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Abstract—The New MAC mechanism plays a key role in 

achieving the needed requirements of the B5G/6G radio 
technology and helps to avoid high-speed frequency issues and 
limitations. With the help of the ns-3 simulator, we generated 42 
different cases for the purpose of analyzing the impact of the 
network load on the overall effective transmission rate. Therefore, 
the use of the data-adaptive decomposition method the Empirical 
Mode Decomposition (EMD) on our non-stationary system 
benefits in the extraction of the important meaningful 
components. However, due to the highlighted direction 
dependency finding of EMD, Ensembled EMD (EEMD) being 
direction independent shows better performance on our data 
series. The extracted trend based on the proposed method matches 
the fitting curve, while the fitting curve parameters can be 
clusterized into 2 main clusters congested and non-congested cases 
of the radio channel throughput signal. 
 

Index Terms—Tera-Hertz technology, 6G, Beyond 5G, 
Empirical Mode Decomposition, Ensemble Empirical Mode 
Decomposition, Intrinsic Mode Function 
 

I. INTRODUCTION 
ITH the rapid proliferation of the Internet of Things 

(IoT), an expansive multitude of end devices has 
emerged, necessitating the advent of a novel wireless 
generation capable of facilitating seamless connectivity with an 
exceptionally high bit rate. B5G/6G technology harnesses the 
potential of Terahertz bands, enabling the attainment of 
extraordinary data transfer speeds reaching several Tbps, 
accompanied by an impressively low latency of just 1 ms [5]. 
However, the effective management of the spectrum allocation 
encounters formidable challenges attributed to molecular 
absorption loss as well as the intricate interplay of diverse 
natural factors, encompassing pressure, relative humidity, and 
temperature, which profoundly impact the propagation 
environment [7]. The rapid growth of the Internet of Things 
(IoT) has resulted in an unprecedented number of connected 
devices, creating a demand for a new wireless generation that 
can handle the increasing volume of data and provide seamless 
connectivity. The current wireless technologies face limitations 
in terms of capacity and bandwidth, which hinder their ability 
to support the IoT ecosystem effectively. However, the 
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emergence of B5G/6G and the utilization of Terahertz bands 
hold great promise in overcoming these limitations. Terahertz 
frequencies offer a significantly higher data rate potential, 
enabling transmission speeds in the range of several Tbps. By 
harnessing the Terahertz bands, the new wireless generation can 
address the constraints of current technologies, providing the 
necessary bandwidth and capacity to accommodate the 
expanding IoT landscape. 

The Adaptive Directional Antenna Protocol for THz 
networks (ADAPT) protocol represents a pioneering Medium 
Access Control (MAC) mechanism specifically designed for 
the Terahertz frequency domain. ADAPT has demonstrated 
remarkable performance improvements, exhibiting a 
remarkable throughput of approximately 120 Gbps within a 
single radio cell accommodating 50 Mobile Terminals (MT) 
[3]. However, it should be noted that ADAPT does encounter 
certain limitations when operating in a heavily loaded network 
environment [3, 10]. In scenarios characterized by heightened 
congestion, the transmission time gradually escalates, thereby 
adversely affecting the overall channel throughput. Hence, our 
investigation seeks to make a significant contribution to the 
advancement of techniques for analyzing non-stationary and 
nonlinear THz throughput signals. By doing so, we aim to 
enhance network congestion state detection and overall 
performance optimization in real-world applications. The main 
highlights of the paper can be summarized as follows:  

 The generation of ADAPT data along with the 
introduction of the utilized decomposition methods. 

 The utilization of diverse decomposition methods with 
various analyses. 

 The data series undergoes decomposition-based trend 
extraction, followed by the clusterization of the 
extracted trend parameters. 

Chapter two of this work provides an overview of pertinent 
literature related to the decomposition and the current study. 
Chapter three explores the characteristics of the decomposition 
methods and the ADAPT MAC mechanism. Moving on to 
chapter four, an analysis is conducted on the performance of 
EMD and EEMD. Lastly, chapter five presents a 
comprehensive summary and conclusion of the findings derived 
from the study. 
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II. RELATED WORK 
Empirical Mode Decomposition (EMD) and Ensemble 

Empirical Mode Decomposition (EEMD) are two signal 
processing methods used to decompose non-stationary and 
nonlinear signals Intrinsic Mode Functions (IMFs). Therefore, 
the authors in [11] aim to compare those two methods in the 
analysis of a seismic signal. The results of this work show that 
the time-frequency spectrum obtained through EEMD more 
accurately reflects real geological conditions as compared to 
EMD. Other work has been done on the same topic using EMD, 
EEMD, and Variational Mode Decomposition (VMD) in [6] for 
chatter detection in milling. The researchers compared the three 
methods and found that EEMD and VMD were more effective 
than EMD. EMD has been widely used for trend extraction in 
various fields, it is a powerful tool for analyzing non-stationary 
and extracting meaningful information from them. However, 
trend extraction methods using the IMFs might differ.  

In [4] the authors decompose the IMFs into two parts, the 
trend one of them. Moreover, in [2] the authors proposed a 
method for extracting the trend. The method involves 
decomposing the signal into IMFs, and then fitting the extracted 
trend component using the least squares method. The proposed 
method was validated using experimental data and was found 
to be effective in identifying the trend of the cement-burning 
zone flame temperature. Research conducted in [12] compared 
EMD and EEMD and revealed that EMD suffers from mode 
mixing, leading to inaccurate extraction of signal 
characteristics. On the other hand, EEMD successfully extracts 
meaningful components and exhibits superior performance in 
fault diagnosis for rotating machinery, as demonstrated through 
simulations and real-world applications. In a related study, 
another group of researchers investigated EEMD's 
effectiveness in overcoming mode mixing by introducing white 
noise [13]. EEMD accurately decomposed signals into distinct 
IMFs, thereby enhancing time-frequency analysis and 
providing more realistic time-frequency spectra in geology 
applications.  

The team in [14] introduced a hybrid denoising method that 
combines thresholded IMFs with data-driven VMD, proving 
highly suitable for non-stationary seismic signals with reduced 
noise sensitivity. Additionally, [15] demonstrated that EEMD 
outperforms EMD and VMD for calculating respiration rates 
from PPG signals, achieving over 90% accuracy with an 
average error rate of 1 rate/minute. EEMD shows potential in 
simplifying sensor devices for accurate RR calculation. 

III. APPLIED METHODOLOGY 
In our research work, we collected data of the new MAC 

mechanism ADAPT that is compatible with the first 
standardization for the THz physical layer defined in IEEE 
802.15.3d [3]. For our simulation, we employed the pre-
existing example available in the second version of TeraSim, a 
platform designed specifically for simulating extremely high 
frequencies, integrated into the ns-3 simulator. In our study, we 
utilized the ADAPT MAC protocol within the Macroscale 
scenario to evaluate its performance in the context of THz 

frequencies. Along with the new proposed parameters [9] the 
overlapped sectors and the step parameters, we generated 42 
different cases. 7 different number of steps based on the 
properties mentioned in [9] (s = 1, 7, 11, 13, 17, 19, 23), 2 
different topologies: the centered topology where the MT are 
distributed closer to the Access Point (AP), and the random 
uniform where the MT is distributed uniformly around the AP. 
The radius of the area under consideration is determined to be 
18 meters, and there are 30 sectors within this area. With these 
values established, it becomes evident to calculate the 
population density parameter (ρ = n/A [𝑚𝑚��]), where n 
represents the population count and A denotes the area of the 
circle. 
 

 

 

Fig. 1. Spatial distribution of the 
collision rate (step, d, n) = (13, 1, 240) 

Fig. 2. Throughput vs. time 
(step, d, n) = (13, 1, 240) 

 
We used 3 different numbers of MT (𝑛𝑛 =  60, 240, 960) 

having the overlapped ratio fixed 𝑚𝑚 =  0.3 (see Fig. 1). The 
behavior of the throughput is particularly intriguing, as its 
distribution exhibits a gradual decrease over time, as illustrated 
in Fig. 2. This trend is further confirmed and supported by the 
fit curve, which aligns with the decreasing pattern of the 
throughput as time progresses. The representation declines the 
nature of the THz throughput, and the fit curve provides a 
mathematical model that captures and validates this 
diminishing trend. The combination of empirical evidence from 
the distribution plot and the fit curve's analytical support 
strengthens the significance of this observation. 

A. Empirical Mode Decomposition 
Empirical Mode Decomposition (EMD) can be applied to a 

nonlinear and non-stationary signal. Although, it is a 
sophisticated method for features extraction [1]. EMD 
decomposes the signal into a finite number of IMFs plus the 
residual, the decomposition process involves identifying all 
extrema of the signal X(t) and connecting them with the help of 
cubic splines to obtain an upper and a lower envelope [1]. It 
calculates the mean of the upper and lower envelope m1, then 
subtracted from the original signal to obtain the first component 
h1 (1). However, the resulting IMF most of the time is not the 
right IMF because it does not satisfy the necessary conditions. 
Therefore, the sifting process is used and repeated to refine the 
IMF by eliminating riding waves, making it more symmetric 
and smoothing uneven amplitudes. 

 
𝑋𝑋(𝑡𝑡) − 𝑚𝑚� = ℎ                                    (1) 
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By doing so, the resulting IMF is then subtracted from the 
original signal to obtain a residue signal (2) where c1 is the IMF 
after j sifting times. 

 
𝑋𝑋(𝑡𝑡) − 𝑐𝑐� = 𝑟𝑟�                                    (2) 

 
IMF1 is then decomposed into the second IMF using the 

same process. This process is repeated until the last residual. 
However, like any other processing method, EMD struggles 
with some limitations that should be considered such as the end 
effect where the first and the last points most of the time are not 
the extreme values. Also, the mode mixing limitation occurs 
when the IMF components overlap and cannot be separated 
from each other. It can happen when the signal has multiple 
scales of variation, leading to a difficult interpretation of the 
IMF components [8]. 

B. Ensemble Empirical Mode Decomposition 
Ensemble Empirical Mode Decomposition (EEMD) is an 

advanced technique designed to enhance the traditional EMD 
method, specifically tailored for the analysis of non-stationary 
and nonlinear signals. One of the key challenges faced by EMD 
is the presence of the mode mixing problem, which can result 
in inaccuracies during signal analysis. To overcome these 
limitations, EEMD introduces a novel approach by 
incorporating an ensemble of white noise into the original 
signal before applying the EMD method. This addition of white 
noise ensures that each iteration of the EMD process produces 
slightly different results, effectively mitigating the mode 
mixing problem.  

The EEMD process involves several steps: Firstly, the 
original signal is combined with white noise, leading to the 
generation of multiple noisy versions of the signal. 
Subsequently [8], the traditional EMD method is applied 
independently to each of these noisy signals, extracting a set of 
IMFs from every iteration. Finally, the IMFs obtained from all 
iterations are averaged, yielding the final IMFs. Through this 
ensemble approach, EEMD successfully overcomes the 
limitations of traditional EMD and improves the accuracy of the 
extracted IMFs, representing more faithfully the underlying 
components of the signal. This enhancement proves particularly 
valuable when dealing with intricate and non-stationary signals, 
enabling more dependable time-frequency analysis and 
extraction of signal characteristics.  

IV. MEASUREMENT SCENARIO AND ANALYSIS OF THE MOBILE 
ADAPT SYSTEM 

Since non-stationary and nonlinear systems in high-speed 
wireless communication networks require special signal 
processing methods, EMD can be a suitable approach. 
Consequently, we have decided to use EMD to decompose the 
throughput data of ADAPT and analyze the obtained results. 

A. EMD Decomposition-Based Throughput Analysis 
To observe the impact of applying the EMD on throughput 

analysis, we decided to apply EMD in a direct way from 
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡����� to  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡���, and then inversely from  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡��� to 
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�����. The results of this experiment show the resulting 
IMFs of the direct and inverse methods plotted versus the time 
(Fig. 3 and Fig. 4).  

  
Fig. 3. Direct EMD on Throughput 

vs. time 
Fig. 4. Inverse EMD on 

Throughput vs. time (c = 0.48) 
 
The experiment was in the case where the 𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠 =  7, the 

topology was centred, and 𝑛𝑛 =  960. Our observation from the 
results was that the IMFs generated by the direct and inverse 
methods were significantly different, despite having different 
amplitudes for the same IMFs. This difference was further 
confirmed by a correlation coefficient of less than 0.5 (𝑐𝑐 =
 0.48), which indicates that EMD is direction-dependent. 
 

  
Fig. 5. Direct EEMD on 

Throughput vs. time (Noise = 0.05) 
Fig. 6. Inverse EEMD on 

Throughput vs. time (c = 0.994) 
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The experiment was repeated using EEMD with 5 percent 
white noise in cases where we have 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  23, the topology 
centred, and 𝑛𝑛 =  960. The IMFs generated by the direct and 
inverse methods were identical, despite having the same 
amplitude (Fig. 5 and Fig. 6). This finding was confirmed by a 
high correlation coefficient 𝑐𝑐 =  0.994, which indicates that 
EEMD is direction-independent. 

We came up with the idea of using the fast Fourier transform 
on the IMFs resulting from EMD to extract the frequency 
information. It is evident that the FFT gives adjacent sub-
frequency bands in log2 of the frequency for adjacent IMFs, 
which is reminiscent of the dyadic filter bank (See Fig. 7 the 
throughput signal in case where we have 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  11, random 
uniform topology and 𝑛𝑛 =  960, and Fig. 8 in case 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  7, 
centered topology and 𝑛𝑛 =  960). 

 

  
Fig. 7. Fast Fourier transform on 

IMFs (step, d, n) = (11, 2, 960) vs. 
frequency 

Fig. 8. Fast Fourier transform on 
IMFs (step, d, n) = (7, 1, 960) vs. 

frequency. 

B. Analysis of Data and Trend Extraction 
For extracting the trend using the IMFs components, one 

approach is, to sum up, each k consecutive IMFs together with 
the residual component (as Fig. 9 shows). It is obvious that if 
the number of IMFs included in each sum is precisely equal to 
k, then the resulting trend will exactly match the original 
throughput signal.  

To select the optimal trend among the potential options, we 
suggest employing a Root Mean Square Error (RMSE) 
calculation to compare each trend candidate against the original 
signal. The trend component with the smallest non-zero RMSE 
will be chosen as the final trend. This approach ensures that the 
selected trend is as close as possible to the original signal. The 
RMSE values are plotted versus 𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛𝑡𝑡� in centered topology, 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =  23, and 𝑛𝑛 =  960 (Fig. 10).  

By analyzing this graph, it becomes possible to visually 
identify the trend component with the smallest non-zero RMSE 
and thus select the optimal trend for the given dataset. 

 

 
Fig. 9. IMFs-based trends vs. time (step, d, n) = (23, 2, 960) 

 
The visualization of RMSE values versus 𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛𝑡𝑡� for all 42 

cases simultaneously allows us to observe that the chosen 
𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛𝑡𝑡� differs from case to case (Fig. 11). By examining this 
graph, we can identify that there is no single trend component 
that performs optimally across all cases. Instead, the optimal 
trend varies depending on the specific dataset under 
consideration.  

 

 
 

Fig. 10. The error of throughput and 
trend 

Fig. 11. RMSE of throughput and 
IMF-based trend 

 
Therefore, it is important to perform an individualized 

analysis for each dataset to determine the appropriate trend 
component. This approach ensures that the chosen trend is both 
accurate and effective for a given dataset, leading to more 
reliable results and better decision-making.  
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The ability to observe and understand the variability in 
RMSE and 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� across different cases highlight the 
importance of customizing analysis to specific datasets and 
avoiding generalizations. 

 

 
Fig. 12. Dependence of throughput, trend, and fit curve on time 

 
To enhance our analysis, we included a fit curve of the 

original throughput dataset in addition to the chosen trend and 
the original data. This fit curve provides a visual representation 
of the overall trend in the data and facilitates the comparison of 
the chosen trend with the original signal (Fig. 12 presents a plot 
showing all 42 cases together).   

Upon examining this graph, it is apparent that the chosen 
trend and the fitting curve are quite similar in the majority of 
cases. This similarity indicates that the selected trend is an 
accurate representation of the underlying trend in the data. 
However, there are some cases where the chosen trend deviates 
significantly from the fitting curve. These deviations may be the 
result of outliers or other anomalies in the data. By comparing 
the chosen trend and the fitting curve in this manner, we can 
gain a more comprehensive understanding of the data and make 
more informed decisions based on the analysis results. 

Upon applying the fitting curve to the original signal, we 
meticulously extracted the fitting parameters and subsequently 
generated a scatter plot to provide visual insight into the 
outcomes of parameters a and b (as depicted in Fig. 13). 
Notably, the red-highlighted cluster is associated with instances 
of lower congestion levels, while the black cluster corresponds 
to more congested cases. 

 
Fig. 13. Scatter plot of the fit parameters 

 
These findings strongly imply that the fitting parameters, 

specifically parameters a and b, hold promising potential as 
valuable indicators for discerning and characterizing network 
congestion states. Such observations signify the scientific 
relevance and significance of the proposed methodology in 
understanding and quantifying the complexities of network 
congestion in our study. 

V. CONCLUSION 

The analysis of our throughput data using the EMD method 
in both left-to-right and right-to-left directions revealed a strong 
dependence on the processing direction. This dependence is 
likely attributed to the end effect issue, which affects the EMD's 
performance. In contrast, when applying the EEMD method, 
the results indicated its independence from the processing 
direction, showcasing its superiority in mitigating such issues. 
Furthermore, the trend extracted through our proposed method 
(in Section 3, Subsection B) demonstrated a remarkable 
correspondence with the fitting curve, showcasing the 
reliability and accuracy of our approach in analyzing radio 
channel throughput signals. This alignment between the 
extracted trend and the fitting curve underscores the 
effectiveness of our proposed method. Additionally, by 
examining the fitting curve parameters obtained from our 
method, we observed the emergence of two distinct clusters. 
These clusters corresponded to the congested and non-
congested states of the radio channel throughput signal. This 
exciting finding implies that our proposed method not only 
effectively analyzes radio channel throughput signals but also 
enables precise detection and differentiation of various network 
congestion states. 
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the clock domain switch the synchronization accuracy can be
drastically improved.

Regarding future work, the synchronization error of the
master and slave device can be further reduced with fine
tuning of PI controller or with the implementation of a
more sophisticated solution such as Kalman-filtering. Another
possible future research direction would be the evaluation and
measurements of the different LOS and NLOS scenarios and
the characteristics of the distance between the master and slave
device. Furthermore, as the UWB technology has significant
limitations beyond a certain distance, there is some initial
research on a multi-hop UWB PTP system. Such a system
can provide clock synchronization on the order of 10 ns over
many times the UWB radio range. However, in this case, the
synchronization errors are accumulated, offering an exciting
research topic.
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[3] M. Lipiński, T. Włostowski, J. Serrano, and P. Alvarez, “White rabbit:
a PTP application for robust sub-nanosecond synchronization,” in 2011
IEEE International Symposium on Precision Clock Synchronization for
Measurement, Control and Communication, 2011, pp. 25–30, DOI:
10.1109/ISPCS.2011.6070148.

[4] “IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems,” IEEE Std 1588-
2019 (Revision of IEEE Std 1588-2008), pp. 1–499, 2020, DOI:
10.1109/IEEESTD.2020.9120376.

[5] “IEEE Standard for Local and Metropolitan Area Networks–Timing and
Synchronization for Time-Sensitive Applications,” IEEE Std 802.1AS-
2020 (Revision of IEEE Std 802.1AS-2011), pp. 1–421, 2020, DOI:
10.1109/IEEESTD.2020.9121845.

[6] I. Val, O. Seijo, R. Torrego, and A. Astarloa, “IEEE 802.1AS Clock Syn-
chronization Performance Evaluation of an Integrated Wired–Wireless
TSN Architecture,” IEEE Transactions on Industrial Informatics,
vol. 18, no. 5, pp. 2986–2999, 2022, DOI: 10.1109/TII.2021.3106568.

[7] H. Shi, A. Aijaz, and N. Jiang, “Evaluating the performance of over-
the-air time synchronization for 5g and tsn integration,” in 2021
IEEE International Black Sea Conference on Communications and
Networking (BlackSeaCom), 2021, pp. 1–6, DOI: 10.1109/BlackSea-
Com52164.2021.9527833.

[8] T. Adame, M. Carrascosa-Zamacois, and B. Bellalta, “Time-
Sensitive Networking in IEEE 802.11be: On the Way to
Low-Latency WiFi 7,” Sensors, vol. 21, no. 15, 2021.
[Online]. Available: https://www.mdpi.com/1424-8220/21/15/4954.
DOI: 10.3390/s21154954

[9] J. Haxhibeqiri, X. Jiao, M. Aslam, I. Moerman, and J. Hoebeke,
“Enabling TSN over IEEE 802.11: Low-overhead Time Synchroniza-
tion for Wi-Fi Clients,” in 2021 22nd IEEE International Conference
on Industrial Technology (ICIT), vol. 1, 2021, pp. 1068–1073, DOI:
10.1109/ICIT46573.2021.9453686.

[10] “IEEE Standard for Information technology—Telecommunications and
information exchange between systems Local and metropolitan area
networks—Specific requirements - Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications,” IEEE
Std 802.11-2016 (Revision of IEEE Std 802.11-2012), pp. 1–3534, 2016,
DOI: 10.1109/IEEESTD.2016.7786995.
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