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I. INTRODUCTION 
HE objective of this study is to explore the latest 
advancements in speech synthesis research. It is primarily 

intended for researchers involved in the development and 
enhancement of Text-to-Speech (TTS) systems, as well as 
professionals in various fields that utilize TTS applications, 
including such as customer service, navigation systems, and 
language education [1].  
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TTS is a process that converts written text into speech like that 
of humans [2]. Speech serves is a crucial element in human 
interaction and verbal communication. Throughout history, 
people have relied on speech as an effective means of 
conveying information, expressing themselves, and revealing 
their emotional state [3]. We communicate using various speech 
styles, which can differ based on factors such as the subject, 
environment, and culture [2]. In other words, speech styles 
depend on the content, context, and audience. They can range 
from formal to casual. 

In recent years, advancements in speech technology have led to 
the development of artificial speech that closely resembles 
human speech in terms of naturalness and intelligibility. This 
technology, also known as speech synthesis, takes text as input 
and generates speech as output. Modern TTS systems have 
evolved from a long history of efforts to create synthesized 
human language from written text. 

Numerous TTS applications have achieved impressive levels of 
naturalness and intelligibility. Key factors contributing to 
naturalness include expressiveness, emotion, and speech style. 
Modern TTS systems need to deliver synthesized speech in the 
desired style for users. Expressivity pertains to the manner in 
which thoughts, emotions, and information are conveyed 
through a specific expressive style [1] [4]. 

Speech style in speech synthesis is influenced by various 
factors, such as the topic, language, speech rate and intensity, 
and regional culture of the spoken language. Linguistically, 
expressivity refers to communicating positive or negative ideas 
or emotions in a style that is relevant to the listener. Emotional 
expression serves as a vocal indicator of emotions, which is 
evident in the speech waveform [5]. In addition to speech styles, 
emotions are also considered expressions. Different expressive 
styles can be generated based on two approaches: corpus-driven 
and prosodic-phonology approaches. The corpus-driven 
approach involves analyzing large datasets of speech to extract 
patterns of prosody associated with different emotions. This 
data is then used to train a machine learning model to predict 
the appropriate prosody for a given text. 
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data is then used to train a machine learning model to predict 
the appropriate prosody for a given text. 

The prosodic-phonology approach, on the other hand, involves 
modeling the underlying linguistic and phonological features of 
speech that give rise to different emotional expressions. This 
approach involves analyzing the sound units such as 
fundamental frequency F0 and duration [6]. 

Neutral Speech Synthesis Systems (NSS) generate speech from 
written text in a single style, often referred to as neutral or flat 
sound [7]. Fig 1. presents a framework for a Neutral Speech 
Synthesis System (NSS). The text analysis and processing stage 
known as front-end involves the analysis of the written text to 
extracting linguistic features. This stage provides linguistic and 
acoustic features to the back-end stage, where the acoustic 
features of the speech signal are generated. 

The back-end stage is where the speech signal is synthesized 
from the linguistic features extracted in the text analysis and 
processing stage. This stage involves converting the linguistic 
features into acoustic features, such as pitch, duration, intensity, 
and spectral characteristics, to generate a natural-sounding 
speech signal [8]. Linguistic features are derived through 
syntactic, semantic, and lexical analysis steps, which guide the 
synthesis process to produce neutral speech [9]. To generate 
speech with a specific expressive style, the desired expressive 
style is incorporated as an additional input to the TTS model, as 
depicted in Fig. 1 [10] [11]. 

 
 

 

 

 

 

 

 

Fig 1: TTS and Expressive TTS System Architecture. On the left side, a 
schematic diagram illustrates the expressive TTS system. This system 
processes input text along with the desired expressive elements. On the 
right side, natural speech is generated by a natural TTS system [12]. 

The benchmark for evaluating speech technologies is human 
ratings. Traditionally, listeners are tasked with listening to 
speech samples and providing ratings, either in isolation or 
within a context. However, researchers face challenges in 
evaluation of the new system, since Ratings are subjective, 
varying from person to person. This subjectivity becomes more 

pronounced when listeners have limited context and training 
[13]. 

The most common method of evaluation is the MOS (Mean 
Opinion Score) test [14]. This test involves collecting MOS 
scores from listeners who evaluate each utterance in isolation. 
In this method, listeners assign scores to individual utterances, 
typically on a five-point scale, with 5 score representing highly 
natural speech and 1 score representing highly unnatural 
speech. Unlike MOS tests, where ratings are provided in 
isolation, the Multiple Stimuli with Hidden Reference and 
Anchor (MUSHRA) test involve listeners in a multiple 
comparison test. MUSHRA test offers enhanced the sensitivity 
to subtle differences between stimuli compared to MOS tests 
[13]. 

This paper follows the following structure: Section II, since 
current TTS systems based on the advance Deep learning 
algorithms, we first introduce several Deep learning models 
widely used in TTS systems. In Section III and IV, we review 
some of subjective and objective metrics that are used for 
evaluating TTS models. In Section V, we summarize  style 
representation and transfer methods. Section VI. discusses 
prosody modelling in speech synthesis. In Section VII. we take 
attempt to point out some challenges in child speech synthesis. 
Finally, in Section VIII, the paper concludes with a summary of 
the findings and possible future directions. 

II. DEEP LEARNING BASED SPEECH SYNTHESIS 
Deep Neural Networks (DNNs) [15] play a crucial role in 
modern speech synthesis approaches, such as WaveNet [16] 
and Tacotron [17]. The shift from decision trees to deep 
learning methods has led to significant improvements in the 
quality of synthesized speech. This shift also involves a move 
from (HMM) to frame prediction using deep learning models, 
contributing to the notable improvements in speech synthesis 
quality. However, a closer examination of the literature reveals 
several challenges, including the need for substantial 
computational resources and large speech datasets to train TTS 
models. Moreover, recording speech datasets with professional 
speakers can be costly. These challenges have been addressed 
through various knowledge transfer approaches, such as fine-
tuning, transfer learning, and multi-task learning [18]. 

A. Back-End Synthesizer 
WaveNet, proposed by Google DeepMind in 2016, is a deep 
learning-based autoregressive approach. This fully probabilistic 
and autoregressive model generates synthesized speech that 
closely resembles natural audio waveforms. WaveNet's 
architecture is based on a Convolutional Neural Network 
(CNN) trained with speech samples to predict natural speech, 
with each sample depending on the previously generated ones. 
WaveNet serves as a vocoder for TTS models, with inputs 
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(CNN) trained with speech samples to predict natural speech, 
with each sample depending on the previously generated ones. 
WaveNet serves as a vocoder for TTS models, with inputs 
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data is then used to train a machine learning model to predict 
the appropriate prosody for a given text. 

The prosodic-phonology approach, on the other hand, involves 
modeling the underlying linguistic and phonological features of 
speech that give rise to different emotional expressions. This 
approach involves analyzing the sound units such as 
fundamental frequency F0 and duration [6]. 

Neutral Speech Synthesis Systems (NSS) generate speech from 
written text in a single style, often referred to as neutral or flat 
sound [7]. Fig 1. presents a framework for a Neutral Speech 
Synthesis System (NSS). The text analysis and processing stage 
known as front-end involves the analysis of the written text to 
extracting linguistic features. This stage provides linguistic and 
acoustic features to the back-end stage, where the acoustic 
features of the speech signal are generated. 

The back-end stage is where the speech signal is synthesized 
from the linguistic features extracted in the text analysis and 
processing stage. This stage involves converting the linguistic 
features into acoustic features, such as pitch, duration, intensity, 
and spectral characteristics, to generate a natural-sounding 
speech signal [8]. Linguistic features are derived through 
syntactic, semantic, and lexical analysis steps, which guide the 
synthesis process to produce neutral speech [9]. To generate 
speech with a specific expressive style, the desired expressive 
style is incorporated as an additional input to the TTS model, as 
depicted in Fig. 1 [10] [11]. 

 
 

 

 

 

 

 

 

Fig 1: TTS and Expressive TTS System Architecture. On the left side, a 
schematic diagram illustrates the expressive TTS system. This system 
processes input text along with the desired expressive elements. On the 
right side, natural speech is generated by a natural TTS system [12]. 

The benchmark for evaluating speech technologies is human 
ratings. Traditionally, listeners are tasked with listening to 
speech samples and providing ratings, either in isolation or 
within a context. However, researchers face challenges in 
evaluation of the new system, since Ratings are subjective, 
varying from person to person. This subjectivity becomes more 

pronounced when listeners have limited context and training 
[13]. 

The most common method of evaluation is the MOS (Mean 
Opinion Score) test [14]. This test involves collecting MOS 
scores from listeners who evaluate each utterance in isolation. 
In this method, listeners assign scores to individual utterances, 
typically on a five-point scale, with 5 score representing highly 
natural speech and 1 score representing highly unnatural 
speech. Unlike MOS tests, where ratings are provided in 
isolation, the Multiple Stimuli with Hidden Reference and 
Anchor (MUSHRA) test involve listeners in a multiple 
comparison test. MUSHRA test offers enhanced the sensitivity 
to subtle differences between stimuli compared to MOS tests 
[13]. 

This paper follows the following structure: Section II, since 
current TTS systems based on the advance Deep learning 
algorithms, we first introduce several Deep learning models 
widely used in TTS systems. In Section III and IV, we review 
some of subjective and objective metrics that are used for 
evaluating TTS models. In Section V, we summarize  style 
representation and transfer methods. Section VI. discusses 
prosody modelling in speech synthesis. In Section VII. we take 
attempt to point out some challenges in child speech synthesis. 
Finally, in Section VIII, the paper concludes with a summary of 
the findings and possible future directions. 

II. DEEP LEARNING BASED SPEECH SYNTHESIS 
Deep Neural Networks (DNNs) [15] play a crucial role in 
modern speech synthesis approaches, such as WaveNet [16] 
and Tacotron [17]. The shift from decision trees to deep 
learning methods has led to significant improvements in the 
quality of synthesized speech. This shift also involves a move 
from (HMM) to frame prediction using deep learning models, 
contributing to the notable improvements in speech synthesis 
quality. However, a closer examination of the literature reveals 
several challenges, including the need for substantial 
computational resources and large speech datasets to train TTS 
models. Moreover, recording speech datasets with professional 
speakers can be costly. These challenges have been addressed 
through various knowledge transfer approaches, such as fine-
tuning, transfer learning, and multi-task learning [18]. 

A. Back-End Synthesizer 
WaveNet, proposed by Google DeepMind in 2016, is a deep 
learning-based autoregressive approach. This fully probabilistic 
and autoregressive model generates synthesized speech that 
closely resembles natural audio waveforms. WaveNet's 
architecture is based on a Convolutional Neural Network 
(CNN) trained with speech samples to predict natural speech, 
with each sample depending on the previously generated ones. 
WaveNet serves as a vocoder for TTS models, with inputs 

 2 

data is then used to train a machine learning model to predict 
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speech that give rise to different emotional expressions. This 
approach involves analyzing the sound units such as 
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Neutral Speech Synthesis Systems (NSS) generate speech from 
written text in a single style, often referred to as neutral or flat 
sound [7]. Fig 1. presents a framework for a Neutral Speech 
Synthesis System (NSS). The text analysis and processing stage 
known as front-end involves the analysis of the written text to 
extracting linguistic features. This stage provides linguistic and 
acoustic features to the back-end stage, where the acoustic 
features of the speech signal are generated. 

The back-end stage is where the speech signal is synthesized 
from the linguistic features extracted in the text analysis and 
processing stage. This stage involves converting the linguistic 
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and spectral characteristics, to generate a natural-sounding 
speech signal [8]. Linguistic features are derived through 
syntactic, semantic, and lexical analysis steps, which guide the 
synthesis process to produce neutral speech [9]. To generate 
speech with a specific expressive style, the desired expressive 
style is incorporated as an additional input to the TTS model, as 
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and Tacotron [17]. The shift from decision trees to deep 
learning methods has led to significant improvements in the 
quality of synthesized speech. This shift also involves a move 
from (HMM) to frame prediction using deep learning models, 
contributing to the notable improvements in speech synthesis 
quality. However, a closer examination of the literature reveals 
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models. Moreover, recording speech datasets with professional 
speakers can be costly. These challenges have been addressed 
through various knowledge transfer approaches, such as fine-
tuning, transfer learning, and multi-task learning [18]. 

A. Back-End Synthesizer 
WaveNet, proposed by Google DeepMind in 2016, is a deep 
learning-based autoregressive approach. This fully probabilistic 
and autoregressive model generates synthesized speech that 
closely resembles natural audio waveforms. WaveNet's 
architecture is based on a Convolutional Neural Network 
(CNN) trained with speech samples to predict natural speech, 
with each sample depending on the previously generated ones. 
WaveNet serves as a vocoder for TTS models, with inputs 
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consisting of linguistic features, predicted log fundamental 
frequency (F0), and phoneme durations [18].

For expressiveness prediction, non-autoregressive WaveNet 
blocks outperform the original WaveNet [19]. Multi-speaker 
WaveNet vocoders have demonstrated higher performance 
compared to traditional methods [20]. Parallel WaveNet 
combines WaveNet and the Inverse Autoregressive Flow (IAF) 
method. Inverse-autoregressive flows (IAFs) are generative 
models used for high dimensional observable samples. High-
dimensional observable samples typically refer to a large set of 
acoustic features that are extracted from speech signals, such as 
the fundamental frequency, spectral envelope, and time-varying 
spectral parameters [21]. Capable of generating speech in a 
wide range of styles (emotional, neutral, conversational, long-
form reading, news briefing, and singing), Parallel WaveNet 
[22] uses a vocoder trained on a multi-speaker emotional 
dataset to convert Mel spectrograms from a neutral style to 
various emotional styles [23].

A novel speech synthesis system called Autovocoder has been 
proposed by [24] to generates high-quality audio and 
outperforms other waveform generation systems in terms of 
computational cost. Autovocoder is trained as a denoising 
autoencoder and generates a waveform at a speed 5 times 
greater than Griffin-Lim algorithm [25] and 14 times faster than 
the neural vocoder HiFi-GAN [26].
Autovocoder utilized parallel computing and data parallelism 
techniques by leveraging fast, Differentiable Digital Signal 
Processing DSP operations, a purely convolutional residual 
network, and a learned representation to achieve efficient and 
fast waveform generation.
Generative Adversarial Networks (GANs) have emerged as a 
powerful tool for generating high-quality audio, including 
speech synthesis. GAN-based vocoders are a type of vocoder 
that uses GANs to generate raw waveform audio from acoustic 
features and linguistic information. This approach offers 
several advantages over traditional vocoders, such as improved 
audio quality, expressiveness, and robustness to noise. Among 
the various GAN-based vocoders that have been developed, 
prominent instances of well-known models include HiFi-GAN
[26], SnakeGAN [27],Parallel WaveGAN [28], and BigVGAN
[29].

B. Linguistic Analysis and Prosody Front-End
Front-end models play a crucial role in processing input text 
into intermediate representations, often involving linguistic 
features or phonetic information. Tacotron is an end-to-end 
Text-to-Speech (TTS) system that uses deep neural networks to 
generate natural-sounding speech from text input. It operates by 
predicting mel-spectrograms from text characters, which are 
then converted into time-domain waveforms using a vocoder

[30]. Tacotron2 is a generative model that combines an 
encoder-decoder architecture with a soft attention mechanism 
to generate spectrograms from a given text [31]. The primary 
concept of the attention mechanism is to identify the most 
relevant characters for each Mel spectrogram frame and 
determine weights for each character embedding [31].

Tacotron2 has been employed to enhance the expressivity of 
multi-speaker end-to-end TTS models. The expressivity of 
latent representation is used for predictions made by the 
encoder to derive emotion [32]. Text-Predicting Global Style 
Token (TP-GST) is combined with Tacotron to generate speech 
in a specific style. Style attention, prosody encoder, and style 
embedding are added to Tacotron. During the training phase, a 
combination of trainable embeddings is extracted to be shared 
across the entire text, driving the Global Style Tokens [33].

FastSpeech [34], another notable front-end model, introduces a
novel feed-forward network that generates mel-spectrograms in 

parallel, utilizing feed-forward Transformer blocks, a length 
regulator, and a duration predictor. FastSpeech incorporates a 
phoneme duration predictor to ensure hard alignments between 

phonemes and mel-spectrograms, reducing the ratio of skipped 
words and repeated words and contributing to high audio 
quality. FastSpeech aims to address several challenges present 
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data is then used to train a machine learning model to predict 
the appropriate prosody for a given text. 

The prosodic-phonology approach, on the other hand, involves 
modeling the underlying linguistic and phonological features of 
speech that give rise to different emotional expressions. This 
approach involves analyzing the sound units such as 
fundamental frequency F0 and duration [6]. 

Neutral Speech Synthesis Systems (NSS) generate speech from 
written text in a single style, often referred to as neutral or flat 
sound [7]. Fig 1. presents a framework for a Neutral Speech 
Synthesis System (NSS). The text analysis and processing stage 
known as front-end involves the analysis of the written text to 
extracting linguistic features. This stage provides linguistic and 
acoustic features to the back-end stage, where the acoustic 
features of the speech signal are generated. 

The back-end stage is where the speech signal is synthesized 
from the linguistic features extracted in the text analysis and 
processing stage. This stage involves converting the linguistic 
features into acoustic features, such as pitch, duration, intensity, 
and spectral characteristics, to generate a natural-sounding 
speech signal [8]. Linguistic features are derived through 
syntactic, semantic, and lexical analysis steps, which guide the 
synthesis process to produce neutral speech [9]. To generate 
speech with a specific expressive style, the desired expressive 
style is incorporated as an additional input to the TTS model, as 
depicted in Fig. 1 [10] [11]. 

 
 

 

 

 

 

 

 

Fig 1: TTS and Expressive TTS System Architecture. On the left side, a 
schematic diagram illustrates the expressive TTS system. This system 
processes input text along with the desired expressive elements. On the 
right side, natural speech is generated by a natural TTS system [12]. 

The benchmark for evaluating speech technologies is human 
ratings. Traditionally, listeners are tasked with listening to 
speech samples and providing ratings, either in isolation or 
within a context. However, researchers face challenges in 
evaluation of the new system, since Ratings are subjective, 
varying from person to person. This subjectivity becomes more 

pronounced when listeners have limited context and training 
[13]. 

The most common method of evaluation is the MOS (Mean 
Opinion Score) test [14]. This test involves collecting MOS 
scores from listeners who evaluate each utterance in isolation. 
In this method, listeners assign scores to individual utterances, 
typically on a five-point scale, with 5 score representing highly 
natural speech and 1 score representing highly unnatural 
speech. Unlike MOS tests, where ratings are provided in 
isolation, the Multiple Stimuli with Hidden Reference and 
Anchor (MUSHRA) test involve listeners in a multiple 
comparison test. MUSHRA test offers enhanced the sensitivity 
to subtle differences between stimuli compared to MOS tests 
[13]. 

This paper follows the following structure: Section II, since 
current TTS systems based on the advance Deep learning 
algorithms, we first introduce several Deep learning models 
widely used in TTS systems. In Section III and IV, we review 
some of subjective and objective metrics that are used for 
evaluating TTS models. In Section V, we summarize  style 
representation and transfer methods. Section VI. discusses 
prosody modelling in speech synthesis. In Section VII. we take 
attempt to point out some challenges in child speech synthesis. 
Finally, in Section VIII, the paper concludes with a summary of 
the findings and possible future directions. 

II. DEEP LEARNING BASED SPEECH SYNTHESIS 
Deep Neural Networks (DNNs) [15] play a crucial role in 
modern speech synthesis approaches, such as WaveNet [16] 
and Tacotron [17]. The shift from decision trees to deep 
learning methods has led to significant improvements in the 
quality of synthesized speech. This shift also involves a move 
from (HMM) to frame prediction using deep learning models, 
contributing to the notable improvements in speech synthesis 
quality. However, a closer examination of the literature reveals 
several challenges, including the need for substantial 
computational resources and large speech datasets to train TTS 
models. Moreover, recording speech datasets with professional 
speakers can be costly. These challenges have been addressed 
through various knowledge transfer approaches, such as fine-
tuning, transfer learning, and multi-task learning [18]. 

A. Back-End Synthesizer 
WaveNet, proposed by Google DeepMind in 2016, is a deep 
learning-based autoregressive approach. This fully probabilistic 
and autoregressive model generates synthesized speech that 
closely resembles natural audio waveforms. WaveNet's 
architecture is based on a Convolutional Neural Network 
(CNN) trained with speech samples to predict natural speech, 
with each sample depending on the previously generated ones. 
WaveNet serves as a vocoder for TTS models, with inputs 



Advancements in Expressive Speech Synthesis:  
a Review

INFOCOMMUNICATIONS JOURNAL

MARCH 2024 • VOLUME XVI • NUMBER 1 37

3

consisting of linguistic features, predicted log fundamental 
frequency (F0), and phoneme durations [18].

For expressiveness prediction, non-autoregressive WaveNet 
blocks outperform the original WaveNet [19]. Multi-speaker 
WaveNet vocoders have demonstrated higher performance 
compared to traditional methods [20]. Parallel WaveNet 
combines WaveNet and the Inverse Autoregressive Flow (IAF) 
method. Inverse-autoregressive flows (IAFs) are generative 
models used for high dimensional observable samples. High-
dimensional observable samples typically refer to a large set of 
acoustic features that are extracted from speech signals, such as 
the fundamental frequency, spectral envelope, and time-varying 
spectral parameters [21]. Capable of generating speech in a 
wide range of styles (emotional, neutral, conversational, long-
form reading, news briefing, and singing), Parallel WaveNet 
[22] uses a vocoder trained on a multi-speaker emotional 
dataset to convert Mel spectrograms from a neutral style to 
various emotional styles [23].

A novel speech synthesis system called Autovocoder has been 
proposed by [24] to generates high-quality audio and 
outperforms other waveform generation systems in terms of 
computational cost. Autovocoder is trained as a denoising 
autoencoder and generates a waveform at a speed 5 times 
greater than Griffin-Lim algorithm [25] and 14 times faster than 
the neural vocoder HiFi-GAN [26].
Autovocoder utilized parallel computing and data parallelism 
techniques by leveraging fast, Differentiable Digital Signal 
Processing DSP operations, a purely convolutional residual 
network, and a learned representation to achieve efficient and 
fast waveform generation.
Generative Adversarial Networks (GANs) have emerged as a 
powerful tool for generating high-quality audio, including 
speech synthesis. GAN-based vocoders are a type of vocoder 
that uses GANs to generate raw waveform audio from acoustic 
features and linguistic information. This approach offers 
several advantages over traditional vocoders, such as improved 
audio quality, expressiveness, and robustness to noise. Among 
the various GAN-based vocoders that have been developed, 
prominent instances of well-known models include HiFi-GAN
[26], SnakeGAN [27],Parallel WaveGAN [28], and BigVGAN
[29].

B. Linguistic Analysis and Prosody Front-End
Front-end models play a crucial role in processing input text 
into intermediate representations, often involving linguistic 
features or phonetic information. Tacotron is an end-to-end 
Text-to-Speech (TTS) system that uses deep neural networks to 
generate natural-sounding speech from text input. It operates by 
predicting mel-spectrograms from text characters, which are 
then converted into time-domain waveforms using a vocoder

[30]. Tacotron2 is a generative model that combines an 
encoder-decoder architecture with a soft attention mechanism 
to generate spectrograms from a given text [31]. The primary 
concept of the attention mechanism is to identify the most 
relevant characters for each Mel spectrogram frame and 
determine weights for each character embedding [31].

Tacotron2 has been employed to enhance the expressivity of 
multi-speaker end-to-end TTS models. The expressivity of 
latent representation is used for predictions made by the 
encoder to derive emotion [32]. Text-Predicting Global Style 
Token (TP-GST) is combined with Tacotron to generate speech 
in a specific style. Style attention, prosody encoder, and style 
embedding are added to Tacotron. During the training phase, a 
combination of trainable embeddings is extracted to be shared 
across the entire text, driving the Global Style Tokens [33].

FastSpeech [34], another notable front-end model, introduces a
novel feed-forward network that generates mel-spectrograms in 

parallel, utilizing feed-forward Transformer blocks, a length 
regulator, and a duration predictor. FastSpeech incorporates a 
phoneme duration predictor to ensure hard alignments between 

phonemes and mel-spectrograms, reducing the ratio of skipped 
words and repeated words and contributing to high audio 
quality. FastSpeech aims to address several challenges present 
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outperforms other waveform generation systems in terms of 
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autoencoder and generates a waveform at a speed 5 times 
greater than Griffin-Lim algorithm [25] and 14 times faster than 
the neural vocoder HiFi-GAN [26].
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techniques by leveraging fast, Differentiable Digital Signal 
Processing DSP operations, a purely convolutional residual 
network, and a learned representation to achieve efficient and 
fast waveform generation.
Generative Adversarial Networks (GANs) have emerged as a 
powerful tool for generating high-quality audio, including 
speech synthesis. GAN-based vocoders are a type of vocoder 
that uses GANs to generate raw waveform audio from acoustic 
features and linguistic information. This approach offers 
several advantages over traditional vocoders, such as improved 
audio quality, expressiveness, and robustness to noise. Among 
the various GAN-based vocoders that have been developed, 
prominent instances of well-known models include HiFi-GAN
[26], SnakeGAN [27],Parallel WaveGAN [28], and BigVGAN
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into intermediate representations, often involving linguistic 
features or phonetic information. Tacotron is an end-to-end 
Text-to-Speech (TTS) system that uses deep neural networks to 
generate natural-sounding speech from text input. It operates by 
predicting mel-spectrograms from text characters, which are 
then converted into time-domain waveforms using a vocoder

[30]. Tacotron2 is a generative model that combines an 
encoder-decoder architecture with a soft attention mechanism 
to generate spectrograms from a given text [31]. The primary 
concept of the attention mechanism is to identify the most 
relevant characters for each Mel spectrogram frame and 
determine weights for each character embedding [31].

Tacotron2 has been employed to enhance the expressivity of 
multi-speaker end-to-end TTS models. The expressivity of 
latent representation is used for predictions made by the 
encoder to derive emotion [32]. Text-Predicting Global Style 
Token (TP-GST) is combined with Tacotron to generate speech 
in a specific style. Style attention, prosody encoder, and style 
embedding are added to Tacotron. During the training phase, a 
combination of trainable embeddings is extracted to be shared 
across the entire text, driving the Global Style Tokens [33].

FastSpeech [34], another notable front-end model, introduces a
novel feed-forward network that generates mel-spectrograms in 

parallel, utilizing feed-forward Transformer blocks, a length 
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dataset to convert Mel spectrograms from a neutral style to 
various emotional styles [23].
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proposed by [24] to generates high-quality audio and 
outperforms other waveform generation systems in terms of 
computational cost. Autovocoder is trained as a denoising 
autoencoder and generates a waveform at a speed 5 times 
greater than Griffin-Lim algorithm [25] and 14 times faster than 
the neural vocoder HiFi-GAN [26].
Autovocoder utilized parallel computing and data parallelism 
techniques by leveraging fast, Differentiable Digital Signal 
Processing DSP operations, a purely convolutional residual 
network, and a learned representation to achieve efficient and 
fast waveform generation.
Generative Adversarial Networks (GANs) have emerged as a 
powerful tool for generating high-quality audio, including 
speech synthesis. GAN-based vocoders are a type of vocoder 
that uses GANs to generate raw waveform audio from acoustic 
features and linguistic information. This approach offers 
several advantages over traditional vocoders, such as improved 
audio quality, expressiveness, and robustness to noise. Among 
the various GAN-based vocoders that have been developed, 
prominent instances of well-known models include HiFi-GAN
[26], SnakeGAN [27],Parallel WaveGAN [28], and BigVGAN
[29].

B. Linguistic Analysis and Prosody Front-End
Front-end models play a crucial role in processing input text 
into intermediate representations, often involving linguistic 
features or phonetic information. Tacotron is an end-to-end 
Text-to-Speech (TTS) system that uses deep neural networks to 
generate natural-sounding speech from text input. It operates by 
predicting mel-spectrograms from text characters, which are 
then converted into time-domain waveforms using a vocoder

[30]. Tacotron2 is a generative model that combines an 
encoder-decoder architecture with a soft attention mechanism 
to generate spectrograms from a given text [31]. The primary 
concept of the attention mechanism is to identify the most 
relevant characters for each Mel spectrogram frame and 
determine weights for each character embedding [31].

Tacotron2 has been employed to enhance the expressivity of 
multi-speaker end-to-end TTS models. The expressivity of 
latent representation is used for predictions made by the 
encoder to derive emotion [32]. Text-Predicting Global Style 
Token (TP-GST) is combined with Tacotron to generate speech 
in a specific style. Style attention, prosody encoder, and style 
embedding are added to Tacotron. During the training phase, a 
combination of trainable embeddings is extracted to be shared 
across the entire text, driving the Global Style Tokens [33].

FastSpeech [34], another notable front-end model, introduces a
novel feed-forward network that generates mel-spectrograms in 

parallel, utilizing feed-forward Transformer blocks, a length 
regulator, and a duration predictor. FastSpeech incorporates a 
phoneme duration predictor to ensure hard alignments between 

phonemes and mel-spectrograms, reducing the ratio of skipped 
words and repeated words and contributing to high audio 
quality. FastSpeech aims to address several challenges present 
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in traditional autoregressive text-to-speech (TTS) models. 
These challenges include slow inference speed, lack of 
robustness leading to word skipping and repeating, and limited 
controllability over voice speed and prosody. 

FastPitch [35], a fully parallel text-to-speech model, draws its 
foundation from Fast Speech. FastPitch conditioned on 
fundamental frequency contours.  It predicts pitch contours 
during inference, allowing for more expressive and engaging 
speech. The model retains the favorable, fully parallel 
Transformer architecture.  

On the other hand, FastSpeech2 [36] represents a paradigm shift 
in text-to-speech modeling as a non-autoregressive system. 
FastSpeech2 simplifies the training pipeline, improves voice 
quality, and introduces more variation information of speech, 
such as pitch and energy, as conditional inputs. It provides 
variance information such as pitch, energy, and more accurate 
duration. The model architecture includes a pitch predictor, 
pitch contour, and pitch spectrogram, allowing for manual 
manipulation of pitch, duration, and energy in synthesized 
speech. 

III. SUBJECTIVE METRICS  
1- Mean Opinion Score (MOS): This is a widely used 
subjective measurement for evaluating the quality of 
synthesized speech. Listeners rate the speech using a numerical 
scale ranging from 1 to 5, where 5 signifies excellent speech 
quality and 1 represents the lowest quality. MOS is a subjective 
method recommended by standardization bodies such as IEEE 
Subcommittee. During the listening test, listeners complete a 
questionnaire that may include sections on overall impression, 
listening effort, pronunciation, speaking rate, articulation, and 
voice pleasantness [37]. 

2- AB Preference Test: In AB Preference Test, participants are 
presented with audio samples from two distinct speech 
synthesis models, denoted as model A and model B. 
Participants listen to samples from both systems and express 
their preference [38]. 

3- ABX Preference Test: Participants listen to three speech 
versions—A, B, and X—with X being the target speech and A 
and B being two synthesized speech sentences generated by 
different models. Test subjects are asked to choose which 
synthesized version is closer to the target speech X[38].  

4- MUSHRA (Multiple Stimuli with Hidden Reference and 
Anchor): In a MUSHRA test, participants evaluate systems on 
a scale ranging from 1 to 100. They accomplish this by listening 
to stimuli for the same text presented side-by-side, in 
comparison to a high-quality reference. This method facilitates 

a comprehensive assessment of multiple systems, allowing for 
a nuanced ranking based on perceived quality [39]. 

IV. OBJECTIVE METRICS   
Objective measurements involve the quantitative evaluation of 
speech synthesis systems, providing a mathematical assessment 
of the quality of synthesized speech. 

A. Itakura-Saito measure  
This method is like most objective methods for the evaluation 
of TTS Models divides the speech signal into frames. Let 𝑠𝑠(𝑖𝑖)   
and 𝑠𝑠′(𝑖𝑖)  be two sampled speech signals, and 𝑥𝑥𝑛𝑛(𝑖𝑖) and 
𝑥𝑥′𝑛𝑛 (𝑖𝑖) are two windowed frames generated from implementing 
a window equation 𝑤𝑤(𝑖𝑖), where  𝑛𝑛 is the frame index 
designating the window location. 

𝑥𝑥𝑛𝑛(𝑖𝑖)  =  𝑤𝑤(𝑖𝑖)𝑠𝑠(𝑖𝑖 +  𝑛𝑛)                          (1) 

𝑐𝑐 =  𝑤𝑤(𝑖𝑖)𝑠𝑠′(𝑖𝑖 +  𝑛𝑛)                               (2) 

We indicate the z-transform of 𝑥𝑥𝑛𝑛(𝑖𝑖) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑛𝑛(𝑖𝑖) by  𝑋𝑋𝑛𝑛 (z) and 
𝑋𝑋′𝑛𝑛 (z) . The Fourier transform is derived by assessing the z-
transform on the unit circle, i.e., z = 𝑒𝑒𝑗𝑗𝑗𝑗 . The  𝑋𝑋𝑛𝑛 (𝑒𝑒𝑗𝑗𝑗𝑗) and 
𝑋𝑋′𝑛𝑛 (𝑒𝑒𝑗𝑗𝑗𝑗) are utilized to represent the Fourier transforms of two 
signals that have been windowed, respectively. Then for each 
pair of 𝑋𝑋𝑛𝑛 (𝑒𝑒𝑗𝑗𝑗𝑗) and 𝑋𝑋′𝑛𝑛 (𝑒𝑒𝑗𝑗𝑗𝑗) , spectral distortion 𝑝𝑝[𝑋𝑋𝑋𝑋, 𝑋𝑋’] is 
defiend as the dissimilarity among 𝑋𝑋𝑛𝑛 (𝑒𝑒𝑗𝑗𝑗𝑗) and 𝑋𝑋′𝑛𝑛 (𝑒𝑒𝑗𝑗𝑗𝑗), the 
Itakura-Saito formula for speech analysis is defined as below 
[40]. 

 

𝑝𝑝𝑖𝑖𝑖𝑖[𝑋𝑋𝑛𝑛, 𝑋𝑋′
𝑛𝑛] ≜ ∫−𝜋𝜋

𝜋𝜋 [( |X𝑛𝑛(ejω )|2

|𝑋𝑋′𝑛𝑛(ejω )|2)   − Ʌ(𝜔𝜔)  −  1] 𝑑𝑑𝜔𝜔
2𝜋𝜋          (3)        

 

where 
Ʌ(𝜔𝜔)   =  𝑙𝑙𝑙𝑙𝑙𝑙 |𝑋𝑋𝑛𝑛(𝑒𝑒𝑗𝑗𝜔𝜔)|2 𝑙𝑙𝑙𝑙𝑙𝑙 |𝑋𝑋′𝑛𝑛(𝑒𝑒𝑗𝑗𝜔𝜔)|2           (4) 

 

B. Root mean square (RMSE) 

RMSE is a mathematical measure used to evaluate log 𝑓𝑓0 
trajectories produced by TTS models, it is stated as 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑁𝑁 ∑ (log(𝐹𝐹0𝑖𝑖) − log(𝐹𝐹0𝑖𝑖

′))2𝑁𝑁
𝑖𝑖=1           (5)           

Where 𝐹𝐹0𝑖𝑖  and 𝐹𝐹0𝑖𝑖
′ stand for the original and predicted F0 

features, respectively. and N is the length of the F0 sequence 
[41].    

C. Gross pitch error (GPE)  
 GPE is the proportion of segments that are measured as voiced 
for natural and generated speech having relative pitch error 
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consisting of linguistic features, predicted log fundamental 
frequency (F0), and phoneme durations [18].

For expressiveness prediction, non-autoregressive WaveNet 
blocks outperform the original WaveNet [19]. Multi-speaker 
WaveNet vocoders have demonstrated higher performance 
compared to traditional methods [20]. Parallel WaveNet 
combines WaveNet and the Inverse Autoregressive Flow (IAF) 
method. Inverse-autoregressive flows (IAFs) are generative 
models used for high dimensional observable samples. High-
dimensional observable samples typically refer to a large set of 
acoustic features that are extracted from speech signals, such as 
the fundamental frequency, spectral envelope, and time-varying 
spectral parameters [21]. Capable of generating speech in a 
wide range of styles (emotional, neutral, conversational, long-
form reading, news briefing, and singing), Parallel WaveNet 
[22] uses a vocoder trained on a multi-speaker emotional 
dataset to convert Mel spectrograms from a neutral style to 
various emotional styles [23].

A novel speech synthesis system called Autovocoder has been 
proposed by [24] to generates high-quality audio and 
outperforms other waveform generation systems in terms of 
computational cost. Autovocoder is trained as a denoising 
autoencoder and generates a waveform at a speed 5 times 
greater than Griffin-Lim algorithm [25] and 14 times faster than 
the neural vocoder HiFi-GAN [26].
Autovocoder utilized parallel computing and data parallelism 
techniques by leveraging fast, Differentiable Digital Signal 
Processing DSP operations, a purely convolutional residual 
network, and a learned representation to achieve efficient and 
fast waveform generation.
Generative Adversarial Networks (GANs) have emerged as a 
powerful tool for generating high-quality audio, including 
speech synthesis. GAN-based vocoders are a type of vocoder 
that uses GANs to generate raw waveform audio from acoustic 
features and linguistic information. This approach offers 
several advantages over traditional vocoders, such as improved 
audio quality, expressiveness, and robustness to noise. Among 
the various GAN-based vocoders that have been developed, 
prominent instances of well-known models include HiFi-GAN
[26], SnakeGAN [27],Parallel WaveGAN [28], and BigVGAN
[29].

B. Linguistic Analysis and Prosody Front-End
Front-end models play a crucial role in processing input text 
into intermediate representations, often involving linguistic 
features or phonetic information. Tacotron is an end-to-end 
Text-to-Speech (TTS) system that uses deep neural networks to 
generate natural-sounding speech from text input. It operates by 
predicting mel-spectrograms from text characters, which are 
then converted into time-domain waveforms using a vocoder

[30]. Tacotron2 is a generative model that combines an 
encoder-decoder architecture with a soft attention mechanism 
to generate spectrograms from a given text [31]. The primary 
concept of the attention mechanism is to identify the most 
relevant characters for each Mel spectrogram frame and 
determine weights for each character embedding [31].

Tacotron2 has been employed to enhance the expressivity of 
multi-speaker end-to-end TTS models. The expressivity of 
latent representation is used for predictions made by the 
encoder to derive emotion [32]. Text-Predicting Global Style 
Token (TP-GST) is combined with Tacotron to generate speech 
in a specific style. Style attention, prosody encoder, and style 
embedding are added to Tacotron. During the training phase, a 
combination of trainable embeddings is extracted to be shared 
across the entire text, driving the Global Style Tokens [33].

FastSpeech [34], another notable front-end model, introduces a
novel feed-forward network that generates mel-spectrograms in 

parallel, utilizing feed-forward Transformer blocks, a length 
regulator, and a duration predictor. FastSpeech incorporates a 
phoneme duration predictor to ensure hard alignments between 

phonemes and mel-spectrograms, reducing the ratio of skipped 
words and repeated words and contributing to high audio 
quality. FastSpeech aims to address several challenges present 
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consisting of linguistic features, predicted log fundamental 
frequency (F0), and phoneme durations [18].

For expressiveness prediction, non-autoregressive WaveNet 
blocks outperform the original WaveNet [19]. Multi-speaker 
WaveNet vocoders have demonstrated higher performance 
compared to traditional methods [20]. Parallel WaveNet 
combines WaveNet and the Inverse Autoregressive Flow (IAF) 
method. Inverse-autoregressive flows (IAFs) are generative 
models used for high dimensional observable samples. High-
dimensional observable samples typically refer to a large set of 
acoustic features that are extracted from speech signals, such as 
the fundamental frequency, spectral envelope, and time-varying 
spectral parameters [21]. Capable of generating speech in a 
wide range of styles (emotional, neutral, conversational, long-
form reading, news briefing, and singing), Parallel WaveNet 
[22] uses a vocoder trained on a multi-speaker emotional 
dataset to convert Mel spectrograms from a neutral style to 
various emotional styles [23].

A novel speech synthesis system called Autovocoder has been 
proposed by [24] to generates high-quality audio and 
outperforms other waveform generation systems in terms of 
computational cost. Autovocoder is trained as a denoising 
autoencoder and generates a waveform at a speed 5 times 
greater than Griffin-Lim algorithm [25] and 14 times faster than 
the neural vocoder HiFi-GAN [26].
Autovocoder utilized parallel computing and data parallelism 
techniques by leveraging fast, Differentiable Digital Signal 
Processing DSP operations, a purely convolutional residual 
network, and a learned representation to achieve efficient and 
fast waveform generation.
Generative Adversarial Networks (GANs) have emerged as a 
powerful tool for generating high-quality audio, including 
speech synthesis. GAN-based vocoders are a type of vocoder 
that uses GANs to generate raw waveform audio from acoustic 
features and linguistic information. This approach offers 
several advantages over traditional vocoders, such as improved 
audio quality, expressiveness, and robustness to noise. Among 
the various GAN-based vocoders that have been developed, 
prominent instances of well-known models include HiFi-GAN
[26], SnakeGAN [27],Parallel WaveGAN [28], and BigVGAN
[29].

B. Linguistic Analysis and Prosody Front-End
Front-end models play a crucial role in processing input text 
into intermediate representations, often involving linguistic 
features or phonetic information. Tacotron is an end-to-end 
Text-to-Speech (TTS) system that uses deep neural networks to 
generate natural-sounding speech from text input. It operates by 
predicting mel-spectrograms from text characters, which are 
then converted into time-domain waveforms using a vocoder

[30]. Tacotron2 is a generative model that combines an 
encoder-decoder architecture with a soft attention mechanism 
to generate spectrograms from a given text [31]. The primary 
concept of the attention mechanism is to identify the most 
relevant characters for each Mel spectrogram frame and 
determine weights for each character embedding [31].

Tacotron2 has been employed to enhance the expressivity of 
multi-speaker end-to-end TTS models. The expressivity of 
latent representation is used for predictions made by the 
encoder to derive emotion [32]. Text-Predicting Global Style 
Token (TP-GST) is combined with Tacotron to generate speech 
in a specific style. Style attention, prosody encoder, and style 
embedding are added to Tacotron. During the training phase, a 
combination of trainable embeddings is extracted to be shared 
across the entire text, driving the Global Style Tokens [33].

FastSpeech [34], another notable front-end model, introduces a
novel feed-forward network that generates mel-spectrograms in 

parallel, utilizing feed-forward Transformer blocks, a length 
regulator, and a duration predictor. FastSpeech incorporates a 
phoneme duration predictor to ensure hard alignments between 

phonemes and mel-spectrograms, reducing the ratio of skipped 
words and repeated words and contributing to high audio 
quality. FastSpeech aims to address several challenges present 
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consisting of linguistic features, predicted log fundamental 
frequency (F0), and phoneme durations [18].

For expressiveness prediction, non-autoregressive WaveNet 
blocks outperform the original WaveNet [19]. Multi-speaker 
WaveNet vocoders have demonstrated higher performance 
compared to traditional methods [20]. Parallel WaveNet 
combines WaveNet and the Inverse Autoregressive Flow (IAF) 
method. Inverse-autoregressive flows (IAFs) are generative 
models used for high dimensional observable samples. High-
dimensional observable samples typically refer to a large set of 
acoustic features that are extracted from speech signals, such as 
the fundamental frequency, spectral envelope, and time-varying 
spectral parameters [21]. Capable of generating speech in a 
wide range of styles (emotional, neutral, conversational, long-
form reading, news briefing, and singing), Parallel WaveNet 
[22] uses a vocoder trained on a multi-speaker emotional 
dataset to convert Mel spectrograms from a neutral style to 
various emotional styles [23].

A novel speech synthesis system called Autovocoder has been 
proposed by [24] to generates high-quality audio and 
outperforms other waveform generation systems in terms of 
computational cost. Autovocoder is trained as a denoising 
autoencoder and generates a waveform at a speed 5 times 
greater than Griffin-Lim algorithm [25] and 14 times faster than 
the neural vocoder HiFi-GAN [26].
Autovocoder utilized parallel computing and data parallelism 
techniques by leveraging fast, Differentiable Digital Signal 
Processing DSP operations, a purely convolutional residual 
network, and a learned representation to achieve efficient and 
fast waveform generation.
Generative Adversarial Networks (GANs) have emerged as a 
powerful tool for generating high-quality audio, including 
speech synthesis. GAN-based vocoders are a type of vocoder 
that uses GANs to generate raw waveform audio from acoustic 
features and linguistic information. This approach offers 
several advantages over traditional vocoders, such as improved 
audio quality, expressiveness, and robustness to noise. Among 
the various GAN-based vocoders that have been developed, 
prominent instances of well-known models include HiFi-GAN
[26], SnakeGAN [27],Parallel WaveGAN [28], and BigVGAN
[29].

B. Linguistic Analysis and Prosody Front-End
Front-end models play a crucial role in processing input text 
into intermediate representations, often involving linguistic 
features or phonetic information. Tacotron is an end-to-end 
Text-to-Speech (TTS) system that uses deep neural networks to 
generate natural-sounding speech from text input. It operates by 
predicting mel-spectrograms from text characters, which are 
then converted into time-domain waveforms using a vocoder

[30]. Tacotron2 is a generative model that combines an 
encoder-decoder architecture with a soft attention mechanism 
to generate spectrograms from a given text [31]. The primary 
concept of the attention mechanism is to identify the most 
relevant characters for each Mel spectrogram frame and 
determine weights for each character embedding [31].

Tacotron2 has been employed to enhance the expressivity of 
multi-speaker end-to-end TTS models. The expressivity of 
latent representation is used for predictions made by the 
encoder to derive emotion [32]. Text-Predicting Global Style 
Token (TP-GST) is combined with Tacotron to generate speech 
in a specific style. Style attention, prosody encoder, and style 
embedding are added to Tacotron. During the training phase, a 
combination of trainable embeddings is extracted to be shared 
across the entire text, driving the Global Style Tokens [33].

FastSpeech [34], another notable front-end model, introduces a
novel feed-forward network that generates mel-spectrograms in 

parallel, utilizing feed-forward Transformer blocks, a length 
regulator, and a duration predictor. FastSpeech incorporates a 
phoneme duration predictor to ensure hard alignments between 

phonemes and mel-spectrograms, reducing the ratio of skipped 
words and repeated words and contributing to high audio 
quality. FastSpeech aims to address several challenges present 
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in traditional autoregressive text-to-speech (TTS) models. 
These challenges include slow inference speed, lack of 
robustness leading to word skipping and repeating, and limited 
controllability over voice speed and prosody. 

FastPitch [35], a fully parallel text-to-speech model, draws its 
foundation from Fast Speech. FastPitch conditioned on 
fundamental frequency contours.  It predicts pitch contours 
during inference, allowing for more expressive and engaging 
speech. The model retains the favorable, fully parallel 
Transformer architecture.  

On the other hand, FastSpeech2 [36] represents a paradigm shift 
in text-to-speech modeling as a non-autoregressive system. 
FastSpeech2 simplifies the training pipeline, improves voice 
quality, and introduces more variation information of speech, 
such as pitch and energy, as conditional inputs. It provides 
variance information such as pitch, energy, and more accurate 
duration. The model architecture includes a pitch predictor, 
pitch contour, and pitch spectrogram, allowing for manual 
manipulation of pitch, duration, and energy in synthesized 
speech. 

III. SUBJECTIVE METRICS  
1- Mean Opinion Score (MOS): This is a widely used 
subjective measurement for evaluating the quality of 
synthesized speech. Listeners rate the speech using a numerical 
scale ranging from 1 to 5, where 5 signifies excellent speech 
quality and 1 represents the lowest quality. MOS is a subjective 
method recommended by standardization bodies such as IEEE 
Subcommittee. During the listening test, listeners complete a 
questionnaire that may include sections on overall impression, 
listening effort, pronunciation, speaking rate, articulation, and 
voice pleasantness [37]. 

2- AB Preference Test: In AB Preference Test, participants are 
presented with audio samples from two distinct speech 
synthesis models, denoted as model A and model B. 
Participants listen to samples from both systems and express 
their preference [38]. 

3- ABX Preference Test: Participants listen to three speech 
versions—A, B, and X—with X being the target speech and A 
and B being two synthesized speech sentences generated by 
different models. Test subjects are asked to choose which 
synthesized version is closer to the target speech X[38].  

4- MUSHRA (Multiple Stimuli with Hidden Reference and 
Anchor): In a MUSHRA test, participants evaluate systems on 
a scale ranging from 1 to 100. They accomplish this by listening 
to stimuli for the same text presented side-by-side, in 
comparison to a high-quality reference. This method facilitates 

a comprehensive assessment of multiple systems, allowing for 
a nuanced ranking based on perceived quality [39]. 

IV. OBJECTIVE METRICS   
Objective measurements involve the quantitative evaluation of 
speech synthesis systems, providing a mathematical assessment 
of the quality of synthesized speech. 
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C. Gross pitch error (GPE)  
 GPE is the proportion of segments that are measured as voiced 
for natural and generated speech having relative pitch error 
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in traditional autoregressive text-to-speech (TTS) models. 
These challenges include slow inference speed, lack of 
robustness leading to word skipping and repeating, and limited 
controllability over voice speed and prosody. 

FastPitch [35], a fully parallel text-to-speech model, draws its 
foundation from Fast Speech. FastPitch conditioned on 
fundamental frequency contours.  It predicts pitch contours 
during inference, allowing for more expressive and engaging 
speech. The model retains the favorable, fully parallel 
Transformer architecture.  

On the other hand, FastSpeech2 [36] represents a paradigm shift 
in text-to-speech modeling as a non-autoregressive system. 
FastSpeech2 simplifies the training pipeline, improves voice 
quality, and introduces more variation information of speech, 
such as pitch and energy, as conditional inputs. It provides 
variance information such as pitch, energy, and more accurate 
duration. The model architecture includes a pitch predictor, 
pitch contour, and pitch spectrogram, allowing for manual 
manipulation of pitch, duration, and energy in synthesized 
speech. 

III. SUBJECTIVE METRICS  
1- Mean Opinion Score (MOS): This is a widely used 
subjective measurement for evaluating the quality of 
synthesized speech. Listeners rate the speech using a numerical 
scale ranging from 1 to 5, where 5 signifies excellent speech 
quality and 1 represents the lowest quality. MOS is a subjective 
method recommended by standardization bodies such as IEEE 
Subcommittee. During the listening test, listeners complete a 
questionnaire that may include sections on overall impression, 
listening effort, pronunciation, speaking rate, articulation, and 
voice pleasantness [37]. 

2- AB Preference Test: In AB Preference Test, participants are 
presented with audio samples from two distinct speech 
synthesis models, denoted as model A and model B. 
Participants listen to samples from both systems and express 
their preference [38]. 

3- ABX Preference Test: Participants listen to three speech 
versions—A, B, and X—with X being the target speech and A 
and B being two synthesized speech sentences generated by 
different models. Test subjects are asked to choose which 
synthesized version is closer to the target speech X[38].  

4- MUSHRA (Multiple Stimuli with Hidden Reference and 
Anchor): In a MUSHRA test, participants evaluate systems on 
a scale ranging from 1 to 100. They accomplish this by listening 
to stimuli for the same text presented side-by-side, in 
comparison to a high-quality reference. This method facilitates 

a comprehensive assessment of multiple systems, allowing for 
a nuanced ranking based on perceived quality [39]. 

IV. OBJECTIVE METRICS   
Objective measurements involve the quantitative evaluation of 
speech synthesis systems, providing a mathematical assessment 
of the quality of synthesized speech. 

A. Itakura-Saito measure  
This method is like most objective methods for the evaluation 
of TTS Models divides the speech signal into frames. Let 𝑠𝑠(𝑖𝑖)   
and 𝑠𝑠′(𝑖𝑖)  be two sampled speech signals, and 𝑥𝑥𝑛𝑛(𝑖𝑖) and 
𝑥𝑥′𝑛𝑛 (𝑖𝑖) are two windowed frames generated from implementing 
a window equation 𝑤𝑤(𝑖𝑖), where  𝑛𝑛 is the frame index 
designating the window location. 

𝑥𝑥𝑛𝑛(𝑖𝑖)  =  𝑤𝑤(𝑖𝑖)𝑠𝑠(𝑖𝑖 +  𝑛𝑛)                          (1) 

𝑐𝑐 =  𝑤𝑤(𝑖𝑖)𝑠𝑠′(𝑖𝑖 +  𝑛𝑛)                               (2) 

We indicate the z-transform of 𝑥𝑥𝑛𝑛(𝑖𝑖) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑛𝑛(𝑖𝑖) by  𝑋𝑋𝑛𝑛 (z) and 
𝑋𝑋′𝑛𝑛 (z) . The Fourier transform is derived by assessing the z-
transform on the unit circle, i.e., z = 𝑒𝑒𝑗𝑗𝑗𝑗 . The  𝑋𝑋𝑛𝑛 (𝑒𝑒𝑗𝑗𝑗𝑗) and 
𝑋𝑋′𝑛𝑛 (𝑒𝑒𝑗𝑗𝑗𝑗) are utilized to represent the Fourier transforms of two 
signals that have been windowed, respectively. Then for each 
pair of 𝑋𝑋𝑛𝑛 (𝑒𝑒𝑗𝑗𝑗𝑗) and 𝑋𝑋′𝑛𝑛 (𝑒𝑒𝑗𝑗𝑗𝑗) , spectral distortion 𝑝𝑝[𝑋𝑋𝑋𝑋, 𝑋𝑋’] is 
defiend as the dissimilarity among 𝑋𝑋𝑛𝑛 (𝑒𝑒𝑗𝑗𝑗𝑗) and 𝑋𝑋′𝑛𝑛 (𝑒𝑒𝑗𝑗𝑗𝑗), the 
Itakura-Saito formula for speech analysis is defined as below 
[40]. 

 

𝑝𝑝𝑖𝑖𝑖𝑖[𝑋𝑋𝑛𝑛, 𝑋𝑋′
𝑛𝑛] ≜ ∫−𝜋𝜋

𝜋𝜋 [( |X𝑛𝑛(ejω )|2

|𝑋𝑋′𝑛𝑛(ejω )|2)   − Ʌ(𝜔𝜔)  −  1] 𝑑𝑑𝜔𝜔
2𝜋𝜋          (3)        

 

where 
Ʌ(𝜔𝜔)   =  𝑙𝑙𝑙𝑙𝑙𝑙 |𝑋𝑋𝑛𝑛(𝑒𝑒𝑗𝑗𝜔𝜔)|2 𝑙𝑙𝑙𝑙𝑙𝑙 |𝑋𝑋′𝑛𝑛(𝑒𝑒𝑗𝑗𝜔𝜔)|2           (4) 

 

B. Root mean square (RMSE) 

RMSE is a mathematical measure used to evaluate log 𝑓𝑓0 
trajectories produced by TTS models, it is stated as 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑁𝑁 ∑ (log(𝐹𝐹0𝑖𝑖) − log(𝐹𝐹0𝑖𝑖

′))2𝑁𝑁
𝑖𝑖=1           (5)           

Where 𝐹𝐹0𝑖𝑖  and 𝐹𝐹0𝑖𝑖
′ stand for the original and predicted F0 

features, respectively. and N is the length of the F0 sequence 
[41].    

C. Gross pitch error (GPE)  
 GPE is the proportion of segments that are measured as voiced 
for natural and generated speech having relative pitch error 

 4 

in traditional autoregressive text-to-speech (TTS) models. 
These challenges include slow inference speed, lack of 
robustness leading to word skipping and repeating, and limited 
controllability over voice speed and prosody. 

FastPitch [35], a fully parallel text-to-speech model, draws its 
foundation from Fast Speech. FastPitch conditioned on 
fundamental frequency contours.  It predicts pitch contours 
during inference, allowing for more expressive and engaging 
speech. The model retains the favorable, fully parallel 
Transformer architecture.  

On the other hand, FastSpeech2 [36] represents a paradigm shift 
in text-to-speech modeling as a non-autoregressive system. 
FastSpeech2 simplifies the training pipeline, improves voice 
quality, and introduces more variation information of speech, 
such as pitch and energy, as conditional inputs. It provides 
variance information such as pitch, energy, and more accurate 
duration. The model architecture includes a pitch predictor, 
pitch contour, and pitch spectrogram, allowing for manual 
manipulation of pitch, duration, and energy in synthesized 
speech. 

III. SUBJECTIVE METRICS  
1- Mean Opinion Score (MOS): This is a widely used 
subjective measurement for evaluating the quality of 
synthesized speech. Listeners rate the speech using a numerical 
scale ranging from 1 to 5, where 5 signifies excellent speech 
quality and 1 represents the lowest quality. MOS is a subjective 
method recommended by standardization bodies such as IEEE 
Subcommittee. During the listening test, listeners complete a 
questionnaire that may include sections on overall impression, 
listening effort, pronunciation, speaking rate, articulation, and 
voice pleasantness [37]. 

2- AB Preference Test: In AB Preference Test, participants are 
presented with audio samples from two distinct speech 
synthesis models, denoted as model A and model B. 
Participants listen to samples from both systems and express 
their preference [38]. 

3- ABX Preference Test: Participants listen to three speech 
versions—A, B, and X—with X being the target speech and A 
and B being two synthesized speech sentences generated by 
different models. Test subjects are asked to choose which 
synthesized version is closer to the target speech X[38].  

4- MUSHRA (Multiple Stimuli with Hidden Reference and 
Anchor): In a MUSHRA test, participants evaluate systems on 
a scale ranging from 1 to 100. They accomplish this by listening 
to stimuli for the same text presented side-by-side, in 
comparison to a high-quality reference. This method facilitates 

a comprehensive assessment of multiple systems, allowing for 
a nuanced ranking based on perceived quality [39]. 

IV. OBJECTIVE METRICS   
Objective measurements involve the quantitative evaluation of 
speech synthesis systems, providing a mathematical assessment 
of the quality of synthesized speech. 

A. Itakura-Saito measure  
This method is like most objective methods for the evaluation 
of TTS Models divides the speech signal into frames. Let 𝑠𝑠(𝑖𝑖)   
and 𝑠𝑠′(𝑖𝑖)  be two sampled speech signals, and 𝑥𝑥𝑛𝑛(𝑖𝑖) and 
𝑥𝑥′𝑛𝑛 (𝑖𝑖) are two windowed frames generated from implementing 
a window equation 𝑤𝑤(𝑖𝑖), where  𝑛𝑛 is the frame index 
designating the window location. 

𝑥𝑥𝑛𝑛(𝑖𝑖)  =  𝑤𝑤(𝑖𝑖)𝑠𝑠(𝑖𝑖 +  𝑛𝑛)                          (1) 

𝑐𝑐 =  𝑤𝑤(𝑖𝑖)𝑠𝑠′(𝑖𝑖 +  𝑛𝑛)                               (2) 

We indicate the z-transform of 𝑥𝑥𝑛𝑛(𝑖𝑖) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥𝑛𝑛(𝑖𝑖) by  𝑋𝑋𝑛𝑛 (z) and 
𝑋𝑋′𝑛𝑛 (z) . The Fourier transform is derived by assessing the z-
transform on the unit circle, i.e., z = 𝑒𝑒𝑗𝑗𝑗𝑗 . The  𝑋𝑋𝑛𝑛 (𝑒𝑒𝑗𝑗𝑗𝑗) and 
𝑋𝑋′𝑛𝑛 (𝑒𝑒𝑗𝑗𝑗𝑗) are utilized to represent the Fourier transforms of two 
signals that have been windowed, respectively. Then for each 
pair of 𝑋𝑋𝑛𝑛 (𝑒𝑒𝑗𝑗𝑗𝑗) and 𝑋𝑋′𝑛𝑛 (𝑒𝑒𝑗𝑗𝑗𝑗) , spectral distortion 𝑝𝑝[𝑋𝑋𝑋𝑋, 𝑋𝑋’] is 
defiend as the dissimilarity among 𝑋𝑋𝑛𝑛 (𝑒𝑒𝑗𝑗𝑗𝑗) and 𝑋𝑋′𝑛𝑛 (𝑒𝑒𝑗𝑗𝑗𝑗), the 
Itakura-Saito formula for speech analysis is defined as below 
[40]. 

 

𝑝𝑝𝑖𝑖𝑖𝑖[𝑋𝑋𝑛𝑛, 𝑋𝑋′
𝑛𝑛] ≜ ∫−𝜋𝜋

𝜋𝜋 [( |X𝑛𝑛(ejω )|2

|𝑋𝑋′𝑛𝑛(ejω )|2)   − Ʌ(𝜔𝜔)  −  1] 𝑑𝑑𝜔𝜔
2𝜋𝜋          (3)        

 

where 
Ʌ(𝜔𝜔)   =  𝑙𝑙𝑙𝑙𝑙𝑙 |𝑋𝑋𝑛𝑛(𝑒𝑒𝑗𝑗𝜔𝜔)|2 𝑙𝑙𝑙𝑙𝑙𝑙 |𝑋𝑋′𝑛𝑛(𝑒𝑒𝑗𝑗𝜔𝜔)|2           (4) 

 

B. Root mean square (RMSE) 

RMSE is a mathematical measure used to evaluate log 𝑓𝑓0 
trajectories produced by TTS models, it is stated as 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1
𝑁𝑁 ∑ (log(𝐹𝐹0𝑖𝑖) − log(𝐹𝐹0𝑖𝑖

′))2𝑁𝑁
𝑖𝑖=1           (5)           

Where 𝐹𝐹0𝑖𝑖  and 𝐹𝐹0𝑖𝑖
′ stand for the original and predicted F0 

features, respectively. and N is the length of the F0 sequence 
[41].    

C. Gross pitch error (GPE)  
 GPE is the proportion of segments that are measured as voiced 
for natural and generated speech having relative pitch error 

 5 

higher than a certain threshold (usually taken as 20% in speech 
analysis) [42]. 
 

V. STYLE REPRESENTATION AND TRANSFER 

A. Global Style Token 
In text-to-speech, Global Style Tokens (GSTs) are a recently 
proposed method for extracting style embedding features that 
reflect specific speech styles. GSTs introduce an auxiliary input 
vector to the speech synthesis model to control the global style 
of the synthesized speech. Style tokens are global features of 
speech style that can be adjusted to synthesize speech in a target 
style. Modern GST architectures have been developed to learn 
latent representations of high-dimensional speech data [43] . An 
attention mechanism calculates attention weights for style 
tokens, and the sum of style tokens is used for style 
embeddings. During the training phase, style tokens are initially 
created randomly, and they learn speech styles in an 
unsupervised manner. 

In  [44], a Global Style Token (GST) network is combined with 
an augmented version of Tacotron to capture expressive 
variations in speech style. The GST network processes GST 
combination style embeddings as expressive style labels that 
are jointly predicted within Tacotron. The TP-GST network 
extracts weights or style embedding space from text alone, 
without explicit labels during training phases. Two text-
prediction pathways, Predicting Combination Weights (TPCW) 
and Predicting Style Embeddings (TPSE), are used to extract 
style tokens during inference time. TP-GST methods 
successfully generate expressive speech without background 
noise. Other studies [45] [46] [47] [48] have also utilized GSTs 
in various ways to synthesize expressive speech, control 
speaking styles, and explore fine-grained control of speech 
generation. 

Inspired by the GST module, [49] proposes using global 
speaker embeddings (GSEs) to control the style of synthesized 
speech. GSE has a unique purpose and functionality that differs 
from GST such as focusing on capturing the speaker-specific 
characteristics within a given text, enabling the identification of 
speakers from their speech patterns. In contrast, GSTs are 
designed to capture the stylistic elements of a text, such as 
reading or formal styles. They enable the modification of text 
style while preserving its content.  

In general, GSTs are an effective method for controlling global 
stylistic features of synthesized speech. However, they have 
limitations and challenges, such as requiring a sufficient 
amount of speech samples during the training step to effectively 
synthesize speech in the desired style. As GSTs are designed to 
capture global style features, they may not be an effective tool 

for controlling the nuances of the desired style, such as 
intonation or rhythm. 

B. Style disentanglement 
Speech style disentanglement refers to the process of extracting 
various style factors, such as prosody, speaker, and linguistic-
related factors, which enables fine-grained control of multi-
reference speech style on separate speech datasets. 
Disentangling different informative factors in speech synthesis 
is essential for highly controllable speech style transfer. One of 
the significant challenges in speech technology is separating 
intertwined informative factors. Therefore, separating 
representations of these factors can enhance the robustness of 
expressive speech synthesis systems [50]. Traditional latent 
space representation learning algorithms predict general style 
embeddings with limited fine-grained control. 

In [51], disentangled latent space representations based on 
adversarial learning are adopted to improve the robustness of 
highly controllable style transfer in voice conversion (VC). An 
Adversarial Mask-And-Predict (MAP) network is designed to 
explicitly disentangle the extracted speech representations, 
which include content, timbre, and two additional factors 
related to prosody, rhythm, and pitch. (MAP) network consists 
of a gradient reverse layer (GRL) and a stack of prediction head 
layers. During training, one of the four speech representations 
is randomly masked, and the adversarial network attempts to 
infer the masked representation from the other three 
representations. The prediction head layers in the MAP module 
are composed of a fully connected layer, GeLU activation, layer 
normalization, and another fully connected layer. The MAP 
network is trained to predict the masked representation as 
accurately as possible by minimizing the adversarial loss. 
However, during backward propagation, the gradient is 
reversed, which encourages the representations learned by the 
encoder to contain as little mutual information as possible.  

The adversarial MAP network aims to increase the correlation 
between the masked and other speech representations, while the 
speech representation encoders try to disentangle the 
representations to decrease the correlation using the inversed 
gradient of the adversarial MAP network. The proposed method 
enhances the quality of synthesized speech in voice conversion 
across multiple factors [52]. A single model is trained for 
multiple speakers using the adversarial learning framework, 
instead of building a separate model for each target speaker. 
The proposed method has two training phases, resulting in 
significant improvements in the quality of synthesized voice. In  
[53], a zero-shot style transfer approach using disentangled 
speech representation learning is adopted to transfer speech 
styles with non-parallel datasets. The disentanglement process 
improves style transfer accuracy. 
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C. Gross pitch error (GPE)  
 GPE is the proportion of segments that are measured as voiced 
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higher than a certain threshold (usually taken as 20% in speech 
analysis) [42]. 
 

V. STYLE REPRESENTATION AND TRANSFER 

A. Global Style Token 
In text-to-speech, Global Style Tokens (GSTs) are a recently 
proposed method for extracting style embedding features that 
reflect specific speech styles. GSTs introduce an auxiliary input 
vector to the speech synthesis model to control the global style 
of the synthesized speech. Style tokens are global features of 
speech style that can be adjusted to synthesize speech in a target 
style. Modern GST architectures have been developed to learn 
latent representations of high-dimensional speech data [43] . An 
attention mechanism calculates attention weights for style 
tokens, and the sum of style tokens is used for style 
embeddings. During the training phase, style tokens are initially 
created randomly, and they learn speech styles in an 
unsupervised manner. 

In  [44], a Global Style Token (GST) network is combined with 
an augmented version of Tacotron to capture expressive 
variations in speech style. The GST network processes GST 
combination style embeddings as expressive style labels that 
are jointly predicted within Tacotron. The TP-GST network 
extracts weights or style embedding space from text alone, 
without explicit labels during training phases. Two text-
prediction pathways, Predicting Combination Weights (TPCW) 
and Predicting Style Embeddings (TPSE), are used to extract 
style tokens during inference time. TP-GST methods 
successfully generate expressive speech without background 
noise. Other studies [45] [46] [47] [48] have also utilized GSTs 
in various ways to synthesize expressive speech, control 
speaking styles, and explore fine-grained control of speech 
generation. 

Inspired by the GST module, [49] proposes using global 
speaker embeddings (GSEs) to control the style of synthesized 
speech. GSE has a unique purpose and functionality that differs 
from GST such as focusing on capturing the speaker-specific 
characteristics within a given text, enabling the identification of 
speakers from their speech patterns. In contrast, GSTs are 
designed to capture the stylistic elements of a text, such as 
reading or formal styles. They enable the modification of text 
style while preserving its content.  

In general, GSTs are an effective method for controlling global 
stylistic features of synthesized speech. However, they have 
limitations and challenges, such as requiring a sufficient 
amount of speech samples during the training step to effectively 
synthesize speech in the desired style. As GSTs are designed to 
capture global style features, they may not be an effective tool 

for controlling the nuances of the desired style, such as 
intonation or rhythm. 

B. Style disentanglement 
Speech style disentanglement refers to the process of extracting 
various style factors, such as prosody, speaker, and linguistic-
related factors, which enables fine-grained control of multi-
reference speech style on separate speech datasets. 
Disentangling different informative factors in speech synthesis 
is essential for highly controllable speech style transfer. One of 
the significant challenges in speech technology is separating 
intertwined informative factors. Therefore, separating 
representations of these factors can enhance the robustness of 
expressive speech synthesis systems [50]. Traditional latent 
space representation learning algorithms predict general style 
embeddings with limited fine-grained control. 

In [51], disentangled latent space representations based on 
adversarial learning are adopted to improve the robustness of 
highly controllable style transfer in voice conversion (VC). An 
Adversarial Mask-And-Predict (MAP) network is designed to 
explicitly disentangle the extracted speech representations, 
which include content, timbre, and two additional factors 
related to prosody, rhythm, and pitch. (MAP) network consists 
of a gradient reverse layer (GRL) and a stack of prediction head 
layers. During training, one of the four speech representations 
is randomly masked, and the adversarial network attempts to 
infer the masked representation from the other three 
representations. The prediction head layers in the MAP module 
are composed of a fully connected layer, GeLU activation, layer 
normalization, and another fully connected layer. The MAP 
network is trained to predict the masked representation as 
accurately as possible by minimizing the adversarial loss. 
However, during backward propagation, the gradient is 
reversed, which encourages the representations learned by the 
encoder to contain as little mutual information as possible.  

The adversarial MAP network aims to increase the correlation 
between the masked and other speech representations, while the 
speech representation encoders try to disentangle the 
representations to decrease the correlation using the inversed 
gradient of the adversarial MAP network. The proposed method 
enhances the quality of synthesized speech in voice conversion 
across multiple factors [52]. A single model is trained for 
multiple speakers using the adversarial learning framework, 
instead of building a separate model for each target speaker. 
The proposed method has two training phases, resulting in 
significant improvements in the quality of synthesized voice. In  
[53], a zero-shot style transfer approach using disentangled 
speech representation learning is adopted to transfer speech 
styles with non-parallel datasets. The disentanglement process 
improves style transfer accuracy. 
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In general, disentanglement speech representation learning is a 
promising approach for highly controllable speech style 
transfer. However, this method comes with computational 
complexity that requires substantial computing power. This 
issue needs to be carefully considered. 

C. Cross-speaker style transfer 
Cross-speaker style transfer (CSST) is a cutting-edge technique 
for synthesizing expressive speech. It aims to transfer multiple 
speaking styles from various supporting speakers to a target 
speaker while maintaining the target speaker's identity and 
timbre  [54]. Unlike traditional speaking style transfer methods 
that collect style embeddings from reference speech and use 
them as auxiliary inputs to synthesize stylized speech  [55], 
[56], modern cross-speaker style transfer conveys different 
speaking styles between speakers without requiring text-paired 
reference speech  [57]. Numerous studies have adopted CSST 
to transfer speech styles between multiple speakers. 

In [58], a chunk-wise multi-scale cross-speaker style and 
adversarial classifiers are proposed for style transfer. Multi-
scale cross-speaker style is trained in two phases to predict both 
global style embeddings (GSE) and local prosody embeddings 
using an adversarial training approach. An adequate amount of 
speech style data from non-target speakers is needed during the 
training process. In  [59], a multi-speaker acoustic system called 
Daft-Expert is employed to transfer highly expressive prosodic 
styles from both seen and unseen speakers. FiLM conditioning 
layers are used to embed prosody information in the TTS 
system. FiLM conditioning layers is a general-purpose 
conditioning technique for neural networks known as FiLM 
(Feature-wise Linear Modulation) proposed by [60]. FiLM 
layers influence neural network computations through a 
straightforward feature-wise affine transformation, utilizing 
conditioning information. The proposed model is combined 
with both FiLM layers and adversarial learning for highly 
accurate cross-speaker transfer. 

Cross-speaker transfer with data augmentation techniques has 
been successfully used in low-resource expressive TTS 
systems. A recent study [61] applied data voice conversion VC-
based augmentation for cross-speaker style transfer, where 
expressive speech datasets are not available for the target 
speaker. The adopted method uses two models: Pitch-Shift PS-
based data augmentation and voice conversion VC-based data 
augmentation. Pitch-shift PS-based augmentation involves 
altering the fundamental frequency of the speech signal, 
providing a technique to modify the perceived pitch without 
changing the speaker identity .PS-based augmentation is used 
for source and target speaker samples to enhance the stability 
of the training stage, while short-time Fourier transform 
(STFT)-based optimization is adopted for the voice conversion 
training stage. 

FastSpeech Multi-language TTS system [62] applied cross-
language style transfer to synthesize speech in any speaker style 
in the target language, overcoming the challenge of non-
authentic accent issues in cross-speaker style transfer. 
Conditional variational encoder and adversarial learning are 
used in the training process. Cross-speaker style transfer still 
faces challenges since multiple speakers have varying styles 
and timbres. Several studies have applied different techniques, 
such as speaker normalization  [63] [64] [65] to model speaker 
attributes, data augmentation [66] [67] [68] [69] , and multi-
task learning  [70] [71], to generalize TTS systems to new 
speakers.

D. Speaker adaptation  
TTS systems that employ speaker adaptation techniques aim to 
adjust a pre-trained model with a large-scale corpus to 
accommodate unseen speakers during the training process, even 
when there is a limited amount of speech data. Speaker 
adaptation is an effective technique when only a few minutes of 
target style data are available, as its primary role is to transfer 
speaking styles from a source speaker to a new speaker with 
limited adaptation data [72]. Adaptation strategies can be 
divided into two main categories. The first category of TTS 
systems uses pre-trained additional encoding networks to 
predict speaker attributes, which are then combined with 
linguistic characteristics as inputs to the synthesizer model  [73] 
[74] [75] [76]. On the other hand, the second category fine-
tunes the weights of the pre-trained multi-speaker TTS system 
to mimic a new speaker [77] [78]. Bayesian optimization (BO) 
has achieved high performance in fine-tuning TTS models. 

A novel method called BOFFIN TTS (Bayesian Optimization 
for Fine-tuning Neural TTS) has been able to transfer styles for 
voice cloning in TTS systems under data-scarcity constraints 
[79]. This proposed method finds the optimal weights for 
hyperparameters for any target speaker in a functional and 
automatic manner. One of the critical aspects of this approach 
is its ability to intelligently search the hyperparameter space 
while minimizing the required computational resources. This is 
achieved through the use of Gaussian processes, which model 
the target function and provide a measure of uncertainty to 
guide the search for optimal hyperparameters. By exploiting 
this uncertainty, the algorithm can effectively balance 
exploration and exploitation during optimization. Another 
advantage of the Bayesian optimization approach is its 
flexibility in incorporating various constraints and domain 
knowledge into the optimization process. For example, one can 
introduce regularization terms or prior information on the 
hyperparameters to improve the adaptation performance. This 
can be particularly useful when dealing with challenging 
scenarios, such as limited data or highly diverse speaker 
characteristics. 
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Some recent works have also explored the combination of 
Bayesian optimization with other machine learning techniques, 
such as transfer learning and multi-task learning, to further 
improve the adaptation process [80]. By leveraging the shared 
information between different speakers or tasks, these 
approaches can achieve better performance, even with limited 
adaptation data. Despite the promising results, there are still 
challenges in applying Bayesian optimization for speaker 
adaptation in TTS systems. One of the main issues is the 
scalability of the optimization process, as the complexity of 
Gaussian process regression grows with the number of 
observations. This can limit the applicability of the method to 
large-scale problems or high-dimensional hyperparameter 
spaces. Moreover, the choice of the surrogate model and 
acquisition function, as well as the initialization of the 
optimization process, can significantly impact the overall 
performance. 

VI. PROSODY MODELLING IN SPEECH SYNTHESIS 
Prosody is a crucial aspect of speech synthesis that focuses on 
the rhythmic, melodic, and expressive features of speech  [76]. 
The primary components of prosody include pitch, duration, 
intensity, and pauses, which collectively contribute to the 
overall expressiveness and naturalness of synthetic speech. 
Prosody helps convey emotions, emphasis, and linguistic 
structure in spoken language, thus playing a significant role in 
making synthetic speech sound more natural [77]. Hidden 
Markov Models (HMMs) have been used for capturing 
prosodic and linguistic features of speech, where decision trees 
are used to tie contextual features to individual nodes of the 
decision tree [81]. This approach enables more accurate 
modeling of prosody, allowing for generating natural and 
expressive synthetic speech. A new approach has been applied 
for prosody modeling  [82]. This approach enhances prosody 
by integrating pre-trained cross- utterance (CU) representations 
from Wav2Vec2.0 and BERT into Fastspeech2. It improves 
speech naturalness and expressiveness in Mandarin and English 
but heavily relies on pre-trained models and lacks evaluation on 
other languages. Further investigation into model layers is 
needed for better prosody modeling. 

A. Pitch Contour Modeling  
Pitch contour modeling is the process of estimating and 
generating the fundamental frequency (F0) of speech, which 
corresponds to the perceived pitch. Accurate pitch contour 
modeling is essential for achieving natural-sounding prosody in 
speech synthesis. Many studies have been conducted to enhance 
the robustness of pitch. Among them, FastPitch [35]  has gained 
popularity for its ability to control pitch and duration at the 
phoneme level during the synthesis of speech by conditioning 
these values. VocGAN-PS [83] and the FastPitch training 
algorithms have been proposed to improving pitch 

controllability. VocGAN-PS is a timbre-preserving pitch shift 
method that expands the pitch range without altering vocal 
characteristics. It avoids the need for additional algorithms like 
pitch tracking, however, may struggle with precise pitch 
estimation during transitions. The FastPitch training algorithm 
utilizes pitch-augmented speech data generated by VocGAN-
PS to enhance FastPitch's pitch control and robustness, but its 
effectiveness relies on the quality and diversity of the 
augmented datasets. 

There are different techniques for pitch contour modeling, 
including rule-based methods, statistical parametric methods  
[84], and deep learning approaches [81]. Rule-based methods 
use linguistic and phonetic rules to generate pitch contours, 
while statistical parametric methods (e.g., hidden Markov 
models or Gaussian mixture models) learn the relationship 
between linguistic features and pitch contours from data. 
Recently, deep learning methods like recurrent neural networks 
(RNNs) and convolutional neural networks (CNNs) have also 
been employed for pitch contour modeling, leveraging their 
ability to learn complex patterns and capture long-range 
dependencies in the data [67].  

B. Duration Modeling  
Duration modeling deals with predicting the duration of 
phonemes, syllables, or words in synthetic speech. Accurate 
duration modeling is vital for natural-sounding speech, as it 
contributes to the overall rhythm and pace of the spoken 
language  [85]. 

Reference [86] propose an unsupervised text-to-speech (UTTS) 
system. In this system, a Speaker-Aware Duration Prediction 
module takes the phoneme sequence and speaker embedding as 
input to predict the speaker-aware duration for each phoneme. 
The phoneme sequence is first passed into a trainable look-up 
table to obtain the phoneme embeddings. Then, a multi-layer 
attention module is used to extract the latent phoneme 
representation, followed by a conv-1D module to combine the 
latent phoneme representation with the speaker embedding. A 
linear layer is then applied to generate the predicted duration in 
the logarithmic domain. During training, the Mean Squared 
Error (MSE) is utilized to calculate the difference between the 
predicted duration and the target duration obtained from forced 
alignment extracted by Montreal Forced Alignment (MFA). 

During inference, the duration predictor rounds up the predicted 
duration and expands the phoneme sequence to form an 
estimated forced alignment. This estimated forced alignment is 
then used in the UTTS system for speech synthesis. 

In [87] zero-shot TTS model utilized duration modeling as part 
of the conditioning process, enabling rhythm transfer and 
extracts disentangled embeddings between rhythm-based 
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speaker characteristics and acoustic-feature-based ones.The 
proposed method captures rhythm-based speaker 
characteristics , leading to higher perceived speaker similarity. 

Another study [88] proposed two approaches to improve 
duration modeling in TTS systems. The first approach is a 
duration model conditioned on phrasing, which enhances 
predicted durations and provides better modeling of pauses. The 
second approach is a multi-speaker duration model called 
Cauliflow, which utilizes normalizing flows to predict 
durations that better match the target duration distribution. The 
proposed models improved naturalness of speech and variable 
durations for the same prompt, as well as variable levels of 
expressiveness. 

C. Intensity Modeling
Intensity modeling is concerned with estimating and generating 
the energy or intensity of speech signals. Intensity contributes 
to the perceived loudness and stress patterns of synthetic speech 
and is an essential factor for natural-sounding prosody. 

Different approaches have been proposed for intensity 
modeling, ranging from rule-based approaches to statistical 
methods and deep learning techniques. Rule-based methods 
rely on linguistic and phonetic rules to generate intensity 
patterns, while statistical methods, such as Gaussian mixture 
models or hidden Markov models, learn the relationship 
between linguistic features and intensity from data. Recently, 
deep learning methods, including recurrent neural networks 
(RNNs) and convolutional neural networks (CNNs), have been 
employed for intensity modeling, leveraging their capacity to 
learn complex patterns in the data [80]. 

D.  Pause Modeling 
Pauses play a crucial role in speech synthesis, as they help 
convey the structure of spoken language, provide time for the 
listener to process information, and contribute to the naturalness 
of synthetic speech. Pause modeling involves predicting the 
timing and duration of pauses in speech synthesis. 

Many techniques have been proposed for pause modeling, 
including rule-based approaches, statistical methods, and deep 
learning techniques. Rule-based methods rely on linguistic and 
syntactic rules to predict pause locations and durations, while 
statistical methods learn these relationships from data [89]. 
Deep learning techniques, such as recurrent neural networks 
(RNNs) and convolutional neural networks (CNNs), can also be 
employed for pause modeling, as they are capable of learning 
complex patterns and capturing long-range dependencies in the 
data. 

 

VII. CHILDREN SPEECH SYNTHESIS 
Children's speech synthesis is the process of creating artificial 
voices that sound like children, which is useful in developing 
interactive systems and robots for children's education and 
entertainment [81], [90]. However, this area of research poses 
several challenges. First, obtaining high-quality and 
phonetically balanced speech data from children is difficult. 
Additionally, children's voices have distinct characteristics that 
set it apart from adult speech. Mispronounced words, 
disfluencies, and ungrammatical utterances often characterize 
child speech. Furthermore, children exhibit linguistic 
differences compared to adult speech across different levels, 
such as prosody, vocabulary, grammar, and sizeable acoustic 
variability of child speech [91]. Moreover, synthesizing 
expressive conversational speech is a further challenge, as it 
requires the inclusion of paralinguistics and emotions in the 
synthesized speech [92]. Evaluating the quality of children's 
speech synthesis is also not straightforward, as it involves 
prolonged exposure to the synthetic voice. 

 Despite these challenges, researchers are exploring various 
approaches, such as speaker adaptive. a study conducted by [93] 
explored the acoustic characteristics of children's speech, 
encompassing aspects such as duration and pitch the results 
indicated that certain vowel sounds have longer durations in 
children compared to adults. Moreover, synthesizing expressive 
conversational speech is a further challenge, as it requires the 
inclusion of paralinguistics and emotions in the synthesized 
speech  [92].  

Evaluating the quality of children's speech synthesis is also not 
straightforward, as it involves prolonged exposure to the 
synthetic voice. Despite these challenges, researchers are 
exploring various approaches, such as speaker-adaptive HMM-
based speech synthesis and deep learning techniques, to 
develop efficient and accurate methods for children's speech 
synthesis.  

The goal is to make dialogue systems more inclusive and 
accessible for younger users. Hidden Markov Models (HMMs) 
have been used in child speech synthesis to find suitable initial 
models and speaker adaptation methods [94], [95]. 
Nevertheless, HMM-based systems for synthesizing child 
speech often face difficulties in achieving high naturalness and 
accurately replicating the subtleties of children's speech. In this 
study [91],  

The researchers introduced deep neural vocoders within a TTS 
framework to achieve child speech synthesis. Their method 
involves fine-tuning both the acoustic model Tacotron2 and a 
pre-trained WaveRNN vocoder. Moreover, they performed 
additional fine-tuning of the WaveRNN vocoder on a dedicated 
child speech dataset, improving the quality of child speech 



Advancements in Expressive Speech Synthesis:  
a Review

INFOCOMMUNICATIONS JOURNAL

MARCH 2024 • VOLUME XVI • NUMBER 1 43

 9 

synthesis [96]. In [97], a hybrid system that combines DNN 
with HMM was utilized for automatic speech recognition, using 
approximately 10 hours of Italian child speech data. This hybrid 
DNN-HMM approach proved effective in enhancing speech 
recognition accuracy specifically for Italian child speech. 

VIII. DISCUSSION AND CONCLUSION 
Speech synthesis has come a long way since the early days of 
simple rule-based systems. Today, there are a variety of 
approaches and techniques that can be used to generate natural-
sounding synthetic speech. This survey offers an overview of 
the development of expressive Text-to-Speech (TTS) systems 
and the diverse methodologies employed to synthesize 
expressive speech from written text. The selected articles 
presented a range of TTS and speech synthesis models that aim 
to enhance the quality and expressiveness of synthetic speech. 
This survey encapsulates the contemporary as well as 
conventional methods that are utilized in TTS systems. We 
discussed   deep learning-based speech synthesis, emotional 
speech synthesis and style transfer in speech synthesis. 
Additionally, we have reviewed several   objective metrics such 
as Itakura-Saito measure, Root mean square (RMSE), Gross 
pitch error (GPE) and subjective metrics such as MOS and 
MUSHRA utilized to access the quality of the synthesized 
speech are examined.  In addition, our focus was on the 
representation and transfer approaches for style to 
comprehensively illustrate the significance of style 
representation in enhancing the expressiveness of synthesized 
speech in Text-to-Speech (TTS) systems. Further, we reviewed 
both deep learning-based autoregressive model such as Parallel 
WaveNet and non-autoregressive model such as FastSpeech 
that are used in the front-end and back-end of TTS system.  

Finally, we point out the challenges in child speech synthesis, 
which involves the difficulty of obtaining high-quality and 
phonetically balanced speech data from children. Additionally, 
we address the unique characteristics of children's speech, 
differentiating it from adult speech, including linguistic 
variations and expressive conversational patterns. 

We hope this paper will offer a clear overview for readers to 
understand the current status of expressive speech synthesis 
models, inspiring continuous research efforts on expressive 
TTS systems. This, in turn, aims to promote future modern in 
the field of study expressive TTS systems, especially in the field 
of child speech synthesis. 
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