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I. INTRODUCTION

A. Background

Supervised Learning is a type of Machine Learning
(ML) which itself is a sub-field of Artificial Intelligence
(AI). In supervised learning, the algorithm learns from
labeled data to make predictions or decisions about new,
unseen data. In this type of learning, the algorithm is
trained on a data set that includes both input data and
corresponding output labels. The algorithm then uses this
training data to learn a mapping function that can predict
the output labels for new, unseen input data. [1]

Early works in AI focused on rule-based systems
and expert systems, where human experts would define
rules and logic for the system to follow. However, these
systems were limited by the complexity and variability
of real-world data.

In the 1980s, the field of Machine Learning emerged,
which focused on algorithms that could automatically
learn patterns from data. Early Machine Learning algo-
rithms were primarily based on statistical models, such
as linear regression and logistic regression.

In the 1990s, the development of Artificial Neural
Networks brought new advances in Supervised Learning.
These networks were inspired by the structure of the hu-
man brain and were capable of learning complex patterns
from data through a process called back-propagation. [2]

In the early 2000s, larger neural network models,
such as Convolutional Neural Networks (CNNs) [3] and
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Recurrent Neural Networks (RNNs) [4], were developed,
leading to breakthroughs in areas such as image recog-
nition and Natural Language Processing (NLP).

In recent years, the development of even larger Neu-
ral Network models, such as Deep Neural Networks
(DNNs), has led to even greater advances in Supervised
Learning. These models can learn from vast amounts of
training data, and their performance has been shown to
improve with increasing amounts of data.

Overall, the history of AI, ML, and Neural Networks
has been characterized by a gradual progression towards
larger models and more training data, which has enabled
breakthroughs in Supervised Learning and other areas of
Machine Learning.

This has worked well for the most part on well
defined problems where large, good quality data sets
are available. We focus on the situations where this
assumption does not necessarily hold.

B. Related Work

The topic of learning with limited amounts of data
is not a recent one. There does seem to be however
many takes on what constitutes "small data" and many
techniques developed to be able to achieve competitive
results on less than desirable data sets.

There have been several surveys written on this topic,
looking at the problem from different directions. One
example, "Generalizing from a Few Examples: A Sur-
vey on Few-shot Learning" by Wang et al [5] gave a
unique taxonomy of Few Shot Learning (FSL) methods,
dividing them into three main categories: ones that
incorporate prior knowledge into the data, model or the
algorithm of the learning system. Another one "Small
Sample Learning in Big Data Era" by Shu et al [6]
divided Small Sample Learning (SSL) techniques into
two main branches: Concept Learning which emphasizes
learning new concepts from few related observations,
and Experience Learning which focuses on learning
with insufficient samples, co-existing with the Large
Sample Learning (LSL) manner of conventional machine
learning.

Even though there has also been attempts on more
theoretical explanations with promising results [7][8],
there does still seem to be a large gap to traverse until
we see these results used in more practical settings.
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C. Objectives

In subsequent sections, we do not plan to provide an
exhaustive overview of the subject, given the vast scope
of the topic. Instead, our objective is to highlight key
challenges associated with data scarcity and the strate-
gies formulated to tackle them. Furthermore, we delve
into select real-world scenarios one could encounter
during their data scientific journey, and offer practical
solutions to them.

II. SMALL DATA SOURCES

A. Limited annotations

The lack of annotations, refers to a common challenge
faced in Supervised Learning, where the required data
lacks the necessary annotations (a.k.a. labels) to train a
model. An annotation or label is a piece of information
that is associated with each data point that is required for
the ML algorithm to learn from it. Without these anno-
tations, the algorithm is unable to differentiate between
the correct and incorrect outputs.

An example of this annotation in Computer Vision
(CV) can be the names of the objects identified by their
bounding boxes used for object detection or in NLP, a
sentiment associated with each example sentence, that
can be used for Sentiment Analysis.

The lack of annotations can occur for several reasons,
including the cost, difficulty, or time-consuming nature
of annotation. In many cases, it may simply be impossi-
ble to obtain annotations for certain types of data, such as
historical archives or rare events. The lack of annotations
can also occur in situations where data is unstructured
or noisy, making it difficult to label accurately.

B. Limited diversity

Limited diversity of data points refers to a situation
in which the data set used to train a machine learning
model contains a small number of examples that are not
representative of the entire population. This can lead to
bias in the model, resulting in poor performance on new,
unseen data.

An example of this phenomenon can be seen in facial
recognition systems. If the data set used to train the
model contains a mostly images of people with lighter
skin tones or darker hair color, the model may perform
poorly when presented with images of individuals with
darker skin tones or lighter hair color. This is because
the model has not been trained on a diverse set of data,
resulting in a biased model.

The limited diversity of data points can occur for
several reasons, including the difficulty in obtaining
diverse data or the availability of biased data sources.

Fig. 1. Example of a long tailed dataset [9]

C. Long tail distribution

Long-tail distribution refers to a situation in which a
small number of categories occur frequently, while the
vast majority of categories occur infrequently.

An example of this phenomenon can be seen in the
recommendation systems that suggest products to users.
In many cases, a small number of popular product
categories account for the majority of the purchases,
while the vast majority of product categories are pur-
chased infrequently. If the recommendation system is
trained only on the popular products, it may perform
poorly when making recommendations for less popular
products.

The long-tail distribution can occur for several rea-
sons, including the inherent nature of the data and the
data collection process. In some cases, it may be difficult
or expensive to collect data on the less popular data
points, resulting in a bias towards the more popular data
points.

To understand the origins of this phenomena, it is
important to understand that long tail distributions are
abundant in nature and thus will naturally show up in
randomly sampled data.

One example of this would be the Pareto distribu-
tion, which describes the relative wealth distribution in
sociology, or Zipf’s law which states that in a given
corpus of natural language, the frequency of any word
is approximately inversely proportional to its rank in the
frequency table. [10]

D. Concept drift

Concept drift refers to a situation in which the statisti-
cal properties of the target variable in a Machine Learn-
ing problem change over time, resulting in a decrease
in the performance of the trained model. This can be
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Fig. 2. Five types of Concept Drift according to [11]

a challenge in ML, as the model may become outdated
and unable to accurately predict new, unseen data.

An example of this phenomenon can be seen in a
spam email classifier. The distribution of spam emails
may change over time, with new types of spam emails
appearing that are not similar to those seen before. If
the model has been trained only on the earlier types
of spam emails, it may perform poorly when presented
with the new types of spam emails, resulting in increased
proportion of false negatives or false positives.

Concept drift can occur for several reasons, including
changes in the behavior of users, changes in the envi-
ronment, and changes in the data generation process. In
many cases, the drift is gradual, making it difficult to
detect and correct.

III. SMALL DATA SOLUTIONS

A. Smart Sampling

The very first step in most practical machine learning
is to ensure the data collected is the best quality possible,
that is our sample is closest possible to our population.
There are several statistical techniques developed over
the years. Here we will only show a few that are most
useful in a limited data environment.

1) Under-sampling and Over-sampling: When one
has to deal with imbalanced dataset, a common approach
is to either over-sample the minority class(es) or under-
sample the majority class(es) until the desired distribu-
tion is reached.

This can be done by randomly removing samples
(under-sampling) or adding multiple copies of the same
sample (over-sampling) at random.

They both have their disadvantages. Under-sampling
can lead to a loss of information since we leave out po-
tentially relevant information from our training dataset.
On the other-hand, over-sampling can reinforce existing
biases in the over-sampled instances. For these reasons,
it’s usually better to use a more sophisticated method
where possible.

2) Importance Sampling: Importance sampling is par-
ticularly useful for catching rare events in long-tail
distributions. This involves creating a new distribution
where rare events become not-so-rare, sampling from
this new distribution, then re-weighing the samples to
adjust for the bias introduced.

Let’s say we have a target distribution 𝑝𝑝(𝑥𝑥) and an
importance distribution 𝑞𝑞(𝑥𝑥). In order to arrive at an
approximation of the expectation of a function 𝑓𝑓 (𝑥𝑥)
under the target distribution:

E𝑝𝑝 [ 𝑓𝑓 (𝑥𝑥)] =
∫

𝑓𝑓 (𝑥𝑥)𝑝𝑝(𝑥𝑥) 𝑑𝑑𝑥𝑥 (1)

we can sample from the importance distribution
(where 𝑥𝑥𝑖𝑖 are samples drawn from 𝑞𝑞(𝑥𝑥)) and then re-
weight the samples:

E𝑝𝑝 [ 𝑓𝑓 (𝑥𝑥)] ≈
1
𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

𝑝𝑝(𝑥𝑥𝑖𝑖)
𝑞𝑞(𝑥𝑥𝑖𝑖)

𝑓𝑓 (𝑥𝑥𝑖𝑖) (2)

3) Active Learning: Active learning is an iterative
process where the model selects the most informative
samples to be labeled, thus reducing the amount of
labeling resources to be used.

An early example for an active learning algorithm
introduced by Cohn, Atlas and Ladner [12] is Query
by Committee (QBC). The central idea behind QBC is
to maintain a committee of models (set of hypotheses)
over the data, and to obtain labels for instances about
which the committee members disagree the most. This
can reduce the amount of labeling by focusing only on
the most informative (highest entropy) examples, but
at the same time can introduce a large computational
overhead. For the detailed algorithm, see Algorithm 1

Algorithm 1 Query By Committee (QBC)
1: Input: Dataset D, committee of models C
2: Train each model 𝑐𝑐𝑖𝑖 ∈ C on D
3: while stopping criterion not met do
4: for each unlabeled 𝑥𝑥𝑢𝑢 do
5: Calculate disagreement:
6: 𝐷𝐷 (𝑥𝑥𝑢𝑢) =


𝑐𝑐𝑖𝑖 ,𝑐𝑐 𝑗𝑗 ∈C,𝑖𝑖≠ 𝑗𝑗 I(𝑐𝑐𝑖𝑖 (𝑥𝑥𝑢𝑢) ≠ 𝑐𝑐 𝑗𝑗 (𝑥𝑥𝑢𝑢))

7: end for
8: Query label for instance 𝑥𝑥∗ = arg max𝑥𝑥𝑢𝑢 𝐷𝐷 (𝑥𝑥𝑢𝑢)
9: Add labeled instance (𝑥𝑥∗, 𝑦𝑦∗) to D

10: Re-train each model 𝑐𝑐𝑖𝑖 ∈ C on D
11: end while
12: Output: Labeled dataset D

It has to be mentioned that this is just an early exam-
ple, since its introduction several other Active Learning
techniques have developed, such as Uncertainty Sam-
pling [13] Expected Model Change [14], Expected Error
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Reduction [15], Variance Reduction [16], Bayesian Ac-
tive Learning by Disagreement [17], Diversity Sampling
[18], Hierarchical Sampling [19], and Online Active
Learning [20], to name a few.

B. Expert knowledge

Fig. 3. Schematic drawing of "Expert Knowledge"

1) Taxonomy: One way in which expert knowledge
can be incorporated into Deep Learning is through the
use of taxonomies. A taxonomy is a hierarchical or
otherwise structured organization of data that categorizes
items or concepts based on their similarities, differences,
and relationships.

In many machine learning tasks, a binary decision can
be expanded into a multi-class decision using a taxon-
omy. This taxonomy divides the initial binary classes
into more specific sub-categories, organized hierarchi-
cally in a tree-like fashion. Rather than training the
model on the initial binary labels, one can use the
more detailed labels corresponding to the leaves of this
hierarchical structure. This approach allows the model to
establish more intricate decision boundaries, capturing
subtleties that might be overlooked in a simple binary
classification.

Once the model is trained and deployed, predictions
made at the leaf-level can be aggregated back to the
original binary classification, if necessary.

2) Hand-crafted features: Another way in which ex-
pert knowledge can be incorporated into deep learning
is through the use of hand-crafted features. Hand-crafted
features are manually designed features that can be
used as inputs to a neural network. These features are
often designed based on domain-specific knowledge or
prior research, and can be used to capture important
characteristics of the data that may not be captured by
the network’s automatic feature learning.

These techniques used to be the back-bone of many AI
algorithms before Deep Learning came into the picture,
but have quickly fallen out of favor due to Deep Neural
Networks’ ability to learn similar but more complicated
features. Examples of such techniques in Computer
Vision include Histogram of Oriented Gradients (HOG)
[21] and Local Binary Patterns (LBP) [22].

C. Data Augmentation

Fig. 4. Schematic drawing of "Data Augmentation"

1) Heuristic-based Methods: Heuristic-driven data
augmentation techniques apply specific rules or heuris-
tics to original data, generating new data samples. De-
signed to imitate natural data variations, these methods
produce samples closely resembling, but not identical to,
the original ones.

For image data, examples include geometric and color-
space adjustments like random cropping, rotation, shift-
ing, and variations in color through flips and jitter.

The same in the case of text-based input can in-
volve: synonym replacement, back-translation, random
deletion/insertion, random swap, etc..

It’s important to note that these transformations need
to be invariant with respect to the labels associated with
the input data.

2) Data Generation: Data generation is a data aug-
mentation method in Deep Learning that involves gen-
erating new synthetic data from scratch instead of trans-
forming or manipulating existing data samples. This is
typically done using generative models, which are deep
learning models designed to learn the underlying patterns
and structure of the data and generate new samples that
are similar to the original data.

One of the most common generative models used
for data generation is the generative adversarial network
(GAN). GANs consist of two deep neural networks: a
generator network and a discriminator network. The gen-
erator network takes a random input vector and generates
a synthetic data sample, while the discriminator network
tries to distinguish between the synthetic data and the
real data.

During training, the generator and discriminator net-
works are trained together in a zero-sum game, where
the generator tries to generate synthetic data that fools
the discriminator, and the discriminator tries to correctly
distinguish between the synthetic and real data. Over
time, the generator becomes better at generating realistic
data samples, and the discriminator becomes better at
distinguishing between the synthetic and real data.
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Given a noise variable 𝑧𝑧 drawn from a prior distribu-
tion 𝑝𝑝(𝑧𝑧), generator G tries to produce something similar
to a sample, 𝐺𝐺 (𝑧𝑧).

Given a real sample 𝑥𝑥, drawn from the observed
distribution 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝑥𝑥) and the fake sample 𝐺𝐺 (𝑧𝑧), the
discriminator tries to differentiate between the two and
outputs a probability associated with its confidence that
the generated sample is from the observed distribution.

This way, we get a two-player minimax game, with
the value function 𝑉𝑉 (𝐷𝐷𝐷𝐺𝐺):

𝑉𝑉 (𝐷𝐷𝐷𝐺𝐺) =E𝑥𝑥∼𝑝𝑝data (𝑥𝑥 ) [log 𝐷𝐷 (𝑥𝑥)] (3)
+ E𝑧𝑧∼𝑝𝑝 (𝑧𝑧) [log(1 − 𝐷𝐷 (𝐺𝐺 (𝑧𝑧)))] (4)

The discriminator tries to maximize 𝑉𝑉 (𝐷𝐷𝐷𝐺𝐺) with
respect to 𝐷𝐷, while the generator tries to minimize the
same.

This results in the following optimization problem:

min
𝐺𝐺

max
𝐷𝐷

𝑉𝑉 (𝐷𝐷𝐷𝐺𝐺) (5)

Where the generator and discriminator are trained
alternatively step-by-step.

D. Semi-supervised Learning

Fig. 5. Schematic drawing of "Semi-supervised Learning"

Semi-supervised learning is a type of machine learning
that involves training a model on both labeled and
unlabeled data. The core idea is that even though the
unlabeled data doesn’t provide direct supervision, it
still contains valuable information about the underlying
data distribution that can assist the learning process.
This approach is especially useful when labeled data
is limited, expensive, or time-consuming to obtain, but
unlabeled data is abundant.

An example of Semi-Supervised Learning is Consis-
tency Regularization, where the model is trained to be
robust against different data augmentations by ensuring
consistent predictions for different augmented views of
the same input, even if the input is unlabeled. [23]

Another is MixMatch, which leverages the MixUp
process: a data augmentation technique that creates vir-
tual training examples by linearly interpolating between
pairs of examples and their associated labels. MixMatch

takes a pair of data points (one from the labeled set and
one from the unlabeled set with its guessed label) and
applies the MixUp process on them. [24]

Pseudo-labeling is another straightforward way to
utilize unlabeled data. The idea is to train a model on all
the labeled data and then predict on the rest (unlabeled)
data points. If the prediction certainty reaches a certain
confidence, we assign the data with the predicted label
and use it to retrain the model. [25]

E. Self-supervised Learning

Fig. 6. Schematic drawing of "Self-supervised Learning"

In self-supervised learning, the algorithm learns to
generate its own labels or representations from the input
data itself, without any explicit supervision. This is
usually achieved by defining a "pretext task" or "aux-
iliary task" that helps the model learn useful features
or representations from the data. The idea is that these
learned features will be useful for downstream tasks, like
classification or regression.

Common examples of self-supervised learning in a
text-based context include language model pre-training
(e.g., BERT [26], GPT [27]), where the model learns
to predict the next word in a sentence, based on huge
amounts of unlabeled text data, where the training con-
sists of hiding certain parts of the input and letting the
model try to guess the right answer. In this was, the
labels are the masked parts of the unlabeled input data,
which are hidden from the models during training.

In the realm of computer vision, a famous self-
supervised learning method is Contrastive Learning [28].
Here, the model tries to learn an embedding space where
similar images are closer to each other, and dissimilar
images are farther away. This is done by utilizing con-
cepts such as positive pairs and negative pairs, where
positive pairs can be different augmentations of the same
data point.

Given:
• 𝐷𝐷𝑤𝑤 (𝑥𝑥𝑖𝑖 , 𝑥𝑥 𝑗𝑗 ) as the Euclidean distance between two

data point embeddings 𝑥𝑥𝑖𝑖 and 𝑥𝑥 𝑗𝑗 , where 𝑤𝑤 repre-
sents the parameters of the neural network.

• 𝑦𝑦 as a binary label indicating whether the pair is a
positive pair (𝑦𝑦 = 1) or a negative pair (𝑦𝑦 = 0).

• 𝑚𝑚 as a predefined margin to ensure that negative
pairs have distances greater than this margin.
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The contrastive loss 𝐿𝐿 for a single pair is:

𝐿𝐿𝑖𝑖 𝑖𝑖 =
1
2
𝑦𝑦𝑦𝑦𝑤𝑤 (𝑥𝑥𝑖𝑖 , 𝑥𝑥 𝑖𝑖 )2+ 1

2
(1− 𝑦𝑦) max(0, 𝑚𝑚−𝑦𝑦𝑤𝑤 (𝑥𝑥𝑖𝑖 , 𝑥𝑥 𝑖𝑖 ))2

F. Transfer Learning

Fig. 7. Schematic drawing of "Transfer Learning"

Transfer learning is a Machine Learning technique
that involves using knowledge gained from solving one
problem to improve the performance of a model on a
different, but related, problem. Transfer learning is based
on the intuition that the knowledge and representations
learned by a model on one task can be transferred to a
different task that shares similar features or structure.
The review by Pan et al [29] identified three main
subcategories: Inductive, Transductive and Unsupervised
Transfer Learning. Below is a quick summary of each:

1) Inductive Transfer Learning: This technique in-
volves transferring knowledge across domains or tasks,
where labeled data is available in both the source and
the target domain.

2) Transductive Transfer Learning: Here we focus on
domain adaptation, where the task remains unchanged,
but the data distribution differs, and no labeled data is
available in the target domain.

3) Unsupervised Transfer Learning: In this scenario,
we attempt to transfer knowledge from the source do-
main/task to improve the learning of an entirely different
task in the target domain, where no labeled data is
available.

G. Meta learning

In meta-learning, the goal is to train a model to learn
how to learn from a small number of examples, and
then use this learned knowledge to rapidly adapt to new,
unseen tasks.

There are different approaches to meta-learning, but
a common one is to use a "meta-learner" that learns to
update the parameters of a "base-learner" model based
on a small amount of data from a new task. This process
of updating the base-learner parameters based on new
tasks is sometimes referred to as "meta-training.". We
can identify several categories of Meta Learning, such
as Model based, Metric based and Optimization based
meta-learning. [30]

1) Model based meta-learning: Here we are training a
meta-learner on a set of training tasks, each with limited
number of labels. Whenever a new task is presented, the
meta-learner adjusts its internal parameters based on the
training examples and desired labels for the new task.

One example of a model-based meta-learning algo-
rithm is Memory-Augmented Neural Networks. The
core idea is to augment the model architecture (neural
network) with an external memory mechanism. This
introduces an extra memory component to the training
process. Instead of only updating the weights of the
network as traditional neural networks do, they can also
update the content of their memories to perform better
on new tasks. [31]

2) Metric based meta-learning: In metric based meta-
learning, we have a distance metric in the space of tasks
that can be used to quickly identify similar tasks and
generalize to new tasks. The meta-learner can be given
new tasks and a few related examples and is trained to
be able to identify the similarity between these new tasks
and the old ones in its space of tasks.

An example of this is Prototypical Networks. For
each class, it computes a prototype (mean representation)
from the embedding associated with the examples in that
class. For a new data point, its class is determined by its
proximity to these prototypes. [32]

3) Optimization based meta-learning: Finally, opti-
mization based meta-learning approaches meta-learning
as a bi-level optimization problem. At the inner-level,
a base-learner makes task-specifc updates using some
optimization strategy (such as gradient descent). At the
outer-level, the performance across tasks is optimized.

Here, we can look at Model-Agnostic Meta Learning
where the aim is to find a set of model parameters that
are not optimal for any single task, but can be quickly
adapted to any of the tasks within the desired set of tasks.
[31]

IV. SMALL DATA SCENARIOS

Now let’s examine some scenarios a practitioner in
the field might encounter in the real-world. For each
we will list the most likely problems that can arise
and recommended solutions from our list of techniques
examined.

A. Diagnosis of Rare Diseases from Medical Images

• Small Data Sources:
– Limited annotations: Obtaining labels might in-

volve invasive/expensive procedure.
– Limited diversity: Examples might come from

a few specialized hospitals/geographical regions
only.
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– Long tail distribution: Many common diseases
and a few rare ones.

• Small Data Solutions:
– Expert knowledge: Incorporate knowledge from

medical professionals. [33]
– Taxonomy: Subdivide diseases based on origin.

[33]
– Data Augmentation: Generate more images

through invariant transformations. [33]
– Transfer Learning: Use models pre-trained on

larger dataset. [33]

B. Predicting Customer Churn in a New Market

• Small Data Sources:
– Limited annotations: Company is still new, so

small existing dataset.
– Concept drift: Customer behavior might change

over time, especially in new markets.
• Small Data Solutions:

– Active Learning: Keep updating the model by
querying the most uncertain predictions. [34]

– Expert knowledge: Incorporate business intelli-
gence and market insights. [35]

– Semi-supervised Learning: Incorporate informa-
tion about customer interactions. [36]

C. Sentiment Analysis for a Less Common Language

• Small Data Sources:
– Limited annotations: Fewer examples in rare lan-

guages.
– Limited diversity: Most examples might come

from a limited set of sources (people who like
to leave reviews).

– Concept drift: Words and phrases change their
meanings over time, sense of humor might
evolve.

• Small Data Solutions:
– Smart Sampling: Choose diverse examples across

different all possible languages.
– Data Generation: Use translation tools to aug-

ment data. [37]
– Self-supervised Learning: Predict which words

are the best sentiment predictors. [38]
– Transfer Learning: Transfer user biases to textual

features. [39]

D. Self-driving in a New Environment

• Small Data Sources:
– Limited diversity: Training data might not in-

clude all types of environments.

– Concept drift: Environment can change over time
(e.g., changes in climate/lighting conditions).

– Long tail distribution: Certain events in driving
happen rarely (e.g., crashes).

• Small Data Solutions:
– Data Augmentation: Simulate different lighting

and object placements. [40]
– Importance Sampling: Weight experiences that

are less frequent but important (like crashes)
more heavily.

– Meta-learning: Use knowledge from common ob-
jects to help detect rare ones. [41]

V. DISCUSSION

The era of big data has led to a vast landscape of deep
learning techniques, leaving the average practitioner un-
certain about which direction to take for unfamiliar chal-
lenges. Furthermore, much of the theoretical groundwork
is done on unrealistically large and good quality data
sources that doesn’t take into account the natural shift
in the specific domain studied.

Through this paper, our aim is to guide practitioners
by offering a concise summary of frequently faced
challenges and potential solutions. This is complemented
by a curated set of real-world examples. It is our sincere
hope that readers find value in our efforts.
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– Long tail distribution: Many common diseases
and a few rare ones.

• Small Data Solutions:
– Expert knowledge: Incorporate knowledge from

medical professionals. [33]
– Taxonomy: Subdivide diseases based on origin.

[33]
– Data Augmentation: Generate more images

through invariant transformations. [33]
– Transfer Learning: Use models pre-trained on

larger dataset. [33]

B. Predicting Customer Churn in a New Market

• Small Data Sources:
– Limited annotations: Company is still new, so

small existing dataset.
– Concept drift: Customer behavior might change

over time, especially in new markets.
• Small Data Solutions:

– Active Learning: Keep updating the model by
querying the most uncertain predictions. [34]

– Expert knowledge: Incorporate business intelli-
gence and market insights. [35]

– Semi-supervised Learning: Incorporate informa-
tion about customer interactions. [36]

C. Sentiment Analysis for a Less Common Language

• Small Data Sources:
– Limited annotations: Fewer examples in rare lan-

guages.
– Limited diversity: Most examples might come

from a limited set of sources (people who like
to leave reviews).

– Concept drift: Words and phrases change their
meanings over time, sense of humor might
evolve.

• Small Data Solutions:
– Smart Sampling: Choose diverse examples across

different all possible languages.
– Data Generation: Use translation tools to aug-

ment data. [37]
– Self-supervised Learning: Predict which words

are the best sentiment predictors. [38]
– Transfer Learning: Transfer user biases to textual

features. [39]

D. Self-driving in a New Environment

• Small Data Sources:
– Limited diversity: Training data might not in-

clude all types of environments.

– Concept drift: Environment can change over time
(e.g., changes in climate/lighting conditions).

– Long tail distribution: Certain events in driving
happen rarely (e.g., crashes).

• Small Data Solutions:
– Data Augmentation: Simulate different lighting

and object placements. [40]
– Importance Sampling: Weight experiences that

are less frequent but important (like crashes)
more heavily.

– Meta-learning: Use knowledge from common ob-
jects to help detect rare ones. [41]

V. DISCUSSION

The era of big data has led to a vast landscape of deep
learning techniques, leaving the average practitioner un-
certain about which direction to take for unfamiliar chal-
lenges. Furthermore, much of the theoretical groundwork
is done on unrealistically large and good quality data
sources that doesn’t take into account the natural shift
in the specific domain studied.

Through this paper, our aim is to guide practitioners
by offering a concise summary of frequently faced
challenges and potential solutions. This is complemented
by a curated set of real-world examples. It is our sincere
hope that readers find value in our efforts.
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