INFOCOMMUNICATIONS JOURNAL

Blockchain-Based, Confidentiality-Preserving
Orchestration of Collaborative Workflows

Blockchain-Based, Confidentiality-Preserving
Orchestration of Collaborative Workflows

Baldzs Adém Toldi, and Imre Kocsis

Abstract—Business process collaboration between independ-
ent parties is challenging when participants do not completely
trust each other. Tracking actions and enforcing the activity
authorizations of participants via blockchain-hosted smart con-
tracts is an emerging solution to this lack of trust, with most
state-of-the-art approaches generating the orchestrating smart
contract logic from Business Process Model and Notation
(BPMN) models. However, compared to centralized business
process orchestration services, smart contract state typically
leaks potentially sensitive information about the state of the col-
laboration, limiting the applicability of decentralized process
orchestration. This paper presents a novel, collaboration confi-
dentiality-preserving approach where the process orchestrator
smart contract only stores encrypted and hashed process states
and validates participant actions against a BPMN model using
zero-knowledge proofs. We cover a subset of BPMN, which is
sufficient from the practical point of view, support message-
passing between participants, and provide an open-source, end-
to-end prototype implementation that automatically generates
the key software artifacts.

Index Terms—blockchain, BPMN, orchestration, collabora-
tion, confidentiality, zero-knowledge proofs

I. INTRODUCTION

In modern business science, Business Process Management
(BPM) as a discipline [1] advocates process-focused thinking
about internal activities and external collaborations to improve
key performance indicators. Automating the execution of
business processes is a key proposition of BPM and has been
supported for a long time by various technical solutions [2].
Today, most of these, typically centralized, tools and services
use the leading business process modeling standard, Business
Process Model and Notation (BPMN) 2.0 [3] as a process
definition language [4].

Distributed ledger technology (DLT), generally imple-
mented on a blockchain basis, is widely recognized as a
compelling platform to support the cross-organisational ex-
ecution of business processes — even when the organisations
cannot agree on a trusted (third) party as a middleman [5].
Blockchain-deployed smart contracts can impartially enforce
the agreed-on sequences of activities and track sent and
received messages. Smart contracts can also host data objects
acted on by a process directly or anchor their changes in the
blockchain via cryptographic commitments.

Dept. of Measurement and Information Systems Budapest University of
Technology and Economics Budapest, Hungary
(E-mail: balazs.toldi@edu.bme.hu, kocsis.imre@vik.bme.hu)

DOI: 10.36244/1CJ.2023.3.8

72

However, blockchain-assisted BPM is still a relatively new
discipline — importantly, known BPMN-based solutions are
inadequate from the privacy and confidentiality point of view.
This paper presents a novel, collaboration confidentiality-
preserving approach and end-to-end prototype tooling for
the on-chain process orchestration of cross-organizational,
BPMN-based collaborations using zero-knowledge proofs
(ZKPs)!. Specifically, for a sufficient subset of BPMN, we
present a transformation of the admissible state updates of
BPMN process instances to programs of the ZoKrates [6]
toolkit. We assemble state update validity provers from these
programs for the participants and proof-verifying orchestrator
smart contracts. We define an on-chain process state com-
mitment update protocol, describe our open-source end-to-end
implementation prototype? and evaluate practical viability.

Our contribution is novel from two aspects. First, to our
knowledge, the confidentiality challenges of decentralized
BPMN orchestration have not been addressed systematically
and constructively yet. Second, we express BPMN execution
as an incremental computation in a form amenable to commit-
and-prove style zero-knowledge validation in smart contracts.
This paves the way for further research on the computational
representation of orchestrated BPMN execution against the
continuously appearing ZKP advancements.

II. MOTIVATION AND PROBLEM STATEMENT

BPMN is a standardized approach to visually and precisely
express how business processes should be performed. BPMN
is used in many domains — including finance, banking, man-
ufacturing, healthcare, logistics and telecommunications — for
capturing processes with well-defined sequences of regularly
repeated activities. The BPMN standard defines several model
types, process, collaboration and choreography being the most
widely used ones. Process (flow) models are the simplest: these
express the sequence, preconditions and exception handling of
a single process performed by a single organization. Collabo-
rations model the individual processes performed by collabo-
rating parties — usually business entities — and their messaging-
based interactions. Choreography diagrams focus solely on the
message exchanges between collaborating entities.

'"This paper is based on the Scientific Student Association report submitted
by Baldzs Addm Toldi to the 2022 competition at the Budapest University
of Technology and Economics: https://tdk.bme.hu/VIK/sw8/Kollaborativ-
munkafolyamatok-titkossagmegorzo

2 Available at https://github.com/ftsrg/zkWF

SEPTEMBER 20283 « vOLUME XV * NUMBER 3

mailto:balazs.toldi%40edu.bme.hu?subject=
mailto:kocsis.imre%40vik.bme.hu?subject=
https://tdk.bme.hu/VIK/sw8/Kollaborativ-munkafolyamatok-titkossagmegorzo
https://tdk.bme.hu/VIK/sw8/Kollaborativ-munkafolyamatok-titkossagmegorzo
https://github.com/ftsrg/zkWF
https://doi.org/10.36244/ICJ.2023.3.8

INFOCOMMUNICATIONS JOURNAL

A. Decentralized orchestration

For over a decade, software tools have been available to
assist with process execution. The more sophisticated ones
track and orchestrate activities according to a BPMN model,
register activity-related data and perform decision-making on
further process evolution. However, centralized orchestration
introduces a trusted orchestrator party requirement when we
move beyond single-entity processes. With the emergence of
blockchain and distributed ledger technology, the potential of
decentralizing various aspects of cross-organizational collabo-
ration has been recognized quite early.

Consider the BPMN car leasing collaboration model in
Figure 13, where the internal processes of a car dealership, a
leasing company and a financing bank must be coordinated to
accept a leasing application. Individual executions of models
are called instances and have an instance state. The coloring in
Figure 1 demonstrates a state: green denotes that the dealership
has completed insurance processing and the leasing company
and the bank would be able to begin processing. However, for
the leasing company to proceed, active downpayment checking
(orange) must be finished, then the downpayment filed, and a
downpayment notification sent and received.

Using blockchain-deployed smart contracts that track col-
laboration state, the execution enablement and execution obli-
gation of the activities of the parties can be enforced without
a dedicated, trusted party. The transaction journal nature of
blockchains can also ensure that the full trace is also stored in
an immutable and irrepudiable way. While tracking the internal
state of participant-internal processes on-chain is not always
desirable, it is a valuable option; e.g., when decisions have to
be made in a way verifiable by the other collaborating parties.

Orchestrating and journaling messages and collaborative
data handling are two further collaboration aspects which can
be improved with “blockchainification”. In both cases, the or-
chestrator smart contracts usually only manage cryptographic
(hash) commitments to externally handled messages and data
modifications, to avoid storing sizeable data on-chain.

Tools and approaches exist to create orchestrator smart
contracts from BPMN models (see Section III). However, no
systematic solution exists to protect sensitive collaboration
state information in the smart contract state from parties
who can read the blockchain but do not participate in the
collaboration. In our example, a leasing company may wish
that its competitors do not see how many open cases they have,
how long it takes to perform key steps in the process, or what
lease rates they apply.

Fulfilling such requirements is a confidentiality challenge
that contradicts core blockchain design principles. Blockchain
nodes must be able to validate and execute incoming transac-
tion requests to reach consensus on ledger updates, be those
changes of the balances of a natively tracked cryptocurrency
or state changes of deployed smart contracts. If the transaction
details are made “incomprehensible” to the nodes, e.g., by off-
chain encryption, they can’t validate the preconditions for per-

3The model was created in the “Digitisation, artificial intelligence and data
age workgroup” of the ongoing BME-MNB cooperation project. (MNB is the
Central Bank of Hungary.). For legibility, the process in Figure 1 is slightly
simplified; the whole model is available in our project repository.

SEPTEMBER 20283 « vOLUME XV * NUMBER 3

Blockchain-Based, Confidentiality-Preserving
Orchestration of Collaborative Workflows

forming the transaction and compute state updates. For smart
contracts, the dominant cryptographic answers to this dilemma
are validating transactions with ZKPs and confidentiality-
preserving execution using homomorphic encryption, with the
prior being significantly better established currently.

B. Problem statement: BPMN collaboration confidentiality

We set up our problem statement through a basic system
model and the enumeration of required security properties.
We target a simple form of collaboration confidentiality (see
the properties below) under the assumption that it is not in the
interest of any process participant to leak information about
process instances; participants neither directly leak informa-
tion nor help external parties to compromise confidentiality.
This is one of the realistic models for our setting, even though
the participants do not completely trust the actions of each
other. We will touch briefly on stronger models in Section IX.

1) Basic assumptions and terminology: participants wish
to collaborate in the execution of an instance of a previously
agreed-on BPMN collaboration definition. All other parties are
process external. All participants have a cryptographic key pair
for signature-based authentication and process activity autho-
risation. The underlying process model is public knowledge,
but the public keys are shared only between the participants.
We assume the absence of private key compromises.

For the underlying blockchain, we assume complete in-
tegrity (no successful attack on the consensus) and, for the sake
of simplicity, deterministic finality (accepted blocks do not get
retracted). Note that even blockchains with probabilistic block
finality are usually quasi-deterministically final already at the
time scale of a few blocks. On the other hand, process external
parties have complete visibility of blockchain transactions.
We treat the blockchain as fair — any transaction submitted
by a participant is included in a block in a reasonable time,
irrespective of concurrent transaction request load. While, in
practice, blockchain platforms have strongly varying fault and
threat models and sensitivity (see, e.g., [7]), these are basic
assumptions of normal operational conditions. As a part of
platform selection, security and dependability analysis should
evaluate the risk of these assumptions not being met.

2) System model: the classic Business Process Orchestrator
(BPO) middleware pattern [8] facilitates business process
execution by providing a message broker and extending it with
state management and persistent state storage. The solutions
in the state-of-the-art closely match this pattern. (Technically,
message passing is only coordinated and journaled by the
smart contract their core.) The smart contract as a Process
Controller [8] also performs authentication and authorization
based on the BPMN model to ensure that the stored state
sequence never deviates from the model semantics. We also
aim to employ a blockchain-deployed smart contract as a BPO.

3) Security properties: we target a set of integrity, avail-
ability and confidentiality guarantees. Integrity and availability
properties are already covered by the prior art; our contribu-
tions lie in establishing collaboration confidentiality, as defined
by properties C1 and C2, despite using smart contracts. BPO-
SC refers to a per-process instance BPO smart contract.

73

INFOCOMMUNICATIONS JOURNAL

Blockchain-Based, Confidentiality-Preserving
Orchestration of Collaborative Workflows

Check &
register

Prepare data

Check
documents

Receive
application,
insurance data
and proof of
downpayment
from client

-

Car dealership

Check down-
payment
receipt

Filing down-
payment

y and
optional
insurance

Verify loan
disbursement
receipt

Register loan
disbursement

i

N
Download
invoice from the
Tax office

\ J

4.[Check invoice

Receive
request for
funding

@

Leasing company

S

Check Down
payment
receipt

Send
Transaction
receipt

Record
Transaction
receipt

—

=20

Allocate the
loan amount in
a sub-account

Receive a loan
notification

Bank

Fig. 1. Car leasing BPMN collaboration example (simplified for presentation).

I1: The state traces enforced by the BPO-SC always adhere
to the operational semantics of the underlying BPMN model.

12: Process-external parties cannot influence the BPO-SC state.

I3: Process state updates can be initiated only by the partici-
pants authorized by the model and instance state.

A1l: No external party can influence authorised participants’
ability to perform state updates in a bounded time.

A2: No participant can influence the ability of authorized
participants to perform state updates in a bounded time.

A3: Participants can always learn the trace and current state.
C1: External parties cannot determine participant identities.

C2: No external party can learn more about the trajectory,
timings and stepwise properties (e.g., process variables and
message contents) of the trace during and after execution than
the fact that an instance has been started.

III. RELATED WORK

Smart contracts, as a rule, cannot be altered after de-
ployment; thus, to minimize the probability of software
faults, domain-specific languages and Model-Driven Engineer-
ing (MDE) are steadily gaining ground in smart contract
development [9]. In our context, the established approach is
a BPMN model to serve as a specification, and orchestrator
smart contract logic is generated automatically from the model.

A. Decentralized business process orchestration

Caterpillar [10] was the first open-source BPMN-to-Solidity
compiler (Solidity is the primary smart contract development
language for the Ethereum platform). Since its initial release,
several forks have emerged. Some of these also come with
an extended feature set, like Blockchain Studio [11], which

74

In the depicted example state, green denotes “completed”; orange is “active”.

adds role management, or [12], which adds time constraints.
Lorikeet [13] is a model-driven engineering approach that
integrates assets into business processes. Lorikeet extends the
BPMN 2.0 specification with support for asset registries and
also transforms models into Solidity smart contracts. The smart
contracts handle the orchestration of the process as well as
interactions with the tokens. Chorchain [14] takes a BPMN
choreography and generates an Ethereum smart contract that
can be used to execute the model. ChorChain also includes
a dedicated modeling tool. The same authors released two
further tools: Multi-Chain [15] and FlexChain [16]. Multi-
chain is similar to Chorchain, but it also supports Hyper-
ledger Fabric [17]. FlexChain can only produce Solidity smart
contracts, but the user can also define a ruleset for each
choreography. If a condition in the ruleset is met, then an
off-chain processor will perform its underlying action.

Our analysis showed that the process state and trace are
easily recoverable from the process manager smart contracts
for all the tools above.

B. Commit-and-prove ZKP with smart contracts

Zero-Knowledge Proofs (ZKPs) are cryptographic methods
to prove the validity of various statements without revealing
any additional information [18]. ZKP verification in a smart
contract requires a scheme with ’single-shot” message passing
from prover to verifier; in this work, we rely on zk-SNARKS, a
family of noninteractive, and also succinct (small and cheaply
verifiable proofs) ZKPs. We use the ZoKrates toolkit as a
ZKP front-end with a high-level programming language [6].
ZoKTrates currently supports the Groth16 [19], GM17 [20] and
Marlin [21] proving schemes.

Our contribution implements a commit-and-prove approach.
In commit-and-prove schemes, a party first commits to an

SEPTEMBER 20283 « vOLUME XV * NUMBER 3

INFOCOMMUNICATIONS JOURNAL

Participant 1

Participant 2

\
hash(state)

Smart contract encrypt(state)

Blockchain

@)

update: hash(state)
encrypt(state)
prove: "I'm next”
Commit to hash(M)

©,

Check Message M

Participant 1 @ Participant 2
DB,IPFS
Email,IM,...

Fig. 2. Overview of the zkWF protocol

input and, possibly later, proves some predicate about the input
— without revealing it [22]. This is a widely used pattern
in the smart contract-based application of zero-knowledge
proofs. Recent surveys on ZKP schemes, technologies and
applications can be found in [23] and [24].

IV. A CONFIDENTIALITY-PRESERVING APPROACH

The fundamental difference of our approach from [10-16]
is that instead of storing the process state on-chain in an
easily interpretable form in an orchestrator smart contract, we
store encrypted states and cryptographic state commitments
and accept update proposals on the presentation of ZKPs over
the current and proposed commitment. The approach relies on
two key conceptual components: our zkWF (“zero knowledge
WorkFlow”) protocol and what we call ”"zkWF programs”.

A. The zero-knowledge WorkFlow (zkWF) protocol

The zkWF protocol is a hash commitment style protocol
that allows the participants of a business process to follow and
step the execution of a business process. Figure 2 presents a
high-level overview.

At the centre of the scheme is a smart contract instance on a
blockchain for an instance of a collaboration model. This smart
contract stores and manages the state of the collaboration — as
specified by the underlying BPMN model — in an encrypted
and a hashed form.

During process execution, the collaborating parties can send
messages to each other by off-chain means @. These are

SEPTEMBER 20283 « vOLUME XV * NUMBER 3

Blockchain-Based, Confidentiality-Preserving
Orchestration of Collaborative Workflows

captured in the underlying process specification as intermedi-
ate message throw and capture events; our state commitment
scheme includes commitments to the message hashes.

When a participant wishes to update the state stored in the
smart contract — that is, to “’step the process” —, it has to create
a ZKP that the proposed state transition is valid. This new state
includes the hash of the message they sent beforehand if the
step involves message sending. It sends the new state hash
commitment, the encrypted new state and the ZKP proof of
state transition validity to the smart contract as a blockchain
transaction @; the smart contract updates its state only if it
can successfully check the ZKP.

When the execution arrives at a point where a participant
receives a message in the next stage of the execution, the
receiving party checks the hash and only accepts (and proceeds
with its part of the collaboration) if the hashes match ®.

Participant authentication is tied to proving private key
ownership in the ZKPs. The public keys are defined over the
participant group-shared process model as a parameterization.
These are cooperation-private, “application-level” key pairs;
on pseudonymizing platforms, such as Ethereum, updater
identity can and should be masked by using independent,
single-use transaction source addresses (i.e., public keys).

Additionally, we require the participants to have a common
means for encrypting and decrypting stored state ciphertexts.
The protocol does not constrain the encryption used.

The protocol can be realized straightforwardly on a wide
range of DLTs; we provide an implementation for Ethereum
and Hyperledger Fabric [17]. While the updates and the con-
tract state are unintelligible to parties outside the collaboration,
statistical and model trace analyses of the update sequences
are still a threat. We enable mitigations by including a “fake”
update transaction variant (no actual state update), which all
participants are authorized to use.

B. zkWF programs

zkWF programs are generated from BPMN specifications
and serve as a bridge between process definition and proof
computation/verification. A zkWF program is a ZoKrates pro-
gram that, for a given BPMN model instance (parameterized
model), can decide whether a given actor is authorized to
execute a state transition in a given execution state. We use
the zkWF program to generate the zero-knowledge proofs and
proof verification code for the orchestrator smart contract.

C. Workflow and toolchain

We created an end-to-end toolchain prototype for our ap-
proach, as depicted in Figure 3.

In the modeling phase, a BPMN model is annotated
with metadata for process instantiation, and our interpreter-
translator creates the corresponding zkWF program.

In the synthesis phase, the ZoKrates toolkit is used to
set up the prover key and verifier key and generates the
verifier smart contract in Solidity. We created novel support
for generating verifier code for Hyperledger Fabric in Java. We
also created the code generation facilities for both platforms’
state commitment management part of the smart contracts.

75

INFOCOMMUNICATIONS JOURNAL

Blockchain-Based, Confidentiality-Preserving
Orchestration of Collaborative Workflows

BPMN -
(D) Modeing lim

Transformation logic

ZKWF program

|

|

I

|

|

I | ZoKrates proof generator prover key
P R R S
|

|

|

|

I

ZoKrates

State commitment
&

verifier smart contract

Web3J wallet HL Fabric EVM

Java Solidity
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1
@ Synthesis
DL specific deployment
Fe======-- -
1| Participant side SDK SC instance
) ZKWE_\)
|
I
|

1
l
VA
'\ | protocol /|
l
1
[

@ Deployment & Operation

O New results*

*Gradients show partially new results

Fig. 3. Toolchain overview

Some secret values used when creating zk-SNARK prover
and verifier keys are considered “toxic waste”: an adversary
can use them to break the scheme, e.g., forge fake proofs.
Thus, security relies on the waste having been deleted. The
associated risk can be mitigated by using a reliable party for
the key generation or performing so-called multi-party trusted
setup ceremonies, where a (large) group of actors assembles
the keys. In this case, security requires only at least one
of them to delete the waste. Such ceremonies tend to be
complicated and thus can pose a problem for by-program
setup. Universal schemes also exist (e.g., [21]), where the
results of a single program-agnostic ceremony can be used to
derive program-specific keys publicly and securely. Choosing
the right approach requires deployment-specific risk analysis;
ZoKrates supports all of the above.

For the deployment phase, we created automation facilities
for deployment to Ethereum (and other blockchains using a
compatible RPC API); and an SDK and GUI for the client side.
Here, we integrate the ZoKrates toolkit as a proof generator.

V. BPMN SUBSET AND EXECUTION SEMANTICS

This paper targets the Basic Modeling Elements of BPMN
2.0 [3, p. 28], the core subset of the specification, with the
restrictions that regarding events, we interpret only message
throw and catch ones (among participants) and do not support
sub-processes and data objects. We argue that this element set
is already sufficient for practical applications. Statistical evi-
dence [25] shows that the usage frequency of the 50 constructs
in the BPMN specification follows a Zipfian distribution; we
cover elements used at least in ~ 25% of the models in [25].
This is also the empirically established "Common Core of

76

BPMN” in [25] with the addition of messaging between partic-
ipants. Our earlier example showcases the supported element
set (except for “exclusive gateways” for process variable-based
choice paths and “lanes” for further subdividing pools).

A. BPMN extensions and structural constraints

We introduce two extended attributes for BPMN elements.
zkp:publicKey separates the tasks of different participants
by attaching a participant-specific public key to a pool, a
lane, or a participant-executable element (activities, message
throws and catches). zkp:variables applies to activities
and declares process instance global variables, and that that
activity may write the variable (reads are allowed for all
activities). These variables can be used in boolean expressions
for exclusive gateways.

Some constraints apply to the structure of the BPMN
models, which are currently admissible in our scheme.

« Gateways must be binary (two incoming/outgoing edges).
« Activities are atomic; i.e., subprocesses are not supported.
o The model must be acyclic (no loops).

We plan to eliminate these constraints in the future; the
required modifications of the state representation and the
zkWF program construction are largely incremental.

B. State representation

Our notion of process instance execution state encompasses
the following aspects (for the specific encoding in zkWF
programs, please refer to the report and the implementation).

« A vector v of the current state of executable elements

o The current values of global variables

« Hashes of the messages already sent in the process

Let M = (V,E,T) be a process model, where V' is the
set of non-flow model elements, E' is the set of model edges
(flows), and T' C V is the set of all executable elements in the
business process. Then, v is a vector of |T| size and Vv; € v
can have one of the following three values:

o 0 (Inactive) — The element has not been reached yet

e 1 (Active) — The element is ready to be executed or is
being executed by a participant

o 2 (Completed) — The execution of the element has been
completed

This state set is a subset of those in the standard activity
lifecycle [3, p. 428] and serves as a reasonable simplification,
as the main focus of the work described here is exploring
the confidential execution aspect. Note that correctly imple-
menting the full lifecycle is a significant software engineering
effort, even in the centralized setting. Also, BPMN users tend
to apply a similar simplified view during modeling, as the
more sophisticated state aspects require experience and limit
the ease of model understanding.

C. Capturing token passing semantics

BPMN 2.0 models have straightforward, token flow-based
standard execution semantics: start events create tokens that
move around as execution progresses. Parallel gateways split

SEPTEMBER 20283 « vOLUME XV * NUMBER 3

INFOCOMMUNICATIONS JOURNAL

and join tokens. To support a different ZKP use case, [26]
introduces a technique for representing valid BPMN execution
state changes by enumerating the possible composite token
marking deltas of the elements upon stepping the process.
Specifically, [26] introduces an array P, where each element
of P is a list of token change and element identifier pairs. We
construct a similar P array under the token passing semantics
and embed it into the zkWF program to enable checking
whether a proposed state update is valid from the BPMN
execution logic point of view. Our P array to describe one-
step token marking changes for a model M consists of 3-tuples
with elements from the set AV:

N = (+1,-1} x T) U{(0, 1)} (1

For T, we apply a simple integer encoding; the —1 in the
”no-token-change” pair second set is a don’t care placeholder.
Especially under our binary gateway condition, which is cur-
rently necessary to ensure reasonable proof computation times,
it is straightforward to enumerate the admissible changes based
on the BPMN model. For example, let’s consider activities
a,b,c € T. a continues in a parallel gateway, which proceeds
to b and c. When a transitions from ”Active” to ”Completed”
and b and c from “Inactive” to "Active”, the following token
marking change happens: ((—1,a), (+1,b), (+1,¢)) € N. The
complete logic can be found in the referenced report.

VI. ZKWF PROGRAM AND PROTOCOL DESIGN

A zkWF program is a ZoKrates program shared among the
participants, with which process participants prove that a busi-
ness process state transition they propose is allowed. In ZKP
terms, the participants are the provers, and the orchestrator
smart contract is the verifier.

ZoKrates programs have public as well as private inputs, and
an output. Private inputs are only visible to the prover; public
inputs are visible to the prover and the verifier, and they are
necessary to verify proofs. In our case, the current commitment
and the proposed one act as public inputs. Private inputs are
more varied; only some are shared across the participants (e.g.,
the cleartext of the current state).

The key current deficiency of our scheme is that our
proofs do not include showing the congruence of the on-
chain stored state ciphertexts and the public state (hash)
commitments. Combining established encryption algorithms
with zk-SNARKSs is hard; advances are being made (see, e.g.,
[27]), but these haven’t appeared in any of the leading zk-
SNARK frameworks yet as vetted and reusable ”gadgets”.

We apply the following measures to this deficiency. An addi-
tional part of our public input (and blockchain-stored data) will
be a signature commitment: the current hash commitment and
the previous hash commitment signed by the last acting party
(using their application-level cryptographic identity). Should a
participant erroneously or maliciously commit a ciphertext that
does not hash to the stated, proven and accepted commitment,
this signature ensures that the offending participant can be
irrepudiably identified by the other collaborating parties.

Although several partially mitigative and corrective schemes
can be built on this measure, we introduce the weakening

SEPTEMBER 20283 « vOLUME XV * NUMBER 3

Blockchain-Based, Confidentiality-Preserving
Orchestration of Collaborative Workflows

Pheurrent Shne Teurrent Snew

L LI

Checking the hash

Checking vector update validity

Authorization

zkWF program

Y Bpew = hash(spew!|new)
Outputs :

Fig. 4. The basic computation model of zkWF programs

assumption that the irrepudiable identifiability of participants
halting execution this way is a sufficient disincentive.

A. zkWF computation model

Figure 4 illustrates the structure of the generated zkWF
programs. For hashing, we use SHA-256; application-level
signing uses the EADSA implementation from the ZoKrates
standard library (both widely used, NIST-standard algorithms).
The private inputs of zZkWF programs are as follows.

e Scurrent - the current state of the process (subsec. V-B)

o Teurrent - fandom salt for hashing scyrrent (32 bits)

e Spew - the updated (“stepped”) process state

e Tpew - New randomness, for hashing s;eq

o pk - public EADSA key of the participant (subsec. IV-A)

o sk - private EDDSA key of the participant

The public inputs (|| denotes concatenation):

L hcurrent = haSh(scurrent”rcurrent)
. Snew = Sig(hcurrent”hnew)

sig denotes signing by the party proposing the new hash
commitment in the concatenation. Given these inputs, the
following steps are performed.

1) Checking the group-shared secret current state and ran-
domness against the public hash commitment to ensure
ongoing integrity.

2) Checking that no illegal state transition is being pro-
posed through s, at the process logic level.

3) Checking the new signature commitment given as a
public input (based on pk and sk) and checking the
authorization of the participant for the business process
step.

4) The program outputs the hash of the new state.

Most aspects of the computational model are straightfor-

ward; we only expand on the important details of BPMN
model encoding and the state change validity checking logic.

B. BPMN model encoding and state change validation

The BPMN model logic is carried over into the zkWF
program by a precomputed P array (Section V-C). To check
whether the correct paths are proposed for exclusive gateways,

77

INFOCOMMUNICATIONS JOURNAL

Blockchain-Based, Confidentiality-Preserving
Orchestration of Collaborative Workflows

the expressions on the sequence flows after the gateways are
also encoded in the program as assertions. Message passing
and variable write permission checks are addressed similarly.

Regarding the executable element state vector, the program
compares Ueyrrent and Vpey TOM Scyprent and Speq. If the
two are the same, the “change” is accepted (as a “step”
under our fake update mechanism). Four or more differences
(pairwise comparisons at the same indices) in the vectors are
considered invalid. Otherwise, we construct a 3 x 3 matrix A
with the initial value

0 -1
A=1l0 -1)
0 -1

Then, for the j-th difference (j € 0...2) at position ¢ €
0...|T] —1 in the vectors, we apply the following updates:

o Veurrent[t] =1 & vpew|i] =2 = Alj] + [—-1,1]

® Ucurrent [Z] =0& Unew [Z] =1= A[]} A [L Z}

® Vcurrent [Z] =0 & Unew [Z] =2= A[]} — [1’ Z}

Any other combination of Veyrrent and vpe, values is
invalid. If P contains an element with the rows of A, then
token passing-wise, the proposed state change is valid, as we
essentially decoded the activity token marking changes (£1)
from the activity state changes: O - Inactive — 1 - Active —
2 - Completed.

Parallel gateway ends (”joins”) induce an additional check:
a transition from a state where not both activities before the
gateway are completed to one where both are also requires
that the activity after the gateway gets activated. State change
validation also includes checking write permissions for global
variables and contrasts the evaluation of arithmetic expressions
with the proposed path for exclusive gateways.

Finally, the message-handling validation logic involves two
major validation aspects. First, a message hash must be
provided when a participant wants to mark a Message Throw
event as “completed”. We assume the actual message to be
passed off-chain. Second, when a participant wants to mark
a Message Catch event as “completed”, we must ensure that
the corresponding Message Throw event is also marked as
completed. The receiver contrasts the message with the hash
value; if this fails, we assume that the further steps are
either captured in the process logic or the sender and receiver
coordinate corrective transmission off-chain.

C. The zkWF protocol

The protocol flows through the orchestrator smart contract
and is simple in light of the earlier sections. The smart contract
state contains the following elements:

L4 hcurrent = haSh(scurrent"Tcu'rrent)

b Cceqilﬁr = enc(scurrent7 Tcurrent)

L4 Scurrent = Sig(hprev | ‘hcurrent)

where enc denotes encryption with the group encryption key
and method (see Section IV). Update request transactions of
the smart contract carry the following arguments:

. hnew = haSh(Snew”rnew)

® Cﬁ?& = enc(5n6w> Tnew)

78

° Snew - Sig(hcurrent”hnew)

° p(hcu'r'rcnt: STLC’LU7 hncw)
The last argument is a ZKP of the correspondence of heyrrent,
Shnew and Ay eq, under the shared zkWF program. The orches-
trator smart contract checks the validity of this proof before
accepting the smart contract state change carried by the other
arguments.

D. Side-channel attack protections

Public BPMN models facilitate side-channel attacks on
confidentiality. Our work until now aimed to ensure that the
trace steps of the BPMN finite automaton remain unintelligible
to the external observer; however, the number and timings of
transitions still carry information. Most BPMN models are
simple enough to infer a usable probability distribution of
possible states and traces from just these observations.

Constant-time execution and delay randomization are two
apparent protection options, though both introduce artificial
delays. Consider a constant-time token passing ring schedule
with dummy operations as our already established scheme. For
n participants, we determine a suitable time quantum ¢ with
which it is acceptable to wait for (n—1)t¢ to delay the “posting”
of any state change. During process execution, at the beginning
of the i-th epoch, participant ¢ mod n checks whether it
needs to send a state update transaction. If yes, it does; if
not, it issues a “fake update” transaction. After terminating
the process, a long fake update stream is advisable. As long
as enough participants meet their fake update obligations and
adhere to their epochs, external observers only see a heartbeat-
like stream of uninterpretable transactions and can determine
even the time of termination only with low probability.

VII. SECURITY PROPERTIES

The presented approach addresses the security requirements
defined in Section II-B as discussed in this section.

A. Integrity

Property I1 holds in the sense that we carefully implement
a strict subset of BPMN semantics, but we acknowledge that
future work should create an explicit proof of conformance.
12 holds due to application-level cryptographic authentication;
I3 due to cryptographic authentication and the very simple
sub-logic of enabling activities and message operations.

B. Availability

Al holds due to 12 and the blockchain fairness assump-
tion — which is mild for high-throughput public and cross-
organizational blockchains. A2 holds only under the disin-
centive assumption of Section VI. However, the assumption
is not strong for domains with a credible threat of legal
or regulatory action (e.g., finance). A participant can also
perform a denial of service attack with a constant stream of
malicious fake updates. The disincentive assumption applies
here, too, but fake update regimen-dependent defences can
also be introduced in the smart contract (e.g., epoch schedule
enforcement). A3 holds due to a smart contract accounting for
state and trace and the blockchain platform assumptions.

SEPTEMBER 20283 « vOLUME XV * NUMBER 3

INFOCOMMUNICATIONS JOURNAL

C. Confidentiality

The C1 guarantee has two layers. At the platform level,
all transactions can originate from single-use addresses on
pseudonymizing platforms — e.g., Ethereum. In Hyperledger
Fabric, the Identity Mixer protocol suite for transactor
anonymization and unlinkability can be used similarly. At
the application level, transaction payloads and smart contract
states contain only hashed, signed and encrypted data. Hashing
is straightforward; for the signed content, note that EdDSA
signatures do not provide a way to recover the signer’s public
key from the signature or to determine whether the same key
was used to sign two different messages. For the encrypted
state, if not a single, group-shared secret is used, an application
should choose an encryption scheme where the participant
keys cannot be recovered.

C2 depends on external data and transaction uninterpretabil-
ity, which flows from the cryptographic measures, and trans-
action unlinkability, which also relies on the measures for C1.
It also requires sufficient side-channel protection, for which
we have at least one strong (not necessarily efficient) option.

VIII. IMPLEMENTATION, TESTING AND PERFORMANCE

The ZoKrates toolkit is a central component in our
framework; the current implementation uses version 0.7.13%.
ZoKrates was the ZKP toolkit with the best-fitting program-
ming language and ZKP scheme support during our research.

A. Code generation

Our code generator, implementing the transformation logic
denoted in Figure 4, is a custom development in Kotlin.
This component generates a zkWF program from an XML-
serialized BPMN model, relying on ZoKrates template files.
First, the model is encoded, as we outlined earlier; then, it
generates the code for the described stages of computation
and checks.We also generate the orchestrator smart contracts
for EVM-based blockchains (Solidity version 0.8.0) and Hy-
perledger Fabric (Java ’chaincode”).

B. Client side

We created a simple participant-side SDK, which wraps
ZoKrates and incorporates the Web3J wallet library. We also
created a TornadoFX-based desktop GUI application ("Work-
Flow GUI”) for testing and demonstration purposes. The GUI
supports all key participant-side actions: monitoring a process
manager smart contract for changes, retrieving state, creating
process step proposals, computing their witnesses and proofs,
and submitting update proposals.

WFGUI also incorporates a process modeller for our BPMN
subset and extensions through an embedding of bpmn-js’;
supports testing through preassembled smart contract call
sequences; and supports process manager smart contract de-
ployment to Ethereum-based blockchains. A demonstrational
video is available in our repository.

4See https://github.com/Zokrates/ZoKrates/releases
3 See https://bpmn.io/toolkit/bpmn-js/

SEPTEMBER 20283 « vOLUME XV * NUMBER 3

Blockchain-Based, Confidentiality-Preserving
Orchestration of Collaborative Workflows

C. Functional testing

We assembled a suite of simple test cases, based on the test
model suites of the tools cited in Section III. BPMN model size
and complexity influence zkWF program size and complexity,
which, in turn, determine proof computation times and on-
chain verification costs. To evaluate the practical feasibility of
our approach, the leasing model from Section II was used as
our representative test case.

D. Performance evaluation

In addition to functional testing (compliance with model
semantics, proper enforcement of authorization aspects and
proper handling of compliant/noncompliant proofs), we used
our test suite to evaluate key performance metrics of the
approach. Performance tests were performed on a desktop PC
(AMD Ryzen 7 2700, 16 GB of DDR4 memory).

In Ethereum, smart contract execution steps, measured in
gas”, incur a cryptocurrency cost, paid by the transaction-
requesting user. For measurements of gas used, we used a pri-
vate, one-node Ethereum test network with version 1.10.25 of
geth, the official Go implementation of the Ethereum protocol.
Blockchain-side efficiency measurements are largely irrelevant
for Hyperledger Fabric, which has no ”gas” notion and where
the smart contract execution layer is highly resource-scalable.
Table I summarizes the relevant size metrics of our test cases.

EL)

TABLE I
BPMN MODEL AND TEST CASE CHARACTERISTICS

[Case [Vertices | Edges | Executable [Size of P | Scenarios |

Test 1 5 4 3 3 3
Test 2 9 10 5 7 9
Test 3 8 8 4 4 4
Test 4 6 5 2 3 2
Test 5 14 12 10 10 10
Repr. 68 69 50 54 52

Table II summarizes the runtimes of the off-chain com-
putations. Compilation and zk-SNARK setup were executed
once; proving time is the sum of computing the witness
and generating the proof, and we give an average over the
scenarios. The measurements indicate that our approach is
practically feasible for real-life models.

TABLE II
OFF-CHAIN COMPUTATION RUNTIMES

[Case [Compilation time [Setup time | Proving time avg. |
Test 1 2722 s 129.58 s 55.0s
Test 2 48.32 s 182.80 s 88.67 s
Test 3 28.55 s 129.69 s 5340 s
Test 4 27.14 s 128.82 s 53.21 s
Test 5 30.74 s 13344 s 54.10 s
Repr. 81.02 s 187.33 s 122.47s

Table III summarizes the gas costs of smart contract de-
ployment and smart contract calls in the zZkWF protocol. Note
that although the representative model is 5-6 times larger
than the simple ones, the smart contract call gas cost is only
moderately higher. As the hashes, signatures, and proofs have
a fixed length, gas usage variability is driven by the size of the

79

https://github.com/Zokrates/ZoKrates/releases
https://bpmn.io/toolkit/bpmn-js/

INFOCOMMUNICATIONS JOURNAL

Blockchain-Based, Confidentiality-Preserving
Orchestration of Collaborative Workflows

encrypted version of the current state. In the measurements,
we use state cleartext instead of ciphertext to eliminate the
impact of the not-constrained encryption.

TABLE III
GAS USAGE ON ETHEREUM

[Case [Deployment gas usage | Update gas usage avg. |
Test 1 2,098,786 gas 490,507 gas
Test 2 2,098,990 gas 497,780 gas
Test 3 2,098,498 gas 493,705 gas
Test 4 2,078,071 gas 503,817 gas
Test 5 2,161,039 gas 491,783 gas
Repr. 2,408,635 gas 548, 898 gas

Due to the novelty of our approach, it is comparable with
the state of the art only in gas costs. Deployment is on par
with, or is better than, the existing solutions. However, the cost
of updating the state is significantly higher; ChorChain uses
about 92,905 gas on average for each message and Caterpillar
is similar to ChorChain.

This “confidentiality premium” is certainly not acceptable
on the Ethereum mainnet. Still, it can be argued that the
high gas price on the mainnet has “priced out” all use cases
that were not strictly crypto-financial years ago. On the other
hand, at the time of this writing, on multiple alternative EVM-
based public blockchains, the gas costs of our operations
translate to fractions of 1 USD. Additionally, our approach
has evident usage potential on purpose-created, permissioned,
cross-organizational blockchains; in this case, the gas cost
is a technical consideration and low enough to allow for
dozens of transactions per block under customary block gas
targets. Lastly, we store encrypted state on-chain “only” to
fulfil requirement A3 the simplest way; highly available off-
chain data storage with blockchain-based integrity assurance
is a common technique.

IX. THREATS TO VALIDITY AND FUTURE WORK

We see compliance with BPMN operational semantics as a
non-negligible threat to validity, especially after our planned
future extension of the supported BPMN subset. For the
approach presented in this paper, we only tested compliant
behavior and not formally prove it; this remains future work.

Impractical proof time for much larger BPMN models is
also a threat. We plan to introduce the capability to handle
hierarchical process models. We expect that we can instantiate
orchestrator smart contracts for sub-processes in a way that
coordinates the commitment-management across the levels,
but controls proof obligation complexity by requiring proof
generation only for a limited-size model part for each update.

While the ring schedule “fake updates” approach is evi-
dently correct for adhering participants (and, we surmise, for
mostly adhering participants), side-channel protections is an
open line of research. We plan to analyse the ring schedule
scheme under various participant failure models and compare
it with delay randomization schemes. Metrics for measuring
the guaranteed level of protection through fake updates are
necessary, too. Differential privacy metrics worked out for
publicly observable messaging settings with a “hide-in-the-
crowd” approach similar to ours [28] promise to be adaptable.

80

Lastly, we note that there are stronger versions of our
collaboration confidentiality model through additional inter-
collaborator confidentiality constraints; it is an interesting
question how our approach can be extended to such settings.

X. CONCLUSION

In this paper, we presented a collaboration confidentiality-
preserving approach for the smart contract-based orchestration
of business collaborations, captured as BPMN 2.0 models. Our
protocol is a novel, and to our knowledge, first-of-its-kind
solution, which we validated functionally as well as evaluated
from the resource usage and gas cost points of view. We also
described a full toolchain prototype which we made available
as open-source software.

ACKNOWLEDGMENT

This work was partially created under, and financed through,
the Cooperation Agreement between the Hungarian National
Bank (MNB) and the Budapest University of Technology and
Economics (BME).

REFERENCES

[1] W. M. Van Der Aalst, M. La Rosa, and F. M. Santoro, “Business

process management: Don’t forget to improve the process!” Business

& Information Systems Engineering, vol. 58, no. 1, pp. 1-6, 2016.

por: 10.1007/s12599-015-0409-x

S. Pourmirza, S. Peters, R. Dijkman, and P. Grefen, “A systematic

literature review on the architecture of business process management

systems,” Information Systems, vol. 66, pp. 43-58,2017.

por: 10.1016/5.is.2017.01.007

Object Management Group, “Business Process Model and Notation

(BPMN), Version 2.0.” [Online]. Available:

https://www.omg.org/spec/BPMN/2.0/

M. Chinosi and A. Trombetta, “BPMN: An introduction to the

standard,” Computer Standards & Interfaces, vol. 34, no. 1, pp. 124—

134,2012. por: 10.1016/j.c5i.2011.06.002

J. Mendling et al., “Blockchains for Business Process Management -

Challenges and Opportunities,” ACM Trans. Manage. Inf. Syst., vol. 9,

no. 1,2018. por: 10.1145/3183367

J. Eberhardt and S. Tai, “ZoKrates — Scalable Privacy — Preserving

Off-Chain Computations,” in 2018 IEEE International Conference

on Internet of Things (iThings) and IEEE Green Computing and

Communications (GreenCom) and IEEE Cyber, Physical and Social

Computing (CPSCom) and IEEE Smart Data (SmartData), 2018, pp.

1084-1091. por: 10.1109/Cybermatics 2018.2018.00199.

[7] C. Cachin and M. Vukoli¢, “Blockchain consensus protocols in the
wild,” in 31st International Symposium on Distributed Computing
(DISC 2017), 2017. [Online]. Available: https://drops.dagstuhl.de/
opus/volltexte/2017/8016/pdf/LIPIcs-DISC-2017-1.pdf

[2

—

[3

4

[5

—

[6

)

[8] I. Gorton, Essential Software Architecture, 2nd ed. Springer Berlin,
Heidelberg, 2011.
[9] Y. Ait Hsain, N. Laaz, and S. Mbarki, “Ethereum’s Smart Contracts

Construction and Development using Model Driven Engineering
Technologies: a Review,” Procedia Computer Science, vol. 184, pp.
785-790, 2021. por: 10.1016/j.procs.2021.03.097

[10] O. Lépez-Pintado, L. Garcia-Baiiuelos, M. Dumas, I. Weber, and A.
Ponomarev, “Caterpillar: A business process execution engine on the
ethereum blockchain,” Software: Practice and Experience, vol. 49,
no. 7, pp. 1162-1193,2019. por: 10.1002/spe.2702

[11] L. Mercenne, K.-L. Brousmiche, and E. B. Hamida, “Blockchain
Studio: A Role-Based Business Workflows Management System,”
in 2018 IEEE 9th Annual Information Technology, Electronics and
Mobile Communication Conference (IEMCON), 2018. pp. 1215-1220
por: 10.1109/IEMCON.2018.8614879.

SEPTEMBER 20283 « vOLUME XV * NUMBER 3

https://doi.org/10.1007/s12599-015-0409-x
https://doi.org/10.1016/j.is.2017.01.007
https://www.omg.org/spec/BPMN/2.0/
https://doi.org/10.1016/j.csi.2011.06.002
https://doi.org/10.1145/3183367
https://doi.org/10.1109/Cybermatics 2018.2018.00199
https://drops.dagstuhl.de/opus/volltexte/2017/8016/pdf/LIPIcs-DISC-2017-1.pdf
https://drops.dagstuhl.de/opus/volltexte/2017/8016/pdf/LIPIcs-DISC-2017-1.pdf
https://doi.org/10.1016/j.procs.2021.03.097
https://doi.org/10.1002/spe.2702
https://doi.org/10.1109/IEMCON.2018.8614879

INFOCOMMUNICATIONS JOURNAL

[12] A.Abid, S. Cheikhrouhou, and M. Jmaiel, “Modelling and Executing
Time-Aware Processes in Trustless Blockchain Environment,” in
Risks and Security of Internet and Systems, ser. LNCS, 2020. pp. 325—
341, por: 10.1007/978-3-030-41568-6_21.

Q. Lu et al.,, “Integrated model-driven engineering of blockchain

applications for business processes and asset management,” Software:

Practice and Experience, vol. 51, no. 5, pp. 1059-1079, 2021.

pol: 10.1002/spe.2931

[14] F. Corradini et al., “ChorChain: A Model-Driven Framework for
Choreography-Based Systems Using Blockchain,” in Proc. of the 1st
Italian Forum on Business Process Management (ITBPM), 2021, pp.
26-32.

[15] ——, “Model-driven engineering for multi-party business processes
on multiple blockchains,” Blockchain: Research and Applications,
vol. 2, no. 3, p. 100 018, 2021. por: 10.1016/j.bcra.2021.100018

[16] ——, “Flexible Execution of Multi-Party Business Processes on
Blockchain,” in 2022 IEEE/ACM 5th International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB),
2022, pp. 25-32. por: 10.1145/3528226.3528369.

[17] E. Androulaki et al., “Hyperledger Fabric: a distributed operating
system for permissioned blockchains,” in Proceedings of the
Thirteenth EuroSys Conference, 2018, pp. 1-15.
poI: 10.1145/3190508.3190538.

[18] ZKProof Community, “ZKProof Community Reference,” 2022.
[Online]. Available: https://docs.zkproof.org/reference.pdf

[19] J. Groth, “On the Size of Pairing-based Non-interactive Arguments,”
in Advances in Cryptology — EUROCRYPT 2016: 35th Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques, 2016, pp. 305-326.
poI: 10.1007/978-3-662-49896-5_11.

[20] J. Groth and M. Maller, “Snarky signatures: Mini- mal signatures of
knowledge from simulation-extractable SNARKS,” in Advances in
Cryptology — CRYPTO 2017: 37th Annual International Cryptology
Conference, 2017, pp. 581-612.
por: 10.1007/978-3-319-63715-0_20.

[21] A. Chiesa, Y. Hu, M. Maller, P. Mishra, P. Vesely, and N. Ward,
“Marlin: Preprocessing zkSNARKs with Universal and Updatable
SRS.” Cryptology ePrint Archive, Paper 2019/1047, 2019. [Online].
Available: https://eprint.iacr.org/2019/1047

[22] D. Bennaroch, M. Campanelli, D. Fiore, J. Kim, J. Lee, H. Oh,
and A. Querol, “Proposal: Commit-and-Prove Zero-Knowledge
Proof Systems and Extensions,” https://docs.zkproof.org/standards/
proposals, presented at the 4th workshop of the ZKProof Community,
19-29 April 2021, online.

[13

SEPTEMBER 20283 « vOLUME XV * NUMBER 3

Blockchain-Based, Confidentiality-Preserving
Orchestration of Collaborative Workflows

[23] X.Sun,F.R.Yu,P.Zhang,Z. Sun, W. Xie, and X. Peng, “A Survey on
Zero-Knowledge Proof in Blockchain,” IEEE Network, vol. 35, no. 4,
pp. 198-205,2021. por: 10.1109/MNET.011.2000473

[24] J. Partala, T. H. Nguyen, and S. Pirttikangas, “Non-interactive zero-
knowledge for blockchain: A survey,” IEEE Access, vol. 8, pp. 227
945-227961,2020. por: 10.1109/ACCESS.2020.3046025

[25] M. z. Muehlen and J. Recker, “How Much Language Is Enough?
Theoretical and Practical Use of the Business Process Modeling No-
tation,” in Seminal Contributions to Information Systems Engineering:
25 Years of CAISE. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 429-443. por: 10.1007/978-3-642-36926-1_35.

[26] T. Aivo, “Zero-Knowledge Proofs for Business Processes,” Master’s
thesis, Univ. of Tartu, 2020.

[27] J. Lee, J. Choi, J. Kim, and H. Oh, “SAVER: SNARK- friendly,
Additively-homomorphic, and Verifiable Encryption and decryption
with Rerandomization,” Cryptology ePrint Archive, Paper 2019/1270,
2019. [Online]. Available: https://eprint.iacr.org/2019/1270

[28] I. A. Seres, B. Pejo, and P. Burcsi, “The Effect of False Positives:
Why Fuzzy Message Detection Leads to Fuzzy Privacy Guarantees?”
in Financial Cryptography and Data Security, ser. LNCS. Cham:
Springer International Publishing, 2022, pp. 123-148.
por: 10.1007/978-3-031-18283-9_7.

Balazs Adam Toldi received his BSc in computer
engineering in 2023 from the Budapest University of
Technology and Economics (BME). Currently, he is an
MSc student at BME, with a primary specialization in
cybersecurity and a secondary specialization in critical
systems.

Imre Kocsis received his PhD from the Budapest
University of Technology and Economics (BME)
in 2019. Currently, he serves as a senior lecturer and
leading blockchain researcher at the Critical Systems
research group of the Dept. of Measurement and
Information Systems of BME. He leads the activities
of the group in conjunction with the Hyperledger
Foundation and the university’s participation in the
European Blockchain Services Infrastructure (EBSI)
network.

81

https://doi.org/10.1007/978-3-030-41568-6_21
https://doi.org/10.1002/spe.2931
https://doi.org/10.1016/j.bcra.2021.100018
https://doi.org/10.1145/3528226.3528369
https://doi.org/10.1145/3190508.3190538
https://docs.zkproof.org/reference.pdf
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1007/978-3-319-63715-0_20
https://eprint.iacr.org/2019/1047
https://docs.zkproof.org/standards/proposals
https://docs.zkproof.org/standards/proposals
https://doi.org/10.1109/MNET.011.2000473
https://doi.org/10.1109/ACCESS.2020.3046025
https://doi.org/10.1007/978-3-642-36926-1_35
https://eprint.iacr.org/2019/1270
https://doi.org/10.1007/978-3-031-18283-9_7

