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I. INTRODUCTION

W ith the growth of IoT usage and the ease of exploiting
vulnerable IoT devices, the flow of IoT-based attacks

has reached unprecedented levels [1], [2]. For example, Mirai
is one of the most well-known IoT attacks. It targets insecure
IoT devices and turns them into a massive botnet that can be
used to launch powerful DDoS attacks. In 2016, Mirai attack
on Dyn DNS (Domain name service) provider took down high-
profile websites and services such as GitHub, Reddit, Netflix,
and Airbnb.

One of the main reasons for the increase in IoT attacks
is that organizations may not always have complete control
over IoT devices that are located outside of their scope or
not directly accessible. This could include situations where
the organization operates in a shared office building or public
space, where IoT devices may be installed by other tenants
or individuals and are not managed by the organization.
Despite this challenge, organizations can take measures to
reduce the risks associated with these external IoT devices.
These measures can be Network Segmentation and Firewalls,
Monitoring and Anomaly Detection, Secure IoT Protocols, and
Azure IoT Hub (or similar solutions). For example, the last
solution enables secure communication between IoT devices
and cloud applications while providing the ability to revoke
access to unauthorized devices.

In this paper, we proposed an IoT monitoring, anomaly
detection and mitigation solution for this issue. Our proposed

The authors are with the Department of Programming Languages and
Compilers, Eötvös Loránd University (ELTE), Budapest, Hungary. (email:
gereltsetseg@inf.elte.hu1, matej@inf.elte.hu2).

solution is an in-network (data plane) approach for detecting
and mitigating DDoS-like attacks in an IoT environment using
INT data. DDoS is a common type of computer network attack
that can be easily carried out using insecure IoT devices.
INT is a new type of monitoring mechanism that can collect
more detailed network information (INT data) in real-time than
conventional monitoring, thereby helping to detect not only
IoT but also other types of attacks. As far as we know, all
previous works on IoT anomaly detection have used datasets
based on network traffic. As IoT devices pose challenges to
the implementation of standard security solutions, we aimed
to create a solution in the SDN environment.

Our proposed method has two main advantages. First, the
detection is faster since it is performed directly on the data
processing path, and second, it is more efficient since it uses
real-time INT data. The main contributions of this work are
as follows.

• Generating a new INT dataset under normal and DDoS
attack conditions in an SDN simulation environment and
making it publicly available to fill research gaps.

• We are the first to propose a P4-based (data plane-based)
method for DDoS detection and mitigation in an IoT
environment using INT data.

• Evaluating the performance of the proposed method and
conducting a comparison with a competing solution [3].

The rest of the paper is organized as follows. Section II is
about related works, and Section III describes how we created
an experimental network and collected INT data. Section IV
and V describe our proposed model, the experimental results,
and discussions. Finally, we summarize our work and suggest
future directions in Section VI.

II. RELATED WORK

Several significant research works [4], [5], [6], [7], [8] have
been proposed for IoT anomaly detection, with and without
SDN. For instance, Del-IoT [9] is an IoT anomaly detection
approach that employs a deep ensemble model to address data
imbalance issues in network traffic datasets. It is implemented
on an SDN controller. Bhunia and Gurusamy [7] present
a machine learning-based anomaly detection and mitigation
method for IoT traffic using SDN. They utilize the SVM
algorithm to monitor and learn the behavior of IoT devices
over time to detect anomalies.

In the current landscape of IoT anomaly detection studies
[10], [11] controller-based anomaly detection methods are
prevalent in SDN networks. The majority of these solutions
leverage network traffic datasets (e.g., NetFlow, Wireshark)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

In-network DDoS detection and mitigation
using INT data for IoT ecosystem

Gereltsetseg Altangerel1 and Máté Tejfel2

Abstract—Due to the limited capabilities and diversity of Inter-
net of Things (IoT) devices, it is challenging to implement robust
and unified security standards for these devices. Additionally, the
fact that vulnerable IoT devices are beyond the network’s control
makes them susceptible to being compromised and used as bots
or part of botnets, leading to a surge in attacks involving these
devices in recent times. We proposed a real-time IoT anomaly
detection and mitigation solution at the programmable data plane
in a Software-Defined Networking (SDN) environment using In-
band Network telemetry (INT) data to address this issue. As far
as we know, it is the first experiment in which INT data is used
to detect IoT attacks in the programmable data plane. Based on
our performance evaluation, the detection delay of our proposed
approach is much lower than the results of previous Distributed
Denial-of-Service (DDoS) research, and the detection accuracy is
similarly high.

Index Terms—IoT anomaly detection, data plane, In-band
Network Telemetry(INT)

I. INTRODUCTION

W ith the growth of IoT usage and the ease of exploiting
vulnerable IoT devices, the flow of IoT-based attacks

has reached unprecedented levels [1], [2]. For example, Mirai
is one of the most well-known IoT attacks. It targets insecure
IoT devices and turns them into a massive botnet that can be
used to launch powerful DDoS attacks. In 2016, Mirai attack
on Dyn DNS (Domain name service) provider took down high-
profile websites and services such as GitHub, Reddit, Netflix,
and Airbnb.

One of the main reasons for the increase in IoT attacks
is that organizations may not always have complete control
over IoT devices that are located outside of their scope or
not directly accessible. This could include situations where
the organization operates in a shared office building or public
space, where IoT devices may be installed by other tenants
or individuals and are not managed by the organization.
Despite this challenge, organizations can take measures to
reduce the risks associated with these external IoT devices.
These measures can be Network Segmentation and Firewalls,
Monitoring and Anomaly Detection, Secure IoT Protocols, and
Azure IoT Hub (or similar solutions). For example, the last
solution enables secure communication between IoT devices
and cloud applications while providing the ability to revoke
access to unauthorized devices.

In this paper, we proposed an IoT monitoring, anomaly
detection and mitigation solution for this issue. Our proposed

The authors are with the Department of Programming Languages and
Compilers, Eötvös Loránd University (ELTE), Budapest, Hungary. (email:
gereltsetseg@inf.elte.hu1, matej@inf.elte.hu2).

solution is an in-network (data plane) approach for detecting
and mitigating DDoS-like attacks in an IoT environment using
INT data. DDoS is a common type of computer network attack
that can be easily carried out using insecure IoT devices.
INT is a new type of monitoring mechanism that can collect
more detailed network information (INT data) in real-time than
conventional monitoring, thereby helping to detect not only
IoT but also other types of attacks. As far as we know, all
previous works on IoT anomaly detection have used datasets
based on network traffic. As IoT devices pose challenges to
the implementation of standard security solutions, we aimed
to create a solution in the SDN environment.

Our proposed method has two main advantages. First, the
detection is faster since it is performed directly on the data
processing path, and second, it is more efficient since it uses
real-time INT data. The main contributions of this work are
as follows.

• Generating a new INT dataset under normal and DDoS
attack conditions in an SDN simulation environment and
making it publicly available to fill research gaps.

• We are the first to propose a P4-based (data plane-based)
method for DDoS detection and mitigation in an IoT
environment using INT data.

• Evaluating the performance of the proposed method and
conducting a comparison with a competing solution [3].

The rest of the paper is organized as follows. Section II is
about related works, and Section III describes how we created
an experimental network and collected INT data. Section IV
and V describe our proposed model, the experimental results,
and discussions. Finally, we summarize our work and suggest
future directions in Section VI.

II. RELATED WORK

Several significant research works [4], [5], [6], [7], [8] have
been proposed for IoT anomaly detection, with and without
SDN. For instance, Del-IoT [9] is an IoT anomaly detection
approach that employs a deep ensemble model to address data
imbalance issues in network traffic datasets. It is implemented
on an SDN controller. Bhunia and Gurusamy [7] present
a machine learning-based anomaly detection and mitigation
method for IoT traffic using SDN. They utilize the SVM
algorithm to monitor and learn the behavior of IoT devices
over time to detect anomalies.

In the current landscape of IoT anomaly detection studies
[10], [11] controller-based anomaly detection methods are
prevalent in SDN networks. The majority of these solutions
leverage network traffic datasets (e.g., NetFlow, Wireshark)

DOI: 10.36244/ICJ.2023.5.8

mailto:gereltsetseg%40inf.elte.hu?subject=
mailto:matej%40inf.elte.hu?subject=
https://doi.org/10.36244/ICJ.2023.5.8


In-network DDoS detection and mitigation
using INT data for IoT ecosystem

50

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

with machine learning and deep learning techniques for
anomaly detection.

Recent efforts in network applications have focused on re-
ducing processing delays by offloading tasks from the control
plane to the data plane or dedicated processors [12], [13]. Im-
plementing anomaly detection directly in the packet processing
path or data plane can significantly enhance detection speed
compared to control plane solutions.

Since programmable data plane is a relatively new concept,
data plane-based anomaly detection solutions are less common
compared to controller-based solutions. However, there are
some anomaly detection solutions specifically designed for
the data plane. For example, Euclid [3] is a data plane-
based DDoS detection solution that employs Shannon entropy
based on the frequency of source and destination IP addresses.
Sanghi et al. [14] focus on identifying potential attacks on
data plane systems and present a scalable tool for real-time
detection. Kang et al. [15] propose an approach to discover
attack vectors in a data plane system and conduct preliminary
experiments to demonstrate its feasibility. Although these
solutions represent pioneering attempts to detect anomalies in
the data plane, none of them utilize INT data.

To the best of our knowledge, there are two experimental
solutions that leverage INT data for anomaly detection. Kim
et. al. [16] uses a recurrent neural network (RNN), while
our earlier work [10] utilizes a one-dimensional Convolutional
neural network (1D CNN). However, both of these solutions
are implemented on external controllers or servers. The main
distinctive feature of our proposed solution in this paper is its
ability to detect IoT anomalies directly on the data plane using
INT data, offering a unique approach in this domain.

III. INT DATA COLLECTION

A. Overview of the programmable data plane and INT

Packet processing algorithms in network architectures are
categorized into control and data planes based on their func-
tions. Data plane algorithms define the packet processing
pipeline, while control plane algorithms set the packet pro-
cessing rules. The interaction between the control plane and
the data plane is shown in Fig. 1a.

In traditional network architecture, both types of algorithms
are preconfigured on each network device and are not easily
customizable. Only device manufacturers have the capability
to reprogram them. However, with the advent of the SDN
paradigm, the control plane is decoupled from the data plane
and operates on dedicated server(s). This separation has led to
increased flexibility, manageability, openness, and programma-
bility in computer networks [17].

The concept of the programmable data plane is relatively
new compared to the programmable control plane. It enables
anyone to quickly design, test, and deploy a variety of appli-
cations in the data plane.

P4 is one of the popular domain-specific programming
languages used for defining data plane algorithms. The basic
architecture of the P4 pipeline, as shown in Fig. 1b, consists
of three main parts: the parser, match-action, and deparser.

1) Parser: The parser receives incoming packets and ex-
tracts header fields from them. This step involves parsing
the packet’s structure to identify and extract relevant
information.

2) Match-Action: The match-action section processes the
packet headers and metadata. It comprises one or more
tables, with each table having a key part and an action
part. During table application, the program attempts to
find the most suitable key in the table based on the
packet’s header fields and metadata. Upon finding the
appropriate key, the associated action is executed. If
there is no matching key, the program either executes the
default action if defined or does nothing. An example of
a commonly used routing table in P4 involves the match
key being the destination IP address. The match type
can be the longest prefix match, and the corresponding
action depends on the match result, such as forwarding
the packet, dropping it, or applying no action.

3) Deparser: The deparser assembles the processed header
fields and the original payload to build the outgoing
packet. This step ensures the proper formatting and
structuring of the packet before it leaves the network
device [18].

Overall, data plane programmability with P4 or any other
language empowers network administrators and developers
to define customized data plane behaviors, offering greater
flexibility and control over how network packets are processed
and forwarded. Moreover, it allows for the development of
many interesting applications [12].

One notable application enabled by data plane programma-
bility is INT. It is a new monitoring system that captures
network telemetry information, such as hop latency, flow
latency, and queue depth, directly from the data plane. The
distinct advantage of this approach is that it bypasses the CPU-
driven control plane, resulting in more real-time collection of
telemetry data (INT data) compared to traditional monitoring
mechanisms [16]. The real-time monitoring capability offered
by INT provides valuable insights into network performance.
This data enables network administrators to optimize net-
work efficiency and performance while developing effective
methods such as network anomaly detection, smart congestion
control or routing mechanisms based on these insights.

B. INT data collection on testbed network

We created an INT-enabled SDN network, as shown in
Figure 2, on the MININET1 simulation program. This SDN
network consists of a data plane, a control plane, IoT servers,
and users. In the data plane, we deployed BMv2 software
switches and configured P4 pipeline with INT support. For
the control plane, we developed a custom controller using
Python. This controller is responsible for configuring the
packet processing rules and control rules for the data plane,
providing the necessary instructions to the switches.

Within this simulated network, we emulated external IoT
devices as attacker nodes and servers as target nodes. This

1http://mininet.org/1 http://mininet.org/
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(a) Control & Data Plane Interaction. (b) Abstract Packet Forwarding in P4.

Fig. 1. Network packet processing system.

setup allows us to analyze the behavior of the IoT anomalies
and test the effectiveness of our proposed INT-based anomaly
detection and mitigation approach.

Fig. 2. Testbed SDN network.

After building a testbed network, we collected INT data
including the queue depth of the switches’ output interface
under normal and attack conditions. To collect the INT data,
we designed our own probe packet, which is a specialized
packet transmitted across the network every millisecond from a
specific source to a specific destination. As the probe packet is
processed by the switches in the network, each switch appends
its queue depth value to the packet. This action allows us
to capture real-time queue depth value at each switch in the
network. When the probe packet reaches its destination, we
extracted queue depth information collected from each switch
and stored it in a text file. As mentioned above, we created
two kinds of data collection scenarios.

In the first scenario, we generated legitimate traffic, in-
cluding UDP and ICMP flows using iperf2 and ping3 tools
from external IoT devices to the target server. During these
normal conditions, we captured INT data, including queue
depth information, using the probe packet. Over the course of

2https://iperf.fr/
3https://linuxize.com/post/linux-ping-command/

an hour, we accumulated more than 5000 data points, which
were saved to a text file for analysis.

In the second scenario, we collected INT data under mali-
cious traffic conditions. Due to hardware limitations, we need
lighter attack. Therefore, we chose DDoS attacks with ICMP
flooding. We created a DDoS attack using the hping34 tool,
and legitimate traffic flows with UDP and ICMP messages
from the attacker node to the target node. INT data were also
collected for one hour under this condition.

C. Characteristics of INT data

After collecting INT data, we conducted a statistical analysis
to understand their behavior. Firstly, we performed a t-test
to evaluate and compare the difference between the means
of the normal and malicious INT datasets, each consisting
of 5000 samples. The result is presented in the first column
of Table 1. A negative T-statistic (-33.74) suggests that the
mean of the normal group is lower than that of the malicious
group in our case. The P-value quantifies the probability of
obtaining the observed results under the assumption of the
null hypothesis. An extremely small P-value (e.g., 3.55e-181)
suggests strong statistical significance and it indicates that
there is substantial evidence to reject the null hypothesis in
favor of the alternative hypothesis, supporting the presence
of a meaningful and significant difference between the means
of the two compared groups. In summary, based on this t-
test result, we can conclude that the normal and malicious
datasets were statistically significantly different at a very high
probability.

Additionally, we created smaller datasets by randomly se-
lecting 128 records multiple times from the original 5000-
sample datasets of both malicious and normal conditions. The
t-test results for these smaller datasets are shown in columns 2
to 4 of Table 1. These results were consistent with the previous
whole dataset analysis, confirming the significant differences
between the two conditions.

Furthermore, we compared the datasets using simple sta-
tistical measures like mean, median, mode, etc. Based on
these measures, significant differences were observed among
the datasets, indicating the potential to detect IoT anomalies

4https://www.kali.org/tools/hping3/4 https://www.kali.org/tools/hping3/
2 https://iperf.fr/
3 https://linuxize.com/post/linux-ping-command/
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TABLE I
T-TEST RESULTS: STATISTICAL COMPARISON OF TWO DATASETS

T-statistic P-value
Whole
dataset -33.74 3.55e-181

Sample 1 -9.48 8.63E-18
Sample 2 -7.31 6.61E-12
... ... ...
Sample n -9.628 3.15E-18

effectively. Since our anomaly detection solution for the IoT
ecosystem aims to be simple and fast based on P4-language
capabilities, we decided to implement it based on the mean
value of queue depth.

IV. PROPOSED P4-BASED ANOMALY DETECTION AND
MITIGATION APPROACH

After collecting and analyzing the INT data, we devel-
oped a P4-based packet processing pipeline incorporating IoT
anomaly detection and mitigation mechanisms. Our proposed
P4-based approach, depicted in Fig. 3, operates based on three
distinct states: normal, detection, and mitigation state. Each
state is designed with specific functionalities, and transitions
between these states occur based on predefined conditions. We
used global register and metadata in P4 to create a state that
can be accessed and manipulated from both the data plane and
the control plane. As a result, state transitions are effectively
orchestrated by both the data plane and control plane according
to the configuration specified in Table II.

In the subsequent text, the block numbers in parentheses
provide a reference to how the numbered blocks of the P4
pipeline depicted in Fig. 3 correspond to the descriptions
provided.

First of all, the packet counter value is analyzed to determine
whether to maintain the current normal state or switch to the
anomaly detection state. Packet counters are implemented at
the ingress part of the pipeline in the data plane and are only
read by the control plane. Based on the configured threshold
counter value, the control plane will set either of the two states
mentioned above. In order to determine a baseline for the
packet counter, we conducted a test to determine the number
of packets and bytes transmitted through the input and output
interfaces of the S1 switch (which attackers are connected to)
over a period of 2 seconds, while transmitting normal and
attack packets. We then computed the mean value from 3000
samples of packet counter for each interface of S1, which were
subsequently used as baselines to determine whether to initiate
the detection state.

In the default (normal) state, the packets are handled ac-
cording to the white blocks in Fig. 3. The main function in
this state is forwarding the packet based on the IP routing table
implemented on the ingress side. The state can then go to the
detection state based on the condition in Table II.

In the detection state, anomalous traffic will be detected
based on the mean of queue depth. Our proposed IoT anomaly
detection mechanism is implemented at the egress of the
packet processing pipeline on the data plane and it is shown
in the red block (9). To implement this mechanism, we utilize

Fig. 3. IoT anomaly detection pipeline in P4.

a stateful register in P4 for storage, in which the queue depth
value on the output interface is captured at the moment of
transmission of probe packets. For instance, if 128 probe
packets are transmitted, we record 128 queue depth values
in the storage. After accumulating a certain number of queue
depth values, we compute their mean value using the bitshift
operator since the modulo and division operators are not
available in the P4 language. This mean value is subsequently
compared to a threshold. If it surpasses the threshold, the
traffic is considered abnormal (10,12). The threshold itself
was determined through statistical analysis during normal and
malicious traffic scenarios in Section III. Then, the mitigation
can be started if this mean value is higher than the baseline
mean of the INT data under normal traffic conditions (12).

In the mitigation state, IoT attacks are mitigated by limiting
the rate of the packet’s incoming interface. To achieve this,
rate limiting is implemented using the meter object of P4 at
the ingress part of the pipeline on the data plane, as shown
in the green block (6) of Fig. 3. P4 supports two types of
meters: Indirect and Direct meters. In this implementation,
we utilized indirect meters, which can be addressed by index
[19]. To configure the rate limit parameters, we set up the
corresponding traffic parameters in the control plane. The
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TABLE II
STATE TRANSITIONING

Start Stop

Normal

Program starts in this
state. Data plane set
it from the detection
state (10,11).

The control plane will
switch to Detection
(1,2).

Detection

The control plane de-
cides to transition to
this state based on
packet counters im-
plemented in the data
(1,2).

The data plane de-
cides whether to tran-
sition to a normal (10,
11) or mitigation state
based on queue depth
(10,12).

Mitiga-
tion

The data plane
configures this state
based on the detection
result (10,12).

Based on the packet
counter, the control
plane awakens the
normal state (1,3).

BMv2 software switch utilizes two-rate three-color meters5,
so we specify the Peak Information Rate (PIR) with Peak
Burst Size and the Committed Information Rate (CIR) with
Committed Burst Size. The mitigation mechanism may also
employ other methods, such as reflecting anomalous traffic to
the source port. The control plane decides when to switch back
to the normal state based on the packet counter, following the
criteria outlined in Table II.

Overall, our proposed P4-based anomaly detection and mit-
igation approach enhances the security and resilience of IoT
networks by providing real-time monitoring, detection, and
countermeasures against malicious activities. Its flexibility and
customization capabilities empower network administrators to
tailor the system to their specific requirements, making it a
valuable addition to IoT network security measures.

V. PERFORMANCE EVALUATION

The number of queue depths used to calculate the mean
value is a configurable parameter for the detection mechanism
of our proposed model. We experimented with different values
for this parameter, ranging from 16 to 256, to determine an
optimal value that would result in high detection accuracy.
Fig. 4 illustrates the relationship between the number of queue
depths and the detection accuracy, helping us identify the value
that provides the best performance.

Fig. 4. Detection accuracy.
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The average anomaly detection time is determined by mul-
tiplying the processing time (delay) of a single probe packet
by the number of probe packets. A smaller number of probe
packets results in faster anomaly detection.

In a real network, the packet processing delay depends on
the network protocol, computational power at a node, and the
efficiency of network interface cards. However, modern high-
speed devices are capable of processing packets almost at line
speed. In our case, probe packets can also be sent at line
speed, but to clearly see and easily calculate the detection
delay, we send 1 probe packet every 1 millisecond. Therefore,
the anomaly detection delay is 16 milliseconds if the number
of collected queue depth is 16, 32-millisecond if it is 32, and
so on.

We have found that the intersection points with the highest
accuracy and the acceptable delay happen when the number of
queue depths is 64. With this optimal number, our proposed
approach’s detection delay is four times lower than the results
of previous research on DDoS [3], and the detection accuracy
is also higher. Additionally, it is evident that the detection
delay can be absolutely low in real networks with line speeds
such as 10Mbps, 100Mbps, and so on.

VI. CONCLUSIONS AND FUTURE WORK

Our research represents the first experimental solution that
employs INT data for detecting IoT attacks on the data
plane (in-network). One of the primary advantages of our
proposed approach is its lower detection delay, as it is directly
implemented in the packet processing path. Additionally, our
method leverages real-time INT data, resulting in more effi-
cient and accurate detection capabilities. Compared to previous
research, our approach exhibits relatively low detection delays
and high accuracy.

Furthermore, by offering real-time monitoring, detection,
and countermeasures against malicious activities, our solution
provides a valuable tool to secure IoT environments. Its
inherent flexibility and customization options enable network
administrators to tailor it according to their specific needs,
making it a valuable addition to IoT network security mea-
sures.

Despite our successful results, we acknowledge the limi-
tations of our work. Our test environment only allowed us
to test DDoS attacks with ICMP floods. To further validate
our proposed approach, we plan to conduct tests on real
hardware with various types of attacks. Moreover, we are
aware that some IoT sensors may periodically generate large
amounts of data, which we have not yet considered in our
approach. Addressing such exceptional scenarios will be a
valuable aspect of our future work.
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