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Abstract—Speech is one of the most important human biosig-
nals. However, only some speech production characteristics are
fully understood, which are required for a successful speech-
based Brain-Computer Interface (BCI). A proper brain-to-
speech system that can generate the speech of full sentences
intelligibly and naturally poses a great challenge. In our study, we
used the SingleWordProduction-Dutch-iBIDS dataset, in which
speech and intracranial stereotactic electroencephalography
(sEEG) signals of the brain were recorded simultaneously
during a single word production task. We apply deep neural
networks (FC-DNN, 2D-CNN, and 3D-CNN) on the ten
speakers’ data for SEEG-to-Mel spectrogram prediction. Next,
we synthesize speech using the WaveGlow neural vocoder. Our
objective and subjective evaluations have shown that the DNN-
based approaches with neural vocoder outperform the baseline
linear regression model using Griffin-Lim. The synthesized
samples resemble the original speech but are still not intelligible,
and the results are clearly speaker dependent. In the long term,
speech-based BCI applications might be useful for the speaking
impaired or those having neurological disorders.

Index Terms—human-computer interaction, sEEG, BCI, brain-
computer interface

[. INTRODUCTION

It is expected that 0.4% of the European population suf-
fers from a speech impairment [1], [2], [3]. Digital ap-
plications using speech technology could significantly help
their everyday communication. Loss of speech can cause
social isolation, and feelings of loss of identity and can
lead to clinical depression [4]. Augmentative and alternative
communication (AAC) technologies, such as brain-computer
interfaces (BCls) might directly read brain signals to restore
lost speech capabilities [5]. In the future, the application of
speech neuroprostheses have the potential to help patients with
neurological disorders or speech impairment.

Brain-computer interfaces enable direct control of comput-
ers without physical activity, with potential applications as
rehabilitation devices for motor-impaired persons (e.g., input
system for writing, prosthetic control). Ideally, BCI applica-
tions operate in naturalistic scenarios, requiring a neural input
with good temporal resolution, minimal preprocessing needs
and relative ease of measurement. There are several available
modalities for neuroimaging, including electroencephalogra-
phy (EEG) [6], stereotactic depth electrodes [7], intracranial
electrocorticography (ECoG) [8], Magnetoencephalography
(MEG) [9], Local Field Potential (LFP) [8].
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From the above, EEG has been the most widely studied
one for BCI [6], [10]. EEG is a non-invasive method for
measuring small electrical currents on the scalp, which reflect
brain activity. It allows one to assess cortical excitability and
effective connectivity in clinical and basic research without
extensive invasive surgical installation. However, obtaining
clean and usable EEG recordings (e.g., signals, data) is chal-
lenging due to the various bio-physiology-related artifacts that
contaminate the electroencephalographic signal. In biomedical
applications, such as monitoring brain activity during surgery
or in sleep studies, EEG measurements typically utilize mul-
tiple electrodes, ranging from 32 to 256, with sampling rates
around 256-2048 Hz. Relative to other methods recording
electric potentials from the brain (ECoG, MEG, LFP), at the
cost of poorer SNR and lower spatial resolution [8], EEG is
non-invasive, cheap, and can be obtained even with wearable
devices that allow for measurements outside the lab [11].

Csap6 et al. [12] present a novel multimodal analysis
method that combines EEG, articulatory movements, and
speech signals for multimodal analysis, combining brain signal
analysis during speech with ultrasound-based articulatory data.
This study developed a fully connected deep neural network
(FC-DNN) to predict articulatory movements using EEG sig-
nals. The study has demonstrated a clear relationship between
EEG and articulatory movements and therefore provides valu-
able insights for future research in speech BCI.

Arthur and Csapé [13] discuss using deep learning to
process EEG brain signals and synthesize speech. EEG signals
were processed and used in this study to estimate the mel-
spectral parameters of speech using deep learning models.
Although not intelligible, the synthesized speech resembled
the original speech signal, presenting a promising avenue for
further investigation.

While initial results are encouraging, it is important to
recognize the current limitations and challenges facing EEG-
based BCI systems in the context of speech synthesis. Al-
though these systems show potential, especially for aiding
individuals with speech impairments, the extent of their effec-
tiveness and practical applicability remains an area of ongoing
research. The journey towards refining these technologies to
reliably and effectively synthesize speech involves overcoming
significant technical and scientific hurdles. Continued research
and development are crucial to enhance our understanding and
to push the boundaries of what is achievable with EEG-based
BClIs. Ultimately, the goal is to leverage these advancements
to improve the quality of life for those facing communication
challenges, but it is essential to maintain a realistic perspective
on the current state of the technology and the work that still
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lies ahead.

More invasive methods offer increased insights into brain
activity compared to EEG. Still, invasive EEG-based speech-
BCIs (e.g., brain-to-speech and brain-to-text) are not yet
successful due to the fact that the input brain signal and
the target speech signal or text are spatially, acoustically, and
temporally too distant from each other. All studies related to
this topic [14], [15], [16], [17], [18], except for a feasibility
experiment [19], use estimated or "indirect" articulatory
information, meaning that they consider the articulatory data
derived from the speech signal or the textual content. Recently,
a novel database featuring parallel speech and intracranial
stereotactic Electroencephalography recordings has been in-
troduced (SingleWordProduction-Dutch-iBIDS dataset, [7]).
This dataset employs a baseline linear regression method for
SsEEG-to-speech mapping, utilizing the Griffin-Lim algorithm
for speech generation. As highlighted by Verwoert et al. in
[7], the application of neural vocoders in conjunction with
deep neural networks for sEEG-to-speech prediction has not
been previously explored.

A. Goal of the current study

Speech is one of the most important human biosignals,
but not all the characteristics of speech production are fully
understood, which are required for a successful speech-based
BCI [20]. A proper brain-to-speech system capable of generat-
ing full sentences in an intelligible and natural manner presents
significant challenges and necessitates multidisciplinary ap-
proaches. In this paper, we apply deep neural networks for
sEEG-to-speech synthesis, using neural vocoders.

In our study, we employed the Griffin-Lim algorithm as a
baseline method for speech generation and used linear regres-
sion for mapping brain signals to speech features, following
the methodology of Verwoert et al. [7]. This choice maintains
consistency with existing literature and enables direct compar-
ison of our results. The simplicity and ease of implementation
of both techniques provide easily replicable and interpretable
baselines, highlighting the improvements offered by advanced
methods, such as deep learning-based solutions compared to
traditional techniques.

II. RELATED WORK
A. Brain-to-speech synthesis

There has been some research on non-invasive EEG-to-
speech synthesis [21], [22]. As EEG provides information
only from the surface of the scalp, this process is extremely
difficult, and until now there has been no successful approach
to predict fully intelligible synthesized speech. On the other
hand, typically more invasive methods have been tested for
speech BCI [20]. With participants implanted using sEEG,
audible speech could be reliably generated in real-time [23].

With intracranial electrocorticography (ECoG), another
highly invasive procedure, continuous speech decoding could
be solved [15]. Verwoert et al. [7] applied the Griffin-Lim
algorithm in combination with linear regression to show that
sEEG-to-speech mapping is feasible. According to the correla-
tions that they received during cross-validation and comparison
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of 10 speakers, the results are highly dependent on the speaker,
most probably because of the location of the SEEG electrodes
in the individual subjects.

Another recent article, Lesaja et al. [24] presents brain2vec,
a self-supervised model for learning speech-related hidden
unit representations from unlabeled intracranial EEG data.
Brain2vec’s performance rivals that of competitive supervised
learning methods on speech activity detection and word clas-
sification tasks, indicating potential practical applications in
speech decoding using intracranial EEG data.

The BrainBERT model, introduced as a transformer-based
model, marks a significant advancement in analyzing neural
signals recorded from the human brain for natural language de-
coding [25]. This model, an adaptation of the well-established
BERT (Bidirectional Encoder Representations from Trans-
formers) in Natural Language Processing, is specifically de-
signed to translate brain signals into natural language. Unlike
traditional methods that predominantly rely on labeled data,
BrainBERT employs self-supervised learning from extensive
unlabeled data, potentially enhancing its performance. As per
the original BERT model, BrainBERT records context from
both directions of the input data (in this case, brain signals),
which allows it to understand the temporal dependency be-
tween signals [26]. Recent studies have examined BrainBERT
using sEEG data, with promising results [25].

B. Neural vocoders in speech synthesis

Since the introduction of WaveNet in 2016 [27], neural
vocoders have been instrumental in generating highly natural
raw samples of speech. These vocoders, including recent
variants like WaveGlow [28], synthesize high-quality speech
by transforming mel-spectrograms or other spectral feature
inputs into audio waveforms. WaveGlow, in particular, stands
out as a flow-based network capable of real-time, high-quality
speech synthesis from mel-spectrograms. Its simplicity and
efficiency in speech generation offer considerable advantages.
This approach has been effectively utilized in various ap-
plications, such as in the work of Csapé et al. [29], who
integrated WaveGlow into an ultrasound-based articulatory-
to-acoustic conversion process. Similarly, Cao and colleagues
demonstrated the successful use of WaveGlow for synthesizing
speech from Electromagnetic Articulography (EMA) data of
tongue movements [30].

C. Speaker adaptation in Text-To-Speech synthesis

A significant area of research in this field has focused on
the development of natural-sounding speech synthesis. Csapd
et al. have extensively explored the role of prosodic variability
methods in a corpus-based unit selection text-to-speech sys-
tem [31], and have worked on enhancing the naturalness of
synthesized speech [32]. More recently, Mandeel et al. [33]
demonstrate successful speaker adaptation experiments using
Tacotron2, a state-of-the-art text-to-speech synthesis system.

These advances together show rapid progress in brain-to-
speech synthesis, neural vocoders, and text-to-speech syn-
thesis. It is anticipated that the integration of cutting-edge
methods and innovative approaches will provide significant
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The electrode locations of each participant were visualized on the surface reconstruction of their native anatomical MRI, as sourced from the

SingleWordProduction-Dutch-iBIDS [7] dataset. Each red sphere in the figure represents an implanted electrode channel. This visualization is pivotal to our
study as it illustrates the diverse and individualized placement of sSEEG electrodes across participants, all of whom are part of the dataset used in this research.
The variation in electrode placement is dictated by clinical requirements for treating epilepsy.

advancements in communications technology in the future,
particularly for individuals with speech impairments.

III. METHODS
A. Data

We used the SingleWordProduction-Dutch-iBIDS dataset
([7], https://osf.io/nrgx6/) that contains in total 10 speakers
with drug-resistant epilepsy (mean age 32.4 +/- 12.6 years; 5
male, 5 female). sEEG electrodes (Fig. 1.) were implanted
as part of the clinical management of their epilepsy. The
location of the electrodes was determined solely on the basis
of clinical need. All participants were native Dutch speakers.
Participants’ voices were pitch-shifted to ensure anonymity. A
total of 100 words were recorded for each participant, resulting
in a total recording time of 300 seconds. Participants were
implanted with platinum-iridium sEEG electrode arrays. Neu-
ral data were recorded using one or two Micromed SD LTM
amplifier(s) with 128 channels each. Electrode connections
were mapped to a common white matter contact. Data were
recorded at 1024 Hz or 2048 Hz and downsampled to 1024
Hz. The audio was recorded at 48 kHz.

Recording of brain and speech signals using separate but
time-aligned devices was already provided with the dataset.
Synchronization is essential to ensure that each segment of
EEG data corresponds to the specific speech output. This
is achieved through a precise time-stamping process during
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recording, which aligns the EEG signals with the respective
speech segments.

B. Preprocessing the brain and speech signals

On the sEEG brain signal, we followed a detailed
preprocessing protocol as described in the publication we
acquired the data set from [7], using the tools at https://github.
com/neuralinterfacinglab/SingleWordProductionDutch/.
Specifically, we executed several steps to refine the EEG data:

Extraction of the Hilbert Envelope: We targeted the high-
frequency activity (70—170Hz) for each electrode contact using
a bandpass filter (4th order IIR). This step was crucial for iso-
lating significant neural activity relevant to speech processes.
Hilbert transform provides several advantages for SEEG sig-
nal analysis, including the construction of analytic signals,
extraction of instantaneous amplitude and phase information,
improved time-frequency analysis, envelope detection, cross-
frequency coupling analysis, and applicability to non-linear
and non-stationary signals. These advantages can help better
understand the underlying brain activity.

Attenuation of Line Noise: To minimize electrical inter-
ference, particularly the harmonics of 50Hz line noise, we
employed two bandstop filters (4th order IIR).

Temporal Windowing and Stacking: We averaged the filtered
signal over 50ms windows with a 10ms frameshift. To incor-
porate temporal context, which is vital for understanding the
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dynamics of brain activity, we stack features from multiple
time windows. Specifically, for each time window of interest,
we include features from the 4 preceding and 4 succeeding
windows alongside the current window, totaling nine windows
per feature set.

Normalization: For each feature, we normalized the data
to zero mean and unit variance using the statistics from the
training data. This normalization was then consistently applied
to the evaluation data to maintain data integrity across different
sets.

After preprocessing the SEEG signal, we calculate 80-
dimensional mel-spectrogram of the speech using the
’librosa’ library. During synthesis, we obtain the esti-
mated speech using the WaveGlow model with inverse
STFT transform [28], using a pre-trained model provided
by NVIDIA, https://drive.google.com/file/d/1cjKPHbtAMh_
4HTHmulGNkbOkPBD9qwhj/view?usp=sharing.

Regarding the database split, we used a standard approach
where the dataset was divided into training and testing subsets.
Specifically, 80% of the data was used for training, and the
remaining 20% for testing. This split was performed on a per-
speaker basis, ensuring that the model’s performance could be
evaluated on unseen data from each subject.

C. Linear regression (baseline)

The baseline study [7] reconstructed the log-mel spectro-
gram from the high-gamma features using linear regression
models. In these models, the high-gamma feature vector is
multiplied with a weight matrix to reconstruct the log-mel
spectrogram. The weights are determined using a least-squares
approach. For the waveform reconstruction, they utilized the
Griffin-Lim method.

D. Deep learning architectures

Next, we train the deep learning algorithms, which receive
windowed sEEG Hilbert transformed components as input and
produce 80-dimensional mel-spectral coefficients as output.

As for the hyperparameters, the learning rate, number of
epochs, and other training parameters were selected through a
series of preliminary experiments aimed at optimizing model
performance. The number of epochs was set to 100, with early
stopping using a patience of three, to prevent overfitting. The
learning rate was initially set to a standard value of 0.001
and was adjusted based on the model’s performance during
the validation phase. Regarding learning rate scheduling, we
used a dynamic approach where the learning rate was halved
if there was no improvement in model performance on the
validation set for two epochs.

Our method is illustrated in Figure 2, which shows the
general flow from the raw sEEG input to the final synthetic
speech. In order to obtain an analytical signal from the
sEEG data, the Hilbert transform is used to acquire both
amplitude and phase information (as detailed in Sec. III-B).
We then apply the transformed signal as the input of our neural
network models, including FC-DNN, 2D-CNN, and 3D-CNN.
Based on the sEEG input, these models are trained to predict
the mel-spectrograms of speech, thereby creating a mapping
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Fig. 2. General block diagram of our methods: from sEEG input, we predict
mel-spectrogram of speech, which is synthesized to audio using a neural
vocoder.

between brain activity and acoustic representations of speech.
WaveGlow neural vocoder is used to convert the predicted
mel-spectrogram into audible speech.

1) FC-DNN Architecture: We utilized a Fully Connected,
Feed-Forward Deep Neural Network (FC-DNN) as our foun-
dational model. This architecture incorporates five hidden
layers, each consisting of 1000 neurons. We employed a
Rectified Linear Unit (ReLU) as the activation function. The
network’s input layer has a dimensionality of 1143, which
represents features calculated from a combination of 127 EEG
channels and 9 temporal windows, as detailed in Section III-B.
The output layer features 80 neurons, corresponding to the
number of mel-spectral coefficients.

2) 2D-CNN: Our 2D convolutional network starts with two
convolutional layers, each equipped with a 5x5 kernel size,
having swish activation. The input data is formatted as 9x127
dimensions (9 temporal windows with 127 features in each).
After a maxpooling layer, there is a third convolutional layer.
The filter sizes are 30, 60 and 70. Dropout layers with a rate
of 0.2 are used. Subsequent to the convolutional layers, the
network architecture includes two fully connected layers. The
first fully connected layer contains 1000 neurons. The final
layer in our 2D-CNN model is the output layer, having linear
activation, and designed with 80 neurons to match the number
of mel-spectral bands for the waveform reconstruction.

3) 3D-CNN: Standard CNN considers 2D images to extract
features by convolving 2D filters over images. Therefore, to
model temporal information, a third dimension has to be
considered [34], [35]. Here we use a 3D-CNN variation by
adding a third dimension as (2+1)D CNN which shows good
performance in video action recognition task [36]. It also
shows good results when used with ultrasound images and
it could be considered as a substitute of CNN+LSTM [37].
This network processed 5 frames of input that were 6 frames
apart (6 is the stride parameter of the convolution along the
time axis) [37]. Following the concept of (2+1)D convolution,
the 5 frames were first processed only spatially, and then got
combined along the time axis just below the uppermost dense
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TABLE I
MCD SCORES ON THE TEST SET.

Mel-Cepstral Distortion (dB)
Linear Regression FC-DNN 3D-CNN 2D-CNN

Speaker with Griffin-Lim with WaveGlow | with WaveGlow | with WaveGlow
sub-01 6.25 4.63 4.86 4.64
sub-02 6.41 4.95 5.19 4.98
sub-03 5.52 4.39 4.50 4.51
sub-04 5.28 4.16 4.86 4.50
sub-05 6.20 6.12 6.08 6.39
sub-06 4.36 3.63 4.16 4.10
sub-07 5.50 4.32 5.39 4.31
sub-08 5.03 5.00 5.50 5.13
sub-09 5.12 4.29 5.56 5.15
sub-10 4.26 4.01 4.34 4.13
Mean 5.39 4.55 5.04 4.78

layer. Original

Our 3D model begins with an input layer that handles the 01 , \

reshaped sEEG data, formatted into a 9x127 dimension. To % 51

accommodate the 3D processing, the data is expanded into & 10

a five-dimensional structure, ensuring compatibility with the £

subsequent 3D convolutional layers. The core of our 3D-CNN g 2 , ‘ |

comprises three convolutional layers, each utilizing a kernel !

31z§ of (5, 13, 13), strides set t(? (6, 2, 2), and having swish Linear Regression

activation. These layers are designed to extract and analyze 0

both spatial and temporal features from the SEEG data. There s

. . . [} 1

is a maxpooling layer after the second convolution. The filter g

sizes are 30, 60 and 70. Dropout layers with a rate of 0.2 %10-

are used. Subsequent to the convolutional layers, the network §,15 1

architecture includes two fully connected layers, similarly ~ 201 ‘

to the 2D-CNN, finally predicting the 80-dimensional mel-
spectrogram.

After the trainings with the above deep neural networks, the
predicted spectrograms of the test data are used to synthesize
speech using the WaveGlow vocoder (Sec. I1I-B).

IV. RESULTS
A. Demonstration sample

Fig. 3 a) shows the spectrogram of a natural utterance
and b—e) those of synthesized speech from sEEG input with
linear regression (baseline from [7]) and various DNNs. The
synthesized speech has a similar envelope as the natural
speech, but few of the spectral details are included. Although
the speech reconstructed from the mel-spectral parameters
estimated on the test pile resembles the original speech,
it is noisy and difficult to understand. However, in some
parts, sections of synthesized speech (e.g. vowels) are similar
to the original audio. Synthesized samples are available at
http://smartlab.tmit.bme.hu/icj2023_sEEG.

B. Objective evaluation

To check whether the proposed DNNs can reproduce the
features of the original speech, we evaluated the spectral
differences between natural speech and synthesized speech
using Mel-Cepstral Distortion (MCD) [38], which is a standard
metric for text-to-speech synthesis evaluation. As MCD is an
error measure, lower values indicate higher similarity between
the original and synthesized speech. Table I displays the
MCD values calculated on the test data for each speaker. In
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Fig. 3. Speech samples from speaker sub-06: a) original, b) synthesized using
LR (baseline) ¢) FC-DNN, d) 2D-CNN, e) 3D-CNN.
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combination with a WaveGlow vocoder, the Fully Connected
Deep Neural Network (FC-DNN) model consistently produced
the lowest MCD values across all speakers tested. Therefore,
this combination of models and vocoders is the most effective
means of reproducing speech that is resembling the original.

It is interesting to note the variation in MCD values among
different speakers. For instance, speaker sub-06 consistently
showed lower MCD values across all models, indicating that
the acoustic features of this speaker might be easier for the
models to learn and reproduce. This observation suggests that
individual characteristics of each speaker’s data, and most
probably, the electrode positions can significantly influence the
performance of speech synthesis models. The comparison with
the correlations in [7] provided intriguing insights. Speakers
with higher brain-speech signal correlation generally had lower
MCD values, reinforcing the potential link between these two
metrics. Prior studies [15] have also suggested a possible
connection between neural correlates and the quality of speech
synthesis.

C. Subjective evaluation

In order to determine which proposed version is closer
to natural speech, we conducted an online MUSHRA-like
test [39].

Our aim was to compare the natural words with the syn-
thesized words of the baseline and the proposed approaches.
In the test, the listeners had to rate the naturalness of each
stimulus in a randomized order relative to the reference (which
was the natural utterance), from O (very unnatural) to 100 (very
natural). Out of the 10 speakers used in the earlier analysis,
we selected four speakers for the listening test, based on the
correlation analysis between brain and speech signals (Fig. 4
of [7]): ’sub-04/F’, ’sub-06/M’ (high correlation), and ’sub-
01/F’, ’sub-02/M’ (low correlation). We selected four words
from the test set of each speaker (altogether 16 words, each
being 2 seconds long). The variants appeared in randomized
order (different for each listener).

Each word was rated by non-Dutch speakers: altogether 9
listeners participated in the test; 7 males, 2 females; ages: 23-
39 (avg: 32). The test took 5-28 minutes (avg: 11 minutes)
to complete. Fig. 4 top shows the average naturalness scores
for the tested approaches. The benchmark (Linear Regression)
version achieved the lowest scores, while the natural words
were rated the highest, as expected. The proposed DNN
and neural vocoder based versions were performed over the
baseline system for all speakers. In the overall figure, we can
see a slight preference towards the FC-DNN, compared to the
convolutional neural networks. To check the statistical signifi-
cances, we conducted Mann-Whitney-Wilcoxon ranksum tests
with a 95% confidence level. Based on this, the differences
between FC-DNN, 2D-CNN, and 3D-CNN are not statistically
significant.

When vizualizing the results speaker by speaker (Fig. 4
bottom), we can see the following trends: for the female
speakers (sub-01 and sub-04), the 2D-CNN was preferred
most, whereas this is not the case for the male speakers (sub-
02 and sub-06). Based on the earlier correlation analysis on
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Fig. 4. Results of the subjective evaluation with respect to naturalness,
speaker by speaker (top) and average (bottom). The errorbars show the 95%
confidence intervals.

the speakers in [7] we have seen that sub-04 and sub-06
had a higher overall correlation between brain and speech
signals, and this is clearly reflected in the speaker-by-speaker
results of the listening test: both of them achieved reasonably
higher naturalness scores compared to sub-01 and sub-02.
Regarding MWM ranksum tests, the only case when the results
are statistically significant, is sub-06: here, the 2D-CNN was
ranked significantly lower than FC-DNN and 3D-CNN, while
the difference between the latter two is not significant, but
3D-CNN is slightly preferred.

As a summary of the evaluation, the objective MCD score
was not always found to be helpful in our case (i.e, it does not
highly correspond to the correlations of [7]), but clearly, the
subjective listening test could show the differences between
the speakers of low and high correlation. The relatively low
naturalness scores (18-29) indicate that SEEG-based synthe-
sized speech is far from being intelligible, but at least, has
properties similar to the natural speech signal.

V. DISCUSSION AND CONCLUSIONS

In this paper, we applied deep neural networks (FC-DNN,
2D-CNN, and 3D-CNN) for sEEG-to-melspectrogram pre-
diction. Next, we synthesized speech using the WaveGlow
neural vocoder. Our objective evaluation (Mel-Cepstral Distor-
tion) has shown that the DNN-based approaches with neural
vocoder outperform the baseline linear regression model using
Griffin-Lim for speech generation [7].

Various studies have demonstrated the feasibility of ECoG-
to-text [40] and ECoG-to-speech [15] conversion using dif-
ferent methodological approaches, such as linear regression
and deep neural networks. However, their applicability in
SsEEG-to-speech conversion remained largely unexplored. Our
work, therefore, complements these efforts and provides an
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alternative approach to sEEG-to-speech synthesis. Compared
to traditional methods such as Griffin-Lim, neural vocoders
represent an advance in generating more natural-sounding
speech than traditional methods. While the complexity of
sEEG data presented significant challenges, our approach
utilizing deep neural networks and a neural vocoder showed
promising results in comparison to the baseline linear regres-
sion model.

However, we acknowledge that the quality of synthesized
speech remains an area for improvement. Our models pro-
duced speech that has distinct speech-like characteristics but
was not yet fully understandable. This is a common issue
encountered in the field of brain-to-speech synthesis, including
studies utilizing EEG and ECoG data.

The reason why the 2D-CNNs and 3D-CNNs produced
samples with larger errors in the current study might be
that the amount of training data is extremely limited (i.e.,
only 100 words / 300 seconds), and more complex networks
cannot learn the necessary mapping. Another explanation for
the low 2D-CNN and 3D-CNN results might be that as
our sEEG input data is put together in a specific way (i.e,
brain signal is windowed, and Hilbert-transformed values are
stacked together), this type of image is difficult to process
for a convolutional neural network. On the other hand, the
differences are highly dependent on the speaker (and thus,
most probably on the electrode positioning) : with sub-06, who
had the highest correlations in [7], the 3D-CNN performed
best, indicating that there is potential in applying convolutional
neural networks for this task.

Both the subjective listening tests and objective evaluations
show that the neural network-based approaches outperformed
the linear regression baseline. The relatively low naturalness
scores (18-29) indicate that SEEG-based synthesized speech is
far from being intelligible, but clearly, has properties similar
to the natural speech signal, both visually on the spectrograms,
and when listening to the samples. Therefore, we expect that
our results might help future speech-based Brain-Computer
Interfaces.

VI. FUTURE WORK

Deep learning is vast and ever-evolving, providing ample
opportunity to refine our sEEG-to-speech prediction mod-
els. One approach to enhance the current results could in-
volve experimenting with different architectures and types of
deep learning models. For instance, Transformer models [41],
known for their effectiveness in various natural language pro-
cessing tasks, could be explored for sSEEG-to-speech synthesis.
We may be able to gain valuable insights into how different
brain regions contribute to speech production through the
attention mechanism in Transformers, potentially enabling us
to improve our predictive abilities [41]. We acknowledge that
the efficacy of complex models like Transformers is contingent
on the availability of substantial training data. However, we
expect that as more and more research groups are dealing with
speech and brain signal recording and processing, such larger
datasets might be available in the future.

Our feature extraction process currently involves window-
ing the raw sEEG data and applying the Hilbert transform.
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However, future work could involve more sophisticated feature
extraction techniques like Wavelet Transform [42] or Fourier
Transform [43]. These techniques could capture different as-
pects of the sEEG signals, leading to improved performance
of the models [44].

In terms of data, our current study is based on the Sin-
gleSpeechProductionDutch dataset [7]. While this dataset has
provided valuable insights, we recognize the potential benefits
of using a more extensive and diverse dataset. Consequently,
we intend to record our database, expanding the pool of
speakers and potentially improving the generalizability and
robustness of the model. Nevertheless, it is important to note
that we will use EEG signals rather than sEEG for our planned
dataset, which may present new challenges and opportunities.

Furthermore, it may be beneficial to explore applying more
advanced post-processing techniques. The WaveGlow neural
vocoder is currently employed for speech synthesis, but future
work could investigate the use of more recent vocoding
techniques, like AutoVocoder [45], to enhance the quality of
the speech synthesised.

The positions of sEEG electrodes in the dataset were
determined by clinical needs in the treatment of epilepsy,
which can influence the quality of synthesized speech [7].
This is supported by existing literature, which shows that
electrodes placed closer to key speech areas, particularly in
the left frontal lobe, are more likely to capture neural signals
that are crucial for accurate speech synthesis. This theoretical
understanding, underpinned by neurophysiological insights
into speech production processes, suggests that variations
in electrode arrangements could result in differences in the
quality of synthesized speech. However, a detailed correlation
analysis between electrode positions and synthesized speech
quality was beyond the scope of our current study, presenting
a valuable direction for future research.

Finally, we see many potential applications for SEEG-to-
speech synthesis in the future. Due to rapid advances in deep
learning, we anticipate improving our models and contributing
to the development of speech-based Brain-Computer Interfaces
in the future, as well as improving their performance.
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