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Abstract — Parkinson's disease is one of the most common 

neurodegenerative diseases, which is incurable according to recent 
clinical knowledge. Evaluating motor symptoms across diverse 
modalities such as speech, handwriting, and movement composes 
a conventional diagnostic approach. However, concurrently 
utilizing multimodal datasets encompassing drawing and 
acceleration data remains an underexplored field. Our 
investigation involved examining drawing and movement data of
45 Parkinson's disease (PD) patients and 47 healthy individuals 
(HC). The PD group presented mild symptoms in the right hand. 
We transformed drawing data into spiral images and used visual 
representations of motion data, employing pre-trained models for 
feature extraction and classifiers. While motion representations 
exhibited superior performance compared to drawing images, a 
comprehensive evaluation with the Mann-Whitney U test at a 
significance level of 0.05 revealed no statistically significant 
difference between the efficacy of movement and drawing data in 
all classification scenarios. Significant improvements were made 
by combining the drawing data predictions with the motion data 
predictions. The key finding of the research is that the recognition 
of the disease can be improved by connecting (post-model) the two 
modalities. Furthermore, it can be concluded that with the present 
approach, neither the drawing nor the movement data produced
lower results on average.

Index Terms—Acceleration Data, Classification, Parkinson’s 
disease, Pre-trained Models, Mann-Whitney U Test

I. INTRODUCTION
Parkinson's disease (PD) is one of the most common 
neurological disorders, which affects mainly the aging 
population. According to current clinical knowledge, the 
disease is incurable, promoting this area as an extensive 
research field. The goal is typically to recognize the disease 
early enough to alleviate symptoms, slow disease progression,
and maintain quality of life.

Its prevalence is 1% in people over 60 and 3% in people over 
80 [1]. These values tend to increase due to aging societies, 
environmental factors, and accessibility of health care (more 
people get recognized). The tendency to the disease is increased 
by the male sex, certain chemicals, and genetic factors [2].
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The destruction of dopaminergic neurons with subsequent 
depigmentation of the susbtantia nigra pars compacta (SNpc) 
and the appearance of Lewy bodies can be observed in the 
development of PD [1]. The importance of early detection of 
PD is shown by the fact that with the current diagnostic 
procedure, 60% of the dopamine-producing cells are already 
dead and cause problematic symptoms.

Non-motor symptoms appear earlier on the onset of PD.
These include, for example, loss of smell, memory loss, 
digestive problems, and difficulty with sleeping [3]. These 
symptoms can appear even years earlier than motor symptoms. 
However, using these symptoms is difficult because they can 
indicate other illnesses, and not everyone develops the same 
symptoms.

In addition, the motor symptoms appear later in time, of 
which the three main are slowed movement (bradykinesia),
muscle stiffness, and limb tremors at rest (resting tremor) [4].
These are vital symptoms taken into account by the neurologist 
to a large extent when establishing the diagnosis. It is important 
to emphasize that the diagnostic procedure relies heavily on the 
visual assessment of symptoms, imaging procedures, and drug 
tests. Still, there is currently no objective test for PD.
Furthermore, the assessment can be influenced by the 
physician’s subjectivity [5].

Because of the former, many researchers use AI and 
different modalities of data to recognize the disease using motor 
symptoms that help to increase the diagnosis accuracy and 
objectivity. Moreover, it allows the possibility of personalized 
care. Speech can be such a modality since 70% of PD patients 
develop dysphonic speech [6]. In addition, 
drawings/handwriting [7][8] and different forms of movement
[9][10] are often used to analyze limb symptoms and help the 
diagnosis process.

In the present research, we investigate whether drawing 
(more precisely, drawing a spiral pattern) as pictorial 
information or the acceleration data measured during drawing 
provides a better recognition of the disease. Furthermore, we 
attempt to use the two modalities jointly to see whether
recognition performance improves.

The paper's main contributions are 1) comparing the spiral 
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drawing and the simultaneously recorded movement data as 
image representation with the same processing approach to 
detect PD and 2) attempting to improve PD detection with the 
joint usage of the drawing and the simultaneously recorded 
motion data.

The following section presents the literature on the 
problem statement, highlighting the key points. Then, in the 
methods section, we discuss the applied procedure. In the 
results and discussion section, we present and consider the 
possible outcomes. Finally, in the summary and conclusion
section, we recap our work and highlight the essential findings 
and concerns.

II. LITERATURE STUDY

A requirement for technology to support diagnosis is that it 
does not overtax the patient. Ideally, this means short-in-time, 
simple, non-invasive tests. The machine learning algorithm 
makes these automatic evaluations possible, which can provide 
an objective output. This can significantly contribute to the 
physician's opinion and provide a universal measurement 
procedure.

One such test could be the recording and analysis of drawing 
or handwriting, which tries to capture the motor symptoms in 
PD patients’ hands. Currently, this is not part of the criteria for 
diagnosis. However, McLennan et al. pointed out that 5% of 
patients have handwriting difficulties before the onset of motor 
symptoms, and 30% of those patients report deteriorating 
handwriting later [11].

Changes in fine motor skills, such as writing/drawing speed, 
continuity, and text or shape size, can be seen in PD patients. 
The reduction of the writing size is called micrography, of 
which two categories are consistent and progressive 
micrography [12]. Presumably, one and the other develop 
depending on the involvement of different brain areas and 
respond differently to dopaminergic drug treatment [13].
Similar changes appear in the drawings as well.

Many patterns are common, such as spirals, waves, or lines. 
They are mostly made on a tablet device, while it was more 
common to use traditional pen and paper in the past. The 
drawing should be simple so that it does not require special 
drawing skills but complex so that fine motor changes can be 
detected.

Kotsavasiloglou and his colleagues [14] conducted 
experiments involving 20 healthy (Healthy Control - HC) and 
24 PD individuals by drawing a horizontal line. They extracted 
a number of features related to the speed of the pen tip and 
vertical deviations (deviations from a straight line). With 
multiple classifiers (Naïve Bayes, AdaBoost, Log. Regression, 
Support Vector Machine [SVM], Random Forest [RF], J48), 
79.4-88.5% accuracy was achieved.

Sharma et al. [15] investigated the recognizability of PD by 
involving several databases using the Modified Gray Wolf 
Optimization algorithm on classifiers. Their drawing database 
was the Hand PD database created by Botucatu Medical School, 
São Paulo State University, which included 105 PD patients and 
53 HC individuals (mean age 44.2 and 58.8, respectively). The 

classification algorithms were k-Nearest Neighbors (k-NN),
RF, and Decision Tree (DT). With the help of predetermined 
features, 73.4-92.4% accuracy was achieved on the spiral 
drawings and 72.8-93.0% accuracy on the meander drawings.

In addition, further research deals with monitoring the 
drawing task with acceleration sensors and examining the 
usability of the data generated in this way for recognition.

Ali et al. [16] investigated Essential Tremor (ET) with 
acceleration data acquired while drawing spiral patterns. 17 ET 
patients and 18 HC individuals were included in the databases. 
Three sensors were placed at three points: on the dorsum of the 
hand, on the posterior forearm, and the posterior upper arm. 
SVM was used to classify the power spectral density (calculated 
from the acceleration data after creating a single vector 
magnitude). 74.3-85.7% accuracy was achieved.

Pereira et al. [17] used time series data from sensors mounted 
in a pen to detect PD. Their research used the HandPD database 
with 14 PD patients and 21 HC. Images were created from the 
sensor data (sound, finger grip, axial pressure of ink,
acceleration and tilt data in X, Y, and Z directions). These were 
classified using image processing algorithms (ImageNet, 
CIRAF-10, LeNet) and a baseline model (Optimum-Path Forest
[OPF]) on the raw data. 85.0-87.1% accuracy was achieved 
with ImageNet on meander data, and 77.9-83.8% accuracy with 
OPF on spiral drawings as the best performance.

Savalia and his colleagues [18] similarly used digital pen-
provided time signals as images with image processing 
algorithms. They named their database newHandPD, which 
included 35 HC and 31 PD patients. With the help of 
Convolutional Neural Network (CNN) and EffNet-based
classifiers, they achieved 84.8-88.8% accuracy.

Taleb et al. [19] experimented with several approaches: 
classification of raw signals from a pen and classification with 
a spectrogram (a 2D representation of the raw signals). They 
pointed out that combining several writing tasks improves the 
classifier's performance. Their best result with data 
augmentation was 97.6% accuracy.

Cascarano and his colleagues [20] examined the drawing 
patterns of 21 PD and 11 HC individuals. Descriptive 
characteristics were calculated from geometric, dynamic, and 
muscle activity data. 90.8% accuracy was achieved with spiral 
drawing without feature selection, while 93.8% accuracy was 
achieved with selection (with Multi-Objective Genetic 
Algorithm).

The literature study shows that the performance of the 
classifiers varies widely and may result from the database, 
feature extraction, and classification algorithms. Paper-based
drawing also created a need to record dynamic data, which 
nowadays is easier to do with the help of tablets and digital 
pens. With this, the drawn pattern can be used as an image (the 
drawing itself) and as a set of time series. We also saw an 
approach where the researchers created images (2D 
representations) from time series, taking advantage of the 
performance of image processing algorithms. We could also 
find examples where combining several time signals/drawing 
tasks improves recognition. We wish to contribute to this with 
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section, we recap our work and highlight the essential findings 
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micrography [12]. Presumably, one and the other develop 
depending on the involvement of different brain areas and 
respond differently to dopaminergic drug treatment [13].
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provided time signals as images with image processing 
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Convolutional Neural Network (CNN) and EffNet-based
classifiers, they achieved 84.8-88.8% accuracy.

Taleb et al. [19] experimented with several approaches: 
classification of raw signals from a pen and classification with 
a spectrogram (a 2D representation of the raw signals). They 
pointed out that combining several writing tasks improves the 
classifier's performance. Their best result with data 
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characteristics were calculated from geometric, dynamic, and 
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nowadays is easier to do with the help of tablets and digital 
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drawing itself) and as a set of time series. We also saw an 
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representations) from time series, taking advantage of the 
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our present research, in which the participants draw a spiral 
pattern. During the process, a sensor attached to the wrist 
records the acceleration data. We examine these two modalities 
separately and together.

III. METHODOLOGY

A. Database 
The database contains drawing and drawing-related sensor data 

of 45 PD patients and 47 HC individuals. All participants were 
informed beforehand about the research details and gave their 
consent by signing a consent form. Participants volunteered to 
participate in the research and were informed that their 
participation could be withdrawn without explanation.

There are 37 men and eight women in the PD class, whose 
average age is 66.0 years with a standard deviation of 14.2 years. 
Twenty-one people were recorded with drug onset, 18 people with 
Deep Brain Stimulation (DBS) switched on (10 people belonged 
to both categories). The severity score of PD patients was defined
based on the Unified Parkinson's Disease Rating Scale (UPDRS)
scale. The resting tremor (3.17), postural tremor (3.15), rigidity 
(3.3), and finger tapping (3.4) tasks were evaluated by the 
neurologist. The average severity was 1.10, where 0 means a 
healthy (normal) stage, and 4 means the severe stage. Severity 
scores for the right hand are presented since data from the right 
hand were examined.

There were 20 men and 27 women in the HC class, with an 
average age of 56.7 years and a standard deviation of 15.2.  
According to their admission, the members of the HC class did not 
have Parkinson's disease or any other disease that affects their 
movement.

The drawing and motion recordings were made using an 
application developed for Android tablets. In the case of the 
drawing, the participants followed the pattern of an Archimedean 
spiral by moving between the lines from the inside to the outside 
of the spiral template. The drawing data was sampled at a 
maximum of 110 Hz. A sensor attached to the wrist provided 
acceleration data in three dimensions (X, Y, and Z) with a sampling 
frequency of 50 Hz to record the movement.

Recordings were anonymized before use. Their metadata, such 
as gender and age, were used only to describe the classes.

B. Preprocessing 
The drawings were plotted along X and Y coordinates and 

resized to 224x224 pixels with 24-bit depth. The average along the 
corresponding coordinate was subtracted from the acceleration 
data as standardization (remove the bias of the measurement 
device). Furthermore, a 4-order bandpass Butterworth filter was 
applied to the signals between 2 and 15 Hz. Finally, one data vector 
was created from the three coordinates, which contained the length 
of the vector pointing to the point described by the three 
coordinates at each instant of time. Two-dimensional 
representations were made, as shown in Fig. 1, such as 
MarkovTransitionField, RecurrencePlot, and 
GramianAngularField. For this data representation, the pyts 
(v0.12.0) Python package was used with default parameters [21].

These images were also resized to 224x224 pixels with 24-bit 
depth.

The feature vectors from the resulted input images were derived 
from the feature extraction part of pre-trained deep learning 
algorithms. For this, the Keras API was used with the Tensorflow
(v2.0.0) machine learning platform. Among the available models, 
Xception [22], ResNet50 [23], and MobileNet [24] were used. We 
removed the classification (Dense) layer from the end of each 
model and assigned a GlobalAveragePooling2D layer to get one-
dimensional feature vectors. Finally, the feature vectors were 
standardized using the StandardScaler function of sklearn 
(v0.0.post7).

Fig. 1. The spiral drawing and the 2D movement 
representations for an HC person (upper images) and a PD 
patient (lower images).

C. Classification and Evaluation 
To classify the feature vectors, SVM, RF, and k-NN classifiers 
were used with nested cross-validation at 10-fold numbers.

The test set (10% of the database) was separated in the outer 
cycle, independent of the model learning. On the remaining data, 
the best 100 features were selected based on ANOVA F-value
[25]. The same features were selected in the test set accordingly.

The validation set (10% of the 90% data) was separated from 
the training dataset in the internal cycle. This training set was used 
to train the classifiers, and the optimization was carried out with 
the validation set. The parameters below were probed available for 
sklearn [26] models:

 kernel (linear, rbf), C value (0.001, 0.01, 0.1, 1, 10, 100),
and gamma (10, 1, 0.1, 0.01, 0.001, 0.0001) for SVM,

 the max_depth (10, 30, 50, 70, 90, None), max_features
(auto, sqrt), and min_samples_leaf (1, 2, 4) for RF,

 the number of neighbors (2, 3, 5, 10, 20) for k-NN.

The test sets were finally estimated with the models trained with 
the best parameters (on 90% of the data). The sensitivity, 
specificity, macro f1 score, and area under the receiver operating 
characteristic (ROC) curve (AUC) values were derived from the 
estimates.

The predictions of the two different modalities (drawing and 
movement) were aggregated according to Eq. 1, where 𝑦𝑦𝑠𝑠 ∈ {0,1}
is the prediction from spiral drawing and 𝑦𝑦𝑚𝑚 ∈ {0,1} is the 
prediction from the movement data. 𝑄𝑄 ∈ {0,1} is the weight factor 
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drawing and the simultaneously recorded movement data as 
image representation with the same processing approach to 
detect PD and 2) attempting to improve PD detection with the 
joint usage of the drawing and the simultaneously recorded 
motion data.

The following section presents the literature on the 
problem statement, highlighting the key points. Then, in the 
methods section, we discuss the applied procedure. In the 
results and discussion section, we present and consider the 
possible outcomes. Finally, in the summary and conclusion
section, we recap our work and highlight the essential findings 
and concerns.

II. LITERATURE STUDY

A requirement for technology to support diagnosis is that it 
does not overtax the patient. Ideally, this means short-in-time, 
simple, non-invasive tests. The machine learning algorithm 
makes these automatic evaluations possible, which can provide 
an objective output. This can significantly contribute to the 
physician's opinion and provide a universal measurement 
procedure.

One such test could be the recording and analysis of drawing 
or handwriting, which tries to capture the motor symptoms in 
PD patients’ hands. Currently, this is not part of the criteria for 
diagnosis. However, McLennan et al. pointed out that 5% of 
patients have handwriting difficulties before the onset of motor 
symptoms, and 30% of those patients report deteriorating 
handwriting later [11].

Changes in fine motor skills, such as writing/drawing speed, 
continuity, and text or shape size, can be seen in PD patients. 
The reduction of the writing size is called micrography, of 
which two categories are consistent and progressive 
micrography [12]. Presumably, one and the other develop 
depending on the involvement of different brain areas and 
respond differently to dopaminergic drug treatment [13].
Similar changes appear in the drawings as well.

Many patterns are common, such as spirals, waves, or lines. 
They are mostly made on a tablet device, while it was more 
common to use traditional pen and paper in the past. The 
drawing should be simple so that it does not require special 
drawing skills but complex so that fine motor changes can be 
detected.

Kotsavasiloglou and his colleagues [14] conducted 
experiments involving 20 healthy (Healthy Control - HC) and 
24 PD individuals by drawing a horizontal line. They extracted 
a number of features related to the speed of the pen tip and 
vertical deviations (deviations from a straight line). With 
multiple classifiers (Naïve Bayes, AdaBoost, Log. Regression, 
Support Vector Machine [SVM], Random Forest [RF], J48), 
79.4-88.5% accuracy was achieved.

Sharma et al. [15] investigated the recognizability of PD by 
involving several databases using the Modified Gray Wolf 
Optimization algorithm on classifiers. Their drawing database 
was the Hand PD database created by Botucatu Medical School, 
São Paulo State University, which included 105 PD patients and 
53 HC individuals (mean age 44.2 and 58.8, respectively). The 

classification algorithms were k-Nearest Neighbors (k-NN),
RF, and Decision Tree (DT). With the help of predetermined 
features, 73.4-92.4% accuracy was achieved on the spiral 
drawings and 72.8-93.0% accuracy on the meander drawings.

In addition, further research deals with monitoring the 
drawing task with acceleration sensors and examining the 
usability of the data generated in this way for recognition.

Ali et al. [16] investigated Essential Tremor (ET) with 
acceleration data acquired while drawing spiral patterns. 17 ET 
patients and 18 HC individuals were included in the databases. 
Three sensors were placed at three points: on the dorsum of the 
hand, on the posterior forearm, and the posterior upper arm. 
SVM was used to classify the power spectral density (calculated 
from the acceleration data after creating a single vector 
magnitude). 74.3-85.7% accuracy was achieved.

Pereira et al. [17] used time series data from sensors mounted 
in a pen to detect PD. Their research used the HandPD database 
with 14 PD patients and 21 HC. Images were created from the 
sensor data (sound, finger grip, axial pressure of ink,
acceleration and tilt data in X, Y, and Z directions). These were 
classified using image processing algorithms (ImageNet, 
CIRAF-10, LeNet) and a baseline model (Optimum-Path Forest
[OPF]) on the raw data. 85.0-87.1% accuracy was achieved 
with ImageNet on meander data, and 77.9-83.8% accuracy with 
OPF on spiral drawings as the best performance.

Savalia and his colleagues [18] similarly used digital pen-
provided time signals as images with image processing 
algorithms. They named their database newHandPD, which 
included 35 HC and 31 PD patients. With the help of 
Convolutional Neural Network (CNN) and EffNet-based
classifiers, they achieved 84.8-88.8% accuracy.

Taleb et al. [19] experimented with several approaches: 
classification of raw signals from a pen and classification with 
a spectrogram (a 2D representation of the raw signals). They 
pointed out that combining several writing tasks improves the 
classifier's performance. Their best result with data 
augmentation was 97.6% accuracy.

Cascarano and his colleagues [20] examined the drawing 
patterns of 21 PD and 11 HC individuals. Descriptive 
characteristics were calculated from geometric, dynamic, and 
muscle activity data. 90.8% accuracy was achieved with spiral 
drawing without feature selection, while 93.8% accuracy was 
achieved with selection (with Multi-Objective Genetic 
Algorithm).

The literature study shows that the performance of the 
classifiers varies widely and may result from the database, 
feature extraction, and classification algorithms. Paper-based
drawing also created a need to record dynamic data, which 
nowadays is easier to do with the help of tablets and digital 
pens. With this, the drawn pattern can be used as an image (the 
drawing itself) and as a set of time series. We also saw an 
approach where the researchers created images (2D 
representations) from time series, taking advantage of the 
performance of image processing algorithms. We could also 
find examples where combining several time signals/drawing 
tasks improves recognition. We wish to contribute to this with 
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depending on the involvement of different brain areas and 
respond differently to dopaminergic drug treatment [13].
Similar changes appear in the drawings as well.

Many patterns are common, such as spirals, waves, or lines. 
They are mostly made on a tablet device, while it was more 
common to use traditional pen and paper in the past. The 
drawing should be simple so that it does not require special 
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vertical deviations (deviations from a straight line). With 
multiple classifiers (Naïve Bayes, AdaBoost, Log. Regression, 
Support Vector Machine [SVM], Random Forest [RF], J48), 
79.4-88.5% accuracy was achieved.

Sharma et al. [15] investigated the recognizability of PD by 
involving several databases using the Modified Gray Wolf 
Optimization algorithm on classifiers. Their drawing database 
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São Paulo State University, which included 105 PD patients and 
53 HC individuals (mean age 44.2 and 58.8, respectively). The 
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SVM was used to classify the power spectral density (calculated 
from the acceleration data after creating a single vector 
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Pereira et al. [17] used time series data from sensors mounted 
in a pen to detect PD. Their research used the HandPD database 
with 14 PD patients and 21 HC. Images were created from the 
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acceleration and tilt data in X, Y, and Z directions). These were 
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a spectrogram (a 2D representation of the raw signals). They 
pointed out that combining several writing tasks improves the 
classifier's performance. Their best result with data 
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patterns of 21 PD and 11 HC individuals. Descriptive 
characteristics were calculated from geometric, dynamic, and 
muscle activity data. 90.8% accuracy was achieved with spiral 
drawing without feature selection, while 93.8% accuracy was 
achieved with selection (with Multi-Objective Genetic 
Algorithm).

The literature study shows that the performance of the 
classifiers varies widely and may result from the database, 
feature extraction, and classification algorithms. Paper-based
drawing also created a need to record dynamic data, which 
nowadays is easier to do with the help of tablets and digital 
pens. With this, the drawn pattern can be used as an image (the 
drawing itself) and as a set of time series. We also saw an 
approach where the researchers created images (2D 
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our present research, in which the participants draw a spiral 
pattern. During the process, a sensor attached to the wrist 
records the acceleration data. We examine these two modalities 
separately and together.

III. METHODOLOGY

A. Database 
The database contains drawing and drawing-related sensor data 

of 45 PD patients and 47 HC individuals. All participants were 
informed beforehand about the research details and gave their 
consent by signing a consent form. Participants volunteered to 
participate in the research and were informed that their 
participation could be withdrawn without explanation.

There are 37 men and eight women in the PD class, whose 
average age is 66.0 years with a standard deviation of 14.2 years. 
Twenty-one people were recorded with drug onset, 18 people with 
Deep Brain Stimulation (DBS) switched on (10 people belonged 
to both categories). The severity score of PD patients was defined
based on the Unified Parkinson's Disease Rating Scale (UPDRS)
scale. The resting tremor (3.17), postural tremor (3.15), rigidity 
(3.3), and finger tapping (3.4) tasks were evaluated by the 
neurologist. The average severity was 1.10, where 0 means a 
healthy (normal) stage, and 4 means the severe stage. Severity 
scores for the right hand are presented since data from the right 
hand were examined.

There were 20 men and 27 women in the HC class, with an 
average age of 56.7 years and a standard deviation of 15.2.  
According to their admission, the members of the HC class did not 
have Parkinson's disease or any other disease that affects their 
movement.

The drawing and motion recordings were made using an 
application developed for Android tablets. In the case of the 
drawing, the participants followed the pattern of an Archimedean 
spiral by moving between the lines from the inside to the outside 
of the spiral template. The drawing data was sampled at a 
maximum of 110 Hz. A sensor attached to the wrist provided 
acceleration data in three dimensions (X, Y, and Z) with a sampling 
frequency of 50 Hz to record the movement.

Recordings were anonymized before use. Their metadata, such 
as gender and age, were used only to describe the classes.

B. Preprocessing 
The drawings were plotted along X and Y coordinates and 

resized to 224x224 pixels with 24-bit depth. The average along the 
corresponding coordinate was subtracted from the acceleration 
data as standardization (remove the bias of the measurement 
device). Furthermore, a 4-order bandpass Butterworth filter was 
applied to the signals between 2 and 15 Hz. Finally, one data vector 
was created from the three coordinates, which contained the length 
of the vector pointing to the point described by the three 
coordinates at each instant of time. Two-dimensional 
representations were made, as shown in Fig. 1, such as 
MarkovTransitionField, RecurrencePlot, and 
GramianAngularField. For this data representation, the pyts 
(v0.12.0) Python package was used with default parameters [21].

These images were also resized to 224x224 pixels with 24-bit 
depth.

The feature vectors from the resulted input images were derived 
from the feature extraction part of pre-trained deep learning 
algorithms. For this, the Keras API was used with the Tensorflow
(v2.0.0) machine learning platform. Among the available models, 
Xception [22], ResNet50 [23], and MobileNet [24] were used. We 
removed the classification (Dense) layer from the end of each 
model and assigned a GlobalAveragePooling2D layer to get one-
dimensional feature vectors. Finally, the feature vectors were 
standardized using the StandardScaler function of sklearn 
(v0.0.post7).

Fig. 1. The spiral drawing and the 2D movement 
representations for an HC person (upper images) and a PD 
patient (lower images).

C. Classification and Evaluation 
To classify the feature vectors, SVM, RF, and k-NN classifiers 
were used with nested cross-validation at 10-fold numbers.

The test set (10% of the database) was separated in the outer 
cycle, independent of the model learning. On the remaining data, 
the best 100 features were selected based on ANOVA F-value
[25]. The same features were selected in the test set accordingly.

The validation set (10% of the 90% data) was separated from 
the training dataset in the internal cycle. This training set was used 
to train the classifiers, and the optimization was carried out with 
the validation set. The parameters below were probed available for 
sklearn [26] models:

 kernel (linear, rbf), C value (0.001, 0.01, 0.1, 1, 10, 100),
and gamma (10, 1, 0.1, 0.01, 0.001, 0.0001) for SVM,

 the max_depth (10, 30, 50, 70, 90, None), max_features
(auto, sqrt), and min_samples_leaf (1, 2, 4) for RF,

 the number of neighbors (2, 3, 5, 10, 20) for k-NN.

The test sets were finally estimated with the models trained with 
the best parameters (on 90% of the data). The sensitivity, 
specificity, macro f1 score, and area under the receiver operating 
characteristic (ROC) curve (AUC) values were derived from the 
estimates.

The predictions of the two different modalities (drawing and 
movement) were aggregated according to Eq. 1, where 𝑦𝑦𝑠𝑠 ∈ {0,1}
is the prediction from spiral drawing and 𝑦𝑦𝑚𝑚 ∈ {0,1} is the 
prediction from the movement data. 𝑄𝑄 ∈ {0,1} is the weight factor 
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specificity, macro f1 score, and area under the receiver operating 
characteristic (ROC) curve (AUC) values were derived from the 
estimates.
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coordinates at each instant of time. Two-dimensional 
representations were made, as shown in Fig. 1, such as 
MarkovTransitionField, RecurrencePlot, and 
GramianAngularField. For this data representation, the pyts 
(v0.12.0) Python package was used with default parameters [21].

These images were also resized to 224x224 pixels with 24-bit 
depth.

The feature vectors from the resulted input images were derived 
from the feature extraction part of pre-trained deep learning 
algorithms. For this, the Keras API was used with the Tensorflow
(v2.0.0) machine learning platform. Among the available models, 
Xception [22], ResNet50 [23], and MobileNet [24] were used. We 
removed the classification (Dense) layer from the end of each 
model and assigned a GlobalAveragePooling2D layer to get one-
dimensional feature vectors. Finally, the feature vectors were 
standardized using the StandardScaler function of sklearn 
(v0.0.post7).

Fig. 1. The spiral drawing and the 2D movement 
representations for an HC person (upper images) and a PD 
patient (lower images).

C. Classification and Evaluation 
To classify the feature vectors, SVM, RF, and k-NN classifiers 
were used with nested cross-validation at 10-fold numbers.

The test set (10% of the database) was separated in the outer 
cycle, independent of the model learning. On the remaining data, 
the best 100 features were selected based on ANOVA F-value
[25]. The same features were selected in the test set accordingly.

The validation set (10% of the 90% data) was separated from 
the training dataset in the internal cycle. This training set was used 
to train the classifiers, and the optimization was carried out with 
the validation set. The parameters below were probed available for 
sklearn [26] models:

 kernel (linear, rbf), C value (0.001, 0.01, 0.1, 1, 10, 100),
and gamma (10, 1, 0.1, 0.01, 0.001, 0.0001) for SVM,

 the max_depth (10, 30, 50, 70, 90, None), max_features
(auto, sqrt), and min_samples_leaf (1, 2, 4) for RF,

 the number of neighbors (2, 3, 5, 10, 20) for k-NN.

The test sets were finally estimated with the models trained with 
the best parameters (on 90% of the data). The sensitivity, 
specificity, macro f1 score, and area under the receiver operating 
characteristic (ROC) curve (AUC) values were derived from the 
estimates.

The predictions of the two different modalities (drawing and 
movement) were aggregated according to Eq. 1, where 𝑦𝑦𝑠𝑠 ∈ {0,1}
is the prediction from spiral drawing and 𝑦𝑦𝑚𝑚 ∈ {0,1} is the 
prediction from the movement data. 𝑄𝑄 ∈ {0,1} is the weight factor 
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our present research, in which the participants draw a spiral 
pattern. During the process, a sensor attached to the wrist 
records the acceleration data. We examine these two modalities 
separately and together.

III. METHODOLOGY

A. Database 
The database contains drawing and drawing-related sensor data 

of 45 PD patients and 47 HC individuals. All participants were 
informed beforehand about the research details and gave their 
consent by signing a consent form. Participants volunteered to 
participate in the research and were informed that their 
participation could be withdrawn without explanation.

There are 37 men and eight women in the PD class, whose 
average age is 66.0 years with a standard deviation of 14.2 years. 
Twenty-one people were recorded with drug onset, 18 people with 
Deep Brain Stimulation (DBS) switched on (10 people belonged 
to both categories). The severity score of PD patients was defined
based on the Unified Parkinson's Disease Rating Scale (UPDRS)
scale. The resting tremor (3.17), postural tremor (3.15), rigidity 
(3.3), and finger tapping (3.4) tasks were evaluated by the 
neurologist. The average severity was 1.10, where 0 means a 
healthy (normal) stage, and 4 means the severe stage. Severity 
scores for the right hand are presented since data from the right 
hand were examined.

There were 20 men and 27 women in the HC class, with an 
average age of 56.7 years and a standard deviation of 15.2.  
According to their admission, the members of the HC class did not 
have Parkinson's disease or any other disease that affects their 
movement.

The drawing and motion recordings were made using an 
application developed for Android tablets. In the case of the 
drawing, the participants followed the pattern of an Archimedean 
spiral by moving between the lines from the inside to the outside 
of the spiral template. The drawing data was sampled at a 
maximum of 110 Hz. A sensor attached to the wrist provided 
acceleration data in three dimensions (X, Y, and Z) with a sampling 
frequency of 50 Hz to record the movement.

Recordings were anonymized before use. Their metadata, such 
as gender and age, were used only to describe the classes.

B. Preprocessing 
The drawings were plotted along X and Y coordinates and 

resized to 224x224 pixels with 24-bit depth. The average along the 
corresponding coordinate was subtracted from the acceleration 
data as standardization (remove the bias of the measurement 
device). Furthermore, a 4-order bandpass Butterworth filter was 
applied to the signals between 2 and 15 Hz. Finally, one data vector 
was created from the three coordinates, which contained the length 
of the vector pointing to the point described by the three 
coordinates at each instant of time. Two-dimensional 
representations were made, as shown in Fig. 1, such as 
MarkovTransitionField, RecurrencePlot, and 
GramianAngularField. For this data representation, the pyts 
(v0.12.0) Python package was used with default parameters [21].

These images were also resized to 224x224 pixels with 24-bit 
depth.

The feature vectors from the resulted input images were derived 
from the feature extraction part of pre-trained deep learning 
algorithms. For this, the Keras API was used with the Tensorflow
(v2.0.0) machine learning platform. Among the available models, 
Xception [22], ResNet50 [23], and MobileNet [24] were used. We 
removed the classification (Dense) layer from the end of each 
model and assigned a GlobalAveragePooling2D layer to get one-
dimensional feature vectors. Finally, the feature vectors were 
standardized using the StandardScaler function of sklearn 
(v0.0.post7).

Fig. 1. The spiral drawing and the 2D movement 
representations for an HC person (upper images) and a PD 
patient (lower images).

C. Classification and Evaluation 
To classify the feature vectors, SVM, RF, and k-NN classifiers 
were used with nested cross-validation at 10-fold numbers.

The test set (10% of the database) was separated in the outer 
cycle, independent of the model learning. On the remaining data, 
the best 100 features were selected based on ANOVA F-value
[25]. The same features were selected in the test set accordingly.

The validation set (10% of the 90% data) was separated from 
the training dataset in the internal cycle. This training set was used 
to train the classifiers, and the optimization was carried out with 
the validation set. The parameters below were probed available for 
sklearn [26] models:

 kernel (linear, rbf), C value (0.001, 0.01, 0.1, 1, 10, 100),
and gamma (10, 1, 0.1, 0.01, 0.001, 0.0001) for SVM,

 the max_depth (10, 30, 50, 70, 90, None), max_features
(auto, sqrt), and min_samples_leaf (1, 2, 4) for RF,

 the number of neighbors (2, 3, 5, 10, 20) for k-NN.

The test sets were finally estimated with the models trained with 
the best parameters (on 90% of the data). The sensitivity, 
specificity, macro f1 score, and area under the receiver operating 
characteristic (ROC) curve (AUC) values were derived from the 
estimates.

The predictions of the two different modalities (drawing and 
movement) were aggregated according to Eq. 1, where 𝑦𝑦𝑠𝑠 ∈ {0,1}
is the prediction from spiral drawing and 𝑦𝑦𝑚𝑚 ∈ {0,1} is the 
prediction from the movement data. 𝑄𝑄 ∈ {0,1} is the weight factor 
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between the two predictions, 𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∈ {0,1} is the final prediction. 
If the value of 𝑄𝑄 is 0, then the final prediction is equal to the 
prediction from the movement. In the case of 𝑄𝑄 𝑄 1 , the final 
prediction is equal to the prediction from the drawing. The final 
prediction for 𝑄𝑄 between 0 and 1 is a ratio between the two 
modalities. 

𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑄 𝑦𝑦𝑠𝑠𝑄𝑄 + 𝑦𝑦𝑚𝑚(1 − 𝑄𝑄) (1)

The samples are assigned to classes based on the models' 
estimates with a decision limit 0.5. If the estimate is above this, the 
sample is classified as positive (PD) and below it as negative (HC).

Mann-Whitney U non-parametric test [27] was used to compare 
the performance of modalities and aggregations. The comparison 
was made with the macro f1 scores. The significance level was 
chosen as 0.05 [28].

IV. RESULTS

A. Separate Classification of Drawings and Movements 
TABLE I shows the results achieved on the spiral drawings and 

the representation of the movement. The marking of the spiral 
drawing is Spiral, while the representations are named according 
to the names described in the III. Methodology section. The 
second column contains the names of the feature extractors, and 
the third column contains the classification algorithms. The last 
four columns contain the sensitivity (sens), specificity (spec),
macro f1 (f1), and AUC (auc) values, respectively. The best results 
per representation are marked with bold style.

In the case of the Spiral, the MobileNet feature extractor
resulted in the highest macro f1 score on average (67.9%). 
ResNet50 and Xception achieved an average of 59.7% and 
57.6% macro f1, respectively. Regarding the classification 
algorithms, RB achieved the best macro f1 score on average 
(66.7%), while k-NN and SVM achieved macro f1 values of 
59.5% and 59.0%, respectively. The best result among all cases 
was achieved with the MobileNet feature extractor and RF 
classification model for the spiral drawing (macro f1 score
70.6%).

In the case of ReccurancePlot, the feature extractors' results
no longer deviate spectacularly from each other. MobileNet, 
ResNet50, and Xception achieved 67.8%, 63.9%, and 66.6% 
macro f1 scores, respectively. The result is similar according to 
the classifiers: 64.4% (k-NN), 65.2% (RF), and 68.8% (SVM).
Compared with the data of the Spiral drawing, it can be seen 
that the values have improved on average, whether examining 
the feature extractors or the classifiers. The average difference 
between the two modalities is 4.4% in the macro f1 score. The 
RecurrencePlot approach obtained the best result with the 
MobileNet feature extractor and SVM classification model 
(74.9% macro f1 score). Compared to Spiral's best result, it 
provided a 4.3% better result. Regarding the other metrics, the 
specificity improved by an average of 0.7%, the sensitivity by 
8.1%, and the auc value by 0.088 compared to the Spiral
metrics.

In the GramianAngularField cases, the averages according to 
the feature extractors are 67.7% (MobileNet), 59.7% 
(ResNet50), and 61.2% (Xception) in macro f1 score. 

According to the classifiers, the average values are 61.1% (k-
NN), 65.9% (RF) and 60.9% (SVM). In this case, the average 
difference compared to the Spiral is 0.9% in the macro f1 score. 
The best result was achieved with MobileNet feature extraction 
and RF classifier with a macro f1 score of 72.7%. This is 2.1% 
better than the Spiral’s best result. Regarding the other metrics, 
the sensitivity improved by an average of 7.7% and the auc 
value by 0.039 compared to the Spiral metrics, but the 
specificity decreased by an average of 5.9%.

TABLE I
RESULTS OBTAINED WITH DIFFERENT MODALITIES, FEATURE 

EXTRACTORS, AND CLASSIFICATION ALGORITHMS.
Extractor Classifier sens spec f1 auc

Sp
ira

l

MobileNet
k-NN 55.6% 78.7% 66.8% 0.686
RF 71.1% 70.2% 70.6% 0.757

SVM 64.4% 68.1% 66.3% 0.720

ResNet50
k-NN 46.7% 78.7% 61.9% 0.574

RF 60.0% 59.6% 59.8% 0.650
SVM 53.3% 61.7% 57.5% 0.619

Xception
k-NN 46.7% 53.2% 49.9% 0.533

RF 68.9% 70.2% 69.6% 0.699
SVM 53.3% 53.2% 53.3% 0.576

R
ec

ur
re

nc
eP

lo
t MobileNet

k-NN 51.1% 80.9% 65.4% 0.752
RF 64.4% 61.7% 63.0% 0.750

SVM 71.1% 78.7% 74.9% 0.834

ResNet50
k-NN 71.1% 46.8% 58.2% 0.689

RF 66.7% 70.2% 68.4% 0.749
SVM 64.4% 66.0% 65.2% 0.710

Xception
k-NN 66.7% 72.3% 69.5% 0.721

RF 71.1% 57.4% 64.0% 0.709
SVM 66.7% 66.0% 66.3% 0.689

G
ra

m
ia

nA
ng

ul
ar

Fi
el

d MobileNet
k-NN 75.6% 59.6% 67.3% 0.774
RF 80.0% 66.0% 72.7% 0.768

SVM 64.4% 61.7% 63.0% 0.720

ResNet50
k-NN 62.2% 46.8% 54.2% 0.606

RF 64.4% 66.0% 65.2% 0.685
SVM 57.8% 57.4% 57.6% 0.635

Xception
k-NN 60.0% 63.8% 61.9% 0.653

RF 64.4% 55.3% 59.7% 0.664
SVM 60.0% 63.8% 61.9% 0.659

M
ar

ko
vT

ra
ns
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on

Fi
el

d

MobileNet
k-NN 71.1% 51.1% 60.6% 0.635

RF 75.6% 61.7% 68.4% 0.749
SVM 51.1% 63.8% 57.4% 0.661

ResNet50
k-NN 68.9% 70.2% 69.6% 0.757
RF 77.8% 74.5% 76.1% 0.802

SVM 75.6% 72.3% 73.9% 0.822

Xception
k-NN 71.1% 55.3% 62.9% 0.634

RF 64.4% 74.5% 69.4% 0.736
SVM 66.7% 76.6% 71.6% 0.727

In the case of MarkovTransitionField, the average macro f1 
scores are 62.1% for MobileNet, 73.2% for ResNet50 and 
68.0% for Xception. Regarding to the classifiers, k-NN
achieved 64.3%, RF 71.3%, and SVM 67.6% macro f1 score.
Compared to the Spiral, ResNet50 and Xception performed 
better with 13.5% and 10.4% macro f1 scores, respectively. 
When comparing classification algorithms, on average, all three 
performed better (4.8%, 4.6%, and 8.6% better results for k-
NN, RF, and SVM) in MarkovTransitionField representation 
than in the Spiral. Overall, this approach outperformed the 
Spiral by 6.0% in macro f1 score. The best result was obtained
with the ResNet50 feature extractor with the RF classifier 
(76.1% macro f1 value). This is better with a 5.4% macro f1 
score than the Spiral’s best result. Regarding the other metrics, 

Fig. 1. The spiral drawing and the 2D movement representations for an HC 
person (upper images) and a PD patient (lower images).
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between the two predictions, 𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∈ {0,1} is the final prediction. 
If the value of 𝑄𝑄 is 0, then the final prediction is equal to the 
prediction from the movement. In the case of 𝑄𝑄 𝑄 1 , the final 
prediction is equal to the prediction from the drawing. The final 
prediction for 𝑄𝑄 between 0 and 1 is a ratio between the two 
modalities. 

𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑄 𝑦𝑦𝑠𝑠𝑄𝑄 + 𝑦𝑦𝑚𝑚(1 − 𝑄𝑄) (1)

The samples are assigned to classes based on the models' 
estimates with a decision limit 0.5. If the estimate is above this, the 
sample is classified as positive (PD) and below it as negative (HC).

Mann-Whitney U non-parametric test [27] was used to compare 
the performance of modalities and aggregations. The comparison 
was made with the macro f1 scores. The significance level was 
chosen as 0.05 [28].

IV. RESULTS

A. Separate Classification of Drawings and Movements 
TABLE I shows the results achieved on the spiral drawings and 

the representation of the movement. The marking of the spiral 
drawing is Spiral, while the representations are named according 
to the names described in the III. Methodology section. The 
second column contains the names of the feature extractors, and 
the third column contains the classification algorithms. The last 
four columns contain the sensitivity (sens), specificity (spec),
macro f1 (f1), and AUC (auc) values, respectively. The best results 
per representation are marked with bold style.

In the case of the Spiral, the MobileNet feature extractor
resulted in the highest macro f1 score on average (67.9%). 
ResNet50 and Xception achieved an average of 59.7% and 
57.6% macro f1, respectively. Regarding the classification 
algorithms, RB achieved the best macro f1 score on average 
(66.7%), while k-NN and SVM achieved macro f1 values of 
59.5% and 59.0%, respectively. The best result among all cases 
was achieved with the MobileNet feature extractor and RF 
classification model for the spiral drawing (macro f1 score
70.6%).

In the case of ReccurancePlot, the feature extractors' results
no longer deviate spectacularly from each other. MobileNet, 
ResNet50, and Xception achieved 67.8%, 63.9%, and 66.6% 
macro f1 scores, respectively. The result is similar according to 
the classifiers: 64.4% (k-NN), 65.2% (RF), and 68.8% (SVM).
Compared with the data of the Spiral drawing, it can be seen 
that the values have improved on average, whether examining 
the feature extractors or the classifiers. The average difference 
between the two modalities is 4.4% in the macro f1 score. The 
RecurrencePlot approach obtained the best result with the 
MobileNet feature extractor and SVM classification model 
(74.9% macro f1 score). Compared to Spiral's best result, it 
provided a 4.3% better result. Regarding the other metrics, the 
specificity improved by an average of 0.7%, the sensitivity by 
8.1%, and the auc value by 0.088 compared to the Spiral
metrics.

In the GramianAngularField cases, the averages according to 
the feature extractors are 67.7% (MobileNet), 59.7% 
(ResNet50), and 61.2% (Xception) in macro f1 score. 

According to the classifiers, the average values are 61.1% (k-
NN), 65.9% (RF) and 60.9% (SVM). In this case, the average 
difference compared to the Spiral is 0.9% in the macro f1 score. 
The best result was achieved with MobileNet feature extraction 
and RF classifier with a macro f1 score of 72.7%. This is 2.1% 
better than the Spiral’s best result. Regarding the other metrics, 
the sensitivity improved by an average of 7.7% and the auc 
value by 0.039 compared to the Spiral metrics, but the 
specificity decreased by an average of 5.9%.

TABLE I
RESULTS OBTAINED WITH DIFFERENT MODALITIES, FEATURE 

EXTRACTORS, AND CLASSIFICATION ALGORITHMS.
Extractor Classifier sens spec f1 auc
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MobileNet
k-NN 55.6% 78.7% 66.8% 0.686
RF 71.1% 70.2% 70.6% 0.757

SVM 64.4% 68.1% 66.3% 0.720

ResNet50
k-NN 46.7% 78.7% 61.9% 0.574

RF 60.0% 59.6% 59.8% 0.650
SVM 53.3% 61.7% 57.5% 0.619

Xception
k-NN 46.7% 53.2% 49.9% 0.533

RF 68.9% 70.2% 69.6% 0.699
SVM 53.3% 53.2% 53.3% 0.576
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k-NN 51.1% 80.9% 65.4% 0.752
RF 64.4% 61.7% 63.0% 0.750

SVM 71.1% 78.7% 74.9% 0.834

ResNet50
k-NN 71.1% 46.8% 58.2% 0.689

RF 66.7% 70.2% 68.4% 0.749
SVM 64.4% 66.0% 65.2% 0.710

Xception
k-NN 66.7% 72.3% 69.5% 0.721

RF 71.1% 57.4% 64.0% 0.709
SVM 66.7% 66.0% 66.3% 0.689
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k-NN 75.6% 59.6% 67.3% 0.774
RF 80.0% 66.0% 72.7% 0.768

SVM 64.4% 61.7% 63.0% 0.720

ResNet50
k-NN 62.2% 46.8% 54.2% 0.606

RF 64.4% 66.0% 65.2% 0.685
SVM 57.8% 57.4% 57.6% 0.635

Xception
k-NN 60.0% 63.8% 61.9% 0.653

RF 64.4% 55.3% 59.7% 0.664
SVM 60.0% 63.8% 61.9% 0.659
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MobileNet
k-NN 71.1% 51.1% 60.6% 0.635

RF 75.6% 61.7% 68.4% 0.749
SVM 51.1% 63.8% 57.4% 0.661

ResNet50
k-NN 68.9% 70.2% 69.6% 0.757
RF 77.8% 74.5% 76.1% 0.802

SVM 75.6% 72.3% 73.9% 0.822

Xception
k-NN 71.1% 55.3% 62.9% 0.634

RF 64.4% 74.5% 69.4% 0.736
SVM 66.7% 76.6% 71.6% 0.727

In the case of MarkovTransitionField, the average macro f1 
scores are 62.1% for MobileNet, 73.2% for ResNet50 and 
68.0% for Xception. Regarding to the classifiers, k-NN
achieved 64.3%, RF 71.3%, and SVM 67.6% macro f1 score.
Compared to the Spiral, ResNet50 and Xception performed 
better with 13.5% and 10.4% macro f1 scores, respectively. 
When comparing classification algorithms, on average, all three 
performed better (4.8%, 4.6%, and 8.6% better results for k-
NN, RF, and SVM) in MarkovTransitionField representation 
than in the Spiral. Overall, this approach outperformed the 
Spiral by 6.0% in macro f1 score. The best result was obtained
with the ResNet50 feature extractor with the RF classifier 
(76.1% macro f1 value). This is better with a 5.4% macro f1 
score than the Spiral’s best result. Regarding the other metrics, 

TABLE I
Results obtained with different modalities, feature

extractors, and classification algorithms.
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between the two predictions, 𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∈ {0,1} is the final prediction. 
If the value of 𝑄𝑄 is 0, then the final prediction is equal to the 
prediction from the movement. In the case of 𝑄𝑄 𝑄 1 , the final 
prediction is equal to the prediction from the drawing. The final 
prediction for 𝑄𝑄 between 0 and 1 is a ratio between the two 
modalities. 

𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑄 𝑦𝑦𝑠𝑠𝑄𝑄 + 𝑦𝑦𝑚𝑚(1 − 𝑄𝑄) (1)

The samples are assigned to classes based on the models' 
estimates with a decision limit 0.5. If the estimate is above this, the 
sample is classified as positive (PD) and below it as negative (HC).

Mann-Whitney U non-parametric test [27] was used to compare 
the performance of modalities and aggregations. The comparison 
was made with the macro f1 scores. The significance level was 
chosen as 0.05 [28].

IV. RESULTS

A. Separate Classification of Drawings and Movements 
TABLE I shows the results achieved on the spiral drawings and 

the representation of the movement. The marking of the spiral 
drawing is Spiral, while the representations are named according 
to the names described in the III. Methodology section. The 
second column contains the names of the feature extractors, and 
the third column contains the classification algorithms. The last 
four columns contain the sensitivity (sens), specificity (spec),
macro f1 (f1), and AUC (auc) values, respectively. The best results 
per representation are marked with bold style.

In the case of the Spiral, the MobileNet feature extractor
resulted in the highest macro f1 score on average (67.9%). 
ResNet50 and Xception achieved an average of 59.7% and 
57.6% macro f1, respectively. Regarding the classification 
algorithms, RB achieved the best macro f1 score on average 
(66.7%), while k-NN and SVM achieved macro f1 values of 
59.5% and 59.0%, respectively. The best result among all cases 
was achieved with the MobileNet feature extractor and RF 
classification model for the spiral drawing (macro f1 score
70.6%).

In the case of ReccurancePlot, the feature extractors' results
no longer deviate spectacularly from each other. MobileNet, 
ResNet50, and Xception achieved 67.8%, 63.9%, and 66.6% 
macro f1 scores, respectively. The result is similar according to 
the classifiers: 64.4% (k-NN), 65.2% (RF), and 68.8% (SVM).
Compared with the data of the Spiral drawing, it can be seen 
that the values have improved on average, whether examining 
the feature extractors or the classifiers. The average difference 
between the two modalities is 4.4% in the macro f1 score. The 
RecurrencePlot approach obtained the best result with the 
MobileNet feature extractor and SVM classification model 
(74.9% macro f1 score). Compared to Spiral's best result, it 
provided a 4.3% better result. Regarding the other metrics, the 
specificity improved by an average of 0.7%, the sensitivity by 
8.1%, and the auc value by 0.088 compared to the Spiral
metrics.

In the GramianAngularField cases, the averages according to 
the feature extractors are 67.7% (MobileNet), 59.7% 
(ResNet50), and 61.2% (Xception) in macro f1 score. 

According to the classifiers, the average values are 61.1% (k-
NN), 65.9% (RF) and 60.9% (SVM). In this case, the average 
difference compared to the Spiral is 0.9% in the macro f1 score. 
The best result was achieved with MobileNet feature extraction 
and RF classifier with a macro f1 score of 72.7%. This is 2.1% 
better than the Spiral’s best result. Regarding the other metrics, 
the sensitivity improved by an average of 7.7% and the auc 
value by 0.039 compared to the Spiral metrics, but the 
specificity decreased by an average of 5.9%.

TABLE I
RESULTS OBTAINED WITH DIFFERENT MODALITIES, FEATURE 

EXTRACTORS, AND CLASSIFICATION ALGORITHMS.
Extractor Classifier sens spec f1 auc

Sp
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l

MobileNet
k-NN 55.6% 78.7% 66.8% 0.686
RF 71.1% 70.2% 70.6% 0.757

SVM 64.4% 68.1% 66.3% 0.720

ResNet50
k-NN 46.7% 78.7% 61.9% 0.574

RF 60.0% 59.6% 59.8% 0.650
SVM 53.3% 61.7% 57.5% 0.619

Xception
k-NN 46.7% 53.2% 49.9% 0.533

RF 68.9% 70.2% 69.6% 0.699
SVM 53.3% 53.2% 53.3% 0.576
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t MobileNet

k-NN 51.1% 80.9% 65.4% 0.752
RF 64.4% 61.7% 63.0% 0.750

SVM 71.1% 78.7% 74.9% 0.834

ResNet50
k-NN 71.1% 46.8% 58.2% 0.689

RF 66.7% 70.2% 68.4% 0.749
SVM 64.4% 66.0% 65.2% 0.710

Xception
k-NN 66.7% 72.3% 69.5% 0.721

RF 71.1% 57.4% 64.0% 0.709
SVM 66.7% 66.0% 66.3% 0.689
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d MobileNet
k-NN 75.6% 59.6% 67.3% 0.774
RF 80.0% 66.0% 72.7% 0.768

SVM 64.4% 61.7% 63.0% 0.720

ResNet50
k-NN 62.2% 46.8% 54.2% 0.606

RF 64.4% 66.0% 65.2% 0.685
SVM 57.8% 57.4% 57.6% 0.635

Xception
k-NN 60.0% 63.8% 61.9% 0.653

RF 64.4% 55.3% 59.7% 0.664
SVM 60.0% 63.8% 61.9% 0.659
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MobileNet
k-NN 71.1% 51.1% 60.6% 0.635

RF 75.6% 61.7% 68.4% 0.749
SVM 51.1% 63.8% 57.4% 0.661

ResNet50
k-NN 68.9% 70.2% 69.6% 0.757
RF 77.8% 74.5% 76.1% 0.802

SVM 75.6% 72.3% 73.9% 0.822

Xception
k-NN 71.1% 55.3% 62.9% 0.634

RF 64.4% 74.5% 69.4% 0.736
SVM 66.7% 76.6% 71.6% 0.727

In the case of MarkovTransitionField, the average macro f1 
scores are 62.1% for MobileNet, 73.2% for ResNet50 and 
68.0% for Xception. Regarding to the classifiers, k-NN
achieved 64.3%, RF 71.3%, and SVM 67.6% macro f1 score.
Compared to the Spiral, ResNet50 and Xception performed 
better with 13.5% and 10.4% macro f1 scores, respectively. 
When comparing classification algorithms, on average, all three 
performed better (4.8%, 4.6%, and 8.6% better results for k-
NN, RF, and SVM) in MarkovTransitionField representation 
than in the Spiral. Overall, this approach outperformed the 
Spiral by 6.0% in macro f1 score. The best result was obtained
with the ResNet50 feature extractor with the RF classifier 
(76.1% macro f1 value). This is better with a 5.4% macro f1 
score than the Spiral’s best result. Regarding the other metrics, 
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between the two predictions, 𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∈ {0,1} is the final prediction. 
If the value of 𝑄𝑄 is 0, then the final prediction is equal to the 
prediction from the movement. In the case of 𝑄𝑄 𝑄 1 , the final 
prediction is equal to the prediction from the drawing. The final 
prediction for 𝑄𝑄 between 0 and 1 is a ratio between the two 
modalities. 

𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑄 𝑦𝑦𝑠𝑠𝑄𝑄 + 𝑦𝑦𝑚𝑚(1 − 𝑄𝑄) (1)

The samples are assigned to classes based on the models' 
estimates with a decision limit 0.5. If the estimate is above this, the 
sample is classified as positive (PD) and below it as negative (HC).

Mann-Whitney U non-parametric test [27] was used to compare 
the performance of modalities and aggregations. The comparison 
was made with the macro f1 scores. The significance level was 
chosen as 0.05 [28].

IV. RESULTS

A. Separate Classification of Drawings and Movements 
TABLE I shows the results achieved on the spiral drawings and 

the representation of the movement. The marking of the spiral 
drawing is Spiral, while the representations are named according 
to the names described in the III. Methodology section. The 
second column contains the names of the feature extractors, and 
the third column contains the classification algorithms. The last 
four columns contain the sensitivity (sens), specificity (spec),
macro f1 (f1), and AUC (auc) values, respectively. The best results 
per representation are marked with bold style.

In the case of the Spiral, the MobileNet feature extractor
resulted in the highest macro f1 score on average (67.9%). 
ResNet50 and Xception achieved an average of 59.7% and 
57.6% macro f1, respectively. Regarding the classification 
algorithms, RB achieved the best macro f1 score on average 
(66.7%), while k-NN and SVM achieved macro f1 values of 
59.5% and 59.0%, respectively. The best result among all cases 
was achieved with the MobileNet feature extractor and RF 
classification model for the spiral drawing (macro f1 score
70.6%).

In the case of ReccurancePlot, the feature extractors' results
no longer deviate spectacularly from each other. MobileNet, 
ResNet50, and Xception achieved 67.8%, 63.9%, and 66.6% 
macro f1 scores, respectively. The result is similar according to 
the classifiers: 64.4% (k-NN), 65.2% (RF), and 68.8% (SVM).
Compared with the data of the Spiral drawing, it can be seen 
that the values have improved on average, whether examining 
the feature extractors or the classifiers. The average difference 
between the two modalities is 4.4% in the macro f1 score. The 
RecurrencePlot approach obtained the best result with the 
MobileNet feature extractor and SVM classification model 
(74.9% macro f1 score). Compared to Spiral's best result, it 
provided a 4.3% better result. Regarding the other metrics, the 
specificity improved by an average of 0.7%, the sensitivity by 
8.1%, and the auc value by 0.088 compared to the Spiral
metrics.

In the GramianAngularField cases, the averages according to 
the feature extractors are 67.7% (MobileNet), 59.7% 
(ResNet50), and 61.2% (Xception) in macro f1 score. 

According to the classifiers, the average values are 61.1% (k-
NN), 65.9% (RF) and 60.9% (SVM). In this case, the average 
difference compared to the Spiral is 0.9% in the macro f1 score. 
The best result was achieved with MobileNet feature extraction 
and RF classifier with a macro f1 score of 72.7%. This is 2.1% 
better than the Spiral’s best result. Regarding the other metrics, 
the sensitivity improved by an average of 7.7% and the auc 
value by 0.039 compared to the Spiral metrics, but the 
specificity decreased by an average of 5.9%.

TABLE I
RESULTS OBTAINED WITH DIFFERENT MODALITIES, FEATURE 

EXTRACTORS, AND CLASSIFICATION ALGORITHMS.
Extractor Classifier sens spec f1 auc
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k-NN 55.6% 78.7% 66.8% 0.686
RF 71.1% 70.2% 70.6% 0.757

SVM 64.4% 68.1% 66.3% 0.720

ResNet50
k-NN 46.7% 78.7% 61.9% 0.574

RF 60.0% 59.6% 59.8% 0.650
SVM 53.3% 61.7% 57.5% 0.619

Xception
k-NN 46.7% 53.2% 49.9% 0.533

RF 68.9% 70.2% 69.6% 0.699
SVM 53.3% 53.2% 53.3% 0.576
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k-NN 51.1% 80.9% 65.4% 0.752
RF 64.4% 61.7% 63.0% 0.750

SVM 71.1% 78.7% 74.9% 0.834

ResNet50
k-NN 71.1% 46.8% 58.2% 0.689

RF 66.7% 70.2% 68.4% 0.749
SVM 64.4% 66.0% 65.2% 0.710

Xception
k-NN 66.7% 72.3% 69.5% 0.721

RF 71.1% 57.4% 64.0% 0.709
SVM 66.7% 66.0% 66.3% 0.689
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d MobileNet
k-NN 75.6% 59.6% 67.3% 0.774
RF 80.0% 66.0% 72.7% 0.768

SVM 64.4% 61.7% 63.0% 0.720

ResNet50
k-NN 62.2% 46.8% 54.2% 0.606

RF 64.4% 66.0% 65.2% 0.685
SVM 57.8% 57.4% 57.6% 0.635

Xception
k-NN 60.0% 63.8% 61.9% 0.653

RF 64.4% 55.3% 59.7% 0.664
SVM 60.0% 63.8% 61.9% 0.659
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MobileNet
k-NN 71.1% 51.1% 60.6% 0.635

RF 75.6% 61.7% 68.4% 0.749
SVM 51.1% 63.8% 57.4% 0.661

ResNet50
k-NN 68.9% 70.2% 69.6% 0.757
RF 77.8% 74.5% 76.1% 0.802

SVM 75.6% 72.3% 73.9% 0.822

Xception
k-NN 71.1% 55.3% 62.9% 0.634

RF 64.4% 74.5% 69.4% 0.736
SVM 66.7% 76.6% 71.6% 0.727

In the case of MarkovTransitionField, the average macro f1 
scores are 62.1% for MobileNet, 73.2% for ResNet50 and 
68.0% for Xception. Regarding to the classifiers, k-NN
achieved 64.3%, RF 71.3%, and SVM 67.6% macro f1 score.
Compared to the Spiral, ResNet50 and Xception performed 
better with 13.5% and 10.4% macro f1 scores, respectively. 
When comparing classification algorithms, on average, all three 
performed better (4.8%, 4.6%, and 8.6% better results for k-
NN, RF, and SVM) in MarkovTransitionField representation 
than in the Spiral. Overall, this approach outperformed the 
Spiral by 6.0% in macro f1 score. The best result was obtained
with the ResNet50 feature extractor with the RF classifier 
(76.1% macro f1 value). This is better with a 5.4% macro f1 
score than the Spiral’s best result. Regarding the other metrics, 
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the specificity improved by an average of 0.7%, the sensitivity
by 11.4%, and the auc value by 0.079 compared to the Spiral
metrics.

Overall, it can be seen that the image representation of the 
movement provides a better result in average value: 4.4% 
(RecurrencePlot), 0.9% (GramianAngularField), 6.0% 
(MarkovTransitionField) in macro f1 score. According to the 
best results, better results were also achieved with movement 
representations by 4.3% (RecurrencePlot), 2.1%
(GramianAngularField), and 5.4% (MarkovTransitionField)
macro f1 score. However, no significant difference between 
the two modalities can be established with the Mann-Whitney 
U statistical test. The p-values of the tests are 0.331 (Spiral vs 
RecurrencePlot), 0.791 (Spiral vs GramianAngularField), and
0.102 (Spiral vs MarkovTransitionField). This probably stems 
from the observation that the two modalities have no clear trend
according to the performance.

B. Joint examination of the modalities 
Aggregating the predictions achieved on the modalities were

based on Eq. 1. Fig. 2 shows the progression of macro f1 scores
by connecting Spiral and RecurracePlot. The weight factor or 
voting factor (𝑄𝑄) is shown on the horizontal axis. If 𝑄𝑄 is zero, 
then only the prediction of the movement. If 𝑄𝑄 = 1, then the 
prediction of the drawing applies as the two extreme points of 
the axis. The macro f1 scores between 0.5 and 0.9 are shown on 
the vertical axis.

The average macro f1 score achieved with RecurrencePlot is 
66.1%, while with Spiral it is 61.7%. The average of the 
maximum points shown in the figure was 71.4% macro f1 
score. The average of the maximum deviation (maximum point 
– modality with lower performance) was 11.7% macro f1 score,
while the average of the minimum deviation (maximum point –
modality with higher performance) was 3.2%. In two cases, no 
improvement was observed by combining the two modalities: 
Xception with k-NN classifier and Xception with SVM 
classifier. The possible reason is that the difference between the 
two modalities is high (19.6% and 13.0%). In the other cases, 
the difference between the modalities was minor (6.2% on 
average). The most considerable improvement was achieved 
with the MobileNet and SVM classifier. The macro f1 score on 

the RecurrencePlot is 74.9%. On the Spiral it is 66.3%, while 
the maximum value is 82.5%. By comparing the modalities 
with the maximum points pairwise using the Mann-Whitney U 
test, we experienced a significant improvement. The p-value is 
0.010 between the maximum and the Spiral, and 0.047 between 
the maximum and the RecurrencePlot.

Fig. 3 shows the result of aggregating Spiral and 
GramianAngularField. The markings in the figure are the same 
as those in Fig. 2. In this case, the average macro f1 score of the 
GramianAngularField is 62.6%. This macro f1 score for the
Spiral is 61.7%. The average of the maximum scores is 69.1%. 
In all cases, improvement was observed with the prediction 
aggregation. The maximum improvement is an average of 9.6% 
macro f1 score, and the minimum improvement is an average 
of 4.1%. With the present approach, the highest macro f1 score
was provided by MobileNet and RF, with 76.1%. The same case 
achieved 72.7% on GramianAngularField and 70.6% on Spiral.
ResNet50 achieved the most significant improvement (from 
both modalities) with the SVM classifier. It achieved 57.6%
macro f1 score on movement data, 57.5% on drawing data, and 
66.3% at the maximum point. We found a significant 
improvement by combining the modalities using the Mann-
Whitney U test. The p-values are 0.030 between the maximum 

Fig. 4. The aggregated macro f1 scores of Spiral and 
RecurrencePlot in proportion to the voting factor.

Fig. 2. The aggregated macro f1 scores of Spiral and 
GramianAngularField in proportion to the voting factor.

Fig. 3. The aggregated macro f1 scores of Spiral and 
MarkovTransitionField in proportion to the voting factor.
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between the two predictions, 𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∈ {0,1} is the final prediction. 
If the value of 𝑄𝑄 is 0, then the final prediction is equal to the 
prediction from the movement. In the case of 𝑄𝑄 𝑄 1 , the final 
prediction is equal to the prediction from the drawing. The final 
prediction for 𝑄𝑄 between 0 and 1 is a ratio between the two 
modalities. 

𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑄 𝑦𝑦𝑠𝑠𝑄𝑄 + 𝑦𝑦𝑚𝑚(1 − 𝑄𝑄) (1)

The samples are assigned to classes based on the models' 
estimates with a decision limit 0.5. If the estimate is above this, the 
sample is classified as positive (PD) and below it as negative (HC).

Mann-Whitney U non-parametric test [27] was used to compare 
the performance of modalities and aggregations. The comparison 
was made with the macro f1 scores. The significance level was 
chosen as 0.05 [28].

IV. RESULTS

A. Separate Classification of Drawings and Movements 
TABLE I shows the results achieved on the spiral drawings and 

the representation of the movement. The marking of the spiral 
drawing is Spiral, while the representations are named according 
to the names described in the III. Methodology section. The 
second column contains the names of the feature extractors, and 
the third column contains the classification algorithms. The last 
four columns contain the sensitivity (sens), specificity (spec),
macro f1 (f1), and AUC (auc) values, respectively. The best results 
per representation are marked with bold style.

In the case of the Spiral, the MobileNet feature extractor
resulted in the highest macro f1 score on average (67.9%). 
ResNet50 and Xception achieved an average of 59.7% and 
57.6% macro f1, respectively. Regarding the classification 
algorithms, RB achieved the best macro f1 score on average 
(66.7%), while k-NN and SVM achieved macro f1 values of 
59.5% and 59.0%, respectively. The best result among all cases 
was achieved with the MobileNet feature extractor and RF 
classification model for the spiral drawing (macro f1 score
70.6%).

In the case of ReccurancePlot, the feature extractors' results
no longer deviate spectacularly from each other. MobileNet, 
ResNet50, and Xception achieved 67.8%, 63.9%, and 66.6% 
macro f1 scores, respectively. The result is similar according to 
the classifiers: 64.4% (k-NN), 65.2% (RF), and 68.8% (SVM).
Compared with the data of the Spiral drawing, it can be seen 
that the values have improved on average, whether examining 
the feature extractors or the classifiers. The average difference 
between the two modalities is 4.4% in the macro f1 score. The 
RecurrencePlot approach obtained the best result with the 
MobileNet feature extractor and SVM classification model 
(74.9% macro f1 score). Compared to Spiral's best result, it 
provided a 4.3% better result. Regarding the other metrics, the 
specificity improved by an average of 0.7%, the sensitivity by 
8.1%, and the auc value by 0.088 compared to the Spiral
metrics.

In the GramianAngularField cases, the averages according to 
the feature extractors are 67.7% (MobileNet), 59.7% 
(ResNet50), and 61.2% (Xception) in macro f1 score. 

According to the classifiers, the average values are 61.1% (k-
NN), 65.9% (RF) and 60.9% (SVM). In this case, the average 
difference compared to the Spiral is 0.9% in the macro f1 score. 
The best result was achieved with MobileNet feature extraction 
and RF classifier with a macro f1 score of 72.7%. This is 2.1% 
better than the Spiral’s best result. Regarding the other metrics, 
the sensitivity improved by an average of 7.7% and the auc 
value by 0.039 compared to the Spiral metrics, but the 
specificity decreased by an average of 5.9%.

TABLE I
RESULTS OBTAINED WITH DIFFERENT MODALITIES, FEATURE 

EXTRACTORS, AND CLASSIFICATION ALGORITHMS.
Extractor Classifier sens spec f1 auc

Sp
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MobileNet
k-NN 55.6% 78.7% 66.8% 0.686
RF 71.1% 70.2% 70.6% 0.757

SVM 64.4% 68.1% 66.3% 0.720

ResNet50
k-NN 46.7% 78.7% 61.9% 0.574

RF 60.0% 59.6% 59.8% 0.650
SVM 53.3% 61.7% 57.5% 0.619

Xception
k-NN 46.7% 53.2% 49.9% 0.533

RF 68.9% 70.2% 69.6% 0.699
SVM 53.3% 53.2% 53.3% 0.576
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k-NN 51.1% 80.9% 65.4% 0.752
RF 64.4% 61.7% 63.0% 0.750

SVM 71.1% 78.7% 74.9% 0.834

ResNet50
k-NN 71.1% 46.8% 58.2% 0.689

RF 66.7% 70.2% 68.4% 0.749
SVM 64.4% 66.0% 65.2% 0.710

Xception
k-NN 66.7% 72.3% 69.5% 0.721

RF 71.1% 57.4% 64.0% 0.709
SVM 66.7% 66.0% 66.3% 0.689
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d MobileNet
k-NN 75.6% 59.6% 67.3% 0.774
RF 80.0% 66.0% 72.7% 0.768

SVM 64.4% 61.7% 63.0% 0.720

ResNet50
k-NN 62.2% 46.8% 54.2% 0.606

RF 64.4% 66.0% 65.2% 0.685
SVM 57.8% 57.4% 57.6% 0.635

Xception
k-NN 60.0% 63.8% 61.9% 0.653

RF 64.4% 55.3% 59.7% 0.664
SVM 60.0% 63.8% 61.9% 0.659
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MobileNet
k-NN 71.1% 51.1% 60.6% 0.635

RF 75.6% 61.7% 68.4% 0.749
SVM 51.1% 63.8% 57.4% 0.661

ResNet50
k-NN 68.9% 70.2% 69.6% 0.757
RF 77.8% 74.5% 76.1% 0.802

SVM 75.6% 72.3% 73.9% 0.822

Xception
k-NN 71.1% 55.3% 62.9% 0.634

RF 64.4% 74.5% 69.4% 0.736
SVM 66.7% 76.6% 71.6% 0.727

In the case of MarkovTransitionField, the average macro f1 
scores are 62.1% for MobileNet, 73.2% for ResNet50 and 
68.0% for Xception. Regarding to the classifiers, k-NN
achieved 64.3%, RF 71.3%, and SVM 67.6% macro f1 score.
Compared to the Spiral, ResNet50 and Xception performed 
better with 13.5% and 10.4% macro f1 scores, respectively. 
When comparing classification algorithms, on average, all three 
performed better (4.8%, 4.6%, and 8.6% better results for k-
NN, RF, and SVM) in MarkovTransitionField representation 
than in the Spiral. Overall, this approach outperformed the 
Spiral by 6.0% in macro f1 score. The best result was obtained
with the ResNet50 feature extractor with the RF classifier 
(76.1% macro f1 value). This is better with a 5.4% macro f1 
score than the Spiral’s best result. Regarding the other metrics, 
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between the two predictions, 𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∈ {0,1} is the final prediction. 
If the value of 𝑄𝑄 is 0, then the final prediction is equal to the 
prediction from the movement. In the case of 𝑄𝑄 𝑄 1 , the final 
prediction is equal to the prediction from the drawing. The final 
prediction for 𝑄𝑄 between 0 and 1 is a ratio between the two 
modalities. 

𝑦𝑦𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑄 𝑦𝑦𝑠𝑠𝑄𝑄 + 𝑦𝑦𝑚𝑚(1 − 𝑄𝑄) (1)

The samples are assigned to classes based on the models' 
estimates with a decision limit 0.5. If the estimate is above this, the 
sample is classified as positive (PD) and below it as negative (HC).

Mann-Whitney U non-parametric test [27] was used to compare 
the performance of modalities and aggregations. The comparison 
was made with the macro f1 scores. The significance level was 
chosen as 0.05 [28].

IV. RESULTS

A. Separate Classification of Drawings and Movements 
TABLE I shows the results achieved on the spiral drawings and 

the representation of the movement. The marking of the spiral 
drawing is Spiral, while the representations are named according 
to the names described in the III. Methodology section. The 
second column contains the names of the feature extractors, and 
the third column contains the classification algorithms. The last 
four columns contain the sensitivity (sens), specificity (spec),
macro f1 (f1), and AUC (auc) values, respectively. The best results 
per representation are marked with bold style.

In the case of the Spiral, the MobileNet feature extractor
resulted in the highest macro f1 score on average (67.9%). 
ResNet50 and Xception achieved an average of 59.7% and 
57.6% macro f1, respectively. Regarding the classification 
algorithms, RB achieved the best macro f1 score on average 
(66.7%), while k-NN and SVM achieved macro f1 values of 
59.5% and 59.0%, respectively. The best result among all cases 
was achieved with the MobileNet feature extractor and RF 
classification model for the spiral drawing (macro f1 score
70.6%).

In the case of ReccurancePlot, the feature extractors' results
no longer deviate spectacularly from each other. MobileNet, 
ResNet50, and Xception achieved 67.8%, 63.9%, and 66.6% 
macro f1 scores, respectively. The result is similar according to 
the classifiers: 64.4% (k-NN), 65.2% (RF), and 68.8% (SVM).
Compared with the data of the Spiral drawing, it can be seen 
that the values have improved on average, whether examining 
the feature extractors or the classifiers. The average difference 
between the two modalities is 4.4% in the macro f1 score. The 
RecurrencePlot approach obtained the best result with the 
MobileNet feature extractor and SVM classification model 
(74.9% macro f1 score). Compared to Spiral's best result, it 
provided a 4.3% better result. Regarding the other metrics, the 
specificity improved by an average of 0.7%, the sensitivity by 
8.1%, and the auc value by 0.088 compared to the Spiral
metrics.

In the GramianAngularField cases, the averages according to 
the feature extractors are 67.7% (MobileNet), 59.7% 
(ResNet50), and 61.2% (Xception) in macro f1 score. 

According to the classifiers, the average values are 61.1% (k-
NN), 65.9% (RF) and 60.9% (SVM). In this case, the average 
difference compared to the Spiral is 0.9% in the macro f1 score. 
The best result was achieved with MobileNet feature extraction 
and RF classifier with a macro f1 score of 72.7%. This is 2.1% 
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the sensitivity improved by an average of 7.7% and the auc 
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TABLE I
RESULTS OBTAINED WITH DIFFERENT MODALITIES, FEATURE 

EXTRACTORS, AND CLASSIFICATION ALGORITHMS.
Extractor Classifier sens spec f1 auc

Sp
ira

l

MobileNet
k-NN 55.6% 78.7% 66.8% 0.686
RF 71.1% 70.2% 70.6% 0.757

SVM 64.4% 68.1% 66.3% 0.720

ResNet50
k-NN 46.7% 78.7% 61.9% 0.574

RF 60.0% 59.6% 59.8% 0.650
SVM 53.3% 61.7% 57.5% 0.619

Xception
k-NN 46.7% 53.2% 49.9% 0.533

RF 68.9% 70.2% 69.6% 0.699
SVM 53.3% 53.2% 53.3% 0.576

R
ec

ur
re

nc
eP

lo
t MobileNet

k-NN 51.1% 80.9% 65.4% 0.752
RF 64.4% 61.7% 63.0% 0.750

SVM 71.1% 78.7% 74.9% 0.834

ResNet50
k-NN 71.1% 46.8% 58.2% 0.689

RF 66.7% 70.2% 68.4% 0.749
SVM 64.4% 66.0% 65.2% 0.710

Xception
k-NN 66.7% 72.3% 69.5% 0.721

RF 71.1% 57.4% 64.0% 0.709
SVM 66.7% 66.0% 66.3% 0.689

G
ra

m
ia

nA
ng

ul
ar

Fi
el

d MobileNet
k-NN 75.6% 59.6% 67.3% 0.774
RF 80.0% 66.0% 72.7% 0.768

SVM 64.4% 61.7% 63.0% 0.720

ResNet50
k-NN 62.2% 46.8% 54.2% 0.606

RF 64.4% 66.0% 65.2% 0.685
SVM 57.8% 57.4% 57.6% 0.635

Xception
k-NN 60.0% 63.8% 61.9% 0.653

RF 64.4% 55.3% 59.7% 0.664
SVM 60.0% 63.8% 61.9% 0.659

M
ar

ko
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ra
ns
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el

d

MobileNet
k-NN 71.1% 51.1% 60.6% 0.635

RF 75.6% 61.7% 68.4% 0.749
SVM 51.1% 63.8% 57.4% 0.661

ResNet50
k-NN 68.9% 70.2% 69.6% 0.757
RF 77.8% 74.5% 76.1% 0.802

SVM 75.6% 72.3% 73.9% 0.822

Xception
k-NN 71.1% 55.3% 62.9% 0.634

RF 64.4% 74.5% 69.4% 0.736
SVM 66.7% 76.6% 71.6% 0.727

In the case of MarkovTransitionField, the average macro f1 
scores are 62.1% for MobileNet, 73.2% for ResNet50 and 
68.0% for Xception. Regarding to the classifiers, k-NN
achieved 64.3%, RF 71.3%, and SVM 67.6% macro f1 score.
Compared to the Spiral, ResNet50 and Xception performed 
better with 13.5% and 10.4% macro f1 scores, respectively. 
When comparing classification algorithms, on average, all three 
performed better (4.8%, 4.6%, and 8.6% better results for k-
NN, RF, and SVM) in MarkovTransitionField representation 
than in the Spiral. Overall, this approach outperformed the 
Spiral by 6.0% in macro f1 score. The best result was obtained
with the ResNet50 feature extractor with the RF classifier 
(76.1% macro f1 value). This is better with a 5.4% macro f1 
score than the Spiral’s best result. Regarding the other metrics, 
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our present research, in which the participants draw a spiral 
pattern. During the process, a sensor attached to the wrist 
records the acceleration data. We examine these two modalities 
separately and together.

III. METHODOLOGY

A. Database 
The database contains drawing and drawing-related sensor data 

of 45 PD patients and 47 HC individuals. All participants were 
informed beforehand about the research details and gave their 
consent by signing a consent form. Participants volunteered to 
participate in the research and were informed that their 
participation could be withdrawn without explanation.

There are 37 men and eight women in the PD class, whose 
average age is 66.0 years with a standard deviation of 14.2 years. 
Twenty-one people were recorded with drug onset, 18 people with 
Deep Brain Stimulation (DBS) switched on (10 people belonged 
to both categories). The severity score of PD patients was defined
based on the Unified Parkinson's Disease Rating Scale (UPDRS)
scale. The resting tremor (3.17), postural tremor (3.15), rigidity 
(3.3), and finger tapping (3.4) tasks were evaluated by the 
neurologist. The average severity was 1.10, where 0 means a 
healthy (normal) stage, and 4 means the severe stage. Severity 
scores for the right hand are presented since data from the right 
hand were examined.

There were 20 men and 27 women in the HC class, with an 
average age of 56.7 years and a standard deviation of 15.2.  
According to their admission, the members of the HC class did not 
have Parkinson's disease or any other disease that affects their 
movement.

The drawing and motion recordings were made using an 
application developed for Android tablets. In the case of the 
drawing, the participants followed the pattern of an Archimedean 
spiral by moving between the lines from the inside to the outside 
of the spiral template. The drawing data was sampled at a 
maximum of 110 Hz. A sensor attached to the wrist provided 
acceleration data in three dimensions (X, Y, and Z) with a sampling 
frequency of 50 Hz to record the movement.

Recordings were anonymized before use. Their metadata, such 
as gender and age, were used only to describe the classes.

B. Preprocessing 
The drawings were plotted along X and Y coordinates and 

resized to 224x224 pixels with 24-bit depth. The average along the 
corresponding coordinate was subtracted from the acceleration 
data as standardization (remove the bias of the measurement 
device). Furthermore, a 4-order bandpass Butterworth filter was 
applied to the signals between 2 and 15 Hz. Finally, one data vector 
was created from the three coordinates, which contained the length 
of the vector pointing to the point described by the three 
coordinates at each instant of time. Two-dimensional 
representations were made, as shown in Fig. 1, such as 
MarkovTransitionField, RecurrencePlot, and 
GramianAngularField. For this data representation, the pyts 
(v0.12.0) Python package was used with default parameters [21].

These images were also resized to 224x224 pixels with 24-bit 
depth.

The feature vectors from the resulted input images were derived 
from the feature extraction part of pre-trained deep learning 
algorithms. For this, the Keras API was used with the Tensorflow
(v2.0.0) machine learning platform. Among the available models, 
Xception [22], ResNet50 [23], and MobileNet [24] were used. We 
removed the classification (Dense) layer from the end of each 
model and assigned a GlobalAveragePooling2D layer to get one-
dimensional feature vectors. Finally, the feature vectors were 
standardized using the StandardScaler function of sklearn 
(v0.0.post7).

Fig. 1. The spiral drawing and the 2D movement 
representations for an HC person (upper images) and a PD 
patient (lower images).

C. Classification and Evaluation 
To classify the feature vectors, SVM, RF, and k-NN classifiers 
were used with nested cross-validation at 10-fold numbers.

The test set (10% of the database) was separated in the outer 
cycle, independent of the model learning. On the remaining data, 
the best 100 features were selected based on ANOVA F-value
[25]. The same features were selected in the test set accordingly.

The validation set (10% of the 90% data) was separated from 
the training dataset in the internal cycle. This training set was used 
to train the classifiers, and the optimization was carried out with 
the validation set. The parameters below were probed available for 
sklearn [26] models:

 kernel (linear, rbf), C value (0.001, 0.01, 0.1, 1, 10, 100),
and gamma (10, 1, 0.1, 0.01, 0.001, 0.0001) for SVM,

 the max_depth (10, 30, 50, 70, 90, None), max_features
(auto, sqrt), and min_samples_leaf (1, 2, 4) for RF,

 the number of neighbors (2, 3, 5, 10, 20) for k-NN.

The test sets were finally estimated with the models trained with 
the best parameters (on 90% of the data). The sensitivity, 
specificity, macro f1 score, and area under the receiver operating 
characteristic (ROC) curve (AUC) values were derived from the 
estimates.

The predictions of the two different modalities (drawing and 
movement) were aggregated according to Eq. 1, where 𝑦𝑦𝑠𝑠 ∈ {0,1}
is the prediction from spiral drawing and 𝑦𝑦𝑚𝑚 ∈ {0,1} is the 
prediction from the movement data. 𝑄𝑄 ∈ {0,1} is the weight factor 
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the specificity improved by an average of 0.7%, the sensitivity
by 11.4%, and the auc value by 0.079 compared to the Spiral
metrics.

Overall, it can be seen that the image representation of the 
movement provides a better result in average value: 4.4% 
(RecurrencePlot), 0.9% (GramianAngularField), 6.0% 
(MarkovTransitionField) in macro f1 score. According to the 
best results, better results were also achieved with movement 
representations by 4.3% (RecurrencePlot), 2.1%
(GramianAngularField), and 5.4% (MarkovTransitionField)
macro f1 score. However, no significant difference between 
the two modalities can be established with the Mann-Whitney 
U statistical test. The p-values of the tests are 0.331 (Spiral vs 
RecurrencePlot), 0.791 (Spiral vs GramianAngularField), and
0.102 (Spiral vs MarkovTransitionField). This probably stems 
from the observation that the two modalities have no clear trend
according to the performance.

B. Joint examination of the modalities 
Aggregating the predictions achieved on the modalities were

based on Eq. 1. Fig. 2 shows the progression of macro f1 scores
by connecting Spiral and RecurracePlot. The weight factor or 
voting factor (𝑄𝑄) is shown on the horizontal axis. If 𝑄𝑄 is zero, 
then only the prediction of the movement. If 𝑄𝑄 = 1, then the 
prediction of the drawing applies as the two extreme points of 
the axis. The macro f1 scores between 0.5 and 0.9 are shown on 
the vertical axis.

The average macro f1 score achieved with RecurrencePlot is 
66.1%, while with Spiral it is 61.7%. The average of the 
maximum points shown in the figure was 71.4% macro f1 
score. The average of the maximum deviation (maximum point 
– modality with lower performance) was 11.7% macro f1 score,
while the average of the minimum deviation (maximum point –
modality with higher performance) was 3.2%. In two cases, no 
improvement was observed by combining the two modalities: 
Xception with k-NN classifier and Xception with SVM 
classifier. The possible reason is that the difference between the 
two modalities is high (19.6% and 13.0%). In the other cases, 
the difference between the modalities was minor (6.2% on 
average). The most considerable improvement was achieved 
with the MobileNet and SVM classifier. The macro f1 score on 

the RecurrencePlot is 74.9%. On the Spiral it is 66.3%, while 
the maximum value is 82.5%. By comparing the modalities 
with the maximum points pairwise using the Mann-Whitney U 
test, we experienced a significant improvement. The p-value is 
0.010 between the maximum and the Spiral, and 0.047 between 
the maximum and the RecurrencePlot.

Fig. 3 shows the result of aggregating Spiral and 
GramianAngularField. The markings in the figure are the same 
as those in Fig. 2. In this case, the average macro f1 score of the 
GramianAngularField is 62.6%. This macro f1 score for the
Spiral is 61.7%. The average of the maximum scores is 69.1%. 
In all cases, improvement was observed with the prediction 
aggregation. The maximum improvement is an average of 9.6% 
macro f1 score, and the minimum improvement is an average 
of 4.1%. With the present approach, the highest macro f1 score
was provided by MobileNet and RF, with 76.1%. The same case 
achieved 72.7% on GramianAngularField and 70.6% on Spiral.
ResNet50 achieved the most significant improvement (from 
both modalities) with the SVM classifier. It achieved 57.6%
macro f1 score on movement data, 57.5% on drawing data, and 
66.3% at the maximum point. We found a significant 
improvement by combining the modalities using the Mann-
Whitney U test. The p-values are 0.030 between the maximum 

Fig. 4. The aggregated macro f1 scores of Spiral and 
RecurrencePlot in proportion to the voting factor.

Fig. 2. The aggregated macro f1 scores of Spiral and 
GramianAngularField in proportion to the voting factor.

Fig. 3. The aggregated macro f1 scores of Spiral and 
MarkovTransitionField in proportion to the voting factor.
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the specificity improved by an average of 0.7%, the sensitivity
by 11.4%, and the auc value by 0.079 compared to the Spiral
metrics.

Overall, it can be seen that the image representation of the 
movement provides a better result in average value: 4.4% 
(RecurrencePlot), 0.9% (GramianAngularField), 6.0% 
(MarkovTransitionField) in macro f1 score. According to the 
best results, better results were also achieved with movement 
representations by 4.3% (RecurrencePlot), 2.1%
(GramianAngularField), and 5.4% (MarkovTransitionField)
macro f1 score. However, no significant difference between 
the two modalities can be established with the Mann-Whitney 
U statistical test. The p-values of the tests are 0.331 (Spiral vs 
RecurrencePlot), 0.791 (Spiral vs GramianAngularField), and
0.102 (Spiral vs MarkovTransitionField). This probably stems 
from the observation that the two modalities have no clear trend
according to the performance.

B. Joint examination of the modalities 
Aggregating the predictions achieved on the modalities were

based on Eq. 1. Fig. 2 shows the progression of macro f1 scores
by connecting Spiral and RecurracePlot. The weight factor or 
voting factor (𝑄𝑄) is shown on the horizontal axis. If 𝑄𝑄 is zero, 
then only the prediction of the movement. If 𝑄𝑄 = 1, then the 
prediction of the drawing applies as the two extreme points of 
the axis. The macro f1 scores between 0.5 and 0.9 are shown on 
the vertical axis.

The average macro f1 score achieved with RecurrencePlot is 
66.1%, while with Spiral it is 61.7%. The average of the 
maximum points shown in the figure was 71.4% macro f1 
score. The average of the maximum deviation (maximum point 
– modality with lower performance) was 11.7% macro f1 score,
while the average of the minimum deviation (maximum point –
modality with higher performance) was 3.2%. In two cases, no 
improvement was observed by combining the two modalities: 
Xception with k-NN classifier and Xception with SVM 
classifier. The possible reason is that the difference between the 
two modalities is high (19.6% and 13.0%). In the other cases, 
the difference between the modalities was minor (6.2% on 
average). The most considerable improvement was achieved 
with the MobileNet and SVM classifier. The macro f1 score on 

the RecurrencePlot is 74.9%. On the Spiral it is 66.3%, while 
the maximum value is 82.5%. By comparing the modalities 
with the maximum points pairwise using the Mann-Whitney U 
test, we experienced a significant improvement. The p-value is 
0.010 between the maximum and the Spiral, and 0.047 between 
the maximum and the RecurrencePlot.

Fig. 3 shows the result of aggregating Spiral and 
GramianAngularField. The markings in the figure are the same 
as those in Fig. 2. In this case, the average macro f1 score of the 
GramianAngularField is 62.6%. This macro f1 score for the
Spiral is 61.7%. The average of the maximum scores is 69.1%. 
In all cases, improvement was observed with the prediction 
aggregation. The maximum improvement is an average of 9.6% 
macro f1 score, and the minimum improvement is an average 
of 4.1%. With the present approach, the highest macro f1 score
was provided by MobileNet and RF, with 76.1%. The same case 
achieved 72.7% on GramianAngularField and 70.6% on Spiral.
ResNet50 achieved the most significant improvement (from 
both modalities) with the SVM classifier. It achieved 57.6%
macro f1 score on movement data, 57.5% on drawing data, and 
66.3% at the maximum point. We found a significant 
improvement by combining the modalities using the Mann-
Whitney U test. The p-values are 0.030 between the maximum 

Fig. 4. The aggregated macro f1 scores of Spiral and 
RecurrencePlot in proportion to the voting factor.

Fig. 2. The aggregated macro f1 scores of Spiral and 
GramianAngularField in proportion to the voting factor.

Fig. 3. The aggregated macro f1 scores of Spiral and 
MarkovTransitionField in proportion to the voting factor.

Fig. 4. The aggregated macro f1 scores of Spiral and MarkovTransitionField in 
proportion to the voting factor.

Fig. 2. The aggregated macro f1 scores of Spiral and RecurrencePlot in 
proportion to the voting factor.
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the specificity improved by an average of 0.7%, the sensitivity
by 11.4%, and the auc value by 0.079 compared to the Spiral
metrics.

Overall, it can be seen that the image representation of the 
movement provides a better result in average value: 4.4% 
(RecurrencePlot), 0.9% (GramianAngularField), 6.0% 
(MarkovTransitionField) in macro f1 score. According to the 
best results, better results were also achieved with movement 
representations by 4.3% (RecurrencePlot), 2.1%
(GramianAngularField), and 5.4% (MarkovTransitionField)
macro f1 score. However, no significant difference between 
the two modalities can be established with the Mann-Whitney 
U statistical test. The p-values of the tests are 0.331 (Spiral vs 
RecurrencePlot), 0.791 (Spiral vs GramianAngularField), and
0.102 (Spiral vs MarkovTransitionField). This probably stems 
from the observation that the two modalities have no clear trend
according to the performance.

B. Joint examination of the modalities 
Aggregating the predictions achieved on the modalities were

based on Eq. 1. Fig. 2 shows the progression of macro f1 scores
by connecting Spiral and RecurracePlot. The weight factor or 
voting factor (𝑄𝑄) is shown on the horizontal axis. If 𝑄𝑄 is zero, 
then only the prediction of the movement. If 𝑄𝑄 = 1, then the 
prediction of the drawing applies as the two extreme points of 
the axis. The macro f1 scores between 0.5 and 0.9 are shown on 
the vertical axis.

The average macro f1 score achieved with RecurrencePlot is 
66.1%, while with Spiral it is 61.7%. The average of the 
maximum points shown in the figure was 71.4% macro f1 
score. The average of the maximum deviation (maximum point 
– modality with lower performance) was 11.7% macro f1 score,
while the average of the minimum deviation (maximum point –
modality with higher performance) was 3.2%. In two cases, no 
improvement was observed by combining the two modalities: 
Xception with k-NN classifier and Xception with SVM 
classifier. The possible reason is that the difference between the 
two modalities is high (19.6% and 13.0%). In the other cases, 
the difference between the modalities was minor (6.2% on 
average). The most considerable improvement was achieved 
with the MobileNet and SVM classifier. The macro f1 score on 

the RecurrencePlot is 74.9%. On the Spiral it is 66.3%, while 
the maximum value is 82.5%. By comparing the modalities 
with the maximum points pairwise using the Mann-Whitney U 
test, we experienced a significant improvement. The p-value is 
0.010 between the maximum and the Spiral, and 0.047 between 
the maximum and the RecurrencePlot.

Fig. 3 shows the result of aggregating Spiral and 
GramianAngularField. The markings in the figure are the same 
as those in Fig. 2. In this case, the average macro f1 score of the 
GramianAngularField is 62.6%. This macro f1 score for the
Spiral is 61.7%. The average of the maximum scores is 69.1%. 
In all cases, improvement was observed with the prediction 
aggregation. The maximum improvement is an average of 9.6% 
macro f1 score, and the minimum improvement is an average 
of 4.1%. With the present approach, the highest macro f1 score
was provided by MobileNet and RF, with 76.1%. The same case 
achieved 72.7% on GramianAngularField and 70.6% on Spiral.
ResNet50 achieved the most significant improvement (from 
both modalities) with the SVM classifier. It achieved 57.6%
macro f1 score on movement data, 57.5% on drawing data, and 
66.3% at the maximum point. We found a significant 
improvement by combining the modalities using the Mann-
Whitney U test. The p-values are 0.030 between the maximum 
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Fig. 2. The aggregated macro f1 scores of Spiral and 
GramianAngularField in proportion to the voting factor.
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 Fig. 3. The aggregated macro f1 scores of Spiral and GramianAngularField in 
proportion to the voting factor.
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and the Spiral and 0.017 between the maximum and the 
GramianAngularField.

Fig. 4 shows the Spiral and the MarkovTransitionField
representation. The markings of the figure are the same as those
of the previous two figures. The average macro f1 score of the 
movement is 67.8%, that of the drawing is 61.7%, while that of 
the maximum points is 71.5%. The biggest change is 11.7% in 
macro f1 score on average, while the minimum is 1.8%. In this 
case too, we experienced cases where aggregation did not 
improve the results: Xception with k-NN classifier, Xception 
with SVM classifier and MobileNet with k-NN classifier. The 
first two showed no improvement using the RecurrencePlot 
either. The results of the two modalities show a similarly large 
difference compared to each other as with the RecurrencePlot.
In the case of MobileNet k-NN, the difference between the two 
modalities is not that large, but it does not show improvement. 
The highest result was obtained with the ResNet50 feature 
extraction and the RF classifier in the macro f1 score of 78.3%. 
It achieved 76.1% on motion and 59.8% macro f1 score on 
drawing. This was approached by the MobileNet and RB with 
a macro f1 score of 78.2%.
The same case achieved 68.4% on movement and 70.6% on 
drawing. With the Mann-Whitney U test, we found a 
significant improvement between the maximum and Spiral, but 
not between the maximums and the GramianAngularField. The 
p-value is 0.009 between maximums and drawing results and 
0.102 between maximums and movement results.

TABLE II summarises the best results of the single and joint 
modalities. The single modalities are marked with the names 
from TABLE I. The joint results are marked with the name of 
the representation approaches. The descriptor metrics are 
analogous to TABLE I. The movement representations 
appeared superior to the spiral drawing from the single use of 
the modalities. Utilizing joint predictions, improvements were 
achieved. The top performance was received with 
RecurrencePlot (sens: 75.6%, spec: 89.4%, macro f1 score: 
82.5%).

TABLE II
SUMMARY TABLE OF THE BEST RESULTS OBTAINED FROM 

THE SINGLE AND JOINT MODALITIES.
case sens spec bacc f1 auc

Si
ng

le

Spiral 71.1% 70.2% 70.7% 70.6% 0.757
RecurrencePlot 71.1% 78.7% 75.0% 74.9% 0.834

GramianAngularField 80.0% 66.0% 72.8% 72.7% 0.768
MarkovTransitionField 77.8% 74.5% 76.1% 76.1% 0.802

Jo
in

t RecurrencePlot 75.6% 89.4% 82.6% 82.5% 0.825
GramianAngularField 77.8% 74.5% 76.1% 76.1% 0.761

MarkovTransitionField 80.0% 76.6% 78.3% 78.3% 0.783

V. DISCUSSION

Examining the modalities separately shows that the 
representations created from movement performed better than 
the drawing when examining the best results per modality 
(TABLE II). However, looking at the single results as a whole, 
we did not find any significant differences using the Mann-
Whitney U test. This can be influenced by the methodology for 
generating the representations and the nature of the feature 

extraction models. It shows that the different data types 
generally have the same detection performance with these 
vision-based examinations on the applied classifiers. This may 
be a consideration when the physician wants to use a minimal 
tool in the shortest possible time. Nevertheless, it can be seen 
from TABLE II that a few percent better results can be achieved 
by selecting the best-performing models with motion data.

By using the modalities together, we experienced an 
improvement in all paired cases. This improvement proved 
significant in the RecurrencePlot and the 
GramianAngularField, whether we compared the best values to 
the drawing or the movement. In the case of the 
MarkovTransitionField, the improvement only reached a 
significant result compared to the drawing. This suggests that 
the decision is more confident and accurate when multiple 
sensors are used for the same task (even with the same 
processing scheme). However, by observing the voting factor, 
different optimal points may result. This implies that the 
modalities may play a different role in the final decision.

The present results provide insight into how the same task can 
provide better recognition by examining several sensors. There 
are also studies in the literature where, for example, video 
cameras and motion sensors help to recognize PD-related 
episodes. There is  a multi-sensory examination of the same task 
similarly.

The limitation of the research is the heterogeneous database. 
A database with more elements may be necessary for filtering 
according to various factors (medication, brain stimulation). 
Another direction of development is sex equality. Although 
research [29] shows that the drawing of the Archimedean spiral 
does not differ significantly between men and women, this 
requires further support. Studies [30] are underway to 
investigate the separability of the sexes, where the authors have 
already shown that there is a significant difference when 
copying shapes. However, most studies have looked at 
participants between 18 and 30 years old and have used manual 
features that have not been linked to Parkinson's disease. 
However, this raises the need for further investigation.

Finally, it should be mentioned that the present results are 
based on image data processing with out-of-domain feature 
extraction algorithms. These play a role in avoiding 
overlearning by extracting a more general set of features. 
Presumably, fine-tuning the extractor models on the database
specific to the task can increase the performance of the 
classifiers. However, a database with few elements can also 
cause overlearning.

VI. SUMMARY AND CONCLUSION

PD is becoming one of the most common neurological 
diseases of our time. The importance of research related to it is 
that there is no cure according to current clinical knowledge.

Current clinical knowledge is firmly based on motor 
symptoms, which are typically limb tremors at rest, 
bradykinesia, and muscle stiffness (rigidity). Recognizing them 
in the early stages is also not clear since the appearance of the 
symptoms and the lateral involvement may differ from person 
to person.

The support of artificial intelligence (including machine 
learning algorithms) can be desirable in the diagnostic 
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our present research, in which the participants draw a spiral 
pattern. During the process, a sensor attached to the wrist 
records the acceleration data. We examine these two modalities 
separately and together.

III. METHODOLOGY

A. Database 
The database contains drawing and drawing-related sensor data 

of 45 PD patients and 47 HC individuals. All participants were 
informed beforehand about the research details and gave their 
consent by signing a consent form. Participants volunteered to 
participate in the research and were informed that their 
participation could be withdrawn without explanation.

There are 37 men and eight women in the PD class, whose 
average age is 66.0 years with a standard deviation of 14.2 years. 
Twenty-one people were recorded with drug onset, 18 people with 
Deep Brain Stimulation (DBS) switched on (10 people belonged 
to both categories). The severity score of PD patients was defined
based on the Unified Parkinson's Disease Rating Scale (UPDRS)
scale. The resting tremor (3.17), postural tremor (3.15), rigidity 
(3.3), and finger tapping (3.4) tasks were evaluated by the 
neurologist. The average severity was 1.10, where 0 means a 
healthy (normal) stage, and 4 means the severe stage. Severity 
scores for the right hand are presented since data from the right 
hand were examined.

There were 20 men and 27 women in the HC class, with an 
average age of 56.7 years and a standard deviation of 15.2.  
According to their admission, the members of the HC class did not 
have Parkinson's disease or any other disease that affects their 
movement.

The drawing and motion recordings were made using an 
application developed for Android tablets. In the case of the 
drawing, the participants followed the pattern of an Archimedean 
spiral by moving between the lines from the inside to the outside 
of the spiral template. The drawing data was sampled at a 
maximum of 110 Hz. A sensor attached to the wrist provided 
acceleration data in three dimensions (X, Y, and Z) with a sampling 
frequency of 50 Hz to record the movement.

Recordings were anonymized before use. Their metadata, such 
as gender and age, were used only to describe the classes.

B. Preprocessing 
The drawings were plotted along X and Y coordinates and 

resized to 224x224 pixels with 24-bit depth. The average along the 
corresponding coordinate was subtracted from the acceleration 
data as standardization (remove the bias of the measurement 
device). Furthermore, a 4-order bandpass Butterworth filter was 
applied to the signals between 2 and 15 Hz. Finally, one data vector 
was created from the three coordinates, which contained the length 
of the vector pointing to the point described by the three 
coordinates at each instant of time. Two-dimensional 
representations were made, as shown in Fig. 1, such as 
MarkovTransitionField, RecurrencePlot, and 
GramianAngularField. For this data representation, the pyts 
(v0.12.0) Python package was used with default parameters [21].

These images were also resized to 224x224 pixels with 24-bit 
depth.

The feature vectors from the resulted input images were derived 
from the feature extraction part of pre-trained deep learning 
algorithms. For this, the Keras API was used with the Tensorflow
(v2.0.0) machine learning platform. Among the available models, 
Xception [22], ResNet50 [23], and MobileNet [24] were used. We 
removed the classification (Dense) layer from the end of each 
model and assigned a GlobalAveragePooling2D layer to get one-
dimensional feature vectors. Finally, the feature vectors were 
standardized using the StandardScaler function of sklearn 
(v0.0.post7).

Fig. 1. The spiral drawing and the 2D movement 
representations for an HC person (upper images) and a PD 
patient (lower images).

C. Classification and Evaluation 
To classify the feature vectors, SVM, RF, and k-NN classifiers 
were used with nested cross-validation at 10-fold numbers.

The test set (10% of the database) was separated in the outer 
cycle, independent of the model learning. On the remaining data, 
the best 100 features were selected based on ANOVA F-value
[25]. The same features were selected in the test set accordingly.

The validation set (10% of the 90% data) was separated from 
the training dataset in the internal cycle. This training set was used 
to train the classifiers, and the optimization was carried out with 
the validation set. The parameters below were probed available for 
sklearn [26] models:

 kernel (linear, rbf), C value (0.001, 0.01, 0.1, 1, 10, 100),
and gamma (10, 1, 0.1, 0.01, 0.001, 0.0001) for SVM,

 the max_depth (10, 30, 50, 70, 90, None), max_features
(auto, sqrt), and min_samples_leaf (1, 2, 4) for RF,

 the number of neighbors (2, 3, 5, 10, 20) for k-NN.

The test sets were finally estimated with the models trained with 
the best parameters (on 90% of the data). The sensitivity, 
specificity, macro f1 score, and area under the receiver operating 
characteristic (ROC) curve (AUC) values were derived from the 
estimates.

The predictions of the two different modalities (drawing and 
movement) were aggregated according to Eq. 1, where 𝑦𝑦𝑠𝑠 ∈ {0,1}
is the prediction from spiral drawing and 𝑦𝑦𝑚𝑚 ∈ {0,1} is the 
prediction from the movement data. 𝑄𝑄 ∈ {0,1} is the weight factor 
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the specificity improved by an average of 0.7%, the sensitivity
by 11.4%, and the auc value by 0.079 compared to the Spiral
metrics.

Overall, it can be seen that the image representation of the 
movement provides a better result in average value: 4.4% 
(RecurrencePlot), 0.9% (GramianAngularField), 6.0% 
(MarkovTransitionField) in macro f1 score. According to the 
best results, better results were also achieved with movement 
representations by 4.3% (RecurrencePlot), 2.1%
(GramianAngularField), and 5.4% (MarkovTransitionField)
macro f1 score. However, no significant difference between 
the two modalities can be established with the Mann-Whitney 
U statistical test. The p-values of the tests are 0.331 (Spiral vs 
RecurrencePlot), 0.791 (Spiral vs GramianAngularField), and
0.102 (Spiral vs MarkovTransitionField). This probably stems 
from the observation that the two modalities have no clear trend
according to the performance.

B. Joint examination of the modalities 
Aggregating the predictions achieved on the modalities were

based on Eq. 1. Fig. 2 shows the progression of macro f1 scores
by connecting Spiral and RecurracePlot. The weight factor or 
voting factor (𝑄𝑄) is shown on the horizontal axis. If 𝑄𝑄 is zero, 
then only the prediction of the movement. If 𝑄𝑄 = 1, then the 
prediction of the drawing applies as the two extreme points of 
the axis. The macro f1 scores between 0.5 and 0.9 are shown on 
the vertical axis.

The average macro f1 score achieved with RecurrencePlot is 
66.1%, while with Spiral it is 61.7%. The average of the 
maximum points shown in the figure was 71.4% macro f1 
score. The average of the maximum deviation (maximum point 
– modality with lower performance) was 11.7% macro f1 score,
while the average of the minimum deviation (maximum point –
modality with higher performance) was 3.2%. In two cases, no 
improvement was observed by combining the two modalities: 
Xception with k-NN classifier and Xception with SVM 
classifier. The possible reason is that the difference between the 
two modalities is high (19.6% and 13.0%). In the other cases, 
the difference between the modalities was minor (6.2% on 
average). The most considerable improvement was achieved 
with the MobileNet and SVM classifier. The macro f1 score on 

the RecurrencePlot is 74.9%. On the Spiral it is 66.3%, while 
the maximum value is 82.5%. By comparing the modalities 
with the maximum points pairwise using the Mann-Whitney U 
test, we experienced a significant improvement. The p-value is 
0.010 between the maximum and the Spiral, and 0.047 between 
the maximum and the RecurrencePlot.

Fig. 3 shows the result of aggregating Spiral and 
GramianAngularField. The markings in the figure are the same 
as those in Fig. 2. In this case, the average macro f1 score of the 
GramianAngularField is 62.6%. This macro f1 score for the
Spiral is 61.7%. The average of the maximum scores is 69.1%. 
In all cases, improvement was observed with the prediction 
aggregation. The maximum improvement is an average of 9.6% 
macro f1 score, and the minimum improvement is an average 
of 4.1%. With the present approach, the highest macro f1 score
was provided by MobileNet and RF, with 76.1%. The same case 
achieved 72.7% on GramianAngularField and 70.6% on Spiral.
ResNet50 achieved the most significant improvement (from 
both modalities) with the SVM classifier. It achieved 57.6%
macro f1 score on movement data, 57.5% on drawing data, and 
66.3% at the maximum point. We found a significant 
improvement by combining the modalities using the Mann-
Whitney U test. The p-values are 0.030 between the maximum 

Fig. 4. The aggregated macro f1 scores of Spiral and 
RecurrencePlot in proportion to the voting factor.

Fig. 2. The aggregated macro f1 scores of Spiral and 
GramianAngularField in proportion to the voting factor.

Fig. 3. The aggregated macro f1 scores of Spiral and 
MarkovTransitionField in proportion to the voting factor.
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and the Spiral and 0.017 between the maximum and the 
GramianAngularField.

Fig. 4 shows the Spiral and the MarkovTransitionField
representation. The markings of the figure are the same as those
of the previous two figures. The average macro f1 score of the 
movement is 67.8%, that of the drawing is 61.7%, while that of 
the maximum points is 71.5%. The biggest change is 11.7% in 
macro f1 score on average, while the minimum is 1.8%. In this 
case too, we experienced cases where aggregation did not 
improve the results: Xception with k-NN classifier, Xception 
with SVM classifier and MobileNet with k-NN classifier. The 
first two showed no improvement using the RecurrencePlot 
either. The results of the two modalities show a similarly large 
difference compared to each other as with the RecurrencePlot.
In the case of MobileNet k-NN, the difference between the two 
modalities is not that large, but it does not show improvement. 
The highest result was obtained with the ResNet50 feature 
extraction and the RF classifier in the macro f1 score of 78.3%. 
It achieved 76.1% on motion and 59.8% macro f1 score on 
drawing. This was approached by the MobileNet and RB with 
a macro f1 score of 78.2%.
The same case achieved 68.4% on movement and 70.6% on 
drawing. With the Mann-Whitney U test, we found a 
significant improvement between the maximum and Spiral, but 
not between the maximums and the GramianAngularField. The 
p-value is 0.009 between maximums and drawing results and 
0.102 between maximums and movement results.

TABLE II summarises the best results of the single and joint 
modalities. The single modalities are marked with the names 
from TABLE I. The joint results are marked with the name of 
the representation approaches. The descriptor metrics are 
analogous to TABLE I. The movement representations 
appeared superior to the spiral drawing from the single use of 
the modalities. Utilizing joint predictions, improvements were 
achieved. The top performance was received with 
RecurrencePlot (sens: 75.6%, spec: 89.4%, macro f1 score: 
82.5%).

TABLE II
SUMMARY TABLE OF THE BEST RESULTS OBTAINED FROM 

THE SINGLE AND JOINT MODALITIES.
case sens spec bacc f1 auc

Si
ng

le

Spiral 71.1% 70.2% 70.7% 70.6% 0.757
RecurrencePlot 71.1% 78.7% 75.0% 74.9% 0.834

GramianAngularField 80.0% 66.0% 72.8% 72.7% 0.768
MarkovTransitionField 77.8% 74.5% 76.1% 76.1% 0.802

Jo
in

t RecurrencePlot 75.6% 89.4% 82.6% 82.5% 0.825
GramianAngularField 77.8% 74.5% 76.1% 76.1% 0.761

MarkovTransitionField 80.0% 76.6% 78.3% 78.3% 0.783

V. DISCUSSION

Examining the modalities separately shows that the 
representations created from movement performed better than 
the drawing when examining the best results per modality 
(TABLE II). However, looking at the single results as a whole, 
we did not find any significant differences using the Mann-
Whitney U test. This can be influenced by the methodology for 
generating the representations and the nature of the feature 

extraction models. It shows that the different data types 
generally have the same detection performance with these 
vision-based examinations on the applied classifiers. This may 
be a consideration when the physician wants to use a minimal 
tool in the shortest possible time. Nevertheless, it can be seen 
from TABLE II that a few percent better results can be achieved 
by selecting the best-performing models with motion data.

By using the modalities together, we experienced an 
improvement in all paired cases. This improvement proved 
significant in the RecurrencePlot and the 
GramianAngularField, whether we compared the best values to 
the drawing or the movement. In the case of the 
MarkovTransitionField, the improvement only reached a 
significant result compared to the drawing. This suggests that 
the decision is more confident and accurate when multiple 
sensors are used for the same task (even with the same 
processing scheme). However, by observing the voting factor, 
different optimal points may result. This implies that the 
modalities may play a different role in the final decision.

The present results provide insight into how the same task can 
provide better recognition by examining several sensors. There 
are also studies in the literature where, for example, video 
cameras and motion sensors help to recognize PD-related 
episodes. There is  a multi-sensory examination of the same task 
similarly.

The limitation of the research is the heterogeneous database. 
A database with more elements may be necessary for filtering 
according to various factors (medication, brain stimulation). 
Another direction of development is sex equality. Although 
research [29] shows that the drawing of the Archimedean spiral 
does not differ significantly between men and women, this 
requires further support. Studies [30] are underway to 
investigate the separability of the sexes, where the authors have 
already shown that there is a significant difference when 
copying shapes. However, most studies have looked at 
participants between 18 and 30 years old and have used manual 
features that have not been linked to Parkinson's disease. 
However, this raises the need for further investigation.

Finally, it should be mentioned that the present results are 
based on image data processing with out-of-domain feature 
extraction algorithms. These play a role in avoiding 
overlearning by extracting a more general set of features. 
Presumably, fine-tuning the extractor models on the database
specific to the task can increase the performance of the 
classifiers. However, a database with few elements can also 
cause overlearning.

VI. SUMMARY AND CONCLUSION

PD is becoming one of the most common neurological 
diseases of our time. The importance of research related to it is 
that there is no cure according to current clinical knowledge.

Current clinical knowledge is firmly based on motor 
symptoms, which are typically limb tremors at rest, 
bradykinesia, and muscle stiffness (rigidity). Recognizing them 
in the early stages is also not clear since the appearance of the 
symptoms and the lateral involvement may differ from person 
to person.

The support of artificial intelligence (including machine 
learning algorithms) can be desirable in the diagnostic 
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and the Spiral and 0.017 between the maximum and the 
GramianAngularField.

Fig. 4 shows the Spiral and the MarkovTransitionField
representation. The markings of the figure are the same as those
of the previous two figures. The average macro f1 score of the 
movement is 67.8%, that of the drawing is 61.7%, while that of 
the maximum points is 71.5%. The biggest change is 11.7% in 
macro f1 score on average, while the minimum is 1.8%. In this 
case too, we experienced cases where aggregation did not 
improve the results: Xception with k-NN classifier, Xception 
with SVM classifier and MobileNet with k-NN classifier. The 
first two showed no improvement using the RecurrencePlot 
either. The results of the two modalities show a similarly large 
difference compared to each other as with the RecurrencePlot.
In the case of MobileNet k-NN, the difference between the two 
modalities is not that large, but it does not show improvement. 
The highest result was obtained with the ResNet50 feature 
extraction and the RF classifier in the macro f1 score of 78.3%. 
It achieved 76.1% on motion and 59.8% macro f1 score on 
drawing. This was approached by the MobileNet and RB with 
a macro f1 score of 78.2%.
The same case achieved 68.4% on movement and 70.6% on 
drawing. With the Mann-Whitney U test, we found a 
significant improvement between the maximum and Spiral, but 
not between the maximums and the GramianAngularField. The 
p-value is 0.009 between maximums and drawing results and 
0.102 between maximums and movement results.

TABLE II summarises the best results of the single and joint 
modalities. The single modalities are marked with the names 
from TABLE I. The joint results are marked with the name of 
the representation approaches. The descriptor metrics are 
analogous to TABLE I. The movement representations 
appeared superior to the spiral drawing from the single use of 
the modalities. Utilizing joint predictions, improvements were 
achieved. The top performance was received with 
RecurrencePlot (sens: 75.6%, spec: 89.4%, macro f1 score: 
82.5%).

TABLE II
SUMMARY TABLE OF THE BEST RESULTS OBTAINED FROM 

THE SINGLE AND JOINT MODALITIES.
case sens spec bacc f1 auc

Si
ng

le

Spiral 71.1% 70.2% 70.7% 70.6% 0.757
RecurrencePlot 71.1% 78.7% 75.0% 74.9% 0.834

GramianAngularField 80.0% 66.0% 72.8% 72.7% 0.768
MarkovTransitionField 77.8% 74.5% 76.1% 76.1% 0.802

Jo
in

t RecurrencePlot 75.6% 89.4% 82.6% 82.5% 0.825
GramianAngularField 77.8% 74.5% 76.1% 76.1% 0.761

MarkovTransitionField 80.0% 76.6% 78.3% 78.3% 0.783

V. DISCUSSION

Examining the modalities separately shows that the 
representations created from movement performed better than 
the drawing when examining the best results per modality 
(TABLE II). However, looking at the single results as a whole, 
we did not find any significant differences using the Mann-
Whitney U test. This can be influenced by the methodology for 
generating the representations and the nature of the feature 

extraction models. It shows that the different data types 
generally have the same detection performance with these 
vision-based examinations on the applied classifiers. This may 
be a consideration when the physician wants to use a minimal 
tool in the shortest possible time. Nevertheless, it can be seen 
from TABLE II that a few percent better results can be achieved 
by selecting the best-performing models with motion data.

By using the modalities together, we experienced an 
improvement in all paired cases. This improvement proved 
significant in the RecurrencePlot and the 
GramianAngularField, whether we compared the best values to 
the drawing or the movement. In the case of the 
MarkovTransitionField, the improvement only reached a 
significant result compared to the drawing. This suggests that 
the decision is more confident and accurate when multiple 
sensors are used for the same task (even with the same 
processing scheme). However, by observing the voting factor, 
different optimal points may result. This implies that the 
modalities may play a different role in the final decision.

The present results provide insight into how the same task can 
provide better recognition by examining several sensors. There 
are also studies in the literature where, for example, video 
cameras and motion sensors help to recognize PD-related 
episodes. There is  a multi-sensory examination of the same task 
similarly.

The limitation of the research is the heterogeneous database. 
A database with more elements may be necessary for filtering 
according to various factors (medication, brain stimulation). 
Another direction of development is sex equality. Although 
research [29] shows that the drawing of the Archimedean spiral 
does not differ significantly between men and women, this 
requires further support. Studies [30] are underway to 
investigate the separability of the sexes, where the authors have 
already shown that there is a significant difference when 
copying shapes. However, most studies have looked at 
participants between 18 and 30 years old and have used manual 
features that have not been linked to Parkinson's disease. 
However, this raises the need for further investigation.

Finally, it should be mentioned that the present results are 
based on image data processing with out-of-domain feature 
extraction algorithms. These play a role in avoiding 
overlearning by extracting a more general set of features. 
Presumably, fine-tuning the extractor models on the database
specific to the task can increase the performance of the 
classifiers. However, a database with few elements can also 
cause overlearning.

VI. SUMMARY AND CONCLUSION

PD is becoming one of the most common neurological 
diseases of our time. The importance of research related to it is 
that there is no cure according to current clinical knowledge.

Current clinical knowledge is firmly based on motor 
symptoms, which are typically limb tremors at rest, 
bradykinesia, and muscle stiffness (rigidity). Recognizing them 
in the early stages is also not clear since the appearance of the 
symptoms and the lateral involvement may differ from person 
to person.

The support of artificial intelligence (including machine 
learning algorithms) can be desirable in the diagnostic 
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and the Spiral and 0.017 between the maximum and the 
GramianAngularField.

Fig. 4 shows the Spiral and the MarkovTransitionField
representation. The markings of the figure are the same as those
of the previous two figures. The average macro f1 score of the 
movement is 67.8%, that of the drawing is 61.7%, while that of 
the maximum points is 71.5%. The biggest change is 11.7% in 
macro f1 score on average, while the minimum is 1.8%. In this 
case too, we experienced cases where aggregation did not 
improve the results: Xception with k-NN classifier, Xception 
with SVM classifier and MobileNet with k-NN classifier. The 
first two showed no improvement using the RecurrencePlot 
either. The results of the two modalities show a similarly large 
difference compared to each other as with the RecurrencePlot.
In the case of MobileNet k-NN, the difference between the two 
modalities is not that large, but it does not show improvement. 
The highest result was obtained with the ResNet50 feature 
extraction and the RF classifier in the macro f1 score of 78.3%. 
It achieved 76.1% on motion and 59.8% macro f1 score on 
drawing. This was approached by the MobileNet and RB with 
a macro f1 score of 78.2%.
The same case achieved 68.4% on movement and 70.6% on 
drawing. With the Mann-Whitney U test, we found a 
significant improvement between the maximum and Spiral, but 
not between the maximums and the GramianAngularField. The 
p-value is 0.009 between maximums and drawing results and 
0.102 between maximums and movement results.

TABLE II summarises the best results of the single and joint 
modalities. The single modalities are marked with the names 
from TABLE I. The joint results are marked with the name of 
the representation approaches. The descriptor metrics are 
analogous to TABLE I. The movement representations 
appeared superior to the spiral drawing from the single use of 
the modalities. Utilizing joint predictions, improvements were 
achieved. The top performance was received with 
RecurrencePlot (sens: 75.6%, spec: 89.4%, macro f1 score: 
82.5%).

TABLE II
SUMMARY TABLE OF THE BEST RESULTS OBTAINED FROM 

THE SINGLE AND JOINT MODALITIES.
case sens spec bacc f1 auc

Si
ng

le

Spiral 71.1% 70.2% 70.7% 70.6% 0.757
RecurrencePlot 71.1% 78.7% 75.0% 74.9% 0.834

GramianAngularField 80.0% 66.0% 72.8% 72.7% 0.768
MarkovTransitionField 77.8% 74.5% 76.1% 76.1% 0.802

Jo
in

t RecurrencePlot 75.6% 89.4% 82.6% 82.5% 0.825
GramianAngularField 77.8% 74.5% 76.1% 76.1% 0.761

MarkovTransitionField 80.0% 76.6% 78.3% 78.3% 0.783

V. DISCUSSION

Examining the modalities separately shows that the 
representations created from movement performed better than 
the drawing when examining the best results per modality 
(TABLE II). However, looking at the single results as a whole, 
we did not find any significant differences using the Mann-
Whitney U test. This can be influenced by the methodology for 
generating the representations and the nature of the feature 

extraction models. It shows that the different data types 
generally have the same detection performance with these 
vision-based examinations on the applied classifiers. This may 
be a consideration when the physician wants to use a minimal 
tool in the shortest possible time. Nevertheless, it can be seen 
from TABLE II that a few percent better results can be achieved 
by selecting the best-performing models with motion data.

By using the modalities together, we experienced an 
improvement in all paired cases. This improvement proved 
significant in the RecurrencePlot and the 
GramianAngularField, whether we compared the best values to 
the drawing or the movement. In the case of the 
MarkovTransitionField, the improvement only reached a 
significant result compared to the drawing. This suggests that 
the decision is more confident and accurate when multiple 
sensors are used for the same task (even with the same 
processing scheme). However, by observing the voting factor, 
different optimal points may result. This implies that the 
modalities may play a different role in the final decision.

The present results provide insight into how the same task can 
provide better recognition by examining several sensors. There 
are also studies in the literature where, for example, video 
cameras and motion sensors help to recognize PD-related 
episodes. There is  a multi-sensory examination of the same task 
similarly.

The limitation of the research is the heterogeneous database. 
A database with more elements may be necessary for filtering 
according to various factors (medication, brain stimulation). 
Another direction of development is sex equality. Although 
research [29] shows that the drawing of the Archimedean spiral 
does not differ significantly between men and women, this 
requires further support. Studies [30] are underway to 
investigate the separability of the sexes, where the authors have 
already shown that there is a significant difference when 
copying shapes. However, most studies have looked at 
participants between 18 and 30 years old and have used manual 
features that have not been linked to Parkinson's disease. 
However, this raises the need for further investigation.

Finally, it should be mentioned that the present results are 
based on image data processing with out-of-domain feature 
extraction algorithms. These play a role in avoiding 
overlearning by extracting a more general set of features. 
Presumably, fine-tuning the extractor models on the database
specific to the task can increase the performance of the 
classifiers. However, a database with few elements can also 
cause overlearning.

VI. SUMMARY AND CONCLUSION

PD is becoming one of the most common neurological 
diseases of our time. The importance of research related to it is 
that there is no cure according to current clinical knowledge.

Current clinical knowledge is firmly based on motor 
symptoms, which are typically limb tremors at rest, 
bradykinesia, and muscle stiffness (rigidity). Recognizing them 
in the early stages is also not clear since the appearance of the 
symptoms and the lateral involvement may differ from person 
to person.

The support of artificial intelligence (including machine 
learning algorithms) can be desirable in the diagnostic 

TABLE II
Summary table of the best results obtained from

the single and joint modalities.
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and the Spiral and 0.017 between the maximum and the 
GramianAngularField.

Fig. 4 shows the Spiral and the MarkovTransitionField
representation. The markings of the figure are the same as those
of the previous two figures. The average macro f1 score of the 
movement is 67.8%, that of the drawing is 61.7%, while that of 
the maximum points is 71.5%. The biggest change is 11.7% in 
macro f1 score on average, while the minimum is 1.8%. In this 
case too, we experienced cases where aggregation did not 
improve the results: Xception with k-NN classifier, Xception 
with SVM classifier and MobileNet with k-NN classifier. The 
first two showed no improvement using the RecurrencePlot 
either. The results of the two modalities show a similarly large 
difference compared to each other as with the RecurrencePlot.
In the case of MobileNet k-NN, the difference between the two 
modalities is not that large, but it does not show improvement. 
The highest result was obtained with the ResNet50 feature 
extraction and the RF classifier in the macro f1 score of 78.3%. 
It achieved 76.1% on motion and 59.8% macro f1 score on 
drawing. This was approached by the MobileNet and RB with 
a macro f1 score of 78.2%.
The same case achieved 68.4% on movement and 70.6% on 
drawing. With the Mann-Whitney U test, we found a 
significant improvement between the maximum and Spiral, but 
not between the maximums and the GramianAngularField. The 
p-value is 0.009 between maximums and drawing results and 
0.102 between maximums and movement results.

TABLE II summarises the best results of the single and joint 
modalities. The single modalities are marked with the names 
from TABLE I. The joint results are marked with the name of 
the representation approaches. The descriptor metrics are 
analogous to TABLE I. The movement representations 
appeared superior to the spiral drawing from the single use of 
the modalities. Utilizing joint predictions, improvements were 
achieved. The top performance was received with 
RecurrencePlot (sens: 75.6%, spec: 89.4%, macro f1 score: 
82.5%).

TABLE II
SUMMARY TABLE OF THE BEST RESULTS OBTAINED FROM 

THE SINGLE AND JOINT MODALITIES.
case sens spec bacc f1 auc

Si
ng

le

Spiral 71.1% 70.2% 70.7% 70.6% 0.757
RecurrencePlot 71.1% 78.7% 75.0% 74.9% 0.834

GramianAngularField 80.0% 66.0% 72.8% 72.7% 0.768
MarkovTransitionField 77.8% 74.5% 76.1% 76.1% 0.802

Jo
in

t RecurrencePlot 75.6% 89.4% 82.6% 82.5% 0.825
GramianAngularField 77.8% 74.5% 76.1% 76.1% 0.761

MarkovTransitionField 80.0% 76.6% 78.3% 78.3% 0.783

V. DISCUSSION

Examining the modalities separately shows that the 
representations created from movement performed better than 
the drawing when examining the best results per modality 
(TABLE II). However, looking at the single results as a whole, 
we did not find any significant differences using the Mann-
Whitney U test. This can be influenced by the methodology for 
generating the representations and the nature of the feature 

extraction models. It shows that the different data types 
generally have the same detection performance with these 
vision-based examinations on the applied classifiers. This may 
be a consideration when the physician wants to use a minimal 
tool in the shortest possible time. Nevertheless, it can be seen 
from TABLE II that a few percent better results can be achieved 
by selecting the best-performing models with motion data.

By using the modalities together, we experienced an 
improvement in all paired cases. This improvement proved 
significant in the RecurrencePlot and the 
GramianAngularField, whether we compared the best values to 
the drawing or the movement. In the case of the 
MarkovTransitionField, the improvement only reached a 
significant result compared to the drawing. This suggests that 
the decision is more confident and accurate when multiple 
sensors are used for the same task (even with the same 
processing scheme). However, by observing the voting factor, 
different optimal points may result. This implies that the 
modalities may play a different role in the final decision.

The present results provide insight into how the same task can 
provide better recognition by examining several sensors. There 
are also studies in the literature where, for example, video 
cameras and motion sensors help to recognize PD-related 
episodes. There is  a multi-sensory examination of the same task 
similarly.

The limitation of the research is the heterogeneous database. 
A database with more elements may be necessary for filtering 
according to various factors (medication, brain stimulation). 
Another direction of development is sex equality. Although 
research [29] shows that the drawing of the Archimedean spiral 
does not differ significantly between men and women, this 
requires further support. Studies [30] are underway to 
investigate the separability of the sexes, where the authors have 
already shown that there is a significant difference when 
copying shapes. However, most studies have looked at 
participants between 18 and 30 years old and have used manual 
features that have not been linked to Parkinson's disease. 
However, this raises the need for further investigation.

Finally, it should be mentioned that the present results are 
based on image data processing with out-of-domain feature 
extraction algorithms. These play a role in avoiding 
overlearning by extracting a more general set of features. 
Presumably, fine-tuning the extractor models on the database
specific to the task can increase the performance of the 
classifiers. However, a database with few elements can also 
cause overlearning.

VI. SUMMARY AND CONCLUSION

PD is becoming one of the most common neurological 
diseases of our time. The importance of research related to it is 
that there is no cure according to current clinical knowledge.

Current clinical knowledge is firmly based on motor 
symptoms, which are typically limb tremors at rest, 
bradykinesia, and muscle stiffness (rigidity). Recognizing them 
in the early stages is also not clear since the appearance of the 
symptoms and the lateral involvement may differ from person 
to person.

The support of artificial intelligence (including machine 
learning algorithms) can be desirable in the diagnostic 
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procedure since it can effectively recognize even minor 
deviations and can create a more objective evaluation.

Previously, manually extracted features were used to analyze
movements and drawings, which proved effective for learning 
the nature of the disease. On the other hand, deep learning 
algorithms allow the model to learn the characteristics that 
support automatic feature extraction. From this point of view, 
MobileNet, Xception, and ResNet50 were used, and they were 
previously trained on an extensive database that enabled cross-
sectional recognition. We used networks trained in this way to 
recognize the disease, keeping the original weights.

In the literature research, it can be seen that several modalities 
are available to recognize PD, such as speech, drawing, or 
movement. These can achieve significant recognition 
performance by themselves. Comparing them is difficult 
because each modality goes through a different processing 
process, and there are also differences in the databases. In 
addition, the joint application of several modalities seems to 
improve PD recognition.

In our work, we examined the spiral drawings in connection 
with diagnosing the disease through two types of modalities. In 
the spiral drawing task, the X and Y coordinates of the actual 
drawing were recorded for each person, as well as the 
acceleration data along the X, Y, and Z axes with a wrist-
mounted sensor.

Image representations were created from the data: 1) 
production of the actual drawing from X, and Y drawing data, 
2) image representations from the resulting vector of movement 
data (MarkovTransitionField, RecurrencePlot,
GramianAngularField). From these input images, we 
determined features with the pre-trained models, and then we 
trained classification algorithms on the features using nested 
cross-validation.

Based on the single modality results, image representations of 
the movement data reached at least a similar performance as 
the drawing itself (no significant difference). This result 
suggests that using only the spiral drawing alone or with the 
same processing of only the motion data from the drawing, PD. 
can be detected with the same efficiency.

Furthermore, the joint approach improved the recognition 
performance of the PD (significance difference), highlighting 
the possibility of measuring the same task with various 
sensors. The result shows that even though the task the 
participant performs is the same, improving detection with 
different sensors is still possible.

Further investigation is required regarding the database 
composition.
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and the Spiral and 0.017 between the maximum and the 
GramianAngularField.

Fig. 4 shows the Spiral and the MarkovTransitionField
representation. The markings of the figure are the same as those
of the previous two figures. The average macro f1 score of the 
movement is 67.8%, that of the drawing is 61.7%, while that of 
the maximum points is 71.5%. The biggest change is 11.7% in 
macro f1 score on average, while the minimum is 1.8%. In this 
case too, we experienced cases where aggregation did not 
improve the results: Xception with k-NN classifier, Xception 
with SVM classifier and MobileNet with k-NN classifier. The 
first two showed no improvement using the RecurrencePlot 
either. The results of the two modalities show a similarly large 
difference compared to each other as with the RecurrencePlot.
In the case of MobileNet k-NN, the difference between the two 
modalities is not that large, but it does not show improvement. 
The highest result was obtained with the ResNet50 feature 
extraction and the RF classifier in the macro f1 score of 78.3%. 
It achieved 76.1% on motion and 59.8% macro f1 score on 
drawing. This was approached by the MobileNet and RB with 
a macro f1 score of 78.2%.
The same case achieved 68.4% on movement and 70.6% on 
drawing. With the Mann-Whitney U test, we found a 
significant improvement between the maximum and Spiral, but 
not between the maximums and the GramianAngularField. The 
p-value is 0.009 between maximums and drawing results and 
0.102 between maximums and movement results.

TABLE II summarises the best results of the single and joint 
modalities. The single modalities are marked with the names 
from TABLE I. The joint results are marked with the name of 
the representation approaches. The descriptor metrics are 
analogous to TABLE I. The movement representations 
appeared superior to the spiral drawing from the single use of 
the modalities. Utilizing joint predictions, improvements were 
achieved. The top performance was received with 
RecurrencePlot (sens: 75.6%, spec: 89.4%, macro f1 score: 
82.5%).

TABLE II
SUMMARY TABLE OF THE BEST RESULTS OBTAINED FROM 

THE SINGLE AND JOINT MODALITIES.
case sens spec bacc f1 auc

Si
ng

le

Spiral 71.1% 70.2% 70.7% 70.6% 0.757
RecurrencePlot 71.1% 78.7% 75.0% 74.9% 0.834

GramianAngularField 80.0% 66.0% 72.8% 72.7% 0.768
MarkovTransitionField 77.8% 74.5% 76.1% 76.1% 0.802

Jo
in

t RecurrencePlot 75.6% 89.4% 82.6% 82.5% 0.825
GramianAngularField 77.8% 74.5% 76.1% 76.1% 0.761

MarkovTransitionField 80.0% 76.6% 78.3% 78.3% 0.783

V. DISCUSSION

Examining the modalities separately shows that the 
representations created from movement performed better than 
the drawing when examining the best results per modality 
(TABLE II). However, looking at the single results as a whole, 
we did not find any significant differences using the Mann-
Whitney U test. This can be influenced by the methodology for 
generating the representations and the nature of the feature 

extraction models. It shows that the different data types 
generally have the same detection performance with these 
vision-based examinations on the applied classifiers. This may 
be a consideration when the physician wants to use a minimal 
tool in the shortest possible time. Nevertheless, it can be seen 
from TABLE II that a few percent better results can be achieved 
by selecting the best-performing models with motion data.

By using the modalities together, we experienced an 
improvement in all paired cases. This improvement proved 
significant in the RecurrencePlot and the 
GramianAngularField, whether we compared the best values to 
the drawing or the movement. In the case of the 
MarkovTransitionField, the improvement only reached a 
significant result compared to the drawing. This suggests that 
the decision is more confident and accurate when multiple 
sensors are used for the same task (even with the same 
processing scheme). However, by observing the voting factor, 
different optimal points may result. This implies that the 
modalities may play a different role in the final decision.

The present results provide insight into how the same task can 
provide better recognition by examining several sensors. There 
are also studies in the literature where, for example, video 
cameras and motion sensors help to recognize PD-related 
episodes. There is  a multi-sensory examination of the same task 
similarly.

The limitation of the research is the heterogeneous database. 
A database with more elements may be necessary for filtering 
according to various factors (medication, brain stimulation). 
Another direction of development is sex equality. Although 
research [29] shows that the drawing of the Archimedean spiral 
does not differ significantly between men and women, this 
requires further support. Studies [30] are underway to 
investigate the separability of the sexes, where the authors have 
already shown that there is a significant difference when 
copying shapes. However, most studies have looked at 
participants between 18 and 30 years old and have used manual 
features that have not been linked to Parkinson's disease. 
However, this raises the need for further investigation.

Finally, it should be mentioned that the present results are 
based on image data processing with out-of-domain feature 
extraction algorithms. These play a role in avoiding 
overlearning by extracting a more general set of features. 
Presumably, fine-tuning the extractor models on the database
specific to the task can increase the performance of the 
classifiers. However, a database with few elements can also 
cause overlearning.

VI. SUMMARY AND CONCLUSION

PD is becoming one of the most common neurological 
diseases of our time. The importance of research related to it is 
that there is no cure according to current clinical knowledge.

Current clinical knowledge is firmly based on motor 
symptoms, which are typically limb tremors at rest, 
bradykinesia, and muscle stiffness (rigidity). Recognizing them 
in the early stages is also not clear since the appearance of the 
symptoms and the lateral involvement may differ from person 
to person.

The support of artificial intelligence (including machine 
learning algorithms) can be desirable in the diagnostic 
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procedure since it can effectively recognize even minor 
deviations and can create a more objective evaluation.

Previously, manually extracted features were used to analyze
movements and drawings, which proved effective for learning 
the nature of the disease. On the other hand, deep learning 
algorithms allow the model to learn the characteristics that 
support automatic feature extraction. From this point of view, 
MobileNet, Xception, and ResNet50 were used, and they were 
previously trained on an extensive database that enabled cross-
sectional recognition. We used networks trained in this way to 
recognize the disease, keeping the original weights.

In the literature research, it can be seen that several modalities 
are available to recognize PD, such as speech, drawing, or 
movement. These can achieve significant recognition 
performance by themselves. Comparing them is difficult 
because each modality goes through a different processing 
process, and there are also differences in the databases. In 
addition, the joint application of several modalities seems to 
improve PD recognition.

In our work, we examined the spiral drawings in connection 
with diagnosing the disease through two types of modalities. In 
the spiral drawing task, the X and Y coordinates of the actual 
drawing were recorded for each person, as well as the 
acceleration data along the X, Y, and Z axes with a wrist-
mounted sensor.

Image representations were created from the data: 1) 
production of the actual drawing from X, and Y drawing data, 
2) image representations from the resulting vector of movement 
data (MarkovTransitionField, RecurrencePlot,
GramianAngularField). From these input images, we 
determined features with the pre-trained models, and then we 
trained classification algorithms on the features using nested 
cross-validation.

Based on the single modality results, image representations of 
the movement data reached at least a similar performance as 
the drawing itself (no significant difference). This result 
suggests that using only the spiral drawing alone or with the 
same processing of only the motion data from the drawing, PD. 
can be detected with the same efficiency.

Furthermore, the joint approach improved the recognition 
performance of the PD (significance difference), highlighting 
the possibility of measuring the same task with various 
sensors. The result shows that even though the task the 
participant performs is the same, improving detection with 
different sensors is still possible.

Further investigation is required regarding the database 
composition.
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