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Abstract— With Kubernetes emerging as one of the most popu-
lar infrastructures in the cloud-native era, the utilization of con-
tainerization and tools alongside Kubernetes is steadily gaining
traction. The main goal of this paper is to evaluate the service dis-
covery mechanisms and DNS management (CoreDNS) of Kuber-
netes, and to present a general study of an experiment on service
discovery challenges. In large scale Kubernetes clusters, running
pods, services, requests, and workloads can be substantial. The
increased number of HTTP-requests often result in resource
utilization concerns, e.g., spikes of errors [24], [25]. This paper
investigates potential optimization strategies for enhancing the
performance and scalability of CoreDNS in Kubernetes. We
propose a solution to address the concerns related to CoreDNS
and provide a detailed explanation of how our implementation
enhances service discovery functionality. Experimental results in
a real-world case show that our solution for the CoreDNS en-
sures consistency of the workload. Compared with the default
CoreDNS configuration, our customized approach achieves bet-
ter performance in terms of number of errors for requests, aver-
age latency of DNS requests, and resource usage rate.

Index Terms—Microservice, container, service discovery,
CoreDNS, Kubernetes

[. INTRODUCTION

ITH the continuous development of technology, soft-

ware systems become larger and more complex, and
the architecture of their code must adapt to these changes in
order to enable the handling of the increased complexity. The
application of a traditional, monolithic architecture is becom-
ing less attractive and less useful in many business scenarios.
In a monolithic architecture, any modification made to a
small feature necessitates the recompilation and redeployment
of the entire application, resulting in long iteration cycles,
which is clearly unfavorable. On the contrary, microservices
provide an approach to developing a single application as a
collection of small services. Each service operates in its own
process and communicates through a lightweight mechanism.
Transitioning from monolithic applications to microservices
requires a significant shift in software design, but it offers
numerous advantages, particularly when combined with the in-
troduction of containerization technologies. The microservice-
based application code is small, independent, easy to manage,
compile and deploy, and allows short development iteration
cycles [1], [2]. Due to the small volume of deployment
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packages, fast service start-up and resource recovery, and easy
to achieve flexible scaling, it can well meet application sce-
narios with high concurrency and large fluctuation in load [3].
The integration of containerization technology and the mi-
croservice architecture significantly enhance the performance
and efficiency of information systems [4], [S]. We leverage
microservice architecture and containerization technology to
develop business applications. It allows us to maintain frequent
software development and deployment cycles while ensuring
consistent and high-quality product delivery. Furthermore, the
usage of those technologies facilitates smooth adaptation to the
continuous integration and continuous development (CI/CD)
methodology and cloud native development [6], allowing for
agile adjustments to accommodate evolving business require-
ments.

In a real world industrial scenario, our team embarked on a
Spring Cloud-based DevOps platform project with the objec-
tive of gradually transitioning from a monolithic architecture
to a microservice-based one. To accomplish this, the entire
system needed to be migrated from hypervisor to container
virtualization, which allowed us to build a highly available
cluster. Over time, we have progressively transitioned our
services from a monolithic architecture to a Spring Cloud-
based one. In the environment, numerous microservices are
constantly being created and perished, while they are making
calls to each other. Therefore, a component that specifies
the location of a given microservice is needed. This compo-
nent is called Service Discovery. Spring Cloud implements
Service Discovery through Eureka [7]. When shifting from
VM-based microservice applications to containerized ones,
there is a need of using Eureka for service discovery due to
the communication between the two different infrastructures:
service discovery operates smoothly via Eureka on co-existing
infrastructures of VM and Kubernetes. However, it exhibits
performance limitations, particularly in the large-scale.

The contributions of this paper are the two-fold. First, we
introduce the idea of an easy-to-use dynamic service discovery
functionality during the migration from virtual machines to a
containerized cluster. Then we provide a detailed evaluation
of the service discovery process in container-based clusters.
We offer solutions and strategies for service discovery issues
and for ensuring smooth operation of Kubernetes clusters.

The rest of the paper is structured as follows. Section II
is a brief overview of the background knowledge on service
discovery, microservices and containerization technology. Sec-
tion III introduces the pre-experimental activities including the
methodology employed in our study. The detailed investiga-
tion on performance overhead is provided in Section IV. In
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Section V, we present our measurement results. Section VI
addresses related work. Finally, conclusions are drawn in
Section VII.

II. BACKGROUND
A. Microservices and containerization tools

Quoting from "microservices.io" [8], microservices are an
architectural style that organizes an application into a set of
services characterized by the following qualities: (1) suffi-
ciently decoupled to ensure high maintainability and testa-
bility; (2) loosely coupled from the application glue logic
(e.g., orchestration, monitoring, etc.); (3) independently de-
ployable; (4) organized around single business capabilities.
Containerization technology plays a crucial role as the key
enabler for microservices. From an organizational standpoint,
the combination of microservices and containerization em-
powers the microservice architecture style to facilitate the
evolution of an organization’s technology and organizational
stack in harmony with its architectural structures [9], [10].
In the scope of this work, we focus on Docker as a con-
tainerization tool and Kubernetes for the container orches-
tration. Docker helps to provide a quick and lightweight
environment and allows us to build, deploy, run, update and
manage container—standardized, executable components that
combine application source code with the operating system
(OS) libraries and dependencies required to run that code in
any environment [11], [5]. On the other hand, Kubernetes is
one of the most popular orchestration platforms for automating
the deployment of, and managing, containerized workloads
and services, as well as for scaling containerized applications
across a cluster [12], [13].

B. Service discovery

Service Discovery is a design pattern which can enable
clients or API gateways to discover the network information,
such as the IP address and port, of microservices [14]. This
discovery process relies on a component known as the Ser-
vice Registry or Discovery Server. The Service Registry is
responsible for tracking all individual microservices within
the architecture and storing their IP addresses and ports in
its database. Whenever a service scales up or down, it sends a
message to the discovery service, which updates its database
accordingly. The microservices are registered and cancelled
through a service registry, with Netflix Eureka serving as an

example of such a registry [15], [16].
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Fig. 1. Client discovery mechanism.
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To cater to different business application scenarios, mi-
croservices utilize a registration discovery mechanism that
combines client discovery and server discovery [17]. The client
discovery mechanism can rely on Netflix Eureka technology,
where clients query a service registry (“service center”) to
retrieve a list of available service instances [15], [18] as shown
in Figure 1. Using a load balancing algorithm, the client
selects one of the available service instances and sends out the
request. The registration management and querying of service
instances are facilitated through REST API calls provided
by Eureka within the application. Eureka’s client operates in
self-registration mode, requiring it to handle service instance
registration, cancellation, and sending regular heartbeats.

III. MIGRATION OF MICROSERVICES FROM VMS TO
CONTAINERS

Two main initiatives were undertaken as part of this study
to address service discovery challenges. The first one involved
migrating microservices from a virtual machine (VM) based
environment to a container-based one. Our microservice sys-
tem utilizes Spring Cloud development and is deployed on
a Docker-based Kubernetes cluster. Over time, we gradually
separated services from a monolithic architecture to Spring
Cloud. Currently, we are successfully operating approximately
600 instances and 110 application services on DevOps in-
frastructure and self-hosted Kubernetes cluster. However, to
enable service discovery between the VM-based and the
container-based infrastructures, a solution was needed. Thus,
we designed and implemented a seamless migration process
for the microservices, with a primary focus on introducing
easy-to-use dynamic service discovery during the transition
period.

The second initiative involves leveraging Kubernetes’ native
service discovery capabilities after the completion of the mi-
gration to containerized microservices. The motivation behind
this initiative was that we encountered abnormal functionality
with Kubernetes DNS and service discovery, particularly in
scenarios involving numerous external name services and
pods. Therefore, we conducted an investigation to identify
the root cause of the problem, to evaluate CoreDNS, and to
develop a solution for these challenges.

Performing a migration from legacy system to microservice-
based architecture while introducing major architecture
changes must be seamless for the product teams and for the
end-users. During this study, we performed a gradual migra-
tion of front-end applications into containerized microservices
deployed within a Kubernetes cluster. However, some of the
remaining applications still operate on virtual machines. Until
all the applications were completely migrated to a container-
based microservice architecture, we need to find a solution to
enable service discovery between the Kubernetes cluster and
the VM(s). Therefore, we utilized Netflix Eureka as a key
component to underpin the service discovery pattern and to
provide client-side load balancing. The microservices are able
to register themselves with the Eureka server, which stores the
microservices’ access information, including their respective
ports and IP addresses [7].
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Fig. 2. Service discovery between Kubernetes cluster and VM(s) through
Eureka.

For our case, when a microservice running in the Kubernetes
cluster needs to invoke another microservice located on a
VM, communication completely goes out of the Kubernetes
cluster, and reaches out to the Eureka server to discover the
location of the called microservice. Then it returns back to
the Kubernetes cluster with the desired data as shown in
Figure 2. Even when container-based microservices require
communication with one another, they rely on Eureka since it
is the primary service discovery mechanism within the entire
system for now. This approach is not quite efficient from a
performance perspective, particularly in large-scale clusters.
By transitioning to a container-based architecture, we are able
to eliminate certain components from the legacy infrastructure.
Once the microservices are fully containerized and deployed in
the Kubernetes cluster, we can remove Eureka. This not only
enhances performance, but also facilitates a cloud-native de-
ployment. Kubernetes itself can handle both service discovery
and load balancing, enabling a more streamlined and efficient
approach.

We have identified the necessary steps to smoothly decom-
mission the use of Netflix Eureka during the migration process,
with the aim of achieving zero downtime, resolving traffic
issues, minimizing effort, and reducing risks and impacts. Our
goal was to ensure that microservices should communicate
with each other using both Netflix Eureka and Kubernetes
service discovery in a seamless manner during the transition
phase, simply by switching a “discovery flag”. We conducted
tests on API endpoints before and after switching the Eureka
client flag to verify that the same code base functions properly
in both scenarios. The following changes were implemented
during the migration process.

A. Code-based changes

o Changes in the pom.xml [19] file regarding the depen-
dencies.

« Changes in the main Spring Boot application. java
file.

SPECIAL ISSUE ON APPLIED INFORMATICS

Challenges in service discovery for microservices
deployed in a Kubernetes cluster — a case study

« Changes in the bootstrap.yaml [20] file of Spring
Boot.

B. Adjustments of the cluster configurations

« Modifications in the config-server database — When utiliz-
ing Kubernetes discovery, the microservice configuration
is automatically updated to include the “Kubernetes”
active profile. It is important to note that the default
configuration profile is labeled as “development”, which
differs from the “Kubernetes” profile. To ensure the relia-
bility of microservices, a new profile named “Kubernetes”
must be added to the config-server database.

o Add role [21] and role-binding [22] to service ac-
count [23] in the Kubernetes cluster — In order for Spring
Cloud Kubernetes to retrieve a list of addresses for pods
belonging to a specific service, it requires access to the
Kubernetes API. To ensure this access, deployment or pod
must be assigned to the relevant service accounts, and it
is essential to verify that they possess the correct roles.

« Changes in the global configuration file — This modifica-
tion allows for the convenient switching of the discovery
flag between Eureka and Discovery-client, or vice versa.

By implementing these necessary changes in the code base
and the configurations, a safe and straightforward transition
from Netflix Eureka to native Kubernetes service discovery
becomes achievable. After moving dozens of microservices,
our implementation proved to be effective and significantly
alleviated the burden of the migration process. The focus on
simplicity has played a crucial role in enabling a smoother
transition while saving effort and time.

IV. PERFORMANCE IMPROVEMENTS

In large scale Kubernetes clusters, the total number of
running pods, services, requests, and workloads can be high,
and the increased number of HTTP-requests often result in
resource utilization concerns, e.g., spikes of errors [24], [25].
The memory usage of Kubernetes DNS is predominantly
affected by the number of pods and services in the cluster [26],
[27]. Other factors include the size of the filled DNS an-
swer cache, and the rate of queries received per CoreDNS
instance [26].

Upon encountering resource consumption issues and a spike
of errors in HTTP-requests, we started to troubleshoot the core
pain points, and to solve the issues by fine-tuning the config-
uration of CoreDNS [24]. Our initial idea was to increase the
number of replicas for the application to assess whether it
would help enhance performance and mitigate errors. As we
delved deeper into the issue with the application developers,
we discovered that the majority of failures could be attributed
to DNS resolution. This discovery led us to shift our focus
towards improving the performance of DNS resolution in
Kubernetes.

We have carried out a stress test on service discovery to
identify bottlenecks. For our experiment, we used a cluster
with one master and 10 worker nodes, which were set up with
the default settings of Kubernetes. We executed Java-based
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TABLE I
PERFORMANCE BEFORE OPTIMIZATION
Number of pods Max memory Max CPU Average response Network load: Network load:
& services (MB) (cores) time in seconds Receive (MB/s) Transmit (MB/s)
0 19 | 0.0001 0.0008 0.0031 0.0047
250 776 | 2.74 0.67 3.7 6.37
1054 8914 | 5.27 4.02 8.10 13.98
2000 16664 | 9.14 8.19 11.25 18.36

front-end applications and microservices as Kubernetes pods
and Kubernetes services on that cluster. The figures presented
in Table I are based on data collected from the tests using the
following setup.

o Master: nl-standard-1 (16 vCPU, 32 GB memory)
o Nodes: nl-standard-2 (32 vCPUs, 125 GB memory)
« Networking: calico-3.19.1

« Kubernetes Version: 1.21.3

o CoreDNS Version: 1.7.0

As shown in Table I, resource consumption and network
load drastically increase when the total number of services
and pods are raised. We need to emphasize that here the type
of most of the services was externalName [28], which
was one of the reasons of the phenomena that when the total
number of services and pods were beyond 1054, the system
consumed high amount of resources such as around 16 GB
of memory and 9 CPU cores. The average response time for
2000 pods/services was around 8.19 seconds, which resulted
in high latency and high error rate for HTTP-requests.

The CoreDNS function with default configuration occasion-
ally crashed when running 500 external services and pods in
the Kubernetes cluster. After this incident, we adjusted the
memory resource “request/limit” in the CoreDNS deployment
up to 8 GB from 170 MB, and increased the total number of
instances to four. This high amount of resource consumption
indicates that the current implementation may exhibit abnor-
mal behavior, which can lead to malfunctions and failures of
the CoreDNS.

According to our experiences, it is insufficient to merely
add extra CoreDNS instances or configure Horizontal Pod
Autoscaler (HPA) for the cluster based on number of requests,
resource consumption, and number of workloads running on
the cluster to address the performance and stability problem ef-
fectively, especially for large-scale clusters in which numerous
projects and environments are being developed simultaneously.
Expanding resource utilization continuously in response to
increased requests is fruitless, even if the cluster possesses
sufficient resources. Therefore, an accurate and appropriate
solution is necessary to address these concerns. As we started
to investigate more into how the application is making requests
to CoreDNS, and troubleshooting the DNS resolution and
cluster configurations, we observed most of the outbound
requests happening through the application to an external API
which leads a high spike of errors. Also, we found out several
obstacles that hindered the smooth functioning of the system,
including the lack of a logical and well-defined DNS search
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flow, and misconfigured Kubernetes service objects. These
matters had a substantial impact on CoreDNS, leading to
failures and excessive load that caused such high resource
consumption and latency issues.

Therefore, we developed a dedicated solution at the cluster
level, with which organizations can mitigate the previously
mentioned service discovery issues and ensure smooth func-
tioning of the Kubernetes clusters.

A. Reconfiguring service object

In our scenario, pods/instances frequently perform external
lookups through the externalName service object in Ku-
bernetes. We discovered that issues stemmed from unnecessary
port definitions in the externalName service. However,
rectifying this required code modifications on the microservice
side to create the externalName service without any port
definition. As a solution, we made updates to the source code,
incorporating the Fully Qualified Domain Name (FQDN) of
the client service. This approach prevents invalid DNS lookups
resulting from search domains. For example, if the client pod
needs to access rate-service, the domain name can be specified
as www.rate-service.com. To ensure the effectiveness of these
changes, comprehensive end-to-end tests were conducted in
the non-production environment.

B. Enabling local DNS Cache

In addition, we implemented a Node Level DNS Cache to
enhance the stability and performance of service discovery.
This involved optimizing DNS resolution, improving latency,
and reducing the burden of CoreDNS. With the current DNS
architecture, it is possible that pods with the highest DNS
QPS have to reach out to a different node, if there is no
local CoreDNS instance [29]. To address this, we deployed
local DNS Caching agents on nodes as a Daemonset, which
significantly improved the performance of Cluster DNS. It
works as a CoreDNS caching agent and pods will reach out to
the agent running on the same node. Thereby it helps to avoid
connection tracking and iptables DNAT rules. When the local
caching agent encounters cache misses for cluster hostnames,
it queries the core-dns service for resolution.

C. Defining search sequence

During our in-depth investigation into how the application
sends requests to CoreDNS, we discovered that a significant
portion of outbound requests were directed towards an external
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API. This led to domain name resolution errors occurring
within the cluster. To resolve this issue, we took the neces-
sary steps to optimize the resolv.conf file of the application
deployment pod.

nameserver 10.10.10.151

search local-namespace.svc.cluster.local \
global-available.svc.cluster.local \
svc.cluster.local cluster.local \
head-zones.local

Fig. 3. Defined DNS Search sequence.

We specify the domain name that a client pod needs to
access based on the rules as shown in Figure 3. These rules can
help minimize the number of attempts for resolving the domain
name, and make the DNS resolution service more efficient.
When the DNS resolver sends a query to the CoreDNS
server, it tries to search the domain considering the search
path. If the client pod needs to access a service in the same
namespace, the initial search attempt must always be inside
a local environment, then the second attempt, in this case,
will search in the next specified environment (global available
environment). If the domain remains unresolved, the search
process proceeds to the current cluster level. If the domain
is still not resolved at this stage, the search is expanded to
encompass the entire infrastructure of the organization.

If we are looking for a domain frontapp.io, the search
would make the queries which are presented in Figure 4, and
it receives a successful response in the last query.

frontapp.io.local-namespace.svc.cluster.local <= NXDomain
frontapp.io.global-available.svc.cluster.local<= NXDomain
frontapp.io.svc.cluster.local <= NXDomain
frontapp.io.cluster.local <= NXDomain
frontapp.io.head-zones.local <= NXDomain

frontapp.io <= NOERROR

Fig. 4. DNS query for lookup.

Due to the excessive number of external lookups, an ap-
plication may receive numerous NXDomain responses for
DNS searches. To optimize this, we customized dnsConfig in
the Deployment object of the container, which will change
resolve.conf accordingly on pods. The search is being
performed only for an external domain. This reduces the
number of queries to DNS servers, and helps mitigate spike
errors for the application.

D. Ensuring availability — Optimize resource allocation

During time periods of high DNS query volume and with
numerous services/pods in the cluster, CoreDNS tends to
consume additional memory and CPU resources. Therefore,
the default memory limit can lead to out of memory (OOM)
errors. As a result, CoreDNS pods undergo repetitive restart
attempts but fail to start successfully. To address this, we fine-
tuned CoreDNS and adjusted the resource requirements within
the cluster. Specifically, we modified the default values for
memory resource "requests and limits" from 170MB to 1GB,
and for CPU from 1 milli-core to 500 milli-cores, based on
the cluster’s status.

SPECIAL ISSUE ON APPLIED INFORMATICS

Challenges in service discovery for microservices
deployed in a Kubernetes cluster — a case study

E. Enabling scalibility — Auto-scale the number of pods -
Horizontal Pod Autoscaler

We have implemented the Horizontal Pod Autoscaler (HPA)
to dynamically adjust the number of CoreDNS pods. Currently,
the cluster is provisioned with five CoreDNS pods. In the event
of increased resource utilization leading to overload, we have
incorporated a backup configuration within the autoscaler.
The HPA is configured with the policy settings illustrated in
Figure 5, enabling it to increase the number of CoreDNS pods
based on CPU utilization.

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: coredns-hpa
namespace: kube-system
spec:
scaleTargetRef:
apiversion: apps/vl
kind: Deployment
name: coredns
minReplicas: 5
maxReplicas: 10
metrics:
- type: Resource
resource:
cpu
targetAverageUtilization: 70

name:

Fig. 5. HPA configuration based on CPU usage.

V. RESULTS

The combination of the above-mentioned changes and tun-
ing solutions has significantly addressed most of the previously
experienced issues, and provided a more optimal resource
consumption, minimized the blast radius of CoreDNS crashes,
mitigated DNS errors, timeouts, and latency. After the ad-
justments, the resource utilization of CoreDNS has drastically
dropped into a very low amount, as demonstrated in Table II.
Even when the total pod and service count reached 2000
(and above), it only consumed 524 MB of memory and 0.2
cores of CPU, which is a remarkable improvement compared
to the original state. In the initial measurement data (shown
in Table I) we could observe very high latency — around 8
seconds at peak load with 2000 pods/services.

With the new implementation, the average response time
has been reduced to less than 2 milliseconds, falling within an
acceptable range. This improvement has also helped us min-
imize spike errors in HTTP-requests. The new measurement
proves that the original implementation was functioning in an
abnormal way due to design and configuration flaws, resulting
in the malfunction and failures of CoreDNS.

VI. RELATED WORK

The solution for the increased load and errors of service
discovery in Kubernetes requires a multi-faceted approach that
addresses both scalability and reliability challenges. To miti-
gate the issues and ensure smooth operation of the execution
environment, a number of techniques can be employed.
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TABLE 11
MEASUREMENT DATA AFTER THE ADJUSTMENTS.
Number of pods Max Memory Max CPU Average Response Network load: Network load:
& services (MB) (core) time in seconds Receive (MB/s) Transmit (MB/s)
0 19 | 0.0001 0.00071 0.0019 0.0025
250 76.480 | 0.096 0.00104 0.86 0.72
1054 280.72 | 0.155 0.00125 1.42 1.26
2000 524.09 | 0.203 0.00172 1.8 1.45

Nguyen et al. [30] proposes the horizontal scaling of the
containers using Kubernetes’ built-in autoscaling capabilities;
in this way resources can be dynamically allocated based
on demand, ensuring that DNS pods can adeptly manage
surges in traffic and efficiently distribute the workload. We
also applied horizontal scaling, but the technique turned out
to be insufficient to solve the problems on its own, therefore
we had to investigate other solutions as well.

Zhang Wei-guo et al. [31] emphasise that to prevent resource
exhaustion and reduce the occurrence of errors or crashes, it is
essential to optimize the allocation of resources for DNS pods,
including setting appropriate CPU and memory limits. By
ensuring accurate resource provisioning, a service discovery
pod can gain the necessary capacities to handle the workload
efficiently. This approach was still insufficient in our case,
thereby we applied it with additional techniques.

Nguyen and Kim [32] argue that implementing a robust
load balancing mechanism, either within Kubernetes or by
integrating with external load balancers, enables the even
distribution of DNS requests across multiple DNS instances.
Load balancing helps prevent bottlenecks and ensures high
availability. After introducing the changes to our cluster con-
figuration and service discovery, the use of a special load
balancer was not necessary. However, it might become so in
the future, when the number of system components grow even
higher.

Almaraz-Rivera [33] underlines the importance of establish-
ing comprehensive monitoring and alerting systems to track
containers’ performance, latency, error rates, and resource
utilization. Proactive monitoring enables the early detection
of potential issues and allows for timely remediation. In align
with this approach, we introduced Prometheus and Grafana as
monitoring and alerting tools for our Docker-based Kubernetes
infrastructure.

Horaleket et al. [34] point out that enabling detailed logging
for containers and leveraging logging aggregation solutions
can aid in troubleshooting errors and performance issues.
Analyzing logs can provide valuable insights into the root
causes of problems and guide further optimizations. This
technique was a key enabler in our methodology as well. The
execution environment and the applications referred to in this
paper employ Elasticsearch and Kibana for real-time search,
analysis, visualization, and management of massive datasets.

The combination of these techniques can help overcome the
challenges related with increased load and errors in CoreDNS
within Kubernetes, allowing for the stable and effective oper-
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ation of DNS resolution. However, they may not be adequate,
or sufficient, to handle the arising problems in a variety
of scenarios. In our case, the aforementioned approaches
were still unsatisfactory to fully address the service discovery
challenges. Consequently, we investigated alternative technical
and engineering solutions. In this paper, we presented an in-
depth explanation of our strategy to tackling the experienced
difficulties.

VII. CONCLUSION

As containerization technologies become intensively used,
certain challenges and problems arise. This paper proposed
a technique to gradually migrate virtual machine based mi-
croservices to containerized ones, and solved an issue (which
was discovered in a large-scale migration process) in the name
service component of a popular cluster management solution.

We introduced a technique to help developers transition
from Netflix Eureka based service discovery to a more light-
weight native Kubernetes service discovery. This technique is
useful when an application is gradually refactored from VM-
based to Docker-based microservices, temporarily containing
both kinds of components.

We discovered an issue with the default configuration of
CoreDNS, the name service of Kubernetes, which causes
performance degradation and service failures for high loads.
We propose modifications which result improvements in the
range of 1-2 orders of magnitude, and drastically increases
the stability of CoreDNS.
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