecting Spiral and RecurracePlot. The weight factor or 
voting factor (𝑄𝑄) is shown on the horizontal axis. If 𝑄𝑄 is zero, 
then only the prediction of the movement. If 𝑄𝑄 = 1, then the 
prediction of the drawing applies as the two extreme points of 
the axis. The macro f1 scores between 0.5 and 0.9 are shown on 
the vertical axis.

The average macro f1 score achieved with RecurrencePlot is 
66.1%, while with Spiral it is 61.7%. The average of the 
maximum points shown in the figure was 71.4% macro f1 
score. The average of the maximum deviation (maximum point 
– modality with lower performance) was 11.7% macro f1 score,
while the average of the minimum deviation (maximum point –
modality with higher performance) was 3.2%. In two cases, no 
improvement was observed by combining the two modalities: 
Xception with k-NN classifier and Xception with SVM 
classifier. The possible reason is that the difference between the 
two modalities is high (19.6% and 13.0%). In the other cases, 
the difference between the modalities was minor (6.2% on 
average). The most considerable improvement was achieved 
with the MobileNet and SVM classifier. The macro f1 score on 

the RecurrencePlot is 74.9%. On the Spiral it is 66.3%, while 
the maximum value is 82.5%. By comparing the modalities 
with the maximum points pairwise using the Mann-Whitney U 
test, we experienced a significant improvement. The p-value is 
0.010 between the maximum and the Spiral, and 0.047 between 
the maximum and the RecurrencePlot.

Fig. 3 shows the result of aggregating Spiral and 
GramianAngularField. The markings in the figure are the same 
as those in Fig. 2. In this case, the average macro f1 score of the 
GramianAngularField is 62.6%. This macro f1 score for the
Spiral is 61.7%. The average of the maximum scores is 69.1%. 
In all cases, improvement was observed with the prediction 
aggregation. The maximum improvement is an average of 9.6% 
macro f1 score, and the minimum improvement is an average 
of 4.1%. With the present approach, the highest macro f1 score
was provided by MobileNet and RF, with 76.1%. The same case 
achieved 72.7% on GramianAngularField and 70.6% on Spiral.
ResNet50 achieved the most significant improvement (from 
both modalities) with the SVM classifier. It achieved 57.6%
macro f1 score on movement data, 57.5% on drawing data, and 
66.3% at the maximum point. We found a significant 
improvement by combining the modalities using the Mann-
Whitney U test. The p-values are 0.030 between the maximum 

Fig. 4. The aggregated macro f1 scores of Spiral and 
RecurrencePlot in proportion to the voting factor.

Fig. 2. The aggregated macro f1 scores of Spiral and 
GramianAngularField in proportion to the voting factor.

Fig. 3. The aggregated macro f1 scores of Spiral and 
MarkovTransitionField in proportion to the voting factor.

 Fig. 3. The aggregated macro f1 scores of Spiral and GramianAngularField in 
proportion to the voting factor.
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and the Spiral and 0.017 between the maximum and the 
GramianAngularField.

Fig. 4 shows the Spiral and the MarkovTransitionField
representation. The markings of the figure are the same as those
of the previous two figures. The average macro f1 score of the 
movement is 67.8%, that of the drawing is 61.7%, while that of 
the maximum points is 71.5%. The biggest change is 11.7% in 
macro f1 score on average, while the minimum is 1.8%. In this 
case too, we experienced cases where aggregation did not 
improve the results: Xception with k-NN classifier, Xception 
with SVM classifier and MobileNet with k-NN classifier. The 
first two showed no improvement using the RecurrencePlot 
either. The results of the two modalities show a similarly large 
difference compared to each other as with the RecurrencePlot.
In the case of MobileNet k-NN, the difference between the two 
modalities is not that large, but it does not show improvement. 
The highest result was obtained with the ResNet50 feature 
extraction and the RF classifier in the macro f1 score of 78.3%. 
It achieved 76.1% on motion and 59.8% macro f1 score on 
drawing. This was approached by the MobileNet and RB with 
a macro f1 score of 78.2%.
The same case achieved 68.4% on movement and 70.6% on 
drawing. With the Mann-Whitney U test, we found a 
significant improvement between the maximum and Spiral, but 
not between the maximums and the GramianAngularField. The 
p-value is 0.009 between maximums and drawing results and 
0.102 between maximums and movement results.

TABLE II summarises the best results of the single and joint 
modalities. The single modalities are marked with the names 
from TABLE I. The joint results are marked with the name of 
the representation approaches. The descriptor metrics are 
analogous to TABLE I. The movement representations 
appeared superior to the spiral drawing from the single use of 
the modalities. Utilizing joint predictions, improvements were 
achieved. The top performance was received with 
RecurrencePlot (sens: 75.6%, spec: 89.4%, macro f1 score: 
82.5%).

TABLE II
SUMMARY TABLE OF THE BEST RESULTS OBTAINED FROM 

THE SINGLE AND JOINT MODALITIES.
case sens spec bacc f1 auc

Si
ng

le

Spiral 71.1% 70.2% 70.7% 70.6% 0.757
RecurrencePlot 71.1% 78.7% 75.0% 74.9% 0.834

GramianAngularField 80.0% 66.0% 72.8% 72.7% 0.768
MarkovTransitionField 77.8% 74.5% 76.1% 76.1% 0.802

Jo
in

t RecurrencePlot 75.6% 89.4% 82.6% 82.5% 0.825
GramianAngularField 77.8% 74.5% 76.1% 76.1% 0.761

MarkovTransitionField 80.0% 76.6% 78.3% 78.3% 0.783

V. DISCUSSION

Examining the modalities separately shows that the 
representations created from movement performed better than 
the drawing when examining the best results per modality 
(TABLE II). However, looking at the single results as a whole, 
we did not find any significant differences using the Mann-
Whitney U test. This can be influenced by the methodology for 
generating the representations and the nature of the feature 

extraction models. It shows that the different data types 
generally have the same detection performance with these 
vision-based examinations on the applied classifiers. This may 
be a consideration when the physician wants to use a minimal 
tool in the shortest possible time. Nevertheless, it can be seen 
from TABLE II that a few percent better results can be achieved 
by selecting the best-performing models with motion data.

By using the modalities together, we experienced an 
improvement in all paired cases. This improvement proved 
significant in the RecurrencePlot and the 
GramianAngularField, whether we compared the best values to 
the drawing or the movement. In the case of the 
MarkovTransitionField, the improvement only reached a 
significant result compared to the drawing. This suggests that 
the decision is more confident and accurate when multiple 
sensors are used for the same task (even with the same 
processing scheme). However, by observing the voting factor, 
different optimal points may result. This implies that the 
modalities may play a different role in the final decision.

The present results provide insight into how the same task can 
provide better recognition by examining several sensors. There 
are also studies in the literature where, for example, video 
cameras and motion sensors help to recognize PD-related 
episodes. There is  a multi-sensory examination of the same task 
similarly.

The limitation of the research is the heterogeneous database. 
A database with more elements may be necessary for filtering 
according to various factors (medication, brain stimulation). 
Another direction of development is sex equality. Although 
research [29] shows that the drawing of the Archimedean spiral 
does not differ significantly between men and women, this 
requires further support. Studies [30] are underway to 
investigate the separability of the sexes, where the authors have 
already shown that there is a significant difference when 
copying shapes. However, most studies have looked at 
participants between 18 and 30 years old and have used manual 
features that have not been linked to Parkinson's disease. 
However, this raises the need for further investigation.

Finally, it should be mentioned that the present results are 
based on image data processing with out-of-domain feature 
extraction algorithms. These play a role in avoiding 
overlearning by extracting a more general set of features. 
Presumably, fine-tuning the extractor models on the database
specific to the task can increase the performance of the 
classifiers. However, a database with few elements can also 
cause overlearning.

VI. SUMMARY AND CONCLUSION

PD is becoming one of the most common neurological 
diseases of our time. The importance of research related to it is 
that there is no cure according to current clinical knowledge.

Current clinical knowledge is firmly based on motor 
symptoms, which are typically limb tremors at rest, 
bradykinesia, and muscle stiffness (rigidity). Recognizing them 
in the early stages is also not clear since the appearance of the 
symptoms and the lateral involvement may differ from person 
to person.

The support of artificial intelligence (including machine 
learning algorithms) can be desirable in the diagnostic 
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our present research, in which the participants draw a spiral 
pattern. During the process, a sensor attached to the wrist 
records the acceleration data. We examine these two modalities 
separately and together.

III. METHODOLOGY

A. Database 
The database contains drawing and drawing-related sensor data 

of 45 PD patients and 47 HC individuals. All participants were 
informed beforehand about the research details and gave their 
consent by signing a consent form. Participants volunteered to 
participate in the research and were informed that their 
participation could be withdrawn without explanation.

There are 37 men and eight women in the PD class, whose 
average age is 66.0 years with a standard deviation of 14.2 years. 
Twenty-one people were recorded with drug onset, 18 people with 
Deep Brain Stimulation (DBS) switched on (10 people belonged 
to both categories). The severity score of PD patients was defined
based on the Unified Parkinson's Disease Rating Scale (UPDRS)
scale. The resting tremor (3.17), postural tremor (3.15), rigidity 
(3.3), and finger tapping (3.4) tasks were evaluated by the 
neurologist. The average severity was 1.10, where 0 means a 
healthy (normal) stage, and 4 means the severe stage. Severity 
scores for the right hand are presented since data from the right 
hand were examined.

There were 20 men and 27 women in the HC class, with an 
average age of 56.7 years and a standard deviation of 15.2.  
According to their admission, the members of the HC class did not 
have Parkinson's disease or any other disease that affects their 
movement.

The drawing and motion recordings were made using an 
application developed for Android tablets. In the case of the 
drawing, the participants followed the pattern of an Archimedean 
spiral by moving between the lines from the inside to the outside 
of the spiral template. The drawing data was sampled at a 
maximum of 110 Hz. A sensor attached to the wrist provided 
acceleration data in three dimensions (X, Y, and Z) with a sampling 
frequency of 50 Hz to record the movement.

Recordings were anonymized before use. Their metadata, such 
as gender and age, were used only to describe the classes.

B. Preprocessing 
The drawings were plotted along X and Y coordinates and 

resized to 224x224 pixels with 24-bit depth. The average along the 
corresponding coordinate was subtracted from the acceleration 
data as standardization (remove the bias of the measurement 
device). Furthermore, a 4-order bandpass Butterworth filter was 
applied to the signals between 2 and 15 Hz. Finally, one data vector 
was created from the three coordinates, which contained the length 
of the vector pointing to the point described by the three 
coordinates at each instant of time. Two-dimensional 
representations were made, as shown in Fig. 1, such as 
MarkovTransitionField, RecurrencePlot, and 
GramianAngularField. For this data representation, the pyts 
(v0.12.0) Python package was used with default parameters [21].

These images were also resized to 224x224 pixels with 24-bit 
depth.

The feature vectors from the resulted input images were derived 
from the feature extraction part of pre-trained deep learning 
algorithms. For this, the Keras API was used with the Tensorflow
(v2.0.0) machine learning platform. Among the available models, 
Xception [22], ResNet50 [23], and MobileNet [24] were used. We 
removed the classification (Dense) layer from the end of each 
model and assigned a GlobalAveragePooling2D layer to get one-
dimensional feature vectors. Finally, the feature vectors were 
standardized using the StandardScaler function of sklearn 
(v0.0.post7).

Fig. 1. The spiral drawing and the 2D movement 
representations for an HC person (upper images) and a PD 
patient (lower images).

C. Classification and Evaluation 
To classify the feature vectors, SVM, RF, and k-NN classifiers 
were used with nested cross-validation at 10-fold numbers.

The test set (10% of the database) was separated in the outer 
cycle, independent of the model learning. On the remaining data, 
the best 100 features were selected based on ANOVA F-value
[25]. The same features were selected in the test set accordingly.

The validation set (10% of the 90% data) was separated from 
the training dataset in the internal cycle. This training set was used 
to train the classifiers, and the optimization was carried out with 
the validation set. The parameters below were probed available for 
sklearn [26] models:

 kernel (linear, rbf), C value (0.001, 0.01, 0.1, 1, 10, 100),
and gamma (10, 1, 0.1, 0.01, 0.001, 0.0001) for SVM,

 the max_depth (10, 30, 50, 70, 90, None), max_features
(auto, sqrt), and min_samples_leaf (1, 2, 4) for RF,

 the number of neighbors (2, 3, 5, 10, 20) for k-NN.

The test sets were finally estimated with the models trained with 
the best parameters (on 90% of the data). The sensitivity, 
specificity, macro f1 score, and area under the receiver operating 
characteristic (ROC) curve (AUC) values were derived from the 
estimates.

The predictions of the two different modalities (drawing and 
movement) were aggregated according to Eq. 1, where 𝑦𝑦𝑠𝑠 ∈ {0,1}
is the prediction from spiral drawing and 𝑦𝑦𝑚𝑚 ∈ {0,1} is the 
prediction from the movement data. 𝑄𝑄 ∈ {0,1} is the weight factor 
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the specificity improved by an average of 0.7%, the sensitivity
by 11.4%, and the auc value by 0.079 compared to the Spiral
metrics.

Overall, it can be seen that the image representation of the 
movement provides a better result in average value: 4.4% 
(RecurrencePlot), 0.9% (GramianAngularField), 6.0% 
(MarkovTransitionField) in macro f1 score. According to the 
best results, better results were also achieved with movement 
representations by 4.3% (RecurrencePlot), 2.1%
(GramianAngularField), and 5.4% (MarkovTransitionField)
macro f1 score. However, no significant difference between 
the two modalities can be established with the Mann-Whitney 
U statistical test. The p-values of the tests are 0.331 (Spiral vs 
RecurrencePlot), 0.791 (Spiral vs GramianAngularField), and
0.102 (Spiral vs MarkovTransitionField). This probably stems 
from the observation that the two modalities have no clear trend
according to the performance.

B. Joint examination of the modalities 
Aggregating the predictions achieved on the modalities were

based on Eq. 1. Fig. 2 shows the progression of macro f1 scores
by connecting Spiral and RecurracePlot. The weight factor or 
voting factor (𝑄𝑄) is shown on the horizontal axis. If 𝑄𝑄 is zero, 
then only the prediction of the movement. If 𝑄𝑄 = 1, then the 
prediction of the drawing applies as the two extreme points of 
the axis. The macro f1 scores between 0.5 and 0.9 are shown on 
the vertical axis.

The average macro f1 score achieved with RecurrencePlot is 
66.1%, while with Spiral it is 61.7%. The average of the 
maximum points shown in the figure was 71.4% macro f1 
score. The average of the maximum deviation (maximum point 
– modality with lower performance) was 11.7% macro f1 score,
while the average of the minimum deviation (maximum point –
modality with higher performance) was 3.2%. In two cases, no 
improvement was observed by combining the two modalities: 
Xception with k-NN classifier and Xception with SVM 
classifier. The possible reason is that the difference between the 
two modalities is high (19.6% and 13.0%). In the other cases, 
the difference between the modalities was minor (6.2% on 
average). The most considerable improvement was achieved 
with the MobileNet and SVM classifier. The macro f1 score on 

the RecurrencePlot is 74.9%. On the Spiral it is 66.3%, while 
the maximum value is 82.5%. By comparing the modalities 
with the maximum points pairwise using the Mann-Whitney U 
test, we experienced a significant improvement. The p-value is 
0.010 between the maximum and the Spiral, and 0.047 between 
the maximum and the RecurrencePlot.

Fig. 3 shows the result of aggregating Spiral and 
GramianAngularField. The markings in the figure are the same 
as those in Fig. 2. In this case, the average macro f1 score of the 
GramianAngularField is 62.6%. This macro f1 score for the
Spiral is 61.7%. The average of the maximum scores is 69.1%. 
In all cases, improvement was observed with the prediction 
aggregation. The maximum improvement is an average of 9.6% 
macro f1 score, and the minimum improvement is an average 
of 4.1%. With the present approach, the highest macro f1 score
was provided by MobileNet and RF, with 76.1%. The same case 
achieved 72.7% on GramianAngularField and 70.6% on Spiral.
ResNet50 achieved the most significant improvement (from 
both modalities) with the SVM classifier. It achieved 57.6%
macro f1 score on movement data, 57.5% on drawing data, and 
66.3% at the maximum point. We found a significant 
improvement by combining the modalities using the Mann-
Whitney U test. The p-values are 0.030 between the maximum 

Fig. 4. The aggregated macro f1 scores of Spiral and 
RecurrencePlot in proportion to the voting factor.

Fig. 2. The aggregated macro f1 scores of Spiral and 
GramianAngularField in proportion to the voting factor.

Fig. 3. The aggregated macro f1 scores of Spiral and 
MarkovTransitionField in proportion to the voting factor.
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and the Spiral and 0.017 between the maximum and the 
GramianAngularField.

Fig. 4 shows the Spiral and the MarkovTransitionField
representation. The markings of the figure are the same as those
of the previous two figures. The average macro f1 score of the 
movement is 67.8%, that of the drawing is 61.7%, while that of 
the maximum points is 71.5%. The biggest change is 11.7% in 
macro f1 score on average, while the minimum is 1.8%. In this 
case too, we experienced cases where aggregation did not 
improve the results: Xception with k-NN classifier, Xception 
with SVM classifier and MobileNet with k-NN classifier. The 
first two showed no improvement using the RecurrencePlot 
either. The results of the two modalities show a similarly large 
difference compared to each other as with the RecurrencePlot.
In the case of MobileNet k-NN, the difference between the two 
modalities is not that large, but it does not show improvement. 
The highest result was obtained with the ResNet50 feature 
extraction and the RF classifier in the macro f1 score of 78.3%. 
It achieved 76.1% on motion and 59.8% macro f1 score on 
drawing. This was approached by the MobileNet and RB with 
a macro f1 score of 78.2%.
The same case achieved 68.4% on movement and 70.6% on 
drawing. With the Mann-Whitney U test, we found a 
significant improvement between the maximum and Spiral, but 
not between the maximums and the GramianAngularField. The 
p-value is 0.009 between maximums and drawing results and 
0.102 between maximums and movement results.

TABLE II summarises the best results of the single and joint 
modalities. The single modalities are marked with the names 
from TABLE I. The joint results are marked with the name of 
the representation approaches. The descriptor metrics are 
analogous to TABLE I. The movement representations 
appeared superior to the spiral drawing from the single use of 
the modalities. Utilizing joint predictions, improvements were 
achieved. The top performance was received with 
RecurrencePlot (sens: 75.6%, spec: 89.4%, macro f1 score: 
82.5%).

TABLE II
SUMMARY TABLE OF THE BEST RESULTS OBTAINED FROM 

THE SINGLE AND JOINT MODALITIES.
case sens spec bacc f1 auc

Si
ng

le

Spiral 71.1% 70.2% 70.7% 70.6% 0.757
RecurrencePlot 71.1% 78.7% 75.0% 74.9% 0.834

GramianAngularField 80.0% 66.0% 72.8% 72.7% 0.768
MarkovTransitionField 77.8% 74.5% 76.1% 76.1% 0.802

Jo
in

t RecurrencePlot 75.6% 89.4% 82.6% 82.5% 0.825
GramianAngularField 77.8% 74.5% 76.1% 76.1% 0.761

MarkovTransitionField 80.0% 76.6% 78.3% 78.3% 0.783

V. DISCUSSION

Examining the modalities separately shows that the 
representations created from movement performed better than 
the drawing when examining the best results per modality 
(TABLE II). However, looking at the single results as a whole, 
we did not find any significant differences using the Mann-
Whitney U test. This can be influenced by the methodology for 
generating the representations and the nature of the feature 

extraction models. It shows that the different data types 
generally have the same detection performance with these 
vision-based examinations on the applied classifiers. This may 
be a consideration when the physician wants to use a minimal 
tool in the shortest possible time. Nevertheless, it can be seen 
from TABLE II that a few percent better results can be achieved 
by selecting the best-performing models with motion data.

By using the modalities together, we experienced an 
improvement in all paired cases. This improvement proved 
significant in the RecurrencePlot and the 
GramianAngularField, whether we compared the best values to 
the drawing or the movement. In the case of the 
MarkovTransitionField, the improvement only reached a 
significant result compared to the drawing. This suggests that 
the decision is more confident and accurate when multiple 
sensors are used for the same task (even with the same 
processing scheme). However, by observing the voting factor, 
different optimal points may result. This implies that the 
modalities may play a different role in the final decision.

The present results provide insight into how the same task can 
provide better recognition by examining several sensors. There 
are also studies in the literature where, for example, video 
cameras and motion sensors help to recognize PD-related 
episodes. There is  a multi-sensory examination of the same task 
similarly.

The limitation of the research is the heterogeneous database. 
A database with more elements may be necessary for filtering 
according to various factors (medication, brain stimulation). 
Another direction of development is sex equality. Although 
research [29] shows that the drawing of the Archimedean spiral 
does not differ significantly between men and women, this 
requires further support. Studies [30] are underway to 
investigate the separability of the sexes, where the authors have 
already shown that there is a significant difference when 
copying shapes. However, most studies have looked at 
participants between 18 and 30 years old and have used manual 
features that have not been linked to Parkinson's disease. 
However, this raises the need for further investigation.

Finally, it should be mentioned that the present results are 
based on image data processing with out-of-domain feature 
extraction algorithms. These play a role in avoiding 
overlearning by extracting a more general set of features. 
Presumably, fine-tuning the extractor models on the database
specific to the task can increase the performance of the 
classifiers. However, a database with few elements can also 
cause overlearning.

VI. SUMMARY AND CONCLUSION

PD is becoming one of the most common neurological 
diseases of our time. The importance of research related to it is 
that there is no cure according to current clinical knowledge.

Current clinical knowledge is firmly based on motor 
symptoms, which are typically limb tremors at rest, 
bradykinesia, and muscle stiffness (rigidity). Recognizing them 
in the early stages is also not clear since the appearance of the 
symptoms and the lateral involvement may differ from person 
to person.

The support of artificial intelligence (including machine 
learning algorithms) can be desirable in the diagnostic 
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and the Spiral and 0.017 between the maximum and the 
GramianAngularField.

Fig. 4 shows the Spiral and the MarkovTransitionField
representation. The markings of the figure are the same as those
of the previous two figures. The average macro f1 score of the 
movement is 67.8%, that of the drawing is 61.7%, while that of 
the maximum points is 71.5%. The biggest change is 11.7% in 
macro f1 score on average, while the minimum is 1.8%. In this 
case too, we experienced cases where aggregation did not 
improve the results: Xception with k-NN classifier, Xception 
with SVM classifier and MobileNet with k-NN classifier. The 
first two showed no improvement using the RecurrencePlot 
either. The results of the two modalities show a similarly large 
difference compared to each other as with the RecurrencePlot.
In the case of MobileNet k-NN, the difference between the two 
modalities is not that large, but it does not show improvement. 
The highest result was obtained with the ResNet50 feature 
extraction and the RF classifier in the macro f1 score of 78.3%. 
It achieved 76.1% on motion and 59.8% macro f1 score on 
drawing. This was approached by the MobileNet and RB with 
a macro f1 score of 78.2%.
The same case achieved 68.4% on movement and 70.6% on 
drawing. With the Mann-Whitney U test, we found a 
significant improvement between the maximum and Spiral, but 
not between the maximums and the GramianAngularField. The 
p-value is 0.009 between maximums and drawing results and 
0.102 between maximums and movement results.

TABLE II summarises the best results of the single and joint 
modalities. The single modalities are marked with the names 
from TABLE I. The joint results are marked with the name of 
the representation approaches. The descriptor metrics are 
analogous to TABLE I. The movement representations 
appeared superior to the spiral drawing from the single use of 
the modalities. Utilizing joint predictions, improvements were 
achieved. The top performance was received with 
RecurrencePlot (sens: 75.6%, spec: 89.4%, macro f1 score: 
82.5%).

TABLE II
SUMMARY TABLE OF THE BEST RESULTS OBTAINED FROM 

THE SINGLE AND JOINT MODALITIES.
case sens spec bacc f1 auc

Si
ng

le

Spiral 71.1% 70.2% 70.7% 70.6% 0.757
RecurrencePlot 71.1% 78.7% 75.0% 74.9% 0.834

GramianAngularField 80.0% 66.0% 72.8% 72.7% 0.768
MarkovTransitionField 77.8% 74.5% 76.1% 76.1% 0.802

Jo
in

t RecurrencePlot 75.6% 89.4% 82.6% 82.5% 0.825
GramianAngularField 77.8% 74.5% 76.1% 76.1% 0.761

MarkovTransitionField 80.0% 76.6% 78.3% 78.3% 0.783

V. DISCUSSION

Examining the modalities separately shows that the 
representations created from movement performed better than 
the drawing when examining the best results per modality 
(TABLE II). However, looking at the single results as a whole, 
we did not find any significant differences using the Mann-
Whitney U test. This can be influenced by the methodology for 
generating the representations and the nature of the feature 

extraction models. It shows that the different data types 
generally have the same detection performance with these 
vision-based examinations on the applied classifiers. This may 
be a consideration when the physician wants to use a minimal 
tool in the shortest possible time. Nevertheless, it can be seen 
from TABLE II that a few percent better results can be achieved 
by selecting the best-performing models with motion data.

By using the modalities together, we experienced an 
improvement in all paired cases. This improvement proved 
significant in the RecurrencePlot and the 
GramianAngularField, whether we compared the best values to 
the drawing or the movement. In the case of the 
MarkovTransitionField, the improvement only reached a 
significant result compared to the drawing. This suggests that 
the decision is more confident and accurate when multiple 
sensors are used for the same task (even with the same 
processing scheme). However, by observing the voting factor, 
different optimal points may result. This implies that the 
modalities may play a different role in the final decision.

The present results provide insight into how the same task can 
provide better recognition by examining several sensors. There 
are also studies in the literature where, for example, video 
cameras and motion sensors help to recognize PD-related 
episodes. There is  a multi-sensory examination of the same task 
similarly.

The limitation of the research is the heterogeneous database. 
A database with more elements may be necessary for filtering 
according to various factors (medication, brain stimulation). 
Another direction of development is sex equality. Although 
research [29] shows that the drawing of the Archimedean spiral 
does not differ significantly between men and women, this 
requires further support. Studies [30] are underway to 
investigate the separability of the sexes, where the authors have 
already shown that there is a significant difference when 
copying shapes. However, most studies have looked at 
participants between 18 and 30 years old and have used manual 
features that have not been linked to Parkinson's disease. 
However, this raises the need for further investigation.

Finally, it should be mentioned that the present results are 
based on image data processing with out-of-domain feature 
extraction algorithms. These play a role in avoiding 
overlearning by extracting a more general set of features. 
Presumably, fine-tuning the extractor models on the database
specific to the task can increase the performance of the 
classifiers. However, a database with few elements can also 
cause overlearning.

VI. SUMMARY AND CONCLUSION

PD is becoming one of the most common neurological 
diseases of our time. The importance of research related to it is 
that there is no cure according to current clinical knowledge.

Current clinical knowledge is firmly based on motor 
symptoms, which are typically limb tremors at rest, 
bradykinesia, and muscle stiffness (rigidity). Recognizing them 
in the early stages is also not clear since the appearance of the 
symptoms and the lateral involvement may differ from person 
to person.

The support of artificial intelligence (including machine 
learning algorithms) can be desirable in the diagnostic 

6
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

and the Spiral and 0.017 between the maximum and the 
GramianAngularField.

Fig. 4 shows the Spiral and the MarkovTransitionField
representation. The markings of the figure are the same as those
of the previous two figures. The average macro f1 score of the 
movement is 67.8%, that of the drawing is 61.7%, while that of 
the maximum points is 71.5%. The biggest change is 11.7% in 
macro f1 score on average, while the minimum is 1.8%. In this 
case too, we experienced cases where aggregation did not 
improve the results: Xception with k-NN classifier, Xception 
with SVM classifier and MobileNet with k-NN classifier. The 
first two showed no improvement using the RecurrencePlot 
either. The results of the two modalities show a similarly large 
difference compared to each other as with the RecurrencePlot.
In the case of MobileNet k-NN, the difference between the two 
modalities is not that large, but it does not show improvement. 
The highest result was obtained with the ResNet50 feature 
extraction and the RF classifier in the macro f1 score of 78.3%. 
It achieved 76.1% on motion and 59.8% macro f1 score on 
drawing. This was approached by the MobileNet and RB with 
a macro f1 score of 78.2%.
The same case achieved 68.4% on movement and 70.6% on 
drawing. With the Mann-Whitney U test, we found a 
significant improvement between the maximum and Spiral, but 
not between the maximums and the GramianAngularField. The 
p-value is 0.009 between maximums and drawing results and 
0.102 between maximums and movement results.

TABLE II summarises the best results of the single and joint 
modalities. The single modalities are marked with the names 
from TABLE I. The joint results are marked with the name of 
the representation approaches. The descriptor metrics are 
analogous to TABLE I. The movement representations 
appeared superior to the spiral drawing from the single use of 
the modalities. Utilizing joint predictions, improvements were 
achieved. The top performance was received with 
RecurrencePlot (sens: 75.6%, spec: 89.4%, macro f1 score: 
82.5%).

TABLE II
SUMMARY TABLE OF THE BEST RESULTS OBTAINED FROM 

THE SINGLE AND JOINT MODALITIES.
case sens spec bacc f1 auc

Si
ng

le

Spiral 71.1% 70.2% 70.7% 70.6% 0.757
RecurrencePlot 71.1% 78.7% 75.0% 74.9% 0.834

GramianAngularField 80.0% 66.0% 72.8% 72.7% 0.768
MarkovTransitionField 77.8% 74.5% 76.1% 76.1% 0.802

Jo
in

t RecurrencePlot 75.6% 89.4% 82.6% 82.5% 0.825
GramianAngularField 77.8% 74.5% 76.1% 76.1% 0.761

MarkovTransitionField 80.0% 76.6% 78.3% 78.3% 0.783

V. DISCUSSION

Examining the modalities separately shows that the 
representations created from movement performed better than 
the drawing when examining the best results per modality 
(TABLE II). However, looking at the single results as a whole, 
we did not find any significant differences using the Mann-
Whitney U test. This can be influenced by the methodology for 
generating the representations and the nature of the feature 

extraction models. It shows that the different data types 
generally have the same detection performance with these 
vision-based examinations on the applied classifiers. This may 
be a consideration when the physician wants to use a minimal 
tool in the shortest possible time. Nevertheless, it can be seen 
from TABLE II that a few percent better results can be achieved 
by selecting the best-performing models with motion data.

By using the modalities together, we experienced an 
improvement in all paired cases. This improvement proved 
significant in the RecurrencePlot and the 
GramianAngularField, whether we compared the best values to 
the drawing or the movement. In the case of the 
MarkovTransitionField, the improvement only reached a 
significant result compared to the drawing. This suggests that 
the decision is more confident and accurate when multiple 
sensors are used for the same task (even with the same 
processing scheme). However, by observing the voting factor, 
different optimal points may result. This implies that the 
modalities may play a different role in the final decision.

The present results provide insight into how the same task can 
provide better recognition by examining several sensors. There 
are also studies in the literature where, for example, video 
cameras and motion sensors help to recognize PD-related 
episodes. There is  a multi-sensory examination of the same task 
similarly.

The limitation of the research is the heterogeneous database. 
A database with more elements may be necessary for filtering 
according to various factors (medication, brain stimulation). 
Another direction of development is sex equality. Although 
research [29] shows that the drawing of the Archimedean spiral 
does not differ significantly between men and women, this 
requires further support. Studies [30] are underway to 
investigate the separability of the sexes, where the authors have 
already shown that there is a significant difference when 
copying shapes. However, most studies have looked at 
participants between 18 and 30 years old and have used manual 
features that have not been linked to Parkinson's disease. 
However, this raises the need for further investigation.

Finally, it should be mentioned that the present results are 
based on image data processing with out-of-domain feature 
extraction algorithms. These play a role in avoiding 
overlearning by extracting a more general set of features. 
Presumably, fine-tuning the extractor models on the database
specific to the task can increase the performance of the 
classifiers. However, a database with few elements can also 
cause overlearning.

VI. SUMMARY AND CONCLUSION

PD is becoming one of the most common neurological 
diseases of our time. The importance of research related to it is 
that there is no cure according to current clinical knowledge.

Current clinical knowledge is firmly based on motor 
symptoms, which are typically limb tremors at rest, 
bradykinesia, and muscle stiffness (rigidity). Recognizing them 
in the early stages is also not clear since the appearance of the 
symptoms and the lateral involvement may differ from person 
to person.

The support of artificial intelligence (including machine 
learning algorithms) can be desirable in the diagnostic 

TABLE II
Summary table of the best results obtained from

the single and joint modalities.
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and the Spiral and 0.017 between the maximum and the 
GramianAngularField.

Fig. 4 shows the Spiral and the MarkovTransitionField
representation. The markings of the figure are the same as those
of the previous two figures. The average macro f1 score of the 
movement is 67.8%, that of the drawing is 61.7%, while that of 
the maximum points is 71.5%. The biggest change is 11.7% in 
macro f1 score on average, while the minimum is 1.8%. In this 
case too, we experienced cases where aggregation did not 
improve the results: Xception with k-NN classifier, Xception 
with SVM classifier and MobileNet with k-NN classifier. The 
first two showed no improvement using the RecurrencePlot 
either. The results of the two modalities show a similarly large 
difference compared to each other as with the RecurrencePlot.
In the case of MobileNet k-NN, the difference between the two 
modalities is not that large, but it does not show improvement. 
The highest result was obtained with the ResNet50 feature 
extraction and the RF classifier in the macro f1 score of 78.3%. 
It achieved 76.1% on motion and 59.8% macro f1 score on 
drawing. This was approached by the MobileNet and RB with 
a macro f1 score of 78.2%.
The same case achieved 68.4% on movement and 70.6% on 
drawing. With the Mann-Whitney U test, we found a 
significant improvement between the maximum and Spiral, but 
not between the maximums and the GramianAngularField. The 
p-value is 0.009 between maximums and drawing results and 
0.102 between maximums and movement results.

TABLE II summarises the best results of the single and joint 
modalities. The single modalities are marked with the names 
from TABLE I. The joint results are marked with the name of 
the representation approaches. The descriptor metrics are 
analogous to TABLE I. The movement representations 
appeared superior to the spiral drawing from the single use of 
the modalities. Utilizing joint predictions, improvements were 
achieved. The top performance was received with 
RecurrencePlot (sens: 75.6%, spec: 89.4%, macro f1 score: 
82.5%).

TABLE II
SUMMARY TABLE OF THE BEST RESULTS OBTAINED FROM 

THE SINGLE AND JOINT MODALITIES.
case sens spec bacc f1 auc

Si
ng

le

Spiral 71.1% 70.2% 70.7% 70.6% 0.757
RecurrencePlot 71.1% 78.7% 75.0% 74.9% 0.834

GramianAngularField 80.0% 66.0% 72.8% 72.7% 0.768
MarkovTransitionField 77.8% 74.5% 76.1% 76.1% 0.802

Jo
in

t RecurrencePlot 75.6% 89.4% 82.6% 82.5% 0.825
GramianAngularField 77.8% 74.5% 76.1% 76.1% 0.761

MarkovTransitionField 80.0% 76.6% 78.3% 78.3% 0.783

V. DISCUSSION

Examining the modalities separately shows that the 
representations created from movement performed better than 
the drawing when examining the best results per modality 
(TABLE II). However, looking at the single results as a whole, 
we did not find any significant differences using the Mann-
Whitney U test. This can be influenced by the methodology for 
generating the representations and the nature of the feature 

extraction models. It shows that the different data types 
generally have the same detection performance with these 
vision-based examinations on the applied classifiers. This may 
be a consideration when the physician wants to use a minimal 
tool in the shortest possible time. Nevertheless, it can be seen 
from TABLE II that a few percent better results can be achieved 
by selecting the best-performing models with motion data.

By using the modalities together, we experienced an 
improvement in all paired cases. This improvement proved 
significant in the RecurrencePlot and the 
GramianAngularField, whether we compared the best values to 
the drawing or the movement. In the case of the 
MarkovTransitionField, the improvement only reached a 
significant result compared to the drawing. This suggests that 
the decision is more confident and accurate when multiple 
sensors are used for the same task (even with the same 
processing scheme). However, by observing the voting factor, 
different optimal points may result. This implies that the 
modalities may play a different role in the final decision.

The present results provide insight into how the same task can 
provide better recognition by examining several sensors. There 
are also studies in the literature where, for example, video 
cameras and motion sensors help to recognize PD-related 
episodes. There is  a multi-sensory examination of the same task 
similarly.

The limitation of the research is the heterogeneous database. 
A database with more elements may be necessary for filtering 
according to various factors (medication, brain stimulation). 
Another direction of development is sex equality. Although 
research [29] shows that the drawing of the Archimedean spiral 
does not differ significantly between men and women, this 
requires further support. Studies [30] are underway to 
investigate the separability of the sexes, where the authors have 
already shown that there is a significant difference when 
copying shapes. However, most studies have looked at 
participants between 18 and 30 years old and have used manual 
features that have not been linked to Parkinson's disease. 
However, this raises the need for further investigation.

Finally, it should be mentioned that the present results are 
based on image data processing with out-of-domain feature 
extraction algorithms. These play a role in avoiding 
overlearning by extracting a more general set of features. 
Presumably, fine-tuning the extractor models on the database
specific to the task can increase the performance of the 
classifiers. However, a database with few elements can also 
cause overlearning.

VI. SUMMARY AND CONCLUSION

PD is becoming one of the most common neurological 
diseases of our time. The importance of research related to it is 
that there is no cure according to current clinical knowledge.

Current clinical knowledge is firmly based on motor 
symptoms, which are typically limb tremors at rest, 
bradykinesia, and muscle stiffness (rigidity). Recognizing them 
in the early stages is also not clear since the appearance of the 
symptoms and the lateral involvement may differ from person 
to person.

The support of artificial intelligence (including machine 
learning algorithms) can be desirable in the diagnostic 
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procedure since it can effectively recognize even minor 
deviations and can create a more objective evaluation.

Previously, manually extracted features were used to analyze
movements and drawings, which proved effective for learning 
the nature of the disease. On the other hand, deep learning 
algorithms allow the model to learn the characteristics that 
support automatic feature extraction. From this point of view, 
MobileNet, Xception, and ResNet50 were used, and they were 
previously trained on an extensive database that enabled cross-
sectional recognition. We used networks trained in this way to 
recognize the disease, keeping the original weights.

In the literature research, it can be seen that several modalities 
are available to recognize PD, such as speech, drawing, or 
movement. These can achieve significant recognition 
performance by themselves. Comparing them is difficult 
because each modality goes through a different processing 
process, and there are also differences in the databases. In 
addition, the joint application of several modalities seems to 
improve PD recognition.

In our work, we examined the spiral drawings in connection 
with diagnosing the disease through two types of modalities. In 
the spiral drawing task, the X and Y coordinates of the actual 
drawing were recorded for each person, as well as the 
acceleration data along the X, Y, and Z axes with a wrist-
mounted sensor.

Image representations were created from the data: 1) 
production of the actual drawing from X, and Y drawing data, 
2) image representations from the resulting vector of movement 
data (MarkovTransitionField, RecurrencePlot,
GramianAngularField). From these input images, we 
determined features with the pre-trained models, and then we 
trained classification algorithms on the features using nested 
cross-validation.

Based on the single modality results, image representations of 
the movement data reached at least a similar performance as 
the drawing itself (no significant difference). This result 
suggests that using only the spiral drawing alone or with the 
same processing of only the motion data from the drawing, PD. 
can be detected with the same efficiency.

Furthermore, the joint approach improved the recognition 
performance of the PD (significance difference), highlighting 
the possibility of measuring the same task with various 
sensors. The result shows that even though the task the 
participant performs is the same, improving detection with 
different sensors is still possible.

Further investigation is required regarding the database 
composition.
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and the Spiral and 0.017 between the maximum and the 
GramianAngularField.

Fig. 4 shows the Spiral and the MarkovTransitionField
representation. The markings of the figure are the same as those
of the previous two figures. The average macro f1 score of the 
movement is 67.8%, that of the drawing is 61.7%, while that of 
the maximum points is 71.5%. The biggest change is 11.7% in 
macro f1 score on average, while the minimum is 1.8%. In this 
case too, we experienced cases where aggregation did not 
improve the results: Xception with k-NN classifier, Xception 
with SVM classifier and MobileNet with k-NN classifier. The 
first two showed no improvement using the RecurrencePlot 
either. The results of the two modalities show a similarly large 
difference compared to each other as with the RecurrencePlot.
In the case of MobileNet k-NN, the difference between the two 
modalities is not that large, but it does not show improvement. 
The highest result was obtained with the ResNet50 feature 
extraction and the RF classifier in the macro f1 score of 78.3%. 
It achieved 76.1% on motion and 59.8% macro f1 score on 
drawing. This was approached by the MobileNet and RB with 
a macro f1 score of 78.2%.
The same case achieved 68.4% on movement and 70.6% on 
drawing. With the Mann-Whitney U test, we found a 
significant improvement between the maximum and Spiral, but 
not between the maximums and the GramianAngularField. The 
p-value is 0.009 between maximums and drawing results and 
0.102 between maximums and movement results.

TABLE II summarises the best results of the single and joint 
modalities. The single modalities are marked with the names 
from TABLE I. The joint results are marked with the name of 
the representation approaches. The descriptor metrics are 
analogous to TABLE I. The movement representations 
appeared superior to the spiral drawing from the single use of 
the modalities. Utilizing joint predictions, improvements were 
achieved. The top performance was received with 
RecurrencePlot (sens: 75.6%, spec: 89.4%, macro f1 score: 
82.5%).

TABLE II
SUMMARY TABLE OF THE BEST RESULTS OBTAINED FROM 

THE SINGLE AND JOINT MODALITIES.
case sens spec bacc f1 auc

Si
ng

le

Spiral 71.1% 70.2% 70.7% 70.6% 0.757
RecurrencePlot 71.1% 78.7% 75.0% 74.9% 0.834

GramianAngularField 80.0% 66.0% 72.8% 72.7% 0.768
MarkovTransitionField 77.8% 74.5% 76.1% 76.1% 0.802

Jo
in

t RecurrencePlot 75.6% 89.4% 82.6% 82.5% 0.825
GramianAngularField 77.8% 74.5% 76.1% 76.1% 0.761

MarkovTransitionField 80.0% 76.6% 78.3% 78.3% 0.783

V. DISCUSSION

Examining the modalities separately shows that the 
representations created from movement performed better than 
the drawing when examining the best results per modality 
(TABLE II). However, looking at the single results as a whole, 
we did not find any significant differences using the Mann-
Whitney U test. This can be influenced by the methodology for 
generating the representations and the nature of the feature 

extraction models. It shows that the different data types 
generally have the same detection performance with these 
vision-based examinations on the applied classifiers. This may 
be a consideration when the physician wants to use a minimal 
tool in the shortest possible time. Nevertheless, it can be seen 
from TABLE II that a few percent better results can be achieved 
by selecting the best-performing models with motion data.

By using the modalities together, we experienced an 
improvement in all paired cases. This improvement proved 
significant in the RecurrencePlot and the 
GramianAngularField, whether we compared the best values to 
the drawing or the movement. In the case of the 
MarkovTransitionField, the improvement only reached a 
significant result compared to the drawing. This suggests that 
the decision is more confident and accurate when multiple 
sensors are used for the same task (even with the same 
processing scheme). However, by observing the voting factor, 
different optimal points may result. This implies that the 
modalities may play a different role in the final decision.

The present results provide insight into how the same task can 
provide better recognition by examining several sensors. There 
are also studies in the literature where, for example, video 
cameras and motion sensors help to recognize PD-related 
episodes. There is  a multi-sensory examination of the same task 
similarly.

The limitation of the research is the heterogeneous database. 
A database with more elements may be necessary for filtering 
according to various factors (medication, brain stimulation). 
Another direction of development is sex equality. Although 
research [29] shows that the drawing of the Archimedean spiral 
does not differ significantly between men and women, this 
requires further support. Studies [30] are underway to 
investigate the separability of the sexes, where the authors have 
already shown that there is a significant difference when 
copying shapes. However, most studies have looked at 
participants between 18 and 30 years old and have used manual 
features that have not been linked to Parkinson's disease. 
However, this raises the need for further investigation.

Finally, it should be mentioned that the present results are 
based on image data processing with out-of-domain feature 
extraction algorithms. These play a role in avoiding 
overlearning by extracting a more general set of features. 
Presumably, fine-tuning the extractor models on the database
specific to the task can increase the performance of the 
classifiers. However, a database with few elements can also 
cause overlearning.

VI. SUMMARY AND CONCLUSION

PD is becoming one of the most common neurological 
diseases of our time. The importance of research related to it is 
that there is no cure according to current clinical knowledge.

Current clinical knowledge is firmly based on motor 
symptoms, which are typically limb tremors at rest, 
bradykinesia, and muscle stiffness (rigidity). Recognizing them 
in the early stages is also not clear since the appearance of the 
symptoms and the lateral involvement may differ from person 
to person.

The support of artificial intelligence (including machine 
learning algorithms) can be desirable in the diagnostic 



Enhancing Parkinson's Disease Recognition through  
Multimodal Analysis of Archimedean Spiral Drawings

MARCH 2024 • VOLUME XVI • NUMBER 170

INFOCOMMUNICATIONS JOURNAL7
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

procedure since it can effectively recognize even minor 
deviations and can create a more objective evaluation.

Previously, manually extracted features were used to analyze
movements and drawings, which proved effective for learning 
the nature of the disease. On the other hand, deep learning 
algorithms allow the model to learn the characteristics that 
support automatic feature extraction. From this point of view, 
MobileNet, Xception, and ResNet50 were used, and they were 
previously trained on an extensive database that enabled cross-
sectional recognition. We used networks trained in this way to 
recognize the disease, keeping the original weights.

In the literature research, it can be seen that several modalities 
are available to recognize PD, such as speech, drawing, or 
movement. These can achieve significant recognition 
performance by themselves. Comparing them is difficult 
because each modality goes through a different processing 
process, and there are also differences in the databases. In 
addition, the joint application of several modalities seems to 
improve PD recognition.

In our work, we examined the spiral drawings in connection 
with diagnosing the disease through two types of modalities. In 
the spiral drawing task, the X and Y coordinates of the actual 
drawing were recorded for each person, as well as the 
acceleration data along the X, Y, and Z axes with a wrist-
mounted sensor.

Image representations were created from the data: 1) 
production of the actual drawing from X, and Y drawing data, 
2) image representations from the resulting vector of movement 
data (MarkovTransitionField, RecurrencePlot,
GramianAngularField). From these input images, we 
determined features with the pre-trained models, and then we 
trained classification algorithms on the features using nested 
cross-validation.

Based on the single modality results, image representations of 
the movement data reached at least a similar performance as 
the drawing itself (no significant difference). This result 
suggests that using only the spiral drawing alone or with the 
same processing of only the motion data from the drawing, PD. 
can be detected with the same efficiency.

Furthermore, the joint approach improved the recognition 
performance of the PD (significance difference), highlighting 
the possibility of measuring the same task with various 
sensors. The result shows that even though the task the 
participant performs is the same, improving detection with 
different sensors is still possible.

Further investigation is required regarding the database 
composition.
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I met Tamás Gábor Csapó in the spring of 2006, 
when we taught the course Speech Information 
Systems to the whole class of the then 5-year  
computer engineering course. He passed with 
distinction and contacted me saying that he 
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(student research) paper on the machine imple-
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OTDK (nationwide student conference) in Com-
puter Science. In 2008, me and Mark Fék were 
the advisors of his successfully defended MSc 
thesis. The challenge has not been solved since 
then and is still a subject of research. In autumn 
2008 he started his PhD studies at BME TMIT.

In the meantime, he has also been involved 
in teaching and our projects ranging from ba-
sic research to applications. In 2014, he spent 
six months at Indiana University as a Fulbright 
scholar with his family, where he was motivated 
to study articulation using ultrasound. After re-
turning home, he defended his PhD thesis and 
was one of the initiators of the Lingual Articula-
tion Research Group at ELTE, led by Alexandra 
Markó, in collaboration with BME (MTA-Lendület 
2016-21). In 2017, he won his first OTKA  (Hun-
garian National Science Program) grant on Ar-
ticulatory Movement-based Speech Generation 
(2017-22). In 2022, he won another OTKA grant 
on Articulation and Brain Signal Analysis for 
Speech-based Brain-machine Interface (2022-
26). Simultaneously, he became the Area Editor 
for Neural Speech Technology at the Infocom-
munications Journal. He has also built close re-
lationships with colleagues at Szeged University. 
He has played a key role in winning and imple-
menting our national (e.g. National Lab for Arti-
ficial Intelligence and National Lab for Infocom-
munications) and international (e.g. H2020, AAL, 
Horizon Europe) proposals. He has also contrib-
uted creatively to the development of our indus-
trial applications. By the age of 39, he has pub-
lished nearly 180 papers, with more than 320 
independent citations. He has fulfilled the publi-

cation requirements 
for the degree Doc-
tor of the Hungarian 
Academy of Scienc-
es (MTA). Around 
Christmas, I encour-
aged him to start 
preparing his ha-
bilitation and MTA 
doctoral thesis.

Tamás was also open and supportive towards 
the students. Together we consulted Moham-
med Al-Radhi, one of the first Stipendium Hung-
aricum scholarship holders at BME VIK, who has 
since become a valued colleague. Tamás was 
the supervisor of three PhD students in 2024.

Tamás was not only a great computer sci-
entist, but also a great community and network 
builder. His open, relaxed and friendly nature 
and his deep faith in God made it easy to con-
nect with him. We were honoured to attend their 
wedding in 2010 and followed with interest the 
growth of their family with four children. During 
COVID, he and his family started a new life in 
the countryside. It was good to hear his enthusi-
astic reports about the renovation of the house. 
In the summer of 2023, he organised a small in-
ternational conference called Moonshine in his 
village. He was also involved in the ENFIELD 
Network of Excellence, which was launched in 
September 2023. On 25 January 2024, he still 
sent me an excellent research project plan.

It was a bolt from the blue that on 31 January 
2024, his earthly journey came to an end and he 
moved to his heavenly home. Neither our closer 
nor our more distant colleagues were aware of 
the spiritual burdens Tamás was carrying. What 
led him to this point remains an eternal mystery. 
The lesson that remains with us is to try to look 
out for each other and support those around us. 
His wife and children can count on our solidarity 
and support.

2024. 02. 11.

On behalf of BME TMIT and Smartlabs,  
Géza Németh, Head of SmartLabs

"Rejoice with those who rejoice, and weep with those who weep." 
Romans 12:15
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