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Abstract— Quantum computing appears as an alternative 

solution for solving computationally intractable problems. This 
paper presents a new constrained quantum genetic algorithm 
designed specifically for identifying the extreme value of a highly 
constrained optimization problem, where the search space size 
_database is massive and unsorted_ cannot be handled by the 
currently available classical or quantum processor, called the 
highly constrained quantum genetic algorithm (HCQGA). To 
validate the efficiency of the suggested quantum method, 
maximizing the energy efficiency with respect to the target user bit 
rate of an uplink multi-cell massive multiple-input and multiple-
output (MIMO) system is considered as an application. Simulation 
results demonstrate that the proposed HCQGA converges rapidly 
to the optimum solution compared with its classical benchmark. 
 

Index Terms—genetic algorithm, quantum computing, 
quantum extreme value searching algorithm, blind quantum 
computing.  

I. INTRODUCTION 
uantum computing technology provides efficient solutions 
to handle intractable computational problems that classical 
computers are unable to handle. This is achieved by 

exploiting the fundamentals of quantum nature, such as 
quantum superposition and quantum entanglement [1], [2]. 
Different communities and research organizations have used 
quantum computing with the promise of solving various classes 
of computational problems in many areas, including security 
and cryptography [3]–[5], networks [6]–[9], space 
communication [10], [11], and many other optimization fields. 
Quantum computing guarantees exponential speed, short 
running time, and high accuracy [12]. 

Optimal decisions with respect to certain constraints are 
crucial in various applications in a variety of areas, including 
physics, communications, and computer science. For instance, 
in computer networking, routing algorithms must factor in 
network congestion, latency, and reliability to find the best data 
path between devices. Similarly, in wireless communications, 
mobile providers must efficiently allocate radio spectrum to 
ensure fast and reliable connections without interference or 
congestion [13].  
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There are two forms of constrained optimization problems: 
the first type refers to non-highly constrained; it means that the 
constraints are relatively lenient, resulting in a larger feasible 
set of solutions. This can make satisfying the constraints 
simpler, and it may also increase the number of potential 
solutions. The second type consists of highly constrained 
problems, in which constraints are stringent and limit the 
feasible set of solutions, which can lead finding a solution more 
difficult but can also lead to the  
optimal and desired solution. On the other hand, in real-world 
optimization problems, the search space, or size of the 
candidate solutions for a given optimization problem, is 
exceedingly vast, rendering it beyond the computational 
capacity of both classical and quantum computers. 
Additionally, the search space remains unsorted, further 
complicating the task at hand.  

The challenges presented by the highly constrained 
optimization problems, as well as the search space size that 
surpasses the computational capacities of existing classical and 
quantum machines, have motivated us to develop a novel 
quantum genetic algorithm called the highly constrained 
quantum genetic algorithm (HCQGA). An uplink multi-cell 
massive multiple-input and multiple-output (MIMO) 
application is utilized as a representative example for testing 
and validating the efficiency of the HCQGA. Note that this 
paper is an extension of the preceding research publications 
[14]–[19].  

   Recently, researchers have been significantly more 
interested in establishing various quantum genetic algorithms to 
solve optimization problems. The authors in [20] proposed a 
QGA based scheduling algorithm for heterogeneous platforms, 
the algorithm improves task scheduling efficiency and reduces 
the computational cost, but there are also communication-
intensive tasks in signal processing. they reduced it by task 
clustering or task duplication. In [21], the authors presented a 
QGA with simultaneous quantum crossover on all 
chromosomes. They utilized two identical copies of a 
superposition for qubit relabeling, a complexity analysis 
implies that a quadratic speedup over its classical counterpart is 
attained in each generation's dominant factor of the run time. In 
[22], the authors improved the initial population stage of the 
genetic algorithm by employing the quantum counting 
algorithm to detect the number of unsuitable chromosomes in 
the population, the goal of this paper is to exploit a quantum 
algorithm faster than the classical counterparts on the 
optimizing performance. In [23] introduced an immigration 
technique that enhances the QGA by considering the most 
optimal qubit string in quantum chromosomes. Randomly 
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transferring this highly fit qubit string to the next generation's 
chromosomes leads to improved mixing and overall algorithm 
performance.

To the best of our knowledge, there is currently no QGA
available that addresses the aforementioned problem statement. 
This is primarily due to the limitations of most QGAs, which 
can only be executed on a universal quantum computer with a 
constrained qubit size. Consequently, in this research, we did 
not explore a comparison between the existing QGAs and our 
proposed HCQGA.

Massive Multiple-Input Multiple-Output (MIMO) is an 
advanced form of MIMO technology, featuring a large number 
of antennas at base stations to concurrently serve multiple users. 
By leveraging spatial diversity and array gain, it enhances 
system capacity, spectral efficiency, and energy efficiency. 
Massive MIMO outperforms in areas with significant 
population density due to its superior interference management, 
signal quality, and coverage extension. This technology is an 
integral component of 5G and 6G networks, delivering higher 
data rates and enhanced wireless communication performance 
to satisfy the expanding demands of modern connectivity [24]–
[26]. Maximizing energy efficiency (EE) holds significant 
importance due to its potential for mitigating environmental 
impact, conserving finite resources, and yielding substantial 
cost savings [27], [28].

The EE performance of massive MIMO has been explored in 
the following studies: In [29], the authors proposed an energy-
efficient low-complexity algorithm, using Newton's methods 
and Lagrange's decomposition for optimal power allocation and 
user association in massive MIMO. In [30], an adaptive power 
allocation algorithm based on particle swarm optimization for 
enhancing energy efficiency in uplink multi-cell, multi-user 
massive MIMO systems was proposed. However, it does not 
consider the impact of Channel State Information (CSI) on this 
optimization in uplink multi-cell massive MIMO systems. The
authors in [31] suggested a sub-optimal Dinkelbach-like 
algorithm to enhance energy efficiency in the downlink of a 
multi-cell multi-user massive MIMO system, under 
interference limitations and maximum transmit power 
constraints.

The subsequent sections of this paper are organized as 
follows: Section II provides a comprehensive overview of the 
fundamental background required for the development of the 
HCQGA, such as the quantum extreme value searching 
algorithm (QEVSA), blind quantum computing (BQC), the 
unconstrained classical genetic algorithm (UCGA), and the 
unconstrained quantum genetic algorithm (UQGA). Section III 
introduces and extends the UQGA version into HCQGA. In
Section IV, the HCQGA is applied in an uplink multi-cell 
massive MIMO system in order to maximize energy efficiency 
with respect to the desired bit rate of users. To validate the 
efficiency of the HCQGA, simulation experiments have been 
conducted in Section V. Finally, Section VI concludes the 
manuscript.

II. METHODS

To better comprehend the novelty of the developed HCQGA,
it is essential to introduce the preliminary strategies that form 
its foundation. These strategies include the QEVSA, BQC,
UCGA, and UQGA. By merging these strategies, the HCQGA 
presents a unique and innovative approach that addresses the 
highly constrained optimization problems, which entail search
space sizes surpassing the computational capacities of existing 
classical and quantum machines.

A. Quantum Extreme Value Searching Algorithm
The QEVSA is designed to search for the extreme value of an 

unconstrained cost function or an unsorted database. It 
combines two distinct concepts: the classical binary searching 
algorithm (BSA), which utilized for identifying a specific 
element/item within a sorted database [32], [33], and quantum 
existence testing (QET) [34], which is a special case of the 
quantum counting algorithm. When the QET detects the 
presence of the searched target in the unsorted database, it 
returns the answer “YES” otherwise, “NO” [35]. The QEVSA 
is given in detail as follows:

QEVSA

1 We begin with step ℎ =  0 : 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 1 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 0, 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 1 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 0,
and ∆𝐹𝐹 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 0 − 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 0

2 ℎ = ℎ + 1

3 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 ℎ = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 ℎ + [𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 ℎ − 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 ℎ
2 ]

4 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑄𝑄𝑄𝑄𝑄𝑄 (𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 ℎ):

• if  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑌𝑌𝑌𝑌𝑌𝑌, then 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 ℎ+1 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 ℎ
𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 ℎ+1 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 ℎ

• Else   𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 ℎ+1 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 ℎ , 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 ℎ+1 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 ℎ

5 If h < 𝑓𝑓𝑙𝑙𝑓𝑓2 (𝑄𝑄), then go to 2, else stop and 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 ℎ

The parameter 𝑄𝑄 denotes the overall number of steps required 
to execute the BSA embedded in the QEVSA. While the 
parameter 𝐹𝐹 denoted the goal function, such that 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 ℎ
denotes the cost function. The computational complexity of the 
QEVSA is 𝑂𝑂 (𝑓𝑓𝑙𝑙𝑓𝑓2(𝑄𝑄)𝑓𝑓𝑙𝑙𝑓𝑓2

3(√𝑁𝑁)) steps, where 𝑁𝑁 denotes the 
overall search space.

B. Blind Quantum Computing
Blind quantum computing aims to delegate computations to 

untrusted quantum computes/quantum slave nodes. The BQC 
structure consists of one quantum server connected to several 
quantum computing nodes via the internet, i.e., the quantum 
computing nodes are accessible remotely thanks to the 
development of quantum communication over optical fiber. 
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Figure 1 illustrates the blind quantum computing architecture.

The BQC also ensures the privacy and security of data while 
enabling computations to be performed directly on encrypted 
information. The working mechanism of the QBC involves 
several steps, including encryption, computation on encrypted 
data, and decryption, to enable the processing of data while 
maintaining its privacy and confidentiality. Moreover, it offers 
significant benefits due to processing sensitive data without the 
need for decoding, thereby reducing the risks associated with
exposure to potential threats [36].

C. Unconstrained Classical Genetic Algorithm
The UQGA is a metaheuristic strategy. It is commonly 

applied to solving optimization problems. There are several 
versions of genetic algorithms that commonly share similar 
working steps. The UQGA starts by randomly generating an 
initial population (subset from the overall set of candidate 
solutions). A possible candidate solution is called the 
chromosome. The quality of the chromosomes in a population
is evaluated using a fitness function, i.e., the chromosome is 
assigned a fitness function value that indicates whether it 
approaches the optimal result or not. The present chromosomes
of the population are subsequently evolved through repeated 
iterations, called generations (in each generation, the 
chromosomes undergo an evaluation process). Next, half of the 
chromosomes of the population with the highest fitness value 
are chosen for reproducing a new population (this set is named 
the parent set). This phase is called selection stage. Then, the 
selected half of the chromosomes undergo the process of 
crossover and mutation. The resulting new set (the second 
produced half of chromosomes in the population) is referred to 
as the offspring set. The next population is generated by
merging both the parent and offspring set. The repetition of 
these steps for every new population aims to attain the best 
possible chromosome. The UCGA presents in detail as follows:

UCGA
1 Start with 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0 and initialize the population size 𝑏𝑏.
2 Generate random population 𝑃𝑃𝑠𝑠.

3 Compute the fitness of 𝑃𝑃𝑠𝑠 and execute a sorting algorithm to 
extract the parent set.
Crossover and mutation operations. 

Produce 𝑃𝑃𝑠𝑠+1.

D. Unconstrained Quantum Genetic Algorithm
The UQGA combines the power of the QEVSA, QBC, and 

UCGA to find the extreme value in a large and unsorted 
database, in which no classical or quantum computer can handle 
the search [16].

The UQGA replaces the random initialization stage and the 
classical selection stage with their quantum counterparts
versions:

• The quantum initialization stage: This stage increases 
the quality of chromosomes and has a significant 
impact on the convergence speed of the UQGA to the 
optimal result
a population. T
chromosomes (regions) randomly with the same sizes 
denoted by 𝑅𝑅. Next, the quantum server assigns every 
region to a quantum slave node. Then, the QEVSA is 
applied in every region in order to extract the initial 
population. The computational complexity of this 
stage is 𝑂𝑂 (𝑙𝑙𝑙𝑙𝑙𝑙2(𝑇𝑇)𝑙𝑙𝑙𝑙𝑙𝑙2

3(√𝑅𝑅)) steps.
• The quantum selection stage: The procedure consists 

of applying 𝑈𝑈
2 times the QEVSA instead of applying 

the classical sorting algorithm. The computational 

complexity of this stage is 𝑂𝑂 (𝑈𝑈
2 . 𝑙𝑙𝑙𝑙𝑙𝑙2(𝑇𝑇)𝑙𝑙𝑙𝑙𝑙𝑙2

3(√𝑈𝑈))
steps.

UQGA

1 Start with 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0. Set the population and sub-database sizes, 
respectively 𝑈𝑈 and 𝐺𝐺.

2 Generate the 𝑈𝑈 regions.

3 Run the QEVSA for every sub-database to create population 𝑃𝑃𝑠𝑠𝑠𝑠 .

4
Select the first half of the population (parent set) by applying 
the QEVSA 𝑈𝑈2 times.

5 Crossover and mutation operations.

6 Produce 𝑃𝑃𝑠𝑠𝑠𝑠+1.

7 If the global result 𝐹𝐹𝑜𝑜𝑜𝑜𝑠𝑠 is found, then halt, else go to 4.

III. HIGHLY CONSTRAINED QUANTUM GENETIC ALGORITHM

In this section, we extended the capability of the UQGA into 
the HCQGA, which can handle highly constrained optimization 
problems where no classical or quantum process can perform 
the search.

The HCQGA combines the strengths of the UQGA and
penalty strategy to effectively determine the optimum extreme 
result of a highly constrained objective function, i.e., the 
algorithm specifically targets highly constrained optimization 

Fig. 1.  Blind quantum computing architecture.

4 If the global solution 𝐽𝐽𝑜𝑜𝑜𝑜𝑠𝑠 is found, then stop, else go to 3.

problems that are characterized by database beyond the 
computational power of both classical and quantum machines.

First, let's assume the task of optimizing the constrained 
objective function shown below,

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠(𝐺𝐺(𝒙𝒙))   𝑙𝑙𝑜𝑜   𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠(𝐺𝐺(𝒙𝒙))
 𝑠𝑠. 𝑠𝑠     𝑠𝑠𝑦𝑦(𝒙𝒙) ≤ 0            ∀ 𝑦𝑦 = 1, … , 𝑤𝑤

𝒙𝒙 ∈ 𝑿𝑿
, (1)

to produce high quality chromosomes in
he quantum server selects a set of 
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The goal is to minimize (or maximize) the objective function 
𝐺𝐺(𝒙𝒙) in relation to a number of inequality constraints 𝑒𝑒𝑦𝑦(𝒙𝒙),
where x is a 𝑤𝑤-dimensional vector with components 𝑥𝑥1,
… , 𝑥𝑥𝑖𝑖, . . . , 𝑥𝑥𝑝𝑝 that refers to the chromosome (possible candidate 
solution) of 𝐺𝐺(𝒙𝒙). The parameters 𝑤𝑤 and 𝑝𝑝 represent the total 
number of selected constraint parameters and the size of the 
variable 𝒙𝒙, respectively. Note that 𝒙𝒙 ∈ 𝑋𝑋 describes the domain 
constraint for each variable 𝑥𝑥𝑖𝑖, i.e., the lower and upper bound 
of each variable 𝑥𝑥𝑖𝑖.

To solve the constrained optimization problem stated in (1), 
we transform it into an unconstrained one by applying the 
penalty strategy. Next, the process of solving (1) will be carried 
out in a similar manner as previously explained for UQGA.

The penalty method is a prevalent strategy utilized in genetic 
algorithms to address infeasible solutions to constrained 
optimization problems. Essentially, this method converts the 
constrained problem into an unconstrained one by penalizing 
infeasible solutions. This entails including a penalty term in the 
objective function for any constraint violation. For 
maximization problems, one writes the objective function with 
penalty term as,

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝒙𝒙) = 𝐺𝐺(𝒙𝒙) + 𝑝𝑝(𝒙𝒙), (2)

where 𝑝𝑝(𝒙𝒙) refers to the penalty function. To effectively 
solve maximization problems, certain criteria must be satisfied, 

𝑝𝑝(𝒙𝒙) = 0         𝑖𝑖𝑖𝑖 𝒙𝒙 𝑖𝑖𝑖𝑖 𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑓𝑓𝑒𝑒𝑒𝑒
𝑝𝑝(𝒙𝒙) < 0         𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑖𝑖𝑖𝑖𝑒𝑒           , (3)

In addition, the following should be satisfied,

|𝑝𝑝(𝒙𝒙)|𝑚𝑚𝑚𝑚𝑚𝑚 ≤ |𝑮𝑮(𝒙𝒙)|𝑚𝑚𝑖𝑖𝑚𝑚, (4)

where, |𝑝𝑝(𝒙𝒙)|𝑚𝑚𝑚𝑚𝑚𝑚 and |𝑮𝑮(𝒙𝒙)|𝑚𝑚𝑖𝑖𝑚𝑚 denote the highest of |𝑝𝑝(𝒙𝒙)|
and lowest of |𝑮𝑮(𝒙𝒙)| respectively, among solutions in the 
current population that are considered infeasible. For 
minimization problems, the penalty term should satisfy the 
following criteria,

𝑝𝑝(𝒙𝒙) = 0         𝑖𝑖𝑖𝑖 𝒙𝒙 𝑖𝑖𝑖𝑖 𝑖𝑖𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑓𝑓𝑒𝑒𝑒𝑒
𝑝𝑝(𝒙𝒙) > 0         𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑖𝑖𝑖𝑖𝑒𝑒           . (5)

It is interesting to note that preparing the penalty term is not 
a straightforward task. 

The HCQGA operates in a manner akin to the UQGA, albeit 
with a distinctive dissimilarity lying in the conversion of a 
constrained optimization problem into an unconstrained 
counterpart. An elucidating depiction of the operational process 
of the HCQGA can be observed in Figure 2, showcases a
comprehensive flowchart. 

The complexity of both strategies (HCQGA and UQGA) has 
been thoroughly examined in relation to number of generations 
(𝐺𝐺), population size (𝑈𝑈) and chromosome size (𝐶𝐶), providing a 
fair and comprehensive assessment.  Therefore, the overall 
computational complexity of the algorithms is 𝑂𝑂(𝐺𝐺𝑈𝑈𝐶𝐶).

By replacing quantum initialization and selection stages 
instead of their classical counterparts, a significant reduction in 
the number of executed generations can be achieved. 
Furthermore, during the selection stage, quantum superposition 
enables the reduction of larger region sizes into smaller ones. 
Additionally, the size of the selected regions can impact the 
population size. Specifically, a larger region size can lead to a 
reduction in population size. It is worth noting that classically, 
the region size is denoted by 𝑅𝑅 and its processing time in 
classical computer is 𝑂𝑂(𝑅𝑅), whereas in quantum computing, the 
region size is represented as 𝑒𝑒𝑜𝑜𝑙𝑙2(𝑅𝑅), and its processing time 
on a quantum computer is 𝑒𝑒𝑜𝑜𝑙𝑙2

3(𝑅𝑅).
The chromosome size is contingent on the total size of the 

search space. Consequently, a larger search space results in a 
larger chromosome size. Moreover, storing the population size, 
requires 𝑈𝑈 classical register. In contrast, from the perspective 
of quantum computing, the power of quantum superposition 
enables the utilization of only one quantum register for storing 
the population size.

The running time of the HCQGA is contingent upon the 
execution time of the quantum computer. However, due to 
limited access to quantum computers, our simulations were 
conducted on classical computers.  In the following, the

Fig. 2. Working mechanism of the HCQGA.
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expression of the total running time of the HCQGA can be 
written as,

𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑈𝑈. 𝑇𝑇𝑅𝑅  + 𝑁𝑁𝑔𝑔(𝑁𝑁). 𝑇𝑇𝑔𝑔, (6)

where 𝑇𝑇𝑅𝑅, 𝑁𝑁𝑔𝑔, and 𝑇𝑇𝑔𝑔 denote the processing time for the region 
R by the quantum computer, the executed generation number 
_which depends strongly on the overall size of the database N_, 
and the running time required for one generation step, 
respectively.

IV. MASSIVE MIMO SYSTEM

This section suggests an uplink multi-cell massive MIMO, in 
which the aim is to maximize the energy efficiency with respect 
to the desired bit rate of users. Followed by investigating how 
to implement the HCQGA in the proposed massive MIMO.

A. Uplink Multi-Cell Massive MIMO Model
Let's consider an uplink scenario of a multi-cell system that 

implements massive MIMO technology. This system comprises 
𝐿𝐿 cells sharing the same frequency band. In each cell, there 
exists a base station equipped with 𝑀𝑀 antennas, and 𝐾𝐾𝑗𝑗 single-
antenna active users. It is important to note that active users 
have specific bit rate requirements, and we categorize users 
based on their target bit rates. The total number of target bit rate 
classes is denoted by 𝑉𝑉, with each class defined as 𝜂𝜂𝑣𝑣. Users are 
randomly distributed across the cells. Figure 3 illustrates the 
proposed uplink multi-cell massive MIMO system. 

The channel gain, represented by 𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖, characterizes both 
small and large-scale fading. Here, 𝑖𝑖, 𝑘𝑘, and 𝑚𝑚 correspond to 
the reference cell, the reference active user, and the received 
antenna at the base station in the reference cell 𝑖𝑖, respectively. 
Pilot contamination interference is not considered in this study, 
assuming that channel state information (CSI) is known in 
advance. The transmit power of the active user 𝑘𝑘 in the 
reference cell 𝑖𝑖 is denoted as 𝑝𝑝𝑖𝑖𝑖𝑖 .

The following equation represents the uplink transmission 
rate for a specific user in the system denoted by Ⱬ.

Ⱬ =
∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖

𝜀𝜀 ∑ ∑ ∑ 𝑝𝑝𝑗𝑗𝑗𝑗𝛽𝛽𝑗𝑗𝑗𝑗𝑖𝑖𝑀𝑀
𝑖𝑖=1

𝐾𝐾
𝑗𝑗=1

𝐿𝐿
𝑗𝑗≠𝑖𝑖⏟                

𝜉𝜉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

+ 𝜀𝜀′ ∑ ∑ 𝑝𝑝𝑖𝑖𝑗𝑗𝛽𝛽𝑖𝑖𝑗𝑗𝑖𝑖𝑀𝑀
𝑖𝑖=1

𝐾𝐾
𝑗𝑗≠𝑖𝑖⏟            

𝜉𝜉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

+𝑖𝑖0
, (7)

where, the additive white Gaussian noise is denoted by 𝑖𝑖0. Note 
that 𝜉𝜉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 describes the interference caused by users in other 
neighbouring cells, while 𝜉𝜉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 refers to the interference 
generated by users in the reference cell 𝑖𝑖. The scaling 
coefficients, 𝜀𝜀 and 𝜀𝜀′, are used to represent the interference 
ratios in the system, in which represent the interference ratio 
caused by interferer users in neighbouring cells (cells other than 
the reference cell 𝑖𝑖) and the interference ratio caused by 
interferer users within the same reference cell (cell 𝑖𝑖), 
respectively.

The expression of the achieved uplink transmission rate for 
the active user 𝑘𝑘 in the reference cell 𝑖𝑖 belonging to the target 
bit rate class 𝑣𝑣 as can be written as,

𝜂𝜂𝑖𝑖𝑖𝑖𝑣𝑣 = 𝑊𝑊. 𝑙𝑙𝑙𝑙𝑙𝑙2(1 + Ⱬ), (8)

where, 𝑊𝑊 represents the bandwidth utilized. Assuming all users 
share the same bandwidth 𝑊𝑊, we can determine the spectral 
efficiency of the reference cell 𝑖𝑖 as,

𝑆𝑆𝑆𝑆𝑖𝑖 =  
∑ 𝜂𝜂𝑖𝑖𝑖𝑖𝑣𝑣𝐾𝐾
𝑖𝑖=1
𝑊𝑊 , (9)

where 𝜂𝜂𝑖𝑖 =  ∑ 𝜂𝜂𝑖𝑖𝑖𝑖𝑣𝑣𝐾𝐾
𝑖𝑖=1 correspond to the transmission rate for all

users in the reference cell 𝑖𝑖. For the purpose of this analysis, we 
assume that the bandwidth occupancy of all users is similar and, 
therefore, it is not considered. Assuming all cells have similar 
circuit power 𝑃𝑃𝑖𝑖 . One expresses the energy efficiency of the 
reference cell 𝑖𝑖 as,

𝑆𝑆𝑆𝑆𝑖𝑖 =  
𝑆𝑆𝑆𝑆𝑖𝑖

1
𝛾𝛾 ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝐾𝐾

𝑖𝑖 + 𝐿𝐿. 𝑃𝑃𝑖𝑖
, (10)

where 𝛾𝛾 refers to the power amplifier efficiency coefficient. The 
goal of this research is to maximize the energy efficiency of cell 
𝑖𝑖 while satisfying the desired bit rate for the active users. The 
optimization problem can be formulated as follows,

max 𝑆𝑆𝑆𝑆𝑖𝑖
    𝑠𝑠. 𝑖𝑖          𝜂𝜂𝑖𝑖𝑖𝑖𝑣𝑣 ≥ 𝜂𝜂𝑣𝑣    ∀ 𝑖𝑖, 𝑘𝑘, 𝑣𝑣
𝑝𝑝𝑖𝑖𝑗𝑗 ≥ 0  𝑖𝑖𝑖𝑖𝑎𝑎 𝑝𝑝𝑖𝑖𝑖𝑖 ≥ 0 ∀ 𝑖𝑖, 𝑘𝑘, 𝑙𝑙

, (11)

B. How to apply the HCQGA in Massive MIMO
To solve (11), we employed the penalty approach defined in 

Section III. The new expression of the evaluate function can be 
written as,

𝑖𝑖𝑣𝑣𝑖𝑖𝑙𝑙(𝒙𝒙) = 𝑆𝑆𝑆𝑆𝑖𝑖 + 𝜑𝜑∑𝑚𝑚𝑖𝑖𝑚𝑚|0, 𝑅𝑅𝑖𝑖𝑖𝑖𝑣𝑣 − 𝑅𝑅𝑣𝑣|
𝐾𝐾𝑖𝑖

𝑖𝑖=1
, (12)

where, 𝑝𝑝(𝒙𝒙) = 𝜑𝜑∑ 𝑚𝑚𝑖𝑖𝑚𝑚|0, 𝑅𝑅𝑖𝑖𝑖𝑖𝑣𝑣 − 𝑅𝑅𝑣𝑣|𝐾𝐾𝑖𝑖
𝑖𝑖=1 refers to the global 

penalty term related to (12), while the parameter 𝜑𝜑 denotes a 
penalty coefficient. The bottleneck exists in estimating properly 

Fig. 3.  A multi-cell massive MIMO system in the uplink configuration. Each 
cell is equipped with a single base station that has M antennas. Within each 

cell, there are K active users randomly distributed.
.

the value of 𝜑𝜑 in which depends on expression (12).



Quantum Genetic Algorithm for Highly  
Constrained Optimization Problems

SEPTEMBER 2023 • VOLUME XV • NUMBER 368

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

Several approaches are used to compute the penalty 
coefficient [37]–[40]. The choice of approach depends on the 
optimization problem and the required computational 
resources. Often, the fixed penalty coefficient method, which 
consists of setting up the penalty value manually and is easy to 
use and quick but lacks adaptability to data, is applied [37].
Another method is called the penalty parameter estimation 
strategy, which aims to estimate the penalty coefficient 
automatically based on the problem's characteristics. It is data-
driven and improves generalization but can be computationally 
costly and assumption-dependent [39]. In addition to an 
adaptive penalty coefficient, which consists of modifying the 
penalty coefficient iteratively during the optimization process, 
it reduces the risk of regularization but requires complex 
implementation and tuning to avoid instability [40].

V. SIMULATION RESULTS

In this section, we demonstrated the efficiency of the 
HCQGA in maximizing the energy efficiency of massive 
MIMO and reducing the computational complexity of the 
system through simulation evaluation. The classical 
constrained genetic algorithm (CCGA) was considered as a 
benchmark.

It is interesting to highlight that the overall number of active 
users and transmit power set _different possible power values 
that are considered as candidate values for transmitting a 
signal_ affect the overall search space, i.e., if the number of 
active users or the transmit power set increase, the database size 
also rises. For this sake, we constructed two simulation 
experiments, where each simulation analyzes the effect of each 
variant on the performance of the HCQGA and CCGA, i.e., the 
variant can be the overall number of active users or transmit 
power set.

A. Simulation 1
To ensure the validity of our results, we implemented a well-

established simulation framework. The simulation setup of the 
massive MIMO system consisted of one reference cell with a 
scaling factor of 𝜀𝜀′ = 0.01, surrounded by six neighboring 
cells. Each neighboring cell had an identical scaling factor of
𝜀𝜀 = 0.00015.
It is important to note that all cells, including the reference cell, 
contained only one base station with a fixed number of 
antennas, 𝑀𝑀 = 128. The energy efficiency and the number of 
generations executed were computed for varying numbers of 
active users within the reference cell, ranging from 5 to 11
(denoted as 𝐾𝐾).

The study considers three distinct target bit rate classes, as 
indicated in Table 1. It should be noted that, for every given 
number of active users in the reference cell (𝐾𝐾𝑟𝑟𝑟𝑟𝑟𝑟), the total user 
population is randomly divided into two groups, each assigned 
to a specific target bit rate class. Furthermore, it is important to 
highlight that the computation of energy efficiency remains 
unaffected by the target bit rate of active users in the six
neighboring cells.

In light of what has already been discussed, we concluded 
that converting the constrained objective function into an 

unconstrained one and selecting the appropriate penalty 
coefficient depend tightly on the application, i.e., our suggested 
massive MIMO. In our investigation, we chose to select the 
optimal penalty coefficient manually. In order to approximate 
an appropriate setup for the penalty coefficient, we conducted a
third simulation in parallel, using classical constrained 
exhaustive search (CCES) to identify the best optimal scenarios 
that maximizes the energy efficiency with the given target bit 
rate classes of the massive MIMO model. Since the CCES can 
handle small-scale databases, we employed a small number of 
users.

Figure 4 illustrates the energy efficiency utilized by the 
HCQGA and CCGA algorithms for different scenarios with 
varying numbers of total active users. As clearly shown in 
Figure 4, the energy efficiency usage with respect to the target 
bit rates is equal for both HCQGA and CCGA, across different 
numbers of active users. This demonstrates that both algorithms 
perform equally in maximizing energy efficiency while 
considering the target transmission rate of massive MIMO.

Figure 5 presents the average number of generations performed 
by the HCQGA and CCGA for different scenarios with varying 
numbers of total active users. In the comparison between the 
HCQGA and CCGA algorithms, it is noticeable that the CQGA 
exhibits a lower average number of generations performed 
compared to the CCGA. As a result, the computational 
complexity of the HCQGA is reduced in comparison to the 

TABLE I
SIMULATION PARAMETERS SETTINGS

Symbol Quantity Value

𝐵𝐵 bandwidth 1 MHz

𝜌𝜌 static circuit power of BS 1 W

𝑝𝑝𝑐𝑐 circuit power per antenna  0.2

𝑅𝑅1 target bit rate class 1 100 Mbit/s

𝑅𝑅2

𝑅𝑅3

target bit rate class 2

target bit rate class 3

130 Mbit/s

150 Mbit/s

Fig. 4.  Energy efficiency usage for different number of active users by the 
CCGA and HCQGA.
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CCGA. Furthermore, as the overall number of active users 
(database size) increases, the HCQGA consistently maintains a 
lower computational complexity in comparison to the CCGA. 

These findings highlight the computational advantages of the 
HCQGA algorithm in scenarios with a larger number of active 
users. 

B. Simulation 2 
The parameter setup of this simulation environment follows 

the previously described configuration in simulation 1. The 
objective of this simulation is to examine the influence of the 
transmit power set size on both the energy efficiency usage of 
the massive MIMO and the number of generations executed by 
the HCQGA and CCGA algorithms. The energy efficiency and 
the number of generations executed were computed for transmit 
power set size, ranging from 24 dBm to 42 dBm. The value of 
𝑀𝑀 equals 128, while the value of 𝐾𝐾 equals 6. 

Figure 6 shows the energy efficiency usage by the HCQGA 
and CCGA algorithms for different scenarios with varying 
transmit power set size. As seen from Figure 6, the energy 
efficiency usage with respect to the target bit rates, is found to 
be equal for both the HCQGA and CCGA algorithms across 
various transmit power set sizes. This observation affirms that 
both algorithms exhibit comparable performance in optimizing 
energy efficiency while accounting for the target transmission 
rate of the active users in massive MIMO. 

Figure 7 displays the average number of generations 
executed by the HCQGA and CCGA algorithms across 
different scenarios, considering various transmit power set 
sizes. In comparing the HCQGA and CCGA algorithms, it is 
evident that the HCQGA achieves a lower average number of 
generations performed compared to the CCGA, even when 
confronted with significant increases in transmit power set 
sizes. Consequently, the HCQGA exhibits a reduced 
computational complexity compared to the CCGA. Moreover, 
as the transmit power set sizes (database size) increases, the 
HCQGA consistently maintains a lower computational 
complexity relative to the CCGA. 

C. Simulation 3 
In the light of what have been discussed in the previous 

sections, it has been demonstrated that the quality of 
chromosomes during the initialization stage has a significant 
impact on the convergence speed of the genetic algorithm to the 
optimal result. This simulation investigates the effect of the 
coverage ratio 𝑈𝑈.𝑅𝑅𝑁𝑁  on the runtime of the initialization stage of 
the HCQGA.  

Figure 8 depicts the runtime required for various coverage 
values (%) during the quantum initialization stage of the 
HCQGA, when employing either classical or quantum 
computers. It is evident that as the coverage increases, the 
runtime of classical computers exhibits an exponential growth. 

 
Fig. 5.  Average number of generations executed by the CCGA and HCQGA. 

 
Fig. 6.  Energy efficiency usage for different number of power set size for 

both the CCGA and HCQGA. 
  

 
 

Fig. 7.  Average number of generations executed by the CCGA and HCQGA. 

 
 

Fig. 8. The running time of the quantum and classical initialization stages. 
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In contrast, the quantum computer demonstrates significantly 
lower running times compared to the classical counterpart, 
while also maintaining consistently low runtimes despite 
increasing coverage. 

Furthermore, Figure 9 illustrates the relationship between the 
region size and the average number of generations performed 
by the HCQGA. It is observed that as the region size increases, 
the number of executed generations drops. 

VI. CONCLUSION 
This paper introduces the highly constrained quantum 

genetic algorithm (HCQGA) as a novel approach for finding the 
extreme value with respect to certain constraints in a vast and 
unsorted database, which surpasses the computational capacity 
of current available classical and quantum computers. To test 
the efficiency of this quantum strategy. We have investigated 
the maximization of the energy efficiency of an uplink multi-
cell massive MIMO system with respect to the target bit rate of 
users. The HCQGA demonstrated accelerated convergence 
towards optimal maximum energy efficiency, outperforming 
the constrained classical genetic algorithm (CCGA) in terms of 
computational efficiency. 

In future work, we are planning to extend the classical 
massive MIMO framework into a quantum counterpart, where 
entanglement-assisted quantum channels are considered for 
improving the performance of the overall bit rate and energy 
efficiency. Followed by demonstrating the theoretical results by 
building extensive simulations.  
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