
 Infocommunications
Journal

A PUBLICATION OF THE SCIENTIFIC ASSOCIATION FOR INFOCOMMUNICATIONS (HTE)

ISSN 2061-2079

MESSAGE FROM THE GUEST EDITORS
Special Issue on Applied Informatics ... Gergely Kovásznai and Imre Varga 1

PAPERS FROM OPEN CALL
Deep Learning-Based Refactoring with
Formally Verified Training Data Balázs Szalontai, Péter Bereczky and Dániel Horpácsi 2
Deep Learning from Noisy Labels with Some
Adjustments of a Recent Method István Fazekas, László Fórián, and Attila Barta 9
Application of Neural Network Tools
in Process Mining László Kovács, Erika Baksáné Varga, and Péter Mileff 13
A comparative study of interpretable image classification models
... Adél Bajcsi, Anna Bajcsi, Szabolcs Pável, Ábel Portik, Csanád Sándor,
... Annamária Szenkovits, Orsolya Vas, Zalán Bodó and Lehel Csató 20
What can we learn from Small Data ...Tamas Nyiri and Attila Kiss 27
Survey of Routing Techniques-Based Optimization of Energy
Consumption in SD-DCN Mohammed Nsaif, Gergely Kovásznai, Ali Malik, and Ruairí de Fréin 35
Decomposition Based Congestion Analysis of the Communication
in B5G/6G TeraHertz High-Speed Networks Djamila Talbi, and Zoltan Gal 43
In-network DDoS detection and
mitigation using INT data for IoT ecosystem Gereltsetseg Altangerel and Máté Tejfel 49
The performance of modern centrality measures
of Energy Consumption in SD-DCN Péter Marjai, Máté Nagy-Sándor, and Attila Kiss 55
Improve Performance of Fine-tuning
Language Models with Prompting Zijian Győző Yang and Noémi Ligeti-Nagy 62
Challenges in service discovery for microservices deployed in a kubernetes
cluster – a case study Baasanjargal Erdenebat, Bayarjargal Bud, and Tamás Kozsik 69

ADDITIONAL
Guidelines for our Authors .. 76

Special Issue
on Applied Informatics

JAVIER ARACIL, Universidad Autónoma de Madrid, Spain

LUIGI ATZORI, University of Cagliari, Italy

JÓZSEF BÍRÓ, Budapest University of Technology and Economics
(BME), Hungary

STEFANO BREGNI, Politecnico di Milano, Italy

VESNA CRNOJEVIÇ-BENGIN, University of Novi Sad, Serbia

KÁROLY FARKAS, Budapest University of Technology and
Economics (BME), Hungary

VIKTORIA FODOR, KTH, Royal Institute of Technology, Stockholm,
Sweden

JAIME GALÁN-JIMÉNEZ, University of Extremadura, Spain

EROL GELENBE, Institute of Theoretical and Applied Informatics
Polish Academy of Sciences, Gliwice, Poland

ISTVÁN GÓDOR, Ericsson Hungary Ltd., Budapest, Hungary

CHRISTIAN GÜTL, Graz University of Technology, Austria

ANDRÁS HAJDU, University of Debrecen, Hungary

LAJOS HANZO, University of Southampton, UK

THOMAS HEISTRACHER, Salzburg University of Applied Sciences,
Austria

ATTILA HILT, Nokia Networks, Budapest, Hungary

JUKKA HUHTAMÄKI, Tampere University of Technology, Finland

SÁNDOR IMRE, Budapest University of Technology and Economics
(BME), Hungary

ANDRZEJ JAJSZCZYK, AGH University of Science and Technology,
Krakow, Poland

FRANTISEK JAKAB, Technical University Kosice, Slovakia

GÁBOR JÁRÓ, Nokia Networks, Budapest, Hungary

MARTIN KLIMO, University of Zilina, Slovakia

ANDREY KOUCHERYAVY, St. Petersburg State University of
Telecommunications, Russia

LEVENTE KOVÁCS, Óbuda University, Budapest, Hungary

MAJA MATIJASEVIC, University of Zagreb, Croatia

OSCAR MAYORA, FBK, Trento, Italy

MIKLÓS MOLNÁR, University of Montpellier, France

SZILVIA NAGY, Széchenyi István University of Gyôr, Hungary

PÉTER ODRY, VTS Subotica, Serbia

JAUDELICE DE OLIVEIRA, Drexel University, Philadelphia, USA

MICHAL PIORO, Warsaw University of Technology, Poland

ROBERTO SARACCO, Trento Rise, Italy

GHEORGHE SEBESTYÉN, Technical University Cluj-Napoca, Romania

BURKHARD STILLER, University of Zürich, Switzerland

CSABA A. SZABÓ, Budapest University of Technology and
Economics (BME), Hungary

GÉZA SZABÓ, Ericsson Hungary Ltd., Budapest, Hungary

LÁSZLÓ ZSOLT SZABÓ, Sapientia University, Tirgu Mures, Romania

TAMÁS SZIRÁNYI, Institute for Computer Science and Control,
Budapest, Hungary

JÁNOS SZTRIK, University of Debrecen, Hungary

DAMLA TURGUT, University of Central Florida, USA

SCOTT VALCOURT, Roux Institute, Northeastern University,
Boston, USA

JÓZSEF VARGA, Nokia Bell Labs, Budapest, Hungary

JINSONG WU, Bell Labs Shanghai, China

KE XIONG, Beijing Jiaotong University, China

GERGELY ZÁRUBA, University of Texas at Arlington, USA

Editorial Board
Editor-in-Chief: PÁL VARGA, Budapest University of Technology and Economics (BME), Hungary

Associate Editor-in-Chief: ROLLAND VIDA, Budapest University of Technology and Economics (BME), Hungary
Associate Editor-in-Chief: LÁSZLÓ BACSÁRDI, Budapest University of Technology and Economics (BME), Hungary

Area Editor – Quantum Communications: ESZTER UDVARY, Budapest University of Technology and Economics (BME), Hungary
Area Editor – Cognitive Infocommunications: PÉTER BARANYI, University of Pannonia, Veszprém, Hungary

Area Editor – Radio Communications: LAJOS NAGY, Budapest University of Technology and Economics (BME), Hungary
Area Editor – Networks and Security: GERGELY BICZÓK, Budapest University of Technology and Economics (BME), Hungary

Area Editor – Neural Speech Technology: TAMÁS GÁBOR CSAPÓ, Budapest University of Technology and Economics (BME), Hungary

Indexing information
Infocommunications Journal is covered by Inspec, Compendex and Scopus.

Infocommunications Journal is also included in the Thomson Reuters – Web of ScienceTM Core Collection,
Emerging Sources Citation Index (ESCI)

www.infocommunications.hu

Infocommunications Journal
Technically co-sponsored by IEEE Communications Society and IEEE Hungary Section

Supporters
FERENC VÁGUJHELYI – president, Scientific Association for Infocommunications (HTE)

Articles can be sent also to the following address:
Budapest University of Technology and Economics

Department of Telecommunications and Media Informatics
Phone: +36 1 463 4189 • E-mail: pvarga@tmit.bme.hu

Editorial Office (Subscription and Advertisements):
Scientific Association for Infocommunications
H-1051 Budapest, Bajcsy-Zsilinszky str. 12, Room: 502
Phone: +36 1 353 1027 • E-mail: info@hte.hu • Web: www.hte.hu

Publisher: PÉTER NAGY

HU ISSN 2061-2079 • Layout: PLAZMA DS • Printed by: FOM Media

Subscription rates for foreign subscribers: 4 issues 10.000 HUF + postage

The publication was produced with the support of
the Hungarian Academy of Sciences and the NMHH

Special Issue of the Infocommunication Journal

www.infocommunications.hu
mailto:pvarga%40tmit.bme.hu?subject=
mailto:info%40hte.hu?subject=
www.hte.hu

1

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

Welcome by the Editors

Gergely Kovásznai is an Associate Professor and
Head of the Department of Computational Science
at the Eszterházy Károly Catholic University in Eger,
Hungary. He received his Ph.D. degree in Formal
Methods and Automated Theorem Proving from the
University of Debrecen, Hungary, in 2007. Over the
years, he worked as a research fellow at the Aristotle
University of Thessaloniki, Greece, at the Johannes
Kepler University Linz, Austria, and at the Vienna
University of Technology, Austria. His research in-

terests include formal methods, formal verification, operations research,
and machine learning.

Imre Varga was born in Hajdúböszörmény, Hungary,
in 1979. He received M.Sc. degree in physics and in-
formatics teaching from the University of Debrecen,
in 2002 and Ph.D. degree in physics also from the Uni-
versity of Debrecen, in 2008.
He has been working at the University of Debrecen
since 2002. Now he is an associate professor at the
Faculty of Informatics. Imre has been the head of the
Department of Informatics Systems and Networks
since 2018. He has several journal conference papers

in the field of complex systems. His research interests include structure for-
mation, fracture of granular materials, study of complex networks and infor-
mation spreading on them by the tools of computer simulation.

Special Issue on Applied Informatics
Gergely Kovásznai and Imre Varga

I N TODAY'S dynamic and ever-evolving digital landscape,
applied informatics plays a pivotal role in shaping the future of

technology. From refining algorithms for enhanced data analysis
to optimizing communication networks and advancing artificial
intelligence, the realm of applied informatics continues to drive
innovation and transformation across industries. This current
Special Issue features contributions from the 12th International
Conference on Applied Informatics (ICAI 2023), which was
held in Eger, Hungary on March 2-4, 2023. These research
papers explore novel insights, innovative methodologies, and
practical applications within the field of computer science and
informatics. Each of them represents a valuable contribution
to the applied informatics field and offers insights that bridge
the gap between theory and practical application. They are a
testament to the diversity and dynamism of our field, showcasing
a wide range of research topics and applications.

The ICAI Conference series is traditionally held in Eger in
every 3 years, and is jointly organized by the Eszterházy
Károly Catholic University and the University of Debrecen.
The conference is oriented towards professional exchange of
ideas in the field of Applied Informatics, covering areas such as
Artificial Intelligence, Formal Methods, Computer Networks,
Data Visualisation and more. The goal of the conference is to
provide a forum for the discussion of academic research and
industry.

Deep Learning-Based Refactoring with Formally
Verified Training Data

2

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

Deep Learning-Based Refactoring with Formally
Verified Training Data

Balázs Szalontai, Péter Bereczky and Dániel Horpácsi

Abstract—Refactoring source code has always been an active
area of research. Since the uprising of various deep learning
methods, there have been several attempts to perform source
code transformation with the use of neural networks. More
specifically, Encoder-Decoder architectures have been used
to transform code similarly to a Neural Machine Translation
task. In this paper, we present a deep learning-based method to
refactor source code, which we have prototyped for Erlang. Our
method has two major components: a localizer and a refactoring
component. That is, we first localize the snippet to be refactored
using a recurrent network, then we generate an alternative with
a Sequence-to- Sequence architecture. Our method could be
used as an extension for already existing AST-based approaches
for refactoring since it is capable of transforming syntactically
incomplete code. We train our models on automatically generated
data sets, based on formally verified refactoring definitions and
by using attribute grammar-based sampling.

Index Terms—Deep learning, Formally verified training data,
Neural Machine Translation, Sequence-to-Sequence.

Balázs Szalontai, Department of Software Technology and Methodology,
Péter Bereczky and Dániel Horpácsi, Department of Programming Languages
and Compilers, ELTE Eötvös Loránd University, Budapest, Hungary (E-mail:
{bukp00, berpeti}@inf.elte.hu, daniel-h@elte.hu)

Manuscript received April 10, 2023; revised August 21, 2023.

INFOCOMMUNICATIONS JOURNAL 1

Deep Learning-Based Refactoring with Formally
Verified Training Data

Balázs Szalontai, Péter Bereczky and Dániel Horpácsi

Abstract—Refactoring source code has always been an active
area of research. Since the uprising of various deep learning
methods, there have been several attempts to perform source code
transformation with the use of neural networks. More specifically,
Encoder-Decoder architectures have been used to transform code
similarly to a Neural Machine Translation task. In this paper, we
present a deep learning-based method to refactor source code,
which we have prototyped for Erlang. Our method has two major
components: a localizer and a refactoring component. That is,
we first localize the snippet to be refactored using a recurrent
network, then we generate an alternative with a Sequence-to-
Sequence architecture. Our method could be used as an extension
for already existing AST-based approaches for refactoring since
it is capable of transforming syntactically incomplete code. We
train our models on automatically generated data sets, based on
formally verified refactoring definitions and by using attribute
grammar-based sampling.

Index Terms—Deep learning, Formally verified training data,
Neural Machine Translation, Sequence-to-Sequence

I. INTRODUCTION

BEHAVIOUR-preserving program rephrasing (known as
refactoring) is an inevitable step in any software devel-

opment process. The goal of refactoring is to improve the
quality of software source code without altering its observable
behaviour [1].

Refactoring is commonly implemented as a transformation
on a structured representation (such as a parse tree) of the
source code. Admittedly, this approach works well in the
typical scenarios with syntactically valid code; furthermore,
when defined with syntactic rewriting, simple refactoring
steps can be verified for correctness (semantics-preservation)
by using formal methods. On the other hand, syntax-based
approaches need to hardcode the logic of handling the various
combinations of language constructs, and they cannot handle
incomplete or ill-formed code fragments. In contrast, deep
learning-based methods are inherently adaptive, and they can
eliminate the need for hardcoding the vast amount of shapes
and combinations syntactic constructs may take in a program.
Due to its benefits, there has been an ever-growing interest
in using deep neural networks for modifying source code
recently. Some of these techniques, in addition to removing
the burden of hand-crafting refactoring algorithms, come with
the ability of transforming incomplete code fragments as the
model is trained to transform code at the lexical level.

Balázs Szalontai, Department of Software Technology and Methodology,
Péter Bereczky and Dániel Horpácsi, Department of Programming Languages
and Compilers, ELTE Eötvös Loránd University, Budapest, Hungary E-mail:
{bukp00, berpeti}@inf.elte.hu, daniel-h@elte.hu

Manuscript received April 10, 2023; revised August 21, 2023.

In this paper, we propose the combination of the above
techniques: we apply deep learning for code refactoring and
train on datasets generated with syntactic rewriting. We show
that processing Erlang source code as a sequence of tokens
and using deep learning methods to apply changes could serve
as a great extension to the existing syntax-based methods,
because our approach is capable of fixing incomplete or
non-compilable code as well, supposing that the parts to
be refactored are already complete. Moreover, we train our
deep learning model on verified refactorings, that is, the
code before and after the transformation are behaviourally
indistinguishable. We present the following contributions:

• We formally define refactoring steps as conditional syn-
tactic rewrite rules, and based on previous work [2], [3],
[4], we verify the correctness of these steps by means of
proving contextual equivalence (based on “CIU” equiva-
lence [5]) between the matching and replacement patterns
of the rewrite rules.

• Then we take the rewrite rules and instantiate the
metavariables with randomly generated expressions,
yielding semantically equivalent expression pairs. We
also generate random context around these expressions
to ultimately obtain the formally verified training data.

• Finally, we train a recurrent neural network to localize
the code to be refactored and a Sequence-to-Sequence
network with Attention Mechanism to carry out the refac-
toring steps autonomously. A very similar approach was
presented in [6]. By using a similar architecture we show,
that this approach is essentially language independent.

The paper is structured as follows. In Section II we discuss
the related work, then in Sections III, IV, and V we show the
above components of our approach. In Section VI we evaluate
our approach, and finally Section VII concludes.

II. RELATED WORK

There have been multiple attempts to transform source code
with deep learning. The goal of such methods is generally
to fix common errors (such as syntactic errors or semantic
bugs) or to refactor code. Although in the current state of
research, such techniques are not yet completely reliable, it is
nevertheless a very active field.

Gupta et al. [7] aim to fix common C language errors
with a Sequence-to-Sequence architecture. Their method is
applied iteratively to fix errors one by one. Tufano et al. [8]
train a recurrent Encoder-Decoder architecture on a dataset
comprising data from pull requests. Their goal is to imitate
human code fixing operations. Chen et al. [9] train a Sequence-
to-Sequence architecture with Attention Mechanism to repair

INFOCOMMUNICATIONS JOURNAL 1

Deep Learning-Based Refactoring with Formally
Verified Training Data

Balázs Szalontai, Péter Bereczky and Dániel Horpácsi

Abstract—Refactoring source code has always been an active
area of research. Since the uprising of various deep learning
methods, there have been several attempts to perform source code
transformation with the use of neural networks. More specifically,
Encoder-Decoder architectures have been used to transform code
similarly to a Neural Machine Translation task. In this paper, we
present a deep learning-based method to refactor source code,
which we have prototyped for Erlang. Our method has two major
components: a localizer and a refactoring component. That is,
we first localize the snippet to be refactored using a recurrent
network, then we generate an alternative with a Sequence-to-
Sequence architecture. Our method could be used as an extension
for already existing AST-based approaches for refactoring since
it is capable of transforming syntactically incomplete code. We
train our models on automatically generated data sets, based on
formally verified refactoring definitions and by using attribute
grammar-based sampling.

Index Terms—Deep learning, Formally verified training data,
Neural Machine Translation, Sequence-to-Sequence

I. INTRODUCTION

BEHAVIOUR-preserving program rephrasing (known as
refactoring) is an inevitable step in any software devel-

opment process. The goal of refactoring is to improve the
quality of software source code without altering its observable
behaviour [1].

Refactoring is commonly implemented as a transformation
on a structured representation (such as a parse tree) of the
source code. Admittedly, this approach works well in the
typical scenarios with syntactically valid code; furthermore,
when defined with syntactic rewriting, simple refactoring
steps can be verified for correctness (semantics-preservation)
by using formal methods. On the other hand, syntax-based
approaches need to hardcode the logic of handling the various
combinations of language constructs, and they cannot handle
incomplete or ill-formed code fragments. In contrast, deep
learning-based methods are inherently adaptive, and they can
eliminate the need for hardcoding the vast amount of shapes
and combinations syntactic constructs may take in a program.
Due to its benefits, there has been an ever-growing interest
in using deep neural networks for modifying source code
recently. Some of these techniques, in addition to removing
the burden of hand-crafting refactoring algorithms, come with
the ability of transforming incomplete code fragments as the
model is trained to transform code at the lexical level.

Balázs Szalontai, Department of Software Technology and Methodology,
Péter Bereczky and Dániel Horpácsi, Department of Programming Languages
and Compilers, ELTE Eötvös Loránd University, Budapest, Hungary E-mail:
{bukp00, berpeti}@inf.elte.hu, daniel-h@elte.hu

Manuscript received April 10, 2023; revised August 21, 2023.

In this paper, we propose the combination of the above
techniques: we apply deep learning for code refactoring and
train on datasets generated with syntactic rewriting. We show
that processing Erlang source code as a sequence of tokens
and using deep learning methods to apply changes could serve
as a great extension to the existing syntax-based methods,
because our approach is capable of fixing incomplete or
non-compilable code as well, supposing that the parts to
be refactored are already complete. Moreover, we train our
deep learning model on verified refactorings, that is, the
code before and after the transformation are behaviourally
indistinguishable. We present the following contributions:

• We formally define refactoring steps as conditional syn-
tactic rewrite rules, and based on previous work [2], [3],
[4], we verify the correctness of these steps by means of
proving contextual equivalence (based on “CIU” equiva-
lence [5]) between the matching and replacement patterns
of the rewrite rules.

• Then we take the rewrite rules and instantiate the
metavariables with randomly generated expressions,
yielding semantically equivalent expression pairs. We
also generate random context around these expressions
to ultimately obtain the formally verified training data.

• Finally, we train a recurrent neural network to localize
the code to be refactored and a Sequence-to-Sequence
network with Attention Mechanism to carry out the refac-
toring steps autonomously. A very similar approach was
presented in [6]. By using a similar architecture we show,
that this approach is essentially language independent.

The paper is structured as follows. In Section II we discuss
the related work, then in Sections III, IV, and V we show the
above components of our approach. In Section VI we evaluate
our approach, and finally Section VII concludes.

II. RELATED WORK

There have been multiple attempts to transform source code
with deep learning. The goal of such methods is generally
to fix common errors (such as syntactic errors or semantic
bugs) or to refactor code. Although in the current state of
research, such techniques are not yet completely reliable, it is
nevertheless a very active field.

Gupta et al. [7] aim to fix common C language errors
with a Sequence-to-Sequence architecture. Their method is
applied iteratively to fix errors one by one. Tufano et al. [8]
train a recurrent Encoder-Decoder architecture on a dataset
comprising data from pull requests. Their goal is to imitate
human code fixing operations. Chen et al. [9] train a Sequence-
to-Sequence architecture with Attention Mechanism to repair

DOI: 10.36244/ICJ.2023.5.1

mailto:bukp00%40inf.elte.hu?subject=
mailto:berpeti%40inf.elte.hu?subject=
mailto:daniel-h%40elte.hu?subject=
https://doi.org/10.36244/ICJ.2023.5.1

Deep Learning-Based Refactoring with Formally
Verified Training Data

3

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

INFOCOMMUNICATIONS JOURNAL 2

programs. In their work, Copy Mechanism is also used to
overcome the difficulties of the large number of possible
identifiers occurring in code. Jiang et al. [10] first pretrain the
model on a general task, then fine-tune an Encoder-Decoder
architecture for the task of program repairing. Similarly
to these works, we use a Sequence-to-Sequence (Encoder-
Decoder) architecture with Attention Mechanism to transform
nonidiomatic Erlang functions into their idiomatic alternative.
We use formally verified data to train our model. Lutellier
et al. [11] use a CNN-based Encoder-Decoder architecture
and Ensemble learning techniques to automatically repair
programs. Although our proposed Sequence-to-Sequence ar-
chitecture is a recurrent one, we apply convolution on each
chunk of the input source code when attempting to localize the
nonidiomatically implemented ones. Chakraborty et al. [12]
utilize a tree-based Encoder-Decoder architecture to modify
code. First, structural modifications are applied, then the nodes
of the modified tree are concretized. Li et al. [13] first train a
tree-based recurrent model on the context of the code chunk to
be transformed, then they use a tree-based Encoder-Decoder
architecture for modifying the chunk. The downside of such
tree-based methods is that they require the source code to be
completed. A goal of ours is to experiment with incomplete
code, which prevents the use of such tree-based approaches.

In previous work [6] we presented a method to localize
and refactor nonidiomatic source code snippets in Python to
improve code readability and program efficiency. The non-
idiomatic snippet is localized using a model that performs
sequence tagging: a recurrent model is trained to tag the source
code lines with one of four tags (START, IN, END, OUT). This
tagging indicates whether the line is part of a nonidiomatic
snippet or not. The idiomatic alternative is generated based
on the nonidiomatic snippet using a Sequence-to-Sequence
architecture with attention. This approach of localizing and
refactoring Python snippets is very similar to our proposed
approach for refactoring Erlang source code.

III. FORMALLY VERIFIED REFACTORINGS

In many cases, we encounter the problem of having a bad-
quality dataset, which can decrease the performance of the
neural network. Data collected from the web can contain
errors, such as incorrect code transformations in the context
of refactoring. In this work, we present a method that is
trained on correct data. We achieve this by generating data
according to formally verified equivalence rules. To the best
of our knowledge, using such a verified dataset for training
neural networks has never been proposed. Although this is not
a common practice, being verified could be a highly desired
aspect of training data.

In practice, refactorings are tested thoroughly, but are usu-
ally not proven-correct, thus in special circumstances (so-
called edge cases) they could introduce errors. Let us mo-
tivate formal verification with a seemingly trivial example.1

In Figure 1 we define the lazy version of conjunction in
two ways, where one can be seen as a refactoring of the

1The small refactoring examples we investigate here are inspired by Poór
et al. [14].

other. Without familiarity with Erlang, one may think that
this two code fragments are equivalent definitions of the same
functionality and transforming between them should not affect
the program’s behaviour.

lazy_and(X, Y) ->
case X of

true -> Y;
false -> false

end.

(a) A correct implementation
of lazy conjunction

lazy_and(X, Y) ->
if X -> Y;

true -> false
end.

(b) An incorrect implementation
of lazy conjunction

Fig. 1: Motivational example for proving program equivalence

However, Erlang is dynamically typed, so X and Y can take
any Erlang values, not just true or false—this introduces an
extra level of complexity in the behaviour of these functions
due to the dynamic type checking. In fact, it can be shown
that the two variants of lazy_and do not behave the same
way: in Figure 1a, if X was not a boolean value, we get an
exception, while the function in Figure 1b will evaluate to
false. Therefore, we can conclude that the transformation
(read in either direction) in Figure 1 is not a refactoring.

To correct this inconsistency between the functions above
(i.e., make them equivalent), we either need to change Fig-
ure 1a to use the wildcard pattern _ instead of false (in this
case it would not be a correct implementation of conjunction
any more, though), or we need to include a side condition
requiring that X can only take boolean values. In either case,
such simple, local refactorings are easiest carried out by
defining and applying them as term rewriting rules [15], by
extracting the irrelevant parts as metavariables denoting arbi-
trary expressions. This way, the concrete equivalent expression
pairs can be obtained by instantiating the metavariables with
expressions [16].

case e1 of true -> e2;
_ -> e3

end
→ if e1 -> e2;

true -> e3
end

Fig. 2: Expression refactoring example

Figure 2 shows the previous expression refactoring as a
rewrite rule with the wildcard pattern solution. As a matter
of fact, this refactoring can be shown to be correct for any
expressions e1, e2 and e3.

f(x) when length(x) == 0 -> e

↓ when x /∈ vars(e1)

f([]) -> e

Fig. 3: Function clause refactoring example

Figure 3 presents another example, where the refactoring is
applied to an Erlang function clause, and it shows how pattern
matching can be used instead of a guard expression restricting
the length of a list. The rewrite rule defining the refactoring
has a side-condition, which needs to be met for the refactoring
to be applicable: the parameter variable cannot appear in the

INFOCOMMUNICATIONS JOURNAL 2

programs. In their work, Copy Mechanism is also used to
overcome the difficulties of the large number of possible
identifiers occurring in code. Jiang et al. [10] first pretrain the
model on a general task, then fine-tune an Encoder-Decoder
architecture for the task of program repairing. Similarly
to these works, we use a Sequence-to-Sequence (Encoder-
Decoder) architecture with Attention Mechanism to transform
nonidiomatic Erlang functions into their idiomatic alternative.
We use formally verified data to train our model. Lutellier
et al. [11] use a CNN-based Encoder-Decoder architecture
and Ensemble learning techniques to automatically repair
programs. Although our proposed Sequence-to-Sequence ar-
chitecture is a recurrent one, we apply convolution on each
chunk of the input source code when attempting to localize the
nonidiomatically implemented ones. Chakraborty et al. [12]
utilize a tree-based Encoder-Decoder architecture to modify
code. First, structural modifications are applied, then the nodes
of the modified tree are concretized. Li et al. [13] first train a
tree-based recurrent model on the context of the code chunk to
be transformed, then they use a tree-based Encoder-Decoder
architecture for modifying the chunk. The downside of such
tree-based methods is that they require the source code to be
completed. A goal of ours is to experiment with incomplete
code, which prevents the use of such tree-based approaches.

In previous work [6] we presented a method to localize
and refactor nonidiomatic source code snippets in Python to
improve code readability and program efficiency. The non-
idiomatic snippet is localized using a model that performs
sequence tagging: a recurrent model is trained to tag the source
code lines with one of four tags (START, IN, END, OUT). This
tagging indicates whether the line is part of a nonidiomatic
snippet or not. The idiomatic alternative is generated based
on the nonidiomatic snippet using a Sequence-to-Sequence
architecture with attention. This approach of localizing and
refactoring Python snippets is very similar to our proposed
approach for refactoring Erlang source code.

III. FORMALLY VERIFIED REFACTORINGS

In many cases, we encounter the problem of having a bad-
quality dataset, which can decrease the performance of the
neural network. Data collected from the web can contain
errors, such as incorrect code transformations in the context
of refactoring. In this work, we present a method that is
trained on correct data. We achieve this by generating data
according to formally verified equivalence rules. To the best
of our knowledge, using such a verified dataset for training
neural networks has never been proposed. Although this is not
a common practice, being verified could be a highly desired
aspect of training data.

In practice, refactorings are tested thoroughly, but are usu-
ally not proven-correct, thus in special circumstances (so-
called edge cases) they could introduce errors. Let us mo-
tivate formal verification with a seemingly trivial example.1

In Figure 1 we define the lazy version of conjunction in
two ways, where one can be seen as a refactoring of the

1The small refactoring examples we investigate here are inspired by Poór
et al. [14].

other. Without familiarity with Erlang, one may think that
this two code fragments are equivalent definitions of the same
functionality and transforming between them should not affect
the program’s behaviour.

lazy_and(X, Y) ->
case X of
true -> Y;
false -> false

end.

(a) A correct implementation
of lazy conjunction

lazy_and(X, Y) ->
if X -> Y;

true -> false
end.

(b) An incorrect implementation
of lazy conjunction

Fig. 1: Motivational example for proving program equivalence

However, Erlang is dynamically typed, so X and Y can take
any Erlang values, not just true or false—this introduces an
extra level of complexity in the behaviour of these functions
due to the dynamic type checking. In fact, it can be shown
that the two variants of lazy_and do not behave the same
way: in Figure 1a, if X was not a boolean value, we get an
exception, while the function in Figure 1b will evaluate to
false. Therefore, we can conclude that the transformation
(read in either direction) in Figure 1 is not a refactoring.

To correct this inconsistency between the functions above
(i.e., make them equivalent), we either need to change Fig-
ure 1a to use the wildcard pattern _ instead of false (in this
case it would not be a correct implementation of conjunction
any more, though), or we need to include a side condition
requiring that X can only take boolean values. In either case,
such simple, local refactorings are easiest carried out by
defining and applying them as term rewriting rules [15], by
extracting the irrelevant parts as metavariables denoting arbi-
trary expressions. This way, the concrete equivalent expression
pairs can be obtained by instantiating the metavariables with
expressions [16].

case e1 of true -> e2;
_ -> e3

end
→ if e1 -> e2;

true -> e3
end

Fig. 2: Expression refactoring example

Figure 2 shows the previous expression refactoring as a
rewrite rule with the wildcard pattern solution. As a matter
of fact, this refactoring can be shown to be correct for any
expressions e1, e2 and e3.

f(x) when length(x) == 0 -> e

↓ when x /∈ vars(e1)

f([]) -> e

Fig. 3: Function clause refactoring example

Figure 3 presents another example, where the refactoring is
applied to an Erlang function clause, and it shows how pattern
matching can be used instead of a guard expression restricting
the length of a list. The rewrite rule defining the refactoring
has a side-condition, which needs to be met for the refactoring
to be applicable: the parameter variable cannot appear in the

INFOCOMMUNICATIONS JOURNAL 2

programs. In their work, Copy Mechanism is also used to
overcome the difficulties of the large number of possible
identifiers occurring in code. Jiang et al. [10] first pretrain the
model on a general task, then fine-tune an Encoder-Decoder
architecture for the task of program repairing. Similarly
to these works, we use a Sequence-to-Sequence (Encoder-
Decoder) architecture with Attention Mechanism to transform
nonidiomatic Erlang functions into their idiomatic alternative.
We use formally verified data to train our model. Lutellier
et al. [11] use a CNN-based Encoder-Decoder architecture
and Ensemble learning techniques to automatically repair
programs. Although our proposed Sequence-to-Sequence ar-
chitecture is a recurrent one, we apply convolution on each
chunk of the input source code when attempting to localize the
nonidiomatically implemented ones. Chakraborty et al. [12]
utilize a tree-based Encoder-Decoder architecture to modify
code. First, structural modifications are applied, then the nodes
of the modified tree are concretized. Li et al. [13] first train a
tree-based recurrent model on the context of the code chunk to
be transformed, then they use a tree-based Encoder-Decoder
architecture for modifying the chunk. The downside of such
tree-based methods is that they require the source code to be
completed. A goal of ours is to experiment with incomplete
code, which prevents the use of such tree-based approaches.

In previous work [6] we presented a method to localize
and refactor nonidiomatic source code snippets in Python to
improve code readability and program efficiency. The non-
idiomatic snippet is localized using a model that performs
sequence tagging: a recurrent model is trained to tag the source
code lines with one of four tags (START, IN, END, OUT). This
tagging indicates whether the line is part of a nonidiomatic
snippet or not. The idiomatic alternative is generated based
on the nonidiomatic snippet using a Sequence-to-Sequence
architecture with attention. This approach of localizing and
refactoring Python snippets is very similar to our proposed
approach for refactoring Erlang source code.

III. FORMALLY VERIFIED REFACTORINGS

In many cases, we encounter the problem of having a bad-
quality dataset, which can decrease the performance of the
neural network. Data collected from the web can contain
errors, such as incorrect code transformations in the context
of refactoring. In this work, we present a method that is
trained on correct data. We achieve this by generating data
according to formally verified equivalence rules. To the best
of our knowledge, using such a verified dataset for training
neural networks has never been proposed. Although this is not
a common practice, being verified could be a highly desired
aspect of training data.

In practice, refactorings are tested thoroughly, but are usu-
ally not proven-correct, thus in special circumstances (so-
called edge cases) they could introduce errors. Let us mo-
tivate formal verification with a seemingly trivial example.1

In Figure 1 we define the lazy version of conjunction in
two ways, where one can be seen as a refactoring of the

1The small refactoring examples we investigate here are inspired by Poór
et al. [14].

other. Without familiarity with Erlang, one may think that
this two code fragments are equivalent definitions of the same
functionality and transforming between them should not affect
the program’s behaviour.

lazy_and(X, Y) ->
case X of
true -> Y;
false -> false

end.

(a) A correct implementation
of lazy conjunction

lazy_and(X, Y) ->
if X -> Y;

true -> false
end.

(b) An incorrect implementation
of lazy conjunction

Fig. 1: Motivational example for proving program equivalence

However, Erlang is dynamically typed, so X and Y can take
any Erlang values, not just true or false—this introduces an
extra level of complexity in the behaviour of these functions
due to the dynamic type checking. In fact, it can be shown
that the two variants of lazy_and do not behave the same
way: in Figure 1a, if X was not a boolean value, we get an
exception, while the function in Figure 1b will evaluate to
false. Therefore, we can conclude that the transformation
(read in either direction) in Figure 1 is not a refactoring.

To correct this inconsistency between the functions above
(i.e., make them equivalent), we either need to change Fig-
ure 1a to use the wildcard pattern _ instead of false (in this
case it would not be a correct implementation of conjunction
any more, though), or we need to include a side condition
requiring that X can only take boolean values. In either case,
such simple, local refactorings are easiest carried out by
defining and applying them as term rewriting rules [15], by
extracting the irrelevant parts as metavariables denoting arbi-
trary expressions. This way, the concrete equivalent expression
pairs can be obtained by instantiating the metavariables with
expressions [16].

case e1 of true -> e2;
_ -> e3

end
→ if e1 -> e2;

true -> e3
end

Fig. 2: Expression refactoring example

Figure 2 shows the previous expression refactoring as a
rewrite rule with the wildcard pattern solution. As a matter
of fact, this refactoring can be shown to be correct for any
expressions e1, e2 and e3.

f(x) when length(x) == 0 -> e

↓ when x /∈ vars(e1)

f([]) -> e

Fig. 3: Function clause refactoring example

Figure 3 presents another example, where the refactoring is
applied to an Erlang function clause, and it shows how pattern
matching can be used instead of a guard expression restricting
the length of a list. The rewrite rule defining the refactoring
has a side-condition, which needs to be met for the refactoring
to be applicable: the parameter variable cannot appear in the

INFOCOMMUNICATIONS JOURNAL 2

programs. In their work, Copy Mechanism is also used to
overcome the difficulties of the large number of possible
identifiers occurring in code. Jiang et al. [10] first pretrain the
model on a general task, then fine-tune an Encoder-Decoder
architecture for the task of program repairing. Similarly
to these works, we use a Sequence-to-Sequence (Encoder-
Decoder) architecture with Attention Mechanism to transform
nonidiomatic Erlang functions into their idiomatic alternative.
We use formally verified data to train our model. Lutellier
et al. [11] use a CNN-based Encoder-Decoder architecture
and Ensemble learning techniques to automatically repair
programs. Although our proposed Sequence-to-Sequence ar-
chitecture is a recurrent one, we apply convolution on each
chunk of the input source code when attempting to localize the
nonidiomatically implemented ones. Chakraborty et al. [12]
utilize a tree-based Encoder-Decoder architecture to modify
code. First, structural modifications are applied, then the nodes
of the modified tree are concretized. Li et al. [13] first train a
tree-based recurrent model on the context of the code chunk to
be transformed, then they use a tree-based Encoder-Decoder
architecture for modifying the chunk. The downside of such
tree-based methods is that they require the source code to be
completed. A goal of ours is to experiment with incomplete
code, which prevents the use of such tree-based approaches.

In previous work [6] we presented a method to localize
and refactor nonidiomatic source code snippets in Python to
improve code readability and program efficiency. The non-
idiomatic snippet is localized using a model that performs
sequence tagging: a recurrent model is trained to tag the source
code lines with one of four tags (START, IN, END, OUT). This
tagging indicates whether the line is part of a nonidiomatic
snippet or not. The idiomatic alternative is generated based
on the nonidiomatic snippet using a Sequence-to-Sequence
architecture with attention. This approach of localizing and
refactoring Python snippets is very similar to our proposed
approach for refactoring Erlang source code.

III. FORMALLY VERIFIED REFACTORINGS

In many cases, we encounter the problem of having a bad-
quality dataset, which can decrease the performance of the
neural network. Data collected from the web can contain
errors, such as incorrect code transformations in the context
of refactoring. In this work, we present a method that is
trained on correct data. We achieve this by generating data
according to formally verified equivalence rules. To the best
of our knowledge, using such a verified dataset for training
neural networks has never been proposed. Although this is not
a common practice, being verified could be a highly desired
aspect of training data.

In practice, refactorings are tested thoroughly, but are usu-
ally not proven-correct, thus in special circumstances (so-
called edge cases) they could introduce errors. Let us mo-
tivate formal verification with a seemingly trivial example.1

In Figure 1 we define the lazy version of conjunction in
two ways, where one can be seen as a refactoring of the

1The small refactoring examples we investigate here are inspired by Poór
et al. [14].

other. Without familiarity with Erlang, one may think that
this two code fragments are equivalent definitions of the same
functionality and transforming between them should not affect
the program’s behaviour.

lazy_and(X, Y) ->
case X of
true -> Y;
false -> false

end.

(a) A correct implementation
of lazy conjunction

lazy_and(X, Y) ->
if X -> Y;

true -> false
end.

(b) An incorrect implementation
of lazy conjunction

Fig. 1: Motivational example for proving program equivalence

However, Erlang is dynamically typed, so X and Y can take
any Erlang values, not just true or false—this introduces an
extra level of complexity in the behaviour of these functions
due to the dynamic type checking. In fact, it can be shown
that the two variants of lazy_and do not behave the same
way: in Figure 1a, if X was not a boolean value, we get an
exception, while the function in Figure 1b will evaluate to
false. Therefore, we can conclude that the transformation
(read in either direction) in Figure 1 is not a refactoring.

To correct this inconsistency between the functions above
(i.e., make them equivalent), we either need to change Fig-
ure 1a to use the wildcard pattern _ instead of false (in this
case it would not be a correct implementation of conjunction
any more, though), or we need to include a side condition
requiring that X can only take boolean values. In either case,
such simple, local refactorings are easiest carried out by
defining and applying them as term rewriting rules [15], by
extracting the irrelevant parts as metavariables denoting arbi-
trary expressions. This way, the concrete equivalent expression
pairs can be obtained by instantiating the metavariables with
expressions [16].

case e1 of true -> e2;
_ -> e3

end
→ if e1 -> e2;

true -> e3
end

Fig. 2: Expression refactoring example

Figure 2 shows the previous expression refactoring as a
rewrite rule with the wildcard pattern solution. As a matter
of fact, this refactoring can be shown to be correct for any
expressions e1, e2 and e3.

f(x) when length(x) == 0 -> e

↓ when x /∈ vars(e1)

f([]) -> e

Fig. 3: Function clause refactoring example

Figure 3 presents another example, where the refactoring is
applied to an Erlang function clause, and it shows how pattern
matching can be used instead of a guard expression restricting
the length of a list. The rewrite rule defining the refactoring
has a side-condition, which needs to be met for the refactoring
to be applicable: the parameter variable cannot appear in the

INFOCOMMUNICATIONS JOURNAL 2

programs. In their work, Copy Mechanism is also used to
overcome the difficulties of the large number of possible
identifiers occurring in code. Jiang et al. [10] first pretrain the
model on a general task, then fine-tune an Encoder-Decoder
architecture for the task of program repairing. Similarly
to these works, we use a Sequence-to-Sequence (Encoder-
Decoder) architecture with Attention Mechanism to transform
nonidiomatic Erlang functions into their idiomatic alternative.
We use formally verified data to train our model. Lutellier
et al. [11] use a CNN-based Encoder-Decoder architecture
and Ensemble learning techniques to automatically repair
programs. Although our proposed Sequence-to-Sequence ar-
chitecture is a recurrent one, we apply convolution on each
chunk of the input source code when attempting to localize the
nonidiomatically implemented ones. Chakraborty et al. [12]
utilize a tree-based Encoder-Decoder architecture to modify
code. First, structural modifications are applied, then the nodes
of the modified tree are concretized. Li et al. [13] first train a
tree-based recurrent model on the context of the code chunk to
be transformed, then they use a tree-based Encoder-Decoder
architecture for modifying the chunk. The downside of such
tree-based methods is that they require the source code to be
completed. A goal of ours is to experiment with incomplete
code, which prevents the use of such tree-based approaches.

In previous work [6] we presented a method to localize
and refactor nonidiomatic source code snippets in Python to
improve code readability and program efficiency. The non-
idiomatic snippet is localized using a model that performs
sequence tagging: a recurrent model is trained to tag the source
code lines with one of four tags (START, IN, END, OUT). This
tagging indicates whether the line is part of a nonidiomatic
snippet or not. The idiomatic alternative is generated based
on the nonidiomatic snippet using a Sequence-to-Sequence
architecture with attention. This approach of localizing and
refactoring Python snippets is very similar to our proposed
approach for refactoring Erlang source code.

III. FORMALLY VERIFIED REFACTORINGS

In many cases, we encounter the problem of having a bad-
quality dataset, which can decrease the performance of the
neural network. Data collected from the web can contain
errors, such as incorrect code transformations in the context
of refactoring. In this work, we present a method that is
trained on correct data. We achieve this by generating data
according to formally verified equivalence rules. To the best
of our knowledge, using such a verified dataset for training
neural networks has never been proposed. Although this is not
a common practice, being verified could be a highly desired
aspect of training data.

In practice, refactorings are tested thoroughly, but are usu-
ally not proven-correct, thus in special circumstances (so-
called edge cases) they could introduce errors. Let us mo-
tivate formal verification with a seemingly trivial example.1

In Figure 1 we define the lazy version of conjunction in
two ways, where one can be seen as a refactoring of the

1The small refactoring examples we investigate here are inspired by Poór
et al. [14].

other. Without familiarity with Erlang, one may think that
this two code fragments are equivalent definitions of the same
functionality and transforming between them should not affect
the program’s behaviour.

lazy_and(X, Y) ->
case X of

true -> Y;
false -> false

end.

(a) A correct implementation
of lazy conjunction

lazy_and(X, Y) ->
if X -> Y;

true -> false
end.

(b) An incorrect implementation
of lazy conjunction

Fig. 1: Motivational example for proving program equivalence

However, Erlang is dynamically typed, so X and Y can take
any Erlang values, not just true or false—this introduces an
extra level of complexity in the behaviour of these functions
due to the dynamic type checking. In fact, it can be shown
that the two variants of lazy_and do not behave the same
way: in Figure 1a, if X was not a boolean value, we get an
exception, while the function in Figure 1b will evaluate to
false. Therefore, we can conclude that the transformation
(read in either direction) in Figure 1 is not a refactoring.

To correct this inconsistency between the functions above
(i.e., make them equivalent), we either need to change Fig-
ure 1a to use the wildcard pattern _ instead of false (in this
case it would not be a correct implementation of conjunction
any more, though), or we need to include a side condition
requiring that X can only take boolean values. In either case,
such simple, local refactorings are easiest carried out by
defining and applying them as term rewriting rules [15], by
extracting the irrelevant parts as metavariables denoting arbi-
trary expressions. This way, the concrete equivalent expression
pairs can be obtained by instantiating the metavariables with
expressions [16].

case e1 of true -> e2;
_ -> e3

end
→ if e1 -> e2;

true -> e3
end

Fig. 2: Expression refactoring example

Figure 2 shows the previous expression refactoring as a
rewrite rule with the wildcard pattern solution. As a matter
of fact, this refactoring can be shown to be correct for any
expressions e1, e2 and e3.

f(x) when length(x) == 0 -> e

↓ when x /∈ vars(e1)

f([]) -> e

Fig. 3: Function clause refactoring example

Figure 3 presents another example, where the refactoring is
applied to an Erlang function clause, and it shows how pattern
matching can be used instead of a guard expression restricting
the length of a list. The rewrite rule defining the refactoring
has a side-condition, which needs to be met for the refactoring
to be applicable: the parameter variable cannot appear in the

INFOCOMMUNICATIONS JOURNAL 2

programs. In their work, Copy Mechanism is also used to
overcome the difficulties of the large number of possible
identifiers occurring in code. Jiang et al. [10] first pretrain the
model on a general task, then fine-tune an Encoder-Decoder
architecture for the task of program repairing. Similarly
to these works, we use a Sequence-to-Sequence (Encoder-
Decoder) architecture with Attention Mechanism to transform
nonidiomatic Erlang functions into their idiomatic alternative.
We use formally verified data to train our model. Lutellier
et al. [11] use a CNN-based Encoder-Decoder architecture
and Ensemble learning techniques to automatically repair
programs. Although our proposed Sequence-to-Sequence ar-
chitecture is a recurrent one, we apply convolution on each
chunk of the input source code when attempting to localize the
nonidiomatically implemented ones. Chakraborty et al. [12]
utilize a tree-based Encoder-Decoder architecture to modify
code. First, structural modifications are applied, then the nodes
of the modified tree are concretized. Li et al. [13] first train a
tree-based recurrent model on the context of the code chunk to
be transformed, then they use a tree-based Encoder-Decoder
architecture for modifying the chunk. The downside of such
tree-based methods is that they require the source code to be
completed. A goal of ours is to experiment with incomplete
code, which prevents the use of such tree-based approaches.

In previous work [6] we presented a method to localize
and refactor nonidiomatic source code snippets in Python to
improve code readability and program efficiency. The non-
idiomatic snippet is localized using a model that performs
sequence tagging: a recurrent model is trained to tag the source
code lines with one of four tags (START, IN, END, OUT). This
tagging indicates whether the line is part of a nonidiomatic
snippet or not. The idiomatic alternative is generated based
on the nonidiomatic snippet using a Sequence-to-Sequence
architecture with attention. This approach of localizing and
refactoring Python snippets is very similar to our proposed
approach for refactoring Erlang source code.

III. FORMALLY VERIFIED REFACTORINGS

In many cases, we encounter the problem of having a bad-
quality dataset, which can decrease the performance of the
neural network. Data collected from the web can contain
errors, such as incorrect code transformations in the context
of refactoring. In this work, we present a method that is
trained on correct data. We achieve this by generating data
according to formally verified equivalence rules. To the best
of our knowledge, using such a verified dataset for training
neural networks has never been proposed. Although this is not
a common practice, being verified could be a highly desired
aspect of training data.

In practice, refactorings are tested thoroughly, but are usu-
ally not proven-correct, thus in special circumstances (so-
called edge cases) they could introduce errors. Let us mo-
tivate formal verification with a seemingly trivial example.1

In Figure 1 we define the lazy version of conjunction in
two ways, where one can be seen as a refactoring of the

1The small refactoring examples we investigate here are inspired by Poór
et al. [14].

other. Without familiarity with Erlang, one may think that
this two code fragments are equivalent definitions of the same
functionality and transforming between them should not affect
the program’s behaviour.

lazy_and(X, Y) ->
case X of

true -> Y;
false -> false

end.

(a) A correct implementation
of lazy conjunction

lazy_and(X, Y) ->
if X -> Y;

true -> false
end.

(b) An incorrect implementation
of lazy conjunction

Fig. 1: Motivational example for proving program equivalence

However, Erlang is dynamically typed, so X and Y can take
any Erlang values, not just true or false—this introduces an
extra level of complexity in the behaviour of these functions
due to the dynamic type checking. In fact, it can be shown
that the two variants of lazy_and do not behave the same
way: in Figure 1a, if X was not a boolean value, we get an
exception, while the function in Figure 1b will evaluate to
false. Therefore, we can conclude that the transformation
(read in either direction) in Figure 1 is not a refactoring.

To correct this inconsistency between the functions above
(i.e., make them equivalent), we either need to change Fig-
ure 1a to use the wildcard pattern _ instead of false (in this
case it would not be a correct implementation of conjunction
any more, though), or we need to include a side condition
requiring that X can only take boolean values. In either case,
such simple, local refactorings are easiest carried out by
defining and applying them as term rewriting rules [15], by
extracting the irrelevant parts as metavariables denoting arbi-
trary expressions. This way, the concrete equivalent expression
pairs can be obtained by instantiating the metavariables with
expressions [16].

case e1 of true -> e2;
_ -> e3

end
→ if e1 -> e2;

true -> e3
end

Fig. 2: Expression refactoring example

Figure 2 shows the previous expression refactoring as a
rewrite rule with the wildcard pattern solution. As a matter
of fact, this refactoring can be shown to be correct for any
expressions e1, e2 and e3.

f(x) when length(x) == 0 -> e

↓ when x /∈ vars(e1)

f([]) -> e

Fig. 3: Function clause refactoring example

Figure 3 presents another example, where the refactoring is
applied to an Erlang function clause, and it shows how pattern
matching can be used instead of a guard expression restricting
the length of a list. The rewrite rule defining the refactoring
has a side-condition, which needs to be met for the refactoring
to be applicable: the parameter variable cannot appear in the

INFOCOMMUNICATIONS JOURNAL 2

programs. In their work, Copy Mechanism is also used to
overcome the difficulties of the large number of possible
identifiers occurring in code. Jiang et al. [10] first pretrain the
model on a general task, then fine-tune an Encoder-Decoder
architecture for the task of program repairing. Similarly
to these works, we use a Sequence-to-Sequence (Encoder-
Decoder) architecture with Attention Mechanism to transform
nonidiomatic Erlang functions into their idiomatic alternative.
We use formally verified data to train our model. Lutellier
et al. [11] use a CNN-based Encoder-Decoder architecture
and Ensemble learning techniques to automatically repair
programs. Although our proposed Sequence-to-Sequence ar-
chitecture is a recurrent one, we apply convolution on each
chunk of the input source code when attempting to localize the
nonidiomatically implemented ones. Chakraborty et al. [12]
utilize a tree-based Encoder-Decoder architecture to modify
code. First, structural modifications are applied, then the nodes
of the modified tree are concretized. Li et al. [13] first train a
tree-based recurrent model on the context of the code chunk to
be transformed, then they use a tree-based Encoder-Decoder
architecture for modifying the chunk. The downside of such
tree-based methods is that they require the source code to be
completed. A goal of ours is to experiment with incomplete
code, which prevents the use of such tree-based approaches.

In previous work [6] we presented a method to localize
and refactor nonidiomatic source code snippets in Python to
improve code readability and program efficiency. The non-
idiomatic snippet is localized using a model that performs
sequence tagging: a recurrent model is trained to tag the source
code lines with one of four tags (START, IN, END, OUT). This
tagging indicates whether the line is part of a nonidiomatic
snippet or not. The idiomatic alternative is generated based
on the nonidiomatic snippet using a Sequence-to-Sequence
architecture with attention. This approach of localizing and
refactoring Python snippets is very similar to our proposed
approach for refactoring Erlang source code.

III. FORMALLY VERIFIED REFACTORINGS

In many cases, we encounter the problem of having a bad-
quality dataset, which can decrease the performance of the
neural network. Data collected from the web can contain
errors, such as incorrect code transformations in the context
of refactoring. In this work, we present a method that is
trained on correct data. We achieve this by generating data
according to formally verified equivalence rules. To the best
of our knowledge, using such a verified dataset for training
neural networks has never been proposed. Although this is not
a common practice, being verified could be a highly desired
aspect of training data.

In practice, refactorings are tested thoroughly, but are usu-
ally not proven-correct, thus in special circumstances (so-
called edge cases) they could introduce errors. Let us mo-
tivate formal verification with a seemingly trivial example.1

In Figure 1 we define the lazy version of conjunction in
two ways, where one can be seen as a refactoring of the

1The small refactoring examples we investigate here are inspired by Poór
et al. [14].

other. Without familiarity with Erlang, one may think that
this two code fragments are equivalent definitions of the same
functionality and transforming between them should not affect
the program’s behaviour.

lazy_and(X, Y) ->
case X of

true -> Y;
false -> false

end.

(a) A correct implementation
of lazy conjunction

lazy_and(X, Y) ->
if X -> Y;

true -> false
end.

(b) An incorrect implementation
of lazy conjunction

Fig. 1: Motivational example for proving program equivalence

However, Erlang is dynamically typed, so X and Y can take
any Erlang values, not just true or false—this introduces an
extra level of complexity in the behaviour of these functions
due to the dynamic type checking. In fact, it can be shown
that the two variants of lazy_and do not behave the same
way: in Figure 1a, if X was not a boolean value, we get an
exception, while the function in Figure 1b will evaluate to
false. Therefore, we can conclude that the transformation
(read in either direction) in Figure 1 is not a refactoring.

To correct this inconsistency between the functions above
(i.e., make them equivalent), we either need to change Fig-
ure 1a to use the wildcard pattern _ instead of false (in this
case it would not be a correct implementation of conjunction
any more, though), or we need to include a side condition
requiring that X can only take boolean values. In either case,
such simple, local refactorings are easiest carried out by
defining and applying them as term rewriting rules [15], by
extracting the irrelevant parts as metavariables denoting arbi-
trary expressions. This way, the concrete equivalent expression
pairs can be obtained by instantiating the metavariables with
expressions [16].

case e1 of true -> e2;
_ -> e3

end
→ if e1 -> e2;

true -> e3
end

Fig. 2: Expression refactoring example

Figure 2 shows the previous expression refactoring as a
rewrite rule with the wildcard pattern solution. As a matter
of fact, this refactoring can be shown to be correct for any
expressions e1, e2 and e3.

f(x) when length(x) == 0 -> e

↓ when x /∈ vars(e1)

f([]) -> e

Fig. 3: Function clause refactoring example

Figure 3 presents another example, where the refactoring is
applied to an Erlang function clause, and it shows how pattern
matching can be used instead of a guard expression restricting
the length of a list. The rewrite rule defining the refactoring
has a side-condition, which needs to be met for the refactoring
to be applicable: the parameter variable cannot appear in the

INFOCOMMUNICATIONS JOURNAL 2

programs. In their work, Copy Mechanism is also used to
overcome the difficulties of the large number of possible
identifiers occurring in code. Jiang et al. [10] first pretrain the
model on a general task, then fine-tune an Encoder-Decoder
architecture for the task of program repairing. Similarly
to these works, we use a Sequence-to-Sequence (Encoder-
Decoder) architecture with Attention Mechanism to transform
nonidiomatic Erlang functions into their idiomatic alternative.
We use formally verified data to train our model. Lutellier
et al. [11] use a CNN-based Encoder-Decoder architecture
and Ensemble learning techniques to automatically repair
programs. Although our proposed Sequence-to-Sequence ar-
chitecture is a recurrent one, we apply convolution on each
chunk of the input source code when attempting to localize the
nonidiomatically implemented ones. Chakraborty et al. [12]
utilize a tree-based Encoder-Decoder architecture to modify
code. First, structural modifications are applied, then the nodes
of the modified tree are concretized. Li et al. [13] first train a
tree-based recurrent model on the context of the code chunk to
be transformed, then they use a tree-based Encoder-Decoder
architecture for modifying the chunk. The downside of such
tree-based methods is that they require the source code to be
completed. A goal of ours is to experiment with incomplete
code, which prevents the use of such tree-based approaches.

In previous work [6] we presented a method to localize
and refactor nonidiomatic source code snippets in Python to
improve code readability and program efficiency. The non-
idiomatic snippet is localized using a model that performs
sequence tagging: a recurrent model is trained to tag the source
code lines with one of four tags (START, IN, END, OUT). This
tagging indicates whether the line is part of a nonidiomatic
snippet or not. The idiomatic alternative is generated based
on the nonidiomatic snippet using a Sequence-to-Sequence
architecture with attention. This approach of localizing and
refactoring Python snippets is very similar to our proposed
approach for refactoring Erlang source code.

III. FORMALLY VERIFIED REFACTORINGS

In many cases, we encounter the problem of having a bad-
quality dataset, which can decrease the performance of the
neural network. Data collected from the web can contain
errors, such as incorrect code transformations in the context
of refactoring. In this work, we present a method that is
trained on correct data. We achieve this by generating data
according to formally verified equivalence rules. To the best
of our knowledge, using such a verified dataset for training
neural networks has never been proposed. Although this is not
a common practice, being verified could be a highly desired
aspect of training data.

In practice, refactorings are tested thoroughly, but are usu-
ally not proven-correct, thus in special circumstances (so-
called edge cases) they could introduce errors. Let us mo-
tivate formal verification with a seemingly trivial example.1

In Figure 1 we define the lazy version of conjunction in
two ways, where one can be seen as a refactoring of the

1The small refactoring examples we investigate here are inspired by Poór
et al. [14].

other. Without familiarity with Erlang, one may think that
this two code fragments are equivalent definitions of the same
functionality and transforming between them should not affect
the program’s behaviour.

lazy_and(X, Y) ->
case X of

true -> Y;
false -> false

end.

(a) A correct implementation
of lazy conjunction

lazy_and(X, Y) ->
if X -> Y;

true -> false
end.

(b) An incorrect implementation
of lazy conjunction

Fig. 1: Motivational example for proving program equivalence

However, Erlang is dynamically typed, so X and Y can take
any Erlang values, not just true or false—this introduces an
extra level of complexity in the behaviour of these functions
due to the dynamic type checking. In fact, it can be shown
that the two variants of lazy_and do not behave the same
way: in Figure 1a, if X was not a boolean value, we get an
exception, while the function in Figure 1b will evaluate to
false. Therefore, we can conclude that the transformation
(read in either direction) in Figure 1 is not a refactoring.

To correct this inconsistency between the functions above
(i.e., make them equivalent), we either need to change Fig-
ure 1a to use the wildcard pattern _ instead of false (in this
case it would not be a correct implementation of conjunction
any more, though), or we need to include a side condition
requiring that X can only take boolean values. In either case,
such simple, local refactorings are easiest carried out by
defining and applying them as term rewriting rules [15], by
extracting the irrelevant parts as metavariables denoting arbi-
trary expressions. This way, the concrete equivalent expression
pairs can be obtained by instantiating the metavariables with
expressions [16].

case e1 of true -> e2;
_ -> e3

end
→ if e1 -> e2;

true -> e3
end

Fig. 2: Expression refactoring example

Figure 2 shows the previous expression refactoring as a
rewrite rule with the wildcard pattern solution. As a matter
of fact, this refactoring can be shown to be correct for any
expressions e1, e2 and e3.

f(x) when length(x) == 0 -> e

↓ when x /∈ vars(e1)

f([]) -> e

Fig. 3: Function clause refactoring example

Figure 3 presents another example, where the refactoring is
applied to an Erlang function clause, and it shows how pattern
matching can be used instead of a guard expression restricting
the length of a list. The rewrite rule defining the refactoring
has a side-condition, which needs to be met for the refactoring
to be applicable: the parameter variable cannot appear in the

Deep Learning-Based Refactoring with Formally
Verified Training Data

4

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

INFOCOMMUNICATIONS JOURNAL 3

function body. The variables f , x and e denote a function
name, a variable, and an expression, respectively.

Formal semantics and program equivalence: To formally
argue about the preservation of behaviour, we need a formal
semantics of the language, and a suitable program equivalence
definition. If two programs are proved to be equivalent, they
are not distinguishable in any program context, that is, they
can be exchanged.

Previously, we have defined several formal semantics for
Core Erlang [2], [3], [4] which are capable of expressing
program equivalence of Core Erlang expressions, and we
also implemented these semantics in Coq. Core Erlang is an
intermediate language of Erlang in the official implementation;
we utilize this by reasoning about equivalence in Erlang via
the trusted translation from Erlang to Core Erlang.

We use an (extended) version of the frame-stack semantics
we defined previously [4], and the concept of CIU (“closed
instances of use”) equivalence [5]. The termination relation
defined there is denoted by ⟨K, e⟩ ⇓, meaning that expression
e terminates in the frame stack K. The frame stacks describe
continuations, i.e., K includes what should be evaluated next,
once e has terminated. Here, we show a simplified version
of the equivalence definition, and refer to [4] and the Coq
formalisation [17] for further details.

Definition 1 (CIU equivalence). e1 ≡ciu e2
def
= (∀K :

⟨K, e1⟩ ⇓ ⇐⇒ ⟨K, e2⟩ ⇓)

We also showed [4] that reasoning about termination is
sufficient to ensure the behavioural and contextual equivalence
of the expressions (i.e., they evaluate to equivalent values,
and equivalent expressions are interchangeable in arbitrary
syntactic contexts). Based on the CIU equivalence, we can
show the correctness of local refactoring steps.

Definition 2 (Correctness of refactorings). For all expressions
e1, e2 and conditions P , e1 → e2 when P is a correct
refactoring step if P implies e1 ≡ciu e2.

We have already proved the equivalence for the refactoring
steps shown in Figure 2 and Figure 3. The proofs are extensive
and their presentation is out of the scope of this paper, but we
refer to the Coq formalisation [17] for more details.

IV. GENERATION OF TRAINING DATA

To produce training data for the neural networks, we require
two datasets: one dataset should contain (nonidiomatic code,
snippet location) pairs to train the localizer network, while
the other should consist of (nonidiomatic snippet, idiomatic
snippet) pairs to train the refactoring network. We have set
forth some general expectations for generating these datasets.

• The generated code must be syntactically correct and
tokenizable.

• The generated code should share similarity with real-
world code, i.e., it should apply functions of the stan-
dard library, apply other generated functions, use Erlang-
specific values (e.g., ok, false, true), etc.

• The datasets must not only be diverse in terms of code
size but also in the internal structure and meaning.

• Generating the idiomatic alternative must be determinis-
tic, to allow the network to grasp the refactoring proce-
dure.

• In the localizer’s dataset, each nonidiomatic source code
should contain at least one nonidiomatic snippet.

• Sufficient data should be available for training both
networks: we believe that a good starting point would
be to generate about 50.000 training examples in both
datasets.

Based on the verified refactoring rules, we sample loads of
concrete program modules including parts where the proven-
correct refactoring steps can be applied. At the same time
we synthesise the result of the refactoring too, by applying
the rewrite rules.2 With this dual synthesis, we create training
data both for the localizing of refactoring candidates as well
as for the application of the refactoring.

The program generation is based on a stochastic attribute
grammar defining (a subset of) the Erlang programming lan-
guage. In particular, we randomly generate elements of the
language defined by the grammar, where the probabilities
associated with the nonterminal symbols, along with some
constrains carried in attributes, control the shapes and style of
the generated programs; for instance, we can set the maximum
number of functions and expressions within clauses, as well
as we can fine-tune how deeply, and how likely, expressions
get nested. For details about the attribute grammar notation,
we refer to [18].

The data generation process consists of the following main
steps:

• First a module context is generated by a modified variant
of the above-mentioned attribute grammar, which pro-
duces modules that may contain so-called holes (holes
mark the designated locations where code to be refactored
will be emplaced). Holes encode information about their
context (e.g. variable and function names in their scope)
so that the refactoring candidates are generated context-
sensitively.

• Then a refactoring rule is instantiated with the metavari-
ables replaced by randomly generated names and subex-
pressions — each such instance will embody a correct
rewrite step applied locally. Then the code snippets
representing the target and the result of the refactoring
are emplaced into the context that was generated in the
previous step.

• Finally, generated code is dumped into a data file that
annotates/labels each module with the location of the
refactoring candidates and the type of refactoring appli-
cable at each candidate.

This grammar-based method for generating the refactoring
dataset has some clear advantages. First of all, the generated
modules are syntactically and static semantically valid; thus,
when the strings are tokenized, the token stream surely repre-
sents a well-formed program. Secondly, due to the controlled
random sampling, the more cases we synthesise, the wider the
variety in size and structure the generated programs expose.

2Since the equivalence relation is a congruence, the modules containing the
refactored chunks are also equivalent.

Deep Learning-Based Refactoring with Formally
Verified Training Data

5

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

INFOCOMMUNICATIONS JOURNAL 4

f(A) when length(A) == 0 -> hello.

↓
f (A) when length (A) == 0 -> hello .
atom - var - - atom - var - - integer - atom -

↓
atom0 (var0) when length (var0) == 0 -> atom1 .

+
f atom0
A var0
hello atom1

Fig. 4: The approach for tokenizing and creating the corresponding variable dictionary. The tokens length and 0 are kept in
their original form, since they hold valuable information.

This guarantees that the contexts will teach various syntactic
ways a refactoring candidate may be happen to be part of
a program, and the refactoring instances themselves show a
wide spectrum of syntactic variety. The generated programs
are fully random, i.e., including programs that implement no
useful behaviour. This is based on the fact that QuickCheck
generators are implemented based on Erlang’s pseudo-random
seeder. We expect this not to cause an issue because the
current rewriting approach is lexical, little to do with the actual
semantics of the program under transformation.

V. APPROACH OF REFACTORING WITH DEEP LEARNING

In this section, we offer a concise summary of the approach
we took to localize and refactor function definitions in Erlang
source code. First, we explain how we transformed a given
piece of source code into a sequence of tokens that served
as input to the models. Second, we introduce the neural
network architecture that we trained to localize nonidiomatic
code chunks. Finally, we describe the method for generating
an alternative for the localized chunk using a Sequence-to-
Sequence architecture with Attention Mechanism.

A. Preprocessing Source Code

To transform source code into a sequence of tokens, we
undertake multiple steps. We utilize the Erlang module tok
to tokenize the source code. Using this module, we obtain
not only the tokens themselves, but also their types, such
as atom, integer, variable, etc. To tackle the challenge of
handling the unlimited number of valid identifiers, numbers,
variables, etc., present in code, we replace these tokens with
their type and a unique index. There are some exceptions to
this process: the tokens that hold valuable information are not
replaced, such as length, 0, true, etc. We drew inspiration
for this approach from the work of Chirkova et al. [19]. When
generating an idiomatic alternative, we invert the changes
made to these tokens that appear in the model’s output. The
process is visualized on Figures 4 and 5: Figure 4 shows
how a function implementation is turned into a sequence of
tokens and its corresponding dictionary. Figure 5 shows how
the changes are inverted for an idiomatic alternative generated
by the refactoring model.

B. Localizing Nonidiomatic Functions

Localizing nonidiomatic patterns (i.e., refactoring candi-
dates) in source code is solved as a sequence tagging task.

atom0 ([]) -> atom1 . +
f atom0
A var0
hello atom1

↓
f ([]) -> hello .

↓
f([]) -> hello.

Fig. 5: The approach for turning the output of the refactoring
model back to a code string.

The idea behind this approach is that we tag each chunk of
the source code with one of two tags: OUT or IN. The used tag
indicates whether a certain chunk of code is to be refactored
(IN) or not (OUT). Using this approach, we gather candidates
for refactoring, while the rest of the code remains unchanged.
The source code gets splitted by ‘.’ characters. This way, the
function definitions get separated and are ready to be tagged.

The proposed neural network architecture (Figure 6) con-
sists of convolutional, recurrent, and feedforward components.
Firstly, the preprocessed (tokenized, splitted) code is provided
as input to the network. Secondly, the tokens of each chunk
are embedded into a 64-dimensional vector space. Thirdly, a
one-dimensional convolution is applied to each code chunk
using 128 filters and a kernel size of 5. Fourthly, two pooling
operators are applied to the convolutional outputs: average
and minmax. The average pooling calculates the element-
wise average, while the minmax pooling is a unique pool-
ing operator that calculates the element-wise maximum or
minimum depending on which value is further away from
the average. These pooling operations yield two intermediate
representations for each chunk of the source code.

Having the intermediate representations provided by the two
pooling operators, the following step is to obtain context-
dependent aspects for the chunks as well. To achieve this,
we feed the intermediate representations into two separate
Bidirectional LSTM3 (BiLSTM) layers with 32 units and two
fully connected layers with 64 units. The BiLSTM outputs are
fed into another set of two BiLSTM layers. The activation
function used for both the BiLSTM and fully connected
layers is tanh, and 20% dropout is applied after each. As a
result of these steps, we obtain four vectors that represent
each chunk of code. These four vectors are concatenated to
create a final hidden representation, which is then passed

3The LSTM layers used in our method all return the whole sequence of
outputs.

INFOCOMMUNICATIONS JOURNAL 4

f(A) when length(A) == 0 -> hello.

↓
f (A) when length (A) == 0 -> hello .
atom - var - - atom - var - - integer - atom -

↓
atom0 (var0) when length (var0) == 0 -> atom1 .

+
f atom0
A var0
hello atom1

Fig. 4: The approach for tokenizing and creating the corresponding variable dictionary. The tokens length and 0 are kept in
their original form, since they hold valuable information.

This guarantees that the contexts will teach various syntactic
ways a refactoring candidate may be happen to be part of
a program, and the refactoring instances themselves show a
wide spectrum of syntactic variety. The generated programs
are fully random, i.e., including programs that implement no
useful behaviour. This is based on the fact that QuickCheck
generators are implemented based on Erlang’s pseudo-random
seeder. We expect this not to cause an issue because the
current rewriting approach is lexical, little to do with the actual
semantics of the program under transformation.

V. APPROACH OF REFACTORING WITH DEEP LEARNING

In this section, we offer a concise summary of the approach
we took to localize and refactor function definitions in Erlang
source code. First, we explain how we transformed a given
piece of source code into a sequence of tokens that served
as input to the models. Second, we introduce the neural
network architecture that we trained to localize nonidiomatic
code chunks. Finally, we describe the method for generating
an alternative for the localized chunk using a Sequence-to-
Sequence architecture with Attention Mechanism.

A. Preprocessing Source Code

To transform source code into a sequence of tokens, we
undertake multiple steps. We utilize the Erlang module tok
to tokenize the source code. Using this module, we obtain
not only the tokens themselves, but also their types, such
as atom, integer, variable, etc. To tackle the challenge of
handling the unlimited number of valid identifiers, numbers,
variables, etc., present in code, we replace these tokens with
their type and a unique index. There are some exceptions to
this process: the tokens that hold valuable information are not
replaced, such as length, 0, true, etc. We drew inspiration
for this approach from the work of Chirkova et al. [19]. When
generating an idiomatic alternative, we invert the changes
made to these tokens that appear in the model’s output. The
process is visualized on Figures 4 and 5: Figure 4 shows
how a function implementation is turned into a sequence of
tokens and its corresponding dictionary. Figure 5 shows how
the changes are inverted for an idiomatic alternative generated
by the refactoring model.

B. Localizing Nonidiomatic Functions

Localizing nonidiomatic patterns (i.e., refactoring candi-
dates) in source code is solved as a sequence tagging task.

atom0 ([]) -> atom1 . +
f atom0
A var0
hello atom1

↓
f ([]) -> hello .

↓
f([]) -> hello.

Fig. 5: The approach for turning the output of the refactoring
model back to a code string.

The idea behind this approach is that we tag each chunk of
the source code with one of two tags: OUT or IN. The used tag
indicates whether a certain chunk of code is to be refactored
(IN) or not (OUT). Using this approach, we gather candidates
for refactoring, while the rest of the code remains unchanged.
The source code gets splitted by ‘.’ characters. This way, the
function definitions get separated and are ready to be tagged.

The proposed neural network architecture (Figure 6) con-
sists of convolutional, recurrent, and feedforward components.
Firstly, the preprocessed (tokenized, splitted) code is provided
as input to the network. Secondly, the tokens of each chunk
are embedded into a 64-dimensional vector space. Thirdly, a
one-dimensional convolution is applied to each code chunk
using 128 filters and a kernel size of 5. Fourthly, two pooling
operators are applied to the convolutional outputs: average
and minmax. The average pooling calculates the element-
wise average, while the minmax pooling is a unique pool-
ing operator that calculates the element-wise maximum or
minimum depending on which value is further away from
the average. These pooling operations yield two intermediate
representations for each chunk of the source code.

Having the intermediate representations provided by the two
pooling operators, the following step is to obtain context-
dependent aspects for the chunks as well. To achieve this,
we feed the intermediate representations into two separate
Bidirectional LSTM3 (BiLSTM) layers with 32 units and two
fully connected layers with 64 units. The BiLSTM outputs are
fed into another set of two BiLSTM layers. The activation
function used for both the BiLSTM and fully connected
layers is tanh, and 20% dropout is applied after each. As a
result of these steps, we obtain four vectors that represent
each chunk of code. These four vectors are concatenated to
create a final hidden representation, which is then passed

3The LSTM layers used in our method all return the whole sequence of
outputs.

INFOCOMMUNICATIONS JOURNAL 4

f(A) when length(A) == 0 -> hello.

↓
f (A) when length (A) == 0 -> hello .
atom - var - - atom - var - - integer - atom -

↓
atom0 (var0) when length (var0) == 0 -> atom1 .

+
f atom0
A var0
hello atom1

Fig. 4: The approach for tokenizing and creating the corresponding variable dictionary. The tokens length and 0 are kept in
their original form, since they hold valuable information.

This guarantees that the contexts will teach various syntactic
ways a refactoring candidate may be happen to be part of
a program, and the refactoring instances themselves show a
wide spectrum of syntactic variety. The generated programs
are fully random, i.e., including programs that implement no
useful behaviour. This is based on the fact that QuickCheck
generators are implemented based on Erlang’s pseudo-random
seeder. We expect this not to cause an issue because the
current rewriting approach is lexical, little to do with the actual
semantics of the program under transformation.

V. APPROACH OF REFACTORING WITH DEEP LEARNING

In this section, we offer a concise summary of the approach
we took to localize and refactor function definitions in Erlang
source code. First, we explain how we transformed a given
piece of source code into a sequence of tokens that served
as input to the models. Second, we introduce the neural
network architecture that we trained to localize nonidiomatic
code chunks. Finally, we describe the method for generating
an alternative for the localized chunk using a Sequence-to-
Sequence architecture with Attention Mechanism.

A. Preprocessing Source Code

To transform source code into a sequence of tokens, we
undertake multiple steps. We utilize the Erlang module tok
to tokenize the source code. Using this module, we obtain
not only the tokens themselves, but also their types, such
as atom, integer, variable, etc. To tackle the challenge of
handling the unlimited number of valid identifiers, numbers,
variables, etc., present in code, we replace these tokens with
their type and a unique index. There are some exceptions to
this process: the tokens that hold valuable information are not
replaced, such as length, 0, true, etc. We drew inspiration
for this approach from the work of Chirkova et al. [19]. When
generating an idiomatic alternative, we invert the changes
made to these tokens that appear in the model’s output. The
process is visualized on Figures 4 and 5: Figure 4 shows
how a function implementation is turned into a sequence of
tokens and its corresponding dictionary. Figure 5 shows how
the changes are inverted for an idiomatic alternative generated
by the refactoring model.

B. Localizing Nonidiomatic Functions

Localizing nonidiomatic patterns (i.e., refactoring candi-
dates) in source code is solved as a sequence tagging task.

atom0 ([]) -> atom1 . +
f atom0
A var0
hello atom1

↓
f ([]) -> hello .

↓
f([]) -> hello.

Fig. 5: The approach for turning the output of the refactoring
model back to a code string.

The idea behind this approach is that we tag each chunk of
the source code with one of two tags: OUT or IN. The used tag
indicates whether a certain chunk of code is to be refactored
(IN) or not (OUT). Using this approach, we gather candidates
for refactoring, while the rest of the code remains unchanged.
The source code gets splitted by ‘.’ characters. This way, the
function definitions get separated and are ready to be tagged.

The proposed neural network architecture (Figure 6) con-
sists of convolutional, recurrent, and feedforward components.
Firstly, the preprocessed (tokenized, splitted) code is provided
as input to the network. Secondly, the tokens of each chunk
are embedded into a 64-dimensional vector space. Thirdly, a
one-dimensional convolution is applied to each code chunk
using 128 filters and a kernel size of 5. Fourthly, two pooling
operators are applied to the convolutional outputs: average
and minmax. The average pooling calculates the element-
wise average, while the minmax pooling is a unique pool-
ing operator that calculates the element-wise maximum or
minimum depending on which value is further away from
the average. These pooling operations yield two intermediate
representations for each chunk of the source code.

Having the intermediate representations provided by the two
pooling operators, the following step is to obtain context-
dependent aspects for the chunks as well. To achieve this,
we feed the intermediate representations into two separate
Bidirectional LSTM3 (BiLSTM) layers with 32 units and two
fully connected layers with 64 units. The BiLSTM outputs are
fed into another set of two BiLSTM layers. The activation
function used for both the BiLSTM and fully connected
layers is tanh, and 20% dropout is applied after each. As a
result of these steps, we obtain four vectors that represent
each chunk of code. These four vectors are concatenated to
create a final hidden representation, which is then passed

3The LSTM layers used in our method all return the whole sequence of
outputs.

INFOCOMMUNICATIONS JOURNAL 4

f(A) when length(A) == 0 -> hello.

↓
f (A) when length (A) == 0 -> hello .
atom - var - - atom - var - - integer - atom -

↓
atom0 (var0) when length (var0) == 0 -> atom1 .

+
f atom0
A var0
hello atom1

Fig. 4: The approach for tokenizing and creating the corresponding variable dictionary. The tokens length and 0 are kept in
their original form, since they hold valuable information.

This guarantees that the contexts will teach various syntactic
ways a refactoring candidate may be happen to be part of
a program, and the refactoring instances themselves show a
wide spectrum of syntactic variety. The generated programs
are fully random, i.e., including programs that implement no
useful behaviour. This is based on the fact that QuickCheck
generators are implemented based on Erlang’s pseudo-random
seeder. We expect this not to cause an issue because the
current rewriting approach is lexical, little to do with the actual
semantics of the program under transformation.

V. APPROACH OF REFACTORING WITH DEEP LEARNING

In this section, we offer a concise summary of the approach
we took to localize and refactor function definitions in Erlang
source code. First, we explain how we transformed a given
piece of source code into a sequence of tokens that served
as input to the models. Second, we introduce the neural
network architecture that we trained to localize nonidiomatic
code chunks. Finally, we describe the method for generating
an alternative for the localized chunk using a Sequence-to-
Sequence architecture with Attention Mechanism.

A. Preprocessing Source Code

To transform source code into a sequence of tokens, we
undertake multiple steps. We utilize the Erlang module tok
to tokenize the source code. Using this module, we obtain
not only the tokens themselves, but also their types, such
as atom, integer, variable, etc. To tackle the challenge of
handling the unlimited number of valid identifiers, numbers,
variables, etc., present in code, we replace these tokens with
their type and a unique index. There are some exceptions to
this process: the tokens that hold valuable information are not
replaced, such as length, 0, true, etc. We drew inspiration
for this approach from the work of Chirkova et al. [19]. When
generating an idiomatic alternative, we invert the changes
made to these tokens that appear in the model’s output. The
process is visualized on Figures 4 and 5: Figure 4 shows
how a function implementation is turned into a sequence of
tokens and its corresponding dictionary. Figure 5 shows how
the changes are inverted for an idiomatic alternative generated
by the refactoring model.

B. Localizing Nonidiomatic Functions

Localizing nonidiomatic patterns (i.e., refactoring candi-
dates) in source code is solved as a sequence tagging task.

atom0 ([]) -> atom1 . +
f atom0
A var0
hello atom1

↓
f ([]) -> hello .

↓
f([]) -> hello.

Fig. 5: The approach for turning the output of the refactoring
model back to a code string.

The idea behind this approach is that we tag each chunk of
the source code with one of two tags: OUT or IN. The used tag
indicates whether a certain chunk of code is to be refactored
(IN) or not (OUT). Using this approach, we gather candidates
for refactoring, while the rest of the code remains unchanged.
The source code gets splitted by ‘.’ characters. This way, the
function definitions get separated and are ready to be tagged.

The proposed neural network architecture (Figure 6) con-
sists of convolutional, recurrent, and feedforward components.
Firstly, the preprocessed (tokenized, splitted) code is provided
as input to the network. Secondly, the tokens of each chunk
are embedded into a 64-dimensional vector space. Thirdly, a
one-dimensional convolution is applied to each code chunk
using 128 filters and a kernel size of 5. Fourthly, two pooling
operators are applied to the convolutional outputs: average
and minmax. The average pooling calculates the element-
wise average, while the minmax pooling is a unique pool-
ing operator that calculates the element-wise maximum or
minimum depending on which value is further away from
the average. These pooling operations yield two intermediate
representations for each chunk of the source code.

Having the intermediate representations provided by the two
pooling operators, the following step is to obtain context-
dependent aspects for the chunks as well. To achieve this,
we feed the intermediate representations into two separate
Bidirectional LSTM3 (BiLSTM) layers with 32 units and two
fully connected layers with 64 units. The BiLSTM outputs are
fed into another set of two BiLSTM layers. The activation
function used for both the BiLSTM and fully connected
layers is tanh, and 20% dropout is applied after each. As a
result of these steps, we obtain four vectors that represent
each chunk of code. These four vectors are concatenated to
create a final hidden representation, which is then passed

3The LSTM layers used in our method all return the whole sequence of
outputs.

INFOCOMMUNICATIONS JOURNAL 4

f(A) when length(A) == 0 -> hello.

↓
f (A) when length (A) == 0 -> hello .
atom - var - - atom - var - - integer - atom -

↓
atom0 (var0) when length (var0) == 0 -> atom1 .

+
f atom0
A var0
hello atom1

Fig. 4: The approach for tokenizing and creating the corresponding variable dictionary. The tokens length and 0 are kept in
their original form, since they hold valuable information.

This guarantees that the contexts will teach various syntactic
ways a refactoring candidate may be happen to be part of
a program, and the refactoring instances themselves show a
wide spectrum of syntactic variety. The generated programs
are fully random, i.e., including programs that implement no
useful behaviour. This is based on the fact that QuickCheck
generators are implemented based on Erlang’s pseudo-random
seeder. We expect this not to cause an issue because the
current rewriting approach is lexical, little to do with the actual
semantics of the program under transformation.

V. APPROACH OF REFACTORING WITH DEEP LEARNING

In this section, we offer a concise summary of the approach
we took to localize and refactor function definitions in Erlang
source code. First, we explain how we transformed a given
piece of source code into a sequence of tokens that served
as input to the models. Second, we introduce the neural
network architecture that we trained to localize nonidiomatic
code chunks. Finally, we describe the method for generating
an alternative for the localized chunk using a Sequence-to-
Sequence architecture with Attention Mechanism.

A. Preprocessing Source Code

To transform source code into a sequence of tokens, we
undertake multiple steps. We utilize the Erlang module tok
to tokenize the source code. Using this module, we obtain
not only the tokens themselves, but also their types, such
as atom, integer, variable, etc. To tackle the challenge of
handling the unlimited number of valid identifiers, numbers,
variables, etc., present in code, we replace these tokens with
their type and a unique index. There are some exceptions to
this process: the tokens that hold valuable information are not
replaced, such as length, 0, true, etc. We drew inspiration
for this approach from the work of Chirkova et al. [19]. When
generating an idiomatic alternative, we invert the changes
made to these tokens that appear in the model’s output. The
process is visualized on Figures 4 and 5: Figure 4 shows
how a function implementation is turned into a sequence of
tokens and its corresponding dictionary. Figure 5 shows how
the changes are inverted for an idiomatic alternative generated
by the refactoring model.

B. Localizing Nonidiomatic Functions

Localizing nonidiomatic patterns (i.e., refactoring candi-
dates) in source code is solved as a sequence tagging task.

atom0 ([]) -> atom1 . +
f atom0
A var0
hello atom1

↓
f ([]) -> hello .

↓
f([]) -> hello.

Fig. 5: The approach for turning the output of the refactoring
model back to a code string.

The idea behind this approach is that we tag each chunk of
the source code with one of two tags: OUT or IN. The used tag
indicates whether a certain chunk of code is to be refactored
(IN) or not (OUT). Using this approach, we gather candidates
for refactoring, while the rest of the code remains unchanged.
The source code gets splitted by ‘.’ characters. This way, the
function definitions get separated and are ready to be tagged.

The proposed neural network architecture (Figure 6) con-
sists of convolutional, recurrent, and feedforward components.
Firstly, the preprocessed (tokenized, splitted) code is provided
as input to the network. Secondly, the tokens of each chunk
are embedded into a 64-dimensional vector space. Thirdly, a
one-dimensional convolution is applied to each code chunk
using 128 filters and a kernel size of 5. Fourthly, two pooling
operators are applied to the convolutional outputs: average
and minmax. The average pooling calculates the element-
wise average, while the minmax pooling is a unique pool-
ing operator that calculates the element-wise maximum or
minimum depending on which value is further away from
the average. These pooling operations yield two intermediate
representations for each chunk of the source code.

Having the intermediate representations provided by the two
pooling operators, the following step is to obtain context-
dependent aspects for the chunks as well. To achieve this,
we feed the intermediate representations into two separate
Bidirectional LSTM3 (BiLSTM) layers with 32 units and two
fully connected layers with 64 units. The BiLSTM outputs are
fed into another set of two BiLSTM layers. The activation
function used for both the BiLSTM and fully connected
layers is tanh, and 20% dropout is applied after each. As a
result of these steps, we obtain four vectors that represent
each chunk of code. These four vectors are concatenated to
create a final hidden representation, which is then passed

3The LSTM layers used in our method all return the whole sequence of
outputs.

INFOCOMMUNICATIONS JOURNAL 4

f(A) when length(A) == 0 -> hello.

↓
f (A) when length (A) == 0 -> hello .
atom - var - - atom - var - - integer - atom -

↓
atom0 (var0) when length (var0) == 0 -> atom1 .

+
f atom0
A var0
hello atom1

Fig. 4: The approach for tokenizing and creating the corresponding variable dictionary. The tokens length and 0 are kept in
their original form, since they hold valuable information.

This guarantees that the contexts will teach various syntactic
ways a refactoring candidate may be happen to be part of
a program, and the refactoring instances themselves show a
wide spectrum of syntactic variety. The generated programs
are fully random, i.e., including programs that implement no
useful behaviour. This is based on the fact that QuickCheck
generators are implemented based on Erlang’s pseudo-random
seeder. We expect this not to cause an issue because the
current rewriting approach is lexical, little to do with the actual
semantics of the program under transformation.

V. APPROACH OF REFACTORING WITH DEEP LEARNING

In this section, we offer a concise summary of the approach
we took to localize and refactor function definitions in Erlang
source code. First, we explain how we transformed a given
piece of source code into a sequence of tokens that served
as input to the models. Second, we introduce the neural
network architecture that we trained to localize nonidiomatic
code chunks. Finally, we describe the method for generating
an alternative for the localized chunk using a Sequence-to-
Sequence architecture with Attention Mechanism.

A. Preprocessing Source Code

To transform source code into a sequence of tokens, we
undertake multiple steps. We utilize the Erlang module tok
to tokenize the source code. Using this module, we obtain
not only the tokens themselves, but also their types, such
as atom, integer, variable, etc. To tackle the challenge of
handling the unlimited number of valid identifiers, numbers,
variables, etc., present in code, we replace these tokens with
their type and a unique index. There are some exceptions to
this process: the tokens that hold valuable information are not
replaced, such as length, 0, true, etc. We drew inspiration
for this approach from the work of Chirkova et al. [19]. When
generating an idiomatic alternative, we invert the changes
made to these tokens that appear in the model’s output. The
process is visualized on Figures 4 and 5: Figure 4 shows
how a function implementation is turned into a sequence of
tokens and its corresponding dictionary. Figure 5 shows how
the changes are inverted for an idiomatic alternative generated
by the refactoring model.

B. Localizing Nonidiomatic Functions

Localizing nonidiomatic patterns (i.e., refactoring candi-
dates) in source code is solved as a sequence tagging task.

atom0 ([]) -> atom1 . +
f atom0
A var0
hello atom1

↓
f ([]) -> hello .

↓
f([]) -> hello.

Fig. 5: The approach for turning the output of the refactoring
model back to a code string.

The idea behind this approach is that we tag each chunk of
the source code with one of two tags: OUT or IN. The used tag
indicates whether a certain chunk of code is to be refactored
(IN) or not (OUT). Using this approach, we gather candidates
for refactoring, while the rest of the code remains unchanged.
The source code gets splitted by ‘.’ characters. This way, the
function definitions get separated and are ready to be tagged.

The proposed neural network architecture (Figure 6) con-
sists of convolutional, recurrent, and feedforward components.
Firstly, the preprocessed (tokenized, splitted) code is provided
as input to the network. Secondly, the tokens of each chunk
are embedded into a 64-dimensional vector space. Thirdly, a
one-dimensional convolution is applied to each code chunk
using 128 filters and a kernel size of 5. Fourthly, two pooling
operators are applied to the convolutional outputs: average
and minmax. The average pooling calculates the element-
wise average, while the minmax pooling is a unique pool-
ing operator that calculates the element-wise maximum or
minimum depending on which value is further away from
the average. These pooling operations yield two intermediate
representations for each chunk of the source code.

Having the intermediate representations provided by the two
pooling operators, the following step is to obtain context-
dependent aspects for the chunks as well. To achieve this,
we feed the intermediate representations into two separate
Bidirectional LSTM3 (BiLSTM) layers with 32 units and two
fully connected layers with 64 units. The BiLSTM outputs are
fed into another set of two BiLSTM layers. The activation
function used for both the BiLSTM and fully connected
layers is tanh, and 20% dropout is applied after each. As a
result of these steps, we obtain four vectors that represent
each chunk of code. These four vectors are concatenated to
create a final hidden representation, which is then passed

3The LSTM layers used in our method all return the whole sequence of
outputs.

INFOCOMMUNICATIONS JOURNAL 4

f(A) when length(A) == 0 -> hello.

↓
f (A) when length (A) == 0 -> hello .
atom - var - - atom - var - - integer - atom -

↓
atom0 (var0) when length (var0) == 0 -> atom1 .

+
f atom0
A var0
hello atom1

Fig. 4: The approach for tokenizing and creating the corresponding variable dictionary. The tokens length and 0 are kept in
their original form, since they hold valuable information.

This guarantees that the contexts will teach various syntactic
ways a refactoring candidate may be happen to be part of
a program, and the refactoring instances themselves show a
wide spectrum of syntactic variety. The generated programs
are fully random, i.e., including programs that implement no
useful behaviour. This is based on the fact that QuickCheck
generators are implemented based on Erlang’s pseudo-random
seeder. We expect this not to cause an issue because the
current rewriting approach is lexical, little to do with the actual
semantics of the program under transformation.

V. APPROACH OF REFACTORING WITH DEEP LEARNING

In this section, we offer a concise summary of the approach
we took to localize and refactor function definitions in Erlang
source code. First, we explain how we transformed a given
piece of source code into a sequence of tokens that served
as input to the models. Second, we introduce the neural
network architecture that we trained to localize nonidiomatic
code chunks. Finally, we describe the method for generating
an alternative for the localized chunk using a Sequence-to-
Sequence architecture with Attention Mechanism.

A. Preprocessing Source Code

To transform source code into a sequence of tokens, we
undertake multiple steps. We utilize the Erlang module tok
to tokenize the source code. Using this module, we obtain
not only the tokens themselves, but also their types, such
as atom, integer, variable, etc. To tackle the challenge of
handling the unlimited number of valid identifiers, numbers,
variables, etc., present in code, we replace these tokens with
their type and a unique index. There are some exceptions to
this process: the tokens that hold valuable information are not
replaced, such as length, 0, true, etc. We drew inspiration
for this approach from the work of Chirkova et al. [19]. When
generating an idiomatic alternative, we invert the changes
made to these tokens that appear in the model’s output. The
process is visualized on Figures 4 and 5: Figure 4 shows
how a function implementation is turned into a sequence of
tokens and its corresponding dictionary. Figure 5 shows how
the changes are inverted for an idiomatic alternative generated
by the refactoring model.

B. Localizing Nonidiomatic Functions

Localizing nonidiomatic patterns (i.e., refactoring candi-
dates) in source code is solved as a sequence tagging task.

atom0 ([]) -> atom1 . +
f atom0
A var0
hello atom1

↓
f ([]) -> hello .

↓
f([]) -> hello.

Fig. 5: The approach for turning the output of the refactoring
model back to a code string.

The idea behind this approach is that we tag each chunk of
the source code with one of two tags: OUT or IN. The used tag
indicates whether a certain chunk of code is to be refactored
(IN) or not (OUT). Using this approach, we gather candidates
for refactoring, while the rest of the code remains unchanged.
The source code gets splitted by ‘.’ characters. This way, the
function definitions get separated and are ready to be tagged.

The proposed neural network architecture (Figure 6) con-
sists of convolutional, recurrent, and feedforward components.
Firstly, the preprocessed (tokenized, splitted) code is provided
as input to the network. Secondly, the tokens of each chunk
are embedded into a 64-dimensional vector space. Thirdly, a
one-dimensional convolution is applied to each code chunk
using 128 filters and a kernel size of 5. Fourthly, two pooling
operators are applied to the convolutional outputs: average
and minmax. The average pooling calculates the element-
wise average, while the minmax pooling is a unique pool-
ing operator that calculates the element-wise maximum or
minimum depending on which value is further away from
the average. These pooling operations yield two intermediate
representations for each chunk of the source code.

Having the intermediate representations provided by the two
pooling operators, the following step is to obtain context-
dependent aspects for the chunks as well. To achieve this,
we feed the intermediate representations into two separate
Bidirectional LSTM3 (BiLSTM) layers with 32 units and two
fully connected layers with 64 units. The BiLSTM outputs are
fed into another set of two BiLSTM layers. The activation
function used for both the BiLSTM and fully connected
layers is tanh, and 20% dropout is applied after each. As a
result of these steps, we obtain four vectors that represent
each chunk of code. These four vectors are concatenated to
create a final hidden representation, which is then passed

3The LSTM layers used in our method all return the whole sequence of
outputs.

INFOCOMMUNICATIONS JOURNAL 4

f(A) when length(A) == 0 -> hello.

↓
f (A) when length (A) == 0 -> hello .
atom - var - - atom - var - - integer - atom -

↓
atom0 (var0) when length (var0) == 0 -> atom1 .

+
f atom0
A var0
hello atom1

Fig. 4: The approach for tokenizing and creating the corresponding variable dictionary. The tokens length and 0 are kept in
their original form, since they hold valuable information.

This guarantees that the contexts will teach various syntactic
ways a refactoring candidate may be happen to be part of
a program, and the refactoring instances themselves show a
wide spectrum of syntactic variety. The generated programs
are fully random, i.e., including programs that implement no
useful behaviour. This is based on the fact that QuickCheck
generators are implemented based on Erlang’s pseudo-random
seeder. We expect this not to cause an issue because the
current rewriting approach is lexical, little to do with the actual
semantics of the program under transformation.

V. APPROACH OF REFACTORING WITH DEEP LEARNING

In this section, we offer a concise summary of the approach
we took to localize and refactor function definitions in Erlang
source code. First, we explain how we transformed a given
piece of source code into a sequence of tokens that served
as input to the models. Second, we introduce the neural
network architecture that we trained to localize nonidiomatic
code chunks. Finally, we describe the method for generating
an alternative for the localized chunk using a Sequence-to-
Sequence architecture with Attention Mechanism.

A. Preprocessing Source Code

To transform source code into a sequence of tokens, we
undertake multiple steps. We utilize the Erlang module tok
to tokenize the source code. Using this module, we obtain
not only the tokens themselves, but also their types, such
as atom, integer, variable, etc. To tackle the challenge of
handling the unlimited number of valid identifiers, numbers,
variables, etc., present in code, we replace these tokens with
their type and a unique index. There are some exceptions to
this process: the tokens that hold valuable information are not
replaced, such as length, 0, true, etc. We drew inspiration
for this approach from the work of Chirkova et al. [19]. When
generating an idiomatic alternative, we invert the changes
made to these tokens that appear in the model’s output. The
process is visualized on Figures 4 and 5: Figure 4 shows
how a function implementation is turned into a sequence of
tokens and its corresponding dictionary. Figure 5 shows how
the changes are inverted for an idiomatic alternative generated
by the refactoring model.

B. Localizing Nonidiomatic Functions

Localizing nonidiomatic patterns (i.e., refactoring candi-
dates) in source code is solved as a sequence tagging task.

atom0 ([]) -> atom1 . +
f atom0
A var0
hello atom1

↓
f ([]) -> hello .

↓
f([]) -> hello.

Fig. 5: The approach for turning the output of the refactoring
model back to a code string.

The idea behind this approach is that we tag each chunk of
the source code with one of two tags: OUT or IN. The used tag
indicates whether a certain chunk of code is to be refactored
(IN) or not (OUT). Using this approach, we gather candidates
for refactoring, while the rest of the code remains unchanged.
The source code gets splitted by ‘.’ characters. This way, the
function definitions get separated and are ready to be tagged.

The proposed neural network architecture (Figure 6) con-
sists of convolutional, recurrent, and feedforward components.
Firstly, the preprocessed (tokenized, splitted) code is provided
as input to the network. Secondly, the tokens of each chunk
are embedded into a 64-dimensional vector space. Thirdly, a
one-dimensional convolution is applied to each code chunk
using 128 filters and a kernel size of 5. Fourthly, two pooling
operators are applied to the convolutional outputs: average
and minmax. The average pooling calculates the element-
wise average, while the minmax pooling is a unique pool-
ing operator that calculates the element-wise maximum or
minimum depending on which value is further away from
the average. These pooling operations yield two intermediate
representations for each chunk of the source code.

Having the intermediate representations provided by the two
pooling operators, the following step is to obtain context-
dependent aspects for the chunks as well. To achieve this,
we feed the intermediate representations into two separate
Bidirectional LSTM3 (BiLSTM) layers with 32 units and two
fully connected layers with 64 units. The BiLSTM outputs are
fed into another set of two BiLSTM layers. The activation
function used for both the BiLSTM and fully connected
layers is tanh, and 20% dropout is applied after each. As a
result of these steps, we obtain four vectors that represent
each chunk of code. These four vectors are concatenated to
create a final hidden representation, which is then passed

3The LSTM layers used in our method all return the whole sequence of
outputs.

Deep Learning-Based Refactoring with Formally
Verified Training Data

6

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

INFOCOMMUNICATIONS JOURNAL 5

Input
tokenized

code chunk

Embedding
64-dim

Convolution
filters: 128

kernel size: 5

Avg pool

MinMax pool
Fully connected

64 units
20% dropout

Concatenate
Fully connected

1 unit
sigmoid activation

Fully connected
64 units
20% dropout

BiLSTM BiLSTM
32-dim 32-dim

20% dropout 20% dropout

BiLSTM BiLSTM
32-dim 32-dim

20% dropout 20% dropout

Fig. 6: Proposed neural network architecture to localize refactoring candidates

Input
tokenized

nonidiomatic snippet

Embedding
64-dim

BiLSTM
64-dim

20% dropout

BiLSTM
64-dim

20% dropout

BiLSTM
64-dim

20% dropout

BiLSTM
64-dim

20% dropout

Concatenate
hidden representation

Fig. 7: Proposed architecture of the encoder of the refactoring model

to a fully connected layer to obtain the final output, where
the fully connected layer has one unit and uses the sigmoid
activation function. This result indicates which chunks are to
be refactored (1 for IN) and which are not (0 for OUT). The
Adam optimizer is used with a learning rate of 0.001, and
binary cross-entropy is the loss function.

We based the selection of hyperparameters on previous
work [6] and on intuition. This is the case for both the localizer
and refactoring component. Since our current goal is to prove
that using deep learning for refactoring nonidiomatic Erlang
code is a viable option, we did not focus on optimizing the
hyperparameters too much.

C. Generating Idiomatic Alternative

The idiomatic alternative is generated using a recurrent
Sequence-to-Sequence architecture with Attention Mecha-
nism. That is, we first feed the tokenized nonidiomatic code
to the encoder, and then expect the decoder to generate the
idiomatic alternative token-by-token.

The encoder component (Figure 7) aims to produce a
hidden representation of the input sequence. This is achieved
through the use of a recurrent neural network consisting of
four BiLSTM layers with 64 units each. First, the tokens
of the input sequence are embedded into a 64-dimensional
vector space. Next, the sequence of tokens is fed into the four
BiLSTM layers in the following way: the input sequence is
fed into two BiLSTM layers, then the outputs of these layers
are fed into another BiLSTM layer each. The resulting outputs
of the two latter BiLSTM layers are concatenated to produce
the final output of the encoder, which serves the hidden
representation of the code chunk. Additionally, the BiLSTM
layers are followed by 20% of dropout. This architecture
is designed with the aims of (1) obtaining two independent

representations of the same code chunk by using parallel
BiLSTM layers, and (2) acquiring a higher-level representation
by using such a stacked architecture.

The decoder uses a single LSTM layer with 256 units to
generate an output sequence element-by-element. The LSTM
layer takes as input the fixed-length vector representation
produced by the encoder, along with the previously generated
output token (which is of the idiomatic code). For the first
element of the output sequence, a special START token is
used in place of the previous output. An attention layer is used
to compute the attention weights between the encoder output
and the decoder outputs. The attention weights are used to
compute the context vector, which then gets concatenated with
the decoder outputs. The concatenated vector is passed through
a fully connected layer with softmax activation to obtain the
final decoder outputs, which determines the next token of the
idiomatic code. We use the Adam optimizer with the learning
rate of 0.001 and categorical crossentropy as the loss function.

VI. EVALUATION AND EXPERIMENTS

In this section, we first present the measured accuracy of
the two main components of our approach: the localizer and
refactoring models. Then we showcase experiments on our
method’s capability to perform refactoring steps on Erlang
code. Finally, we make notes about the usability of our method
on real-world codes.

Both the localizer and refactoring models were evaluated
on a test set that was separated from the training data before
the training process: 10% for the localizer and 4% for the
refactoring model. The accuracy of the localizer model is the
ratio of the correctly classified code chunks divided by the
total number of chunks in the test set: this ratio turned out
to be 99.09%. For the refactoring component, we measured

INFOCOMMUNICATIONS JOURNAL 5

Input
tokenized

code chunk

Embedding
64-dim

Convolution
filters: 128

kernel size: 5

Avg pool

MinMax pool
Fully connected

64 units
20% dropout

Concatenate
Fully connected

1 unit
sigmoid activation

Fully connected
64 units
20% dropout

BiLSTM BiLSTM
32-dim 32-dim

20% dropout 20% dropout

BiLSTM BiLSTM
32-dim 32-dim

20% dropout 20% dropout

Fig. 6: Proposed neural network architecture to localize refactoring candidates

Input
tokenized

nonidiomatic snippet

Embedding
64-dim

BiLSTM
64-dim

20% dropout

BiLSTM
64-dim

20% dropout

BiLSTM
64-dim

20% dropout

BiLSTM
64-dim

20% dropout

Concatenate
hidden representation

Fig. 7: Proposed architecture of the encoder of the refactoring model

to a fully connected layer to obtain the final output, where
the fully connected layer has one unit and uses the sigmoid
activation function. This result indicates which chunks are to
be refactored (1 for IN) and which are not (0 for OUT). The
Adam optimizer is used with a learning rate of 0.001, and
binary cross-entropy is the loss function.

We based the selection of hyperparameters on previous
work [6] and on intuition. This is the case for both the localizer
and refactoring component. Since our current goal is to prove
that using deep learning for refactoring nonidiomatic Erlang
code is a viable option, we did not focus on optimizing the
hyperparameters too much.

C. Generating Idiomatic Alternative

The idiomatic alternative is generated using a recurrent
Sequence-to-Sequence architecture with Attention Mecha-
nism. That is, we first feed the tokenized nonidiomatic code
to the encoder, and then expect the decoder to generate the
idiomatic alternative token-by-token.

The encoder component (Figure 7) aims to produce a
hidden representation of the input sequence. This is achieved
through the use of a recurrent neural network consisting of
four BiLSTM layers with 64 units each. First, the tokens
of the input sequence are embedded into a 64-dimensional
vector space. Next, the sequence of tokens is fed into the four
BiLSTM layers in the following way: the input sequence is
fed into two BiLSTM layers, then the outputs of these layers
are fed into another BiLSTM layer each. The resulting outputs
of the two latter BiLSTM layers are concatenated to produce
the final output of the encoder, which serves the hidden
representation of the code chunk. Additionally, the BiLSTM
layers are followed by 20% of dropout. This architecture
is designed with the aims of (1) obtaining two independent

representations of the same code chunk by using parallel
BiLSTM layers, and (2) acquiring a higher-level representation
by using such a stacked architecture.

The decoder uses a single LSTM layer with 256 units to
generate an output sequence element-by-element. The LSTM
layer takes as input the fixed-length vector representation
produced by the encoder, along with the previously generated
output token (which is of the idiomatic code). For the first
element of the output sequence, a special START token is
used in place of the previous output. An attention layer is used
to compute the attention weights between the encoder output
and the decoder outputs. The attention weights are used to
compute the context vector, which then gets concatenated with
the decoder outputs. The concatenated vector is passed through
a fully connected layer with softmax activation to obtain the
final decoder outputs, which determines the next token of the
idiomatic code. We use the Adam optimizer with the learning
rate of 0.001 and categorical crossentropy as the loss function.

VI. EVALUATION AND EXPERIMENTS

In this section, we first present the measured accuracy of
the two main components of our approach: the localizer and
refactoring models. Then we showcase experiments on our
method’s capability to perform refactoring steps on Erlang
code. Finally, we make notes about the usability of our method
on real-world codes.

Both the localizer and refactoring models were evaluated
on a test set that was separated from the training data before
the training process: 10% for the localizer and 4% for the
refactoring model. The accuracy of the localizer model is the
ratio of the correctly classified code chunks divided by the
total number of chunks in the test set: this ratio turned out
to be 99.09%. For the refactoring component, we measured

INFOCOMMUNICATIONS JOURNAL 5

Input
tokenized

code chunk

Embedding
64-dim

Convolution
filters: 128

kernel size: 5

Avg pool

MinMax pool
Fully connected

64 units
20% dropout

Concatenate
Fully connected

1 unit
sigmoid activation

Fully connected
64 units
20% dropout

BiLSTM BiLSTM
32-dim 32-dim

20% dropout 20% dropout

BiLSTM BiLSTM
32-dim 32-dim

20% dropout 20% dropout

Fig. 6: Proposed neural network architecture to localize refactoring candidates

Input
tokenized

nonidiomatic snippet

Embedding
64-dim

BiLSTM
64-dim

20% dropout

BiLSTM
64-dim

20% dropout

BiLSTM
64-dim

20% dropout

BiLSTM
64-dim

20% dropout

Concatenate
hidden representation

Fig. 7: Proposed architecture of the encoder of the refactoring model

to a fully connected layer to obtain the final output, where
the fully connected layer has one unit and uses the sigmoid
activation function. This result indicates which chunks are to
be refactored (1 for IN) and which are not (0 for OUT). The
Adam optimizer is used with a learning rate of 0.001, and
binary cross-entropy is the loss function.

We based the selection of hyperparameters on previous
work [6] and on intuition. This is the case for both the localizer
and refactoring component. Since our current goal is to prove
that using deep learning for refactoring nonidiomatic Erlang
code is a viable option, we did not focus on optimizing the
hyperparameters too much.

C. Generating Idiomatic Alternative

The idiomatic alternative is generated using a recurrent
Sequence-to-Sequence architecture with Attention Mecha-
nism. That is, we first feed the tokenized nonidiomatic code
to the encoder, and then expect the decoder to generate the
idiomatic alternative token-by-token.

The encoder component (Figure 7) aims to produce a
hidden representation of the input sequence. This is achieved
through the use of a recurrent neural network consisting of
four BiLSTM layers with 64 units each. First, the tokens
of the input sequence are embedded into a 64-dimensional
vector space. Next, the sequence of tokens is fed into the four
BiLSTM layers in the following way: the input sequence is
fed into two BiLSTM layers, then the outputs of these layers
are fed into another BiLSTM layer each. The resulting outputs
of the two latter BiLSTM layers are concatenated to produce
the final output of the encoder, which serves the hidden
representation of the code chunk. Additionally, the BiLSTM
layers are followed by 20% of dropout. This architecture
is designed with the aims of (1) obtaining two independent

representations of the same code chunk by using parallel
BiLSTM layers, and (2) acquiring a higher-level representation
by using such a stacked architecture.

The decoder uses a single LSTM layer with 256 units to
generate an output sequence element-by-element. The LSTM
layer takes as input the fixed-length vector representation
produced by the encoder, along with the previously generated
output token (which is of the idiomatic code). For the first
element of the output sequence, a special START token is
used in place of the previous output. An attention layer is used
to compute the attention weights between the encoder output
and the decoder outputs. The attention weights are used to
compute the context vector, which then gets concatenated with
the decoder outputs. The concatenated vector is passed through
a fully connected layer with softmax activation to obtain the
final decoder outputs, which determines the next token of the
idiomatic code. We use the Adam optimizer with the learning
rate of 0.001 and categorical crossentropy as the loss function.

VI. EVALUATION AND EXPERIMENTS

In this section, we first present the measured accuracy of
the two main components of our approach: the localizer and
refactoring models. Then we showcase experiments on our
method’s capability to perform refactoring steps on Erlang
code. Finally, we make notes about the usability of our method
on real-world codes.

Both the localizer and refactoring models were evaluated
on a test set that was separated from the training data before
the training process: 10% for the localizer and 4% for the
refactoring model. The accuracy of the localizer model is the
ratio of the correctly classified code chunks divided by the
total number of chunks in the test set: this ratio turned out
to be 99.09%. For the refactoring component, we measured

INFOCOMMUNICATIONS JOURNAL 5

Input
tokenized

code chunk

Embedding
64-dim

Convolution
filters: 128

kernel size: 5

Avg pool

MinMax pool
Fully connected

64 units
20% dropout

Concatenate
Fully connected

1 unit
sigmoid activation

Fully connected
64 units
20% dropout

BiLSTM BiLSTM
32-dim 32-dim

20% dropout 20% dropout

BiLSTM BiLSTM
32-dim 32-dim

20% dropout 20% dropout

Fig. 6: Proposed neural network architecture to localize refactoring candidates

Input
tokenized

nonidiomatic snippet

Embedding
64-dim

BiLSTM
64-dim

20% dropout

BiLSTM
64-dim

20% dropout

BiLSTM
64-dim

20% dropout

BiLSTM
64-dim

20% dropout

Concatenate
hidden representation

Fig. 7: Proposed architecture of the encoder of the refactoring model

to a fully connected layer to obtain the final output, where
the fully connected layer has one unit and uses the sigmoid
activation function. This result indicates which chunks are to
be refactored (1 for IN) and which are not (0 for OUT). The
Adam optimizer is used with a learning rate of 0.001, and
binary cross-entropy is the loss function.

We based the selection of hyperparameters on previous
work [6] and on intuition. This is the case for both the localizer
and refactoring component. Since our current goal is to prove
that using deep learning for refactoring nonidiomatic Erlang
code is a viable option, we did not focus on optimizing the
hyperparameters too much.

C. Generating Idiomatic Alternative

The idiomatic alternative is generated using a recurrent
Sequence-to-Sequence architecture with Attention Mecha-
nism. That is, we first feed the tokenized nonidiomatic code
to the encoder, and then expect the decoder to generate the
idiomatic alternative token-by-token.

The encoder component (Figure 7) aims to produce a
hidden representation of the input sequence. This is achieved
through the use of a recurrent neural network consisting of
four BiLSTM layers with 64 units each. First, the tokens
of the input sequence are embedded into a 64-dimensional
vector space. Next, the sequence of tokens is fed into the four
BiLSTM layers in the following way: the input sequence is
fed into two BiLSTM layers, then the outputs of these layers
are fed into another BiLSTM layer each. The resulting outputs
of the two latter BiLSTM layers are concatenated to produce
the final output of the encoder, which serves the hidden
representation of the code chunk. Additionally, the BiLSTM
layers are followed by 20% of dropout. This architecture
is designed with the aims of (1) obtaining two independent

representations of the same code chunk by using parallel
BiLSTM layers, and (2) acquiring a higher-level representation
by using such a stacked architecture.

The decoder uses a single LSTM layer with 256 units to
generate an output sequence element-by-element. The LSTM
layer takes as input the fixed-length vector representation
produced by the encoder, along with the previously generated
output token (which is of the idiomatic code). For the first
element of the output sequence, a special START token is
used in place of the previous output. An attention layer is used
to compute the attention weights between the encoder output
and the decoder outputs. The attention weights are used to
compute the context vector, which then gets concatenated with
the decoder outputs. The concatenated vector is passed through
a fully connected layer with softmax activation to obtain the
final decoder outputs, which determines the next token of the
idiomatic code. We use the Adam optimizer with the learning
rate of 0.001 and categorical crossentropy as the loss function.

VI. EVALUATION AND EXPERIMENTS

In this section, we first present the measured accuracy of
the two main components of our approach: the localizer and
refactoring models. Then we showcase experiments on our
method’s capability to perform refactoring steps on Erlang
code. Finally, we make notes about the usability of our method
on real-world codes.

Both the localizer and refactoring models were evaluated
on a test set that was separated from the training data before
the training process: 10% for the localizer and 4% for the
refactoring model. The accuracy of the localizer model is the
ratio of the correctly classified code chunks divided by the
total number of chunks in the test set: this ratio turned out
to be 99.09%. For the refactoring component, we measured

INFOCOMMUNICATIONS JOURNAL 5

Input
tokenized

code chunk

Embedding
64-dim

Convolution
filters: 128

kernel size: 5

Avg pool

MinMax pool
Fully connected

64 units
20% dropout

Concatenate
Fully connected

1 unit
sigmoid activation

Fully connected
64 units
20% dropout

BiLSTM BiLSTM
32-dim 32-dim

20% dropout 20% dropout

BiLSTM BiLSTM
32-dim 32-dim

20% dropout 20% dropout

Fig. 6: Proposed neural network architecture to localize refactoring candidates

Input
tokenized

nonidiomatic snippet

Embedding
64-dim

BiLSTM
64-dim

20% dropout

BiLSTM
64-dim

20% dropout

BiLSTM
64-dim

20% dropout

BiLSTM
64-dim

20% dropout

Concatenate
hidden representation

Fig. 7: Proposed architecture of the encoder of the refactoring model

to a fully connected layer to obtain the final output, where
the fully connected layer has one unit and uses the sigmoid
activation function. This result indicates which chunks are to
be refactored (1 for IN) and which are not (0 for OUT). The
Adam optimizer is used with a learning rate of 0.001, and
binary cross-entropy is the loss function.

We based the selection of hyperparameters on previous
work [6] and on intuition. This is the case for both the localizer
and refactoring component. Since our current goal is to prove
that using deep learning for refactoring nonidiomatic Erlang
code is a viable option, we did not focus on optimizing the
hyperparameters too much.

C. Generating Idiomatic Alternative

The idiomatic alternative is generated using a recurrent
Sequence-to-Sequence architecture with Attention Mecha-
nism. That is, we first feed the tokenized nonidiomatic code
to the encoder, and then expect the decoder to generate the
idiomatic alternative token-by-token.

The encoder component (Figure 7) aims to produce a
hidden representation of the input sequence. This is achieved
through the use of a recurrent neural network consisting of
four BiLSTM layers with 64 units each. First, the tokens
of the input sequence are embedded into a 64-dimensional
vector space. Next, the sequence of tokens is fed into the four
BiLSTM layers in the following way: the input sequence is
fed into two BiLSTM layers, then the outputs of these layers
are fed into another BiLSTM layer each. The resulting outputs
of the two latter BiLSTM layers are concatenated to produce
the final output of the encoder, which serves the hidden
representation of the code chunk. Additionally, the BiLSTM
layers are followed by 20% of dropout. This architecture
is designed with the aims of (1) obtaining two independent

representations of the same code chunk by using parallel
BiLSTM layers, and (2) acquiring a higher-level representation
by using such a stacked architecture.

The decoder uses a single LSTM layer with 256 units to
generate an output sequence element-by-element. The LSTM
layer takes as input the fixed-length vector representation
produced by the encoder, along with the previously generated
output token (which is of the idiomatic code). For the first
element of the output sequence, a special START token is
used in place of the previous output. An attention layer is used
to compute the attention weights between the encoder output
and the decoder outputs. The attention weights are used to
compute the context vector, which then gets concatenated with
the decoder outputs. The concatenated vector is passed through
a fully connected layer with softmax activation to obtain the
final decoder outputs, which determines the next token of the
idiomatic code. We use the Adam optimizer with the learning
rate of 0.001 and categorical crossentropy as the loss function.

VI. EVALUATION AND EXPERIMENTS

In this section, we first present the measured accuracy of
the two main components of our approach: the localizer and
refactoring models. Then we showcase experiments on our
method’s capability to perform refactoring steps on Erlang
code. Finally, we make notes about the usability of our method
on real-world codes.

Both the localizer and refactoring models were evaluated
on a test set that was separated from the training data before
the training process: 10% for the localizer and 4% for the
refactoring model. The accuracy of the localizer model is the
ratio of the correctly classified code chunks divided by the
total number of chunks in the test set: this ratio turned out
to be 99.09%. For the refactoring component, we measured

Deep Learning-Based Refactoring with Formally
Verified Training Data

7

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

INFOCOMMUNICATIONS JOURNAL 6

TABLE I: Example of refactored code snippet

Original (nonidiomatic) code Refactored code
f(L) when length(L) == 0 -> error;
f(L) -> lists:max(L).

→ f([]) -> error;
f(L) -> lists:max(L).

f(L) when length(L) == 0 ->
case X of 0 -> true; 1 ->

→ f([]) ->
case X of 0 -> true; 1 ->

TABLE II: Example of refactored source code

Original source code Refactored source code
-module(mod).
-compile(export_all).
fact(0) -> 1;
fact(N) -> N * fact(N - 1).
f(L) when length(L) == 0 -> error;
f(L) -> double(lists:max(L)).
double(N) -> N * 2.

-module(mod).
-compile(export_all).
fact(0) -> 1;
fact(N) -> N * fact(N - 1).
f([]) -> error;
f(L) -> double(lists:max(L)).
double(N) -> N * 2.

the ratio of error-free transformations against the total number
of attempted transformations. The resulting accuracy of this
evaluation was 99.46%. These results indicate that our models
have been trained succesfully and are capable to perform
refactorings that are similar to the ones in the training datasets.

We now present some of our experiments with refactoring
various kinds of nonidiomatic programs, including complete
and incomplete programs. First, we focus only on the refac-
toring component by experimenting with refactoring nonid-
iomatic snippets without their surrounding context. After run-
ning our model on some nonidiomatic snippets, we compared
the output of the model with the original code and checked
whether the output is more idiomatic after the changes have
been applied. An example of such a refactoring is shown
in the first row of Table I: here the original version used a
guard to handle empty lists, which was replaced by pattern
matching syntax. The refactored code is an equivalent and
more idiomatic compared to the original code chunk.

As mentioned earlier, we also experimented with refactoring
incomplete code. Of course this only makes sense if the parts
that make the code nonidiomatic are present. In such a sce-
nario, our model attempts to refactor the nonidiomatic part(s)
only and leave the rest unchanged to allow for completion.
The second row of Table I shows such a refactoring. The
transformation was successful - that is, the incomplete part
was left unaltered - in spite of the fact that the model was not
trained on incomplete code.

Next, we performed further experiments on the entire
method, including the localizer component. That is, we applied
our method on a full Erlang code that contained a nonid-
iomatic function implementation. The expected result of the
method is of course the modified code that only varies in the
originally nonidiomatic section. A transformation is correct if
the generated alternative is the properly refactored version of
the original nonidiomatic snippet, while the behavior of the
entire program is preserved. An example of such a refactoring
performed by our method is shown in Table II.

While our proposed approach shows promising results in
refactoring nonidiomatic Erlang code, it represents an initial
proof of concept. At the current stage of research and develop-
ment, our method cannot be used on real-world codes, because
it too often classifies code chunks as refactoring candidates

even when they are not. Since incorrectly localized snippets
cannot be refactored, our idiomatizer network obviously fails
to refactor correctly, which leads to broken code.

We are planning to address this issue by considering mul-
tiple approaches. Firstly, we will investigate ways to generate
training data that is more representative and closer to real-
world code. Secondly, we will explore other approaches for
finding the best way to split the original source code: it
could be the case that too much unnecessary information is
given to the network at once, caused by splitting code by
‘.’ characters. This might make it harder to decide whether
or not to refactor. Thirdly, we will experiment with some
architectural modifications for the localizer component. Possi-
ble modifications include introducing different types of layers
(such as GRU or Convolutional LSTM) and optimizing the
hyperparameters. Lastly, it is possible to perform an extra
pass on the output of our method to filter out some incorrect
refactorings, for example if the code before the refactoring
was compilable, it should be compilable after it too. We
note that although it is also theoretically possible to filter out
incorrect outputs by post-verifying each refactoring instance
and proving equivalence, it would be very costly as the formal
verification is manual.

VII. CONCLUSION

In this paper, we have presented a novel approach to refactor
source code using deep learning techniques. We prototyped
this approach for Erlang. Our method includes a localizer and
a refactoring component, which enable the localization and
refactoring of nonidiomatic code patterns into their idiomatic
counterparts. Our method processes the source code as a
sequence of tokens, making it capable of transforming even
incomplete or non-compilable code.

To ensure that the neural networks learn how to correctly
refactor, we used formally verified data, which we obtained by
instantiating conditional term rewrite rules whose behaviour
preservation is formally proven. We do not aim to change
already existing AST-based approaches, but rather propose our
deep learning-based approach as an extension to these.

Finally, we highlight some areas for possible future work:
• Proving the correctness of a larger number of local

refactorings, and including them into our approach.

INFOCOMMUNICATIONS JOURNAL 6

TABLE I: Example of refactored code snippet

Original (nonidiomatic) code Refactored code
f(L) when length(L) == 0 -> error;
f(L) -> lists:max(L).

→ f([]) -> error;
f(L) -> lists:max(L).

f(L) when length(L) == 0 ->
case X of 0 -> true; 1 ->

→ f([]) ->
case X of 0 -> true; 1 ->

TABLE II: Example of refactored source code

Original source code Refactored source code
-module(mod).
-compile(export_all).
fact(0) -> 1;
fact(N) -> N * fact(N - 1).
f(L) when length(L) == 0 -> error;
f(L) -> double(lists:max(L)).
double(N) -> N * 2.

-module(mod).
-compile(export_all).
fact(0) -> 1;
fact(N) -> N * fact(N - 1).
f([]) -> error;
f(L) -> double(lists:max(L)).
double(N) -> N * 2.

the ratio of error-free transformations against the total number
of attempted transformations. The resulting accuracy of this
evaluation was 99.46%. These results indicate that our models
have been trained succesfully and are capable to perform
refactorings that are similar to the ones in the training datasets.

We now present some of our experiments with refactoring
various kinds of nonidiomatic programs, including complete
and incomplete programs. First, we focus only on the refac-
toring component by experimenting with refactoring nonid-
iomatic snippets without their surrounding context. After run-
ning our model on some nonidiomatic snippets, we compared
the output of the model with the original code and checked
whether the output is more idiomatic after the changes have
been applied. An example of such a refactoring is shown
in the first row of Table I: here the original version used a
guard to handle empty lists, which was replaced by pattern
matching syntax. The refactored code is an equivalent and
more idiomatic compared to the original code chunk.

As mentioned earlier, we also experimented with refactoring
incomplete code. Of course this only makes sense if the parts
that make the code nonidiomatic are present. In such a sce-
nario, our model attempts to refactor the nonidiomatic part(s)
only and leave the rest unchanged to allow for completion.
The second row of Table I shows such a refactoring. The
transformation was successful - that is, the incomplete part
was left unaltered - in spite of the fact that the model was not
trained on incomplete code.

Next, we performed further experiments on the entire
method, including the localizer component. That is, we applied
our method on a full Erlang code that contained a nonid-
iomatic function implementation. The expected result of the
method is of course the modified code that only varies in the
originally nonidiomatic section. A transformation is correct if
the generated alternative is the properly refactored version of
the original nonidiomatic snippet, while the behavior of the
entire program is preserved. An example of such a refactoring
performed by our method is shown in Table II.

While our proposed approach shows promising results in
refactoring nonidiomatic Erlang code, it represents an initial
proof of concept. At the current stage of research and develop-
ment, our method cannot be used on real-world codes, because
it too often classifies code chunks as refactoring candidates

even when they are not. Since incorrectly localized snippets
cannot be refactored, our idiomatizer network obviously fails
to refactor correctly, which leads to broken code.

We are planning to address this issue by considering mul-
tiple approaches. Firstly, we will investigate ways to generate
training data that is more representative and closer to real-
world code. Secondly, we will explore other approaches for
finding the best way to split the original source code: it
could be the case that too much unnecessary information is
given to the network at once, caused by splitting code by
‘.’ characters. This might make it harder to decide whether
or not to refactor. Thirdly, we will experiment with some
architectural modifications for the localizer component. Possi-
ble modifications include introducing different types of layers
(such as GRU or Convolutional LSTM) and optimizing the
hyperparameters. Lastly, it is possible to perform an extra
pass on the output of our method to filter out some incorrect
refactorings, for example if the code before the refactoring
was compilable, it should be compilable after it too. We
note that although it is also theoretically possible to filter out
incorrect outputs by post-verifying each refactoring instance
and proving equivalence, it would be very costly as the formal
verification is manual.

VII. CONCLUSION

In this paper, we have presented a novel approach to refactor
source code using deep learning techniques. We prototyped
this approach for Erlang. Our method includes a localizer and
a refactoring component, which enable the localization and
refactoring of nonidiomatic code patterns into their idiomatic
counterparts. Our method processes the source code as a
sequence of tokens, making it capable of transforming even
incomplete or non-compilable code.

To ensure that the neural networks learn how to correctly
refactor, we used formally verified data, which we obtained by
instantiating conditional term rewrite rules whose behaviour
preservation is formally proven. We do not aim to change
already existing AST-based approaches, but rather propose our
deep learning-based approach as an extension to these.

Finally, we highlight some areas for possible future work:
• Proving the correctness of a larger number of local

refactorings, and including them into our approach.

TABLE II
Example of refactored source code

TABLE I
Example of refactored code snippet

INFOCOMMUNICATIONS JOURNAL 6

TABLE I: Example of refactored code snippet

Original (nonidiomatic) code Refactored code
f(L) when length(L) == 0 -> error;
f(L) -> lists:max(L).

→ f([]) -> error;
f(L) -> lists:max(L).

f(L) when length(L) == 0 ->
case X of 0 -> true; 1 ->

→ f([]) ->
case X of 0 -> true; 1 ->

TABLE II: Example of refactored source code

Original source code Refactored source code
-module(mod).
-compile(export_all).
fact(0) -> 1;
fact(N) -> N * fact(N - 1).
f(L) when length(L) == 0 -> error;
f(L) -> double(lists:max(L)).
double(N) -> N * 2.

-module(mod).
-compile(export_all).
fact(0) -> 1;
fact(N) -> N * fact(N - 1).
f([]) -> error;
f(L) -> double(lists:max(L)).
double(N) -> N * 2.

the ratio of error-free transformations against the total number
of attempted transformations. The resulting accuracy of this
evaluation was 99.46%. These results indicate that our models
have been trained succesfully and are capable to perform
refactorings that are similar to the ones in the training datasets.

We now present some of our experiments with refactoring
various kinds of nonidiomatic programs, including complete
and incomplete programs. First, we focus only on the refac-
toring component by experimenting with refactoring nonid-
iomatic snippets without their surrounding context. After run-
ning our model on some nonidiomatic snippets, we compared
the output of the model with the original code and checked
whether the output is more idiomatic after the changes have
been applied. An example of such a refactoring is shown
in the first row of Table I: here the original version used a
guard to handle empty lists, which was replaced by pattern
matching syntax. The refactored code is an equivalent and
more idiomatic compared to the original code chunk.

As mentioned earlier, we also experimented with refactoring
incomplete code. Of course this only makes sense if the parts
that make the code nonidiomatic are present. In such a sce-
nario, our model attempts to refactor the nonidiomatic part(s)
only and leave the rest unchanged to allow for completion.
The second row of Table I shows such a refactoring. The
transformation was successful - that is, the incomplete part
was left unaltered - in spite of the fact that the model was not
trained on incomplete code.

Next, we performed further experiments on the entire
method, including the localizer component. That is, we applied
our method on a full Erlang code that contained a nonid-
iomatic function implementation. The expected result of the
method is of course the modified code that only varies in the
originally nonidiomatic section. A transformation is correct if
the generated alternative is the properly refactored version of
the original nonidiomatic snippet, while the behavior of the
entire program is preserved. An example of such a refactoring
performed by our method is shown in Table II.

While our proposed approach shows promising results in
refactoring nonidiomatic Erlang code, it represents an initial
proof of concept. At the current stage of research and develop-
ment, our method cannot be used on real-world codes, because
it too often classifies code chunks as refactoring candidates

even when they are not. Since incorrectly localized snippets
cannot be refactored, our idiomatizer network obviously fails
to refactor correctly, which leads to broken code.

We are planning to address this issue by considering mul-
tiple approaches. Firstly, we will investigate ways to generate
training data that is more representative and closer to real-
world code. Secondly, we will explore other approaches for
finding the best way to split the original source code: it
could be the case that too much unnecessary information is
given to the network at once, caused by splitting code by
‘.’ characters. This might make it harder to decide whether
or not to refactor. Thirdly, we will experiment with some
architectural modifications for the localizer component. Possi-
ble modifications include introducing different types of layers
(such as GRU or Convolutional LSTM) and optimizing the
hyperparameters. Lastly, it is possible to perform an extra
pass on the output of our method to filter out some incorrect
refactorings, for example if the code before the refactoring
was compilable, it should be compilable after it too. We
note that although it is also theoretically possible to filter out
incorrect outputs by post-verifying each refactoring instance
and proving equivalence, it would be very costly as the formal
verification is manual.

VII. CONCLUSION

In this paper, we have presented a novel approach to refactor
source code using deep learning techniques. We prototyped
this approach for Erlang. Our method includes a localizer and
a refactoring component, which enable the localization and
refactoring of nonidiomatic code patterns into their idiomatic
counterparts. Our method processes the source code as a
sequence of tokens, making it capable of transforming even
incomplete or non-compilable code.

To ensure that the neural networks learn how to correctly
refactor, we used formally verified data, which we obtained by
instantiating conditional term rewrite rules whose behaviour
preservation is formally proven. We do not aim to change
already existing AST-based approaches, but rather propose our
deep learning-based approach as an extension to these.

Finally, we highlight some areas for possible future work:
• Proving the correctness of a larger number of local

refactorings, and including them into our approach.

Deep Learning-Based Refactoring with Formally
Verified Training Data

8

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

 [1] M. Fowler, Refactoring: improving the design of existing code.
USA: Addison-Wesley Longman Publishing Co., Inc., 1999. ISBN:
0201485672.

 [2] P. Bereczky, D. Horpácsi, and S. Thompson, “A proof assistant
based formalisation of a subset of sequential Core Erlang,” in Trends
in Functional Programming, A. Byrski and J. Hughes, Eds. Cham:
Springer, 2020, pp. 139–158, doi: 10.1007/978-3-030-57761-2_7.

 [3] P. Bereczky, D. Horpácsi, and S. Thompson, “Machine-checked
natural semantics for Core Erlang: exceptions and side effects,” in
Erlang’20. ACM, 2020, pp. 1–13, doi: 10.1145/3406085.3409008.

 [4] D. Horpácsi, P. Bereczky, and S. Thompson, “Program equivalence
in an untyped, call-by-value functional language with uncurried func-
tions,” Journal of Logical and Algebraic Methods in Programming,
vol. 132, p. 100 857, 2023, doi: 10.1016/j.jlamp.2023.100857.

 [5] I. Mason and C. Talcott, “Equivalence in functional languages with
effects,” Journal of Functional Programming, vol. 1, no. 3, pp. 287–
327, 1991, doi: 10.1017/S0956796800000125.

 [6] B. Szalontai, Á. Kukucska, A. Vadász, B. Pintér, and T. Gregorics,
“Localizing and idiomatizing nonidiomatic python code with deep
learning,” in Proceedings of the Computing Conference 2023, June
2023, to appear.

 [7] R. Gupta et al., “DeepFix: Fixing common C language errors by deep
learning,” in Thirty-First AAAI Conference on Artificial Intelligence,
2017, doi: 10.1609/aaai.v31i1.10742.

 [8] M. Tufano, J. Pantiuchina, C. Watson, G. Bavota, and D. Poshyvanyk,
“On learning meaningful code changes via neural machine transla-
tion,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 2019, pp. 25–36,

 doi: 10.1109/ICSE.2019.00021.
 [9] Z. Chen et al., “Sequencer: Sequence-to-sequence learning for end-

to- end program repair,” IEEE, vol. 47, no. 9, pp. 1943–1959, 2019,
doi: 10.1109/TSE.2019.2940179.

 [10] N. Jiang, T. Lutellier, and L. Tan, “CURE: Code-aware neural ma-
chine translation for automatic program repair,” in 2021 IEEE/ACM
43rd International Conferenceon Software Engineering (ICSE).
IEEE, 2021, pp. 1161–1173, doi: 10.48550/arXiv.2103.00073.

 [11] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan,
“CoCoNut: combining context-aware neural translation models
using ensemble for program repair,” in Proceedings of the 29th ACM
SIGSOFT international symposium on software testing and analysis,
2020, pp. 101–114, doi: 10.1145/3395363.3397369.

References

INFOCOMMUNICATIONS JOURNAL 7

• Extending the generator component to emit code in-
cluding more language constructs (e.g., strings), standard
library functions (e.g., calls to higher-order functions).

• Applying different tagging approaches for the localizer
component in order to be able to identify refactoring
candidates more precisely and limiting number of false
positive localizations.

• Investigating other Sequence-to-Sequence architectures
for refactoring, such as CNN-based [20] or Trans-
former [21].

• Performing a comprehensive analysis to evaluate the
performance of the presented method on real-world code.

ACKNOWLEDGEMENTS

Supported by the ÚNKP-22-3 New National Excellence
Program of the Ministry for Culture and Innovation from the
source of the National Research, Development and Innovation
Fund. “Application Domain Specific Highly Reliable IT Solu-
tions” project has been implemented with the support provided
from the National Research, Development and Innovation
Fund of Hungary, financed under the Thematic Excellence
Programme TKP2020-NKA-06 (National Challenges Subpro-
gramme) funding scheme.

REFERENCES

[1] M. Fowler, Refactoring: improving the design of existing code.
USA: Addison-Wesley Longman Publishing Co., Inc., 1999. ISBN:
0201485672.

[2] P. Bereczky, D. Horpácsi, and S. Thompson, “A proof assistant based
formalisation of a subset of sequential Core Erlang,” in Trends in
Functional Programming, A. Byrski and J. Hughes, Eds. Cham:
Springer, 2020, pp. 139–158, DOI: 10.1007/978-3-030-57761-2 7.

[3] P. Bereczky, D. Horpácsi, and S. Thompson, “Machine-checked natural
semantics for Core Erlang: exceptions and side effects,” in Erlang’20.
ACM, 2020, p. 1–13, DOI: 10.1145/3406085.3409008.

[4] D. Horpácsi, P. Bereczky, and S. Thompson, “Program equivalence in
an untyped, call-by-value functional language with uncurried functions,”
Journal of Logical and Algebraic Methods in Programming, vol. 132,
p. 100857, 2023, DOI: 10.1016/j.jlamp.2023.100857.

[5] I. Mason and C. Talcott, “Equivalence in functional languages with
effects,” Journal of Functional Programming, vol. 1, no. 3, p. 287–327,
1991, DOI: 10.1017/S0956796800000125.

[6] B. Szalontai, Á. Kukucska, A. Vadász, B. Pintér, and T. Gregorics,
“Localizing and idiomatizing nonidiomatic python code with deep
learning,” in Proceedings of the Computing Conference 2023, June 2023,
to appear.

[7] R. Gupta et al., “DeepFix: Fixing common C language errors by deep
learning,” in Thirty-First AAAI Conference on Artificial Intelligence,
2017, DOI: 10.1609/aaai.v31i1.10742.

[8] M. Tufano, J. Pantiuchina, C. Watson, G. Bavota, and D. Poshyvanyk,
“On learning meaningful code changes via neural machine translation,”
in 2019 IEEE/ACM 41st International Conference on Software Engineer-
ing (ICSE). IEEE, 2019, pp. 25–36, DOI: 10.1109/ICSE.2019.00021.

[9] Z. Chen et al., “Sequencer: Sequence-to-sequence learning for end-to-
end program repair,” IEEE, vol. 47, no. 9, pp. 1943–1959, 2019, DOI:
10.1109/TSE.2019.2940179.

[10] N. Jiang, T. Lutellier, and L. Tan, “CURE: Code-aware neural machine
translation for automatic program repair,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 2021,
pp. 1161–1173, DOI: 10.48550/arXiv.2103.00073.

[11] T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan, “CoCoNut:
combining context-aware neural translation models using ensemble for
program repair,” in Proceedings of the 29th ACM SIGSOFT international
symposium on software testing and analysis, 2020, pp. 101–114, DOI:
10.1145/3395363.3397369.

[12] S. Chakraborty, Y. Ding, M. Allamanis, and B. Ray, “CODIT:
Code editing with tree-based neural models,” IEEE Transactions on
Software Engineering, vol. 48, no. 4, pp. 1385–1399, 2020, DOI:
10.48550/arXiv.1810.00314.

[13] Y. Li, S. Wang, and T. N. Nguyen, “Dlfix: Context-based code trans-
formation learning for automated program repair,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
2020, pp. 602–614, DOI: 10.1145/3377811.3380345.

[14] B. Poór, M. Toth, and I. Bozó, “Transformations towards clean func-
tional code,” in Proceedings of the 19th ACM SIGPLAN Interna-
tional Workshop on Erlang, ser. Erlang 2020. New York, NY,
USA: Association for Computing Machinery, 2020, p. 24–30, DOI:
10.1145/3406085.3409010.

[15] F. Baader and T. Nipkow, Term rewriting and all that. Cambridge
University Press, 1998, DOI: 10.1017/CBO9781139172752.

[16] D. Horpácsi, J. Kőszegi, and S. Thompson, “Towards trustworthy
refactoring in Erlang,” Electronic Proceedings in Theoretical Computer
Science, vol. 216, pp. 83–103, jul 2016, DOI: 10.4204/eptcs.216.5.

[17] H.-A. R. Project. (2023) Core Erlang formalization. Accessed on 3rd
of August, 2023. [Online]. Available: https://github.com/harp-project/
Core-Erlang-Formalization/releases/tag/v1.0.3

[18] D. Drienyovszky, D. Horpácsi, and S. Thompson, “Quickchecking
refactoring tools,” in Proceedings of the 9th ACM SIGPLAN Workshop
on Erlang, ser. Erlang ’10. New York, NY, USA: Association for Com-
puting Machinery, 2010, p. 75–80, DOI: 10.1145/1863509.1863521.

[19] N. Chirkova and S. Troshin, “A simple approach for handling out-of-
vocabulary identifiers in deep learning for source code,” 2020, DOI:
10.48550/arXiv.2010.12663.

[20] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin,
“Convolutional sequence to sequence learning,” in International con-
ference on machine learning. PMLR, 2017, pp. 1243–1252, DOI:
10.48550/arXiv.1705.03122.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017, DOI:
10.48550/arXiv.1706.03762.

Balázs Szalontai has completed his bachelor’s de-
gree in computer science at Eötvös Loránd Univer-
sity in 2020, followed by a master’s degree in the
same field at the same university in 2022. He is
currently a Ph.D. student. His research focuses on
source code transformation with Deep Learning. He
also gives classes for university students in the fields
of classical Artificial Intelligence, Object Oriented
Programming and Logic Programming.

Péter Bereczky is a Ph.D. student at the Faculty of
Informatics, Eötvös Loránd University. He received
his master’s degree in computer science at the same
university, in 2020. His research interest include for-
mal verification, formal semantics of programming
languages, formal logics, functional programming,
and interactive theorem proving.

Dániel Horpácsi is an assistant professor at Eötvös
Loránd University. He received his Ph.D. for de-
veloping methods for verification and application of
program transformations in functional programming
languages, especially refactoring in Erlang. He keeps
exploring the pragmatics of using formal methods in
practical software tools, making them more reliable
whilst maintaining their flexibility and accessibility.

Balázs Szalontai has completed his bachelor’s degree
in computer science at Eötvös Loránd University
in 2020, followed by a master’s degree in the same
field at the same university in 2022. He is currently
a Ph.D. student. His research focuses on source code
transformation with Deep Learning. He also gives
classes for university students in the fields of classical
Artificial Intelligence, Object Oriented Programming
and Logic Programming.

Péter Bereczky is a Ph.D. student at the Faculty of
Informatics, Eötvös Loránd University. He received
his master’s degree in computer science at the same
university, in 2020. His research interest include for-
mal verification, formal semantics of programming
languages, formal logics, functional programming, and
interactive theorem proving.

Dániel Horpácsi is an assistant professor at Eötvös
Loránd University. He received his Ph.D. for de-
veloping methods for verification and application of
program transformations in functional programming
languages, especially refactoring in Erlang. He keeps
exploring the pragmatics of using formal methods in
practical software tools, making them more reliable
whilst maintaining their flexibility and accessibility.

 [12] S. Chakraborty, Y. Ding, M. Allamanis, and B. Ray, “CODIT: Code
editing with tree-based neural models,” IEEE Transactions on Soft-
ware Engineering, vol. 48, no. 4, pp. 1385–1399, 2020,

 doi: 10.48550/arXiv.1810.00314.
 [13] Y. Li, S. Wang, and T. N. Nguyen, “Dlfix: Context-based code trans-

formation learning for automated program repair,” in Proceedings
of the ACM/IEEE 42nd International Conference on Software
Engineering, 2020, pp. 602–614, doi: 10.1145/3377811.3380345.

 [14] B. Poór, M. Toth, and I. Bozó, “Transformations towards clean func-
tional code,” in Proceedings of the 19th ACM SIGPLAN Interna-
tional Workshop on Erlang, ser. Erlang 2020. New York, NY, USA:
Association for Computing Machinery, 2020, pp. 24–30,

 doi: 10.1145/3406085.3409010.
 [15] F. Baader and T. Nipkow, Term rewriting and all that. Cambridge

University Press, 1998, doi: 10.1017/CBO9781139172752.
 [16] D. Horpácsi, J. Kőszegi, and S. Thompson, “Towards trustworthy re-

factoring in Erlang,” Electronic Proceedings in Theoretical Computer
Science, vol. 216, pp. 83–103, jul 2016, doi: 10.4204/eptcs.216.5.

 [17] H.-A. R. Project. (2023) Core Erlang formalization. Accessed on 3rd
of August, 2023. [Online]. Available: https://github.com/harp-project/
Core-Erlang-Formalization/releases/tag/v1.0.3

 [18] D. Drienyovszky, D. Horpácsi, and S. Thompson, “Quickchecking re-
factoring tools,” in Proceedings of the 9th ACM SIGPLAN Workshop
on Erlang, ser. Erlang ’10. New York, NY, USA: Association for Com-
puting Machinery, 2010, pp. 75–80, doi: 10.1145/1863509.1863521.

 [19] N. Chirkova and S. Troshin, “A simple approach for handling out-
of-vocabulary identifiers in deep learning for source code,” 2020,
doi: 10.48550/arXiv.2010.12663.

 [20] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin,
“Convolutional sequence to sequence learning,” in International
conference on machine learning. PMLR, 2017, pp. 1243–1252,
doi: 10.48550/arXiv.1705.03122.

 [21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017,
doi: 10.48550/arXiv.1706.03762.

https://doi.org/10.1007/978-3-030-57761-2_7
https://doi.org/10.1145/3406085.3409008
https://doi.org/10.1016/j.jlamp.2023.100857
https://doi.org/10.1017/S0956796800000125
https://doi.org/10.1609/aaai.v31i1.10742
https://doi.org/10.1109/ICSE.2019.00021
https://doi.org/10.1109/TSE.2019.2940179
https://doi.org/10.48550/arXiv.2103.00073
https://doi.org/10.1145/3395363.3397369
https://doi.org/10.48550/arXiv.1810.00314
https://doi.org/10.1145/3377811.3380345
https://doi.org/10.1145/3406085.3409010
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.4204/eptcs.216.5
https://github.com/harp-project/Core-Erlang-Formalization/releases/tag/v1.0.3
https://github.com/harp-project/Core-Erlang-Formalization/releases/tag/v1.0.3
https://doi.org/10.1145/1863509.1863521
https://doi.org/10.48550/arXiv.2010.12663
https://doi.org/10.48550/arXiv.1705.03122
https://doi.org/10.48550/arXiv.1706.03762

Deep Learning from Noisy Labels with Some
Adjustments of a Recent Method

9

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

Deep Learning from Noisy Labels with Some
Adjustments of a Recent Method

István Fazekas1, László Fórián2, and Attila Barta2

Abstract—In this paper we have used JoCoR, a fairly recent
method for learning with label noise, that makes use of two
neural networks with a joint loss function using an additional
contrastive loss to increase the agreement between them.
This method can be extended to more than two networks in
a straightforward way. We have carried out experiments on
the CIFAR-10 and CIFAR-100 datasets (contaminated by
synthetic label noise) with this kind of extension using several
contrastive losses. We have concluded that it makes a significant
improvement if we use a third network, especially when we use
Kullback-Leibler terms for all possible pairs of softmax outputs.
Further extension also means some kind of improvement, but
in the case of the CIFAR datasets, those were not so significant,
maybe except the cases with lower ratio of label noise.

Index Terms—Deep Learning, Noisy Labels, Classification,
Neural Networks, Supervised Learning

1 University of Debrecen, Faculty of Informatics, Debrecen, Hungary (E-mail:
fazekas.istvan@inf.unideb.hu)

2 University of Debrecen, Faculty of Informatics and Doctoral School of
Informatics, Debrecen, Hungary (E-mail: forian.laszlo@inf.unideb.hu, barta.
attila@inf.unideb.hu)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Deep Learning from Noisy Labels with Some
Adjustments of a Recent Method

István Fazekas, László Fórián, Attila Barta

Abstract—In this paper we have used JoCoR, a fairly recent
method for learning with label noise, that makes use of two neural
networks with a joint loss function using an additional contrastive
loss to increase the agreement between them. This method can
be extended to more than two networks in a straightforward
way. We have carried out experiments on the CIFAR-10 and
CIFAR-100 datasets (contaminated by synthetic label noise) with
this kind of extension using several contrastive losses. We have
concluded that it makes a significant improvement if we use a
third network, especially when we use Kullback-Leibler terms
for all possible pairs of softmax outputs. Further extension also
means some kind of improvement, but in the case of the CIFAR
datasets, those were not so significant, maybe except the cases
with lower ratio of label noise.

Index Terms—Deep Learning, Noisy Labels, Classification,
Neural Networks, Supervised Learning

I. INTRODUCTION

DEEP neural networks have excellent performance in
image classifications tasks, but they are in need of large

sets of training data with correct labels. This is a drawback,
since labeling is difficult or too expensive in many cases. The
available datasets are often contaminated by label noise, that
is why the challenge of learning with noisy labels has become
an important research topic with several directions [1], [5].
Even though deep neural networks tend to learn the simple,
consistent patterns first, they can easily overfit to noisy labels
[2]. If we are able to prevent this overfitting and treat the label
noise during the training process, we can obtain models with
good generalization ability.

In this work, we have investigated the possibilities of the
improvement of a recent method in the topic of learning
with label noise. We have applied some modifications to the
training process, evaluated those adjusted models and drawn
conclusions from the results.

JoCoR [6] is one of the recent state-of-the-art techniques
for learning with label noise. It uses the idea of the se-
lection of small-loss samples along with the utilization of
two neural networks and it gradually increases the agreement
between them. This model is trained with two classifiers in
the background and a joint loss function which contains an
additional term to reduce the divergence of the two networks,
they are forced to make similar predictions. This scheme
has a regularization effect during the training, it plays an
important role in preventing overfitting. The parameters of

István Fazekas: University of Debrecen, Faculty of Informatics, E-mail:
fazekas.istvan@inf.unideb.hu

László Fórián: University of Debrecen, Faculty of Informatics and Doctoral
School of Informatics, E-mail: forian.laszlo@inf.unideb.hu

Attila Barta: University of Debrecen, Faculty of Informatics and Doctoral
School of Informatics, E-mail: barta.attila@inf.unideb.hu

the networks are updated simultaneously by the joint loss
function, which is a weighted sum of the supervised losses
and the contrastive loss term. JoCoR shows very impressive
performance on several datasets with label noise, including
CIFAR-10 and CIFAR-100 with symmetric and asymmetric
label noise.

The method of JoCoR can be considered as a special
ensemble of the two classifiers. Unlike the techniques using a
disagreement strategy ([3], [4], [7]), JoCoR can be naturally
extended to more than two networks. This raises the question:
is it worth to use JoCoR with three neural networks if we have
the computational capacity?

One of our results is that the answer for the above question
is yes; we were able to make a significant improvement in
the considered symmetric and asymmetric noise cases on
CIFAR-10 and CIFAR-100 using three networks and totally
six Kullback-Leibler terms (for every possible pair of softmax
outputs). Similar results were obtained by using only three
KL terms in a circular manner, but the improvement of the
model over the training process was slightly slower and the
test performance seemed to have a larger variance. Cross-
Entropy contrastive losses were also applied, however they
led to moderately weaker performance with larger variance as
well.

We have also experimented with the utilization of more
networks. They made a slight improvement, too, but the further
increase comes with the cost of larger computational needs
and the benefits are not as significant as in the case of three
networks. Howewer, the improvement is relatively larger when
we have a lower amount of label noise.

II. CIFAR-10 AND CIFAR-100 WITH SYNTHETIC LABEL
NOISE

The dataset CIFAR-10 consists of images from 10 classes
with 32 × 32 RGB pixels. The size of the training set is 50000
examples and the test set has 10000 samples. For CIFAR-
100, the size and quantity of the images are the same, but the
number of classes equals 100. We also have 20 superclasses,
each of them contains 5 classes.

The CIFAR-10 and CIFAR-100 datasets are used with
synthetic label noise of two types: symmetric and asymmetric.
We have experimented with two types of synthetic label noise:

• Symmetric label noise: a given proportion of the labels is
flipped to one of the other classes according to a discrete
uniform distribution.

• Asymmetric label noise: it is generated by taking pairs
of classes (which are similar to each other, for which
humans make some mistakes, too), and a proportion of
the data labels are flipped between these class pairs.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Deep Learning from Noisy Labels with Some
Adjustments of a Recent Method

István Fazekas, László Fórián, Attila Barta

Abstract—In this paper we have used JoCoR, a fairly recent
method for learning with label noise, that makes use of two neural
networks with a joint loss function using an additional contrastive
loss to increase the agreement between them. This method can
be extended to more than two networks in a straightforward
way. We have carried out experiments on the CIFAR-10 and
CIFAR-100 datasets (contaminated by synthetic label noise) with
this kind of extension using several contrastive losses. We have
concluded that it makes a significant improvement if we use a
third network, especially when we use Kullback-Leibler terms
for all possible pairs of softmax outputs. Further extension also
means some kind of improvement, but in the case of the CIFAR
datasets, those were not so significant, maybe except the cases
with lower ratio of label noise.

Index Terms—Deep Learning, Noisy Labels, Classification,
Neural Networks, Supervised Learning

I. INTRODUCTION

DEEP neural networks have excellent performance in
image classifications tasks, but they are in need of large

sets of training data with correct labels. This is a drawback,
since labeling is difficult or too expensive in many cases. The
available datasets are often contaminated by label noise, that
is why the challenge of learning with noisy labels has become
an important research topic with several directions [1], [5].
Even though deep neural networks tend to learn the simple,
consistent patterns first, they can easily overfit to noisy labels
[2]. If we are able to prevent this overfitting and treat the label
noise during the training process, we can obtain models with
good generalization ability.

In this work, we have investigated the possibilities of the
improvement of a recent method in the topic of learning
with label noise. We have applied some modifications to the
training process, evaluated those adjusted models and drawn
conclusions from the results.

JoCoR [6] is one of the recent state-of-the-art techniques
for learning with label noise. It uses the idea of the se-
lection of small-loss samples along with the utilization of
two neural networks and it gradually increases the agreement
between them. This model is trained with two classifiers in
the background and a joint loss function which contains an
additional term to reduce the divergence of the two networks,
they are forced to make similar predictions. This scheme
has a regularization effect during the training, it plays an
important role in preventing overfitting. The parameters of

István Fazekas: University of Debrecen, Faculty of Informatics, E-mail:
fazekas.istvan@inf.unideb.hu

László Fórián: University of Debrecen, Faculty of Informatics and Doctoral
School of Informatics, E-mail: forian.laszlo@inf.unideb.hu

Attila Barta: University of Debrecen, Faculty of Informatics and Doctoral
School of Informatics, E-mail: barta.attila@inf.unideb.hu

the networks are updated simultaneously by the joint loss
function, which is a weighted sum of the supervised losses
and the contrastive loss term. JoCoR shows very impressive
performance on several datasets with label noise, including
CIFAR-10 and CIFAR-100 with symmetric and asymmetric
label noise.

The method of JoCoR can be considered as a special
ensemble of the two classifiers. Unlike the techniques using a
disagreement strategy ([3], [4], [7]), JoCoR can be naturally
extended to more than two networks. This raises the question:
is it worth to use JoCoR with three neural networks if we have
the computational capacity?

One of our results is that the answer for the above question
is yes; we were able to make a significant improvement in
the considered symmetric and asymmetric noise cases on
CIFAR-10 and CIFAR-100 using three networks and totally
six Kullback-Leibler terms (for every possible pair of softmax
outputs). Similar results were obtained by using only three
KL terms in a circular manner, but the improvement of the
model over the training process was slightly slower and the
test performance seemed to have a larger variance. Cross-
Entropy contrastive losses were also applied, however they
led to moderately weaker performance with larger variance as
well.

We have also experimented with the utilization of more
networks. They made a slight improvement, too, but the further
increase comes with the cost of larger computational needs
and the benefits are not as significant as in the case of three
networks. Howewer, the improvement is relatively larger when
we have a lower amount of label noise.

II. CIFAR-10 AND CIFAR-100 WITH SYNTHETIC LABEL
NOISE

The dataset CIFAR-10 consists of images from 10 classes
with 32 × 32 RGB pixels. The size of the training set is 50000
examples and the test set has 10000 samples. For CIFAR-
100, the size and quantity of the images are the same, but the
number of classes equals 100. We also have 20 superclasses,
each of them contains 5 classes.

The CIFAR-10 and CIFAR-100 datasets are used with
synthetic label noise of two types: symmetric and asymmetric.
We have experimented with two types of synthetic label noise:

• Symmetric label noise: a given proportion of the labels is
flipped to one of the other classes according to a discrete
uniform distribution.

• Asymmetric label noise: it is generated by taking pairs
of classes (which are similar to each other, for which
humans make some mistakes, too), and a proportion of
the data labels are flipped between these class pairs.DOI: 10.36244/ICJ.2023.5.2

mailto:fazekas.istvan%40inf.unideb.hu?subject=
mailto:forian.laszlo%40inf.unideb.hu?subject=
mailto:barta.attila%40inf.unideb.hu?subject=
mailto:barta.attila%40inf.unideb.hu?subject=
https://doi.org/10.36244/ICJ.2023.5.2

Deep Learning from Noisy Labels with Some
Adjustments of a Recent Method

10

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

III. A RECENT METHOD FOR LEARNING WITH NOISY
LABELS: JOCOR

JoCoR utilizes the idea of small-loss selection and uses
two neural networks. The agreement between those networks
is gradually increased during the training process, this was
inspired by some semi-supervised learning methods. The
model is trained using two classifiers and a joint loss function
which contains an additional regularization term to reduce the
divergence of the two networks, so they are forced to agree
with each other. This setup also has a regularization effect
during the training, and it helps to prevent overfitting, too.

JoCoR uses convolutional neural networks (CNNs) with
several convolutional and batch-normalization layers in the
background, but it can be changed to any other neural network.
This backbone CNN can be seen on Fig. 1, the source is [6].

Fig. 1. The network in the background of JoCoR

The loss function of JoCoR is a weighted sum of the
supervised loss of the two networks (two Cross-Entropy terms)
and a contrastive loss term. The latter quantity is a symmetric
Kullback-Leibler divergence (the sum of two KL terms). Here
the dataset is given with 𝑁𝑁 samples from 𝑀𝑀 classes as
𝐷𝐷 = {xi, 𝑦𝑦𝑖𝑖}𝑁𝑁𝑖𝑖=1. x𝑖𝑖 is the 𝑖𝑖-th instance with its observed label
𝑦𝑦𝑖𝑖 ∈ {1, . . . , 𝑀𝑀}. The formulas:

𝐿𝐿 (x𝑖𝑖) = (1 − 𝜆𝜆) ∗ 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 (xi, 𝑦𝑦𝑖𝑖) + 𝜆𝜆 ∗ 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 (x𝑖𝑖),

𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠 (xi, 𝑦𝑦𝑖𝑖) = 𝐿𝐿𝐶𝐶1 (xi, 𝑦𝑦𝑖𝑖) + 𝐿𝐿𝐶𝐶2 (xi, 𝑦𝑦𝑖𝑖),

𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐷𝐷𝐾𝐾𝐾𝐾 (𝑝𝑝 | |𝑞𝑞) + 𝐷𝐷𝐾𝐾𝐾𝐾 (𝑞𝑞 | |𝑝𝑝),

if 𝑝𝑝 and 𝑞𝑞 are the two discrete probability distributions
obtained from the softmax outputs.

Images considered as clean are selected with the small
loss criterion using this joint loss function. At the start, the
whole training dataset is used, then fewer training examples
are selected in the upcoming epochs until it gradually reaches
the ratio 1− 𝜏𝜏, where 𝜏𝜏 is the known or estimated ratio of the
noisy labels in the training dataset.

IV. EXTENDING THE METHOD TO THREE NETWORKS

Since JoCoR can be considered as a special ensemble of
the two classifiers and it can be extended to more than two
networks in a natural way, we wanted to investigate whether
it is worth to use three neural networks instead of the original
two.

We have investigated the performance of JoCoR with three
networks (we have used copies of the same CNN as JoCoR)
and several types of contrastive loss (where 𝑝𝑝1, 𝑝𝑝2, 𝑝𝑝3 are the
softmax outputs). We have carried out experiments with the
following contrastive loss setups:

Totally six KL-terms (for every possible pair of softmax
outputs):

𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 (x𝑖𝑖) = 𝐷𝐷𝐾𝐾𝐾𝐾 (𝑝𝑝1 | |𝑝𝑝2) + 𝐷𝐷𝐾𝐾𝐾𝐾 (𝑝𝑝2 | |𝑝𝑝1) + 𝐷𝐷𝐾𝐾𝐾𝐾 (𝑝𝑝1 | |𝑝𝑝3)+
𝐷𝐷𝐾𝐾𝐾𝐾 (𝑝𝑝3 | |𝑝𝑝1) + 𝐷𝐷𝐾𝐾𝐾𝐾 (𝑝𝑝2 | |𝑝𝑝3) + 𝐷𝐷𝐾𝐾𝐾𝐾 (𝑝𝑝3 | |𝑝𝑝2).

This can be considered the extension of JoCoR’s contrastive
loss to three networks and the force is quite strong for the
classifiers to predict similarly.

Using three KL-terms in a circular manner:

𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐷𝐷𝐾𝐾𝐾𝐾 (𝑝𝑝1 | |𝑝𝑝2) + 𝐷𝐷𝐾𝐾𝐾𝐾 (𝑝𝑝2 | |𝑝𝑝3) + 𝐷𝐷𝐾𝐾𝐾𝐾 (𝑝𝑝3 | |𝑝𝑝1).

This function came into consideration because the effect of
using these three terms only, may lead to the same situation
in the long run: the predictions of the classifiers should be
quite similar at the end of the training process.

Three Cross-Entropy terms:

𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐿𝐿𝐶𝐶𝐶𝐶 (𝑝𝑝1 | |𝑝𝑝2) + 𝐿𝐿𝐶𝐶𝐶𝐶 (𝑝𝑝1 | |𝑝𝑝3) + 𝐿𝐿𝐶𝐶𝐶𝐶 (𝑝𝑝2 | |𝑝𝑝3).

This loss function came up as an idea since the Cross-Entropy
can also be considered as a distance between two discrete
probability distributions.

A. Results on CIFAR-10

Table I contains our results on CIFAR-10 (and the results of
the original JoCoR). We have implemented our experiments
using PyTorch as the authors of JoCoR. We have used the
Adam optimizer with momentum 0.8. The initial learning rate
was 0.001 and the mini-batch size was set to 128. The number
of epochs was 200 and the learning rate has started to decrease
from the 80-th epoch and it was linearly decreased to 0 until
the end of the training. The parameter 𝜆𝜆 was set to 0.5 in the
case of 6 Kullback-Leibler terms and 0.7 for the setups with
3 Kullback-Leibler and 3 Cross-Entropy terms.

The models were evaluated on the 10000-element test
dataset and these values are the averages (and standard de-
viations) of test accuracies of 10 inependent runs. We can
see that it is worth using 3 networks with 6 Kullback-Leibler
divergence terms, because we got higher accuracies and lower
standard deviations. If we have the capacity, it may also be
worth using the 3 Kullback-Leibler version: the results are
similar, just the standard deviatons are slightly higher. We
are also able to improve JoCoR’s results with Cross-Entropy
regularization terms, but the difference is smaller in that case.

Deep Learning from Noisy Labels with Some
Adjustments of a Recent Method

11

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

CIFAR-10
JoCoR 6 Kullback-Leibler 3 Kullback-Leibler 3 Cross-Entropy

Symm. 20% 85.73 ± 0.19% 86.95 ± 0.19% 86.75 ± 0.19% 85.90 ± 0.27%
Symm. 40% 79.41 ± 0.25% 80.49 ± 0.21% 80.46 ± 0.33% 79.96 ± 0.29%
Symm. 80% 27.78 ± 3.16% 29.02 ± 3.11% 28.10 ± 3.19% 28.02 ± 3.39%

Asymm. 40% 76.36 ± 0.49% 77.27 ± 0.41% 77.43 ± 0.57% 77.28 ± 0.57%
CIFAR-100

JoCoR 6 Kullback-Leibler 3 Kullback-Leibler 3 Cross-Entropy
Symm. 20% 53.01 ± 0.44% 54.15 ± 0.39% 54.13 ± 0.43% 53.18 ± 0.51%
Symm. 40% 43.49 ± 0.46% 44.01 ± 0.37% 44.01 ± 0.40% 43.51 ± 0.54%
Symm. 80% 15.49 ± 0.98% 16.23 ± 0.91% 16.15 ± 0.96% 16.07 ± 1.05%

Asymm. 40% 32.70 ± 0.35% 33.35 ± 0.27% 33.34 ± 0.33% 32.71 ± 0.37%

TABLE I
THE CIFAR-10 AND CIFAR-100 TEST PERFORMANCE OF JOCOR WITH 2 NETWORKS AND WITH 3 NETWORKS USING THE MODIFIED CONTRASTIVE

LOSSES

B. Results on CIFAR-100
Our results using three networks on CIFAR-100 are also

summarized in Table I. JoCoR’s original results are also
present for comparison. The value of the hyper-parameters
were the same as for the models using CIFAR-10 previously.

The models were evaluated on the 10000-element CIFAR-
100 test dataset and these values are the averages (and standard
deviations) of test accuracies of 10 runs. The 6 Kullback-
Leibler version makes a significant improvement again, but the
circular 3-term KL contrastive loss is not far behind, especially
in the cases with lower noise ratio. The Cross-Entropy-type
loss also means an improvement, but it results in slightly
higher standard deviation and it seems to be more suitable
for symmetric noise than asymmetric.

V. FURTHER INCREASE OF THE NUMBER OF NETWORKS

We have also investigated the possibilities of improvement
by using more than 3 networks and contrastive losses with
Kullback-Leibler divergence for all possible pairs of the soft-
max outputs. In table II we only report the averages of test
accuracies of 10 runs. The parameters of the training were the
same as before except the value of 𝜆𝜆. It was set to 0.3 in the
case of the 4-network model. Its value was 0.2 and 0.1 for 5
and 6 classifiers, respectively.

We can see that we were able to make a significant
improvement with the third network, and the fourth classifier
also makes an improvement, but the difference is not so large.
The fifth network could also improve our results for smaller
noise ratios, but these accuracies seem to be almost constant
for larger models. It is also important to note that there was no
significant decrease despite the complexity of computations.

Table II contains the results for more than 3 networks and
Kullback-Leibler terms for all possible softmax output pairs,
using the CIFAR-100 test dataset. We have used the same set
of hyper-parameters that were used for CIFAR-10.

We can observe similar results on the CIFAR-100 dataset,
too. The third network gave a significant improvement, but
for more than 3 networks, the upgrade was not so significant
(maybe except for the 4-part version with smaller amount of
noise). The difference between the performance of the models
is generally smaller for this dataset since this classification is
a more difficult task.

The increase of the computational needs, execution costs
of the larger models are approximately linear, so is has to

be taken it into consideration when trying to increase the
performance of the model.

VI. SOME CONSIDERATIONS ON THE 𝜆𝜆 HYPER-PARAMETER

The 𝜆𝜆 hyper-parameter is the weight of the contrastive
loss in the overall loss function, hence it controls the force
that pulls the predictions together. It also provides the reg-
ularization effect in our models. The larger the 𝜆𝜆 is, the
less the divergence of the softmax outputs of the networks.
However, if we set it too high, the classifiers make almost
the same predictions which is not favourable, especially if we
have several neural nets. The best 𝜆𝜆 depends on the dataset
and the model as well. When obtaining the results in our
previous tables, we have used the most suitable 𝜆𝜆 values out
of 0.1, 0.2, . . . 0.9. As an illustration on CIFAR-10, we present
the case of the model with 3 networks and 6 Kullback-Leibler
terms and 20% symmetric label noise in Table III. That table
also contains the average of the test performance of 10 runs.

VII. CONCLUSIONS

We have carried out experiments with JoCoR, a recent
technique for learning with label noise, which can be naturally
extended to more than the two networks it originally uses.

We were able to make a significant improvement in accuracy
by utilizing a third network with a 6-term Kullback-Leibler
contrastive loss. Despite the other types of used regularization
losses had some drawbacks, they could also improve the
original JoCoR model, especially in the scenarios with lower
proportion of label noise.

If we use a contrastive loss with all the possible pairs
of softmax outputs, we can further improve our results by
increasing the number of neural networks on both CIFAR
datasets, but those improvements can be considered not as
significant as the case of the 3-classifier model.

ACKNOWLEDGEMENT

This work was supported by the construction EFOP-3.6.3-
VEKOP-16-2017-00002. The project was supported by the
European Union, co-financed by the European Social Fund.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

CIFAR-10
JoCoR 6 Kullback-Leibler 3 Kullback-Leibler 3 Cross-Entropy

Symm. 20% 85.73 ± 0.19% 86.95 ± 0.19% 86.75 ± 0.19% 85.90 ± 0.27%
Symm. 40% 79.41 ± 0.25% 80.49 ± 0.21% 80.46 ± 0.33% 79.96 ± 0.29%
Symm. 80% 27.78 ± 3.16% 29.02 ± 3.11% 28.10 ± 3.19% 28.02 ± 3.39%

Asymm. 40% 76.36 ± 0.49% 77.27 ± 0.41% 77.43 ± 0.57% 77.28 ± 0.57%
CIFAR-100

JoCoR 6 Kullback-Leibler 3 Kullback-Leibler 3 Cross-Entropy
Symm. 20% 53.01 ± 0.44% 54.15 ± 0.39% 54.13 ± 0.43% 53.18 ± 0.51%
Symm. 40% 43.49 ± 0.46% 44.01 ± 0.37% 44.01 ± 0.40% 43.51 ± 0.54%
Symm. 80% 15.49 ± 0.98% 16.23 ± 0.91% 16.15 ± 0.96% 16.07 ± 1.05%

Asymm. 40% 32.70 ± 0.35% 33.35 ± 0.27% 33.34 ± 0.33% 32.71 ± 0.37%

TABLE I
THE CIFAR-10 AND CIFAR-100 TEST PERFORMANCE OF JOCOR WITH 2 NETWORKS AND WITH 3 NETWORKS USING THE MODIFIED CONTRASTIVE

LOSSES

B. Results on CIFAR-100
Our results using three networks on CIFAR-100 are also

summarized in Table I. JoCoR’s original results are also
present for comparison. The value of the hyper-parameters
were the same as for the models using CIFAR-10 previously.

The models were evaluated on the 10000-element CIFAR-
100 test dataset and these values are the averages (and standard
deviations) of test accuracies of 10 runs. The 6 Kullback-
Leibler version makes a significant improvement again, but the
circular 3-term KL contrastive loss is not far behind, especially
in the cases with lower noise ratio. The Cross-Entropy-type
loss also means an improvement, but it results in slightly
higher standard deviation and it seems to be more suitable
for symmetric noise than asymmetric.

V. FURTHER INCREASE OF THE NUMBER OF NETWORKS

We have also investigated the possibilities of improvement
by using more than 3 networks and contrastive losses with
Kullback-Leibler divergence for all possible pairs of the soft-
max outputs. In table II we only report the averages of test
accuracies of 10 runs. The parameters of the training were the
same as before except the value of 𝜆𝜆. It was set to 0.3 in the
case of the 4-network model. Its value was 0.2 and 0.1 for 5
and 6 classifiers, respectively.

We can see that we were able to make a significant
improvement with the third network, and the fourth classifier
also makes an improvement, but the difference is not so large.
The fifth network could also improve our results for smaller
noise ratios, but these accuracies seem to be almost constant
for larger models. It is also important to note that there was no
significant decrease despite the complexity of computations.

Table II contains the results for more than 3 networks and
Kullback-Leibler terms for all possible softmax output pairs,
using the CIFAR-100 test dataset. We have used the same set
of hyper-parameters that were used for CIFAR-10.

We can observe similar results on the CIFAR-100 dataset,
too. The third network gave a significant improvement, but
for more than 3 networks, the upgrade was not so significant
(maybe except for the 4-part version with smaller amount of
noise). The difference between the performance of the models
is generally smaller for this dataset since this classification is
a more difficult task.

The increase of the computational needs, execution costs
of the larger models are approximately linear, so is has to

be taken it into consideration when trying to increase the
performance of the model.

VI. SOME CONSIDERATIONS ON THE 𝜆𝜆 HYPER-PARAMETER

The 𝜆𝜆 hyper-parameter is the weight of the contrastive
loss in the overall loss function, hence it controls the force
that pulls the predictions together. It also provides the reg-
ularization effect in our models. The larger the 𝜆𝜆 is, the
less the divergence of the softmax outputs of the networks.
However, if we set it too high, the classifiers make almost
the same predictions which is not favourable, especially if we
have several neural nets. The best 𝜆𝜆 depends on the dataset
and the model as well. When obtaining the results in our
previous tables, we have used the most suitable 𝜆𝜆 values out
of 0.1, 0.2, . . . 0.9. As an illustration on CIFAR-10, we present
the case of the model with 3 networks and 6 Kullback-Leibler
terms and 20% symmetric label noise in Table III. That table
also contains the average of the test performance of 10 runs.

VII. CONCLUSIONS

We have carried out experiments with JoCoR, a recent
technique for learning with label noise, which can be naturally
extended to more than the two networks it originally uses.

We were able to make a significant improvement in accuracy
by utilizing a third network with a 6-term Kullback-Leibler
contrastive loss. Despite the other types of used regularization
losses had some drawbacks, they could also improve the
original JoCoR model, especially in the scenarios with lower
proportion of label noise.

If we use a contrastive loss with all the possible pairs
of softmax outputs, we can further improve our results by
increasing the number of neural networks on both CIFAR
datasets, but those improvements can be considered not as
significant as the case of the 3-classifier model.

ACKNOWLEDGEMENT

This work was supported by the construction EFOP-3.6.3-
VEKOP-16-2017-00002. The project was supported by the
European Union, co-financed by the European Social Fund.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

CIFAR-10
JoCoR 6 Kullback-Leibler 3 Kullback-Leibler 3 Cross-Entropy

Symm. 20% 85.73 ± 0.19% 86.95 ± 0.19% 86.75 ± 0.19% 85.90 ± 0.27%
Symm. 40% 79.41 ± 0.25% 80.49 ± 0.21% 80.46 ± 0.33% 79.96 ± 0.29%
Symm. 80% 27.78 ± 3.16% 29.02 ± 3.11% 28.10 ± 3.19% 28.02 ± 3.39%

Asymm. 40% 76.36 ± 0.49% 77.27 ± 0.41% 77.43 ± 0.57% 77.28 ± 0.57%
CIFAR-100

JoCoR 6 Kullback-Leibler 3 Kullback-Leibler 3 Cross-Entropy
Symm. 20% 53.01 ± 0.44% 54.15 ± 0.39% 54.13 ± 0.43% 53.18 ± 0.51%
Symm. 40% 43.49 ± 0.46% 44.01 ± 0.37% 44.01 ± 0.40% 43.51 ± 0.54%
Symm. 80% 15.49 ± 0.98% 16.23 ± 0.91% 16.15 ± 0.96% 16.07 ± 1.05%

Asymm. 40% 32.70 ± 0.35% 33.35 ± 0.27% 33.34 ± 0.33% 32.71 ± 0.37%

TABLE I
THE CIFAR-10 AND CIFAR-100 TEST PERFORMANCE OF JOCOR WITH 2 NETWORKS AND WITH 3 NETWORKS USING THE MODIFIED CONTRASTIVE

LOSSES

B. Results on CIFAR-100
Our results using three networks on CIFAR-100 are also

summarized in Table I. JoCoR’s original results are also
present for comparison. The value of the hyper-parameters
were the same as for the models using CIFAR-10 previously.

The models were evaluated on the 10000-element CIFAR-
100 test dataset and these values are the averages (and standard
deviations) of test accuracies of 10 runs. The 6 Kullback-
Leibler version makes a significant improvement again, but the
circular 3-term KL contrastive loss is not far behind, especially
in the cases with lower noise ratio. The Cross-Entropy-type
loss also means an improvement, but it results in slightly
higher standard deviation and it seems to be more suitable
for symmetric noise than asymmetric.

V. FURTHER INCREASE OF THE NUMBER OF NETWORKS

We have also investigated the possibilities of improvement
by using more than 3 networks and contrastive losses with
Kullback-Leibler divergence for all possible pairs of the soft-
max outputs. In table II we only report the averages of test
accuracies of 10 runs. The parameters of the training were the
same as before except the value of 𝜆𝜆. It was set to 0.3 in the
case of the 4-network model. Its value was 0.2 and 0.1 for 5
and 6 classifiers, respectively.

We can see that we were able to make a significant
improvement with the third network, and the fourth classifier
also makes an improvement, but the difference is not so large.
The fifth network could also improve our results for smaller
noise ratios, but these accuracies seem to be almost constant
for larger models. It is also important to note that there was no
significant decrease despite the complexity of computations.

Table II contains the results for more than 3 networks and
Kullback-Leibler terms for all possible softmax output pairs,
using the CIFAR-100 test dataset. We have used the same set
of hyper-parameters that were used for CIFAR-10.

We can observe similar results on the CIFAR-100 dataset,
too. The third network gave a significant improvement, but
for more than 3 networks, the upgrade was not so significant
(maybe except for the 4-part version with smaller amount of
noise). The difference between the performance of the models
is generally smaller for this dataset since this classification is
a more difficult task.

The increase of the computational needs, execution costs
of the larger models are approximately linear, so is has to

be taken it into consideration when trying to increase the
performance of the model.

VI. SOME CONSIDERATIONS ON THE 𝜆𝜆 HYPER-PARAMETER

The 𝜆𝜆 hyper-parameter is the weight of the contrastive
loss in the overall loss function, hence it controls the force
that pulls the predictions together. It also provides the reg-
ularization effect in our models. The larger the 𝜆𝜆 is, the
less the divergence of the softmax outputs of the networks.
However, if we set it too high, the classifiers make almost
the same predictions which is not favourable, especially if we
have several neural nets. The best 𝜆𝜆 depends on the dataset
and the model as well. When obtaining the results in our
previous tables, we have used the most suitable 𝜆𝜆 values out
of 0.1, 0.2, . . . 0.9. As an illustration on CIFAR-10, we present
the case of the model with 3 networks and 6 Kullback-Leibler
terms and 20% symmetric label noise in Table III. That table
also contains the average of the test performance of 10 runs.

VII. CONCLUSIONS

We have carried out experiments with JoCoR, a recent
technique for learning with label noise, which can be naturally
extended to more than the two networks it originally uses.

We were able to make a significant improvement in accuracy
by utilizing a third network with a 6-term Kullback-Leibler
contrastive loss. Despite the other types of used regularization
losses had some drawbacks, they could also improve the
original JoCoR model, especially in the scenarios with lower
proportion of label noise.

If we use a contrastive loss with all the possible pairs
of softmax outputs, we can further improve our results by
increasing the number of neural networks on both CIFAR
datasets, but those improvements can be considered not as
significant as the case of the 3-classifier model.

ACKNOWLEDGEMENT

This work was supported by the construction EFOP-3.6.3-
VEKOP-16-2017-00002. The project was supported by the
European Union, co-financed by the European Social Fund.

Deep Learning from Noisy Labels with Some
Adjustments of a Recent Method

12

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

CIFAR-10
JoCoR 3 networks 4 networks 5 networks 6 networks

Symm. 20% 85.73% 86.95% 87.19% 87.26% 87.29%
Symm. 40% 79.41% 80.49% 80.80% 80.82% 80.86%
Symm. 80% 27.78% 29.02% 29.11% 29.11% 29.12%

Asymm. 40% 76.36% 77.27% 77.49% 77.49% 77.48%
JoCoR 3 networks 4 networks 5 networks 6 networks

Symm. 20% 53.01% 54.15% 54.34% 54.38% 54.41%
Symm. 40% 43.49% 44.01% 44.15% 44.18% 44.20%
Symm. 80% 15.49% 16.23% 16.26% 16.29% 16.30%

Asymm. 40% 32.70% 33.35% 33.42% 33.44% 33.44%

TABLE II
THE CIFAR-10 AND CIFAR-100 TEST PERFORMANCE OF JOCOR WITH 2-6 NETWORKS (AVERAGE OF 10 INDEPENDENT RUNS)

𝜆𝜆 Performance
0.1 75.92%
0.2 76.21%
0.3 81.84%
0.4 84.97%
0.5 86.95%
0.6 86.43%
0.7 85.75%
0.8 84.24%
0.9 83.56%

TABLE III
THE CIFAR-10 TEST PERFORMANCE OF JOCOR WITH 3 NETWORKS AND

6 KULLBACK-LEIBLER TERMS FOR DIFFERENT 𝜆𝜆 VALUES, IN THE CASE OF
20% SYMMETRIC LABEL NOISE

REFERENCES

[1] G. Algan and I. Ulusoy, Image Classification with Deep Learning in
the Presence of Noisy Labels: A Survey, Knowledge-Based Systems 215,
106771, 2021, doi: 10.1016/j.knosys.2021.106771

[2] D. Arpit,S. Jastrzębski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal,
T. Maharaj, A. Fischer, A. Courville, Y. Bengio and S. Lacoste-Julien, A
Closer Look at Memorization in Deep Networks Proceedings of Machine
Learning Research vol. 70, 2017, pp. 233–242.

[3] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang and M. Sugiyama,
Co-teaching: Robust training of deep neural networks with extremely
noisy labels,NeurIPS, 2018, 8535–8545.

[4] E. Malach and S. Shalev-Shwartz, Decoupling "when to update" from
"how to update", Advances in Neural Information Processing Systems,
2017, pp. 960–970.

[5] H. Song, M. Kim, D. Park, Y. Shin and J. Lee, Learning from Noisy
Labels with Deep Neural Networks: A Survey IEEE Transactions on
Neural Networks and Learning Systems, 2022.

[6] H. Wei, L. Feng, X. Chen and B. An, Combating Noisy Labels by
Agreement: A Joint Training Method with Co-Regularization, IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020,
13723–13732, doi: 10.1109/CVPR42600.2020.01374

[7] X. Yu, B. Han, J. Yao, G. Niu, I. Tsang and M. Sugiyama, How does Dis-
agreement Help Generalization against Label Corruption?, International
Conference on Machine Learning, 2019, 7164–7173.

István Fazekas graduated from Kossuth Lajos Uni-
versity, Debrecen, Hungary in 1978. He is currently
a full professor at Faculty of Informatics, University
of Debrecen, Hungary. He had been head of the
Department of Applied Mathematics and Probability
Theory. His main research interests are asymptotic
theorems of probability theory and mathematical
statistics, network theory and machine learning.

László Fórián graduated from University of Debre-
cen in 2019 as a mathematician. He is currently a
PhD student at the Doctoral School of Informatics
and an assistant lecturer at the University of De-
brecen, Hungary. His main research areas consist of
neural networks and random graphs.

Attila Barta is an assistant lecturer at University
of Debrecen, Hungary. He holds an MSc degree in
applied mathematics from the University of Debre-
cen and he is also a PhD candidate at the Doctoral
School of Informatics in the institution. His main
research fields are network science and neural net-
works.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

CIFAR-10
JoCoR 3 networks 4 networks 5 networks 6 networks

Symm. 20% 85.73% 86.95% 87.19% 87.26% 87.29%
Symm. 40% 79.41% 80.49% 80.80% 80.82% 80.86%
Symm. 80% 27.78% 29.02% 29.11% 29.11% 29.12%

Asymm. 40% 76.36% 77.27% 77.49% 77.49% 77.48%
JoCoR 3 networks 4 networks 5 networks 6 networks

Symm. 20% 53.01% 54.15% 54.34% 54.38% 54.41%
Symm. 40% 43.49% 44.01% 44.15% 44.18% 44.20%
Symm. 80% 15.49% 16.23% 16.26% 16.29% 16.30%

Asymm. 40% 32.70% 33.35% 33.42% 33.44% 33.44%

TABLE II
THE CIFAR-10 AND CIFAR-100 TEST PERFORMANCE OF JOCOR WITH 2-6 NETWORKS (AVERAGE OF 10 INDEPENDENT RUNS)

𝜆𝜆 Performance
0.1 75.92%
0.2 76.21%
0.3 81.84%
0.4 84.97%
0.5 86.95%
0.6 86.43%
0.7 85.75%
0.8 84.24%
0.9 83.56%

TABLE III
THE CIFAR-10 TEST PERFORMANCE OF JOCOR WITH 3 NETWORKS AND

6 KULLBACK-LEIBLER TERMS FOR DIFFERENT 𝜆𝜆 VALUES, IN THE CASE OF
20% SYMMETRIC LABEL NOISE

REFERENCES

[1] G. Algan and I. Ulusoy, Image Classification with Deep Learning in
the Presence of Noisy Labels: A Survey, Knowledge-Based Systems 215,
106771, 2021, doi: 10.1016/j.knosys.2021.106771

[2] D. Arpit,S. Jastrzębski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal,
T. Maharaj, A. Fischer, A. Courville, Y. Bengio and S. Lacoste-Julien, A
Closer Look at Memorization in Deep Networks Proceedings of Machine
Learning Research vol. 70, 2017, pp. 233–242.

[3] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang and M. Sugiyama,
Co-teaching: Robust training of deep neural networks with extremely
noisy labels,NeurIPS, 2018, 8535–8545.

[4] E. Malach and S. Shalev-Shwartz, Decoupling "when to update" from
"how to update", Advances in Neural Information Processing Systems,
2017, pp. 960–970.

[5] H. Song, M. Kim, D. Park, Y. Shin and J. Lee, Learning from Noisy
Labels with Deep Neural Networks: A Survey IEEE Transactions on
Neural Networks and Learning Systems, 2022.

[6] H. Wei, L. Feng, X. Chen and B. An, Combating Noisy Labels by
Agreement: A Joint Training Method with Co-Regularization, IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020,
13723–13732, doi: 10.1109/CVPR42600.2020.01374

[7] X. Yu, B. Han, J. Yao, G. Niu, I. Tsang and M. Sugiyama, How does Dis-
agreement Help Generalization against Label Corruption?, International
Conference on Machine Learning, 2019, 7164–7173.

István Fazekas graduated from Kossuth Lajos Uni-
versity, Debrecen, Hungary in 1978. He is currently
a full professor at Faculty of Informatics, University
of Debrecen, Hungary. He had been head of the
Department of Applied Mathematics and Probability
Theory. His main research interests are asymptotic
theorems of probability theory and mathematical
statistics, network theory and machine learning.

László Fórián graduated from University of Debre-
cen in 2019 as a mathematician. He is currently a
PhD student at the Doctoral School of Informatics
and an assistant lecturer at the University of De-
brecen, Hungary. His main research areas consist of
neural networks and random graphs.

Attila Barta is an assistant lecturer at University
of Debrecen, Hungary. He holds an MSc degree in
applied mathematics from the University of Debre-
cen and he is also a PhD candidate at the Doctoral
School of Informatics in the institution. His main
research fields are network science and neural net-
works.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

CIFAR-10
JoCoR 3 networks 4 networks 5 networks 6 networks

Symm. 20% 85.73% 86.95% 87.19% 87.26% 87.29%
Symm. 40% 79.41% 80.49% 80.80% 80.82% 80.86%
Symm. 80% 27.78% 29.02% 29.11% 29.11% 29.12%

Asymm. 40% 76.36% 77.27% 77.49% 77.49% 77.48%
JoCoR 3 networks 4 networks 5 networks 6 networks

Symm. 20% 53.01% 54.15% 54.34% 54.38% 54.41%
Symm. 40% 43.49% 44.01% 44.15% 44.18% 44.20%
Symm. 80% 15.49% 16.23% 16.26% 16.29% 16.30%

Asymm. 40% 32.70% 33.35% 33.42% 33.44% 33.44%

TABLE II
THE CIFAR-10 AND CIFAR-100 TEST PERFORMANCE OF JOCOR WITH 2-6 NETWORKS (AVERAGE OF 10 INDEPENDENT RUNS)

𝜆𝜆 Performance
0.1 75.92%
0.2 76.21%
0.3 81.84%
0.4 84.97%
0.5 86.95%
0.6 86.43%
0.7 85.75%
0.8 84.24%
0.9 83.56%

TABLE III
THE CIFAR-10 TEST PERFORMANCE OF JOCOR WITH 3 NETWORKS AND

6 KULLBACK-LEIBLER TERMS FOR DIFFERENT 𝜆𝜆 VALUES, IN THE CASE OF
20% SYMMETRIC LABEL NOISE

REFERENCES

[1] G. Algan and I. Ulusoy, Image Classification with Deep Learning in
the Presence of Noisy Labels: A Survey, Knowledge-Based Systems 215,
106771, 2021, doi: 10.1016/j.knosys.2021.106771

[2] D. Arpit,S. Jastrzębski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal,
T. Maharaj, A. Fischer, A. Courville, Y. Bengio and S. Lacoste-Julien, A
Closer Look at Memorization in Deep Networks Proceedings of Machine
Learning Research vol. 70, 2017, pp. 233–242.

[3] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang and M. Sugiyama,
Co-teaching: Robust training of deep neural networks with extremely
noisy labels,NeurIPS, 2018, 8535–8545.

[4] E. Malach and S. Shalev-Shwartz, Decoupling "when to update" from
"how to update", Advances in Neural Information Processing Systems,
2017, pp. 960–970.

[5] H. Song, M. Kim, D. Park, Y. Shin and J. Lee, Learning from Noisy
Labels with Deep Neural Networks: A Survey IEEE Transactions on
Neural Networks and Learning Systems, 2022.

[6] H. Wei, L. Feng, X. Chen and B. An, Combating Noisy Labels by
Agreement: A Joint Training Method with Co-Regularization, IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2020,
13723–13732, doi: 10.1109/CVPR42600.2020.01374

[7] X. Yu, B. Han, J. Yao, G. Niu, I. Tsang and M. Sugiyama, How does Dis-
agreement Help Generalization against Label Corruption?, International
Conference on Machine Learning, 2019, 7164–7173.

István Fazekas graduated from Kossuth Lajos Uni-
versity, Debrecen, Hungary in 1978. He is currently
a full professor at Faculty of Informatics, University
of Debrecen, Hungary. He had been head of the
Department of Applied Mathematics and Probability
Theory. His main research interests are asymptotic
theorems of probability theory and mathematical
statistics, network theory and machine learning.

László Fórián graduated from University of Debre-
cen in 2019 as a mathematician. He is currently a
PhD student at the Doctoral School of Informatics
and an assistant lecturer at the University of De-
brecen, Hungary. His main research areas consist of
neural networks and random graphs.

Attila Barta is an assistant lecturer at University
of Debrecen, Hungary. He holds an MSc degree in
applied mathematics from the University of Debre-
cen and he is also a PhD candidate at the Doctoral
School of Informatics in the institution. His main
research fields are network science and neural net-
works.

 [1] G. Algan and I. Ulusoy, Image Classification with Deep Learning in
the Presence of Noisy Labels: A Survey, Knowledge-Based Systems
215, 106771, 2021, doi: 10.1016/j.knosys.2021.106771

 [2] D. Arpit, S. Jastrzębski, N. Ballas, D. Krueger, E. Bengio, M. S.
Kanwal, T. Maharaj, A. Fischer, A. Courville, Y. Bengio and S. Lacoste-
Julien, A Closer Look at Memorization in Deep Networks Proceedings
of Machine Learning Research vol. 70, 2017, pp. 233–242.

 [3] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang and M.
Sugiyama, Co-teaching: Robust training of deep neural networks with
extremely noisy labels, NeurIPS, 2018, 8535–8545.

 [4] E. Malach and S. Shalev-Shwartz, Decoupling "when to update"
from "how to update", Advances in Neural Information Processing
Systems, 2017, pp. 960–970.

 [5] H. Song, M. Kim, D. Park, Y. Shin and J. Lee, Learning from Noisy
Labels with Deep Neural Networks: A Survey IEEE Transactions on
Neural Networks and Learning Systems, 2022.

 [6] H. Wei, L. Feng, X. Chen and B. An, Combating Noisy Labels by
Agreement: A Joint Training Method with Co-Regularization, IEEE/
CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020, 13723–13732, doi: 10.1109/CVPR42600.2020.01374

 [7] X. Yu, B. Han, J. Yao, G. Niu, I. Tsang and M. Sugiyama, How
does Disagreement Help Generalization against Label Corruption?,
International Conference on Machine Learning, 2019, 7164–7173.

References

István Fazekas graduated from Kossuth Lajos Uni-
versity, Debrecen, Hungary in 1978. He is currently
a full professor at Faculty of Informatics, University
of Debrecen, Hungary. He had been head of the
Department of Applied Mathematics and Probability
Theory. His main research interests are asymptotic
theorems of probability theory and mathematical
statistics, network theory and machine learning.

László Fórián graduated from University of Debre-
cen in 2019 as a mathematician. He is currently a
PhD student at the Doctoral School of Informatics and
an assistant lecturer at the University of Debrecen,
Hungary. His main research areas consist of neural
networks and random graphs.

Attila Barta is an assistant lecturer at University of
Debrecen, Hungary. He holds an MSc degree in applied
mathematics from the University of Debrecen and
he is also a PhD candidate at the Doctoral School of
Informatics in the institution. His main research fields
are network science and neural networks.

https://doi.org/10.1016/j.knosys.2021.106771
https://doi.org/10.1109/CVPR42600.2020.01374

Application of Neural Network Tools
in Process Mining

13

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

The authors are with the Department of Information Technology, University
of Miskolc, Miskolc, Egyetemváros, Hungary. E-mail: {laszlo.kovacs,
erika.b.varga, peter.mileff}@uni-miskolc.hu

Abstract—Dominant current technologies in process mining
use schema induction approaches based on graph and au- toma-
ton methods. The paper investigates the application of neural
network approaches in schema induction focusing on three al-
ternative architectures: MLP, CNN and LSTM networks. The
proposed neural network models can be used to discover XOR,
loop and parallel execution templates. In the case of loop detec-
tion, the performed test analyses show the dominance of CNN
approach where the string is represented with a two- dimensional
similarity matrix. The usability of the proposed approach is dem-
onstrated with test examples.

Index Terms—process mining, convolutional neural network,
graph schema induction.

Application of Neural Network Tools
in Process Mining

László Kovács, Erika Baksáné Varga, and Péter Mileff

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Application of Neural Network Tools
in Process Mining

László Kovács, Erika Baksáné Varga, and Péter Mileff

Abstract—Dominant current technologies in process mining
use schema induction approaches based on graph and au-
tomaton methods. The paper investigates the application of
neural network approaches in schema induction focusing on
three alternative architectures: MLP, CNN and LSTM networks.
The proposed neural network models can be used to discover
XOR, loop and parallel execution templates. In the case of loop
detection, the performed test analyses show the dominance of
CNN approach where the string is represented with a two-
dimensional similarity matrix. The usability of the proposed
approach is demonstrated with test examples.

Index Terms—process mining, convolutional neural network,
graph schema induction.

I. INTRODUCTION

PROCESS mining is a technique to discover, analyze, and
monitor processes in an objective manner. It uses log

data from corporate information systems and turns them into
insights and actions. In this sense process mining is a subfield
of data science: it requires the availability of data and aims at
improving processes [1]. The induction of complex schema or
grammar models is a key challenge in knowledge engineering.
The input for schema mining is a set of sequences (traces) and
the engine determines the general schema graph covering the
input set. The input for schema mining is given with an event
log, which is a list of event traces. The traces of the event log
are generalized, merged into a schema graph.

The first software systems for schema induction usually
used a pattern matching approach to determine the common
section in the sentences. In most cases, the induction was based
on a set of transformation rules defined by human experts.
Current toolsets for process mining are dominated by the graph
or automaton oriented algorithms [2] usually starting with the
construction of the Direct Follower Graph which is a graphical
representation of a process. Traditional frequent pattern mining
techniques run into their limits when dealing with massive
datasets [3]. Therefore, more advanced algorithms apply tree-
based representation [4]. These incremental methods derive
relevant patterns recursively. One of the most widely used
industrial approaches is the inductive mining algorithm [5],
which uses a top-down discovery algorithm. The top-down
method recursively decomposes the event log into smaller
event logs. The method first converts the event log into a
corresponding DFG (direct follow graph), then it simplifies
the initial graph into a compact schema graph. Beside the
graph-based standard approaches, we can find some recent

The authors are with the Department of Information Technology, University
of Miskolc, 3515 Miskolc, Egyetemváros, Hungary. E-mail: {laszlo.kovacs,
erika.b.varga, peter.mileff}@uni-miskolc.hu

approaches on application of neural networks in process min-
ing [6]. We can consider graph schema induction as a special
type of classification problem, where the final output category
corresponds to a complete schema graph. The schema graph
is usually constructed in an incremental way by selecting the
next winner event or events and the edges in the graph denote
the adjacency relation. Considering simple event sequences,
the dominating approach for next event prediction is to use
Recurrent Neural Networks (RNN), where the output signal of
a processing step is used as input component for the prediction
of the next element in the sequence. In [7], the RNN network
model was applied for the process discovery task. Current
solutions are able to detect XOR branches in the trace log, but
these methods still miss some crucial functionality required
by industrial problems. The main goal of this paper is to
show our proposals on the adaptation of neural networks in
process mining to cover some missing functionalities, like
AND branches and loop detection [8].

II. BACKGROUND

A. Process Mining with Graph Methods

Today’s era is about automation which also affects complex
business and administrative processes. For the automation of
processes, the most important prerequisite is to have pro-
cess models which can be transformed into running systems.
Thanks to process mining methods, the required models can be
discovered by extracting knowledge from event logs recorded
by information systems. The general process discovery prob-
lem is defined in [1] as finding an algorithm that maps an
event log (L) into a process model so that the model is
representative for the behavior seen in the event log. This
task is highly challenging, since an input event log contains a
collection of historical cases of a given process, called traces,
which are sequences of actions while the expected output
model should be compact and meet the requirements of fitness,
precision, generalization and simplicity. In order to produce a
generalized model, the control-flow structures underlying in
the data sequences should be discovered.

The control-flow patterns used in process modelling are
presented in [9] and [10]. The identified 43 patterns are
classified into 8 classes, amongst which the basic patterns that
can be explored in the event log are:

• sequence,
• parallel split,
• synchronization,
• exclusive choice, and
• simple merge.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

Application of Neural Network Tools
in Process Mining

László Kovács, Erika Baksáné Varga, and Péter Mileff

Abstract—Dominant current technologies in process mining
use schema induction approaches based on graph and au-
tomaton methods. The paper investigates the application of
neural network approaches in schema induction focusing on
three alternative architectures: MLP, CNN and LSTM networks.
The proposed neural network models can be used to discover
XOR, loop and parallel execution templates. In the case of loop
detection, the performed test analyses show the dominance of
CNN approach where the string is represented with a two-
dimensional similarity matrix. The usability of the proposed
approach is demonstrated with test examples.

Index Terms—process mining, convolutional neural network,
graph schema induction.

I. INTRODUCTION

PROCESS mining is a technique to discover, analyze, and
monitor processes in an objective manner. It uses log

data from corporate information systems and turns them into
insights and actions. In this sense process mining is a subfield
of data science: it requires the availability of data and aims at
improving processes [1]. The induction of complex schema or
grammar models is a key challenge in knowledge engineering.
The input for schema mining is a set of sequences (traces) and
the engine determines the general schema graph covering the
input set. The input for schema mining is given with an event
log, which is a list of event traces. The traces of the event log
are generalized, merged into a schema graph.

The first software systems for schema induction usually
used a pattern matching approach to determine the common
section in the sentences. In most cases, the induction was based
on a set of transformation rules defined by human experts.
Current toolsets for process mining are dominated by the graph
or automaton oriented algorithms [2] usually starting with the
construction of the Direct Follower Graph which is a graphical
representation of a process. Traditional frequent pattern mining
techniques run into their limits when dealing with massive
datasets [3]. Therefore, more advanced algorithms apply tree-
based representation [4]. These incremental methods derive
relevant patterns recursively. One of the most widely used
industrial approaches is the inductive mining algorithm [5],
which uses a top-down discovery algorithm. The top-down
method recursively decomposes the event log into smaller
event logs. The method first converts the event log into a
corresponding DFG (direct follow graph), then it simplifies
the initial graph into a compact schema graph. Beside the
graph-based standard approaches, we can find some recent

The authors are with the Department of Information Technology, University
of Miskolc, 3515 Miskolc, Egyetemváros, Hungary. E-mail: {laszlo.kovacs,
erika.b.varga, peter.mileff}@uni-miskolc.hu

approaches on application of neural networks in process min-
ing [6]. We can consider graph schema induction as a special
type of classification problem, where the final output category
corresponds to a complete schema graph. The schema graph
is usually constructed in an incremental way by selecting the
next winner event or events and the edges in the graph denote
the adjacency relation. Considering simple event sequences,
the dominating approach for next event prediction is to use
Recurrent Neural Networks (RNN), where the output signal of
a processing step is used as input component for the prediction
of the next element in the sequence. In [7], the RNN network
model was applied for the process discovery task. Current
solutions are able to detect XOR branches in the trace log, but
these methods still miss some crucial functionality required
by industrial problems. The main goal of this paper is to
show our proposals on the adaptation of neural networks in
process mining to cover some missing functionalities, like
AND branches and loop detection [8].

II. BACKGROUND

A. Process Mining with Graph Methods

Today’s era is about automation which also affects complex
business and administrative processes. For the automation of
processes, the most important prerequisite is to have pro-
cess models which can be transformed into running systems.
Thanks to process mining methods, the required models can be
discovered by extracting knowledge from event logs recorded
by information systems. The general process discovery prob-
lem is defined in [1] as finding an algorithm that maps an
event log (L) into a process model so that the model is
representative for the behavior seen in the event log. This
task is highly challenging, since an input event log contains a
collection of historical cases of a given process, called traces,
which are sequences of actions while the expected output
model should be compact and meet the requirements of fitness,
precision, generalization and simplicity. In order to produce a
generalized model, the control-flow structures underlying in
the data sequences should be discovered.

The control-flow patterns used in process modelling are
presented in [9] and [10]. The identified 43 patterns are
classified into 8 classes, amongst which the basic patterns that
can be explored in the event log are:

• sequence,
• parallel split,
• synchronization,
• exclusive choice, and
• simple merge.

DOI: 10.36244/ICJ.2023.5.3

mailto:laszlo.kovacs%40uni-miskolc.hu?subject=
mailto:erika.b.varga%40uni-miskolc.hu?subject=
mailto:peter.mileff%40uni-miskolc.hu?subject=
https://doi.org/10.36244/ICJ.2023.5.3

Application of Neural Network Tools
in Process Mining

14

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

In sequential routing, a task in a process is enabled after the
completion of the preceding task. There can be two different
types of splitting nodes in a process model. Parallel split is
applied when a single thread of execution is split into two or
more branches which are triggered concurrently (AND node).
Exclusive choice corresponds to conditional routing. In this
case, as soon as the incoming branch is enabled, the thread
of control is passed to exactly one of the outgoing branches
(XOR node). The splitted branches need to be merged after
a while, i.e. an AND or XOR node are generally succeeded
by a synchronization or simple merge node, respectively. The
difference between these nodes is that a synchronizing node
means that all the activated incoming branches should be
completed before the thread of control is passed forward; while
a simple merge node waits for only one branch to be completed
[11].

Graphical process models usually have special notations for
the elements that influence the flow of control. These nodes
interconnect activities in the conceptual model, but there is no
sign of them in the event log. This makes the process discovery
problem challenging, since the developed algorithms have to
explore the control structures hidden in the event sequences.

B. Standard Tools in Process Mining

Process mining tools utilize existing data from corporate
information systems to provide dynamic visualization of the
processes and to perform process mining tasks such as process
discovery and conformance checking.

The first framework that has been designed to combine
different process mining algorithms, is ProM [12]. This frame-
work is flexible regarding the input and output format, and
allows for easy implementation of process mining methods.
Three types of graph-based algorithms can be plugged in.
One can explore the process perspective to find a general
characterization of all possible paths, expressed for example
in terms of a Petri net or Event-driven Process Chain (EPC).
With respect to the organizational perspective, the mining
method either structures the organization by classifying people
in terms of roles and organizational units, or maps the relations
between them. Thirdly, cases can also be investigated by
characterizing them with their path in the process, by the
agents working on them, or by the values of the corresponding
data elements.

A more sophisticated tool is the open source PM4PY devel-
oped by the Fraunhofer Institute using Python [13]. It supports
several input and output formats, and a variety of process
discovery algorithms creating procedural process models (such
as the Alpha Miner, the Inductive Miner and the Heuristics
Miner algorithms) or methods producing descriptive models. It
also allows for conformance checking, object-centric process
mining, organizational network analysis and provides some
features useful for the application of machine learning tech-
niques. Most recently, PM4PY offers some integrations with
OpenAI (e.g. with ChatGPT) for getting insights automatically.

However, a great disadvantage of traditional graph-based
process mining methods is the use of recursion which results
in high memory consumption and long execution time. In our

approach, we apply approximation in discovering a process
model by means of neural networks.

C. Process Mining with Neural Network Methods

Neural networks can be utilized in process mining to
enhance various aspects of the analysis and optimization of
business processes. One of their applications is when they are
used to predict future events in a business process. Compared
to traditional process mining techniques, such as Petri nets and
the Business Process Model Notation (BPMN), deep learning
methods have proven to achieve better performance in terms
of accuracy and generalization power.

In [14], Hanga et al. propose a method that combines the
benefits of visually explainable graph-based methods with
more accurate deep learning methods. Among neural net-
works, the RNN architecture has the capability to provide the
context for each following prediction that helps in preserving
the state in which the decision was made. Therefore, in
this approach, an LSTM model is employed first to find
probabilities for each known event to appear in the process
next. These probabilities are then used to generate a graphical
process model graph.

Obodoekwe et al. [15] used convolutional neural network
(CNN) for predicting the next activity in an event trace. The
method first detects the spatial structure within the order of
historical event sequences and then transforms them into 2D
images. The images are then trained using the CNN network
to generate a deep learning model that can predict the next
activity in an ongoing process. The feasibility of the approach
was evaluated using Helpdesk event logs and the results show
that the proposed CNN-based method provides highly accurate
next activity prediction and is faster in training and inference
than the LSTM-based approach.

The most widely studied problem of process mining is
automatic process discovery. Several approaches have been
proposed, but the applicability and effectiveness of these
approaches depend on event log features and the structure
of the processes. When applied to real-life event logs, the
majority of traditional process discovery methods produce
broad and spaghetti-like models, or models with poor fitness
and precision [1].

Shunin et al. [7] try to find patterns in event logs using a
neural network. The algorithm extracts an RNN’s internal state
as the desired transition system that describes the behaviour
present in the log. One of the main advantages of using this
architecture is its natural ability to detect and merge common
behavioural parts that are scattered across the log. Another
benefit is that the models derived by the approach absolutely
fit to the event log.

Sommers et al. [16] applied graph neural networks in
process discovery. They encode the discovery problem as a
graph of three parts. The first part of the graph is the trace
graph representing the event log. The second part of the graph
is a candidate Petri-net, which is a possible result model. The
third part of the graph are the links from the event nodes of
the trace graph to transitions in the candidate model. Their
approach is to utilize a collection of neural networks, each of

Application of Neural Network Tools
in Process Mining

15

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

which takes a segment of the graph as input and simulates a
distinct stage in the gradual construction of a Petri-net model
from an event log. The method was evaluated on synthetic
and real-life data and compared to other methods, achieving
the highest simplicity while competing with Inductive Miner,
Heuristic Miner, and Split Miner methods in terms of F-score.

In this paper, we present a neural network architecture for
the detection of AND (parallel) branches in the event log. With
the help of this approach, the engine can determine the parallel
processes in the traces and it builds up a process schema graph
related to more actors. The proposed engine uses a two-level
representation approach where the bottom level corresponds
to the single actor level activity chain. These homogeneous
segments are merged by using synchronization nodes. The top
level contains the synchronization graph of the agent level
segments. The second neural network architecture presents a
novel loop detection approach which can be used to discover
tandem repeat sections. The proposed method first converts
the sequence into an image matrix format and this matrix
will be sent to a CNN convolutional network. The category
labels correspond to the different loop kernel positions in the
sequence. The next model integrates these two neural network
models to have a more general schema induction engine for
process mining. The presented novel network models were im-
plemented in Python Tensorflow/Keras framework. In order to
test the induction engines on event logs of different complexity
levels, a test set generator application was developed in the
research project. The target schema is constructed with a visual
editor, and the engine generates the related event log of given
size. In the test experiments, we compared the efficiency of our
proposed models with some standard graph based engines. In
the paper, we analyze the test results showing both the benefits
and limitations of the neural network approach.

In the tests we used three main neural network architectures:
• multi-layer perceptron model (MLP), which is a standard

NN tool for both general classification and regression,
• recurrent neural model (LSTM), and
• convolutional neural model (CNN).
The detection of branching nodes of the schema graph can

be implemented either with the standard MLP network or
with the LSTM recurrent model. The main goal of the neural
network is to predict the next element of the investigated
sequence. The prediction is based on the previous elements,
thus the input vector is given as the description vector of
the preceding elements. In the standard approach, the engine
outputs only the winner category, in this way generating only
one next element. According to the literature [17], the standard
way of generating sequence branching is to consider not only
a single winner category, but a group of best candidates. The
size of the winner group is usually an input parameter in the
algorithm.

III. DISCOVERY OF PARALLEL BRANCHES

Parallelism denotes parallel workflows of different actors
and resources, and the split and join control nodes denote an
artifact level dependency among the different branches. For
example, we consider a workflow to produce a mobile phone.

In this process the production of the different components
can be executed in a parallel way. A synchronization join
node denotes the case when the next assembly step requires
the availability of all components produced in the preceding
steps. These control nodes can be automatically discovered
if the event log contains an artifact attribute as well. The
artifact attribute identifies the target, i.e. the object of the given
action. Using this parameter we can discover the artifact level
dependency between the different actions of the event log.

Beside the actor events, the extended input event graph
for the training process contains also synchronization control
nodes which describe the adjacency relationship among the
event sequences. We assume that every control node has
an input set of event sequences and an output set of event
sequences. Similarly to Petri-nets, the join control node is
triggered only when all of the input sequences are finished.
If the transition is triggered, all output sequences will start
the execution.

The event graph structure is defined as

σ = (Nσ,→σ)

where
• e ∈ W×A is an actor event where A(e) denotes the actor

of the event, T (e) denotes the timestamp of the event and
W denotes the set of event types (activities)

• c ∈ C is a control event, every c has a timestamp denoted
by T (c);

• Eσ = (e1e2...ek : ei ∈ W × A, ∀i, j : A(ei) = A(ej)) :
the actor event sequence node;

• C(c) : the control event nodes;
• Nσ = Eσ ∪ Cσ : the nodes in the graph instance;
• →E⊆ Eσ × Cσ : the edges from actor events to control

events;
• →C⊆ Cσ × Eσ : the edges from control events to actor

events;
• →σ=→E ∪ →C : the edges in the graph.
In the preprocessing phase of the proposed method, the

engine determines the related synchronization nodes first.
Node mining is based on the following considerations:

1) Event nodes are processed in temporal order, and the
current event is denoted by ei.

2) The set of output artifacts of ei are stored in outi.
3) The set of adjacent events Ej = {ej} are determined,

where the input artifacts correspond to some elements of
outi, and there is no other intermediate event processing
these artifacts.

4) If the actors of the matching ei and ej event pair are
different, a synchronization node es is needed between
them.

5) The actor of ei (ai) is added to the input-actors of es,
and the output actor set of es is extended with aj .

6) If an actor is not present in the actor set of es while
being active at es through an artifact-level dependency
with some events in the output-actor list of es, then it
will be included into the input-actor set of es. A similar
method can be used to extend the output-actor list of es.

7) The previous two steps are repeated until a closure of
the input-output artifact relationships is achieved at es.

Application of Neural Network Tools
in Process Mining

16

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

TABLE I
ACCURACY COMPARISON OF SEQUENCE PREDICTION NETWORKS

Dataset LSTM MLP NH-MLP BE-MLP BE LSTM

pdc 2016 1.xes 63.5% 63.4% 63.4% 63.9% 64.1%

load random 58.2% 57.5% 56.6% 58.7% 58.0%

pdc 2016 9.xes 82% 82.5% 81.2% 81.8% 82.6%

pdc 2017 5.xes 62.4% 62.8% 63.7% 64.8% 64.2%

pdc 2019 2.xes 64.6% 65.2% 63.9% 66.27% 65.6%

Considering the efficiency of the proposed models, we
performed a comparison test on benchmark sequences. The
investigated network models are:

• MLP : baseline MLP,
• LSTM : baseline LSTM,
• BE-MLP : MLP with union-based reduction,
• BE-LSTM : LSTM with union-based reduction,
• HN-MLP : MLP with NN-based reduction.

The first architecture is based on the standard multi layer
perceptron neural network model (MLP) which is suitable to
perform feature vector based value prediction. This model
uses a relatively simple architecture, thus the training has
a lower cost. The second version uses a recurrent neural
network architecture (LSTM) that is used for prediction on
value sequences of arbitrary length. It contains a more complex
architecture that enables remembering of previous events in
an efficient way. Due to the higher complexity, it is usually
harder to find the optimal network parameters. The three other
versions apply a sequence reduction preprocessing step. In
this reduction phase, the long event sequence is reduced to
a shorter one, where the reduction can be based on the value
aggregation (MLP with union or LSTM with union) or an extra
MLP neural network is trained to perform the reduction step
(MLP with NN-based reduction).

Regarding the implementation parameters, the model con-
sists of beside the output or hidden Dense layers, also an
LSTM layer. For the hidden layers, we have used the relu
activation function, while the output layer used the softmax
activation function. Regarding the optimisation parameters, we
applied the Adam optimizer with the categorical crossentropy
loss function with the accuracy metrics. For the test evaluation
of the different methods, we used the benchmark datasets
for the Process Discovery Contest events. These competitions
are organized by the IEEE Task Force on Process Mining
Group . The name of the data file refers to the year of the
contest and to the index of the data file. The dataset can be
downloaded from the homepage of the contest (https://www.tf-
pm.org/competitions-awards/discovery-contest). The datafiles
contain the event logs in XES standard format.

The results of the comparison tests are presented in Table I.
The accuracy values are given in percentage unit. The main
conclusion is that the BE MLP network type is a good choice
for our architecture as

• it provides the best accuracy for most of the benchmark
datasets, and

• it has the lowest execution cost.

IV. LOOP DETECTION

Loop detection is a key task in schema mining of event
logs. The basic operation in loop detection is the discovery
of tandem substrings. The task of tandem substring detection
can be given with the following formal description. Having an
alphabet A, strings are the final sequences based on A:

s = a1, a2, ..., am, ai ∈ A.

A substring of s is

s′ = a′1, a
′
2, .., a

′
k

if
∃i : ai = a′1, ..., ai+j−1 = a′j , ..., ai+k−1 = a′k.

A substring s′ is a tandem substring if

∃i : ai = ai+k = a′1, ..., ai+j−1

= ai+k+j−1 = a′j , ..., ai+k−1 = ai+2∗k−1 = a′k.

In order to show the ability of a Neural Network architecture
to detect loop structures in sequences, we have developed a
special network type using the CNN convolutional architec-
ture. The main drawback of the baseline MLP approach is
that it is very sensitive to the specific values at each position
of the sequence. On the other hand, loop detection should be
insensitive to the actual character values. Thus, for example,
the sequences ”abcbch” and ”bagagb” need to be equivalent as
both contain a loop at the second position. Otherwise it would
take a long effort to generate a suitable training set with a
good covering for cases of repetition.

In the initial tests, we have compared three candidate neural
network architectures: multi-layer perceptron, convolutional
CNN and recurrent LSTM. In the case of MLP, the input vector
is the one-hot encoded version of the investigated string. For
each position, a one-hot encoded vector of size M is given
where each position denotes an element of the alphabet. The
output vector describes all possible repetition positions, where
each position corresponds to a (start position, end position)
pair.

The input vector for CNN is given by a two-dimensional
similarity matrix. The position (i, j) contains the similarity
value of the symbols at the position i and at the position j.
Thus, the string is converted into a two-dimensional image
matrix, where the repeat sections can be characterized by a
set of special lines in the image. The output format is similar
to the vectors used in the MLP network architecture.

Considering the applied neural network architecture for loop
detection, we used a CNN model with 14 layers including
the core convolutional layers and the maxpooling layers. The
architecture model is presented in Fig 1.

In the case of LSTM, the input vector contains the one-hot
encoded format of the string, just like in the MLP network.
Here, the output is a number for each position, denoting the
size of the repeat section at the given position. Thus, the
processing of the string will generate a sequence of numbers
where a value greater than 1 denotes a repetition.

The results of the performed accuracy tests are summarized
in Table II.

Application of Neural Network Tools
in Process Mining

17

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Fig. 1. Architecture of the CNN neural network for loop detection.

TABLE II
EFFICIENCY COMPARISON OF THE EXAMINED NN ARCHITECTURES

Method N parameters Time [s] V accuracy T accuracy

MLP 27,590,861 26 96% 8%

CNN 175,631,337 288 100% 99%

LSTM 2,527,212 359 96% 94%

In Table II the columns denote the following measures:
• N parameters: the complexity of the network, i.e. the

number of graph parameters.
• Time: execution time of an epoch in seconds.
• V accuracy: validation accuracy.
• T accuracy: test accuracy.
Based on the preformed tests, we can see that the CNN

network is the winner of the neural network approach. One
important remark on the results is the very large differences
between the test and verification accuracy values for the MLP
architecture. This shows that there is significant overfitting in
this case.

Fig. 2. Accuracy test of the different reduction methods.

Considering the winner CNN variant, repetition appears in
the image as a line of pixels parallel to the main diagonal.
Using this representation format, CNN can be used to recog-
nize repetitions. One key issue in the CNN approach is the
high memory cost, as for a string of length m the number of
input neurons of the network will be m2. Thus, we can reach
our hardware limits relatively quickly during CNN training or
search for repetitions. In order to overcome this problem, we
have applied the following reduction methods:

• Bitmap-based reduction,
• Average aggregator, and
• Adjusted reduction.

In the tests, we have compared three reduction methods. In
the first one, (bitmap reduction), in the initial bit matrix, the
submatrices are replaced with a single cell where the value
is calculated with the max operator. In the second version,
the content of the submatrix considered as a matrix of float
values and the average value will be stored in the reduced
matrix. The third variant applies a special calculation which
is sensitive to the diagonal directions as the loops generate
specific lines (parallel to the diagonal) in the input matrix.

The test results for comparing the efficiency of the different
reduction methods are presented in Fig. 2. In this figure, the
X axis shows the length of the pattern window, and the Y axis
denotes the achieved classification accuracy. The leftmost bar
is for the Adjusted reduction method, the second is for the
Average aggregator, the next is for the Bitmap-based reduction
method, and the last one is for the baseline method without
reduction. Based on the performed tests, the winner approach
is the Average aggregation method.

Another way for reducing memory usage is to apply a
different representation format. We have tested two additional
variants, namely

• A: Neural network to detect whether the word contains
repetition or not. In this case, the output vector contains
only two dimensions.

• B: Neural network to detect the start (or end) position of
the repeat section, where the size of the input vector is
of linear cost.

Based on the performed tests, we can say that the CNN
method significantly dominates the other variants in accuracy
parameters. The test results are summarized in Table III.

Application of Neural Network Tools
in Process Mining

18

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Fig. 3. Sample workflow schema B.

TABLE III
EFFICIENCY COMPARISON OF THE EXAMINED NN ARCHITECTURES

USING ALTERNATIVE REPRESENTATION FORMATS

Task Method Time [s] V accuracy T accuracy

A MLP 17 100% 87%

A CNN 12 100% 100%

B MLP 30 100% 6%

B CNN 50 100% 100%

V. IMPLEMENTATION AND TESTS

In the tested model, three actors are defined: a,b and c. The
list of available events, which are given by their IDs, actors
and the related execution time intervals are as follows:

e1(a), (1, 2) e2(a), (3, 5) e3(b), (1, 4) e4(c), (2, 3)

e5(b), (4, 5) e4(b), (5, 6) e6(c), (1, 3) e7(c), (2, 4)

e9(c), (1, 4) e10(a), (3, 4) e11(a), (2, 4)

The graph structure of the schema is presented in Fig. 3.
For the training phase, 1000 cases were generated for schema
B.

In the first processing phase, the engine determined the
occurrences of synchronization events. The module then pro-
cessed the traces in the log, and generated a list of synchro-
nization events for each trace.

Based on the generated synchronization event sequences,
as input training set, the constructed neural network model M
will predict the following synchronization sequence:

[’EMPTY’, ’C2’, ’C3’, ’EOS’]

In the next phase, the engine predicts the agent-level sequences
in the following form:

a : [’e1’, ’e2’, ’EOS’]
b : [’e3’, ’e5’, ’e4’, ’EOS’]
c : [’e4’, ’e9’, ’EOS’]
a : [’e10’, ’e11’, ’EOS’]

After performing more trace generation experiments, the ac-
tion list of agent c may vary. A typical output is the action
chain containing actions ’e6’ and ’e7’:

c : [’e6’, ’e7’, ’e6’, ’e7’, ’e6’, ’e7’,
’e6’, ’e7’, ’e6’, ’e7’, ’e6’, ’e7’,
’e6’, ’e7’, ’EOS’]

During the prediction, the neural network outputs the predic-
tion weights for the different event categories. The proposed
measure weight ratio expresses the relation of these weights,

Fig. 4. Generated schema graph for single selection case.

Fig. 5. Generated schema graph for multi-selection case.

the higher is this ratio the better is the prediction quality. If
we consider the weight ratio between the best and the second
best event sequences for agent c, we can see that most of the
steps are unambiguous, except for the starting event which
has a very low weight ratio. Namely, the higher the ratio, the
stronger is the unambiguity. The next list shows these ratio
values at the different steps for the best event sequence of
agent c:

y e4 , weight ratio: 1.464207
y e9 , weight ratio: 234.37918
y EOS , weight ratio: 237.77512

Considering the resulting graph for a single selection case
(only the best candidate is selected as next event), we can
see that it contains a parallel execution section, where both
agents b and c are active (Fig. 4). If we use a multi-selection
prediction approach, where alternative routes are allowed, we
get the graph presented in Fig. 5.

If we compare these graph results with the standard induc-
tive miner approaches, we see that the proposed variant can
manage more functionality and provides a more accurate result
for the tested example than the standard solution (Fig. 6).

Application of Neural Network Tools
in Process Mining

19

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

Prof. László Kovács from University of Miskolc, De-
partment of Information Technology is a specialist in
knowledge modeling and data mining. He obtained a
PhD degree in technical sciences from Uni. Miskolc.
Main teaching areas: DB Systems, Data Mining and
Ontology Management. His research interests involve
soft computing, concept set management, heuristic op-
timizations, ontology modeling, stat. grammar induc-
tion and rough set models. He has about 250 publica-
tions with 450 references. He is the Head of the Dept.

and leader of the Research Group on Machine Learning at Uni. Miskolc.

Erika Baksáné Varga is an associate professor at the
Institute of Informatics, University of Miskolc, Hun-
gary. She received a Ph.D. degree in Computer Sci-
ence from the University of Miskolc in 2011. She has
academic experience in teaching procedural and object
oriented programming, and data analysis and data min-
ing. Her research interests include teaching methodolo-
gies of programming, data and process modeling, data
analysis and data mining, ontological modeling, NLP
and text mining.

Péter Mileff is a senior SW developer and an associate
professor at the Institute of Informatics, University of
Miskolc, Hungary. He obtained his Ph.D. in Computer
Science in 2008. He has more than 10 years of teaching
experience in software development and the building
and design of software systems. He has professional and
research experiences in computer visualization and game
development; and 15 years of industrial experience in the
design and development of digital payment systems and
platform-independent technologies.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

Fig. 6. Schema generated by the Inductive Miner.

VI. CONCLUSION

Beside the standard automaton oriented approaches, the
neural network architectures are good alternatives for auto-
mated process schema mining. The analysis presented in this
paper shows that the proposed neural network architectures
are suitable to perform the same schema induction task as the
standard graph-based tools. The proposed methods build up
the correct schema graphs. The key benefit of the proposed
NN approach is that it can discover also parallel sequences
related to different agents in the schema graph, unlike the usual
schema induction methods. The further research is aimed at
optimisation of the neural network architecture for larger graph
schema.

REFERENCES

[1] W. Van der Aalst, Process mining: Data science in action. Springer:
Heidelberg, 2016. DOI: 10.1007/978-3-662-49851-4

[2] J. Liu, S. Yan, Y. Wang, and J. Ren, “Incremental mining algorithm
of sequential patterns based on sequence tree,” Advances in Intelligent
Systems, p. 61–67, 2012. DOI: 10.1007/978-3-642-27869-3 8

[3] T. Truong-Chi and P. Fournier-Viger, “High-utility pattern mining:
Theory, algorithms and applications,” A Survey of High Utility
Sequential Pattern Mining, p. 97–129, 2019. DOI: 10.1007/978-3-030-
04921-8

[4] X. Liu, L. Zheng, W. Zhang, J. Zhou, S. Cao, and S. Yu, “An
evolutive frequent pattern tree-based incremental knowledge discovery
algorithm,” ACM Transactions on Management Information Systems, p.
1–20, 2022. DOI: 10.1145/3495213

[5] Y. Lu, Q. Chen, and S. Poon, “A novel approach to discover switch
behaviours in process mining,” International Conference on Process
Mining, p. 57–68, 2021. DOI: 10.1007/978-3-030-72693-5 5

[6] H. Weytjens and J. D. Weerdt, “Process outcome prediction: CNN vs.
LSTM (with attention),” International Conference on Business Process
Management, p. 321–333, 2020. DOI: 10.1007/978-3-030-66498-5 24

[7] T. Shunin, N. Zubkova, and S. Shershakov, “Neural approach to the
discovery problem in process mining,” in Analysis of Images, Social
Networks and Texts, 07 2018, pp. 261–273. DOI: 10.1007/978-3-030-
11027-7 25

[8] M. Kirchmer and P. Franz, “Value-driven robotic process automation
(RPA),” Business Modeling and Software Design, vol. 356, p. 31–46,
2019. DOI: 10.1007/978-3-030-24854-3 3

[9] W. Van der Aalst, A. H. Ter Hofstede, B. Kiepuszewski, and A. P.
Barros, “Workflow patterns,” Distributed and Parallel Databases,
vol. 14, no. 1, pp. 5–51, 2003. DOI: 10.1023/A:1022883727209

[10] N. Russell, A. H. M. Hofstede, W. van der Aalst, and N. Mulyar,
“Workflow control-flow patters – A Revised View,” Business, vol. 2,
pp. 06–22, 2006. DOI: 10.1.1.93.6974

[11] N. Russell, W. van der Aalst, and A. Ter Hofstede, Workflow
patterns : the definitive guide. MIT Press, 2016. DOI:
10.7551/mitpress/8085.001.0001

[12] B. F. van Dongen, A. K. A. de Medeiros, H. M. W. Verbeek, A. J.
M. M. Weijters, and W. M. P. van der Aalst, “The prom framework:
A new era in process mining tool support,” in Applications and
Theory of Petri Nets 2005, G. Ciardo and P. Darondeau, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 444–454. DOI:
10.1007/11494744 25

[13] A. Berti, S. J. van Zelst, and W. van der Aalst, “Process mining for
Python (pm4py): Bridging the gap between process-and data science,”
in Proceedings of the ICPM Demo Track 2019, co-located with 1st
International Conference on Process Mining (ICPM 2019), 2019. DOI:
10.48550/arXiv.1905.06169

[14] K. M. Hanga, Y. Kovalchuk, and M. M. Gaber, “A graph-
based approach to interpreting recurrent neural networks in process
mining,” IEEE Access, vol. 8, pp. 172 923–172 938, 2020. DOI:
10.1109/ACCESS.2020.3025999

[15] E. Obodoekwe, X. Fang, and K. Lu, “Convolutional neural networks in
process mining and data analytics for prediction accuracy,” Electronics,
vol. 11, no. 14, 2022. DOI: 10.3390/electronics11142128

[16] D. Sommers, V. Menkovski, and D. Fahland, “Process discovery using
graph neural networks,” in IEEE International Conference on Process
Mining (ICPM), 2021. DOI: 10.48550/arXiv.2109.05835

[17] J. Abonyi, R. Károly, and G. Dörgö, “Event-tree based sequence
mining using lstm deep-learning model,” Complexity, vol. 2021, p. 24,
2021. DOI: 10.1155/2021/7887159

Prof. László Kovács from University of Miskolc,
Department of Information Technology is a spe-
cialist in knowledge modeling and data mining.
He obtained a PhD degree in technical sciences
from Uni. Miskolc. Main teaching areas: DB Sys-
tems, Data Mining and Ontology Management. His
research interests involve soft computing, concept
set management, heuristic optimizations, ontology
modeling, stat. grammar induction and rough set
models. He has about 250 publications with 450
references. He is the Head of the Dept. and leader

of the Research Group on Machine Learning at Uni. Miskolc.

Erika Baksáné Varga is an associate professor at
the Institute of Informatics, University of Miskolc,
Hungary. She received a Ph.D. degree in Computer
Science from the University of Miskolc in 2011. She
has academic experience in teaching procedural and
object oriented programming, and data analysis and
data mining. Her research interests include teaching
methodologies of programming, data and process
modeling, data analysis and data mining, ontological
modeling, NLP and text mining.

Péter Mileff is a senior SW developer and an
associate professor at the Institute of Informatics,
University of Miskolc, Hungary. He obtained his
Ph.D. in Computer Science in 2008. He has more
than 10 years of teaching experience in software
development and the building and design of software
systems. He has professional and research experi-
ences in computer visualization and game develop-
ment; and 15 years of industrial experience in the
design and development of digital payment systems
and platform-independent technologies.

 [1] W. Van der Aalst, Process mining: Data science in action. Springer:
Heidelberg, 2016. https://doi.org/10.1007/978-3-662-49851-4

 [2] J. Liu, S. Yan, Y. Wang, and J. Ren, “Incremental mining algorithm of
sequential patterns based on sequence tree,” Advances in Intelligent
Systems, pp. 61–67, 2012. doi: 10.1007/978-3-642-27869-3_8

 [3] T. Truong-Chi and P. Fournier-Viger, “High-utility pattern mining:
Theory, algorithms and applications,” A Survey of High Utility
Sequential Pattern Mining, pp. 97–129, 2019.

 doi: 10.1007/978-3-030-04921-8
 [4] X. Liu, L. Zheng, W. Zhang, J. Zhou, S. Cao, and S. Yu, “An evolutive

frequent pattern tree-based incremental knowledge discovery
algorithm,” ACM Transactions on Management Information Systems,
pp. 1–20, 2022. doi: 10.1145/3495213

 [5] Y. Lu, Q. Chen, and S. Poon, “A novel approach to discover switch
behaviours in process mining,” International Conference on Process
Mining, pp. 57–68, 2021. doi: 10.1007/978-3-030-72693-5_5

 [6] H. Weytjens and J. D. Weerdt, “Process outcome prediction: CNN
vs. LSTM (with attention),” International Conference on Business
Process Management, pp. 321–333, 2020.

 doi: 10.1007/978-3-030-66498-5_24
 [7] T. Shunin, N. Zubkova, and S. Shershakov, “Neural approach to the

discovery problem in process mining,” in Analysis of Images, Social
Networks and Texts, 07 2018, pp. 261–273.

 doi: 10.1007/978-3-030-11027-7_25
 [8] M. Kirchmer and P. Franz, “Value-driven robotic process automation

(RPA),” Business Modeling and Software Design, vol. 356, pp. 31–46,
2019. doi: 10.1007/978-3-030-24854-3_3

 [9] W. Van der Aalst, A. H. Ter Hofstede, B. Kiepuszewski, and A. P.
Barros, “Workflow patterns,” Distributed and Parallel Databases,
vol. 14, no. 1, pp. 5–51, 2003. doi: 10.1023/A:1022883727209

References

 [10] N. Russell, A. H. M. Hofstede, W. van der Aalst, and N. Mulyar,
“Workflow control-flow patters – A Revised View,” Business, vol. 2,
pp. 06–22, 2006. doi: 10.1.1.93.6974

 [11] N. Russell, W. van der Aalst, and A. Ter Hofstede, Workflow patterns :
the definitive guide. MIT Press, 2016.

 doi: 10.7551/mitpress/8085.001.0001
 [12] B. F. van Dongen, A. K. A. de Medeiros, H. M. W. Verbeek, A. J. M. M.

Weijters, and W. M. P. van der Aalst, “The prom framework: A new era
in process mining tool support,” in Applications and Theory of Petri
Nets 2005, G. Ciardo and P. Darondeau, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 444–454. doi: 10.1007/11494744_25

 [13] A. Berti, S. J. van Zelst, and W. van der Aalst, “Process mining for
Python (pm4py): Bridging the gap between process-and data science,”
in Proceedings of the ICPM Demo Track 2019, co-located with 1st
International Conference on Process Mining (ICPM 2019), 2019.
doi: 10.48550/arXiv.1905.06169

 [14] K. M. Hanga, Y. Kovalchuk, and M. M. Gaber, “A graph-based approach to
interpreting recurrent neural networks in process mining,” IEEE Access,
vol. 8, pp. 172 923–172 938, 2020. doi: 10.1109/ACCESS.2020.3025999

[15] E. Obodoekwe, X. Fang, and K. Lu, “Convolutional neural networks in
process mining and data analytics for prediction accuracy,” Electronics,
vol. 11, no. 14, 2022. doi: 10.3390/electronics11142128

[16] D. Sommers, V. Menkovski, and D. Fahland, “Process discovery using
graph neural networks,” in IEEE International Conference on Process
Mining (ICPM), 2021. doi: 10.48550/arXiv.2109.05835

 [17] J. Abonyi, R. Károly, and G. Dörgö, “Event-tree based sequence mining
using lstm deep-learning model,” Complexity, vol. 2021, p. 24, 2021.
doi: 10.1155/2021/7887159

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-642-27869-3_8
https://doi.org/10.1007/978-3-030-04921-8
https://doi.org/10.1145/3495213
https://doi.org/10.1007/978-3-030-72693-5_5
https://doi.org/10.1007/978-3-030-66498-5_24
https://doi.org/10.1007/978-3-030-11027-7_25
https://doi.org/10.1007/978-3-030-24854-3_3
https://doi.org/10.1023/A:1022883727209
https://doi.org/10.1.1.93.6974
https://doi.org/10.7551/mitpress/8085.001.0001
https://doi.org/10.1007/11494744_25
https://doi.org/10.48550/arXiv.1905.06169
https://doi.org/10.1109/ACCESS.2020.3025999
https://doi.org/10.3390/electronics11142128
https://doi.org/10.48550/arXiv.2109.05835
https://doi.org/10.1155/2021/7887159

Comparative Study of Interpretable Image
Classification Models

20

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

* Faculty of Mathematics and Computer Science, Babeş-Bolyai University of
Cluj-Napoca, Romania

† Robert Bosch SRL, Cluj-Napoca, Romania

Abstract—Explainable models in machine learning are incre-
as- ingly popular due to the interpretability-favoring architec-
tural features that help human understanding and interpreta-
tion of the decisions made by the model. Although using this type
of model – similarly to “robustification” – might degrade predic-
tion accuracy, a better understanding of decisions can greatly
aid in the root cause analysis of failures of complex models, like
deep neural networks.

In this work, we experimentally compare three self-explain-
able image classification models on two datasets – MNIST and
BDD100K –, briefly describing their operation and highlight-
ing their characteristics. We evaluate the backbone models to
be able to observe the level of deterioration of the prediction
accuracy due to the interpretable module introduced, if any. To
improve one of the models studied, we propose modifications to
the loss function for learning and suggest a framework for au-
tomatic assessment of interpretability by examining the linear
separability of the prototypes obtained.

Index Terms—deep learning, image classification, interpretabil-
ity, self-explainable models.

Comparative Study of Interpretable Image
Classification Models

Adél Bajcsi*, Anna Bajcsi*, Szabolcs Pável*†, Ábel Portik*, Csanád Sándor* †, Annamária Szenkovits*,
Orsolya Vas*, Zalán Bodó*, and Lehel Csató*

1

Comparative Study of Interpretable Image
Classification Models

Adél Bajcsi∗, Anna Bajcsi∗, Szabolcs Pável∗†, Ábel Portik∗, Csanád Sándor∗†, Annamária Szenkovits∗, Orsolya
Vas∗, Zalán Bodó∗, Lehel Csató∗

∗Faculty of Mathematics and Computer Science, Babeş–Bolyai University of Cluj-Napoca, Romania
†Robert Bosch SRL, Cluj-Napoca, Romania

Abstract—Explainable models in machine learning are increas-
ingly popular due to the interpretability-favoring architectural
features that help human understanding and interpretation of
the decisions made by the model. Although using this type of
model – similarly to “robustification” – might degrade prediction
accuracy, a better understanding of decisions can greatly aid in
the root cause analysis of failures of complex models, like deep
neural networks.

In this work, we experimentally compare three self-explainable
image classification models on two datasets – MNIST and
BDD100K –, briefly describing their operation and highlighting
their characteristics. We evaluate the backbone models to be
able to observe the level of deterioration of the prediction
accuracy due to the interpretable module introduced, if any. To
improve one of the models studied, we propose modifications
to the loss function for learning and suggest a framework for
automatic assessment of interpretability by examining the linear
separability of the prototypes obtained.

Index Terms—deep learning, image classification, interpretabil-
ity, self-explainable models

I. INTRODUCTION

Explainable artificial intelligence (xAI) is a large set of
methods that allows humans to understand the results of a
machine learning algorithm [1], [2]. Explainability is defined
as the process of making humanly understandable the decision
of a machine learning model. Namely, it is the study of
relations between the model’s decisions and intermediate data
representations aimed at better understanding system deci-
sions. Thus, XAI can help us to ensure that the system we
built, relying on machine learning algorithms, deep learning,
or neural networks, is working as expected. In the literature,
there are several techniques for achieving and increasing the
explainability of machine learning models, and they differ in
their approach and the type of machine learning model used.
Among these, the focus will be on self-explainable neural
networks, which can be used to increase the transparency of
the learning process.

In our work, we studied three self-explainable models:
PrototypeDL, ProtoPNet, and BagNet; the primary goal was
their evaluation on two datasets: MNIST, which is a dataset of
handwritten digits, and BDD100K, which is the largest driving
video dataset with 100 000 color images of high resolution.
A result of the comparison is the suggestion of possible
improvements by examining some components of the models
from different aspects, like components of the loss function,

and the study of the separability of the prototype vectors that
these models use.

In Section I-A we introduce the notion of explainable
models in deep learning and in Section I-B we discuss the
notion of interpretability in image classification and describe
the architecture and operation of our three selected models
(PrototypeDL, ProtoPNet, and BagNet). Section I-C contains
the experimental comparison of the models, while Section I-D
discusses the methods we have used to measure the inter-
pretability of the models and their possible improvements.
The concluding Section II enumerates our conclusions from
the experiments, as well as the formulation of possible future
research directions.

A. Explainable models in deep learning

The increasing popularity of using machine learning models
for critical applications like autonomous driving systems or
medical diagnosis, suggests an imperative need for methodolo-
gies that can help to understand and evaluate the predictions
of these models. The main drawback of current state-of-the-art
deep neural network models is the lack of reliability and the
lack of interpretability of their decisions.

According to a recent overview by [3], XAI is a field of
AI that aims at providing automated explanations for each
decision made by the system. These models can be divided
into two types: post-hoc and build-in methods.

To explain a black-box system, we can start after the training
process concluded – in a post-hoc manner: the linear proxy
models – like e.g. LIME [4] – use local linear models based
on the data from the original model (using perturbed inputs).
The method can be used to identify the regions of the input
that most influence the decision. Decision trees [5] and other
rule extraction techniques – like if-then rule extraction [6] –
increase the transparency of neural networks, however, they
are hard to construct.

The concept of saliency map was introduced in [7], [8].
The authors created an intensity map illustrating the most/least
important pixels or regions used in the computation of the
output. Since the training phase is completely independent of
the interpretation or explanation stage, the above methods are
called post-hoc explainability models.

In this work we focus on self-explainable models for image
classification, therefore the system provides visual clues next
to the decision. The term self-explainable means that the

1

Comparative Study of Interpretable Image
Classification Models

Adél Bajcsi∗, Anna Bajcsi∗, Szabolcs Pável∗†, Ábel Portik∗, Csanád Sándor∗†, Annamária Szenkovits∗, Orsolya
Vas∗, Zalán Bodó∗, Lehel Csató∗

∗Faculty of Mathematics and Computer Science, Babeş–Bolyai University of Cluj-Napoca, Romania
†Robert Bosch SRL, Cluj-Napoca, Romania

Abstract—Explainable models in machine learning are increas-
ingly popular due to the interpretability-favoring architectural
features that help human understanding and interpretation of
the decisions made by the model. Although using this type of
model – similarly to “robustification” – might degrade prediction
accuracy, a better understanding of decisions can greatly aid in
the root cause analysis of failures of complex models, like deep
neural networks.

In this work, we experimentally compare three self-explainable
image classification models on two datasets – MNIST and
BDD100K –, briefly describing their operation and highlighting
their characteristics. We evaluate the backbone models to be
able to observe the level of deterioration of the prediction
accuracy due to the interpretable module introduced, if any. To
improve one of the models studied, we propose modifications
to the loss function for learning and suggest a framework for
automatic assessment of interpretability by examining the linear
separability of the prototypes obtained.

Index Terms—deep learning, image classification, interpretabil-
ity, self-explainable models

I. INTRODUCTION

Explainable artificial intelligence (xAI) is a large set of
methods that allows humans to understand the results of a
machine learning algorithm [1], [2]. Explainability is defined
as the process of making humanly understandable the decision
of a machine learning model. Namely, it is the study of
relations between the model’s decisions and intermediate data
representations aimed at better understanding system deci-
sions. Thus, XAI can help us to ensure that the system we
built, relying on machine learning algorithms, deep learning,
or neural networks, is working as expected. In the literature,
there are several techniques for achieving and increasing the
explainability of machine learning models, and they differ in
their approach and the type of machine learning model used.
Among these, the focus will be on self-explainable neural
networks, which can be used to increase the transparency of
the learning process.

In our work, we studied three self-explainable models:
PrototypeDL, ProtoPNet, and BagNet; the primary goal was
their evaluation on two datasets: MNIST, which is a dataset of
handwritten digits, and BDD100K, which is the largest driving
video dataset with 100 000 color images of high resolution.
A result of the comparison is the suggestion of possible
improvements by examining some components of the models
from different aspects, like components of the loss function,

and the study of the separability of the prototype vectors that
these models use.

In Section I-A we introduce the notion of explainable
models in deep learning and in Section I-B we discuss the
notion of interpretability in image classification and describe
the architecture and operation of our three selected models
(PrototypeDL, ProtoPNet, and BagNet). Section I-C contains
the experimental comparison of the models, while Section I-D
discusses the methods we have used to measure the inter-
pretability of the models and their possible improvements.
The concluding Section II enumerates our conclusions from
the experiments, as well as the formulation of possible future
research directions.

A. Explainable models in deep learning

The increasing popularity of using machine learning models
for critical applications like autonomous driving systems or
medical diagnosis, suggests an imperative need for methodolo-
gies that can help to understand and evaluate the predictions
of these models. The main drawback of current state-of-the-art
deep neural network models is the lack of reliability and the
lack of interpretability of their decisions.

According to a recent overview by [3], XAI is a field of
AI that aims at providing automated explanations for each
decision made by the system. These models can be divided
into two types: post-hoc and build-in methods.

To explain a black-box system, we can start after the training
process concluded – in a post-hoc manner: the linear proxy
models – like e.g. LIME [4] – use local linear models based
on the data from the original model (using perturbed inputs).
The method can be used to identify the regions of the input
that most influence the decision. Decision trees [5] and other
rule extraction techniques – like if-then rule extraction [6] –
increase the transparency of neural networks, however, they
are hard to construct.

The concept of saliency map was introduced in [7], [8].
The authors created an intensity map illustrating the most/least
important pixels or regions used in the computation of the
output. Since the training phase is completely independent of
the interpretation or explanation stage, the above methods are
called post-hoc explainability models.

In this work we focus on self-explainable models for image
classification, therefore the system provides visual clues next
to the decision. The term self-explainable means that the

1

Comparative Study of Interpretable Image
Classification Models

Adél Bajcsi∗, Anna Bajcsi∗, Szabolcs Pável∗†, Ábel Portik∗, Csanád Sándor∗†, Annamária Szenkovits∗, Orsolya
Vas∗, Zalán Bodó∗, Lehel Csató∗

∗Faculty of Mathematics and Computer Science, Babeş–Bolyai University of Cluj-Napoca, Romania
†Robert Bosch SRL, Cluj-Napoca, Romania

Abstract—Explainable models in machine learning are increas-
ingly popular due to the interpretability-favoring architectural
features that help human understanding and interpretation of
the decisions made by the model. Although using this type of
model – similarly to “robustification” – might degrade prediction
accuracy, a better understanding of decisions can greatly aid in
the root cause analysis of failures of complex models, like deep
neural networks.

In this work, we experimentally compare three self-explainable
image classification models on two datasets – MNIST and
BDD100K –, briefly describing their operation and highlighting
their characteristics. We evaluate the backbone models to be
able to observe the level of deterioration of the prediction
accuracy due to the interpretable module introduced, if any. To
improve one of the models studied, we propose modifications
to the loss function for learning and suggest a framework for
automatic assessment of interpretability by examining the linear
separability of the prototypes obtained.

Index Terms—deep learning, image classification, interpretabil-
ity, self-explainable models

I. INTRODUCTION

Explainable artificial intelligence (xAI) is a large set of
methods that allows humans to understand the results of a
machine learning algorithm [1], [2]. Explainability is defined
as the process of making humanly understandable the decision
of a machine learning model. Namely, it is the study of
relations between the model’s decisions and intermediate data
representations aimed at better understanding system deci-
sions. Thus, XAI can help us to ensure that the system we
built, relying on machine learning algorithms, deep learning,
or neural networks, is working as expected. In the literature,
there are several techniques for achieving and increasing the
explainability of machine learning models, and they differ in
their approach and the type of machine learning model used.
Among these, the focus will be on self-explainable neural
networks, which can be used to increase the transparency of
the learning process.

In our work, we studied three self-explainable models:
PrototypeDL, ProtoPNet, and BagNet; the primary goal was
their evaluation on two datasets: MNIST, which is a dataset of
handwritten digits, and BDD100K, which is the largest driving
video dataset with 100 000 color images of high resolution.
A result of the comparison is the suggestion of possible
improvements by examining some components of the models
from different aspects, like components of the loss function,

and the study of the separability of the prototype vectors that
these models use.

In Section I-A we introduce the notion of explainable
models in deep learning and in Section I-B we discuss the
notion of interpretability in image classification and describe
the architecture and operation of our three selected models
(PrototypeDL, ProtoPNet, and BagNet). Section I-C contains
the experimental comparison of the models, while Section I-D
discusses the methods we have used to measure the inter-
pretability of the models and their possible improvements.
The concluding Section II enumerates our conclusions from
the experiments, as well as the formulation of possible future
research directions.

A. Explainable models in deep learning

The increasing popularity of using machine learning models
for critical applications like autonomous driving systems or
medical diagnosis, suggests an imperative need for methodolo-
gies that can help to understand and evaluate the predictions
of these models. The main drawback of current state-of-the-art
deep neural network models is the lack of reliability and the
lack of interpretability of their decisions.

According to a recent overview by [3], XAI is a field of
AI that aims at providing automated explanations for each
decision made by the system. These models can be divided
into two types: post-hoc and build-in methods.

To explain a black-box system, we can start after the training
process concluded – in a post-hoc manner: the linear proxy
models – like e.g. LIME [4] – use local linear models based
on the data from the original model (using perturbed inputs).
The method can be used to identify the regions of the input
that most influence the decision. Decision trees [5] and other
rule extraction techniques – like if-then rule extraction [6] –
increase the transparency of neural networks, however, they
are hard to construct.

The concept of saliency map was introduced in [7], [8].
The authors created an intensity map illustrating the most/least
important pixels or regions used in the computation of the
output. Since the training phase is completely independent of
the interpretation or explanation stage, the above methods are
called post-hoc explainability models.

In this work we focus on self-explainable models for image
classification, therefore the system provides visual clues next
to the decision. The term self-explainable means that the

DOI: 10.36244/ICJ.2023.5.4

https://doi.org/10.36244/ICJ.2023.5.4

Comparative Study of Interpretable Image
Classification Models

21

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

2

explainable part is built in during training. As this domain
becomes more important, there were different methods used
for explainability. Attention mechanism’s [9], [10] main idea
is to introduce attention weights over the input sequence
to prioritize the set of positions where relevant information
is present for generating the next output token. Dosovit-
skiy et al. [11] introduce the Vision Transformers networks
(ViT), inspired by the attention mechanisms [12], where a
transformer-based model is used in image classification. When
pre-trained on large datasets and transferred to smaller image
recognition benchmarks, the model outperforms state-of-the-
art CNN networks. Disentangled representations have indi-
vidual dimensions that describe meaningful and independent
factors of variation like variational autoencoder [13], Beta-
VAE [14], InfoGAN [15]. Disentangled units can be used to
create interpretable CNNs with individual units that detect co-
herent and meaningful patches instead of difficult-to-interpret
mixtures of patterns. Deep networks can also be designed
to generate human-understandable explanations as part of the
explicit training of the system. In this paper, we highlight three
such models and examine their performance and explanations.

B. Interpretability in image classification

According to [3], an interpretable model in case of classifi-
cation details the internals of the decision-making process that
is understandable. A model is considered explainable when
it answers the question “Why the output?”. The answer is
satisfying when – quote: “one could no longer keep asking
why”. In the field of image classification, it is achieved by
highlighting the region that is likely to be responsible for the
prediction.

In this section, three models are presented where the self-
explainable part was a feature due to the construction of the
model.

1) PrototypeDL: presented in [16], is a self-interpretable
neural network architecture for image classification aimed at
creating a deep learning architecture that “naturally” explains
the reasoning behind each prediction. The architecture con-
tains an autoencoder and a prototype classification network.
The classifier network has three different layers: a so-called
prototype layer, a fully connected layer, and a softmax layer.
The encoder reduces the dimensionality of the input and allows
making comparisons within the latent space. The decoder
restores the encoded input allowing to visualize elements
from the latent space – e.g. the learned prototypes. Let
D = [X,Y] = {(xn, yn)}Nn=1 be the training dataset, where
xn ∈ Rp and yn ∈ {1, . . . ,K} denote the predictor and target
variables, respectively. The training objective has four terms:

LPDL(D) = CrossEnt(Y , Ŷ)
+ λ0 Rec(X)
+ λ1 R1(P,X) + λ2 R2(P,X),

(1)

where λ0, λ1, λ2 are hyperparameters of the loss function,
CrossEnt(Y , Ŷ) is the cross-entropy – the classification –

error function, Rec(X) is the autoencoder’s reconstruction
error:

Rec(X) =
1

n

n∑
i=1

‖(Φ ◦Φ′)(xi)− xi‖22,

with Φ(·) and Φ(·)′ the encoder and decoder functions re-
spectively, and the pair R1 and R2 are costs for the quality of
prototypes:

R1 (P,X) =
1

M

M∑
m=1

min
n=1,N

‖pm −Φ(xn)‖22,

R2 (P,X) =
1

N

N∑
n=1

min
m=1,M

‖Φ(xn)− pm‖22.

In the above formula P =
{
p1, . . . ,pM

}
is the set of

prototype vectors, each vector corresponding to a prototype
unit in the architecture; M is the number of prototypes and N
is the size of the training dataset. These two terms encourage
that (1) every prototype to be close to at least one training
example ensuring the existence of a meaningful prototype,
and that (2) every training example to be close to at least
one prototype; yielding a clustering of the training examples
around the prototypes.

In contrast to ProtoPNet, the next model to be presented
in Section I-B2, PrototypeDL produces full-size prototypes,
i.e. of the same size as the encoded images. As a drawback,
it fails to produce realistic/interpretable images when trained
on natural pictures, due to the autoencoder used as a feature
extractor. The decoder will return blurry images like Figure 1,
which can not be used as explanations.

2) ProtoPNet: The prototypical part network (ProtoPNet),
introduced in [17], is an improvement over the PrototypeDL
architecture from Section I-B1. Instead of using an autoen-
coder to obtain the features, the model includes as a backbone
a convolutional network for classification, such as VGG-16,
VGG-19, ResNet-152, DenseNet-121, or DenseNet-161 [18].
The “convolutional” part of the above-mentioned backbone
networks will serve as prototypes: the system considers the last
output layer as a set of features. After extracting the set of fea-
tures is followed by a prototype layer and the fully connected
layer that performs multi-class classification. If we assume
that the output of the convolution is of shape (H,W,D),
then we consider every (H1,W1, D) patch a prototype – in
practice, we will use (1, 1, D). If we consider the output
as a representation of the input image, the prototypes will
correspond to a patch (of non-uniform size) from the original
image. The prototypes (denoted by P) will have the same size
as these convolutional patches, i.e. of (H1,W1, D), and each
class is assigned a fixed number of prototypes. For a given
input image, the j-th prototype unit in the prototype layer
computes the Euclidean distance between the j-th prototype
vector and all the patches of the convolutional output, resulting
in a heatmap that shows which parts of the input image are
most similar to the prototype. These maps are reduced to a
single similarity score for each prototype vector using global
max pooling; the reduced scores can be interpreted as to which
extent the given prototype is present in the input image.

Comparative Study of Interpretable Image
Classification Models

22

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

3

The loss function of ProtoPNet can be separated into three
parts:

LPPN (D) = CrossEnt(Y , Ŷ)
+λ1Clst(P,X)
+λ2Sep(P,X),

(2)

where CrossEnt(Y , Ŷ) is again cross-entropy, Clst(P,X)
is a clustering term ensuring that images of a given class
have at least one latent patch close to a prototype of the same
class, while Sep(P,X) pushes the latent patches apart from
the prototypes of other classes:

Clst(P,X) =
1

N

N∑
n=1

min
pj∈Pn

min
z∈patches(Φ(xn))

‖z − pj‖22,

Sep(P,X) = − 1

N

N∑
n=1

min
pj �∈Pn

min
z∈patches(Φ(xn))

‖z − pj‖22,

where P n ⊂ P is the set of prototypes corresponding to class
yn and Φ(·) denotes the convolutional backbone.

ProtoPNet, as opposed to PrototypeDL, can be used on
real-world images. The prototype-to-image is explicit and
uses images from the training set, this is the Clst(·) term
in the error function. The anchoring to a given input image
and the “localized footprint” of the prototype vector leads to
an increased interpretability level – contrasting PrototypeDL,
where we have global representations of the inputs.

3) BagNet: these models were introduced by Brendel and
Bethge [19], inspired by the bag-of-words (BoW), or the
bag-of-features (BoF) models; these are popular models in
information retrieval (IR) and natural language processing
(NLP) [20]. BoW or BoF count the occurrence of a feature
in an entity, e.g. words in a document, thus the representation
of a document becomes a bag data structure collecting the
number of word occurrences in a document. The architecture
of BagNet resembles BoW: individual features of the input
are put together – in this case, averaged – to obtain the global
representation of the entire image.

The idea is simple yet effective: we use an FCN to generate
features for the input image and use the average of the feature
vectors to output the logits. Each feature vector corresponds to
a window of the same size as the receptive field of the network
(patch). Using logits, the output of the linear classifier will be
the same as the average of the logits output for each input
image patch.

BagNet is able to generate a heatmap for the input images:
for each patch of the input image the model outputs the class
logits and these will correspond to one pixel of the heatmap.
These heatmaps can be interpreted as explanations for the
classification: the part of the image, where the heatmap has
a high activation has more importance during classification.
Moving the window with stride 1, we are able to generate one
heatmap for each class.

This model is built on a simple idea inspired from IR/NLP,
yet we found that it produces competitive results for self-
explaining image classification tasks.

Fig. 1. The PrototypeDL architecture in action on the CIFAR10 data: the
input (left), its reconstruction (middle), and the closest pre-image (right). It
can be observed that both the reconstruction and the pre-image are blurry,
therefore cannot serve as an explanation.

Fig. 2. Evolution of the 10 prototypes assigned to clear class – from top
to bottom. It is visible that most of the prototypes “focus” on the upper part
of the image, the blue sky. There are abnormal behaviours, e.g. in the fifth
column the region is not “interpretable” w.r.to the class semantics.

C. Experimental comparison of the models

In our research, we conducted several experiments using
different datasets. First, we used a simpler dataset (MNIST
– Modified National Institute of Standards and Technology1

[21]) and then the models were fine-tuned for a more complex
one (BDD100K – Berkeley DeepDrive2 [22]). Working with
BDD100K the weather condition labels were used, containing
7 classes: clear, foggy, overcast, partly cloudy, rainy, snowy,
and undefined. This dataset is highly unbalanced, e.g. we have
37 344 images with label clear as opposed to 130 images
labeled foggy.

1) PrototypeDL: In the original paper [16] this method
was tested on three datasets: MNIST (99.22% test accuracy),
3D cars [23] (93.5% test accuracy), and Fashion MNIST3

(89.95% test accuracy), the obtained results being comparable
with that of non-interpretable models (within 2.55% margin).
We also tested the model on CIFAR10 dataset, but the output
prototypes were not interpretable, see Figure 1. Due to its
poor interpretability, this model was not tested on BDD100K
dataset.

2) ProtoPNet: In our experiments, VGG-19 CNN was used
as a feature extractor. The number of prototypes per class was

1http://yann.lecun.com/exdb/mnist/
2http://bdd-data.berkeley.edu
3https://github.com/zalandoresearch/fashion-mnist

Comparative Study of Interpretable Image
Classification Models

23

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

4

TABLE I
COMPARISON OF THE PERFORMANCE OF PROTOPNET AND THE

EQUIVALENT BACKBONE MODEL ON BDD100K DATASET.

Metric ProtoPNet Backbone model
Train Test Train Test

Accuracy 0.8564 0.8264 0.8457 0.8284
F1 score (micro-avg.) 0.8523 0.8218 0.8457 0.8284
F1 score (macro-avg.) 0.7082 0.6422 0.6725 0.6510

TABLE II
COMPARISON OF THE PERFORMANCE OF BAGNET-17 AND THE

EQUIVALENT RESNET-50 ON THE BDD100K DATASET.

BagNet-17 Equivalent
ResNet-50

Train Test Train Test
F1 score (micro-avg.) 0.7880 0.7953 0.8098 0.8093
F1 score (macro-avg.) 0.5973 0.6038 0.6494 0.6242
Training epochs 81 84

set to 10 as in [17]. Besides trying to reproduce the result
on CUB-200-20114 the model was trained on MNIST and
BDD100K datasets. We analyzed the result of our experiments
from two aspects. Firstly, the performance of ProtoPNet was
compared against its equivalent backbone, here we aimed at
assessing the cost of interpretability. Secondly, we performed
a subjective analysis of the prototypes and their evolution over
the learning epochs.

The backbone model has a feature extractor layer followed
by a fully connected one, i.e. the prototype layer was removed
from the model. On MNIST dataset the differences were
below 0.1%, both interpretable and non-interpretable models
had an accuracy of 99.8% on the train and 99.6% on test
data. With BDD100K dataset the interpretable model achieved
better accuracy on train data, as shown in Table I. We also
measured F1 scores on the BDD100K dataset because of its
uneven distribution. We can observe a gap between the models
on train data by analyzing these scores. For every class, we
collected the images from which the ProtoPNet learned its 10
prototypes in different epochs and aggregated them into an
image collage. In the original images, we can see the saliency
map of input pixels indicating their contribution to the learned
prototype vector. The prototypes were observed form every
10th epoch up to the 50th. Figure 2 shows an example for the
class clear. As expected, most of the learned prototypes are
parts from the blue sky regions. The evolution of prototypes is
noticeable (with uninterpretable prototypes at the start). Using
visual inspection, we can have a subjective assessment of the
prototype, namely the region it focuses on during prediction.
This way we may exclude prototypes from the model. For
example, in the 5th column, there is a prototype of the road.
If we want our model to “focus” only on the sky, we can
remove it from the model.

3) BagNet: In [19] the model was tested on ImageNet5.
Using a 17×17 patch size, the model reached the performance
of AlexNet (80.5% top-5 accuracy) [24], while using 33× 33
patches a top-5 accuracy of 87.6% was achieved.

4https://www.vision.caltech.edu/datasets/cub 200 2011/
5https://www.image-net.org/

clear foggy

overcast partly cloudy

rainy snowy

Fig. 3. One sample from each weather class from the BDD100K dataset (left)
and their corresponding heatmaps (right) obtained with the BagNet-17 model.
The darker the region, the more important it was in assigning the given label
to the image.

For conducting the experiments on the BDD100K dataset,
we used the initial architecture, based on ResNet-50 [25] by
replacing most of the 3×3 by 1×1 convolutions, thus limiting
the receptive field size of the topmost convolutional layer to
q × q. We experimented with both q = 9 and q = 17 and
found that q = 17, that is Bagnet-17, yielded better results.

We compared the results obtained with the BagNet-17 with
the corresponding ResNet-50 architecture (backbone model).
The model was trained using SGD with momentum (0.9),
a batch size of 16, and a learning rate initially set to 0.1
and decayed by a multiplicative factor of 0.35 every 30
epochs. For evaluation, F1 score was used. The results are
summarized in Table II, which shows that BagNet-17 achieved
a micro-averaged F1 score of 0.7880 on the training set and
a micro-averaged F1 score of 0.7953 on the test, respectively,
after 81 epochs. Surprisingly, the equivalent ResNet-50 has
outperformed the BagNet-17 by only 0.014 on the test set
when evaluated with the micro-averaged F1 score, and by
0.0204 with the macro F1 score.

To visually assess the interpretability of the BagNet-17
model on BDD100K, we plotted the heatmaps generated by
the model, as shown in Figure 3 along with the original
images. Our conclusion is that the strong emphasis is in partial
agreement with our intuition but it is often not conclusive: e.g
it is unclear why in the clear class example – top left – the
highest importance is rendered to the line separating the blue
sky background from the rest of the image.

D. Measuring interpretability

While measuring prediction accuracy is usually simple,
unless labeling data becomes a costly process [26], determin-
ing interpretability is much more complicated, however, the
assessment of explainability is similarly important to evaluate
the method and compare it to other approaches from this
perspective as well. Following the works [27]–[29] we define

Comparative Study of Interpretable Image
Classification Models

24

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

5

TABLE III
EVALUATION RESULTS OBTAINED ON MNIST (RESNET-20 BACKBONE)

USING DIFFERENT HYPERPARAMETERS.

λ1 λ2 λ3 Training accuracy Test accuracy
(a) 0.8 -0.08 0 0.9902 0.9814
(b) 0.8 0 0 0.9951 0.9853
(c) 0.8 -0.08 -0.1 0.9895 0.9826
(d) 0.8 -0.08 -0.15 0.9893 0.9808

(a) (b)

(c) (d)
Fig. 4. Matrix of 1-vs-1 average training accuracies obtained using linear
SVMs to separate prototype vectors assigned to different classes (the four
scenarios correspond to the models displayed in Table III): (a) original
ProtoPNet model, (b) omitting the separation cost, (c)–(d) using the additional
separation cost.

interpretability as the linear separability of the feature vectors
and incorporate a new separation cost to improve on this
in the ProtoPNet model6. Thus, we measure interpretability
by the macro-averaged 1-vs-1 training classification accuracy
obtained by a linear classifier considering the prototype vectors
assigned to different classes as training examples. In our
experiments, linear support vector machines (SVM) [30] were
used.

In [17], the separation cost enforces every latent patch of a
training image to be distant from the prototypes not of its class,
which is a requirement of explainability. If no such condition
is imposed on the patches and/or prototypes it may harm the
interpretability of the model, since similar prototypes can be
obtained for different classes. While discarding separability
may improve classification performance [31], it can hurt the
visual explanation process.

The additional separation cost introduced in our model
pushes away the prototype vectors from each other,

Sep2(P) =
−2

K(K − 1)

K∑
i,j=1
j>i

min
p∈Pi,
q∈Pj

‖p− q‖22 (3)

6The linear separability of the features increases/should increase monoton-
ically with the depth of the model, explained by the fact that the last layer of
deep neural networks is usually a linear classifier.

and thus the total loss function of the optimization problem
becomes

L(D) = CrossEnt(Y , Ŷ)
+λ1Clst(P,X)
+λ2Sep(P,X) + λ3Sep2(P),

(4)

where CrossEnt, Clst, and Sep represent the same loss
components as in the original ProtoPNet model. In Figure 4
the interpretability values are shown as macro-averaged 1-vs-
1 training accuracies obtained for separating the prototypes
of different classes using a linear SVM. We also display the
lower triangular portion of the confusion matrices obtained,
where a darker color of a square denotes a better separa-
tion. For conducting the experiments, ResNet-20 was used
as the backbone of ProtoPNet [25], and the methods were
evaluated on the MNIST dataset. The number of epochs was
set to 50. Table III shows the hyperparameter settings of the
models together with the training and test accuracies obtained.
From Table III and Figure 4 one observes that by omitting
the separation costs, it is possible to obtain better accuracy
scores (model (b)) compared to the base model (model (a)),
meanwhile, separability decreases. The introduction of the new
separation cost yields slightly better test accuracies and better
linear separation of the prototypes (model (c)). Furthermore,
setting a higher weight for the newly introduced cost (model
(d)) can slightly decrease prediction accuracy but at the same
time significantly increase the separability.

II. CONCLUSION

In this article, we presented a comparison of three inter-
pretable image classification models. All models use convolu-
tional neural networks, CNNs, to represent image features via
prototype vectors, and the use of prototypes provides a good
performance. The interpretability of the models is achieved via
the connection of the prototype vectors to the outputs on one
hand, and the connection of the prototype vectors to a region
in the input image on the other hand; model interpretability is
achieved by linking the decision – i.e. the model output – and
the region in the input image.

With the measurements on “backbones”, we assessed
whether the addition of interpretability to the model, similar
to extensions towards robustness, impacts accuracy and we
conclude that there is no significant drop in performance when
interpretability is added to the model. The conclusion is that it
was essential to properly adjust model hyperparameters, such
as receptive field size or the parameters of the cost function;
this fitting of model parameters indicates a potential instability
when using the models in real situations.

As a summary, we assessed that the first tested PrototypeDL
model uses prototypes that are global to the whole image,
therefore the pre-images of the prototypes are blurry, as
such cannot be used as an explanation. Our second model,
ProtoPNet, an improved PrototypeDL, provides localized pro-
totypes, and the manual inspection of the results confirms its
highly interpretable nature, and this model achieves the best
evaluation results on the tested datasets. The third model we
tested, the BagNet model, had the simplest architecture of all
and it produces good results despite not using prototypes.

Comparative Study of Interpretable Image
Classification Models

25

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

 [1] O. O’Neill, “Linking trust to trustworthiness,” International Journal
of Philosophical Studies, vol. 26, no. 2, pp. 293–300.

 doi: 10.1080/09672559.2018.1454637, 2018.
 [2] J. A. McDermid, Y. Jia, Z. Porter, and I. Habli, “Artificial intelligence

explainability: the technical and ethical dimensions,” Philosophical
Transactions; Series A, vol. 379. doi: 10.1098/rsta.2020.0363, 2021.

 [3] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal,
“Explaining explanations: An overview of interpretability of machine
learning,” in DSAA. IEEE, 2018, pp. 80–89.

 doi: 10.1109/DSAA.2018.00018
 [4] M. T. Ribeiro, S. Singh, and C. Guestrin, “”Why should I trust you?”

Explaining the predictions of any classifier,” in KDD, 2016, pp. 1135–
1144. doi: 10.1145/2939672.2939778

 [5] T. Hastie, R. Tibshinrani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer Verlag,
2016.

 [6] S. Thrun, “Extracting rules from artificial neural networks with
distributed representations,” in Advances in Neural Information
Processing Systems, G. Tesauro, D. Touretzky, and T. Leen, Eds., vol.
7. MIT Press, 1994, pp. 505–512.

 [7] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla,
B. Schiele, and T. Tuytelaars, Eds. Springer International Publishing,
2014. ISBN 978-3-319-10590-1 pp. 818–833.

 doi: 10.1007/978-3-319-10590-1_53
 [8] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside

convolutional networks: Visualising image classification models and
saliency maps,” in Workshop at International Conference on Learning
Representations, 2014, pp. 1–8. doi: 10.48550/arXiv.1312.6034

 [9] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2015.

 [10] S. Chaudhari, V. Mithal, G. Polatkan, and R. Ramanath, “An attentive
survey of attention models,” ACM Transactions on Intelligent Systems
and Technology, vol. 12, no. 5, pp. 1–32. doi: 10.1145/3465055, 2021.

 [11] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” arXiv preprint
arXiv:2010.11929, Tech. Rep., 2020.

6

An important conclusion was that these models need large
datasets to perform well – namely, we emphasize that for
ProtoPNet the multiplication of inputs using augmentation had
a huge positive impact on the performance.

Since almost all methods studied so far rely on deep features
extracted by CNNs, we might ask about the validity of our base
assumption about these, namely that similar patches generate
similar features. As one-pixel attacks show [32], it suffices to
change one pixel in the input image to obtain very dissimilar
features. At the same time, other obfuscation techniques, e.g.
JPEG compression, resulting in differences imperceptible to
the human eye greatly influence the output of the network
as well [33]. Therefore, we plan to study the influence of
robustness on the predictions and explanations in interpretable
methods [34], as well as explore other approaches that could
increase interpretability in such self-explainable deep neural
network models.

ACKNOWLEDGMENT

The authors acknowledge the financial support through
Bosch grant “Explainable artificial intelligence (xAI) for au-
tomated driving systems”.

REFERENCES

[1] O. O’Neill, “Linking trust to trustworthiness,” International Jour-
nal of Philosophical Studies, vol. 26, no. 2, pp. 293–300. doi:
10.1080/09672559.2018.1454637 2018.

[2] J. A. McDermid, Y. Jia, Z. Porter, and I. Habli, “Artificial intelligence
explainability: the technical and ethical dimensions,” Philosophical
Transactions; Series A, vol. 379. doi: 10.1098/rsta.2020.0363 2021.

[3] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and
L. Kagal, “Explaining explanations: An overview of interpretability
of machine learning,” in DSAA. IEEE, 2018, pp. 80–89. doi:
10.1109/DSAA.2018.00018

[4] M. T. Ribeiro, S. Singh, and C. Guestrin, “”Why should I trust you?”
Explaining the predictions of any classifier,” in KDD, 2016, pp. 1135–
1144. doi: 10.1145/2939672.2939778

[5] T. Hastie, R. Tibshinrani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer Verlag,
2016.

[6] S. Thrun, “Extracting rules from artificial neural networks with dis-
tributed representations,” in Advances in Neural Information Processing
Systems, G. Tesauro, D. Touretzky, and T. Leen, Eds., vol. 7. MIT
Press, 1994, pp. 505–512.

[7] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla,
B. Schiele, and T. Tuytelaars, Eds. Springer International Publishing,
2014. ISBN 978-3-319-10590-1 pp. 818–833. doi: 10.1007/978-3-319-
10590-1 53

[8] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,”
in Workshop at International Conference on Learning Representations,
2014, pp. 1–8. doi: 10.48550/arXiv.1312.6034

[9] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2015.

[10] S. Chaudhari, V. Mithal, G. Polatkan, and R. Ramanath, “An attentive
survey of attention models,” ACM Transactions on Intelligent Systems
and Technology, vol. 12, no. 5, pp. 1–32. doi: 10.1145/3465055 2021.

[11] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” arXiv preprint
arXiv:2010.11929, Tech. Rep., 2020.

[12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in NeurIPS,
vol. 30, 2017. doi: 10.48550/arXiv.1706.03762

[13] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” 2013.

[14] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick,
S. Mohamed, and A. Lerchner, “beta-VAE: Learning basic visual con-
cepts with a constrained variational framework,” in ICLR. OpenRe-
view.net, 2017.

[15] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and
P. Abbeel, “InfoGAN: Interpretable representation learning by informa-
tion maximizing generative adversarial nets,” in NeurIPS, vol. 29, 2016.
doi: 10.48550/arXiv.1606.03657

[16] O. Li, H. Liu, C. Chen, and C. Rudin, “Deep learning for case-
based reasoning through prototypes: A neural network that ex-
plains its predictions,” in AAAI, vol. 32, 2018, pp. 3530–3537. doi:
10.1609/aaai.v32i1.11771

[17] C. Chen, O. Li, C. Tao, A. J. Barnett, J. Su, and C. Rudin,
“This looks like that: deep learning for interpretable
image recognition,” in NeurIPS, 2019, pp. 8930–8941. doi:
https://dl.acm.org/doi/10.5555/3454287.3455088

[18] I. J. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
MIT Press, 2016. ISBN 9780262035613. [Online]. Available: http:
//www.deeplearningbook.org

[19] W. Brendel and M. Bethge, “Approximating CNNs with bag-of-local-
features models works surprisingly well on ImageNet,” 2019.

[20] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to informa-
tion retrieval. Cambridge University Press, Cambridge, 2008. [Online].
Available: https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf

[21] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “EMNIST: Extending
MNIST to handwritten letters,” in IJCNN, 2017, pp. 2921–2926. doi:
10.1109/IJCNN.2017.7966217

[22] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan,
and T. Darrell, “BDD100K: A diverse driving video database
with scalable annotation tooling,” 2018. [Online]. Available: https:
//www.arxiv-vanity.com/papers/1805.04687

[23] S. Fidler, S. Dickinson, and R. Urtasun, “3D object detection and
viewpoint estimation with a deformable 3D cuboid model,” in NeurIPS,
vol. 25. Curran Associates, Inc., 2012. doi: 10.13140/2.1.2839.7440

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Communications of the ACM,
vol. 60, pp. 84–90. doi: 10.1145/3065386 2017.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in CVPR. IEEE, 2016, pp. 770–778. doi:
10.1109/CVPR.2016.90

[26] X. J. Zhu, “Semi-supervised learning literature survey,” University
of Wisconsin-Madison Department of Computer Sciences, Tech. Rep.
1530, 2005.

[27] G. Alain and Y. Bengio, “Understanding intermediate layers using linear
classifier probes,” in ICLR, 2017. doi: 10.48550/arXiv.1610.01644

[28] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba, “Network
dissection: Quantifying interpretability of deep visual representations,”
in CVPR. IEEE, 2017, pp. 6541–6549. doi: 10.1109/CVPR.2017.354

[29] B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F. Viegas,
and R. Sayres, “Interpretability beyond feature attribution: Quantitative
testing with concept activation vectors (TCAV),” in ICML, 2018, pp.
2668–2677. doi: 10.48550/arXiv.1711.11279

[30] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm
for optimal margin classifiers,” in COLT, 1992, pp. 144–152. doi:
10.1145/130385.130401

[31] W. Xiao, Z. Ding, and H. Liu, “Learnable visual words for in-
terpretable image recognition,” CoRR, vol. abs/2205.10724. doi:
10.48550/arXiv.2205.10724 2022.

[32] D. V. Vargas and J. Su, “Understanding the one-pixel attack: Propagation
maps and locality analysis,” 2019.

[33] A. Hoffmann, C. Fanconi, R. Rade, and J. Kohler, “This looks like that...
does it? shortcomings of latent space prototype interpretability in deep
networks,” 2021.

[34] C. Etmann, S. Lunz, P. Maass, and C. Schönlieb, “On the connection
between adversarial robustness and saliency map interpretability,” in
ICML 2019, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. PMLR,
2019, pp. 1823–1832. doi: 10.48550/arXiv.1905.04172

References

 [12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in
NeurIPS, vol. 30, 2017. doi: 10.48550/arXiv.1706.03762

 [13] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” 2013.
[14] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick,

S. Mohamed, and A. Lerchner, “beta-VAE: Learning basic visual con-
cepts with a constrained variational framework,” in ICLR. OpenRe-
view.net, 2017.

[15] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P.
Abbeel, “InfoGAN: Interpretable representation learning by informa-
tion maximizing generative adversarial nets,” in NeurIPS, vol. 29,
2016. doi: 10.48550/arXiv.1606.03657

[16] O. Li, H. Liu, C. Chen, and C. Rudin, “Deep learning for case-based
reasoning through prototypes: A neural network that explains its
predictions,” in AAAI, vol. 32, 2018, pp. 3530–3537.

 doi: 10.1609/aaai.v32i1.11771
[17] C. Chen, O. Li, C. Tao, A. J. Barnett, J. Su, and C. Rudin,

“This looks like that: deep learning for interpretable
image recognition,” in NeurIPS, 2019, pp. 8930–8941.
doi: https://dl.acm.org/doi/10.5555/3454287.3455088

[18] I. J. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016. ISBN 9780262035613. [Online]. Available:

 http://www.deeplearningbook.org
[19] W. Brendel and M. Bethge, “Approximating CNNs with bag-of-local-

features models works surprisingly well on ImageNet,” 2019.
[20] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to informa-

tion retrieval. Cambridge University Press, Cambridge, 2008. [Online].
Available: https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf

[21] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “EMNIST:
Extending MNIST to handwritten letters,” in IJCNN, 2017, pp. 2921–
2926. doi: 10.1109/IJCNN.2017.7966217

[22] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, and T. Darrell,
“BDD100K: A diverse driving video database with scalable annotation
tooling,” 2018. [Online]. Available:

 https://www.arxiv-vanity.com/papers/1805.04687
[23] S. Fidler, S. Dickinson, and R. Urtasun, “3D object detection and

viewpoint estimation with a deformable 3D cuboid model,” in NeurIPS,
vol. 25. Curran Associates, Inc., 2012. doi: 10.13140/2.1.2839.7440

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Communications of the
ACM, vol. 60, pp. 84–90. doi: 10.1145/3065386, 2017.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR. IEEE, 2016, pp. 770–778.

 doi: 10.1109/CVPR.2016.90
[26] X. J. Zhu, “Semi-supervised learning literature survey,” University of

Wisconsin-Madison Department of Computer Sciences, Tech. Rep.
1530, 2005.

[27] G. Alain and Y. Bengio, “Understanding intermediate layers using linear
classifier probes,” in ICLR, 2017. doi: 10.48550/arXiv.1610.01644

[28] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba, “Network
dissection: Quantifying interpretability of deep visual representations,”
in CVPR. IEEE, 2017, pp. 6541–6549. doi: 10.1109/CVPR.2017.354

[29] B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F. Viegas, and
R. Sayres, “Interpretability beyond feature attribution: Quantitative
testing with concept activation vectors (TCAV),” in ICML, 2018, pp.
2668–2677. doi: 10.48550/arXiv.1711.11279

[30] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for
optimal margin classifiers,” in COLT, 1992, pp. 144–152.

 doi: 10.1145/130385.130401
[31] W. Xiao, Z. Ding, and H. Liu, “Learnable visual words for interpretable

image recognition,” CoRR, vol. abs/2205.10724.
 doi: 10.48550/arXiv.2205.10724, 2022.
[32] D. V. Vargas and J. Su, “Understanding the one-pixel attack:

Propagation maps and locality analysis,” 2019.
[33] A. Hoffmann, C. Fanconi, R. Rade, and J. Kohler, “This looks like

that... does it? shortcomings of latent space prototype interpretability
in deep networks,” 2021.

 [34] C. Etmann, S. Lunz, P. Maass, and C. Schönlieb, “On the connection
between adversarial robustness and saliency map interpretability,” in 6
ICML 2019, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. PMLR,
2019, pp. 1823–1832. https://doi.org/10.48550/arXiv.1905.04172

https://doi.org/10.1080/09672559.2018.1454637
https://doi.org/10.1098/rsta.2020.0363
https://doi.org/10.1109/DSAA.2018.00018
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.48550/arXiv.1312.6034
https://arxiv.org/abs/1409.0473
https://doi.org/10.1145/3465055
https://arxiv.org/abs/2010.11929
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1606.03657
https://doi.org/10.1609/aaai.v32i1.11771
https://dl.acm.org/doi/10.5555/3454287.3455088
http://www.deeplearningbook.org
https://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf
https://doi.org/10.1109/IJCNN.2017.7966217
https://www.arxiv-vanity.com/papers/1805.04687
https://doi.org/10.13140/2.1.2839.7440
https://doi.org/10.1145/3065386
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.48550/arXiv.1610.01644
https://doi.org/10.1109/CVPR.2017.354
https://doi.org/10.48550/arXiv.1711.11279
https://doi.org/10.1145/130385.130401
https://doi.org/10.48550/arXiv.2205.10724
https://doi.org/10.48550/arXiv.1905.04172

Comparative Study of Interpretable Image
Classification Models

26

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

Adél Bajcsi is a Ph Dstudent at the Faculty of
Mathematics and Computer Science, Babeş-Bolyai
University, under the supervision of Camelia Chira. Her
current research interest includes image processing and
classification, and machine learning. Adél is currently
a member of a research team that investigates different
self-interpretable deep learning models applied in the
field of image recognition.

Anna Bajcsi is currently a member of a research
group at the Babeş-Bolyai University investigating
self-explainable deep learning models for image
classification problems. She obtained her master’s
degree at the same university in 2022 studying Data
Analysis and Modelling.

Szabolcs Pável is an assistant professor at the Faculty
of Mathematics and Computer Science of the Babeş-
Bolyai University (Cluj, Romania). His research
interests include classical computer vision, machine
learning (including deep learning), focusing on
applications in driver assistance systems and self-
driving cars. He also works as a machine learning
engineer in the automotive industry, developing video
perception systems.

Ábel Portik is a master’s student in Data Analysis and
Modelling at the Faculty of Mathematics and Computer
Science, Babeş-Bolyai University. He currently inves-
tigates self-explaining deep neural models applied for
image classification as a member of a research group.

Csanád Sándor is an assistant professor at the Faculty
of Mathematics and Computer Science, Babeş-Bolyai
University, as well as a machine learning engineer in
the automotive industry. His main research interest is
neural network compression, focusing on structured
parameter pruning and post-training quantization.

Annamária Szenkovits is an assistant professor
at the Department of Math- ematics and Computer
Science of the Hungarian Line of the Babeş-Bolyai
University (Cluj, Romania). Her main areas of interest
include information retrieval and machine learning.
Within machine learning, her work focuses on image
recognition and natural text processing. She is currently
a member of a research team that investigates different
self-explainable deep learning models applied in the
field of image recognition.

Orsolya Vas is an assistant professor at the Faculty
of Mathematics and Computer Science of the Babeş-
Bolyai University of Cluj-Napoca. Her previous re-
search interests and results are related to critical point
analysis and differential calculus. She is a member of
a research team investigating self-explainable deep
learning models for classification.

Zalán Bodó is currently an associate professor at the
Faculty of Mathematics and Computer Science, Babeş-
Bolyai University, teaching, among other subjects, In-
formation Theory and Natural Language Processing.
He obtained his PhD degree from the same faculty in
2010, studying and analyzing kernel methods for semi-
supervised learning. Since then, he participated in sev-
eral research projects, and his main interests include
data-efficient machine learning algorithms, natural lan-
guage processing, information retrieval, and recently
deep learning methods.

Lehel Csató is a professor at the Faculty of Math-
ematics and Computer Science. He holds a PhD from
Aston University (UK), his research was the use of
probabilistic non-parametrics as latent variables. He
is interested in the mathematical aspects of machine
learning, in providing approximate solutions for in-
verse problems, performing sparse inference on large
systems with applications to robotics, classification
of complex data, and active learning. After the on-
set of the new deep learning era, he is interested in

a better understanding of the working of these systems; the exploration of
self-explainable deep learning methods, and simplification possibilities, e.g.
pruning.

What Can We Learn from Small Data

27

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

What Can We Learn from Small Data
Tamas Nyiri and Attila Kiss

Abstract—Over the past decade, deep learning has pro-
foundly transformed the landscape of science and technol-
ogy, from refining advertising algorithms to pioneering
self-driving vehicles. While advancements in computational
capabilities have fueled this evolution, the consistent avail-
ability of high quality training data is less of a given. In this
work, the authors aim to provide a bird’s eye view on topics
pertaining to small data scenarios, that is scenarios in which
a less than desirable quality and quantity of data is given
for supervised learning. We provide an overview for a set of
challenges, proposed solution and at the end tie it together by
practical guidelines on which techniques are useful in specific
real-world scenarios.

Index Terms—deep learning, small data, small sample
learning, few shot learning.

Tamas Nyiri and Attila Kiss, Department of Information Systems,
ELTE Eötvös Loránd University, Budapest, Hungary. Attila Kiss was also
with J. Selye University, Komárno, Slovakia (E-mail: nytuaai@inf.elte.hu,
kiss@inf.elte.hu)

1

What Can We Learn from Small Data
Tamas Nyiri , Attila Kiss

Abstract—Over the past decade, deep learning has pro-
foundly transformed the landscape of science and tech-
nology, from refining advertising algorithms to pioneering
self-driving vehicles. While advancements in computational
capabilities have fueled this evolution, the consistent avail-
ability of high quality training data is less of a given. In
this work, the authors aim to provide a bird’s eye view on
topics pertaining to small data scenarios, that is scenarios
in which a less than desirable quality and quantity of data
is given for supervised learning. We provide an overview
for a set of challenges, proposed solution and at the end
tie it together by practical guidelines on which techniques
are useful in specific real-world scenarios.

Index Terms—deep learning, small data, small sample
learning, few shot learning.

I. INTRODUCTION

A. Background

Supervised Learning is a type of Machine Learning
(ML) which itself is a sub-field of Artificial Intelligence
(AI). In supervised learning, the algorithm learns from
labeled data to make predictions or decisions about new,
unseen data. In this type of learning, the algorithm is
trained on a data set that includes both input data and
corresponding output labels. The algorithm then uses this
training data to learn a mapping function that can predict
the output labels for new, unseen input data. [1]

Early works in AI focused on rule-based systems
and expert systems, where human experts would define
rules and logic for the system to follow. However, these
systems were limited by the complexity and variability
of real-world data.

In the 1980s, the field of Machine Learning emerged,
which focused on algorithms that could automatically
learn patterns from data. Early Machine Learning algo-
rithms were primarily based on statistical models, such
as linear regression and logistic regression.

In the 1990s, the development of Artificial Neural
Networks brought new advances in Supervised Learning.
These networks were inspired by the structure of the hu-
man brain and were capable of learning complex patterns
from data through a process called back-propagation. [2]

In the early 2000s, larger neural network models,
such as Convolutional Neural Networks (CNNs) [3] and

Tamas Nyiri and Attila Kiss, Department of Information Systems,
ELTE Eötvös Loránd University, 1117 Budapest, Hungary. Attila
Kiss was also with J. Selye University, Komárno, Slovakia E-mail:
nytuaai@inf.elte.hu, kiss@inf.elte.hu

Recurrent Neural Networks (RNNs) [4], were developed,
leading to breakthroughs in areas such as image recog-
nition and Natural Language Processing (NLP).

In recent years, the development of even larger Neu-
ral Network models, such as Deep Neural Networks
(DNNs), has led to even greater advances in Supervised
Learning. These models can learn from vast amounts of
training data, and their performance has been shown to
improve with increasing amounts of data.

Overall, the history of AI, ML, and Neural Networks
has been characterized by a gradual progression towards
larger models and more training data, which has enabled
breakthroughs in Supervised Learning and other areas of
Machine Learning.

This has worked well for the most part on well
defined problems where large, good quality data sets
are available. We focus on the situations where this
assumption does not necessarily hold.

B. Related Work

The topic of learning with limited amounts of data
is not a recent one. There does seem to be however
many takes on what constitutes "small data" and many
techniques developed to be able to achieve competitive
results on less than desirable data sets.

There have been several surveys written on this topic,
looking at the problem from different directions. One
example, "Generalizing from a Few Examples: A Sur-
vey on Few-shot Learning" by Wang et al [5] gave a
unique taxonomy of Few Shot Learning (FSL) methods,
dividing them into three main categories: ones that
incorporate prior knowledge into the data, model or the
algorithm of the learning system. Another one "Small
Sample Learning in Big Data Era" by Shu et al [6]
divided Small Sample Learning (SSL) techniques into
two main branches: Concept Learning which emphasizes
learning new concepts from few related observations,
and Experience Learning which focuses on learning
with insufficient samples, co-existing with the Large
Sample Learning (LSL) manner of conventional machine
learning.

Even though there has also been attempts on more
theoretical explanations with promising results [7][8],
there does still seem to be a large gap to traverse until
we see these results used in more practical settings.

1

What Can We Learn from Small Data
Tamas Nyiri , Attila Kiss

Abstract—Over the past decade, deep learning has pro-
foundly transformed the landscape of science and tech-
nology, from refining advertising algorithms to pioneering
self-driving vehicles. While advancements in computational
capabilities have fueled this evolution, the consistent avail-
ability of high quality training data is less of a given. In
this work, the authors aim to provide a bird’s eye view on
topics pertaining to small data scenarios, that is scenarios
in which a less than desirable quality and quantity of data
is given for supervised learning. We provide an overview
for a set of challenges, proposed solution and at the end
tie it together by practical guidelines on which techniques
are useful in specific real-world scenarios.

Index Terms—deep learning, small data, small sample
learning, few shot learning.

I. INTRODUCTION

A. Background

Supervised Learning is a type of Machine Learning
(ML) which itself is a sub-field of Artificial Intelligence
(AI). In supervised learning, the algorithm learns from
labeled data to make predictions or decisions about new,
unseen data. In this type of learning, the algorithm is
trained on a data set that includes both input data and
corresponding output labels. The algorithm then uses this
training data to learn a mapping function that can predict
the output labels for new, unseen input data. [1]

Early works in AI focused on rule-based systems
and expert systems, where human experts would define
rules and logic for the system to follow. However, these
systems were limited by the complexity and variability
of real-world data.

In the 1980s, the field of Machine Learning emerged,
which focused on algorithms that could automatically
learn patterns from data. Early Machine Learning algo-
rithms were primarily based on statistical models, such
as linear regression and logistic regression.

In the 1990s, the development of Artificial Neural
Networks brought new advances in Supervised Learning.
These networks were inspired by the structure of the hu-
man brain and were capable of learning complex patterns
from data through a process called back-propagation. [2]

In the early 2000s, larger neural network models,
such as Convolutional Neural Networks (CNNs) [3] and

Tamas Nyiri and Attila Kiss, Department of Information Systems,
ELTE Eötvös Loránd University, 1117 Budapest, Hungary. Attila
Kiss was also with J. Selye University, Komárno, Slovakia E-mail:
nytuaai@inf.elte.hu, kiss@inf.elte.hu

Recurrent Neural Networks (RNNs) [4], were developed,
leading to breakthroughs in areas such as image recog-
nition and Natural Language Processing (NLP).

In recent years, the development of even larger Neu-
ral Network models, such as Deep Neural Networks
(DNNs), has led to even greater advances in Supervised
Learning. These models can learn from vast amounts of
training data, and their performance has been shown to
improve with increasing amounts of data.

Overall, the history of AI, ML, and Neural Networks
has been characterized by a gradual progression towards
larger models and more training data, which has enabled
breakthroughs in Supervised Learning and other areas of
Machine Learning.

This has worked well for the most part on well
defined problems where large, good quality data sets
are available. We focus on the situations where this
assumption does not necessarily hold.

B. Related Work

The topic of learning with limited amounts of data
is not a recent one. There does seem to be however
many takes on what constitutes "small data" and many
techniques developed to be able to achieve competitive
results on less than desirable data sets.

There have been several surveys written on this topic,
looking at the problem from different directions. One
example, "Generalizing from a Few Examples: A Sur-
vey on Few-shot Learning" by Wang et al [5] gave a
unique taxonomy of Few Shot Learning (FSL) methods,
dividing them into three main categories: ones that
incorporate prior knowledge into the data, model or the
algorithm of the learning system. Another one "Small
Sample Learning in Big Data Era" by Shu et al [6]
divided Small Sample Learning (SSL) techniques into
two main branches: Concept Learning which emphasizes
learning new concepts from few related observations,
and Experience Learning which focuses on learning
with insufficient samples, co-existing with the Large
Sample Learning (LSL) manner of conventional machine
learning.

Even though there has also been attempts on more
theoretical explanations with promising results [7][8],
there does still seem to be a large gap to traverse until
we see these results used in more practical settings.

DOI: 10.36244/ICJ.2023.5.5

mailto:nytuaai%40inf.elte.hu?subject=
mailto:kiss%40inf.elte.hu?subject=
https://doi.org/10.36244/ICJ.2023.5.5

What can we learn from Small Data

28

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

2

C. Objectives

In subsequent sections, we do not plan to provide an
exhaustive overview of the subject, given the vast scope
of the topic. Instead, our objective is to highlight key
challenges associated with data scarcity and the strate-
gies formulated to tackle them. Furthermore, we delve
into select real-world scenarios one could encounter
during their data scientific journey, and offer practical
solutions to them.

II. SMALL DATA SOURCES

A. Limited annotations

The lack of annotations, refers to a common challenge
faced in Supervised Learning, where the required data
lacks the necessary annotations (a.k.a. labels) to train a
model. An annotation or label is a piece of information
that is associated with each data point that is required for
the ML algorithm to learn from it. Without these anno-
tations, the algorithm is unable to differentiate between
the correct and incorrect outputs.

An example of this annotation in Computer Vision
(CV) can be the names of the objects identified by their
bounding boxes used for object detection or in NLP, a
sentiment associated with each example sentence, that
can be used for Sentiment Analysis.

The lack of annotations can occur for several reasons,
including the cost, difficulty, or time-consuming nature
of annotation. In many cases, it may simply be impossi-
ble to obtain annotations for certain types of data, such as
historical archives or rare events. The lack of annotations
can also occur in situations where data is unstructured
or noisy, making it difficult to label accurately.

B. Limited diversity

Limited diversity of data points refers to a situation
in which the data set used to train a machine learning
model contains a small number of examples that are not
representative of the entire population. This can lead to
bias in the model, resulting in poor performance on new,
unseen data.

An example of this phenomenon can be seen in facial
recognition systems. If the data set used to train the
model contains a mostly images of people with lighter
skin tones or darker hair color, the model may perform
poorly when presented with images of individuals with
darker skin tones or lighter hair color. This is because
the model has not been trained on a diverse set of data,
resulting in a biased model.

The limited diversity of data points can occur for
several reasons, including the difficulty in obtaining
diverse data or the availability of biased data sources.

Fig. 1. Example of a long tailed dataset [9]

C. Long tail distribution

Long-tail distribution refers to a situation in which a
small number of categories occur frequently, while the
vast majority of categories occur infrequently.

An example of this phenomenon can be seen in the
recommendation systems that suggest products to users.
In many cases, a small number of popular product
categories account for the majority of the purchases,
while the vast majority of product categories are pur-
chased infrequently. If the recommendation system is
trained only on the popular products, it may perform
poorly when making recommendations for less popular
products.

The long-tail distribution can occur for several rea-
sons, including the inherent nature of the data and the
data collection process. In some cases, it may be difficult
or expensive to collect data on the less popular data
points, resulting in a bias towards the more popular data
points.

To understand the origins of this phenomena, it is
important to understand that long tail distributions are
abundant in nature and thus will naturally show up in
randomly sampled data.

One example of this would be the Pareto distribu-
tion, which describes the relative wealth distribution in
sociology, or Zipf’s law which states that in a given
corpus of natural language, the frequency of any word
is approximately inversely proportional to its rank in the
frequency table. [10]

D. Concept drift

Concept drift refers to a situation in which the statisti-
cal properties of the target variable in a Machine Learn-
ing problem change over time, resulting in a decrease
in the performance of the trained model. This can be

2

C. Objectives

In subsequent sections, we do not plan to provide an
exhaustive overview of the subject, given the vast scope
of the topic. Instead, our objective is to highlight key
challenges associated with data scarcity and the strate-
gies formulated to tackle them. Furthermore, we delve
into select real-world scenarios one could encounter
during their data scientific journey, and offer practical
solutions to them.

II. SMALL DATA SOURCES

A. Limited annotations

The lack of annotations, refers to a common challenge
faced in Supervised Learning, where the required data
lacks the necessary annotations (a.k.a. labels) to train a
model. An annotation or label is a piece of information
that is associated with each data point that is required for
the ML algorithm to learn from it. Without these anno-
tations, the algorithm is unable to differentiate between
the correct and incorrect outputs.

An example of this annotation in Computer Vision
(CV) can be the names of the objects identified by their
bounding boxes used for object detection or in NLP, a
sentiment associated with each example sentence, that
can be used for Sentiment Analysis.

The lack of annotations can occur for several reasons,
including the cost, difficulty, or time-consuming nature
of annotation. In many cases, it may simply be impossi-
ble to obtain annotations for certain types of data, such as
historical archives or rare events. The lack of annotations
can also occur in situations where data is unstructured
or noisy, making it difficult to label accurately.

B. Limited diversity

Limited diversity of data points refers to a situation
in which the data set used to train a machine learning
model contains a small number of examples that are not
representative of the entire population. This can lead to
bias in the model, resulting in poor performance on new,
unseen data.

An example of this phenomenon can be seen in facial
recognition systems. If the data set used to train the
model contains a mostly images of people with lighter
skin tones or darker hair color, the model may perform
poorly when presented with images of individuals with
darker skin tones or lighter hair color. This is because
the model has not been trained on a diverse set of data,
resulting in a biased model.

The limited diversity of data points can occur for
several reasons, including the difficulty in obtaining
diverse data or the availability of biased data sources.

Fig. 1. Example of a long tailed dataset [9]

C. Long tail distribution

Long-tail distribution refers to a situation in which a
small number of categories occur frequently, while the
vast majority of categories occur infrequently.

An example of this phenomenon can be seen in the
recommendation systems that suggest products to users.
In many cases, a small number of popular product
categories account for the majority of the purchases,
while the vast majority of product categories are pur-
chased infrequently. If the recommendation system is
trained only on the popular products, it may perform
poorly when making recommendations for less popular
products.

The long-tail distribution can occur for several rea-
sons, including the inherent nature of the data and the
data collection process. In some cases, it may be difficult
or expensive to collect data on the less popular data
points, resulting in a bias towards the more popular data
points.

To understand the origins of this phenomena, it is
important to understand that long tail distributions are
abundant in nature and thus will naturally show up in
randomly sampled data.

One example of this would be the Pareto distribu-
tion, which describes the relative wealth distribution in
sociology, or Zipf’s law which states that in a given
corpus of natural language, the frequency of any word
is approximately inversely proportional to its rank in the
frequency table. [10]

D. Concept drift

Concept drift refers to a situation in which the statisti-
cal properties of the target variable in a Machine Learn-
ing problem change over time, resulting in a decrease
in the performance of the trained model. This can be

What Can We Learn from Small Data

29

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

3

Fig. 2. Five types of Concept Drift according to [11]

a challenge in ML, as the model may become outdated
and unable to accurately predict new, unseen data.

An example of this phenomenon can be seen in a
spam email classifier. The distribution of spam emails
may change over time, with new types of spam emails
appearing that are not similar to those seen before. If
the model has been trained only on the earlier types
of spam emails, it may perform poorly when presented
with the new types of spam emails, resulting in increased
proportion of false negatives or false positives.

Concept drift can occur for several reasons, including
changes in the behavior of users, changes in the envi-
ronment, and changes in the data generation process. In
many cases, the drift is gradual, making it difficult to
detect and correct.

III. SMALL DATA SOLUTIONS

A. Smart Sampling

The very first step in most practical machine learning
is to ensure the data collected is the best quality possible,
that is our sample is closest possible to our population.
There are several statistical techniques developed over
the years. Here we will only show a few that are most
useful in a limited data environment.

1) Under-sampling and Over-sampling: When one
has to deal with imbalanced dataset, a common approach
is to either over-sample the minority class(es) or under-
sample the majority class(es) until the desired distribu-
tion is reached.

This can be done by randomly removing samples
(under-sampling) or adding multiple copies of the same
sample (over-sampling) at random.

They both have their disadvantages. Under-sampling
can lead to a loss of information since we leave out po-
tentially relevant information from our training dataset.
On the other-hand, over-sampling can reinforce existing
biases in the over-sampled instances. For these reasons,
it’s usually better to use a more sophisticated method
where possible.

2) Importance Sampling: Importance sampling is par-
ticularly useful for catching rare events in long-tail
distributions. This involves creating a new distribution
where rare events become not-so-rare, sampling from
this new distribution, then re-weighing the samples to
adjust for the bias introduced.

Let’s say we have a target distribution 𝑝𝑝(𝑥𝑥) and an
importance distribution 𝑞𝑞(𝑥𝑥). In order to arrive at an
approximation of the expectation of a function 𝑓𝑓 (𝑥𝑥)
under the target distribution:

E𝑝𝑝 [𝑓𝑓 (𝑥𝑥)] =
∫

𝑓𝑓 (𝑥𝑥)𝑝𝑝(𝑥𝑥) 𝑑𝑑𝑥𝑥 (1)

we can sample from the importance distribution
(where 𝑥𝑥𝑖𝑖 are samples drawn from 𝑞𝑞(𝑥𝑥)) and then re-
weight the samples:

E𝑝𝑝 [𝑓𝑓 (𝑥𝑥)] ≈
1
𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

𝑝𝑝(𝑥𝑥𝑖𝑖)
𝑞𝑞(𝑥𝑥𝑖𝑖)

𝑓𝑓 (𝑥𝑥𝑖𝑖) (2)

3) Active Learning: Active learning is an iterative
process where the model selects the most informative
samples to be labeled, thus reducing the amount of
labeling resources to be used.

An early example for an active learning algorithm
introduced by Cohn, Atlas and Ladner [12] is Query
by Committee (QBC). The central idea behind QBC is
to maintain a committee of models (set of hypotheses)
over the data, and to obtain labels for instances about
which the committee members disagree the most. This
can reduce the amount of labeling by focusing only on
the most informative (highest entropy) examples, but
at the same time can introduce a large computational
overhead. For the detailed algorithm, see Algorithm 1

Algorithm 1 Query By Committee (QBC)
1: Input: Dataset D, committee of models C
2: Train each model 𝑐𝑐𝑖𝑖 ∈ C on D
3: while stopping criterion not met do
4: for each unlabeled 𝑥𝑥𝑢𝑢 do
5: Calculate disagreement:
6: 𝐷𝐷 (𝑥𝑥𝑢𝑢) =

𝑐𝑐𝑖𝑖 ,𝑐𝑐 𝑗𝑗 ∈C,𝑖𝑖≠ 𝑗𝑗 I(𝑐𝑐𝑖𝑖 (𝑥𝑥𝑢𝑢) ≠ 𝑐𝑐 𝑗𝑗 (𝑥𝑥𝑢𝑢))

7: end for
8: Query label for instance 𝑥𝑥∗ = arg max𝑥𝑥𝑢𝑢 𝐷𝐷 (𝑥𝑥𝑢𝑢)
9: Add labeled instance (𝑥𝑥∗, 𝑦𝑦∗) to D

10: Re-train each model 𝑐𝑐𝑖𝑖 ∈ C on D
11: end while
12: Output: Labeled dataset D

It has to be mentioned that this is just an early exam-
ple, since its introduction several other Active Learning
techniques have developed, such as Uncertainty Sam-
pling [13] Expected Model Change [14], Expected Error

3

Fig. 2. Five types of Concept Drift according to [11]

a challenge in ML, as the model may become outdated
and unable to accurately predict new, unseen data.

An example of this phenomenon can be seen in a
spam email classifier. The distribution of spam emails
may change over time, with new types of spam emails
appearing that are not similar to those seen before. If
the model has been trained only on the earlier types
of spam emails, it may perform poorly when presented
with the new types of spam emails, resulting in increased
proportion of false negatives or false positives.

Concept drift can occur for several reasons, including
changes in the behavior of users, changes in the envi-
ronment, and changes in the data generation process. In
many cases, the drift is gradual, making it difficult to
detect and correct.

III. SMALL DATA SOLUTIONS

A. Smart Sampling

The very first step in most practical machine learning
is to ensure the data collected is the best quality possible,
that is our sample is closest possible to our population.
There are several statistical techniques developed over
the years. Here we will only show a few that are most
useful in a limited data environment.

1) Under-sampling and Over-sampling: When one
has to deal with imbalanced dataset, a common approach
is to either over-sample the minority class(es) or under-
sample the majority class(es) until the desired distribu-
tion is reached.

This can be done by randomly removing samples
(under-sampling) or adding multiple copies of the same
sample (over-sampling) at random.

They both have their disadvantages. Under-sampling
can lead to a loss of information since we leave out po-
tentially relevant information from our training dataset.
On the other-hand, over-sampling can reinforce existing
biases in the over-sampled instances. For these reasons,
it’s usually better to use a more sophisticated method
where possible.

2) Importance Sampling: Importance sampling is par-
ticularly useful for catching rare events in long-tail
distributions. This involves creating a new distribution
where rare events become not-so-rare, sampling from
this new distribution, then re-weighing the samples to
adjust for the bias introduced.

Let’s say we have a target distribution 𝑝𝑝(𝑥𝑥) and an
importance distribution 𝑞𝑞(𝑥𝑥). In order to arrive at an
approximation of the expectation of a function 𝑓𝑓 (𝑥𝑥)
under the target distribution:

E𝑝𝑝 [𝑓𝑓 (𝑥𝑥)] =
∫

𝑓𝑓 (𝑥𝑥)𝑝𝑝(𝑥𝑥) 𝑑𝑑𝑥𝑥 (1)

we can sample from the importance distribution
(where 𝑥𝑥𝑖𝑖 are samples drawn from 𝑞𝑞(𝑥𝑥)) and then re-
weight the samples:

E𝑝𝑝 [𝑓𝑓 (𝑥𝑥)] ≈
1
𝑁𝑁

𝑁𝑁∑︁
𝑖𝑖=1

𝑝𝑝(𝑥𝑥𝑖𝑖)
𝑞𝑞(𝑥𝑥𝑖𝑖)

𝑓𝑓 (𝑥𝑥𝑖𝑖) (2)

3) Active Learning: Active learning is an iterative
process where the model selects the most informative
samples to be labeled, thus reducing the amount of
labeling resources to be used.

An early example for an active learning algorithm
introduced by Cohn, Atlas and Ladner [12] is Query
by Committee (QBC). The central idea behind QBC is
to maintain a committee of models (set of hypotheses)
over the data, and to obtain labels for instances about
which the committee members disagree the most. This
can reduce the amount of labeling by focusing only on
the most informative (highest entropy) examples, but
at the same time can introduce a large computational
overhead. For the detailed algorithm, see Algorithm 1

Algorithm 1 Query By Committee (QBC)
1: Input: Dataset D, committee of models C
2: Train each model 𝑐𝑐𝑖𝑖 ∈ C on D
3: while stopping criterion not met do
4: for each unlabeled 𝑥𝑥𝑢𝑢 do
5: Calculate disagreement:
6: 𝐷𝐷 (𝑥𝑥𝑢𝑢) =

𝑐𝑐𝑖𝑖 ,𝑐𝑐 𝑗𝑗 ∈C,𝑖𝑖≠ 𝑗𝑗 I(𝑐𝑐𝑖𝑖 (𝑥𝑥𝑢𝑢) ≠ 𝑐𝑐 𝑗𝑗 (𝑥𝑥𝑢𝑢))

7: end for
8: Query label for instance 𝑥𝑥∗ = arg max𝑥𝑥𝑢𝑢 𝐷𝐷 (𝑥𝑥𝑢𝑢)
9: Add labeled instance (𝑥𝑥∗, 𝑦𝑦∗) to D

10: Re-train each model 𝑐𝑐𝑖𝑖 ∈ C on D
11: end while
12: Output: Labeled dataset D

It has to be mentioned that this is just an early exam-
ple, since its introduction several other Active Learning
techniques have developed, such as Uncertainty Sam-
pling [13] Expected Model Change [14], Expected Error

What Can We Learn from Small Data

30

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

4

Reduction [15], Variance Reduction [16], Bayesian Ac-
tive Learning by Disagreement [17], Diversity Sampling
[18], Hierarchical Sampling [19], and Online Active
Learning [20], to name a few.

B. Expert knowledge

Fig. 3. Schematic drawing of "Expert Knowledge"

1) Taxonomy: One way in which expert knowledge
can be incorporated into Deep Learning is through the
use of taxonomies. A taxonomy is a hierarchical or
otherwise structured organization of data that categorizes
items or concepts based on their similarities, differences,
and relationships.

In many machine learning tasks, a binary decision can
be expanded into a multi-class decision using a taxon-
omy. This taxonomy divides the initial binary classes
into more specific sub-categories, organized hierarchi-
cally in a tree-like fashion. Rather than training the
model on the initial binary labels, one can use the
more detailed labels corresponding to the leaves of this
hierarchical structure. This approach allows the model to
establish more intricate decision boundaries, capturing
subtleties that might be overlooked in a simple binary
classification.

Once the model is trained and deployed, predictions
made at the leaf-level can be aggregated back to the
original binary classification, if necessary.

2) Hand-crafted features: Another way in which ex-
pert knowledge can be incorporated into deep learning
is through the use of hand-crafted features. Hand-crafted
features are manually designed features that can be
used as inputs to a neural network. These features are
often designed based on domain-specific knowledge or
prior research, and can be used to capture important
characteristics of the data that may not be captured by
the network’s automatic feature learning.

These techniques used to be the back-bone of many AI
algorithms before Deep Learning came into the picture,
but have quickly fallen out of favor due to Deep Neural
Networks’ ability to learn similar but more complicated
features. Examples of such techniques in Computer
Vision include Histogram of Oriented Gradients (HOG)
[21] and Local Binary Patterns (LBP) [22].

C. Data Augmentation

Fig. 4. Schematic drawing of "Data Augmentation"

1) Heuristic-based Methods: Heuristic-driven data
augmentation techniques apply specific rules or heuris-
tics to original data, generating new data samples. De-
signed to imitate natural data variations, these methods
produce samples closely resembling, but not identical to,
the original ones.

For image data, examples include geometric and color-
space adjustments like random cropping, rotation, shift-
ing, and variations in color through flips and jitter.

The same in the case of text-based input can in-
volve: synonym replacement, back-translation, random
deletion/insertion, random swap, etc..

It’s important to note that these transformations need
to be invariant with respect to the labels associated with
the input data.

2) Data Generation: Data generation is a data aug-
mentation method in Deep Learning that involves gen-
erating new synthetic data from scratch instead of trans-
forming or manipulating existing data samples. This is
typically done using generative models, which are deep
learning models designed to learn the underlying patterns
and structure of the data and generate new samples that
are similar to the original data.

One of the most common generative models used
for data generation is the generative adversarial network
(GAN). GANs consist of two deep neural networks: a
generator network and a discriminator network. The gen-
erator network takes a random input vector and generates
a synthetic data sample, while the discriminator network
tries to distinguish between the synthetic data and the
real data.

During training, the generator and discriminator net-
works are trained together in a zero-sum game, where
the generator tries to generate synthetic data that fools
the discriminator, and the discriminator tries to correctly
distinguish between the synthetic and real data. Over
time, the generator becomes better at generating realistic
data samples, and the discriminator becomes better at
distinguishing between the synthetic and real data.

4

Reduction [15], Variance Reduction [16], Bayesian Ac-
tive Learning by Disagreement [17], Diversity Sampling
[18], Hierarchical Sampling [19], and Online Active
Learning [20], to name a few.

B. Expert knowledge

Fig. 3. Schematic drawing of "Expert Knowledge"

1) Taxonomy: One way in which expert knowledge
can be incorporated into Deep Learning is through the
use of taxonomies. A taxonomy is a hierarchical or
otherwise structured organization of data that categorizes
items or concepts based on their similarities, differences,
and relationships.

In many machine learning tasks, a binary decision can
be expanded into a multi-class decision using a taxon-
omy. This taxonomy divides the initial binary classes
into more specific sub-categories, organized hierarchi-
cally in a tree-like fashion. Rather than training the
model on the initial binary labels, one can use the
more detailed labels corresponding to the leaves of this
hierarchical structure. This approach allows the model to
establish more intricate decision boundaries, capturing
subtleties that might be overlooked in a simple binary
classification.

Once the model is trained and deployed, predictions
made at the leaf-level can be aggregated back to the
original binary classification, if necessary.

2) Hand-crafted features: Another way in which ex-
pert knowledge can be incorporated into deep learning
is through the use of hand-crafted features. Hand-crafted
features are manually designed features that can be
used as inputs to a neural network. These features are
often designed based on domain-specific knowledge or
prior research, and can be used to capture important
characteristics of the data that may not be captured by
the network’s automatic feature learning.

These techniques used to be the back-bone of many AI
algorithms before Deep Learning came into the picture,
but have quickly fallen out of favor due to Deep Neural
Networks’ ability to learn similar but more complicated
features. Examples of such techniques in Computer
Vision include Histogram of Oriented Gradients (HOG)
[21] and Local Binary Patterns (LBP) [22].

C. Data Augmentation

Fig. 4. Schematic drawing of "Data Augmentation"

1) Heuristic-based Methods: Heuristic-driven data
augmentation techniques apply specific rules or heuris-
tics to original data, generating new data samples. De-
signed to imitate natural data variations, these methods
produce samples closely resembling, but not identical to,
the original ones.

For image data, examples include geometric and color-
space adjustments like random cropping, rotation, shift-
ing, and variations in color through flips and jitter.

The same in the case of text-based input can in-
volve: synonym replacement, back-translation, random
deletion/insertion, random swap, etc..

It’s important to note that these transformations need
to be invariant with respect to the labels associated with
the input data.

2) Data Generation: Data generation is a data aug-
mentation method in Deep Learning that involves gen-
erating new synthetic data from scratch instead of trans-
forming or manipulating existing data samples. This is
typically done using generative models, which are deep
learning models designed to learn the underlying patterns
and structure of the data and generate new samples that
are similar to the original data.

One of the most common generative models used
for data generation is the generative adversarial network
(GAN). GANs consist of two deep neural networks: a
generator network and a discriminator network. The gen-
erator network takes a random input vector and generates
a synthetic data sample, while the discriminator network
tries to distinguish between the synthetic data and the
real data.

During training, the generator and discriminator net-
works are trained together in a zero-sum game, where
the generator tries to generate synthetic data that fools
the discriminator, and the discriminator tries to correctly
distinguish between the synthetic and real data. Over
time, the generator becomes better at generating realistic
data samples, and the discriminator becomes better at
distinguishing between the synthetic and real data.

What Can We Learn from Small Data

31

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

5

Given a noise variable 𝑧𝑧 drawn from a prior distribu-
tion 𝑝𝑝(𝑧𝑧), generator G tries to produce something similar
to a sample, 𝐺𝐺 (𝑧𝑧).

Given a real sample 𝑥𝑥, drawn from the observed
distribution 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝑥𝑥) and the fake sample 𝐺𝐺 (𝑧𝑧), the
discriminator tries to differentiate between the two and
outputs a probability associated with its confidence that
the generated sample is from the observed distribution.

This way, we get a two-player minimax game, with
the value function 𝑉𝑉 (𝐷𝐷𝐷𝐺𝐺):

𝑉𝑉 (𝐷𝐷𝐷𝐺𝐺) =E𝑥𝑥∼𝑝𝑝data (𝑥𝑥) [log 𝐷𝐷 (𝑥𝑥)] (3)
+ E𝑧𝑧∼𝑝𝑝 (𝑧𝑧) [log(1 − 𝐷𝐷 (𝐺𝐺 (𝑧𝑧)))] (4)

The discriminator tries to maximize 𝑉𝑉 (𝐷𝐷𝐷𝐺𝐺) with
respect to 𝐷𝐷, while the generator tries to minimize the
same.

This results in the following optimization problem:

min
𝐺𝐺

max
𝐷𝐷

𝑉𝑉 (𝐷𝐷𝐷𝐺𝐺) (5)

Where the generator and discriminator are trained
alternatively step-by-step.

D. Semi-supervised Learning

Fig. 5. Schematic drawing of "Semi-supervised Learning"

Semi-supervised learning is a type of machine learning
that involves training a model on both labeled and
unlabeled data. The core idea is that even though the
unlabeled data doesn’t provide direct supervision, it
still contains valuable information about the underlying
data distribution that can assist the learning process.
This approach is especially useful when labeled data
is limited, expensive, or time-consuming to obtain, but
unlabeled data is abundant.

An example of Semi-Supervised Learning is Consis-
tency Regularization, where the model is trained to be
robust against different data augmentations by ensuring
consistent predictions for different augmented views of
the same input, even if the input is unlabeled. [23]

Another is MixMatch, which leverages the MixUp
process: a data augmentation technique that creates vir-
tual training examples by linearly interpolating between
pairs of examples and their associated labels. MixMatch

takes a pair of data points (one from the labeled set and
one from the unlabeled set with its guessed label) and
applies the MixUp process on them. [24]

Pseudo-labeling is another straightforward way to
utilize unlabeled data. The idea is to train a model on all
the labeled data and then predict on the rest (unlabeled)
data points. If the prediction certainty reaches a certain
confidence, we assign the data with the predicted label
and use it to retrain the model. [25]

E. Self-supervised Learning

Fig. 6. Schematic drawing of "Self-supervised Learning"

In self-supervised learning, the algorithm learns to
generate its own labels or representations from the input
data itself, without any explicit supervision. This is
usually achieved by defining a "pretext task" or "aux-
iliary task" that helps the model learn useful features
or representations from the data. The idea is that these
learned features will be useful for downstream tasks, like
classification or regression.

Common examples of self-supervised learning in a
text-based context include language model pre-training
(e.g., BERT [26], GPT [27]), where the model learns
to predict the next word in a sentence, based on huge
amounts of unlabeled text data, where the training con-
sists of hiding certain parts of the input and letting the
model try to guess the right answer. In this was, the
labels are the masked parts of the unlabeled input data,
which are hidden from the models during training.

In the realm of computer vision, a famous self-
supervised learning method is Contrastive Learning [28].
Here, the model tries to learn an embedding space where
similar images are closer to each other, and dissimilar
images are farther away. This is done by utilizing con-
cepts such as positive pairs and negative pairs, where
positive pairs can be different augmentations of the same
data point.

Given:
• 𝐷𝐷𝑤𝑤 (𝑥𝑥𝑖𝑖 , 𝑥𝑥 𝑗𝑗) as the Euclidean distance between two

data point embeddings 𝑥𝑥𝑖𝑖 and 𝑥𝑥 𝑗𝑗 , where 𝑤𝑤 repre-
sents the parameters of the neural network.

• 𝑦𝑦 as a binary label indicating whether the pair is a
positive pair (𝑦𝑦 = 1) or a negative pair (𝑦𝑦 = 0).

• 𝑚𝑚 as a predefined margin to ensure that negative
pairs have distances greater than this margin.

5

Given a noise variable 𝑧𝑧 drawn from a prior distribu-
tion 𝑝𝑝(𝑧𝑧), generator G tries to produce something similar
to a sample, 𝐺𝐺 (𝑧𝑧).

Given a real sample 𝑥𝑥, drawn from the observed
distribution 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝑥𝑥) and the fake sample 𝐺𝐺 (𝑧𝑧), the
discriminator tries to differentiate between the two and
outputs a probability associated with its confidence that
the generated sample is from the observed distribution.

This way, we get a two-player minimax game, with
the value function 𝑉𝑉 (𝐷𝐷𝐷𝐺𝐺):

𝑉𝑉 (𝐷𝐷𝐷𝐺𝐺) =E𝑥𝑥∼𝑝𝑝data (𝑥𝑥) [log 𝐷𝐷 (𝑥𝑥)] (3)
+ E𝑧𝑧∼𝑝𝑝 (𝑧𝑧) [log(1 − 𝐷𝐷 (𝐺𝐺 (𝑧𝑧)))] (4)

The discriminator tries to maximize 𝑉𝑉 (𝐷𝐷𝐷𝐺𝐺) with
respect to 𝐷𝐷, while the generator tries to minimize the
same.

This results in the following optimization problem:

min
𝐺𝐺

max
𝐷𝐷

𝑉𝑉 (𝐷𝐷𝐷𝐺𝐺) (5)

Where the generator and discriminator are trained
alternatively step-by-step.

D. Semi-supervised Learning

Fig. 5. Schematic drawing of "Semi-supervised Learning"

Semi-supervised learning is a type of machine learning
that involves training a model on both labeled and
unlabeled data. The core idea is that even though the
unlabeled data doesn’t provide direct supervision, it
still contains valuable information about the underlying
data distribution that can assist the learning process.
This approach is especially useful when labeled data
is limited, expensive, or time-consuming to obtain, but
unlabeled data is abundant.

An example of Semi-Supervised Learning is Consis-
tency Regularization, where the model is trained to be
robust against different data augmentations by ensuring
consistent predictions for different augmented views of
the same input, even if the input is unlabeled. [23]

Another is MixMatch, which leverages the MixUp
process: a data augmentation technique that creates vir-
tual training examples by linearly interpolating between
pairs of examples and their associated labels. MixMatch

takes a pair of data points (one from the labeled set and
one from the unlabeled set with its guessed label) and
applies the MixUp process on them. [24]

Pseudo-labeling is another straightforward way to
utilize unlabeled data. The idea is to train a model on all
the labeled data and then predict on the rest (unlabeled)
data points. If the prediction certainty reaches a certain
confidence, we assign the data with the predicted label
and use it to retrain the model. [25]

E. Self-supervised Learning

Fig. 6. Schematic drawing of "Self-supervised Learning"

In self-supervised learning, the algorithm learns to
generate its own labels or representations from the input
data itself, without any explicit supervision. This is
usually achieved by defining a "pretext task" or "aux-
iliary task" that helps the model learn useful features
or representations from the data. The idea is that these
learned features will be useful for downstream tasks, like
classification or regression.

Common examples of self-supervised learning in a
text-based context include language model pre-training
(e.g., BERT [26], GPT [27]), where the model learns
to predict the next word in a sentence, based on huge
amounts of unlabeled text data, where the training con-
sists of hiding certain parts of the input and letting the
model try to guess the right answer. In this was, the
labels are the masked parts of the unlabeled input data,
which are hidden from the models during training.

In the realm of computer vision, a famous self-
supervised learning method is Contrastive Learning [28].
Here, the model tries to learn an embedding space where
similar images are closer to each other, and dissimilar
images are farther away. This is done by utilizing con-
cepts such as positive pairs and negative pairs, where
positive pairs can be different augmentations of the same
data point.

Given:
• 𝐷𝐷𝑤𝑤 (𝑥𝑥𝑖𝑖 , 𝑥𝑥 𝑗𝑗) as the Euclidean distance between two

data point embeddings 𝑥𝑥𝑖𝑖 and 𝑥𝑥 𝑗𝑗 , where 𝑤𝑤 repre-
sents the parameters of the neural network.

• 𝑦𝑦 as a binary label indicating whether the pair is a
positive pair (𝑦𝑦 = 1) or a negative pair (𝑦𝑦 = 0).

• 𝑚𝑚 as a predefined margin to ensure that negative
pairs have distances greater than this margin.

What Can We Learn from Small Data

32

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

6

The contrastive loss 𝐿𝐿 for a single pair is:

𝐿𝐿𝑖𝑖 𝑖𝑖 =
1
2
𝑦𝑦𝑦𝑦𝑤𝑤 (𝑥𝑥𝑖𝑖 , 𝑥𝑥 𝑖𝑖)2+ 1

2
(1− 𝑦𝑦) max(0, 𝑚𝑚−𝑦𝑦𝑤𝑤 (𝑥𝑥𝑖𝑖 , 𝑥𝑥 𝑖𝑖))2

F. Transfer Learning

Fig. 7. Schematic drawing of "Transfer Learning"

Transfer learning is a Machine Learning technique
that involves using knowledge gained from solving one
problem to improve the performance of a model on a
different, but related, problem. Transfer learning is based
on the intuition that the knowledge and representations
learned by a model on one task can be transferred to a
different task that shares similar features or structure.
The review by Pan et al [29] identified three main
subcategories: Inductive, Transductive and Unsupervised
Transfer Learning. Below is a quick summary of each:

1) Inductive Transfer Learning: This technique in-
volves transferring knowledge across domains or tasks,
where labeled data is available in both the source and
the target domain.

2) Transductive Transfer Learning: Here we focus on
domain adaptation, where the task remains unchanged,
but the data distribution differs, and no labeled data is
available in the target domain.

3) Unsupervised Transfer Learning: In this scenario,
we attempt to transfer knowledge from the source do-
main/task to improve the learning of an entirely different
task in the target domain, where no labeled data is
available.

G. Meta learning

In meta-learning, the goal is to train a model to learn
how to learn from a small number of examples, and
then use this learned knowledge to rapidly adapt to new,
unseen tasks.

There are different approaches to meta-learning, but
a common one is to use a "meta-learner" that learns to
update the parameters of a "base-learner" model based
on a small amount of data from a new task. This process
of updating the base-learner parameters based on new
tasks is sometimes referred to as "meta-training.". We
can identify several categories of Meta Learning, such
as Model based, Metric based and Optimization based
meta-learning. [30]

1) Model based meta-learning: Here we are training a
meta-learner on a set of training tasks, each with limited
number of labels. Whenever a new task is presented, the
meta-learner adjusts its internal parameters based on the
training examples and desired labels for the new task.

One example of a model-based meta-learning algo-
rithm is Memory-Augmented Neural Networks. The
core idea is to augment the model architecture (neural
network) with an external memory mechanism. This
introduces an extra memory component to the training
process. Instead of only updating the weights of the
network as traditional neural networks do, they can also
update the content of their memories to perform better
on new tasks. [31]

2) Metric based meta-learning: In metric based meta-
learning, we have a distance metric in the space of tasks
that can be used to quickly identify similar tasks and
generalize to new tasks. The meta-learner can be given
new tasks and a few related examples and is trained to
be able to identify the similarity between these new tasks
and the old ones in its space of tasks.

An example of this is Prototypical Networks. For
each class, it computes a prototype (mean representation)
from the embedding associated with the examples in that
class. For a new data point, its class is determined by its
proximity to these prototypes. [32]

3) Optimization based meta-learning: Finally, opti-
mization based meta-learning approaches meta-learning
as a bi-level optimization problem. At the inner-level,
a base-learner makes task-specifc updates using some
optimization strategy (such as gradient descent). At the
outer-level, the performance across tasks is optimized.

Here, we can look at Model-Agnostic Meta Learning
where the aim is to find a set of model parameters that
are not optimal for any single task, but can be quickly
adapted to any of the tasks within the desired set of tasks.
[31]

IV. SMALL DATA SCENARIOS

Now let’s examine some scenarios a practitioner in
the field might encounter in the real-world. For each
we will list the most likely problems that can arise
and recommended solutions from our list of techniques
examined.

A. Diagnosis of Rare Diseases from Medical Images

• Small Data Sources:
– Limited annotations: Obtaining labels might in-

volve invasive/expensive procedure.
– Limited diversity: Examples might come from

a few specialized hospitals/geographical regions
only.

6

The contrastive loss 𝐿𝐿 for a single pair is:

𝐿𝐿𝑖𝑖 𝑖𝑖 =
1
2
𝑦𝑦𝑦𝑦𝑤𝑤 (𝑥𝑥𝑖𝑖 , 𝑥𝑥 𝑖𝑖)2+ 1

2
(1− 𝑦𝑦) max(0, 𝑚𝑚−𝑦𝑦𝑤𝑤 (𝑥𝑥𝑖𝑖 , 𝑥𝑥 𝑖𝑖))2

F. Transfer Learning

Fig. 7. Schematic drawing of "Transfer Learning"

Transfer learning is a Machine Learning technique
that involves using knowledge gained from solving one
problem to improve the performance of a model on a
different, but related, problem. Transfer learning is based
on the intuition that the knowledge and representations
learned by a model on one task can be transferred to a
different task that shares similar features or structure.
The review by Pan et al [29] identified three main
subcategories: Inductive, Transductive and Unsupervised
Transfer Learning. Below is a quick summary of each:

1) Inductive Transfer Learning: This technique in-
volves transferring knowledge across domains or tasks,
where labeled data is available in both the source and
the target domain.

2) Transductive Transfer Learning: Here we focus on
domain adaptation, where the task remains unchanged,
but the data distribution differs, and no labeled data is
available in the target domain.

3) Unsupervised Transfer Learning: In this scenario,
we attempt to transfer knowledge from the source do-
main/task to improve the learning of an entirely different
task in the target domain, where no labeled data is
available.

G. Meta learning

In meta-learning, the goal is to train a model to learn
how to learn from a small number of examples, and
then use this learned knowledge to rapidly adapt to new,
unseen tasks.

There are different approaches to meta-learning, but
a common one is to use a "meta-learner" that learns to
update the parameters of a "base-learner" model based
on a small amount of data from a new task. This process
of updating the base-learner parameters based on new
tasks is sometimes referred to as "meta-training.". We
can identify several categories of Meta Learning, such
as Model based, Metric based and Optimization based
meta-learning. [30]

1) Model based meta-learning: Here we are training a
meta-learner on a set of training tasks, each with limited
number of labels. Whenever a new task is presented, the
meta-learner adjusts its internal parameters based on the
training examples and desired labels for the new task.

One example of a model-based meta-learning algo-
rithm is Memory-Augmented Neural Networks. The
core idea is to augment the model architecture (neural
network) with an external memory mechanism. This
introduces an extra memory component to the training
process. Instead of only updating the weights of the
network as traditional neural networks do, they can also
update the content of their memories to perform better
on new tasks. [31]

2) Metric based meta-learning: In metric based meta-
learning, we have a distance metric in the space of tasks
that can be used to quickly identify similar tasks and
generalize to new tasks. The meta-learner can be given
new tasks and a few related examples and is trained to
be able to identify the similarity between these new tasks
and the old ones in its space of tasks.

An example of this is Prototypical Networks. For
each class, it computes a prototype (mean representation)
from the embedding associated with the examples in that
class. For a new data point, its class is determined by its
proximity to these prototypes. [32]

3) Optimization based meta-learning: Finally, opti-
mization based meta-learning approaches meta-learning
as a bi-level optimization problem. At the inner-level,
a base-learner makes task-specifc updates using some
optimization strategy (such as gradient descent). At the
outer-level, the performance across tasks is optimized.

Here, we can look at Model-Agnostic Meta Learning
where the aim is to find a set of model parameters that
are not optimal for any single task, but can be quickly
adapted to any of the tasks within the desired set of tasks.
[31]

IV. SMALL DATA SCENARIOS

Now let’s examine some scenarios a practitioner in
the field might encounter in the real-world. For each
we will list the most likely problems that can arise
and recommended solutions from our list of techniques
examined.

A. Diagnosis of Rare Diseases from Medical Images

• Small Data Sources:
– Limited annotations: Obtaining labels might in-

volve invasive/expensive procedure.
– Limited diversity: Examples might come from

a few specialized hospitals/geographical regions
only.

What Can We Learn from Small Data

33

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

7

– Long tail distribution: Many common diseases
and a few rare ones.

• Small Data Solutions:
– Expert knowledge: Incorporate knowledge from

medical professionals. [33]
– Taxonomy: Subdivide diseases based on origin.

[33]
– Data Augmentation: Generate more images

through invariant transformations. [33]
– Transfer Learning: Use models pre-trained on

larger dataset. [33]

B. Predicting Customer Churn in a New Market

• Small Data Sources:
– Limited annotations: Company is still new, so

small existing dataset.
– Concept drift: Customer behavior might change

over time, especially in new markets.
• Small Data Solutions:

– Active Learning: Keep updating the model by
querying the most uncertain predictions. [34]

– Expert knowledge: Incorporate business intelli-
gence and market insights. [35]

– Semi-supervised Learning: Incorporate informa-
tion about customer interactions. [36]

C. Sentiment Analysis for a Less Common Language

• Small Data Sources:
– Limited annotations: Fewer examples in rare lan-

guages.
– Limited diversity: Most examples might come

from a limited set of sources (people who like
to leave reviews).

– Concept drift: Words and phrases change their
meanings over time, sense of humor might
evolve.

• Small Data Solutions:
– Smart Sampling: Choose diverse examples across

different all possible languages.
– Data Generation: Use translation tools to aug-

ment data. [37]
– Self-supervised Learning: Predict which words

are the best sentiment predictors. [38]
– Transfer Learning: Transfer user biases to textual

features. [39]

D. Self-driving in a New Environment

• Small Data Sources:
– Limited diversity: Training data might not in-

clude all types of environments.

– Concept drift: Environment can change over time
(e.g., changes in climate/lighting conditions).

– Long tail distribution: Certain events in driving
happen rarely (e.g., crashes).

• Small Data Solutions:
– Data Augmentation: Simulate different lighting

and object placements. [40]
– Importance Sampling: Weight experiences that

are less frequent but important (like crashes)
more heavily.

– Meta-learning: Use knowledge from common ob-
jects to help detect rare ones. [41]

V. DISCUSSION

The era of big data has led to a vast landscape of deep
learning techniques, leaving the average practitioner un-
certain about which direction to take for unfamiliar chal-
lenges. Furthermore, much of the theoretical groundwork
is done on unrealistically large and good quality data
sources that doesn’t take into account the natural shift
in the specific domain studied.

Through this paper, our aim is to guide practitioners
by offering a concise summary of frequently faced
challenges and potential solutions. This is complemented
by a curated set of real-world examples. It is our sincere
hope that readers find value in our efforts.

REFERENCES

[1] E. Alpaydin, Introduction to machine learning. MIT press, 2020.
[2] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning

representations by back-propagating errors,” nature, vol. 323, no.
6088, pp. 533–536, 1986.

[3] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[4] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[5] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from
a few examples: A survey on few-shot learning,” ACM computing
surveys (csur), vol. 53, no. 3, pp. 1–34, 2020.

[6] J. Shu, Z. Xu, and D. Meng, “Small sample learning in big data
era,” arXiv preprint arXiv:1808.04572, 2018.

[7] L. Szymanski, B. McCane, and C. Atkinson, “Conceptual capac-
ity and effective complexity of neural networks,” arXiv preprint
arXiv:2103.07614, 2021.

[8] A. M. Saxe, Y. Bansal, J. Dapello, M. Advani, A. Kolchinsky,
B. D. Tracey, and D. D. Cox, “On the information bottleneck the-
ory of deep learning,” Journal of Statistical Mechanics: Theory
and Experiment, vol. 2019, no. 12, p. 124020, 2019.

[9] Y. Zhang, B. Kang, B. Hooi, S. Yan, and J. Feng, “Deep long-
tailed learning: A survey,” arXiv preprint arXiv:2110.04596,
2021.

[10] M. E. Newman, “Power laws, pareto distributions and zipf’s law,”
Contemporary physics, vol. 46, no. 5, pp. 323–351, 2005.

[11] B. Krawczyk and A. Cano, “Online ensemble learning with
abstaining classifiers for drifting and noisy data streams,” Applied
Soft Computing, vol. 68, pp. 677–692, 2018.

[12] D. Cohn, L. Atlas, and R. Ladner, “Improving generalization with
active learning,” Machine learning, vol. 15, pp. 201–221, 1994.

[13] D. D. Lewis, “A sequential algorithm for training text classifiers:
Corrigendum and additional data,” in Acm Sigir Forum, vol. 29,
no. 2. ACM New York, NY, USA, 1995, pp. 13–19.

7

– Long tail distribution: Many common diseases
and a few rare ones.

• Small Data Solutions:
– Expert knowledge: Incorporate knowledge from

medical professionals. [33]
– Taxonomy: Subdivide diseases based on origin.

[33]
– Data Augmentation: Generate more images

through invariant transformations. [33]
– Transfer Learning: Use models pre-trained on

larger dataset. [33]

B. Predicting Customer Churn in a New Market

• Small Data Sources:
– Limited annotations: Company is still new, so

small existing dataset.
– Concept drift: Customer behavior might change

over time, especially in new markets.
• Small Data Solutions:

– Active Learning: Keep updating the model by
querying the most uncertain predictions. [34]

– Expert knowledge: Incorporate business intelli-
gence and market insights. [35]

– Semi-supervised Learning: Incorporate informa-
tion about customer interactions. [36]

C. Sentiment Analysis for a Less Common Language

• Small Data Sources:
– Limited annotations: Fewer examples in rare lan-

guages.
– Limited diversity: Most examples might come

from a limited set of sources (people who like
to leave reviews).

– Concept drift: Words and phrases change their
meanings over time, sense of humor might
evolve.

• Small Data Solutions:
– Smart Sampling: Choose diverse examples across

different all possible languages.
– Data Generation: Use translation tools to aug-

ment data. [37]
– Self-supervised Learning: Predict which words

are the best sentiment predictors. [38]
– Transfer Learning: Transfer user biases to textual

features. [39]

D. Self-driving in a New Environment

• Small Data Sources:
– Limited diversity: Training data might not in-

clude all types of environments.

– Concept drift: Environment can change over time
(e.g., changes in climate/lighting conditions).

– Long tail distribution: Certain events in driving
happen rarely (e.g., crashes).

• Small Data Solutions:
– Data Augmentation: Simulate different lighting

and object placements. [40]
– Importance Sampling: Weight experiences that

are less frequent but important (like crashes)
more heavily.

– Meta-learning: Use knowledge from common ob-
jects to help detect rare ones. [41]

V. DISCUSSION

The era of big data has led to a vast landscape of deep
learning techniques, leaving the average practitioner un-
certain about which direction to take for unfamiliar chal-
lenges. Furthermore, much of the theoretical groundwork
is done on unrealistically large and good quality data
sources that doesn’t take into account the natural shift
in the specific domain studied.

Through this paper, our aim is to guide practitioners
by offering a concise summary of frequently faced
challenges and potential solutions. This is complemented
by a curated set of real-world examples. It is our sincere
hope that readers find value in our efforts.

REFERENCES

[1] E. Alpaydin, Introduction to machine learning. MIT press, 2020.
[2] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning

representations by back-propagating errors,” nature, vol. 323, no.
6088, pp. 533–536, 1986.

[3] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[4] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[5] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from
a few examples: A survey on few-shot learning,” ACM computing
surveys (csur), vol. 53, no. 3, pp. 1–34, 2020.

[6] J. Shu, Z. Xu, and D. Meng, “Small sample learning in big data
era,” arXiv preprint arXiv:1808.04572, 2018.

[7] L. Szymanski, B. McCane, and C. Atkinson, “Conceptual capac-
ity and effective complexity of neural networks,” arXiv preprint
arXiv:2103.07614, 2021.

[8] A. M. Saxe, Y. Bansal, J. Dapello, M. Advani, A. Kolchinsky,
B. D. Tracey, and D. D. Cox, “On the information bottleneck the-
ory of deep learning,” Journal of Statistical Mechanics: Theory
and Experiment, vol. 2019, no. 12, p. 124020, 2019.

[9] Y. Zhang, B. Kang, B. Hooi, S. Yan, and J. Feng, “Deep long-
tailed learning: A survey,” arXiv preprint arXiv:2110.04596,
2021.

[10] M. E. Newman, “Power laws, pareto distributions and zipf’s law,”
Contemporary physics, vol. 46, no. 5, pp. 323–351, 2005.

[11] B. Krawczyk and A. Cano, “Online ensemble learning with
abstaining classifiers for drifting and noisy data streams,” Applied
Soft Computing, vol. 68, pp. 677–692, 2018.

[12] D. Cohn, L. Atlas, and R. Ladner, “Improving generalization with
active learning,” Machine learning, vol. 15, pp. 201–221, 1994.

[13] D. D. Lewis, “A sequential algorithm for training text classifiers:
Corrigendum and additional data,” in Acm Sigir Forum, vol. 29,
no. 2. ACM New York, NY, USA, 1995, pp. 13–19.

References
 [1] E. Alpaydin, Introduction to machine learning. MIT press, 2020.
 [2] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning

representations by back-propagating errors,” nature, vol. 323, no.
6088, pp. 533–536, 1986.

 [3] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

 [4] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

 [5] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a
few examples: A survey on few-shot learning,” ACM computing
surveys (csur), vol. 53, no. 3, pp. 1–34, 2020.

 [6] J. Shu, Z. Xu, and D. Meng, “Small sample learning in big data
era,” arXiv preprint arXiv:1808.04572, 2018.

 [7] L. Szymanski, B. McCane, and C. Atkinson, “Conceptual capacity
and effective complexity of neural networks,” arXiv preprint
arXiv:2103.07614, 2021.

 [8] A. M. Saxe, Y. Bansal, J. Dapello, M. Advani, A. Kolchinsky, B.
D. Tracey, and D. D. Cox, “On the information bottleneck theory
of deep learning,” Journal of Statistical Mechanics: Theory and
Experiment, vol. 2019, no. 12, p. 124020, 2019.

 [9] Y. Zhang, B. Kang, B. Hooi, S. Yan, and J. Feng, “Deep long-tailed
learning: A survey,” arXiv preprint arXiv:2110.04596, 2021.

 [10] M. E. Newman, “Power laws, pareto distributions and zipf’s law,”
Contemporary physics, vol. 46, no. 5, pp. 323–351, 2005.

 [11] B. Krawczyk and A. Cano, “Online ensemble learning with
abstaining classifiers for drifting and noisy data streams,” Applied
Soft Computing, vol. 68, pp. 677–692, 2018.

 [12] D. Cohn, L. Atlas, and R. Ladner, “Improving generalization with
active learning,” Machine learning, vol. 15, pp. 201–221, 1994.

[13] D. D. Lewis, “A sequential algorithm for training text classifiers:
Corrigendum and additional data,” in Acm Sigir Forum, vol. 29,
no. 2. ACM New York, NY, USA, 1995, pp. 13–19.

https://arxiv.org/abs/1808.04572
https://arxiv.org/abs/2103.07614
https://arxiv.org/abs/2110.04596

What Can We Learn from Small Data

34

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

Tamas Nyiri finished him Masters degree in
Computer Science in 2019 and started his PhD in
2022, both at Eötvös Loránd University. His research
is mainly focused on deep learning scenarios
involving data quality and interpretability issues.

Attila Kiss defended his PhD in the field of
database theory in 1991. His research is focused
on information systems, data mining, and artificial
intelligence. He has more than 190 scientific
publications. Seven students received their PhD
degrees under his supervision. Since 2010, he has
been the head of Department of Information Systems
at Eötvös Loránd University, Hungary. He is also
teaching at J. Selye University, Slovakia.

 [14] D. A. Cohn, Z. Ghahramani, and M. I. Jordan, “Active learning with
statistical models,” Journal of artificial intelligence research, vol.
4, pp. 129–145, 1996.

 [15] N. Roy and A. McCallum, “Toward optimal active learning through
monte carlo estimation of error reduction,” ICML, Williamstown,
vol. 2, pp. 441–448, 2001.

 [16] A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell, “Active learning
with gaussian processes for object categorization,” in 2007 IEEE 11th
international conference on computer vision. IEEE, 2007, pp. 1–8.

 [17] N. Houlsby, F. Huszár, Z. Ghahramani, and M. Lengyel, “Bayesian
active learning for classification and preference learning,” arXiv
preprint arXiv:1112.5745, 2011.

 [18] K. Brinker, “Incorporating diversity in active learning with support
vector machines,” in Proceedings of the 20th international
conference on machine learning (ICML-03), 2003, pp. 59–66.

 [19] S. Vijayanarasimhan and K. Grauman, “What’s it going to cost
you?: Predicting effort vs. informativeness for multi-label image
annotations,” in 2009 IEEE conference on computer vision and
pattern recognition. IEEE, 2009, pp. 2262–2269.

 [20] N. Cesa-Bianchi, C. Gentile, A. Tironi, and L. Zaniboni, “In-
cremental algorithms for hierarchical classification,” Advances in
neural information processing systems, vol. 17, 2004.

 [21] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in 2005 IEEE computer society conference on
computer vision and pattern recognition (CVPR’05), vol. 1. IEEE,
2005, pp. 886–893.

 [22] T. Ahonen, A. Hadid, and M. Pietikäinen, “Face recognition with local
binary patterns,” in Computer Vision-ECCV 2004: 8th European
Conference on Computer Vision, Prague, Czech Republic, May 11-
14, 2004. Proceedings, Part I 8. Springer, 2004, pp. 469–481.

 [23] S. Laine and T. Aila, “Temporal ensembling for semi-supervised
learning,” arXiv preprint arXiv:1610.02242, 2016.

 [24] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and
C. A. Raffel, “Mixmatch: A holistic approach to semi-supervised
learning,” Advances in neural information processing systems, vol.
32, 2019.

 [25] D.-H. Lee et al., “Pseudo-label: The simple and efficient semi-
supervised learning method for deep neural networks,” in Work-
shop on challenges in representation learning, ICML, vol. 3, no. 2.
Atlanta, 2013, p. 896.

 [26] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” arXiv preprint arXiv:1810.04805, 2018.

 [27] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al.,
“Improving language understanding by generative pre-training,”
2018.

 [28] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction
by learning an invariant mapping,” in 2006 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition
(CVPR’06), vol. 2. IEEE, 2006, pp. 1735–1742.

 [29] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on knowledge and data engineering, vol. 22, no. 10,
pp. 1345–1359, 2009.

 [30] M. Huisman, J. N. Van Rijn, and A. Plaat, “A survey of deep meta-
learning,” Artificial Intelligence Review, vol. 54, no. 6, pp. 4483–
4541, 2021.

 [31] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International conference
on machine learning. PMLR, 2017, pp. 1126–1135.

 [32] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-
shot learning,” Advances in neural information processing systems,
vol. 30, 2017.

 [33] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M.
Blau, and S. Thrun, “Dermatologist-level classification of skin
cancer with deep neural networks,” nature, vol. 542, no. 7639, pp.
115–118, 2017.

 [34] W. Verbeke, D. Martens, C. Mues, and B. Baesens, “Building
comprehensible customer churn prediction models with advanced
rule induction techniques,” Expert systems with applications, vol.
38, no. 3, pp. 2354–2364, 2011.

 [35] E. Lima, C. Mues, and B. Baesens, “Domain knowledge integration
in data mining using decision tables: case studies in churn
prediction,” Journal of the Operational Research Society, vol. 60,
no. 8, pp. 1096–1106, 2009.

 [36] X. Liu, M. Xie, X. Wen, R. Chen, Y. Ge, N. Duffield, and N.
Wang, “A semi-supervised and inductive embedding model for
churn prediction of large-scale mobile games,” in 2018 IEEE
international conference on data mining (ICDM). IEEE, 2018, pp.
277–286.

 [37] A. Balahur and M. Turchi, “Multilingual sentiment analysis using
machine translation?” in Proceedings of the 3rd workshop in
computational approaches to subjectivity and sentiment analysis,
2012, pp. 52–60.

 [38] J. Tang, Z. Lu, J. Su, Y. Ge, L. Song, L. Sun, and J. Luo, “Progres-
sive self-supervised attention learning for aspect-level sentiment
analysis,” arXiv preprint arXiv:1906.01213, 2019.

 [39] P. H. Calais Guerra, A. Veloso, W. Meira Jr, and V. Almeida, “From
bias to opinion: a transfer-learning approach to real-time sentiment
analysis,” in Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2011, pp.
150–158.

 [40] Y. Chen, F. Rong, S. Duggal, S. Wang, X. Yan, S. Manivasagam,
S. Xue, E. Yumer, and R. Urtasun, “Geosim: Realistic video
simulation via geometry-aware composition for self-driving,” in
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2021, pp. 7230–7240.

 [41] Y.-X. Wang, D. Ramanan, and M. Hebert, “Meta-learning to de-
tect rare objects,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2019, pp. 9925–9934.

https://arxiv.org/abs/1112.5745
https://arxiv.org/abs/1610.02242
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1906.01213

Survey of Routing Techniques-Based Optimization
of Energy Consumption in SD-DCN

35

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

This research was supported by the department of the Information Technol-
ogy, University of Debrecen. This paper has emanated from research supported
in part by a Grant from Science Foundation Ireland under Grant numbers 13/
RC/2077 P2 and 15/SIRG/3459.

1 Department of Information Technology, University of Debrecen, Hungary.
E-mail: mohammed.nsaif@(inf.unideb.hu, uokufa.edu.iq);

2 Department of Computational Science, Eszterházy Károly Catholic Univer-
sity, Eger, Hungary. E-mail: kovasznai.gergely@uni-eszterhazy.hu;

3 School of Electrical and Electronic Engineering, Technological University
Dublin, Ireland. E-mail (ali.malik, ruairi.defrein)@tudublin.ie.

Abstract—The increasing power consumption of Data Cent-
er Networks (DCN) is becoming a major concern for network
operators. The object of this paper is to provide a survey of
state-of-the-art methods for reducing energy consumption via
(1) enhanced scheduling and (2) enhanced aggregation of traffic
flows using Software-Defined Networks (SDN), focusing on the
advantages and disadvantages of these approaches. We tackle
a gap in the literature for a review of SDN-based energy saving
techniques and discuss the limitations of multi-controller solu-
tions in terms of constraints on their performance. The main
finding of this survey paper is that the two classes of SDN- based
methods, scheduling and flow aggregation, significantly reduce
energy consumption in DCNs. We also suggest that Machine
Learning has the potential to further improve these classes of
solutions and argue that hybrid ML-based solutions are the
next frontier for the field. The perspective gained as a conse-
quence of this analysis is that advanced ML-based solutions and
multi-controller-based solutions may address the limitations of
the state-of-the-art, and should be further explored for energy
optimization in DCNs.

Index Terms—Data Center, Software-Defined Networking, In-
teger Programming, Power Consumption, Energy, Routing.

Survey of Routing Techniques-Based Optimization
of Energy Consumption in SD-DCN

Mohammed Nsaif1, Gergely Kovásznai2, Ali Malik3, and Ruairí de Fréin3

1

Survey of Routing Techniques-Based Optimization
of Energy Consumption in SD-DCN

Mohammed Nsaif1, Gergely Kovásznai2, Ali Malik3, Ruairı́ de Fréin3

Abstract—The increasing power consumption of Data Center
Networks (DCN) is becoming a major concern for network
operators. The object of this paper is to provide a survey
of state-of-the-art methods for reducing energy consumption
via (1) enhanced scheduling and (2) enhanced aggregation of
traffic flows using Software-Defined Networks (SDN), focusing
on the advantages and disadvantages of these approaches. We
tackle a gap in the literature for a review of SDN-based energy
saving techniques and discuss the limitations of multi-controller
solutions in terms of constraints on their performance. The main
finding of this survey paper is that the two classes of SDN-
based methods, scheduling and flow aggregation, significantly
reduce energy consumption in DCNs. We also suggest that
Machine Learning has the potential to further improve these
classes of solutions and argue that hybrid ML-based solutions
are the next frontier for the field. The perspective gained as a
consequence of this analysis is that advanced ML-based solutions
and multi-controller-based solutions may address the limitations
of the state-of-the-art, and should be further explored for energy
optimization in DCNs.

Index Terms—Data Center, Software-Defined Networking, In-
teger Programming, Power Consumption, Energy, Routing.

I. INTRODUCTION

The power optimization increasingly attracts many re-
searchers in different sectors of wire and wireless net-
works [1]–[4]. Specifically, large-scale alternatives to fossil
fuels that are secure, affordable, and low-carbon are lacking
globally. The connection between access to energy and green-
house gas emissions is the aspect of energy that receives the
most attention. On one hand, Europe’s energy grid is facing
an unparalleled crisis [5]. Since early 2021, wholesale costs
of electricity and gas have increased by as much as 15 times,
which has had devastating consequences on both individuals
and companies. On the other hand, the huge demand for infor-
mation services nowadays is causing a dramatic increase in the
usage of Data Center Networks (DCN) around the globe. As a
consequence, 1 % to 1.5 % of worldwide power consumption
is attributed to data center energy usage [6]. According to [7],
the increase in power consumption in DCN has been 56%

This research was supported by the department of the Information Technol-
ogy, University of Debrecen. This paper has emanated from research supported
in part by a Grant from Science Foundation Ireland under Grant numbers
13/RC/2077 P2 and 15/SIRG/3459.
1 Department of Information Technology, University of Debrecen, Hungary.
Email: mohammed.nsaif@(inf.unideb.hu,uokufa.edu.iq);
2 Department of Computational Science, Eszterházy Károly Catholic Univer-
sity, Hungary. Email: kovasznai.gergely@uni-eszterhazy.hu;
3 School of Electrical and Electronic Engineering, Technological University
Dublin, Ireland. Email (ali.malik, ruairi.defrein)@tudublin.ie.

between 2005 and 2010 and it is expected to continue to in-
crease in the future. Current estimates suggest that by 2020, the
energy consumption of DCN in the US exceeded 139 billion
kWh, and that interconnection devices (switches and links)
consumed from 10 % to 20 % of the total energy [8]. The need
for building effective network solutions in terms of energy
usage and latency has expanded tremendously due to Industry
4.0’s and the IoT’s rapid development. Alternative techniques
are required to address the power consumption issue in DCN.
Software Defined Networking (SDN) is a new networking
paradigm which can address power consumption. Compared
to the legacy network architecture, SDNs have been effectively
implemented in a variety of domains to satisfy the needs of the
smart industry [9]. It is characterized by physically decoupling
the control and data planes. The logically centralized SDN
controller orchestrates the policy of the forwarding elements
residing on its domain. The advantages of SDN has led to
the incorporation of its architecture into a wide range of
solutions. For instance, SDNs demonstrated promising results
in optimizing the networks power consumption [10]. The term
Software-Defined Data Center Networks (SD-DCN) emerged
due to the employment of SDN to address various DCN issues
such as the energy consumption. There are a number of studies
that employed SDN in data centers to enhance the network
management in general and to lower the power consumption.

This paper surveys the energy efficiency potential of SDN
in enhancing power utilization through the optimization of
traffic-aware features of DCNs. SDN has emerged as a critical
paradigm for achieving the Network Resource Optimization
(NRO) and for dynamically optimizing the network based on
load and state. This is the most common carrier application
as it optimizes the network using the near-real-time state of
traffic, topology, and equipment. NRO uses a variety of south-
bound protocols (for example, NETCONF, BGP-LS, or Open-
Flow) depending on the underlying network [11]. According to
the literature, researchers address the problem by considering
both hardware and software enhancement. In brief, the energy-
saving technologies of hardware focus on frequency scaling
techniques (i.e., changing clock frequencies). The motivating
idea is that the power is consumed is a function of the working
clock rate [12]. In the same context, other researchers optimize
power consumption performance by consolidating multiple
Virtual Machines (VM) in one physical machine [13]. Quality
of Serivce (QoS) is upheld in these approaches by imposing
multiple constraints. Routing-aware approaches have appeared
in recent years. DCN topologies (i.e., fat-tree, Bcube, etc)
come with rich connections and can achieve high network
performance by balancing the workload of the DCN, however,

1

Survey of Routing Techniques-Based Optimization
of Energy Consumption in SD-DCN

Mohammed Nsaif1, Gergely Kovásznai2, Ali Malik3, Ruairı́ de Fréin3

Abstract—The increasing power consumption of Data Center
Networks (DCN) is becoming a major concern for network
operators. The object of this paper is to provide a survey
of state-of-the-art methods for reducing energy consumption
via (1) enhanced scheduling and (2) enhanced aggregation of
traffic flows using Software-Defined Networks (SDN), focusing
on the advantages and disadvantages of these approaches. We
tackle a gap in the literature for a review of SDN-based energy
saving techniques and discuss the limitations of multi-controller
solutions in terms of constraints on their performance. The main
finding of this survey paper is that the two classes of SDN-
based methods, scheduling and flow aggregation, significantly
reduce energy consumption in DCNs. We also suggest that
Machine Learning has the potential to further improve these
classes of solutions and argue that hybrid ML-based solutions
are the next frontier for the field. The perspective gained as a
consequence of this analysis is that advanced ML-based solutions
and multi-controller-based solutions may address the limitations
of the state-of-the-art, and should be further explored for energy
optimization in DCNs.

Index Terms—Data Center, Software-Defined Networking, In-
teger Programming, Power Consumption, Energy, Routing.

I. INTRODUCTION

The power optimization increasingly attracts many re-
searchers in different sectors of wire and wireless net-
works [1]–[4]. Specifically, large-scale alternatives to fossil
fuels that are secure, affordable, and low-carbon are lacking
globally. The connection between access to energy and green-
house gas emissions is the aspect of energy that receives the
most attention. On one hand, Europe’s energy grid is facing
an unparalleled crisis [5]. Since early 2021, wholesale costs
of electricity and gas have increased by as much as 15 times,
which has had devastating consequences on both individuals
and companies. On the other hand, the huge demand for infor-
mation services nowadays is causing a dramatic increase in the
usage of Data Center Networks (DCN) around the globe. As a
consequence, 1 % to 1.5 % of worldwide power consumption
is attributed to data center energy usage [6]. According to [7],
the increase in power consumption in DCN has been 56%

This research was supported by the department of the Information Technol-
ogy, University of Debrecen. This paper has emanated from research supported
in part by a Grant from Science Foundation Ireland under Grant numbers
13/RC/2077 P2 and 15/SIRG/3459.
1 Department of Information Technology, University of Debrecen, Hungary.
Email: mohammed.nsaif@(inf.unideb.hu,uokufa.edu.iq);
2 Department of Computational Science, Eszterházy Károly Catholic Univer-
sity, Hungary. Email: kovasznai.gergely@uni-eszterhazy.hu;
3 School of Electrical and Electronic Engineering, Technological University
Dublin, Ireland. Email (ali.malik, ruairi.defrein)@tudublin.ie.

between 2005 and 2010 and it is expected to continue to in-
crease in the future. Current estimates suggest that by 2020, the
energy consumption of DCN in the US exceeded 139 billion
kWh, and that interconnection devices (switches and links)
consumed from 10 % to 20 % of the total energy [8]. The need
for building effective network solutions in terms of energy
usage and latency has expanded tremendously due to Industry
4.0’s and the IoT’s rapid development. Alternative techniques
are required to address the power consumption issue in DCN.
Software Defined Networking (SDN) is a new networking
paradigm which can address power consumption. Compared
to the legacy network architecture, SDNs have been effectively
implemented in a variety of domains to satisfy the needs of the
smart industry [9]. It is characterized by physically decoupling
the control and data planes. The logically centralized SDN
controller orchestrates the policy of the forwarding elements
residing on its domain. The advantages of SDN has led to
the incorporation of its architecture into a wide range of
solutions. For instance, SDNs demonstrated promising results
in optimizing the networks power consumption [10]. The term
Software-Defined Data Center Networks (SD-DCN) emerged
due to the employment of SDN to address various DCN issues
such as the energy consumption. There are a number of studies
that employed SDN in data centers to enhance the network
management in general and to lower the power consumption.

This paper surveys the energy efficiency potential of SDN
in enhancing power utilization through the optimization of
traffic-aware features of DCNs. SDN has emerged as a critical
paradigm for achieving the Network Resource Optimization
(NRO) and for dynamically optimizing the network based on
load and state. This is the most common carrier application
as it optimizes the network using the near-real-time state of
traffic, topology, and equipment. NRO uses a variety of south-
bound protocols (for example, NETCONF, BGP-LS, or Open-
Flow) depending on the underlying network [11]. According to
the literature, researchers address the problem by considering
both hardware and software enhancement. In brief, the energy-
saving technologies of hardware focus on frequency scaling
techniques (i.e., changing clock frequencies). The motivating
idea is that the power is consumed is a function of the working
clock rate [12]. In the same context, other researchers optimize
power consumption performance by consolidating multiple
Virtual Machines (VM) in one physical machine [13]. Quality
of Serivce (QoS) is upheld in these approaches by imposing
multiple constraints. Routing-aware approaches have appeared
in recent years. DCN topologies (i.e., fat-tree, Bcube, etc)
come with rich connections and can achieve high network
performance by balancing the workload of the DCN, however,

DOI: 10.36244/ICJ.2023.5.6

mailto:mohammed.nsaif%40inf.unideb.hu?subject=
mailto:mohammed.nsaif%40uokufa.edu.iq?subject=
mailto:kovasznai.gergely%40uni-eszterhazy.hu?subject=
mailto:ali.malik%40tudublin.ie?subject=
mailto:ruairi.defrein%40tudublin.ie?subject=
https://doi.org/10.36244/ICJ.2023.5.6

Survey of Routing Techniques-Based Optimization
of Energy Consumption in SD-DCN

36

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

2

such structure of the DCN topology wastes energy since traffic
volume is not proportional to energy consumption of DCN
equipment, especially in the traffic valley time [14].

This paper reviews software-based energy-efficient solutions
in the form of subcategories of the traffic-aware approaches.
The structure of this paper is organized as follows. We
start by classifying data center routing optimization methods
and by showing the advantages and disadvantages of each
technique in Section II. Then, we discuss the open challenges
for the existing implementation approaches along with the
potential future directions in Section III. Finally, we provide
our conclusions in Section IV.

II. ROUTING OPTIMIZATION TECHNIQUES

Power consumption of SDN-based DCN routing mecha-
nisms depend on the mode of operation of the set of switches
that forward the flows between sources and destinations. Power
consumption of DCN switches can be measured in two ways:
dynamic, which measures the power consumption of active
links, and static, which measures the sum of power consumed
by components such as chassis, fans, and switching fabric.
We adopt the following notation conventions. An directed
weighted graph, G = (S,E), models the network topology.
The vertex-set is denoted by S = {s1, s2, . . . , sn}, and the
edge-set is denoted by E ⊆ {eij | si, sj ∈ S}. The i-th switch
is denoted as si and represents an OpenFlow switch. The
primary function of each switch is to facilitate the routing
of information through the path determined by the network
controller. In the graph, G, every edge represents a link, and
the link connecting the i-th and j-th switches is identified
by eij . Network links can exist in either an active (ON) or
inactive (OFF) state. We use binary variables, denoted by Lij ,
to indicate the current state of network links. The variable
Lij is 1 if the link connecting switches i and j is active.
This means that it can transmit packets between two ports.
Conversely, Lij is 0 if the link is inactive. In practice, each
link consists of two ports, a sending port and a receiving port.
Therefore, when designing power-efficient routing the working
ports of each link should be considered. Similarly, the variable,
ℓi, is set to 1 if the switch is active and 0 if the switch is
inactive. The Network Power Consumption (NPC) is given
in (1).

NPC = Sp

∑
si∈S

ℓi +Dp

∑
eij∈E

Lij . (1)

Eqn. (1) relates the NPC to ℓi and Lij , which denote the state
of a corresponding switch, si, and link, eij , i.e., whether they
are turned on or off. The variables Dp and Sp denote whether
the power consumption is dynamic or static, respectively.

The authors analyzed the traffic of a wide range of DCN
network datasets belonging to different layers of DCN topolo-
gies in [15]. The results reported in this paper showed that
the link utilization was low and varied from one layer to
another. The low-utilization links motivated researchers to
propose new approaches that were more energy-aware than
commonly used routing algorithms (e.g., Equal Cost Multiple
Path (ECMP)). To address this problem, two types of methods
have been proposed: (1) flow aggregation techniques and
(2) flow scheduling techniques.

A. Flow Aggregation Techniques

Flow aggregation techniques consolidate data flows into
a smaller set of links and switches that are sufficient to
support existing data traffic demands, subject to a tolerance
to a certain level of delay, packets loss, etc. To achieve
minimum power consumption for a specific traffic matrix,
switches and ports that are being used unnecessarily are
put into sleep or shutdown mode. Fig. 1a shows how three
flows share one link fairly based on the Transmission Control
Protocol (TCP) sharing scheme. The disadvantage of these
techniques is that using only a subset of the switches and
links, a sub-topology, may result in performance degradation,
which is typically characterized by a QoS measure. This QoS
measure may indicate the significance of increases in delay
time (i.e., due to computational complexity of the output
solutions), or the extent to which links with higher utilization
become overloaded and more susceptible to unplanned failures
[16]. Balancing between the level of energy consumption
and routing techniques that meet a desired QoS is of great
importance. Next, we introduce and discuss the concept of
flow aggregation.

1) Elastic-Trees: Need for Correlation-aware Power Opti-
mization: The first analysis on Elastic-Trees (ET) was pub-
lished in 2010 [17] by researchers from Deutsche Telekom
and Stanford University. They considered three optimization
techniques: Linear Optimizers (LO), Greedy Optimizers (GO),
and ET. All of these optimizers work to consolidate traffic
into a small subset of links that can handle the traffic volume.
The results showed that LO are the worst due to their high
computational complexity and time cost when the number of
switches is high, while ET outperformed GO and improved
link switch utilization. The authors evaluated ET using both
simulations and experiments on a real network. They found
that compared to traditional network architectures it could save
significant amounts of energy. However, the study did not
consider the correlation between flows. To address the high
correlation between flows, the CARPO (CoRrelation-aware
Power Optimization) algorithm in [18] aiming to reduce en-
ergy consumption in a DCN, dynamically consolidated traffic
flows on a small set of links and switches, and switched off idle
network components. CARPO uses correlation analysis among
flows to consolidate traffic flows with low correlation while
keeping the QoS at an acceptable level. A heuristic algorithm
is used to find a consolidation and rate configuration solution
with acceptable runtime overheads. CARPO introduced pa-
rameters to represent flow correlation, and the results showed
that this extension of the ET, led to a power saving of 46 %.

The study in [12] suggested a platform composed of both
software and hardware components, because there was no
experimental environment available to test the optimization
model. The software part was composed of monitoring (to
check the state of the network), an optimizer (to calculate
the subset of the topology), power controller (to change the
state of the devices on/off), and routing algorithm (to calculate
the paths). The hardware parts were composed of a traffic
generator and power measuring device implemented using
the NetFPGA platform. Experiments investigated the effect

Survey of Routing Techniques-Based Optimization
of Energy Consumption in SD-DCN

37

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

3

(a) (b)
Figure 1. Flow scheduling & flow aggregation routing illustration. (a) Flow aggregation. (b) Flow scheduling.

of changing the frequency of the clock rate and the traffic
consolidation on the power consumption in the DCN according
to traffic demand. Unfortunately, the authors did not provide
sufficient details about the algorithms or the API interfaces
that gave access to the components.

The authors reported that the traffic patterns of GEANT
networks are generally regular and predictable in [19]. To save
power, they divided the traffic into intervals, and implemented
link sleeping, which temporarily suspends certain links when
the minimum or maximum link utility thresholds were met.
They also rerouted the flows among the nodes of the GEANT
network topology to maximize flow through the active links.
Additionally, the study considered the network’s performance
under high-traffic conditions and balanced the traffic appro-
priately. The study described in the paper by Conterato et
al. in [20] investigated the effect of using different values of
over-subscription factors on reducing power consumption in
a DCN, which was using traffic aggregation strategies. Three
algorithms, First-Fit, Best-Fit, and Worst-Fit, were evaluated
using Python and the Network Simulation Setup (FNSS).
Different network workloads (20 %, 50 %, and 80 %) and
oversubscription factors (1 : 1, 1 : 5, and 1 : 20) were tested.
Devices that were not enrolled in the current routing state
of the network were disconnected. The authors reported that
up to a 70.02 % power saving could be achieved when the
over-subscription factor was 1 : 20 and the topology size was
k = 12. These results conform with intuition because of the
increase in the bandwidth and the number of links and switches
in the topology. Motivated by the need for an adaptive routing
framework for SD-DCN that can optimize power consumption
while maintaining good network performance, the authors of
[14] proposed an adaptive routing algorithm that considers
factors such as link utilization and switch power consumption
to determine the most energy-efficient path for network traffic
in real-time. The algorithm used an Integer Linear Program-
ming (ILP) model and a heuristic algorithm. The authors
argue that the ILP model is costly and the time for finding
a solution increases dramatically when 100 flows are injected
simultaneously into the DCN. Conversely, the algorithm is
integrated into an SDN controller and uses the OpenFlow pro-
tocol to communicate with switches. The proposed algorithms
outperform existing routing algorithms such as ECMP in terms
of energy consumption and network performance, as measured
by the number of dropped packets. The research group built on
this work and contributed new findings for the ILP model in
[21]. Evaluations were conducted using LINGO [22], which is

one of the computationally expensive commercial solvers. The
authors of [14] re-implemented the model using solvers such
as Gurobi, CP-SAT, and so on. Experiments were implemented
in the authors’ proposed tool neO-DCN. This comparison
revealed that Gurobi outperformed the other solvers by one
or two orders of magnitude for different traffic patterns.

OpenFlow switches are increasingly being used in data
centers due to their potential to reduce energy consumption.
However, the existing OpenFlow protocol does not include
any mechanisms to optimize energy consumption. In [23], a
power-aware extension to the OpenFlow protocol that does not
compromise network performance was proposed. The exten-
sion defined new control messages in the OpenFlow standard
such as OFPT-ORT-MOD and designed an OpenFlow Switch
Controller (OSC) that can turn on and off switches and disable-
enable ports of NetFPGA-based OpenFlow switches [12]. The
authors conducted experiments to evaluate the energy savings
achieved by the proposed extension, using a prototype imple-
mentation of the proposed extension on an OpenFlow switch.
The experiments were designed to evaluate the energy savings
achieved by the proposed extension. However, the authors
did not provide sufficient details about the methods and the
experiments conducted. Further research is needed to evaluate
the effectiveness of these extensions. Table I summarizes the
flow aggregation methods according to the adopted evaluation
criteria and the main objectives.

2) Formulation: To optimize power consumption in DCNs,
we present a general formulation of the objective function and
constraints which describe an ILP model. The purpose of this
ILP is to determine the optimum flow aggregation technique
to reduce energy consumption. In the proposed model, taking
inspiration from [14], [21], we introduce a multi-objective
function rather than a single function as used in [14], [21]. This
is achieved by incorporating the number of active switches,
along with the number of active links. The objective is to
maximize network utility while considering constraints related
to link utilization, bandwidth, and traffic volume on the
network links. By considering multiple objectives, our model
aims to achieve a more comprehensive optimization of the
network power consumption. In this setting network utility is
defined as the overall satisfaction of users with respect to the
demands they place on the network. Parameters of the DCN
model used by the ILP are summarized in Table II:

The optimal configuration of active links and switches, that
achieves the desired network utility, while minimizing the

Survey of Routing Techniques-Based Optimization
of Energy Consumption in SD-DCN

38

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

4

Table I
FLOW AGGREGATION METHODS FOR ENERGY EFFICIENCY.

Study Experiments Objective QoS SDNEnvironment Traffic Topology Controller
Elastic Tree [17]. Test-bed R Fat-Tree NOX Link -

√

CARPO [18]. Test-bed R Fat-Tree - Link
√

-
NetFPGA OpenFlow-based Platform [12]. Test-bed R & A Fat-Tree NOX Switch & Link -

√

MTSDPFPR [19]. Mininet R GEANT Floodlight Link
√ √

Aggregation Strategies [20]. FNSS & Python A Fat-Tree - Link -
√

OSC [12]. Test-bed A - NOX switch & Link -
√

FPLF [14]. Mininet A Fat-Tree POX Link
√ √

Table II
PARAMETERS OF THE FLOW AGGREGATION MODEL.

Parameters Definitions
F Set of flows, where a flow f =

(
f.Sr, f.Ds, λf

)
∈ F

is represented by source f.Sr ∈ S, destination f.Ds ∈
S, and bit rate λf ∈ N

ℓi

{
1, if switch si ∈ S is active
0, otherwise

Lij

{
1, if link eij ∈ E is active
0, otherwise

FR (f, i, j)

{
1, if flow f ∈ F passes through link eij ∈ E
0, otherwise

BWij ∈ N Bandwidth of link eij
Tij ∈ N Traffic volume over eij

power consumption is determined by the ILP in (2).

min :
n∑

i=1

n∑
j=1

Lij +
n∑

i=1

ℓi. (2)

This objective function is subject to the following constraints:
1) Links and traffic correlation constraint.

Tij

BWij
≤ Lij , ∀eij ∈ E.

A link is not activated unless at least one flow passes
through it.

2) Links and flows correlation constraint.

FR (f, i, j) ≤ Lij , ∀f ∈ F, ∀eij ∈ E.

Flows can only pass through active links.
3) Utility constraint.

∑
f∈F

FR (f, i, j) · λf ≤ BWij − Tij , ∀eij ∈ E

The total packet rate of all flows passing through a link
does not exceed the available bandwidth of that link.

4) Path conservation constraint.

n∑
i=1

FR (f, f.Sr, i) = 1, ∀f ∈ F,

n∑
i=1

FR (f, i, f.Ds) = 1, ∀f ∈ F,

Every flow has a unique source f.Sr and destination
f.Ds.

5) Flow conservation constraint.

n∑
i=1

i̸=f.Sr

FR (f, i, j) =
n∑

i=1
i̸=f.Ds

FR (f, j, i) ,

∀f ∈ F, ∀j ∈ S.

A flow entering a node is equal to the flow leaving the
node for all intermediate nodes.

6) Network connectivity constraint.

Lij ⩽ ℓi, Lij ⩽ ℓj , ∀eij ∈ E.

Each active link enforces the activation of the correspond-
ing switches to maintain the connectivity of the network
graph.

Solving the ILP model with these constraints results in
an optimal flow aggregation policy that minimizes power
consumption.

It is worth mentioning that the study assumes switches can
turn on or enter sleep mode based on local traffic states, using
Wake-on-Arrival (WoA) to wake up the switch when needed
for forwarding packets and Sleep-on-Idle (SoI) technique for
switches to save power when idle, without considering the
transition time in the evaluation [24].

B. Flow Scheduling Techniques

Since the SDN controller maintains a global view of the un-
derlay DCN infrastructure, it can calculate deadlines for flows
and their size. This ability has motivated the development
of new scheduling algorithms to manage the transmission of
flows through a sequence of queues. These algorithms send the
flows sequentially. This allows the flows to monopolise all the
links of the path they traverse, using their full capacity, subject
to the deadline and flow-size constraints. Fig. 1b shows how
three flows are scheduled in a queue for transmission with a
full bandwidth. A disadvantage is that these techniques are not
appropriate for time-sensitive traffic (i.e., video streaming and
VoIP [25]). Flows with higher priorities can be preemptively
routed along the paths of other flows with lower priorities.
Coupled with this, some applications in DCNs might not
require large bandwidth, and be can slow, and thus not saturate
the link capacity. Consequently, the link will be underutilized.

1) Methods: To avoid collisions and to achieve efficient
power usage in DCNs, the authors in [26] proposed a technique
that combined flow preemption and energy-aware routing to
reduce energy consumption. Flows were divided into two lists:

Survey of Routing Techniques-Based Optimization
of Energy Consumption in SD-DCN

39

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

5

Table III
FLOW SCHEDULING METHODS FOR ENERGY EFFICIENCY.

Study Experiments Objective QoS SDNEnvironment Traffic Topology Controller
Preemptive Flow [26]. NS-3 A Fat-Tree - switch

√
-

Green Data Center [27]. - A B-Cube & Fat-Tree - switch
√ √

BEERS-1 [28]. OMNeT++ A Fat-Tree & BCube - switch
√ √

Willow [24]. - A Fat-Tree - switch
√ √

BEERS-2 [29]. OMNeT++ A Fat-Tree & BCube - switch
√ √

FLOWP [30]. OPNET A Fat-Tree - switch
√ √

a sending list and a waiting list. When a new flow entered the
DCN, the algorithm checked the flow’s priority based on its
size. The flow either interrupted an ongoing data transfer and
was directly routed to the destination, or was moved to the
waiting list based on its assigned priority. Simulations were
used to evaluate the performance of their technique and to
compare it to other state-of-the-art techniques, such as ECMP.
They used the ns-3 network simulator and a Fat-Tree topology.
Results suggest that it can be a practical and effective way to
make DCNs more energy-efficient.

The authors of [27] were motivated by the importance of
implementing exclusion flow routing techniques on different
topologies. They proposed a scheduling algorithm based on the
priorities of flows, which assigned higher scheduling priority
to smaller flow sizes, as in [26]. Experiments were conducted
on two types of DCN topologies, namely BCube and Fat-Tree,
using OpenFlow as the southbound API. Two metrics were
used to evaluate the algorithm’s performance: the flow arrival
rate and the amount of power saved. The results showed an
improvement in the utilization ratio of active links, leading to
a reduction in power consumption in both topologies, along
with the elimination of traffic congestion on active links.

The authors in [30] were motivated by the need to find
an optimal subset to optimize power usage. A convex objec-
tive function was used to model energy consumption. Two
strategies were pursued, an optimal combinatorial algorithm
which was composed of two components (Most-Critical-First
and Shortest Path (MCF-SP)) and a Random Scheduler (RS).
MCF-SP managed flow scheduling based on the weight and
the deadline of the flows. All the flows were sorted ac-
cording to an Earliest Deadline First (EDF) policy. Power
usage was optimized by minimizing the transmission rate of
the flows per unit of time. By modeling the problem as a
convex optimization problem the authors showed that MCF-SP
found the optimal solution to the Deadline-Constrained Flow
Scheduling (DCFS) problem under the assumption that flows
were routed exclusively through a virtual circuit. Conversely,
the RS involved relaxing an NP-hard problem, the Deadline-
Constrained Flow Scheduling and Routing (DCFSR) problem.
Relaxation consisted of finding an approximation based on
a Fractional Multi-Commodity Flow (F-MCF) problem. The
power optimization was based on two criteria: a minimum
transmission rate criteria for the flows and a usage crite-
ria for the links. The evaluation procedure was conducted
using Python, however, the description of the set-up makes
comprehensive understanding and reconstruction of the results
challenging. Because the aggregation method was not suitable

for network-limited flows, the application generated traffic
at a high bit rate, and the flow’s throughput depended on
the network capacity of the routing path. To overcome this
challenge a flow scheduling approach named “Willow” was
proposed in [24], which took into consideration both the
number of switches involved and the durations of their frame
working times. A greedy approximate algorithm was designed
that scheduled flows in a real-time manner. The proposed
algorithm achieved a network energy consumption saving of
60 % of network energy compared to the conventional ECMP
scheduling approach.

To overcome the problem of greed in flow selection when
finding an energy-efficient path in [30], the authors of [28]
proposed an approach that aggregated the flows with a similar
deadline into a harmonic flow set, and scheduled them with
higher priority, resulting in increased link utilization. The
resulting scheduling algorithm was named “BEERS”. It ran
as a model in the SDN controller. Simulations were run using
the OMNeT++ simulator, and results showed improvements
in the link utilization and the energy consumption compared
with the Exclusive Routing (EXR) algorithm. However, since
all the flows competed for links in different periods, it was
challenging to form a harmonic flow set at certain points in
time, which posed a challenge for the algorithm. The authors
extended the BEERs approach and conducted extensive exper-
iments with two types of topology [29]. The results showed
that their algorithm could reduce overall energy consumption
with respect to traffic volume, and that it could also reduce
the average flow completion time.

Conventional methods for reducing power consumption,
such as turning off unused switches, can negatively impact
network performance. To address this issue, the authors in [31]
proposed a dynamic flow scheduling algorithm that balanced
the workload on network switches to reduce power consump-
tion. The algorithm considered the flow size, a threshold value
that controlled the time delay. The algorithm is evaluated
using a simulation-based approach, using OPNET, and the
results showed that the algorithm could be an effective solution
for reducing power consumption in DCNs without sacrificing
performance. Table III summarizes the flow scheduling meth-
ods according to the adopted evaluation criteria and the main
objectives.

2) Formulation: Similar to the approach in Section II-A2,
we present the objective function and constraints that math-
ematically formulate an ILP model that optimizes power
consumption in DCNs using flow scheduling techniques.

The goal we seek to achieve with the objective function

Survey of Routing Techniques-Based Optimization
of Energy Consumption in SD-DCN

40

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

6

Table IV
PARAMETERS OF THE FLOW SCHEDULING MODEL.

Parameters Definitions

Lijk

1, if link eij ∈ E is active during timeslot k
0, otherwise

FR (f, i, j, k)

1, if flow f ∈ F is scheduled on link eij ∈ E
during timeslot k.

0, otherwise
Cf ∈ N Bandwidth required by flow f in Mbps
Laf ∈ N Latency tolerance of flow f in microseconds
αf ∈ N Starting timeslot of flow f
ωf ∈ N Ending timeslot of flow f , αf ≤ ωf

laijk ∈ N Latency of link eij during timeslot k
pij ∈ N Power consumption of link eij in watts

in (3) is to minimize power consumption while maintaining
network performance metrics. Prior to defining the objective
function we define the role of its constituent components in
Table IV.

The objective function computes a weighted sum of the vari-
ables Lijk for all active time slots and the power consumption
pij for each link.

min :
n∑

i=1

n∑
j=1

(
pij ·

∑
k

Lijk

)
(3)

The above objective function is subject to the following con-
straints to guarantee network performance: bandwidth, latency,
etc.

1) Bandwidth constraint.
∑
f∈F

Cf · FR (f, i, j, k) ≤ BWij , ∀eij ∈ E, ∀k.

The total bandwidth usage of each link should not ex-
ceed its maximum bandwidth capacity BWij during any
timeslot k.

2) Latency constraint.
n∑

i=1

n∑
j=1

∑
k

laijk · FR (f, i, j, k) ≤ Laf , ∀f ∈ F.

The sum of the latencies of all links used by a flow f
must not exceed its latency tolerance Laf .

3) Workload constraint.
∑
f∈F

FR (f, i, j, k) ≤ 1, ∀eij ∈ E, ∀k.

Each timeslot k can have at most one flow scheduled on
a link eij .

4) Flow activation constraint.

FR (f, i, j, k) = 0, ∀f ∈ F, ∀eij ∈ E, ∀k /∈ [αf , ωf].

The decision variables FR (f, i, j, k) are set to 0 for each
flow f outside of its specified time interval between αf

and ωf . αf represents the timeslot at which the flow
f is allowed to start its transmission. ωf represents the
timeslot by which the flow f must be completely served
or finished with its transmission.

5) Links and flows correlation constraint.

FR (f, i, j, k) ≤ Lijk, ∀f ∈ F, ∀eij ∈ E, ∀k.

Flows can only pass through active links, enforcing Lijk

to be in the ON state.
Similarly, the Path conservation constraint and the Flow con-
servation constraint from Section II-A2 have to be adapted,
simply by quantifying over the timeslots k.

III. OPEN ISSUES AND DISCUSSION

Although the SDN paradigm presented a solution to many
existing network issues such as those related to power con-
sumption, SDN-based DCN power consumption still needs
more investigation and verification under various workload
circumstances. It is possible that implementing power opti-
mization approaches based on SDN can result in an increase
in the response time of the controller. This is because the
controller has to continuously monitor the network and to
make decisions on how to optimize power consumption while
maintaining network performance. This overhead may cause
delays in the controller’s response time.

Moreover, finding the optimal subset of active links and
switches can be an expensive process that may require sig-
nificant computational resources. This can lead to a loss of
performance in a DCN since the resources used for opti-
mization cannot be used for other critical network functions.
Furthermore, some approaches require the use of heuristics
or approximation algorithms, such as the methods in Sec-
tions II-A1 and II-B1, which can typically provide only sub-
optimal solutions. Therefore, before implementing power opti-
mization approaches based on SDN, it is important to carefully
evaluate the potential trade-offs between power consumption,
network performance, and computational resources. Further
investigation may be required to identify the optimal balance
between power optimization and network performance in a
particular DCN. Further research which take these variables
into account, will need to be undertaken. Moreover, there are
several potential advantages when implementing a multiple
SDN controllers in DCN, which is discussed in the next
section.

A. Multiple Controller SDN

Using multiple controllers can potentially help mitigate the
problem of increased response time in power optimization
approaches based on SDN. By distributing the workload
across multiple controllers, the overall response time can be
reduced, improving network performance. Moreover, multiple
controllers can potentially improve the efficiency of finding
the optimal subset of active links and switches. Different con-
trollers can be responsible for different parts of the network,
and they can work together to find the best solution. This
can help to reduce the computational demand and improve
the speed of optimization. However, the synchronization of
multiple controllers in an SDN environment can be achieved
through various methods, such as: (1) Consistency Protocols
ensure that all controllers have the same view of the network.
(2) Event Notifications are used by controllers in order to
communicate with each other. For example, the OpenDaylight
(ODL) controller provides a notification service that allows
controllers to subscribe to events and to receive notifications

Survey of Routing Techniques-Based Optimization
of Energy Consumption in SD-DCN

41

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

7

when the state of the network changes. (3) Replication: Con-
trollers can replicate/duplicate their state and share this copy
with other controllers in the network. For example, the Flood-
light controller uses a master-slave replication mechanism to
synchronize the state of multiple controllers. By using one or
more of these methods, multiple controllers in an SDN envi-
ronment can synchronize their work and ensure the efficient
operation of the network. Therefore, when considering the use
of multiple controllers, it is important to carefully evaluate
the potential benefits and drawbacks, and design the network
architecture and control algorithms accordingly.

B. Machine Learning-Based Approaches

Machine Learning (ML) is a promising approach for solving
a wide range of computer networks problems. ML-based
techniques can be used to optimize power consumption in SD-
DCN. By analyzing network traffic patterns and predicting
network demand, ML algorithms can help SDN controllers
make real-time adjustments and reconfigure the network to op-
timize the energy usage. One approach that has been explored
in research is using ML to predict the network demand for
different time periods, such as hourly or daily intervals [32].
Based on these predictions, the SDN controller can adjust the
routing of network traffic to reduce power consumption during
periods of lower demand. Other ML algorithms can be used
to analyze the behavior of individual network components,
such as switches or servers, to identify patterns that indicate
when these components are not being used efficiently [33].
This information can then be used by the SDN controller to
adjust network configurations and optimize power usage.

Finally, using ML algorithms to classify network traffic in
real-time, SDN controllers can make more informed decisions
about network traffic routing and resource allocation, leading
to improved network performance and efficiency besides effi-
cient power usage [34]. Overall, ML-based approaches have
the potential to significantly reduce power consumption in
DCNs, which is an important consideration for organizations
looking to improve their energy efficiency and to reduce their
carbon footprint.

IV. CONCLUSION

The escalating power usage in DCNs has become a global
concern. Energy optimization techniques that are actively re-
searched are notably scheduling and flow aggregation methods.
This paper addresses a literature gap by reviewing cutting-edge
SDN-based approaches for traffic scheduling and aggregation
in DCNs and analyzing their pros and cons. It highlights the
limitations of multi-controller SDN solutions due to perfor-
mance constraints. Future research avenues include leveraging
machine learning to optimize traffic algorithms and exploring
hybrid solutions combining advanced scheduling, aggregation
techniques, and multi-controller setups.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous peer re-
viewers for their valuable insights and constructive comments.
Also, we thank the Department of Information Technology

at the University of Debrecen, and the Science Foundation
Ireland (SFI) for supporting this work.

REFERENCES

[1] H. Garmani, D. Ait Omar, M. El Amrani, M. Baslam, and
M. Jourhmane, “Joint beacon power and beacon rate control
based on game theoretic approach in vehicular ad hoc networks,”
Infocommunications Journal, vol. 13, no. 1, pp. 58–67, 2021. [Online].
Available: https://doi.org/10.36244/ICJ.2021.1.7

[2] P. Varga, “The metrics of infocommunications journal keep improving,”
INFOCOMMUNICATIONS JOURNAL: A PUBLICATION OF THE
SCIENTIFIC ASSOCIATION FOR INFOCOMMUNICATIONS (HTE),
vol. 14, no. 2, pp. 1–1, 2022.

[3] F. Rabee, A. Al-Haboobi, and M. R. Nsaif, “Parallel three-way
handshaking route in mobile crowd sensing (pt-mcs),” J. Eng.
Appl. Sci, vol. 14, pp. 3200–3209, 2019. [Online]. Available:
https://10.36478/jeasci.2019.3200.3209

[4] M. R. Nsaif, A. S. Al-Haboobi, F. Rabee, and F. A. Alasadi, “Reliable
compression route protocol for mobile crowd sensing (rcr-msc).” J.
Commun., vol. 14, no. 3, pp. 170–178, 2019. [Online]. Available:
https://10.12720/jcm.14.3.170-178

[5] J. A. Cámara and V. S. Jiménez, “The european union facing the abyss:
legislative review in the face of the energy crisis, 2022,” Journal of
Energy & Natural Resources Law, pp. 1–16, 2023. [Online]. Available:
https://doi.org/10.1080/02646811.2023.2177409

[6] Y. Zhang, K. Shan, X. Li, H. Li, and S. Wang, “Research
and technologies for next-generation high-temperature data centers–
state-of-the-arts and future perspectives,” Renewable and Sustainable
Energy Reviews, vol. 171, p. 112991, 2023. [Online]. Available:
https://doi.org/10.1016/j.rser.2022.112991

[7] J. Koomey et al., “Growth in data center electricity use 2005 to
2010,” A report by Analytical Press, completed at the request of
The New York Times, vol. 9, no. 2011, p. 161, 2011. [Online].
Available: https://alejandrobarros.com/wp-content/uploads/old/Growth
in Data Center Electricity use 2005 to 2010.pdf

[8] P. Sun, Z. Guo, S. Liu, J. Lan, J. Wang, and Y. Hu, “Smartfct: Improving
power-efficiency for data center networks with deep reinforcement
learning,” Computer Networks, vol. 179, p. 107255, 2020. [Online].
Available: https://doi.org/10.1016/j.comnet.2020.107255

[9] S. K. Singh, S. K. Sharma, D. Singla, and S. S. Gill, “Evolving
requirements and application of sdn and iot in the context of industry
4.0, blockchain and artificial intelligence,” Software Defined Networks:
Architecture and Applications, pp. 427–496, 2022. [Online]. Available:
https://doi.org/10.1002/9781119857921.ch13

[10] S. Shrabanee and A. K. Rath, “Sdn-cloud: A power aware resource
management system for efficient energy optimization,” International
Journal of Intelligent Unmanned Systems, vol. 8, no. 4, pp. 321–343,
2020. [Online]. Available: https://doi.org/10.1108/IJIUS-07-2019-0032

[11] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” ACM SIGCOMM computer communication
review, vol. 38, no. 2, pp. 69–74, 2008. [Online]. Available:
https://doi.org/10.1145/1355734.1355746

[12] N. H. Thanh, P. N. Nam, T.-H. Truong, N. T. Hung, L. K. Doanh, and
R. Pries, “Enabling experiments for energy-efficient data center networks
on openflow-based platform,” in 2012 Fourth International Conference
on Communications and Electronics (ICCE). IEEE, 2012, pp. 239–244.
[Online]. Available: https://doi.org/10.1109/CCE.2012.6315905

[13] M. Carabaş and P. G. Popescu, “Energy-efficient virtualized clusters,”
Future Generation Computer Systems, vol. 74, pp. 151–157, 2017.
[Online]. Available: https://doi.org/10.1016/j.future.2015.10.018

[14] M. Nsaif, G. Kovásznai, A. Rácz, A. Malik, and R. de Fréin, “An
adaptive routing framework for efficient power consumption in software-
defined datacenter networks,” Electronics, vol. 10, no. 23, p. 3027,
2021. [Online]. Available: https://doi.org/10.3390/electronics10233027

[15] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding
data center traffic characteristics,” ACM SIGCOMM Computer
Communication Review, vol. 40, no. 1, pp. 92–99, 2010. [Online].
Available: https://doi.org/10.1145/1672308.1672325

[16] A. Malik and R. de Fréin, “A proactive-restoration technique for sdns,”
in 2020 IEEE Symposium on Computers and Communications (ISCC).
IEEE, 2020, pp. 1–6. [Online]. Available: https://10.1109/ISCC50000.
2020.9219598

 [1] H. Garmani, D. Ait Omar, M. El Amrani, M. Baslam, and M. Jourhmane,
“Joint beacon power and beacon rate control based on game theoretic
approach in vehicular ad hoc networks,” Infocommunications Journal,
vol. 13, no. 1, pp. 58–67, 2021. [Online]. Available:

 doi: 10.36244/ICJ.2021.1.7
 [2] P. Varga, “The metrics of infocommunications journal keep

improving,” Infocommunications Journal: A Publication of the
Scientific Association for Infocommunications (HTE), vol. 14, no. 2,
pp. 1–1, 2022.

 [3] F. Rabee, A. Al-Haboobi, and M. R. Nsaif, “Parallel three-way
handshaking route in mobile crowd sensing (pt-mcs),” J. Eng. Appl.
Sci, vol. 14, pp. 3200–3209, 2019. [Online]. Available:

 doi: 10.36478/jeasci.2019.3200.3209
 [4] M. R. Nsaif, A. S. Al-Haboobi, F. Rabee, and F. A. Alasadi, “Reliable

compression route protocol for mobile crowd sensing (rcr-msc).” J.
Commun., vol. 14, no. 3, pp. 170–178, 2019. [Online]. Available:

 doi: 10.12720/jcm.14.3.170-178
 [5] J. A. Cámara and V. S. Jiménez, “The european union facing the abyss:

legislative review in the face of the energy crisis, 2022,” Journal
of Energy & Natural Resources Law, pp. 1–16, 2023. [Online].
Available: doi: 10.1080/02646811.2023.2177409

 [6] Y. Zhang, K. Shan, X. Li, H. Li, and S. Wang, “Research and
technologies for next-generation high-temperature data centers–state-
of-the-arts and future perspectives,” Renewable and Sustainable
Energy Reviews, vol. 171, p. 112 991, 2023. [Online]. Available:
doi: 10.1016/j.rser.2022.112991

 [7] J. Koomey et al., “Growth in data center electricity use 2005 to 2010,”
A report by Analytical Press, completed at the request of The New
York Times, vol. 9, no. 2011, p. 161, 2011. [Online]. Available: https://
alejandrobarros.com/wp-content/uploads/old/Growth_in_Data_
Center_Electricity_use_2005_to_2010.pdf

 [8] P. Sun, Z. Guo, S. Liu, J. Lan, J. Wang, and Y. Hu, “Smart fct:
Improving power-efficiency for data center networks with deep
reinforcement learning,” Computer Networks, vol. 179, p. 107 255,
2020. [Online]. Available: doi: 10.1016/j.comnet.2020.107255

[9] S. K. Singh, S. K. Sharma, D. Singla, and S. S. Gill, “Evolving
requirements and application of sdn and iot in the context of industry
4.0, blockchain and artificial intelligence,” Software Defined
Networks: Architecture and Applications, pp. 427–496, 2022.
[Online]. Available: doi: 10.1002/9781119857921.ch13

[10] S. Shrabanee and A. K. Rath, “Sdn-cloud: A power aware resource
management system for efficient energy optimization,” International
Journal of Intelligent Unmanned Systems, vol. 8, no. 4, pp. 321–343,
2020. [Online]. Available: doi: 10.1108/IJIUS-07-2019-0032

 [11] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” ACM SIGCOMM computer communication
review, vol. 38, no. 2, pp. 69–74, 2008. [Online]. Available:
doi: 10.1145/1355734.1355746

 [12] N. H. Thanh, P. N. Nam, T.-H. Truong, N. T. Hung, L. K. Doanh,
and R. Pries, “Enabling experiments for energy-efficient data center
networks on openflow-based platform,” in 2012 Fourth International
Conference on Communications and Electronics (ICCE). IEEE, 2012,
pp. 239–244. [Online]. Available: doi: 10.1109/CCE.2012.6315905

 [13] M. Carabaş and P. G. Popescu, “Energy-efficient virtualized clusters,”
Future Generation Computer Systems, vol. 74, pp. 151–157, 2017.
[Online]. Available: doi: 10.1016/j.future.2015.10.018

 [14] M. Nsaif, G. Kovásznai, A. Rácz, A. Malik, and R. de Fréin, “An
adaptive routing framework for efficient power consumption in
software-defined datacenter networks,” Electronics, vol. 10, no. 23, p.
3027, 2021. [Online]. Available: doi: 10.3390/electronics10233027

 [15] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding
data center traffic characteristics,” ACM SIGCOMM Computer
Communication Review, vol. 40, no. 1, pp. 92–99, 2010. [Online].
Available: doi: 10.1145/1672308.1672325

References

7

when the state of the network changes. (3) Replication: Con-
trollers can replicate/duplicate their state and share this copy
with other controllers in the network. For example, the Flood-
light controller uses a master-slave replication mechanism to
synchronize the state of multiple controllers. By using one or
more of these methods, multiple controllers in an SDN envi-
ronment can synchronize their work and ensure the efficient
operation of the network. Therefore, when considering the use
of multiple controllers, it is important to carefully evaluate
the potential benefits and drawbacks, and design the network
architecture and control algorithms accordingly.

B. Machine Learning-Based Approaches

Machine Learning (ML) is a promising approach for solving
a wide range of computer networks problems. ML-based
techniques can be used to optimize power consumption in SD-
DCN. By analyzing network traffic patterns and predicting
network demand, ML algorithms can help SDN controllers
make real-time adjustments and reconfigure the network to op-
timize the energy usage. One approach that has been explored
in research is using ML to predict the network demand for
different time periods, such as hourly or daily intervals [32].
Based on these predictions, the SDN controller can adjust the
routing of network traffic to reduce power consumption during
periods of lower demand. Other ML algorithms can be used
to analyze the behavior of individual network components,
such as switches or servers, to identify patterns that indicate
when these components are not being used efficiently [33].
This information can then be used by the SDN controller to
adjust network configurations and optimize power usage.

Finally, using ML algorithms to classify network traffic in
real-time, SDN controllers can make more informed decisions
about network traffic routing and resource allocation, leading
to improved network performance and efficiency besides effi-
cient power usage [34]. Overall, ML-based approaches have
the potential to significantly reduce power consumption in
DCNs, which is an important consideration for organizations
looking to improve their energy efficiency and to reduce their
carbon footprint.

IV. CONCLUSION

The escalating power usage in DCNs has become a global
concern. Energy optimization techniques that are actively re-
searched are notably scheduling and flow aggregation methods.
This paper addresses a literature gap by reviewing cutting-edge
SDN-based approaches for traffic scheduling and aggregation
in DCNs and analyzing their pros and cons. It highlights the
limitations of multi-controller SDN solutions due to perfor-
mance constraints. Future research avenues include leveraging
machine learning to optimize traffic algorithms and exploring
hybrid solutions combining advanced scheduling, aggregation
techniques, and multi-controller setups.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous peer re-
viewers for their valuable insights and constructive comments.
Also, we thank the Department of Information Technology

at the University of Debrecen, and the Science Foundation
Ireland (SFI) for supporting this work.

REFERENCES

[1] H. Garmani, D. Ait Omar, M. El Amrani, M. Baslam, and
M. Jourhmane, “Joint beacon power and beacon rate control
based on game theoretic approach in vehicular ad hoc networks,”
Infocommunications Journal, vol. 13, no. 1, pp. 58–67, 2021. [Online].
Available: https://doi.org/10.36244/ICJ.2021.1.7

[2] P. Varga, “The metrics of infocommunications journal keep improving,”
INFOCOMMUNICATIONS JOURNAL: A PUBLICATION OF THE
SCIENTIFIC ASSOCIATION FOR INFOCOMMUNICATIONS (HTE),
vol. 14, no. 2, pp. 1–1, 2022.

[3] F. Rabee, A. Al-Haboobi, and M. R. Nsaif, “Parallel three-way
handshaking route in mobile crowd sensing (pt-mcs),” J. Eng.
Appl. Sci, vol. 14, pp. 3200–3209, 2019. [Online]. Available:
https://10.36478/jeasci.2019.3200.3209

[4] M. R. Nsaif, A. S. Al-Haboobi, F. Rabee, and F. A. Alasadi, “Reliable
compression route protocol for mobile crowd sensing (rcr-msc).” J.
Commun., vol. 14, no. 3, pp. 170–178, 2019. [Online]. Available:
https://10.12720/jcm.14.3.170-178

[5] J. A. Cámara and V. S. Jiménez, “The european union facing the abyss:
legislative review in the face of the energy crisis, 2022,” Journal of
Energy & Natural Resources Law, pp. 1–16, 2023. [Online]. Available:
https://doi.org/10.1080/02646811.2023.2177409

[6] Y. Zhang, K. Shan, X. Li, H. Li, and S. Wang, “Research
and technologies for next-generation high-temperature data centers–
state-of-the-arts and future perspectives,” Renewable and Sustainable
Energy Reviews, vol. 171, p. 112991, 2023. [Online]. Available:
https://doi.org/10.1016/j.rser.2022.112991

[7] J. Koomey et al., “Growth in data center electricity use 2005 to
2010,” A report by Analytical Press, completed at the request of
The New York Times, vol. 9, no. 2011, p. 161, 2011. [Online].
Available: https://alejandrobarros.com/wp-content/uploads/old/Growth
in Data Center Electricity use 2005 to 2010.pdf

[8] P. Sun, Z. Guo, S. Liu, J. Lan, J. Wang, and Y. Hu, “Smartfct: Improving
power-efficiency for data center networks with deep reinforcement
learning,” Computer Networks, vol. 179, p. 107255, 2020. [Online].
Available: https://doi.org/10.1016/j.comnet.2020.107255

[9] S. K. Singh, S. K. Sharma, D. Singla, and S. S. Gill, “Evolving
requirements and application of sdn and iot in the context of industry
4.0, blockchain and artificial intelligence,” Software Defined Networks:
Architecture and Applications, pp. 427–496, 2022. [Online]. Available:
https://doi.org/10.1002/9781119857921.ch13

[10] S. Shrabanee and A. K. Rath, “Sdn-cloud: A power aware resource
management system for efficient energy optimization,” International
Journal of Intelligent Unmanned Systems, vol. 8, no. 4, pp. 321–343,
2020. [Online]. Available: https://doi.org/10.1108/IJIUS-07-2019-0032

[11] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” ACM SIGCOMM computer communication
review, vol. 38, no. 2, pp. 69–74, 2008. [Online]. Available:
https://doi.org/10.1145/1355734.1355746

[12] N. H. Thanh, P. N. Nam, T.-H. Truong, N. T. Hung, L. K. Doanh, and
R. Pries, “Enabling experiments for energy-efficient data center networks
on openflow-based platform,” in 2012 Fourth International Conference
on Communications and Electronics (ICCE). IEEE, 2012, pp. 239–244.
[Online]. Available: https://doi.org/10.1109/CCE.2012.6315905

[13] M. Carabaş and P. G. Popescu, “Energy-efficient virtualized clusters,”
Future Generation Computer Systems, vol. 74, pp. 151–157, 2017.
[Online]. Available: https://doi.org/10.1016/j.future.2015.10.018

[14] M. Nsaif, G. Kovásznai, A. Rácz, A. Malik, and R. de Fréin, “An
adaptive routing framework for efficient power consumption in software-
defined datacenter networks,” Electronics, vol. 10, no. 23, p. 3027,
2021. [Online]. Available: https://doi.org/10.3390/electronics10233027

[15] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding
data center traffic characteristics,” ACM SIGCOMM Computer
Communication Review, vol. 40, no. 1, pp. 92–99, 2010. [Online].
Available: https://doi.org/10.1145/1672308.1672325

[16] A. Malik and R. de Fréin, “A proactive-restoration technique for sdns,”
in 2020 IEEE Symposium on Computers and Communications (ISCC).
IEEE, 2020, pp. 1–6. [Online]. Available: https://10.1109/ISCC50000.
2020.9219598

https://doi.org/10.36244/ICJ.2021.1.7
https://doi.org/10.36478/jeasci.2019.3200.3209
https://doi.org/10.12720/jcm.14.3.170-178
https://doi.org/10.1080/02646811.2023.2177409
https://doi.org/10.1016/j.rser.2022.112991
https://alejandrobarros.com/wp-content/uploads/old/Growth_in_Data_Center_Electricity_use_2005_to_2010.pdf
https://alejandrobarros.com/wp-content/uploads/old/Growth_in_Data_Center_Electricity_use_2005_to_2010.pdf
https://alejandrobarros.com/wp-content/uploads/old/Growth_in_Data_Center_Electricity_use_2005_to_2010.pdf
https://doi.org/10.1016/j.comnet.2020.107255
https://doi.org/10.1002/9781119857921.ch13
https://doi.org/10.1108/IJIUS-07-2019-0032
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1109/CCE.2012.6315905
https://doi.org/10.1016/j.future.2015.10.018
https://doi.org/10.3390/electronics10233027
https://doi.org/10.1145/1672308.1672325

Survey of Routing Techniques-Based Optimization
of Energy Consumption in SD-DCN

42

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

 [16] A. Malik and R. de Fréin, “A proactive-restoration technique for
sdns,” in 2020 IEEE Symposium on Computers and Communications
(ISCC). IEEE, 2020, pp. 1–6. [Online]. Available:

 doi: 10.1109/ISCC50000.2020.9219598
 [17] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S.

Banerjee, and N. McKeown, “Elastictree: Saving energy in data center
networks.” in Nsdi, vol. 10, 2010, pp. 249–264. [Online]. Available:
https://www.usenix.org/event/nsdi10/tech/full_papers/heller.pdf

 [18] X. Wang, Y. Yao, X. Wang, K. Lu, and Q. Cao, “Carpo: Correlation-
aware power optimization in data center networks,” in 2012
Proceedings IEEE INFOCOM, 2012, pp. 1125–1133. [Online].
Available: doi: 10.1109/INFCOM.2012.6195471

 [19] J. Ba, Y. Wang, X. Zhong, S. Feng, X. Qiu, and S. Guo, “An sdn
energy saving method based on topology switch and rerouting,” in
NOMS 2018-2018 IEEE/IFIP Network Operations and Management
Symposium. IEEE, 2018, pp. 1–5. [Online]. Available:

 doi: 10.1109/NOMS.2018.8406202
 [20] M. d. S. Conterato, T. C. Ferreto, F. Rossi, W. d. S. Marques, and P. S.

S. de Souza, “Reducing energy consumption in sdn-based data center
networks through flow consolidation strategies,” in Proceedings of
the 34th ACM/SIGAPP Symposium on Applied Computing, 2019, pp.
1384–1391. [Online]. Available: doi: 10.1145/3297280.3297420

 [21] G. Kovásznai and M. Nsaif, “Integer programming based optimization
of power consumption for data center networks,” 2023. [Online].
Available: doi: 10.14232/actacyb.299115

 [22] “An Overview of LINGO,” accessed: 20-03-2023. [Online]. Available:
https://www.lindo.com/index.php/products/lingo-and-optimization-
modeling

 [23] T. H. Vu, P. N. Nam, T. Thanh, L. T. Hung, L. A. Van, N. D. Linh, T. D.
Thien, and N. H. Thanh, “Power aware openflow switch extension for
energy saving in data centers,” in The 2012 International Conference
on Advanced Technologies for Communications, 2012, pp. 309–313.
[Online]. Available: doi: 10.1109/ATC.2012.6404282

 [24] D. Li, Y. Yu, W. He, K. Zheng, and B. He, “Willow: Saving data center
network energy for network-limited flows,” IEEE Transactions on
Parallel and Distributed Systems, vol. 26, no. 9, pp. 2610–2620, 2014.
[Online]. Available: doi: 10.1109/TPDS.2014.2350990

[25] O. Izima, R. de Fréin, and A. Malik, “A survey of machine learning
techniques for video quality prediction from quality of delivery
metrics,” Electronics, vol. 10, no. 22, 2021. [Online]. Available:
doi: 10.3390/electronics10222851

 [26] Y. Shang, D. Li, and M. Xu, “Greening data center networks with flow
preemption and energy-aware routing,” in 2013 19th IEEE Workshop
on Local&Metropolitan Area Networks (LANMAN). IEEE, 2013,
pp.1–6. [Online]. Available: doi: 10.1109/LANMAN.2013.6528281

 [27] D. Li, Y. Shang, and C. Chen, “Software defined green data center
network with exclusive routing,” in IEEE INFOCOM 2014-IEEE
Conference on Computer Communications. IEEE, 2014, pp. 1743–
1751. [Online]. Available: doi: 10.1109/INFOCOM.2014.6848112

 [28] G. Xu, B. Dai, B. Huang, and J. Yang, “Bandwidth-aware energy
efficient routing with sdn in data center networks,” in 2015 IEEE
17th international conference on high performance computing
and communications, 2015 IEEE 7th international symposium on
cyberspace safety and security, and 2015 IEEE 12th international
conference on embedded software and systems. IEEE, 2015, pp. 766–
771. [Online]. Available: doi: 10.1109/HPCC-CSS-ICESS.2015.12

 [29] G. Xu, B. Dai, B. Huang, J. Yang, and S. Wen, “Bandwidth-aware
energy efficient flow scheduling with sdn in data center networks,”
Future Generation computer systems, vol. 68, pp. 163–174, 2017.
[Online]. Available: doi: 10.1016/j.future.2016.08.024

 [30] L. Wang, F. Zhang, K. Zheng, A. V. Vasilakos, S. Ren, and Z. Liu,
“Energy-efficient flow scheduling and routing with hard deadlines in
data center networks,” in 2014 IEEE 34th International Conference on
Distributed Computing Systems. IEEE, 2014, pp. 248–257. [Online].
Available: doi: 10.1109/ICDCS.2014.33

 [31] J. Luo, S. Zhang, L. Yin, and Y. Guo, “Dynamic flow scheduling for
power optimization of data center networks,” in 2017 Fifth International
Conference on Advanced Cloud and Big Data (CBD). IEEE, 2017, pp.
57–62. [Online]. Available: doi: 10.1109/CBD.2017.18

 [32] D.-H. Le, H.-A. Tran, S. Souihi, and A. Mellouk, “An AI-based traffic
matrix prediction solution for software-defined network,” in ICC 2021-
IEEE International Conference on Communications. IEEE, 2021, pp.
1–6. [Online]. Available: doi: 10.1109/ICC42927.2021.9500331

 [33] B. Steiner, C. Cummins, H. He, and H. Leather, “Value learning for
throughput optimization of deep learning workloads,” Proceedings of
Machine Learning and Systems, vol. 3, pp. 323–334, 2021. [Online].
Available: https://proceedings.mlsys.org/paper_files/paper/2021/file/
a7e5da037a0afc90fa84386586929a26-Paper.pdf

 [34] M. Nsaif, G. Kovásznai, M. Abboosh, A. Malik, and R. de Fréin,
“Ml-based online traffic classification for sdns,” in 2022 IEEE 2nd
Conference on Information Technology and Data Science (CITDS),
2022, pp. 217–222. [Online]. Available:

 doi: 10.1109/CITDS54976.2022.9914138

Mohammed Nsaif is a Ph.D. candidate student at
the University of Debrecen, Faculty of Informatics,
Department of Information Technology. He received
his M.S. in Infocommunication technology and com-
munication systems from Kazan National Research
Technical University in the Russian Federation. His
research interests include software-defined networks,
computer networks, wireless sensor networks and
machine learning.

Gergely Kovásznai is an Associate Professor and
Head of the Department of Computational Science
at the Eszterházy Károly Catholic University in Eger,
Hungary. He received his Ph.D. degree in Formal
Methods and Automated Theorem Proving from the
University of Debrecen, Hungary, in 2007. Over the
years, he worked as a research fellow at the Aristotle
University of Thessaloniki, Greece, at the Johannes
Kepler University Linz, Austria, and at the Vienna
University of Technology, Austria. His research in-

terests include formal methods, formal verification, operations research,
and machine learning.

Ali Malik is an Assistant Lecturer in computer engi-
neering at the School of Electrical and Electronic Engi-
neering, Technological University Dublin, Ireland. He
holds Ph.D. degree in computing from the University of
Portsmouth, United Kingdom, in 2019. He worked as a
postdoctoral researcher at FOCAS Research Institute,
Technological University Dublin, in areas related to
data center, monitoring and software-defined network-
ing. His current research interests include software-de-
fined networks, vehicular networks, traffic engineering,

machine learning, cybersecurity, microgrids and power networks.

Ruairí de Fréin is a CONNECT Funded Investigator
and Lecturer at the School of Electrical and Electronic
Engineering, Technological University Dublin, Ireland.
He received the B.E. degree in Electronic Engineering
in 2004 and Ph.D. degree in Time-Frequency Analysis
and Matrix Factorization from University College
Dublin (UCD), Ireland, in 2010. He held Marie
Skłodowska-Curie fellowships in KTH Royal Institute
of Technology, Stockholm and also with Amadeus
SAS, Sophia Antipolis, France. Over the past few years

he has developed algorithms for predicting quality-of-delivery metrics for
network management and monitoring strategies for small cell networks, and
monitoring techniques for Internet Protocol TeleVision (IPTV). His research
interests include machine learning, sparse signal processing, software-defined
networks, vehicular networks, microgrids and power networks.

https://doi.org/10.1109/ISCC50000.2020.9219598
https://www.usenix.org/event/nsdi10/tech/full_papers/heller.pdf
https://doi.org/10.1109/INFCOM.2012.6195471
https://doi.org/10.1109/NOMS.2018.8406202
https://doi.org/10.1145/3297280.3297420
https://doi.org/10.14232/actacyb.299115
https://www.lindo.com/index.php/products/lingo-and-optimization-modeling
https://www.lindo.com/index.php/products/lingo-and-optimization-modeling
https://doi.org/10.1109/ATC.2012.6404282
https://doi.org/10.1109/TPDS.2014.2350990
https://doi.org/10.3390/electronics10222851
https://doi.org/10.1109/LANMAN.2013.6528281
https://doi.org/10.1109/INFOCOM.2014.6848112
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.12
https://doi.org/10.1016/j.future.2016.08.024
https://doi.org/10.1109/ICDCS.2014.33
https://doi.org/10.1109/CBD.2017.18
https://doi.org/10.1109/ICC42927.2021.9500331
https://proceedings.mlsys.org/paper_files/paper/2021/file/a7e5da037a0afc90fa84386586929a26-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2021/file/a7e5da037a0afc90fa84386586929a26-Paper.pdf

Decomposition Based Congestion Analysis of
the Communication in B5G/6G TeraHertz High-Speed Networks

43

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—The New MAC mechanism plays a key role in

achieving the needed requirements of the B5G/6G radio
technology and helps to avoid high-speed frequency issues and
limitations. With the help of the ns-3 simulator, we generated 42
different cases for the purpose of analyzing the impact of the
network load on the overall effective transmission rate. Therefore,
the use of the data-adaptive decomposition method the Empirical
Mode Decomposition (EMD) on our non-stationary system
benefits in the extraction of the important meaningful
components. However, due to the highlighted direction
dependency finding of EMD, Ensembled EMD (EEMD) being
direction independent shows better performance on our data
series. The extracted trend based on the proposed method matches
the fitting curve, while the fitting curve parameters can be
clusterized into 2 main clusters congested and non-congested cases
of the radio channel throughput signal.

Index Terms—Tera-Hertz technology, 6G, Beyond 5G,
Empirical Mode Decomposition, Ensemble Empirical Mode
Decomposition, Intrinsic Mode Function

I. INTRODUCTION
ITH the rapid proliferation of the Internet of Things

(IoT), an expansive multitude of end devices has
emerged, necessitating the advent of a novel wireless
generation capable of facilitating seamless connectivity with an
exceptionally high bit rate. B5G/6G technology harnesses the
potential of Terahertz bands, enabling the attainment of
extraordinary data transfer speeds reaching several Tbps,
accompanied by an impressively low latency of just 1 ms [5].
However, the effective management of the spectrum allocation
encounters formidable challenges attributed to molecular
absorption loss as well as the intricate interplay of diverse
natural factors, encompassing pressure, relative humidity, and
temperature, which profoundly impact the propagation
environment [7]. The rapid growth of the Internet of Things
(IoT) has resulted in an unprecedented number of connected
devices, creating a demand for a new wireless generation that
can handle the increasing volume of data and provide seamless
connectivity. The current wireless technologies face limitations
in terms of capacity and bandwidth, which hinder their ability
to support the IoT ecosystem effectively. However, the

Djamila Talbi is with faculty of informatics, University of Debrecen,
Debrecen, Hungary (e-mail: talbi.djamila@inf.unideb.hu)

emergence of B5G/6G and the utilization of Terahertz bands
hold great promise in overcoming these limitations. Terahertz
frequencies offer a significantly higher data rate potential,
enabling transmission speeds in the range of several Tbps. By
harnessing the Terahertz bands, the new wireless generation can
address the constraints of current technologies, providing the
necessary bandwidth and capacity to accommodate the
expanding IoT landscape.

The Adaptive Directional Antenna Protocol for THz
networks (ADAPT) protocol represents a pioneering Medium
Access Control (MAC) mechanism specifically designed for
the Terahertz frequency domain. ADAPT has demonstrated
remarkable performance improvements, exhibiting a
remarkable throughput of approximately 120 Gbps within a
single radio cell accommodating 50 Mobile Terminals (MT)
[3]. However, it should be noted that ADAPT does encounter
certain limitations when operating in a heavily loaded network
environment [3, 10]. In scenarios characterized by heightened
congestion, the transmission time gradually escalates, thereby
adversely affecting the overall channel throughput. Hence, our
investigation seeks to make a significant contribution to the
advancement of techniques for analyzing non-stationary and
nonlinear THz throughput signals. By doing so, we aim to
enhance network congestion state detection and overall
performance optimization in real-world applications. The main
highlights of the paper can be summarized as follows:

 The generation of ADAPT data along with the
introduction of the utilized decomposition methods.

 The utilization of diverse decomposition methods with
various analyses.

 The data series undergoes decomposition-based trend
extraction, followed by the clusterization of the
extracted trend parameters.

Chapter two of this work provides an overview of pertinent
literature related to the decomposition and the current study.
Chapter three explores the characteristics of the decomposition
methods and the ADAPT MAC mechanism. Moving on to
chapter four, an analysis is conducted on the performance of
EMD and EEMD. Lastly, chapter five presents a
comprehensive summary and conclusion of the findings derived
from the study.

Dr. Zoltan Gal is with faculty of informatics, University of Debrecen,
Debrecen, Hungary (e-mail: gal.zoltan@inf.unideb.hu)

Decomposition Based Congestion Analysis of
the Communication in B5G/6G TeraHertz

High-Speed Networks
Djamila Talbi, Zoltan Gal. Member, IEEE

W

Decomposition Based Congestion Analysis of
the Communication in B5G/6G TeraHertz

High-Speed Networks
Djamila Talbi, and Zoltan Gal Member, IEEE

Abstract—The New MAC mechanism plays a key role in
achieving the needed requirements of the B5G/6G radio tech-
nology and helps to avoid high-speed frequency issues and limi-
tations. With the help of the ns-3 simulator, we generated 42
different cases for the purpose of analyzing the impact of the
network load on the overall effective transmission rate. There-
fore, the use of the data-adaptive decomposition method the
Empirical Mode Decomposition (EMD) on our non-stationary
system benefits in the extraction of the important meaningful
components. However, due to the highlighted direction depend-
ency finding of EMD, Ensembled EMD (EEMD) being direction
independent shows better performance on our data series. The
extracted trend based on the proposed method matches the fit-
ting curve, while the fitting curve parameters can be clusterized
into 2 main clusters congested and non-congested cases of the
radio channel throughput signal.

Index Terms—Tera-Hertz technology, 6G, Beyond 5G,
Empirical Mode Decomposition, Ensemble Empirical Mode
Decomposition, Intrinsic Mode Function

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—The New MAC mechanism plays a key role in

achieving the needed requirements of the B5G/6G radio
technology and helps to avoid high-speed frequency issues and
limitations. With the help of the ns-3 simulator, we generated 42
different cases for the purpose of analyzing the impact of the
network load on the overall effective transmission rate. Therefore,
the use of the data-adaptive decomposition method the Empirical
Mode Decomposition (EMD) on our non-stationary system
benefits in the extraction of the important meaningful
components. However, due to the highlighted direction
dependency finding of EMD, Ensembled EMD (EEMD) being
direction independent shows better performance on our data
series. The extracted trend based on the proposed method matches
the fitting curve, while the fitting curve parameters can be
clusterized into 2 main clusters congested and non-congested cases
of the radio channel throughput signal.

Index Terms—Tera-Hertz technology, 6G, Beyond 5G,
Empirical Mode Decomposition, Ensemble Empirical Mode
Decomposition, Intrinsic Mode Function

I. INTRODUCTION
ITH the rapid proliferation of the Internet of Things

(IoT), an expansive multitude of end devices has
emerged, necessitating the advent of a novel wireless
generation capable of facilitating seamless connectivity with an
exceptionally high bit rate. B5G/6G technology harnesses the
potential of Terahertz bands, enabling the attainment of
extraordinary data transfer speeds reaching several Tbps,
accompanied by an impressively low latency of just 1 ms [5].
However, the effective management of the spectrum allocation
encounters formidable challenges attributed to molecular
absorption loss as well as the intricate interplay of diverse
natural factors, encompassing pressure, relative humidity, and
temperature, which profoundly impact the propagation
environment [7]. The rapid growth of the Internet of Things
(IoT) has resulted in an unprecedented number of connected
devices, creating a demand for a new wireless generation that
can handle the increasing volume of data and provide seamless
connectivity. The current wireless technologies face limitations
in terms of capacity and bandwidth, which hinder their ability
to support the IoT ecosystem effectively. However, the

Djamila Talbi is with faculty of informatics, University of Debrecen,
Debrecen, Hungary (e-mail: talbi.djamila@inf.unideb.hu)

emergence of B5G/6G and the utilization of Terahertz bands
hold great promise in overcoming these limitations. Terahertz
frequencies offer a significantly higher data rate potential,
enabling transmission speeds in the range of several Tbps. By
harnessing the Terahertz bands, the new wireless generation can
address the constraints of current technologies, providing the
necessary bandwidth and capacity to accommodate the
expanding IoT landscape.

The Adaptive Directional Antenna Protocol for THz
networks (ADAPT) protocol represents a pioneering Medium
Access Control (MAC) mechanism specifically designed for
the Terahertz frequency domain. ADAPT has demonstrated
remarkable performance improvements, exhibiting a
remarkable throughput of approximately 120 Gbps within a
single radio cell accommodating 50 Mobile Terminals (MT)
[3]. However, it should be noted that ADAPT does encounter
certain limitations when operating in a heavily loaded network
environment [3, 10]. In scenarios characterized by heightened
congestion, the transmission time gradually escalates, thereby
adversely affecting the overall channel throughput. Hence, our
investigation seeks to make a significant contribution to the
advancement of techniques for analyzing non-stationary and
nonlinear THz throughput signals. By doing so, we aim to
enhance network congestion state detection and overall
performance optimization in real-world applications. The main
highlights of the paper can be summarized as follows:

 The generation of ADAPT data along with the
introduction of the utilized decomposition methods.

 The utilization of diverse decomposition methods with
various analyses.

 The data series undergoes decomposition-based trend
extraction, followed by the clusterization of the
extracted trend parameters.

Chapter two of this work provides an overview of pertinent
literature related to the decomposition and the current study.
Chapter three explores the characteristics of the decomposition
methods and the ADAPT MAC mechanism. Moving on to
chapter four, an analysis is conducted on the performance of
EMD and EEMD. Lastly, chapter five presents a
comprehensive summary and conclusion of the findings derived
from the study.

Dr. Zoltan Gal is with faculty of informatics, University of Debrecen,
Debrecen, Hungary (e-mail: gal.zoltan@inf.unideb.hu)

Decomposition Based Congestion Analysis of
the Communication in B5G/6G TeraHertz

High-Speed Networks
Djamila Talbi, Zoltan Gal. Member, IEEE

W

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—The New MAC mechanism plays a key role in

achieving the needed requirements of the B5G/6G radio
technology and helps to avoid high-speed frequency issues and
limitations. With the help of the ns-3 simulator, we generated 42
different cases for the purpose of analyzing the impact of the
network load on the overall effective transmission rate. Therefore,
the use of the data-adaptive decomposition method the Empirical
Mode Decomposition (EMD) on our non-stationary system
benefits in the extraction of the important meaningful
components. However, due to the highlighted direction
dependency finding of EMD, Ensembled EMD (EEMD) being
direction independent shows better performance on our data
series. The extracted trend based on the proposed method matches
the fitting curve, while the fitting curve parameters can be
clusterized into 2 main clusters congested and non-congested cases
of the radio channel throughput signal.

Index Terms—Tera-Hertz technology, 6G, Beyond 5G,
Empirical Mode Decomposition, Ensemble Empirical Mode
Decomposition, Intrinsic Mode Function

I. INTRODUCTION
ITH the rapid proliferation of the Internet of Things

(IoT), an expansive multitude of end devices has
emerged, necessitating the advent of a novel wireless
generation capable of facilitating seamless connectivity with an
exceptionally high bit rate. B5G/6G technology harnesses the
potential of Terahertz bands, enabling the attainment of
extraordinary data transfer speeds reaching several Tbps,
accompanied by an impressively low latency of just 1 ms [5].
However, the effective management of the spectrum allocation
encounters formidable challenges attributed to molecular
absorption loss as well as the intricate interplay of diverse
natural factors, encompassing pressure, relative humidity, and
temperature, which profoundly impact the propagation
environment [7]. The rapid growth of the Internet of Things
(IoT) has resulted in an unprecedented number of connected
devices, creating a demand for a new wireless generation that
can handle the increasing volume of data and provide seamless
connectivity. The current wireless technologies face limitations
in terms of capacity and bandwidth, which hinder their ability
to support the IoT ecosystem effectively. However, the

Djamila Talbi is with faculty of informatics, University of Debrecen,
Debrecen, Hungary (e-mail: talbi.djamila@inf.unideb.hu)

emergence of B5G/6G and the utilization of Terahertz bands
hold great promise in overcoming these limitations. Terahertz
frequencies offer a significantly higher data rate potential,
enabling transmission speeds in the range of several Tbps. By
harnessing the Terahertz bands, the new wireless generation can
address the constraints of current technologies, providing the
necessary bandwidth and capacity to accommodate the
expanding IoT landscape.

The Adaptive Directional Antenna Protocol for THz
networks (ADAPT) protocol represents a pioneering Medium
Access Control (MAC) mechanism specifically designed for
the Terahertz frequency domain. ADAPT has demonstrated
remarkable performance improvements, exhibiting a
remarkable throughput of approximately 120 Gbps within a
single radio cell accommodating 50 Mobile Terminals (MT)
[3]. However, it should be noted that ADAPT does encounter
certain limitations when operating in a heavily loaded network
environment [3, 10]. In scenarios characterized by heightened
congestion, the transmission time gradually escalates, thereby
adversely affecting the overall channel throughput. Hence, our
investigation seeks to make a significant contribution to the
advancement of techniques for analyzing non-stationary and
nonlinear THz throughput signals. By doing so, we aim to
enhance network congestion state detection and overall
performance optimization in real-world applications. The main
highlights of the paper can be summarized as follows:

 The generation of ADAPT data along with the
introduction of the utilized decomposition methods.

 The utilization of diverse decomposition methods with
various analyses.

 The data series undergoes decomposition-based trend
extraction, followed by the clusterization of the
extracted trend parameters.

Chapter two of this work provides an overview of pertinent
literature related to the decomposition and the current study.
Chapter three explores the characteristics of the decomposition
methods and the ADAPT MAC mechanism. Moving on to
chapter four, an analysis is conducted on the performance of
EMD and EEMD. Lastly, chapter five presents a
comprehensive summary and conclusion of the findings derived
from the study.

Dr. Zoltan Gal is with faculty of informatics, University of Debrecen,
Debrecen, Hungary (e-mail: gal.zoltan@inf.unideb.hu)

Decomposition Based Congestion Analysis of
the Communication in B5G/6G TeraHertz

High-Speed Networks
Djamila Talbi, Zoltan Gal. Member, IEEE

W

Djamila Talbi is with faculty of informatics, University of Debrecen, Debrecen,
Hungary (e-mail: talbi.djamila@inf.unideb.hu)

Dr. Zoltan Gal is with faculty of informatics, University of Debrecen,
Debrecen, Hungary (e-mail: gal.zoltan@inf.unideb.hu)

DOI: 10.36244/ICJ.2023.5.7

mailto:talbi.djamila%40inf.unideb.hu?subject=
mailto:gal.zoltan%40inf.unideb.hu?subject=
https://doi.org/10.36244/ICJ.2023.5.7

Decomposition Based Congestion Analysis of
the Communication in B5G/6G TeraHertz High-Speed Networks

44

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

II. RELATED WORK
Empirical Mode Decomposition (EMD) and Ensemble

Empirical Mode Decomposition (EEMD) are two signal
processing methods used to decompose non-stationary and
nonlinear signals Intrinsic Mode Functions (IMFs). Therefore,
the authors in [11] aim to compare those two methods in the
analysis of a seismic signal. The results of this work show that
the time-frequency spectrum obtained through EEMD more
accurately reflects real geological conditions as compared to
EMD. Other work has been done on the same topic using EMD,
EEMD, and Variational Mode Decomposition (VMD) in [6] for
chatter detection in milling. The researchers compared the three
methods and found that EEMD and VMD were more effective
than EMD. EMD has been widely used for trend extraction in
various fields, it is a powerful tool for analyzing non-stationary
and extracting meaningful information from them. However,
trend extraction methods using the IMFs might differ.

In [4] the authors decompose the IMFs into two parts, the
trend one of them. Moreover, in [2] the authors proposed a
method for extracting the trend. The method involves
decomposing the signal into IMFs, and then fitting the extracted
trend component using the least squares method. The proposed
method was validated using experimental data and was found
to be effective in identifying the trend of the cement-burning
zone flame temperature. Research conducted in [12] compared
EMD and EEMD and revealed that EMD suffers from mode
mixing, leading to inaccurate extraction of signal
characteristics. On the other hand, EEMD successfully extracts
meaningful components and exhibits superior performance in
fault diagnosis for rotating machinery, as demonstrated through
simulations and real-world applications. In a related study,
another group of researchers investigated EEMD's
effectiveness in overcoming mode mixing by introducing white
noise [13]. EEMD accurately decomposed signals into distinct
IMFs, thereby enhancing time-frequency analysis and
providing more realistic time-frequency spectra in geology
applications.

The team in [14] introduced a hybrid denoising method that
combines thresholded IMFs with data-driven VMD, proving
highly suitable for non-stationary seismic signals with reduced
noise sensitivity. Additionally, [15] demonstrated that EEMD
outperforms EMD and VMD for calculating respiration rates
from PPG signals, achieving over 90% accuracy with an
average error rate of 1 rate/minute. EEMD shows potential in
simplifying sensor devices for accurate RR calculation.

III. APPLIED METHODOLOGY
In our research work, we collected data of the new MAC

mechanism ADAPT that is compatible with the first
standardization for the THz physical layer defined in IEEE
802.15.3d [3]. For our simulation, we employed the pre-
existing example available in the second version of TeraSim, a
platform designed specifically for simulating extremely high
frequencies, integrated into the ns-3 simulator. In our study, we
utilized the ADAPT MAC protocol within the Macroscale
scenario to evaluate its performance in the context of THz

frequencies. Along with the new proposed parameters [9] the
overlapped sectors and the step parameters, we generated 42
different cases. 7 different number of steps based on the
properties mentioned in [9] (s = 1, 7, 11, 13, 17, 19, 23), 2
different topologies: the centered topology where the MT are
distributed closer to the Access Point (AP), and the random
uniform where the MT is distributed uniformly around the AP.
The radius of the area under consideration is determined to be
18 meters, and there are 30 sectors within this area. With these
values established, it becomes evident to calculate the
population density parameter (ρ = n/A [𝑚𝑚��]), where n
represents the population count and A denotes the area of the
circle.

Fig. 1. Spatial distribution of the
collision rate (step, d, n) = (13, 1, 240)

Fig. 2. Throughput vs. time
(step, d, n) = (13, 1, 240)

We used 3 different numbers of MT (𝑛𝑛 = 60, 240, 960)

having the overlapped ratio fixed 𝑚𝑚 = 0.3 (see Fig. 1). The
behavior of the throughput is particularly intriguing, as its
distribution exhibits a gradual decrease over time, as illustrated
in Fig. 2. This trend is further confirmed and supported by the
fit curve, which aligns with the decreasing pattern of the
throughput as time progresses. The representation declines the
nature of the THz throughput, and the fit curve provides a
mathematical model that captures and validates this
diminishing trend. The combination of empirical evidence from
the distribution plot and the fit curve's analytical support
strengthens the significance of this observation.

A. Empirical Mode Decomposition
Empirical Mode Decomposition (EMD) can be applied to a

nonlinear and non-stationary signal. Although, it is a
sophisticated method for features extraction [1]. EMD
decomposes the signal into a finite number of IMFs plus the
residual, the decomposition process involves identifying all
extrema of the signal X(t) and connecting them with the help of
cubic splines to obtain an upper and a lower envelope [1]. It
calculates the mean of the upper and lower envelope m1, then
subtracted from the original signal to obtain the first component
h1 (1). However, the resulting IMF most of the time is not the
right IMF because it does not satisfy the necessary conditions.
Therefore, the sifting process is used and repeated to refine the
IMF by eliminating riding waves, making it more symmetric
and smoothing uneven amplitudes.

𝑋𝑋(𝑡𝑡) − 𝑚𝑚� = ℎ (1)

Decomposition Based Congestion Analysis of
the Communication in B5G/6G TeraHertz High-Speed Networks

45

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

By doing so, the resulting IMF is then subtracted from the
original signal to obtain a residue signal (2) where c1 is the IMF
after j sifting times.

𝑋𝑋(𝑡𝑡) − 𝑐𝑐� = 𝑟𝑟� (2)

IMF1 is then decomposed into the second IMF using the

same process. This process is repeated until the last residual.
However, like any other processing method, EMD struggles
with some limitations that should be considered such as the end
effect where the first and the last points most of the time are not
the extreme values. Also, the mode mixing limitation occurs
when the IMF components overlap and cannot be separated
from each other. It can happen when the signal has multiple
scales of variation, leading to a difficult interpretation of the
IMF components [8].

B. Ensemble Empirical Mode Decomposition
Ensemble Empirical Mode Decomposition (EEMD) is an

advanced technique designed to enhance the traditional EMD
method, specifically tailored for the analysis of non-stationary
and nonlinear signals. One of the key challenges faced by EMD
is the presence of the mode mixing problem, which can result
in inaccuracies during signal analysis. To overcome these
limitations, EEMD introduces a novel approach by
incorporating an ensemble of white noise into the original
signal before applying the EMD method. This addition of white
noise ensures that each iteration of the EMD process produces
slightly different results, effectively mitigating the mode
mixing problem.

The EEMD process involves several steps: Firstly, the
original signal is combined with white noise, leading to the
generation of multiple noisy versions of the signal.
Subsequently [8], the traditional EMD method is applied
independently to each of these noisy signals, extracting a set of
IMFs from every iteration. Finally, the IMFs obtained from all
iterations are averaged, yielding the final IMFs. Through this
ensemble approach, EEMD successfully overcomes the
limitations of traditional EMD and improves the accuracy of the
extracted IMFs, representing more faithfully the underlying
components of the signal. This enhancement proves particularly
valuable when dealing with intricate and non-stationary signals,
enabling more dependable time-frequency analysis and
extraction of signal characteristics.

IV. MEASUREMENT SCENARIO AND ANALYSIS OF THE MOBILE
ADAPT SYSTEM

Since non-stationary and nonlinear systems in high-speed
wireless communication networks require special signal
processing methods, EMD can be a suitable approach.
Consequently, we have decided to use EMD to decompose the
throughput data of ADAPT and analyze the obtained results.

A. EMD Decomposition-Based Throughput Analysis
To observe the impact of applying the EMD on throughput

analysis, we decided to apply EMD in a direct way from
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡����� to 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡���, and then inversely from 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡��� to
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�����. The results of this experiment show the resulting
IMFs of the direct and inverse methods plotted versus the time
(Fig. 3 and Fig. 4).

Fig. 3. Direct EMD on Throughput

vs. time
Fig. 4. Inverse EMD on

Throughput vs. time (c = 0.48)

The experiment was in the case where the 𝑠𝑠𝑡𝑡𝑡𝑡𝑠𝑠 = 7, the

topology was centred, and 𝑛𝑛 = 960. Our observation from the
results was that the IMFs generated by the direct and inverse
methods were significantly different, despite having different
amplitudes for the same IMFs. This difference was further
confirmed by a correlation coefficient of less than 0.5 (𝑐𝑐 =
 0.48), which indicates that EMD is direction-dependent.

Fig. 5. Direct EEMD on

Throughput vs. time (Noise = 0.05)
Fig. 6. Inverse EEMD on

Throughput vs. time (c = 0.994)

Decomposition Based Congestion Analysis of
the Communication in B5G/6G TeraHertz High-Speed Networks

46

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

The experiment was repeated using EEMD with 5 percent
white noise in cases where we have 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 23, the topology
centred, and 𝑛𝑛 = 960. The IMFs generated by the direct and
inverse methods were identical, despite having the same
amplitude (Fig. 5 and Fig. 6). This finding was confirmed by a
high correlation coefficient 𝑐𝑐 = 0.994, which indicates that
EEMD is direction-independent.

We came up with the idea of using the fast Fourier transform
on the IMFs resulting from EMD to extract the frequency
information. It is evident that the FFT gives adjacent sub-
frequency bands in log2 of the frequency for adjacent IMFs,
which is reminiscent of the dyadic filter bank (See Fig. 7 the
throughput signal in case where we have 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 11, random
uniform topology and 𝑛𝑛 = 960, and Fig. 8 in case 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 7,
centered topology and 𝑛𝑛 = 960).

Fig. 7. Fast Fourier transform on

IMFs (step, d, n) = (11, 2, 960) vs.
frequency

Fig. 8. Fast Fourier transform on
IMFs (step, d, n) = (7, 1, 960) vs.

frequency.

B. Analysis of Data and Trend Extraction
For extracting the trend using the IMFs components, one

approach is, to sum up, each k consecutive IMFs together with
the residual component (as Fig. 9 shows). It is obvious that if
the number of IMFs included in each sum is precisely equal to
k, then the resulting trend will exactly match the original
throughput signal.

To select the optimal trend among the potential options, we
suggest employing a Root Mean Square Error (RMSE)
calculation to compare each trend candidate against the original
signal. The trend component with the smallest non-zero RMSE
will be chosen as the final trend. This approach ensures that the
selected trend is as close as possible to the original signal. The
RMSE values are plotted versus 𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛𝑡𝑡� in centered topology,
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 23, and 𝑛𝑛 = 960 (Fig. 10).

By analyzing this graph, it becomes possible to visually
identify the trend component with the smallest non-zero RMSE
and thus select the optimal trend for the given dataset.

Fig. 9. IMFs-based trends vs. time (step, d, n) = (23, 2, 960)

The visualization of RMSE values versus 𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛𝑡𝑡� for all 42

cases simultaneously allows us to observe that the chosen
𝑠𝑠𝑡𝑡𝑠𝑠𝑛𝑛𝑡𝑡� differs from case to case (Fig. 11). By examining this
graph, we can identify that there is no single trend component
that performs optimally across all cases. Instead, the optimal
trend varies depending on the specific dataset under
consideration.

Fig. 10. The error of throughput and
trend

Fig. 11. RMSE of throughput and
IMF-based trend

Therefore, it is important to perform an individualized

analysis for each dataset to determine the appropriate trend
component. This approach ensures that the chosen trend is both
accurate and effective for a given dataset, leading to more
reliable results and better decision-making.

Decomposition Based Congestion Analysis of
the Communication in B5G/6G TeraHertz High-Speed Networks

47

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

The ability to observe and understand the variability in
RMSE and 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� across different cases highlight the
importance of customizing analysis to specific datasets and
avoiding generalizations.

Fig. 12. Dependence of throughput, trend, and fit curve on time

To enhance our analysis, we included a fit curve of the

original throughput dataset in addition to the chosen trend and
the original data. This fit curve provides a visual representation
of the overall trend in the data and facilitates the comparison of
the chosen trend with the original signal (Fig. 12 presents a plot
showing all 42 cases together).

Upon examining this graph, it is apparent that the chosen
trend and the fitting curve are quite similar in the majority of
cases. This similarity indicates that the selected trend is an
accurate representation of the underlying trend in the data.
However, there are some cases where the chosen trend deviates
significantly from the fitting curve. These deviations may be the
result of outliers or other anomalies in the data. By comparing
the chosen trend and the fitting curve in this manner, we can
gain a more comprehensive understanding of the data and make
more informed decisions based on the analysis results.

Upon applying the fitting curve to the original signal, we
meticulously extracted the fitting parameters and subsequently
generated a scatter plot to provide visual insight into the
outcomes of parameters a and b (as depicted in Fig. 13).
Notably, the red-highlighted cluster is associated with instances
of lower congestion levels, while the black cluster corresponds
to more congested cases.

Fig. 13. Scatter plot of the fit parameters

These findings strongly imply that the fitting parameters,

specifically parameters a and b, hold promising potential as
valuable indicators for discerning and characterizing network
congestion states. Such observations signify the scientific
relevance and significance of the proposed methodology in
understanding and quantifying the complexities of network
congestion in our study.

V. CONCLUSION

The analysis of our throughput data using the EMD method
in both left-to-right and right-to-left directions revealed a strong
dependence on the processing direction. This dependence is
likely attributed to the end effect issue, which affects the EMD's
performance. In contrast, when applying the EEMD method,
the results indicated its independence from the processing
direction, showcasing its superiority in mitigating such issues.
Furthermore, the trend extracted through our proposed method
(in Section 3, Subsection B) demonstrated a remarkable
correspondence with the fitting curve, showcasing the
reliability and accuracy of our approach in analyzing radio
channel throughput signals. This alignment between the
extracted trend and the fitting curve underscores the
effectiveness of our proposed method. Additionally, by
examining the fitting curve parameters obtained from our
method, we observed the emergence of two distinct clusters.
These clusters corresponded to the congested and non-
congested states of the radio channel throughput signal. This
exciting finding implies that our proposed method not only
effectively analyzes radio channel throughput signals but also
enables precise detection and differentiation of various network
congestion states.

ACKNOWLEDGMENT
This work has been supported by QoS-HPC-IoT Laboratory

and project TKP2021-NKTA of the University of Debrecen,
Hungary. Project no. TKP2021-NKTA-34 has been
implemented with the support provided from the National
Research, Development and Innovation Fund of Hungary,
financed under the TKP2021-NKTA funding scheme.

Decomposition Based Congestion Analysis of
the Communication in B5G/6G TeraHertz High-Speed Networks

48

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

the clock domain switch the synchronization accuracy can be
drastically improved.

Regarding future work, the synchronization error of the
master and slave device can be further reduced with fine
tuning of PI controller or with the implementation of a
more sophisticated solution such as Kalman-filtering. Another
possible future research direction would be the evaluation and
measurements of the different LOS and NLOS scenarios and
the characteristics of the distance between the master and slave
device. Furthermore, as the UWB technology has significant
limitations beyond a certain distance, there is some initial
research on a multi-hop UWB PTP system. Such a system
can provide clock synchronization on the order of 10 ns over
many times the UWB radio range. However, in this case, the
synchronization errors are accumulated, offering an exciting
research topic.

REFERENCES

[1] O. Seijo, J. A. López-Fernández, H.-P. Bernhard, and I. Val, “Enhanced
Timestamping Method for Subnanosecond Time Synchronization in
IEEE 802.11 Over WLAN Standard Conditions,” IEEE Transactions
on Industrial Informatics, vol. 16, no. 9, pp. 5792–5805, 2020, DOI:
10.1109/TII.2019.2959200.

[2] Z. Idrees, J. Granados, Y. Sun, S. Latif, L. Gong, Z. Zou, and
L. Zheng, “IEEE 1588 for Clock Synchronization in Industrial IoT
and Related Applications: A Review on Contributing Technologies,
Protocols and Enhancement Methodologies,” IEEE Access, vol. 8, pp.
155 660–155 678, 2020, DOI: 10.1109/ACCESS.2020.3013669.

[3] M. Lipiński, T. Włostowski, J. Serrano, and P. Alvarez, “White rabbit:
a PTP application for robust sub-nanosecond synchronization,” in 2011
IEEE International Symposium on Precision Clock Synchronization for
Measurement, Control and Communication, 2011, pp. 25–30, DOI:
10.1109/ISPCS.2011.6070148.

[4] “IEEE Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems,” IEEE Std 1588-
2019 (Revision of IEEE Std 1588-2008), pp. 1–499, 2020, DOI:
10.1109/IEEESTD.2020.9120376.

[5] “IEEE Standard for Local and Metropolitan Area Networks–Timing and
Synchronization for Time-Sensitive Applications,” IEEE Std 802.1AS-
2020 (Revision of IEEE Std 802.1AS-2011), pp. 1–421, 2020, DOI:
10.1109/IEEESTD.2020.9121845.

[6] I. Val, O. Seijo, R. Torrego, and A. Astarloa, “IEEE 802.1AS Clock Syn-
chronization Performance Evaluation of an Integrated Wired–Wireless
TSN Architecture,” IEEE Transactions on Industrial Informatics,
vol. 18, no. 5, pp. 2986–2999, 2022, DOI: 10.1109/TII.2021.3106568.

[7] H. Shi, A. Aijaz, and N. Jiang, “Evaluating the performance of over-
the-air time synchronization for 5g and tsn integration,” in 2021
IEEE International Black Sea Conference on Communications and
Networking (BlackSeaCom), 2021, pp. 1–6, DOI: 10.1109/BlackSea-
Com52164.2021.9527833.

[8] T. Adame, M. Carrascosa-Zamacois, and B. Bellalta, “Time-
Sensitive Networking in IEEE 802.11be: On the Way to
Low-Latency WiFi 7,” Sensors, vol. 21, no. 15, 2021.
[Online]. Available: https://www.mdpi.com/1424-8220/21/15/4954.
DOI: 10.3390/s21154954

[9] J. Haxhibeqiri, X. Jiao, M. Aslam, I. Moerman, and J. Hoebeke,
“Enabling TSN over IEEE 802.11: Low-overhead Time Synchroniza-
tion for Wi-Fi Clients,” in 2021 22nd IEEE International Conference
on Industrial Technology (ICIT), vol. 1, 2021, pp. 1068–1073, DOI:
10.1109/ICIT46573.2021.9453686.

[10] “IEEE Standard for Information technology—Telecommunications and
information exchange between systems Local and metropolitan area
networks—Specific requirements - Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications,” IEEE
Std 802.11-2016 (Revision of IEEE Std 802.11-2012), pp. 1–3534, 2016,
DOI: 10.1109/IEEESTD.2016.7786995.

[11] G. Hollósi, “Distribution of ultra wideband (UWB) receive timestamps
in dense indoor environment based on the Saleh-Valenzuela channel
model,” in 2022 14th International Conference on Communications
(COMM), 2022, pp. 1–5, DOI: 10.1109/COMM54429.2022.9817167.

[12] A. Jiménez and F. Seco, “Finding objects using uwb or ble localization
technology: A museum-like use case,” in 2017 International Conference
on Indoor Positioning and Indoor Navigation (IPIN), 2017, pp. 1–8,
DOI: 10.1109/IPIN.2017.8115865.

[13] W. Shule, C. M. Almansa, J. P. Queralta, Z. Zou, and T. Westerlund,
“UWB-Based Localization for Multi-UAV Systems and Collaborative
Heterogeneous Multi-Robot Systems,” Procedia Computer Science,
vol. 175, pp. 357–364, 2020, mobiSPC. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050920317324.
DOI: https://doi.org/10.1016/j.procs.2020.07.051

[14] M. Drobczyk, C. Strowik, and C. Philpot, “A Wireless Communication
and Positioning Experiment for the ISS Based on IR-UWB,” in 2017
IEEE Wireless Communications and Networking Conference (WCNC),
2017, pp. 1–6, DOI: 10.1109/WCNC.2017.7925487.

[15] S. Rinaldi, A. Musatti, A. Depari, P. Ferrari, A. Flammini, and E. Sisinni,
“An Experimental Characterization of Chain of PLLs for Wired Clock
Synchronization of UWB Anchors for Indoor Location,” in 2022 IEEE
International Instrumentation and Measurement Technology Conference
(I2MTC), 2022, pp. 1–6, DOI: 10.1109/I2MTC48687.2022.9806698.

[16] R. Zou, N. Wu, Z. Qu, and J. Chen, “Design and Implementation
of a High-precision Wireless Clock Synchronization System Based on
UWB,” in 2022 4th International Conference on Intelligent Control,
Measurement and Signal Processing (ICMSP), 2022, pp. 1094–1099,
DOI: 10.1109/ICMSP55950.2022.9859065.

[17] P. Ferrari, P. Bellagente, A. Depari, A. Flammini, M. Pasetti, S. Ri-
naldi, and E. Sisinni, “Resilient time synchronization opportunisti-
cally exploiting uwb rtls infrastructure,” IEEE Transactions on In-
strumentation and Measurement, vol. 71, pp. 1–10, 2022, DOI:
10.1109/TIM.2021.3132354.

[18] M. Segura, S. Niranjayan, H. Hashemi, and A. F. Molisch, “Experimen-
tal demonstration of nanosecond-accuracy wireless network synchro-
nization,” in 2015 IEEE International Conference on Communications
(ICC), 2015, pp. 6205–6210, DOI: 10.1109/ICC.2015.7249312.

[19] B. Xue, Z. Li, P. Lei, Y. Wang, and X. Zou, “Wicsync:
A wireless multi-node clock synchronization solution based
on optimized UWB two-way clock synchronization protocol,”
Measurement, vol. 183, p. 109760, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S026322412100717X.
DOI: https://doi.org/10.1016/j.measurement.2021.109760

[20] “IEEE standard for low-rate wireless networks,” IEEE Std 802.15.4-
2020 (Revision of IEEE Std 802.15.4-2015), pp. 1–800, 2020, DOI:
10.1109/IEEESTD.2020.9144691.

[21] D. Ltd., DW1000 User Manual, ”How To use, configure and program
the DW1000 UWB transmitter”, Qorvo, 2017.

[22] ST, Reference manual, STM32F405/415, STM32F407/417,
STM32F427/437 and STM32F429/439 advanced Arm-based 32-
bit MCUs, 2021.

Gergely Hollósi is a researcher at Dept. of Telecom-
munications and Media Informatics (TMIT) of Bu-
dapest University of Technology and Economics
(BME). Gergely received his M.Sc. in the Budapest
University of Technology and Economics (BME) in
2009. He is actively working and researching on
computer vision, image processing, machine learn-
ing algorithms and indoor localization systems.

István Moldován is a Research Fellow at the Bu-
dapest University of Technology and Economics in
the Department of Telecommunications and Media
Informatics. In 1996, he received an M.Sc. degree
in Automation and Industrial Informatics from the
Technical University of Tirgu-Mures, Romania. His
research interests include network management, em-
bedded systems, simulation and performance eval-
uation of computer networks. He is lecturing on
communication networks.

Djamila Talbi from Laghouat, Algeria, born in 1999.
She holds a Bachelor of Science degree in Telecommu-
nication from Amar Telidji University, Laghouat, Alge-
ria, which she earned in 2019. In 2021, she furthered her
academic journey, acquiring a Master of Science degree
in the Systems of Telecommunication from Amar Tel-
idji University, Laghouat, Algeria.
Currently, she is engrossed in pursuing a Ph.D. degree
in the prestigious Faculty of Informatics at the Univer-
sity of Debrecen, Hungary, where she continues to dis-

play her dedication to advancing knowledge in her field. Since the beginning of
her Ph.D. studies, she has been dedicated to advancing her research in cutting-
edge areas of the telecommunications industry, with a primary focus on upcom-
ing 6G/Beyond 5G (B5G) high-speed wireless communication systems and
communication in the TeraHertz frequencies. Her research involves conducting
thorough analyses and investigations into the limitations and challenges associ-
ated with such new frequencies. Through her academic pursuits, she aims to
contribute valuable insights to the field and play a significant role in shaping
the future of high-speed wireless communication systems in the 6G/B5G era.

Zoltan Gal is currently an associate professor at the
Faculty of Informatics, University of Debrecen, Hun-
gary. He earned MSc in electrical engineering and
computer science from the Technical University of
Timisoara, Romania and PhD in informatics sciences
from the University of Debrecen. His scientific interest
is focused on distributed processing and communica-
tion systems, sensor technologies and services in the
Internet of Things. He was the CIO of his institute for
20 years and developed the university-level metropoli-

tan area highs-speed data network and services with over 10k Internet nodes.
He is Cisco Certified Network Professional lecturer since 1999 and taught
over five hundred network professionals in the field. Starting in 2015 he is
head of the Centre of High-Performance Computing at his university. He is an
IEEE member since 1996 and published over one hundred twenty scientific
conferences and journal papers: He supervises his own R&D&I project called
QoS-HPC-IoT Laboratory.

 [1] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng,
N.-C. Yen, C. C. Tung, H. H. Liu, “The empirical mode decomposition
and the Hilbert spectrum for nonlinear and non-stationary time
series analysis”, Proceedings of the Royal Society of London A:
mathematical, physical and engineering sciences 454.1971 (1998),
pp. 903–995.

 [2] S. Lu, X. Wang, H. Yu, H. Dong, Z. Yang, “Trend extraction and
identification method of cement burning zone flame temperature
based on EMD and least square”, Measurement 111 (2017), pp. 208–
215, issn: 0263-2241, doi: 10.1016/j.measurement.2017.07.047.

 [3] D. Morales, J. M. Jornet, “ADAPT: An Adaptive Directional Antenna
Protocol for medium access control in Terahertz communication
networks”, Ad Hoc Networks 119 (2021), p. 102540, issn: 1570-8705.
doi: 10.1016/j.adhoc.2021.102540.

 [4] J.-M. Poggi: “Empirical Mode Decomposition for Trend Extraction.
Application to Electrical Data”, in: 2010.

 [5] Z. Qadir, K. N. Le, N. Saeed, H. S. Munawar: “Towards 6G Internet
of Things: Recent advances, use cases, and open challenges”, ICT
Express (2022), issn: 2405–9595,doi: 10.1016/j.icte.2022.06.006.

 [6] P. Seyrek, B. Şener, A. M. Özbayoğlu, H. Ö. Ünver, “An Evaluation
Study of EMD, EEMD, and VMD For Chatter Detection in Milling”,
Procedia Comput. Sci. 200.C (Jan. 2022), pp. 160–174, issn: 1877-
0509, doi: 10.1016/j.procs.2022.01.215.

 [7] A. Shafie, N. Yang, C. Han, J. M. Jornet, M. Juntti, T. Kurner,
“Terahertz Communications for 6G and Beyond Wireless Networks:
Chal lenges, Key Advancements, and Opportunities”, IEEE Network
(2022), pp. 1–8, doi: 10.1109/MNET.118.2200057.

 [8] U. B. de Souza, J. P. L. Escola, L. da Cunha Brito, “A survey on
Hilbert-Huang transform: Evolution, chal lenges and solutions”,
Digital Signal Processing 120 (2022), pp. 103292, issn: 10512004,
doi: 10.1016/j.dsp.2021.103292,

 [9] D. Talbi, Z. Gal, “Impact of Multi-Layer Recurrent Neural Networks
in the Congestion Analysis of TeraHertz B5G/6G MAC Mechanism”,
in: 2022 International Conference on Software, Telecommunications
and Computer Networks (SoftCOM), 2022, pp. 1–6.

 doi: 10.23919/SoftCOM55329.2022.9911500.
 [10] D. Talbi, M. A. Korteby, Z. Gal, “Neural Network Based Analysis

of Terahertz Frequency Signal Propagation for B5G/6G Wireless
Networks”, in: 2022 IEEE 2nd Conference on Information Technology
and Data Science (CITDS), 2022, pp. 267–272,

 doi: 10.1109/CITDS54976.2022.9914236.

References

 [11] T. Wang, M. Zhang, Q. Yu, H. Zhang, “Comparing the applications
of EMD and EEMD on time-frequency analysis of seismic signal”,
Journal of Applied Geophysics 83 (2012), pp. 29–34, issn: 0926-
9851, doi: 10.1016/j.jappgeo.2012.05.002.

 [12] Yaguo Lei, Zhengjia He, Yanyang Zi, “Application of the EEMD
method to rotor fault diagnosis of rotating machinery”, Mechanical
Systems and Signal Processing, Volume 23, Issue 4, 2009, pp. 1327–
1338, issn 0888-3270. doi: 10.1016/j.ymssp.2008.11.005.

 [13] Tong Wang, Mingcai Zhang, Qihao Yu, Huyuan Zhang, “Comparing
the applications of EMD and EEMD on time– frequency analysis of
seismic signal”, Journal of Applied Geophysics, Volume 83, 2012, pp.
29–34, issn 0926-9851, doi: 10.1016/j.jappgeo.2012.05.002.

 [14] L. Fangyu, Z. Bo, V. Sumit, M. Kurt, “Seismic signal denoising using
thresholded variational mode decomposition”, Journal of Exploration
Geophysics, Volume 49, 2018, issn 0812–3985,

 doi: 10.1071/EG17004.
 [15] S. Hadiyoso, E. M. Dewi, I. Wijayanto, “Comparison of EMD, VMD

and EEMD Methods in Respiration Wave Extraction Based on PPG
Waves”, Journal of Physics: Conference Series, Volume 1577, 2020,
issn 1742–6596, doi: 10.1088/1742-6596/1577/1/012040.

https://doi.org/10.1016/j.measurement.2017.07.047
https://doi.org/10.1016/j.adhoc.2021.102540
https://doi.org/10.1016/j.icte.2022.06.006
https://doi.org/10.1016/j.procs.2022.01.215
https://doi.org/10.1109/MNET.118.2200057
https://doi.org/10.1016/j.dsp.2021.103292
https://doi.org/10.23919/SoftCOM55329.2022.9911500
https://doi.org/10.1109/CITDS54976.2022.9914236
https://doi.org/10.1016/j.jappgeo.2012.05.002
https://doi.org/10.1016/j.ymssp.2008.11.005
https://doi.org/10.1016/j.jappgeo.2012.05.002
https://doi.org/10.1071/EG17004
https://doi.org/10.1088/1742-6596/1577/1/012040

In-network DDoS detection and mitigation
using INT data for IoT ecosystem

49

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

The authors are with the Department of Programming Languages and
Compilers, Eötvös Loránd University (ELTE), Budapest, Hungary. (e-mail:
* gereltsetseg@inf.elte.hu; ** matej@inf.elte.hu).

Abstract—Due to the limited capabilities and diversity of Inter-
net of Things (IoT) devices, it is challenging to implement robust
and unified security standards for these devices. Additionally, the
fact that vulnerable IoT devices are beyond the network’s control
makes them susceptible to being compromised and used as bots
or part of botnets, leading to a surge in attacks involving these
devices in recent times. We proposed a real-time IoT anomaly de-
tection and mitigation solution at the programmable data plane
in a Software-Defined Networking (SDN) environment using In-
band Network telemetry (INT) data to address this issue. As far
as we know, it is the first experiment in which INT data is used
to detect IoT attacks in the programmable data plane. Based on
our performance evaluation, the detection delay of our proposed
approach is much lower than the results of previous Distributed
Denial-of-Service (DDoS) research, and the detection accuracy is
similarly high.

Index Terms—IoT anomaly detection, data plane, In-band
Network Telemetry(INT)

In-network DDoS detection and mitigation
using INT data for IoT ecosystem

Gereltsetseg Altangerel* and Máté Tejfel**

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

In-network DDoS detection and mitigation
using INT data for IoT ecosystem

Gereltsetseg Altangerel1 and Máté Tejfel2

Abstract—Due to the limited capabilities and diversity of Inter-
net of Things (IoT) devices, it is challenging to implement robust
and unified security standards for these devices. Additionally, the
fact that vulnerable IoT devices are beyond the network’s control
makes them susceptible to being compromised and used as bots
or part of botnets, leading to a surge in attacks involving these
devices in recent times. We proposed a real-time IoT anomaly
detection and mitigation solution at the programmable data plane
in a Software-Defined Networking (SDN) environment using In-
band Network telemetry (INT) data to address this issue. As far
as we know, it is the first experiment in which INT data is used
to detect IoT attacks in the programmable data plane. Based on
our performance evaluation, the detection delay of our proposed
approach is much lower than the results of previous Distributed
Denial-of-Service (DDoS) research, and the detection accuracy is
similarly high.

Index Terms—IoT anomaly detection, data plane, In-band
Network Telemetry(INT)

I. INTRODUCTION

W ith the growth of IoT usage and the ease of exploiting
vulnerable IoT devices, the flow of IoT-based attacks

has reached unprecedented levels [1], [2]. For example, Mirai
is one of the most well-known IoT attacks. It targets insecure
IoT devices and turns them into a massive botnet that can be
used to launch powerful DDoS attacks. In 2016, Mirai attack
on Dyn DNS (Domain name service) provider took down high-
profile websites and services such as GitHub, Reddit, Netflix,
and Airbnb.

One of the main reasons for the increase in IoT attacks
is that organizations may not always have complete control
over IoT devices that are located outside of their scope or
not directly accessible. This could include situations where
the organization operates in a shared office building or public
space, where IoT devices may be installed by other tenants
or individuals and are not managed by the organization.
Despite this challenge, organizations can take measures to
reduce the risks associated with these external IoT devices.
These measures can be Network Segmentation and Firewalls,
Monitoring and Anomaly Detection, Secure IoT Protocols, and
Azure IoT Hub (or similar solutions). For example, the last
solution enables secure communication between IoT devices
and cloud applications while providing the ability to revoke
access to unauthorized devices.

In this paper, we proposed an IoT monitoring, anomaly
detection and mitigation solution for this issue. Our proposed

The authors are with the Department of Programming Languages and
Compilers, Eötvös Loránd University (ELTE), Budapest, Hungary. (email:
gereltsetseg@inf.elte.hu1, matej@inf.elte.hu2).

solution is an in-network (data plane) approach for detecting
and mitigating DDoS-like attacks in an IoT environment using
INT data. DDoS is a common type of computer network attack
that can be easily carried out using insecure IoT devices.
INT is a new type of monitoring mechanism that can collect
more detailed network information (INT data) in real-time than
conventional monitoring, thereby helping to detect not only
IoT but also other types of attacks. As far as we know, all
previous works on IoT anomaly detection have used datasets
based on network traffic. As IoT devices pose challenges to
the implementation of standard security solutions, we aimed
to create a solution in the SDN environment.

Our proposed method has two main advantages. First, the
detection is faster since it is performed directly on the data
processing path, and second, it is more efficient since it uses
real-time INT data. The main contributions of this work are
as follows.

• Generating a new INT dataset under normal and DDoS
attack conditions in an SDN simulation environment and
making it publicly available to fill research gaps.

• We are the first to propose a P4-based (data plane-based)
method for DDoS detection and mitigation in an IoT
environment using INT data.

• Evaluating the performance of the proposed method and
conducting a comparison with a competing solution [3].

The rest of the paper is organized as follows. Section II is
about related works, and Section III describes how we created
an experimental network and collected INT data. Section IV
and V describe our proposed model, the experimental results,
and discussions. Finally, we summarize our work and suggest
future directions in Section VI.

II. RELATED WORK

Several significant research works [4], [5], [6], [7], [8] have
been proposed for IoT anomaly detection, with and without
SDN. For instance, Del-IoT [9] is an IoT anomaly detection
approach that employs a deep ensemble model to address data
imbalance issues in network traffic datasets. It is implemented
on an SDN controller. Bhunia and Gurusamy [7] present
a machine learning-based anomaly detection and mitigation
method for IoT traffic using SDN. They utilize the SVM
algorithm to monitor and learn the behavior of IoT devices
over time to detect anomalies.

In the current landscape of IoT anomaly detection studies
[10], [11] controller-based anomaly detection methods are
prevalent in SDN networks. The majority of these solutions
leverage network traffic datasets (e.g., NetFlow, Wireshark)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

In-network DDoS detection and mitigation
using INT data for IoT ecosystem

Gereltsetseg Altangerel1 and Máté Tejfel2

Abstract—Due to the limited capabilities and diversity of Inter-
net of Things (IoT) devices, it is challenging to implement robust
and unified security standards for these devices. Additionally, the
fact that vulnerable IoT devices are beyond the network’s control
makes them susceptible to being compromised and used as bots
or part of botnets, leading to a surge in attacks involving these
devices in recent times. We proposed a real-time IoT anomaly
detection and mitigation solution at the programmable data plane
in a Software-Defined Networking (SDN) environment using In-
band Network telemetry (INT) data to address this issue. As far
as we know, it is the first experiment in which INT data is used
to detect IoT attacks in the programmable data plane. Based on
our performance evaluation, the detection delay of our proposed
approach is much lower than the results of previous Distributed
Denial-of-Service (DDoS) research, and the detection accuracy is
similarly high.

Index Terms—IoT anomaly detection, data plane, In-band
Network Telemetry(INT)

I. INTRODUCTION

W ith the growth of IoT usage and the ease of exploiting
vulnerable IoT devices, the flow of IoT-based attacks

has reached unprecedented levels [1], [2]. For example, Mirai
is one of the most well-known IoT attacks. It targets insecure
IoT devices and turns them into a massive botnet that can be
used to launch powerful DDoS attacks. In 2016, Mirai attack
on Dyn DNS (Domain name service) provider took down high-
profile websites and services such as GitHub, Reddit, Netflix,
and Airbnb.

One of the main reasons for the increase in IoT attacks
is that organizations may not always have complete control
over IoT devices that are located outside of their scope or
not directly accessible. This could include situations where
the organization operates in a shared office building or public
space, where IoT devices may be installed by other tenants
or individuals and are not managed by the organization.
Despite this challenge, organizations can take measures to
reduce the risks associated with these external IoT devices.
These measures can be Network Segmentation and Firewalls,
Monitoring and Anomaly Detection, Secure IoT Protocols, and
Azure IoT Hub (or similar solutions). For example, the last
solution enables secure communication between IoT devices
and cloud applications while providing the ability to revoke
access to unauthorized devices.

In this paper, we proposed an IoT monitoring, anomaly
detection and mitigation solution for this issue. Our proposed

The authors are with the Department of Programming Languages and
Compilers, Eötvös Loránd University (ELTE), Budapest, Hungary. (email:
gereltsetseg@inf.elte.hu1, matej@inf.elte.hu2).

solution is an in-network (data plane) approach for detecting
and mitigating DDoS-like attacks in an IoT environment using
INT data. DDoS is a common type of computer network attack
that can be easily carried out using insecure IoT devices.
INT is a new type of monitoring mechanism that can collect
more detailed network information (INT data) in real-time than
conventional monitoring, thereby helping to detect not only
IoT but also other types of attacks. As far as we know, all
previous works on IoT anomaly detection have used datasets
based on network traffic. As IoT devices pose challenges to
the implementation of standard security solutions, we aimed
to create a solution in the SDN environment.

Our proposed method has two main advantages. First, the
detection is faster since it is performed directly on the data
processing path, and second, it is more efficient since it uses
real-time INT data. The main contributions of this work are
as follows.

• Generating a new INT dataset under normal and DDoS
attack conditions in an SDN simulation environment and
making it publicly available to fill research gaps.

• We are the first to propose a P4-based (data plane-based)
method for DDoS detection and mitigation in an IoT
environment using INT data.

• Evaluating the performance of the proposed method and
conducting a comparison with a competing solution [3].

The rest of the paper is organized as follows. Section II is
about related works, and Section III describes how we created
an experimental network and collected INT data. Section IV
and V describe our proposed model, the experimental results,
and discussions. Finally, we summarize our work and suggest
future directions in Section VI.

II. RELATED WORK

Several significant research works [4], [5], [6], [7], [8] have
been proposed for IoT anomaly detection, with and without
SDN. For instance, Del-IoT [9] is an IoT anomaly detection
approach that employs a deep ensemble model to address data
imbalance issues in network traffic datasets. It is implemented
on an SDN controller. Bhunia and Gurusamy [7] present
a machine learning-based anomaly detection and mitigation
method for IoT traffic using SDN. They utilize the SVM
algorithm to monitor and learn the behavior of IoT devices
over time to detect anomalies.

In the current landscape of IoT anomaly detection studies
[10], [11] controller-based anomaly detection methods are
prevalent in SDN networks. The majority of these solutions
leverage network traffic datasets (e.g., NetFlow, Wireshark)

DOI: 10.36244/ICJ.2023.5.8

mailto:gereltsetseg%40inf.elte.hu?subject=
mailto:matej%40inf.elte.hu?subject=
https://doi.org/10.36244/ICJ.2023.5.8

In-network DDoS detection and mitigation
using INT data for IoT ecosystem

50

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

with machine learning and deep learning techniques for
anomaly detection.

Recent efforts in network applications have focused on re-
ducing processing delays by offloading tasks from the control
plane to the data plane or dedicated processors [12], [13]. Im-
plementing anomaly detection directly in the packet processing
path or data plane can significantly enhance detection speed
compared to control plane solutions.

Since programmable data plane is a relatively new concept,
data plane-based anomaly detection solutions are less common
compared to controller-based solutions. However, there are
some anomaly detection solutions specifically designed for
the data plane. For example, Euclid [3] is a data plane-
based DDoS detection solution that employs Shannon entropy
based on the frequency of source and destination IP addresses.
Sanghi et al. [14] focus on identifying potential attacks on
data plane systems and present a scalable tool for real-time
detection. Kang et al. [15] propose an approach to discover
attack vectors in a data plane system and conduct preliminary
experiments to demonstrate its feasibility. Although these
solutions represent pioneering attempts to detect anomalies in
the data plane, none of them utilize INT data.

To the best of our knowledge, there are two experimental
solutions that leverage INT data for anomaly detection. Kim
et. al. [16] uses a recurrent neural network (RNN), while
our earlier work [10] utilizes a one-dimensional Convolutional
neural network (1D CNN). However, both of these solutions
are implemented on external controllers or servers. The main
distinctive feature of our proposed solution in this paper is its
ability to detect IoT anomalies directly on the data plane using
INT data, offering a unique approach in this domain.

III. INT DATA COLLECTION

A. Overview of the programmable data plane and INT

Packet processing algorithms in network architectures are
categorized into control and data planes based on their func-
tions. Data plane algorithms define the packet processing
pipeline, while control plane algorithms set the packet pro-
cessing rules. The interaction between the control plane and
the data plane is shown in Fig. 1a.

In traditional network architecture, both types of algorithms
are preconfigured on each network device and are not easily
customizable. Only device manufacturers have the capability
to reprogram them. However, with the advent of the SDN
paradigm, the control plane is decoupled from the data plane
and operates on dedicated server(s). This separation has led to
increased flexibility, manageability, openness, and programma-
bility in computer networks [17].

The concept of the programmable data plane is relatively
new compared to the programmable control plane. It enables
anyone to quickly design, test, and deploy a variety of appli-
cations in the data plane.

P4 is one of the popular domain-specific programming
languages used for defining data plane algorithms. The basic
architecture of the P4 pipeline, as shown in Fig. 1b, consists
of three main parts: the parser, match-action, and deparser.

1) Parser: The parser receives incoming packets and ex-
tracts header fields from them. This step involves parsing
the packet’s structure to identify and extract relevant
information.

2) Match-Action: The match-action section processes the
packet headers and metadata. It comprises one or more
tables, with each table having a key part and an action
part. During table application, the program attempts to
find the most suitable key in the table based on the
packet’s header fields and metadata. Upon finding the
appropriate key, the associated action is executed. If
there is no matching key, the program either executes the
default action if defined or does nothing. An example of
a commonly used routing table in P4 involves the match
key being the destination IP address. The match type
can be the longest prefix match, and the corresponding
action depends on the match result, such as forwarding
the packet, dropping it, or applying no action.

3) Deparser: The deparser assembles the processed header
fields and the original payload to build the outgoing
packet. This step ensures the proper formatting and
structuring of the packet before it leaves the network
device [18].

Overall, data plane programmability with P4 or any other
language empowers network administrators and developers
to define customized data plane behaviors, offering greater
flexibility and control over how network packets are processed
and forwarded. Moreover, it allows for the development of
many interesting applications [12].

One notable application enabled by data plane programma-
bility is INT. It is a new monitoring system that captures
network telemetry information, such as hop latency, flow
latency, and queue depth, directly from the data plane. The
distinct advantage of this approach is that it bypasses the CPU-
driven control plane, resulting in more real-time collection of
telemetry data (INT data) compared to traditional monitoring
mechanisms [16]. The real-time monitoring capability offered
by INT provides valuable insights into network performance.
This data enables network administrators to optimize net-
work efficiency and performance while developing effective
methods such as network anomaly detection, smart congestion
control or routing mechanisms based on these insights.

B. INT data collection on testbed network

We created an INT-enabled SDN network, as shown in
Figure 2, on the MININET1 simulation program. This SDN
network consists of a data plane, a control plane, IoT servers,
and users. In the data plane, we deployed BMv2 software
switches and configured P4 pipeline with INT support. For
the control plane, we developed a custom controller using
Python. This controller is responsible for configuring the
packet processing rules and control rules for the data plane,
providing the necessary instructions to the switches.

Within this simulated network, we emulated external IoT
devices as attacker nodes and servers as target nodes. This

1http://mininet.org/1 http://mininet.org/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

with machine learning and deep learning techniques for
anomaly detection.

Recent efforts in network applications have focused on re-
ducing processing delays by offloading tasks from the control
plane to the data plane or dedicated processors [12], [13]. Im-
plementing anomaly detection directly in the packet processing
path or data plane can significantly enhance detection speed
compared to control plane solutions.

Since programmable data plane is a relatively new concept,
data plane-based anomaly detection solutions are less common
compared to controller-based solutions. However, there are
some anomaly detection solutions specifically designed for
the data plane. For example, Euclid [3] is a data plane-
based DDoS detection solution that employs Shannon entropy
based on the frequency of source and destination IP addresses.
Sanghi et al. [14] focus on identifying potential attacks on
data plane systems and present a scalable tool for real-time
detection. Kang et al. [15] propose an approach to discover
attack vectors in a data plane system and conduct preliminary
experiments to demonstrate its feasibility. Although these
solutions represent pioneering attempts to detect anomalies in
the data plane, none of them utilize INT data.

To the best of our knowledge, there are two experimental
solutions that leverage INT data for anomaly detection. Kim
et. al. [16] uses a recurrent neural network (RNN), while
our earlier work [10] utilizes a one-dimensional Convolutional
neural network (1D CNN). However, both of these solutions
are implemented on external controllers or servers. The main
distinctive feature of our proposed solution in this paper is its
ability to detect IoT anomalies directly on the data plane using
INT data, offering a unique approach in this domain.

III. INT DATA COLLECTION

A. Overview of the programmable data plane and INT

Packet processing algorithms in network architectures are
categorized into control and data planes based on their func-
tions. Data plane algorithms define the packet processing
pipeline, while control plane algorithms set the packet pro-
cessing rules. The interaction between the control plane and
the data plane is shown in Fig. 1a.

In traditional network architecture, both types of algorithms
are preconfigured on each network device and are not easily
customizable. Only device manufacturers have the capability
to reprogram them. However, with the advent of the SDN
paradigm, the control plane is decoupled from the data plane
and operates on dedicated server(s). This separation has led to
increased flexibility, manageability, openness, and programma-
bility in computer networks [17].

The concept of the programmable data plane is relatively
new compared to the programmable control plane. It enables
anyone to quickly design, test, and deploy a variety of appli-
cations in the data plane.

P4 is one of the popular domain-specific programming
languages used for defining data plane algorithms. The basic
architecture of the P4 pipeline, as shown in Fig. 1b, consists
of three main parts: the parser, match-action, and deparser.

1) Parser: The parser receives incoming packets and ex-
tracts header fields from them. This step involves parsing
the packet’s structure to identify and extract relevant
information.

2) Match-Action: The match-action section processes the
packet headers and metadata. It comprises one or more
tables, with each table having a key part and an action
part. During table application, the program attempts to
find the most suitable key in the table based on the
packet’s header fields and metadata. Upon finding the
appropriate key, the associated action is executed. If
there is no matching key, the program either executes the
default action if defined or does nothing. An example of
a commonly used routing table in P4 involves the match
key being the destination IP address. The match type
can be the longest prefix match, and the corresponding
action depends on the match result, such as forwarding
the packet, dropping it, or applying no action.

3) Deparser: The deparser assembles the processed header
fields and the original payload to build the outgoing
packet. This step ensures the proper formatting and
structuring of the packet before it leaves the network
device [18].

Overall, data plane programmability with P4 or any other
language empowers network administrators and developers
to define customized data plane behaviors, offering greater
flexibility and control over how network packets are processed
and forwarded. Moreover, it allows for the development of
many interesting applications [12].

One notable application enabled by data plane programma-
bility is INT. It is a new monitoring system that captures
network telemetry information, such as hop latency, flow
latency, and queue depth, directly from the data plane. The
distinct advantage of this approach is that it bypasses the CPU-
driven control plane, resulting in more real-time collection of
telemetry data (INT data) compared to traditional monitoring
mechanisms [16]. The real-time monitoring capability offered
by INT provides valuable insights into network performance.
This data enables network administrators to optimize net-
work efficiency and performance while developing effective
methods such as network anomaly detection, smart congestion
control or routing mechanisms based on these insights.

B. INT data collection on testbed network

We created an INT-enabled SDN network, as shown in
Figure 2, on the MININET1 simulation program. This SDN
network consists of a data plane, a control plane, IoT servers,
and users. In the data plane, we deployed BMv2 software
switches and configured P4 pipeline with INT support. For
the control plane, we developed a custom controller using
Python. This controller is responsible for configuring the
packet processing rules and control rules for the data plane,
providing the necessary instructions to the switches.

Within this simulated network, we emulated external IoT
devices as attacker nodes and servers as target nodes. This

1http://mininet.org/

http://mininet.org/

In-network DDoS detection and mitigation
using INT data for IoT ecosystem

51

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

(a) Control & Data Plane Interaction. (b) Abstract Packet Forwarding in P4.

Fig. 1. Network packet processing system.

setup allows us to analyze the behavior of the IoT anomalies
and test the effectiveness of our proposed INT-based anomaly
detection and mitigation approach.

Fig. 2. Testbed SDN network.

After building a testbed network, we collected INT data
including the queue depth of the switches’ output interface
under normal and attack conditions. To collect the INT data,
we designed our own probe packet, which is a specialized
packet transmitted across the network every millisecond from a
specific source to a specific destination. As the probe packet is
processed by the switches in the network, each switch appends
its queue depth value to the packet. This action allows us
to capture real-time queue depth value at each switch in the
network. When the probe packet reaches its destination, we
extracted queue depth information collected from each switch
and stored it in a text file. As mentioned above, we created
two kinds of data collection scenarios.

In the first scenario, we generated legitimate traffic, in-
cluding UDP and ICMP flows using iperf2 and ping3 tools
from external IoT devices to the target server. During these
normal conditions, we captured INT data, including queue
depth information, using the probe packet. Over the course of

2https://iperf.fr/
3https://linuxize.com/post/linux-ping-command/

an hour, we accumulated more than 5000 data points, which
were saved to a text file for analysis.

In the second scenario, we collected INT data under mali-
cious traffic conditions. Due to hardware limitations, we need
lighter attack. Therefore, we chose DDoS attacks with ICMP
flooding. We created a DDoS attack using the hping34 tool,
and legitimate traffic flows with UDP and ICMP messages
from the attacker node to the target node. INT data were also
collected for one hour under this condition.

C. Characteristics of INT data

After collecting INT data, we conducted a statistical analysis
to understand their behavior. Firstly, we performed a t-test
to evaluate and compare the difference between the means
of the normal and malicious INT datasets, each consisting
of 5000 samples. The result is presented in the first column
of Table 1. A negative T-statistic (-33.74) suggests that the
mean of the normal group is lower than that of the malicious
group in our case. The P-value quantifies the probability of
obtaining the observed results under the assumption of the
null hypothesis. An extremely small P-value (e.g., 3.55e-181)
suggests strong statistical significance and it indicates that
there is substantial evidence to reject the null hypothesis in
favor of the alternative hypothesis, supporting the presence
of a meaningful and significant difference between the means
of the two compared groups. In summary, based on this t-
test result, we can conclude that the normal and malicious
datasets were statistically significantly different at a very high
probability.

Additionally, we created smaller datasets by randomly se-
lecting 128 records multiple times from the original 5000-
sample datasets of both malicious and normal conditions. The
t-test results for these smaller datasets are shown in columns 2
to 4 of Table 1. These results were consistent with the previous
whole dataset analysis, confirming the significant differences
between the two conditions.

Furthermore, we compared the datasets using simple sta-
tistical measures like mean, median, mode, etc. Based on
these measures, significant differences were observed among
the datasets, indicating the potential to detect IoT anomalies

4https://www.kali.org/tools/hping3/4 https://www.kali.org/tools/hping3/
2 https://iperf.fr/
3 https://linuxize.com/post/linux-ping-command/

https://www.kali.org/tools/hping3/
https://iperf.fr/
https://linuxize.com/post/linux-ping-command/

In-network DDoS detection and mitigation
using INT data for IoT ecosystem

52

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

TABLE I
T-TEST RESULTS: STATISTICAL COMPARISON OF TWO DATASETS

T-statistic P-value
Whole
dataset -33.74 3.55e-181

Sample 1 -9.48 8.63E-18
Sample 2 -7.31 6.61E-12
...
Sample n -9.628 3.15E-18

effectively. Since our anomaly detection solution for the IoT
ecosystem aims to be simple and fast based on P4-language
capabilities, we decided to implement it based on the mean
value of queue depth.

IV. PROPOSED P4-BASED ANOMALY DETECTION AND
MITIGATION APPROACH

After collecting and analyzing the INT data, we devel-
oped a P4-based packet processing pipeline incorporating IoT
anomaly detection and mitigation mechanisms. Our proposed
P4-based approach, depicted in Fig. 3, operates based on three
distinct states: normal, detection, and mitigation state. Each
state is designed with specific functionalities, and transitions
between these states occur based on predefined conditions. We
used global register and metadata in P4 to create a state that
can be accessed and manipulated from both the data plane and
the control plane. As a result, state transitions are effectively
orchestrated by both the data plane and control plane according
to the configuration specified in Table II.

In the subsequent text, the block numbers in parentheses
provide a reference to how the numbered blocks of the P4
pipeline depicted in Fig. 3 correspond to the descriptions
provided.

First of all, the packet counter value is analyzed to determine
whether to maintain the current normal state or switch to the
anomaly detection state. Packet counters are implemented at
the ingress part of the pipeline in the data plane and are only
read by the control plane. Based on the configured threshold
counter value, the control plane will set either of the two states
mentioned above. In order to determine a baseline for the
packet counter, we conducted a test to determine the number
of packets and bytes transmitted through the input and output
interfaces of the S1 switch (which attackers are connected to)
over a period of 2 seconds, while transmitting normal and
attack packets. We then computed the mean value from 3000
samples of packet counter for each interface of S1, which were
subsequently used as baselines to determine whether to initiate
the detection state.

In the default (normal) state, the packets are handled ac-
cording to the white blocks in Fig. 3. The main function in
this state is forwarding the packet based on the IP routing table
implemented on the ingress side. The state can then go to the
detection state based on the condition in Table II.

In the detection state, anomalous traffic will be detected
based on the mean of queue depth. Our proposed IoT anomaly
detection mechanism is implemented at the egress of the
packet processing pipeline on the data plane and it is shown
in the red block (9). To implement this mechanism, we utilize

Fig. 3. IoT anomaly detection pipeline in P4.

a stateful register in P4 for storage, in which the queue depth
value on the output interface is captured at the moment of
transmission of probe packets. For instance, if 128 probe
packets are transmitted, we record 128 queue depth values
in the storage. After accumulating a certain number of queue
depth values, we compute their mean value using the bitshift
operator since the modulo and division operators are not
available in the P4 language. This mean value is subsequently
compared to a threshold. If it surpasses the threshold, the
traffic is considered abnormal (10,12). The threshold itself
was determined through statistical analysis during normal and
malicious traffic scenarios in Section III. Then, the mitigation
can be started if this mean value is higher than the baseline
mean of the INT data under normal traffic conditions (12).

In the mitigation state, IoT attacks are mitigated by limiting
the rate of the packet’s incoming interface. To achieve this,
rate limiting is implemented using the meter object of P4 at
the ingress part of the pipeline on the data plane, as shown
in the green block (6) of Fig. 3. P4 supports two types of
meters: Indirect and Direct meters. In this implementation,
we utilized indirect meters, which can be addressed by index
[19]. To configure the rate limit parameters, we set up the
corresponding traffic parameters in the control plane. The

In-network DDoS detection and mitigation
using INT data for IoT ecosystem

53

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

TABLE II
STATE TRANSITIONING

Start Stop

Normal

Program starts in this
state. Data plane set
it from the detection
state (10,11).

The control plane will
switch to Detection
(1,2).

Detection

The control plane de-
cides to transition to
this state based on
packet counters im-
plemented in the data
(1,2).

The data plane de-
cides whether to tran-
sition to a normal (10,
11) or mitigation state
based on queue depth
(10,12).

Mitiga-
tion

The data plane
configures this state
based on the detection
result (10,12).

Based on the packet
counter, the control
plane awakens the
normal state (1,3).

BMv2 software switch utilizes two-rate three-color meters5,
so we specify the Peak Information Rate (PIR) with Peak
Burst Size and the Committed Information Rate (CIR) with
Committed Burst Size. The mitigation mechanism may also
employ other methods, such as reflecting anomalous traffic to
the source port. The control plane decides when to switch back
to the normal state based on the packet counter, following the
criteria outlined in Table II.

Overall, our proposed P4-based anomaly detection and mit-
igation approach enhances the security and resilience of IoT
networks by providing real-time monitoring, detection, and
countermeasures against malicious activities. Its flexibility and
customization capabilities empower network administrators to
tailor the system to their specific requirements, making it a
valuable addition to IoT network security measures.

V. PERFORMANCE EVALUATION

The number of queue depths used to calculate the mean
value is a configurable parameter for the detection mechanism
of our proposed model. We experimented with different values
for this parameter, ranging from 16 to 256, to determine an
optimal value that would result in high detection accuracy.
Fig. 4 illustrates the relationship between the number of queue
depths and the detection accuracy, helping us identify the value
that provides the best performance.

Fig. 4. Detection accuracy.

5https://www.rfc-editor.org/rfc/rfc2698

The average anomaly detection time is determined by mul-
tiplying the processing time (delay) of a single probe packet
by the number of probe packets. A smaller number of probe
packets results in faster anomaly detection.

In a real network, the packet processing delay depends on
the network protocol, computational power at a node, and the
efficiency of network interface cards. However, modern high-
speed devices are capable of processing packets almost at line
speed. In our case, probe packets can also be sent at line
speed, but to clearly see and easily calculate the detection
delay, we send 1 probe packet every 1 millisecond. Therefore,
the anomaly detection delay is 16 milliseconds if the number
of collected queue depth is 16, 32-millisecond if it is 32, and
so on.

We have found that the intersection points with the highest
accuracy and the acceptable delay happen when the number of
queue depths is 64. With this optimal number, our proposed
approach’s detection delay is four times lower than the results
of previous research on DDoS [3], and the detection accuracy
is also higher. Additionally, it is evident that the detection
delay can be absolutely low in real networks with line speeds
such as 10Mbps, 100Mbps, and so on.

VI. CONCLUSIONS AND FUTURE WORK

Our research represents the first experimental solution that
employs INT data for detecting IoT attacks on the data
plane (in-network). One of the primary advantages of our
proposed approach is its lower detection delay, as it is directly
implemented in the packet processing path. Additionally, our
method leverages real-time INT data, resulting in more effi-
cient and accurate detection capabilities. Compared to previous
research, our approach exhibits relatively low detection delays
and high accuracy.

Furthermore, by offering real-time monitoring, detection,
and countermeasures against malicious activities, our solution
provides a valuable tool to secure IoT environments. Its
inherent flexibility and customization options enable network
administrators to tailor it according to their specific needs,
making it a valuable addition to IoT network security mea-
sures.

Despite our successful results, we acknowledge the limi-
tations of our work. Our test environment only allowed us
to test DDoS attacks with ICMP floods. To further validate
our proposed approach, we plan to conduct tests on real
hardware with various types of attacks. Moreover, we are
aware that some IoT sensors may periodically generate large
amounts of data, which we have not yet considered in our
approach. Addressing such exceptional scenarios will be a
valuable aspect of our future work.

.

ACKNOWLEDGMENT

The authors would like to acknowledge the financial support
provided by project no. FK_21 138949 from the National
Research Development and Innovation Fund of Hungary, as
well as the contribution from Ericsson, which greatly aided
the completion of this research paper.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

TABLE II
STATE TRANSITIONING

Start Stop

Normal

Program starts in this
state. Data plane set
it from the detection
state (10,11).

The control plane will
switch to Detection
(1,2).

Detection

The control plane de-
cides to transition to
this state based on
packet counters im-
plemented in the data
(1,2).

The data plane de-
cides whether to tran-
sition to a normal (10,
11) or mitigation state
based on queue depth
(10,12).

Mitiga-
tion

The data plane
configures this state
based on the detection
result (10,12).

Based on the packet
counter, the control
plane awakens the
normal state (1,3).

BMv2 software switch utilizes two-rate three-color meters5,
so we specify the Peak Information Rate (PIR) with Peak
Burst Size and the Committed Information Rate (CIR) with
Committed Burst Size. The mitigation mechanism may also
employ other methods, such as reflecting anomalous traffic to
the source port. The control plane decides when to switch back
to the normal state based on the packet counter, following the
criteria outlined in Table II.

Overall, our proposed P4-based anomaly detection and mit-
igation approach enhances the security and resilience of IoT
networks by providing real-time monitoring, detection, and
countermeasures against malicious activities. Its flexibility and
customization capabilities empower network administrators to
tailor the system to their specific requirements, making it a
valuable addition to IoT network security measures.

V. PERFORMANCE EVALUATION

The number of queue depths used to calculate the mean
value is a configurable parameter for the detection mechanism
of our proposed model. We experimented with different values
for this parameter, ranging from 16 to 256, to determine an
optimal value that would result in high detection accuracy.
Fig. 4 illustrates the relationship between the number of queue
depths and the detection accuracy, helping us identify the value
that provides the best performance.

Fig. 4. Detection accuracy.

5https://www.rfc-editor.org/rfc/rfc2698

The average anomaly detection time is determined by mul-
tiplying the processing time (delay) of a single probe packet
by the number of probe packets. A smaller number of probe
packets results in faster anomaly detection.

In a real network, the packet processing delay depends on
the network protocol, computational power at a node, and the
efficiency of network interface cards. However, modern high-
speed devices are capable of processing packets almost at line
speed. In our case, probe packets can also be sent at line
speed, but to clearly see and easily calculate the detection
delay, we send 1 probe packet every 1 millisecond. Therefore,
the anomaly detection delay is 16 milliseconds if the number
of collected queue depth is 16, 32-millisecond if it is 32, and
so on.

We have found that the intersection points with the highest
accuracy and the acceptable delay happen when the number of
queue depths is 64. With this optimal number, our proposed
approach’s detection delay is four times lower than the results
of previous research on DDoS [3], and the detection accuracy
is also higher. Additionally, it is evident that the detection
delay can be absolutely low in real networks with line speeds
such as 10Mbps, 100Mbps, and so on.

VI. CONCLUSIONS AND FUTURE WORK

Our research represents the first experimental solution that
employs INT data for detecting IoT attacks on the data
plane (in-network). One of the primary advantages of our
proposed approach is its lower detection delay, as it is directly
implemented in the packet processing path. Additionally, our
method leverages real-time INT data, resulting in more effi-
cient and accurate detection capabilities. Compared to previous
research, our approach exhibits relatively low detection delays
and high accuracy.

Furthermore, by offering real-time monitoring, detection,
and countermeasures against malicious activities, our solution
provides a valuable tool to secure IoT environments. Its
inherent flexibility and customization options enable network
administrators to tailor it according to their specific needs,
making it a valuable addition to IoT network security mea-
sures.

Despite our successful results, we acknowledge the limi-
tations of our work. Our test environment only allowed us
to test DDoS attacks with ICMP floods. To further validate
our proposed approach, we plan to conduct tests on real
hardware with various types of attacks. Moreover, we are
aware that some IoT sensors may periodically generate large
amounts of data, which we have not yet considered in our
approach. Addressing such exceptional scenarios will be a
valuable aspect of our future work.

.

ACKNOWLEDGMENT

The authors would like to acknowledge the financial support
provided by project no. FK_21 138949 from the National
Research Development and Innovation Fund of Hungary, as
well as the contribution from Ericsson, which greatly aided
the completion of this research paper.5 https://www.rfc-editor.org/rfc/rfc2698

https://www.rfc-editor.org/rfc/rfc2698

In-network DDoS detection and mitigation
using INT data for IoT ecosystem

54

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

Máté Tejfel received his B.Sc., M.Sc. and Ph.D. Degree
in Computer Science, from ELTE, Budapest Hungary.
He is currently working as an Associate Professor in the
Department of Programming Languages and Compil-
ers, Eötvös Loránd University (ELTE). His research
interest includes programming languages, correctness
check, SDNs, and network optimization. For more in-
formation, visit his database at 0000-0001-8982-1398
orchid-id.

Gereltsetseg Altangerel received her B.Sc. M.Sc.
Degree in Information Technology, from the Mongo-
lian University of Science and Technology (MUST).
Currently, she is an assistant teacher and a Ph.D. candi-
date in the Department of Programming Languages and
Compilers, Eötvös Loránd University (ELTE) under the
supervision of Professor Tejfel Máté. Her research in-
terest includes SDNs, deeply programmable networks,
and network optimization.

 [1] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the IoT:
Mirai and other botnets,” Computer, vol. 50, no. 7, pp. 80–84, 2017.
doi: 10.1109/MC.2017.201

 [2] E. Bertino and N. Islam, “Botnets and Internet of Things security,”
Computer, vol. 50, pp. 76–79, 2017. doi: 10.1109/MC.2017.62

 [3] A. D. S. Ilha, A. C. Lapolli, J. A. Marques, and L. P. Gaspary, “Euclid:
A Fully In-Network, P4-Based Approach for Real-Time DDoS Attack
Detection and Mitigation,” IEEE Transactions on Network and Service
Management, vol. 18, no. 3, pp. 3121–3139, 2021.

 doi: 10.1109/TNSM.2020.3048265
 [4] M. Hasan, M. M. Islam, M. I. I. Zarif, and M. Hashem, “Attack and

anomaly detection in IoT sensors in IoT sites using machine learning
approaches,” Internet of Things, vol. 7, p. 100059, 2019.

 doi: 10.1016/j.iot.2019.100059
 [5] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D.

Breitenbacher, and Y. Elovici, “N-BAIoT—network-based detection
of IoT botnet attacks using deep autoencoders,” IEEE Pervasive
Computing, vol. 17, no. 3, pp. 12–22, 2018.

 doi: 10.1109/MPRV.2018.03367731
 [6] V. Timčenko and S. Gajin, “Machine learning based network anomaly

detection for IoT environments,” in ICIST-2018 conference, 2018.
 [7] S. S. Bhunia and M. Gurusamy, “Dynamic attack detection

and mitigation in IoT using SDN,” in 2017 27th International
telecommunication networks and applications conference (ITNAC).
IEEE, pp. 1–6, 2017. doi: 10.1109/ATNAC.2017.8215418

 [8] A. Hamza, H. H. Gharakheili, T. A. Benson, and V. Sivaraman,
“Detecting volumetric attacks on IoT devices via SDN-based
monitoring of mud activity,” in Proceedings of the ACM Symposium
on SDN Research, pp. 36–48, 2019. doi: 10.1145/3314148.3314352

 [9] E. Tsogbaatar, M. H. Bhuyan, Y. Taenaka, D. Fall, Kh. Gonchigsumlaa,
E. Elmroth, and Y. Kadobayashi, “DeL-IoT: A deep ensemble learning
approach to uncover anomalies in IoT,” Internet of Things, vol. 14, no.
March, p. 100391, 2021. doi: 10.1016/j.iot.2021.100391

 [10] G. Altangerel and M. Tejfel, and E. Tsogbaatar, “A 1D CNN-based
model for IoT anomaly detection using INT data,” in 2022 IEEE 16th
International Scientific Conference on Informatics (Informatics). IEEE,
pp. 106–113, 2022. doi: 10.1109/Informatics57926.2022.10083469

 [11] Dubem Ezeh, and J. de Oliveira, "An SDN controller-based
framework for anomaly detection using a GAN ensemble algorithm",
Infocommunications Journal, Vol. XV, No 2,pp. 29–36, June 2023.
doi: 10.36244/ICJ.2023.2.5

 [12] G. Altangerel and M. Tejfel, “Study on emerging applications on
data plane and optimization possibilities,” in International Journal of
Distributed and Parallel systems (IJDPS) Vol 13, No. 1, January 2022.
doi: 10.5121/ijdps.2022.13101

 [13] L. Sándor, G. Csaba, J. Pető and P. Vörös and G. Szabó "In-Network
Velocity Control of Industrial Robot Arms." In 19th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 22), pp. 995–1009. 2022.

References [14] A. Sanghi, K. P. Kadiyala, P. Tammana, and S. Joshi, “Anomaly
Detection in Data Plane Systems using Packet Execution Paths,” in
SPIN 2021 - Proceedings of the 2021 ACM SIGCOMM Workshop on
Secure Programmable network INfrastructure, no. 1, pp. 9–15, 2021.
doi: 10.1145/3472873.3472880

 [15] Q. Kang, J. Xing, and A. Chen, “Automated attack discovery in
data plane systems,” 12th USENIX Workshop on Cyber Security
Experimentation and Test, CSE T 2019, co-located with USENIX
Security, 2019.

 [16] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, L. J. Wobker,
and B. Networks, “In-band Network Telemetry via Programmable
Dataplanes,” Sosr, no. Figure 2, pp. 2–3, 2015. Available: https://www.
cs.princeton.edu/~nkatta/papers/int-demo.pdf

 [17] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T.
Turletti, “A survey of software-defined networking: Past, present, and
future of programmable networks,” IEEE Communications Surveys
Tutorials, vol. 16, no. 3, pp. 1617–1634, 2014.

 doi: 10.1109/SURV.2014.012214.00180
 [18] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C.

Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker, “P4:
Programming protocol-independent packet processors,” Computer
Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

 doi: 10.1145/2656877.2656890
[19] L. Vanbever, “Lecture Notes - Advanced Topics in Communication

Networks Programming Network Data Planes,” 2019.

For more information, visit her database at 0000- 0002-
1594-8158 orchid-id.

https://doi.org/10.1109/MC.2017.201
https://doi.org/10.1109/MC.2017.62
https://doi.org/10.1109/TNSM.2020.3048265
https://doi.org/10.1016/j.iot.2019.100059
https://doi.org/10.1109/MPRV.2018.03367731
https://doi.org/10.1109/ATNAC.2017.8215418
https://doi.org/10.1145/3314148.3314352
https://doi.org/10.1016/j.iot.2021.100391
https://doi.org/10.1109/Informatics57926.2022.10083469
https://doi.org/10.36244/ICJ.2023.2.5
https://doi.org/10.5121/ijdps.2022.13101
https://doi.org/10.1145/3472873.3472880
https://www.cs.princeton.edu/~nkatta/papers/int-demo.pdf
https://www.cs.princeton.edu/~nkatta/papers/int-demo.pdf
https://doi.org/10.1109/SURV.2014.012214.00180
https://doi.org/10.1145/2656877.2656890

The performance of modern centrality measures on
different information models and networks

55

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

Péter Marjai, Máté Nagy-Sándor and Attila Kiss, Department of Information
Systems, ELTE Eötvös Loránd University, Budapest, Hungary.

Attila Kiss was also with J. Selye University, Komárno, Slovakia (E-mail:
g7tzap@inf.elte.hu, kiss@inf.elte.hu)

Abstract—For the last few years networks became integral
parts of our everyday life. They are used in communication, trans-
portation, marketing, and the list goes on. They are also becom-
ing bigger, and more complex and dynamic networks also start
to appear more. In light of this, the problem of finding the most
influential node in the network remains of high interest however,
it is getting more and more difficult to find these nodes. It is hard
to grasp the true meaning of what is really being the most influen-
tial node means. There are several approaches to define what the
most vital nodes are like having the most edges connected to them
or having the shortest paths running through them. They can be
also identified by calculating the influence of their neighbors, or
evaluating how they contribute to the whole of the network. Over
recent years various new centrality measures were proposed to
order the importance of the nodes of a network.

In this paper, we evaluate the performance of three modern
centrality measures, namely Local Fuzzy Information Centrality
(LFIC), Local Clustering H-index Centrality (LCH), and Global
Structure Model (GSM) on different information models, and
compare them with conventional centrality measures. In our ex-
periments, we investigate the similarity between the top-n rank-
ing nodes of the measures, the influential capacity of these nodes
as well as the frequency of the nodes with the same centrality
value.

Index Terms—Complex networks, centrality, LFIC, LCH,
GSM, information diffusion, SIR, Independent cascade, Linear
threshold.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

The performance of modern centrality measures on
different information models and networks

Péter Marjai , Máté Nagy-Sándor, Attila Kiss

Abstract—For the last few years networks became integral
parts of our everyday life. They are used in communication,
transportation, marketing, and the list goes on. They are also
becoming bigger, and more complex and dynamic networks also
start to appear more. In light of this, the problem of finding
the most influential node in the network remains of high interest
however, it is getting more and more difficult to find these nodes.
It is hard to grasp the true meaning of what is really being the
most influential node means. There are several approaches to
define what the most vital nodes are like having the most edges
connected to them or having the shortest paths running through
them. They can be also identified by calculating the influence of
their neighbors, or evaluating how they contribute to the whole of
the network. Over recent years various new centrality measures
were proposed to order the importance of the nodes of a network.

In this paper, we evaluate the performance of three modern
centrality measures, namely Local Fuzzy Information Centrality
(LFIC), Local Clustering H-index Centrality (LCH), and Global
Structure Model (GSM) on different information models, and
compare them with conventional centrality measures. In our
experiments, we investigate the similarity between the top-n
ranking nodes of the measures, the influential capacity of these
nodes as well as the frequency of the nodes with the same
centrality value.

Index Terms—Complex networks, centrality, LFIC, LCH,
GSM, information diffusion, SIR, Independent cascade, Linear
threshold.

I. INTRODUCTION

COMPLEX networks are present in all areas of the modern
world, so their investigation is extremely important.

Network science includes the theory of real networks and
takes other various methodologies into action such as graph
theory, statistical physics, geometry, and stochastic processes.
Networks can be found anywhere in everyday life. They are
used in communication [1], [2] transportation [3], market-
ing [4], and the list goes on. They are also becoming bigger,
and more complex and dynamic networks also start to make
an appearance. Finding the most vital nodes has become a
fundamental problem in nowadays network science however,
it is getting more and more difficult to find these nodes.
Determining the most influential node in a network is an
important topic with many uses, such as speeding up the
spread of information or monitoring and controlling the course
of rumors and disease. For example, the Authors of [5] use
centrality measures to identify the most influential users in
social networks. In [6], the disease control actions are applied

Péter Marjai, Máté Nagy-Sándor and Attila Kiss, Department of Infor-
mation Systems, ELTE Eötvös Loránd University, 1117 Budapest, Hungary.
Attila Kiss was also with J. Selye University, Komárno, Slovakia E-mail:
g7tzap@inf.elte.hu, kiss@inf.elte.hu

to a target group that has been chosen based on centrality,
instead of the whole community. Centrality measures are used
to identify the source of rumors in [7].

Over time various centrality measures have been proposed,
however, each has its drawbacks. Because of this reason,
new measures are constantly being developed. Local Fuzzy
Information Centrality (LFIC) [8] uses a box for every node
that contains the node’s closest neighbors. The information
that can be found in a node’s box is used to evaluate the
significance of the node. To calculate the uncertainty of the
amount of information in the boxes, and to calculate the
contribution of a node’s neighbors, an improved Shannon
entropy is used. A lot of centrality measures take the whole
network into account, but in real life’s huge networks, these
are not applicable because of their sheer size. Local Clustering
H-index Centrality (LCH) [9] only takes the local information
into account. While calculating the node’s importance, it
considers the quality, influence, and topology of first-order and
second-order neighbor nodes. Global Structure Model (GSM)
[10] not only uses a node’s self-influence to rank the nodes
but also the node’s influence on the whole network. To achieve
this, the method utilizes k-shell clusterization.

There are various research that compare the different cen-
trality measures. The Authors of [11] provide a comprehensive
summary of how different traditional centrality measures iden-
tify the top-k nodes, as well as their extensions, applications,
approximation methods, and their connection with dynamic
networks. In [12] the Authors investigate the connection
between a node’s centrality value and its ability to maximize
the number of connected components. They found that degree-
like centralities are more suitable measures than path-like
centralities for the above-mentioned problem. In [13] it is
investigated how different centrality measures can be used to
mine social network data. The authors of [14] examine how
centrality measures that were designed for social networks
perform in the case of psychological networks.

The information model that is used in a network can also af-
fect the behavior of the nodes. The SIR model [15] starts with
a non-empty array of infected nodes. In each turn, the infected
nodes try to infect their neighbors with a fixed probability.
They also have a fixed probability to recover. Recovered nodes
can not be infected again. Independent Cascade model [16] is
a stochastic information diffusion model that uses cascading to
flow the information through the network. Each node can have
two states, active or inactive. In each step, the active nodes
have a fixed probability to activate their passive neighbors. An
active node can only try to activate its neighbors once. Another
information model is the linear threshold model [17]. It also

The performance of modern centrality measures on
different information models and networks

Péter Marjai, Máté Nagy-Sándor, and Attila Kiss

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

The performance of modern centrality measures on
different information models and networks

Péter Marjai , Máté Nagy-Sándor, Attila Kiss

Abstract—For the last few years networks became integral
parts of our everyday life. They are used in communication,
transportation, marketing, and the list goes on. They are also
becoming bigger, and more complex and dynamic networks also
start to appear more. In light of this, the problem of finding
the most influential node in the network remains of high interest
however, it is getting more and more difficult to find these nodes.
It is hard to grasp the true meaning of what is really being the
most influential node means. There are several approaches to
define what the most vital nodes are like having the most edges
connected to them or having the shortest paths running through
them. They can be also identified by calculating the influence of
their neighbors, or evaluating how they contribute to the whole of
the network. Over recent years various new centrality measures
were proposed to order the importance of the nodes of a network.

In this paper, we evaluate the performance of three modern
centrality measures, namely Local Fuzzy Information Centrality
(LFIC), Local Clustering H-index Centrality (LCH), and Global
Structure Model (GSM) on different information models, and
compare them with conventional centrality measures. In our
experiments, we investigate the similarity between the top-n
ranking nodes of the measures, the influential capacity of these
nodes as well as the frequency of the nodes with the same
centrality value.

Index Terms—Complex networks, centrality, LFIC, LCH,
GSM, information diffusion, SIR, Independent cascade, Linear
threshold.

I. INTRODUCTION

COMPLEX networks are present in all areas of the modern
world, so their investigation is extremely important.

Network science includes the theory of real networks and
takes other various methodologies into action such as graph
theory, statistical physics, geometry, and stochastic processes.
Networks can be found anywhere in everyday life. They are
used in communication [1], [2] transportation [3], market-
ing [4], and the list goes on. They are also becoming bigger,
and more complex and dynamic networks also start to make
an appearance. Finding the most vital nodes has become a
fundamental problem in nowadays network science however,
it is getting more and more difficult to find these nodes.
Determining the most influential node in a network is an
important topic with many uses, such as speeding up the
spread of information or monitoring and controlling the course
of rumors and disease. For example, the Authors of [5] use
centrality measures to identify the most influential users in
social networks. In [6], the disease control actions are applied

Péter Marjai, Máté Nagy-Sándor and Attila Kiss, Department of Infor-
mation Systems, ELTE Eötvös Loránd University, 1117 Budapest, Hungary.
Attila Kiss was also with J. Selye University, Komárno, Slovakia E-mail:
g7tzap@inf.elte.hu, kiss@inf.elte.hu

to a target group that has been chosen based on centrality,
instead of the whole community. Centrality measures are used
to identify the source of rumors in [7].

Over time various centrality measures have been proposed,
however, each has its drawbacks. Because of this reason,
new measures are constantly being developed. Local Fuzzy
Information Centrality (LFIC) [8] uses a box for every node
that contains the node’s closest neighbors. The information
that can be found in a node’s box is used to evaluate the
significance of the node. To calculate the uncertainty of the
amount of information in the boxes, and to calculate the
contribution of a node’s neighbors, an improved Shannon
entropy is used. A lot of centrality measures take the whole
network into account, but in real life’s huge networks, these
are not applicable because of their sheer size. Local Clustering
H-index Centrality (LCH) [9] only takes the local information
into account. While calculating the node’s importance, it
considers the quality, influence, and topology of first-order and
second-order neighbor nodes. Global Structure Model (GSM)
[10] not only uses a node’s self-influence to rank the nodes
but also the node’s influence on the whole network. To achieve
this, the method utilizes k-shell clusterization.

There are various research that compare the different cen-
trality measures. The Authors of [11] provide a comprehensive
summary of how different traditional centrality measures iden-
tify the top-k nodes, as well as their extensions, applications,
approximation methods, and their connection with dynamic
networks. In [12] the Authors investigate the connection
between a node’s centrality value and its ability to maximize
the number of connected components. They found that degree-
like centralities are more suitable measures than path-like
centralities for the above-mentioned problem. In [13] it is
investigated how different centrality measures can be used to
mine social network data. The authors of [14] examine how
centrality measures that were designed for social networks
perform in the case of psychological networks.

The information model that is used in a network can also af-
fect the behavior of the nodes. The SIR model [15] starts with
a non-empty array of infected nodes. In each turn, the infected
nodes try to infect their neighbors with a fixed probability.
They also have a fixed probability to recover. Recovered nodes
can not be infected again. Independent Cascade model [16] is
a stochastic information diffusion model that uses cascading to
flow the information through the network. Each node can have
two states, active or inactive. In each step, the active nodes
have a fixed probability to activate their passive neighbors. An
active node can only try to activate its neighbors once. Another
information model is the linear threshold model [17]. It also

DOI: 10.36244/ICJ.2023.5.9

mailto:g7tzap%40inf.elte.hu?subject=
mailto:kiss%40inf.elte.hu?subject=
https://doi.org/10.36244/ICJ.2023.5.9

The performance of modern centrality measures on
different information models and networks

56

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

works in iterations. The nodes became active after the ratio
of their active and passive exceeded the pre-defined threshold.
A survey on current questions and possibilities in information
propagation is introduced in [18].

A social network contains a group of people who are con-
nected to each other through social relationships and interac-
tions, such as relationships with family members, friendships,
being colleagues or neighbors, and so on. Ties with some so-
cial network members can span many years or even a lifetime.
The propagation of information is usually interpreted on such
networks, such as disease spreads, or gossip. The pages on the
web and the hyperlinks connecting them also form a network.
The spread of information can also be interpreted on these
networks such as the spread of news and fake news.

In this paper, we study three recently proposed centrality
algorithms that take different aspects of the nodes into account.
Since nodes with the same centrality values are indistinguish-
able, we examine the frequency of the achieved centrality
values. After identifying the most important nodes, and calcu-
lating the centrality value of each node with these methods, we
examine the propagation of information that has been launched
from the vital nodes. We use multiple information diffusion
models to inspect the propagation capacity of these nodes.
Lastly, the time it takes for the algorithms to rank the nodes
is also compared.

The organization of the remainder of this paper is as follows.
In Section II the preliminary concepts and the definition of
the centrality measures and information diffusion models are
presented. The details of the used data and the explanation of
the conducted experiments are presented in Section III. Lastly,
Section IV contains the conclusions and discusses the different
future possibilities to investigate the matter at hand.

II. CONCEPTS AND PROBLEMS

A. Centrality measures

For ease, of reference consider a network as an undirected
simple graph, 𝐺𝐺 = (𝑉𝑉𝑉 𝑉𝑉), where 𝑉𝑉 represents the set of
vertices, while 𝑉𝑉 is the set of edges that connect the different
vertices. 𝑁𝑁 = |𝑉𝑉 |, expresses the number of the nodes, while the
number of the edges is represented as 𝑀𝑀 = |𝑉𝑉 |. The traditional
centrality measures DC, BC are defined as follows.

Degree centrality (DC) indicates the number of incidents
edges upon a node. In case of the risk of catching whatever
goes through the network (like infections, a virus, or informa-
tion) nodes with a higher degree are more likely to be involved.
It was proposed by Freeman in [19]. The degree centrality of
vertice 𝑣𝑣, expressed as 𝑑𝑑𝑣𝑣 , is defined as:

𝐷𝐷𝐷𝐷 (𝑣𝑣) =
𝑁𝑁∑︁
𝑤𝑤

𝑥𝑥𝑣𝑣𝑤𝑤 . (1)

where 𝑤𝑤 implies the nodes that are connected to 𝑣𝑣, while 𝑥𝑥𝑣𝑣𝑤𝑤
represents the link between 𝑣𝑣 and 𝑤𝑤. The value of 𝑥𝑥𝑣𝑣𝑤𝑤 is 1 if
there is a link between 𝑣𝑣 and 𝑤𝑤, otherwise 0.

Betweenness centrality (BC) was introduced in [20] and
is based on the shortest paths in the network. It enumerates
the cases when a vertice acts like a bridge between two other
vertices. It is defined as follows:

𝐵𝐵𝐷𝐷 (𝑣𝑣) =
∑︁
𝑠𝑠≠𝑣𝑣≠𝑡𝑡

𝜎𝜎𝑠𝑠𝑡𝑡 (𝑣𝑣)
𝜎𝜎𝑠𝑠𝑡𝑡

where 𝜎𝜎𝑠𝑠𝑡𝑡 is the total number of shortest paths from node
𝑠𝑠 to node 𝑡𝑡 and 𝜎𝜎𝑠𝑠𝑡𝑡 (𝑣𝑣) is the number of those paths that pass
through 𝑣𝑣.

Local Fuzzy Information centrality (LFIC) [8] takes a
somewhat similar approach to Shannon entropy in informa-
tion theory which is the following. The more uncertain the
message, the larger its Shannon entropy is. Let us consider
𝑣𝑣 node’s box (the set of nodes whose shortest distance from
𝑣𝑣 is no longer than a given value) to be the message. The
Shannon entropy can be applied to this box to measure node
𝑣𝑣’s importance. The larger the uncertainty in the box, the more
vital the node is. The LFIC value can be calculated using the
following steps. First, obtain the box size of node 𝑣𝑣, namely
𝐿𝐿.

𝐿𝐿 = ⌈ 𝑘𝑘𝑣𝑣2 ⌉

where 𝑘𝑘𝑣𝑣 indicates the largest shortest distance from any node
to 𝑣𝑣. Secondly, calculate the weight of the nodes based on
their distance from node 𝑣𝑣.

𝑋𝑋 (𝑙𝑙) = 𝑒𝑒𝑥𝑥𝑒𝑒(− 𝑙𝑙2

𝐿𝐿2)

where 𝐿𝐿 is the previously obtained box size and 𝑙𝑙 is the
distance from node 𝑣𝑣. After this, obtain the fuzzy number of
the nodes in the box.

𝑓𝑓𝑣𝑣 = 𝑛𝑛𝑣𝑣 (𝑙𝑙)𝑋𝑋 (𝑙𝑙)

where 𝑛𝑛𝑣𝑣 (𝑙𝑙) is the number of nodes that have the shortest
distance of 𝑙𝑙 from node 𝑣𝑣. Next, calculate 𝐹𝐹𝑖𝑖 (𝐿𝐿), the total
fuzzy number of nodes in the box.

𝐹𝐹𝑣𝑣 (𝐿𝐿) =
𝐿𝐿

𝑙𝑙=1 𝑓𝑓𝑣𝑣 (𝑙𝑙)

where 𝑓𝑓𝑣𝑣 (𝑙𝑙) is the fuzzy number of nodes with the shortest
distance from 𝑣𝑣 being 𝑙𝑙. Calculate the probability 𝑒𝑒𝑣𝑣 (𝑙𝑙) of the
nodes in the box

𝑒𝑒𝑣𝑣 (𝑙𝑙) = 1
𝑒𝑒

𝑓𝑓𝑣𝑣 (𝑙𝑙)
𝐹𝐹𝑣𝑣 (𝐿𝐿)

where 𝑓𝑓𝑣𝑣 (𝑙𝑙) and 𝐹𝐹𝑣𝑣 (𝐿𝐿) are the fuzzy number and the total
fuzzy number that are explained above. Finally, obtain the
centrality value of node 𝑣𝑣 as:

𝐿𝐿𝐹𝐹𝐿𝐿𝐷𝐷 (𝑣𝑣) = 𝐿𝐿
𝑙𝑙=1

−𝑝𝑝𝑣𝑣 (𝑙𝑙)𝑙𝑙𝑙𝑙(𝑝𝑝𝑣𝑣 (𝑙𝑙))
𝑙𝑙2

The computational complexity of the algorithm is 𝑂𝑂 (𝑛𝑛(𝑘𝑘)),
where 𝑛𝑛 is the number of nodes in the network, while 𝑘𝑘

indicates the average degree.
Local Clustering H-Index centrality (LCH), which were

proposed in [9] takes three different characteristics into ac-
count. First, to be feasible on large networks, only the nodes
that are a maximum of two hops away from the investigated
node are taken into account. Secondly, if the investigated node
has a high clustering coefficient value [21], it is expected to
have a limited propagation ability. Lastly, the H-index is used
to improve the value of nodes that are connected to other
nodes that themself have a high influence. The H-index (𝐻𝐻)
was introduced in [22] and is calculated as follows. Let 𝑣𝑣 be
a node of the network. The 𝐻𝐻 of 𝑣𝑣 is calculated as

The performance of modern centrality measures on
different information models and networks

57

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

𝐻𝐻𝑣𝑣 = ℋ(𝑘𝑘1, 𝑘𝑘2, . . . , 𝑘𝑘𝑖𝑖 . . . , 𝑘𝑘𝑛𝑛)

where 𝑘𝑘𝑖𝑖 indicates the degree of the 𝑖𝑖-th neighbor of node 𝑣𝑣.
The ℋ operator returns the maximum integer 𝑑𝑑 such that there
are at least 𝑑𝑑 neighbors whose degree is higher or equal than
𝑑𝑑. The LCH centrality value of node 𝑣𝑣 is then calculated as:

𝐿𝐿𝐿𝐿𝐻𝐻 (𝑣𝑣) = 1
⟨𝐻𝐻 ⟩ ×

𝐻𝐻𝑣𝑣

1+𝐶𝐶𝑣𝑣
+∑

𝑗𝑗∈Γ𝑣𝑣 (
1

⟨𝐻𝐻 ⟩ ×
𝐻𝐻 𝑗𝑗

1+𝐶𝐶 𝑗𝑗
+ 1

⟨𝑘𝑘⟩ × 𝐷𝐷𝐿𝐿 𝑗𝑗)

where 𝐿𝐿𝑣𝑣 and 𝐻𝐻𝑣𝑣 are the clustering coefficient and the H-index
of 𝑣𝑣 node respectively. The set that contains the neighbor nodes
of 𝑣𝑣 is denoted as Γ𝑣𝑣 , while 𝐷𝐷𝐿𝐿 𝑗𝑗 represents the degree of node
𝑗𝑗 . Lastly, ⟨𝐻𝐻⟩ and ⟨𝑘𝑘⟩ indicate the average 𝐻𝐻 value and the
average degree in the investigated network. The computational
complexity of the algorithm is 𝑂𝑂 (𝑛𝑛(𝑘𝑘)), where 𝑛𝑛 is the number
of nodes in the network, while 𝑘𝑘 indicates the average degree.

Global Structure Model centrality (GSM), that were
proposed in [10] incorporates the global influence of all of the
nodes in the network during the calculation of the centrality
values. For calculating both the self and the global influence,
finding the subgraph induced by nodes with core number k
is necessary. For this purpose, the Improved K-shell Hybrid
(IKH) algorithm [23] is used. The self-influence 𝑆𝑆𝑆𝑆 (𝑣𝑣) of
node 𝑣𝑣 is calculated in a way that parameters minimize the
overestimation of it.

𝑆𝑆𝑆𝑆 (𝑣𝑣) = 𝑒𝑒
𝐾𝐾𝑠𝑠 (𝑣𝑣)

𝑁𝑁

where 𝑒𝑒 is the natural logarithm, 𝐾𝐾𝐾𝐾(𝑣𝑣) is the k-shell of
node 𝑣𝑣 and 𝑁𝑁 represents the number of the nodes in the
network. The influence of other nodes connected to 𝑣𝑣 also
increases its influence, especially if they themself have a high
value of k-shell. However, it is important that the contact
distance between 𝑣𝑣 and neighbor 𝑤𝑤 cannot be ignored, and
it is inversely proportional to the influence. Based on this, the
global influence is measured as follows.

𝐺𝐺𝑆𝑆 (𝑣𝑣) = ∑
𝑣𝑣≠𝑤𝑤

𝐾𝐾𝑠𝑠 (𝑣𝑣𝑤𝑤)
𝑑𝑑𝑣𝑣𝑤𝑤

where 𝑑𝑑𝑣𝑣𝑤𝑤 is the length of the shortest path between nodes
𝑣𝑣 and 𝑤𝑤. Finally, the influence of a given node 𝑣𝑣 can be
expressed as the product of the self and global influence:

𝐺𝐺𝑆𝑆𝐺𝐺 (𝑣𝑣) = 𝑒𝑒
𝐾𝐾𝑠𝑠 (𝑣𝑣)

𝑁𝑁 ×∑
𝑣𝑣≠𝑤𝑤

𝐾𝐾𝑠𝑠 (𝑣𝑣𝑤𝑤)
𝑑𝑑𝑣𝑣𝑤𝑤

The computational complexity of calculating the self-
influence is 𝑂𝑂 (𝑛𝑛), while the calculation of the global-influence
(due to Dijkstra to find the shortest distance) is 𝑂𝑂 (𝑛𝑛2).

B. Information propagation models

Finding the nodes that have the most control over the
network can be interpreted as the influence maximization
problem. The aim of this problem is to identify a set of nodes
that can influence the flow of information in the network the
most.

Suspectible-Infected-Removed (SIR) model was intro-
duced by Kermack in [15]. The nodes of the networks can be
in either of the three stages, susceptible, infected or removed.
In each and every iteration, the infected nodes can try to infect
their susceptible neighbors with a fixed probability 𝛽𝛽. There
is also a 𝛾𝛾 probability that an infected node becomes removed
from the network at the end of each iteration.

Linear treshold model was introduced by Granovetter in
[17]. It assumes that the number of neighbors already engaging
in a behavior influences an individual’s decision of taking part
in that behavior. A node’s individual decision depends on the
percentage of its neighbors that have made the same choice,
thus imposing a threshold. Each node has its own threshold
that can be different from others. The model works as follows.
During a generic iteration, every node is observed: if the
percentage of its infected neighbors is greater than its threshold
it becomes infected as well, otherwise, nothing happens.

Independent cascade model was introduced in [16]. In
this model, each node can be in either of two states, active or
passive. The diffusion starts with an initial set of active nodes.
In each iteration, the diffusive process unfolds in discrete steps
according to the following randomized rule. When node 𝑣𝑣

becomes active in iteration 𝑡𝑡, it has a single chance to activate
each of its currently inactive neighbors of 𝑤𝑤1, 𝑤𝑤2, . . . , 𝑤𝑤𝑛𝑛.
The succession depends on a probability of 𝑝𝑝(𝑣𝑣, 𝑤𝑤). If node
𝑤𝑤 has multiple newly activated neighbors, their attempts are
sequenced in an arbitrary order. If 𝑣𝑣 succeeds, then 𝑤𝑤 will
become active in the next iteration, 𝑡𝑡 + 1. Whether 𝑣𝑣 succeeds
or not, it cannot make any further attempts to activate w in
the remaining iterations. The diffusion ends when no more
activations are possible to be made.

III. EXPERIMENTS AND RESULTS

A. Data and experimental analysis
Three real-life networks were employed to investigate the

effectiveness of the three modern centrality measures, namely
Advogato social network, Hamsterster social network, and
Pages network. Advogato is a social community platform
where users can explicitly express weighted trust relationships
among themselves. Hamsterster is the friendships and family
links between users of the website. Pages network represents
mutually liked facebook pages. Nodes represent the pages
and edges are mutual likes among them. The networks were
accessed through [24]. The networks were chosen to be
different in size, node-edge ratio, and clustering coefficient.
Detailed information on the networks is presented in Table I.

Network |𝐸𝐸 | |𝑉𝑉 | 𝑑𝑑𝑎𝑎𝑣𝑣𝑎𝑎 𝐶𝐶 𝐾𝐾𝑚𝑚𝑎𝑎𝑚𝑚

Advogato social 5,2K 47,3K 18 0,2868 32
Hamsterster social 2K 17K 13 0,5375 12

Pages 4K 17K 8 0.3737 57

TABLE I
NETWORKS USED IN THE EXPERIMENTS.

where |𝑉𝑉 | and |𝐸𝐸 | are the number of nodes and edges in
the network, 𝑑𝑑𝑎𝑎𝑣𝑣𝑎𝑎, denotes the average degree of a node, 𝐿𝐿
indicates the clustering coefficient, and 𝐾𝐾𝑚𝑚𝑎𝑎𝑚𝑚 represent the
maximum k core number of the networks. The reason these
measures were chosen is that they can greatly influence infor-
mation propagation. In networks where the average degree is
higher, it’s more likely that information would be passed on to
the next neighboring node. The same can be said about having
a high clustering coefficient. The maximum k core number was
chosen because of its usage by GSM.

The effectiveness of three modern centrality algorithms,
namely LFIC, LCH, and GSM are compared with each other

The performance of modern centrality measures on
different information models and networks

58

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

and two traditional centrality measures, degree centrality,
and betweenness centrality. We conduct the following three
experiments to evaluate the efficiency of the measures.

B. Experiment 1: Investigation of the frequency of the cen-
trality values

Since nodes with the same value cannot be distinguished
apart from each other, this kind of behavior can be a dis-
advantage when we would expect these nodes to give us
some kind of answer. Because of this, the frequency of the
different centrality values (i.e. the number of nodes that got
the same value) can be used to evaluate the performance of
a centrality measure. The frequency values achieved by the
various centrality measures on the used networks are shown
in Figs. 1-3.

Fig. 1. The frequencies of centrality values on Advogato social network.

Fig. 2. The frequencies of centrality values on Hamsterster social network.

Fig. 3. The frequencies of centrality values on Pages network.

It can be seen that BC and DC are likely to give the
same centrality value to nodes. LFIC is capable of achieving
better results due to the fact it employs fuzzy numbers and
probabilities however, the box of the different nodes is likely

to be similar to its neighbors. LCH and GSM have the best
performance, due to the fact of employing approaches that
result in different values like H-Index and clustering coefficient
or the combination of self and global influence.

C. Experiment 2: Evaluating the information propagation
ability of the vital nodes

During the identification of vital nodes, the influential capa-
bility of the nodes is an important factor. Important nodes are
usually capable of influencing a large number of other nodes.
In this experiment, we set the five top nodes ranked by the
different centrality algorithms as the source of the information
propagation. The spreading ability of these nodes can be used
to evaluate the performance of the methods. We investigate
the spreading ability in three information diffusion models,
namely SIR, Independent Cascade, and Linear threshold. The
results are shown in Figs. 4-12.

Fig. 4. The influence spread with the SIR model on Advogato social network.

Fig. 5. The influence spread with the SIR model on Hamsterster social
network.

Fig. 6. The influence spread with the SIR model on Pages network.

The performance of modern centrality measures on
different information models and networks

59

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Fig. 7. The influence spread with the Linear threshold model on Advogato
social network.

Fig. 8. The influence spread with the Linear threshold model on Hamsterster
social network.

Fig. 9. The influence spread with the Linear threshold model on Pages
network.

Fig. 10. The influence spread with the Independent Cascade model on
Advogato social network.

Based on our experiments it can be said that the nodes
considered to be important by the traditional and modern
centrality measures have about the same infection-spreading
capability. LHC falls back in the case of the Pages network
which can be explained by the high triangle count. With
numerous triangles, it is likely that the neighbors of a node

Fig. 11. The influence spread with the Independent Cascade model on
Hamsterster social network.

Fig. 12. The influence spread with the Independent Cascade model on Pages
network.

have the same 𝐻𝐻 value which can result in similar centrality
scores. In the case of Advogato network with the Linear
threshold model, all of the investigated centrality measures
expect BC have a poor performance. This can be explained by
the fact that there are many "bridges" in the network through
which the infection does not flow. BC, on the other hand,
values these peaks as the most important and initiates the
infection from here.

D. Experiment 3: Comparing the speed of the different algo-
rithms

The time it takes for an algorithm to assign the centrality
values to the nodes can also be an indicator of performance.
The more complex the algorithm is more likely it will result
in increased runtime. Figs. 13-15 indicate the time needed by
the different algorithms to calculate the centrality measures.

Fig. 13. The elapsed time during the calculation of centrality values on
Advogato social network.

The results show that out of all the investigated methods,
DC is the fastest. This is no surprise since it only needs to sum

The performance of modern centrality measures on
different information models and networks

60

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

 [1] S. Bi, Y. Zeng, and R. Zhang, “Wireless powered communication
networks: An overview,” IEEE Wireless Communications, vol. 23, no.
2, pp. 10–18, 2016, doi: 10.1109/mwc.2016.7462480.

 [2] X. You, C.-X. Wang, J. Huang, X. Gao, Z. Zhang, M. Wang, Y. Huang,
C. Zhang, Y. Jiang, J. Wang et al., “Towards 6g wireless communication
networks: Vision, enabling technologies, and new paradigm shifts,”
Science China Information Sciences, vol. 64, pp. 1–74, 2021,
doi: 10.1007/s11432-020-2955-6.

 [3] W. Liu, X. Li, T. Liu, and B. Liu, “Approximating betweenness centrality
to identify key nodes in a weighted urban complex transportation
network,” Journal of Advanced Transportation, vol. 2019, 2019,
doi: 10.1155/2019/9024745.

 [4] E. Kauffmann, J. Peral, D. Gil, A. Ferrández, R. Sellers, and H. Mora,
“A framework for big data analytics in commercial social networks:
A case study on sentiment analysis and fake review detection for
marketing decision-making,” Industrial Marketing Management, vol.
90, pp. 523–537, 2020, doi: 10.1016/j.indmarman.2019.08.003.

 [5] M. Alshahrani, Z. Fuxi, A. Sameh, S. Mekouar, and S. Huang,
“Efficient algorithms based on centrality measures for identification of
top-k influential users in social networks,” Information Sciences, vol.
527, pp. 88–107, 2020, doi: 10.1016/j.ins.2020.03.060.

 [6] M. Doostmohammadian, H. R. Rabiee, and U. A. Khan, “Centralitybased
epidemic control in complex social networks,” Social Network Analysis
and Mining, vol. 10, pp. 1–11, 2020, doi: 10.1007/s13278-020-00638-7.

 [7] A. Das and A. Biswas, “Rumor source identification on social networks:
a combined network centrality approach,” in Progress in Advanced
Computing and Intelligent Engineering: Proceedings of ICACIE 2020.
Springer, 2021, pp. 269–280, doi: 10.1007/978-981-33-4299-6_22.

 [8] H. Zhang, S. Zhong, Y. Deng, and K. H. Cheong, “Lfic: Identifying
influential nodes in complex networks by local fuzzy information
centrality,” IEEE Transactions on Fuzzy Systems, 2021,
doi: 10.1109/TFUZZ.2021.3112226.

 [9] G.-Q. Xu, L. Meng, D.-Q. Tu, and P.-L. Yang, “Lch: A local clustering
h-index centrality measure for identifying and ranking influential nodes
in complex networks,” Chinese Physics B, vol. 30, no. 8, p. 088901,
2021, doi: 10.1088/1674-1056/abea86.

 [10] A. Ullah, B. Wang, J. Sheng, J. Long, N. Khan, and Z. Sun,
“Identification of nodes influence based on global structure model in
complex networks,” Scientific Reports, vol. 11, no. 1, pp. 1–11, 2021,
doi: 10.1038/s41598-021-84684-x.

 [11] A. Saxena and S. Iyengar, “Centrality measures in complex
networks: A survey,” arXiv preprint arXiv:2011.07190, 2020,
doi: 10.1007/978-3-642-61317-3_5.

[12] O. Ugurlu, “Comparative analysis of centrality measures for identifying
critical nodes in complex networks,” Journal of Computational Science,
vol. 62, p. 101738, 2022, doi: 10.1016/j.jocs.2022.101738.

[13] R. R. Singh, “Centrality measures: a tool to identify key
actors in social networks,” Principles of Social Networking:
The New Horizon and Emerging Challenges, pp. 1–27, 2022,
doi: 10.1007/978-981-16-3398-0_1.

 [14] L. F. Bringmann, T. Elmer, S. Epskamp, R. W. Krause, D. Schoch, M.
Wichers, J. T. Wigman, and E. Snippe, “What do centrality measures
measure in psychological networks?” Journal of abnormal psychology,
vol. 128, no. 8, p. 892, 2019, doi: 10.1037/abn0000446.

[15] W. O. Kermack and A. G. McKendrick, “A contribution to the
mathematical theory of epidemics,” Proceedings of the royal
society of london. Series A, Containing papers of a mathematical
and physical character, vol. 115, no. 772, pp. 700–721, 1927,
doi: 10.1098/rspa.1927.0118.

References

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Fig. 14. The elapsed time during the calculation of centrality values on
Hamsterster social network.

Fig. 15. The elapsed time during the calculation of centrality values on Pages
network.

the incident edges on the nodes. LCH achieved the second-best
results. Like in the case of DC, this can be also explained by
the low complexity of the calculation of the H-Index and the
clustering coefficient. LFIC needs an order of magnitude more
time to calculate centrality measures. This is explained by the
usage of the shortest path between nodes. The same can be
said about BC. Lastly, because of the usage of k-shelling, GSM
needs the most time to calculate the centrality values of the
nodes.

IV. CONCLUSION

In this paper, we evaluated the performance of three modern
centrality measures, namely Local Fuzzy Information cen-
trality (LFIC), Local Clustering H-Index centrality (LCH),
and Global Structure Model centrality (GSM). All of these
measures take a different approach to centrality measure
calculation, like using the uncertainty in a box of nodes around
the inspected node, employing the H-Index and clustering
coefficient, or taking both the self and global influence of a
node into an aspect. For our experiments, we employed three
real-life networks with different characteristics. To analyze the
performance of modern centrality algorithms, in contrast to
the traditional ones, degree centrality (DC) and betweenness
centrality (BC) have also been used in the experiments. The
experimental results showed that modern algorithms are more
capable of assigning a value to a node in a more distinguish-
able way. The influential capability of the best-rated nodes
were about the same as in the case of traditional algorithms in
all three of the used information diffusion models. The modern
algorithms are capable of calculating the values relatively
quickly, the only exception is GSM, which needs magnitudes
more time due to the k-shelling that it employs.

In the future, it would be interesting to compare these
modern algorithms with other recently proposed methods. It
would also be advantageous to investigate if there is any
relation between the performance of the algorithms and the
characteristics of the networks. Employing dynamic networks
can also be profitable.

REFERENCES

[1] S. Bi, Y. Zeng, and R. Zhang, “Wireless powered communication
networks: An overview,” IEEE Wireless Communications, vol. 23, no. 2,
pp. 10–18, 2016, DOI: 10.1109/mwc.2016.7462480.

[2] X. You, C.-X. Wang, J. Huang, X. Gao, Z. Zhang, M. Wang, Y. Huang,
C. Zhang, Y. Jiang, J. Wang et al., “Towards 6g wireless communication
networks: Vision, enabling technologies, and new paradigm shifts,”
Science China Information Sciences, vol. 64, pp. 1–74, 2021, DOI:
10.1007/s11432-020-2955-6.

[3] W. Liu, X. Li, T. Liu, and B. Liu, “Approximating betweenness centrality
to identify key nodes in a weighted urban complex transportation
network,” Journal of Advanced Transportation, vol. 2019, 2019, DOI:
10.1155/2019/9024745.

[4] E. Kauffmann, J. Peral, D. Gil, A. Ferrández, R. Sellers, and H. Mora,
“A framework for big data analytics in commercial social networks: A
case study on sentiment analysis and fake review detection for marketing
decision-making,” Industrial Marketing Management, vol. 90, pp. 523–
537, 2020, DOI: 10.1016/j.indmarman.2019.08.003.

[5] M. Alshahrani, Z. Fuxi, A. Sameh, S. Mekouar, and S. Huang, “Efficient
algorithms based on centrality measures for identification of top-k
influential users in social networks,” Information Sciences, vol. 527, pp.
88–107, 2020, DOI: 10.1016/j.ins.2020.03.060.

[6] M. Doostmohammadian, H. R. Rabiee, and U. A. Khan, “Centrality-
based epidemic control in complex social networks,” Social Network
Analysis and Mining, vol. 10, pp. 1–11, 2020, DOI: 10.1007/s13278-
020-00638-7.

[7] A. Das and A. Biswas, “Rumor source identification on social networks:
a combined network centrality approach,” in Progress in Advanced
Computing and Intelligent Engineering: Proceedings of ICACIE 2020.
Springer, 2021, pp. 269–280, DOI: 10.1007/978-981-33-4299-6_22.

[8] H. Zhang, S. Zhong, Y. Deng, and K. H. Cheong, “Lfic: Identify-
ing influential nodes in complex networks by local fuzzy informa-
tion centrality,” IEEE Transactions on Fuzzy Systems, 2021, DOI:
10.1109/TFUZZ.2021.3112226.

[9] G.-Q. Xu, L. Meng, D.-Q. Tu, and P.-L. Yang, “Lch: A local clustering
h-index centrality measure for identifying and ranking influential nodes
in complex networks,” Chinese Physics B, vol. 30, no. 8, p. 088901,
2021, DOI: 10.1088/1674-1056/abea86.

[10] A. Ullah, B. Wang, J. Sheng, J. Long, N. Khan, and Z. Sun, “Identifica-
tion of nodes influence based on global structure model in complex
networks,” Scientific Reports, vol. 11, no. 1, pp. 1–11, 2021, DOI:
10.1038/s41598-021-84684-x.

[11] A. Saxena and S. Iyengar, “Centrality measures in complex networks:
A survey,” arXiv preprint arXiv:2011.07190, 2020, DOI: 10.1007/978-
3-642-61317-3_5.

[12] O. Ugurlu, “Comparative analysis of centrality measures for identifying
critical nodes in complex networks,” Journal of Computational Science,
vol. 62, p. 101738, 2022, DOI: 10.1016/j.jocs.2022.101738.

[13] R. R. Singh, “Centrality measures: a tool to identify key actors in
social networks,” Principles of Social Networking: The New Horizon
and Emerging Challenges, pp. 1–27, 2022, DOI: 10.1007/978-981-16-
3398-0_1.

[14] L. F. Bringmann, T. Elmer, S. Epskamp, R. W. Krause, D. Schoch,
M. Wichers, J. T. Wigman, and E. Snippe, “What do centrality measures
measure in psychological networks?” Journal of abnormal psychology,
vol. 128, no. 8, p. 892, 2019, DOI: 10.1037/abn0000446.

[15] W. O. Kermack and A. G. McKendrick, “A contribution to the mathe-
matical theory of epidemics,” Proceedings of the royal society of london.
Series A, Containing papers of a mathematical and physical character,
vol. 115, no. 772, pp. 700–721, 1927, DOI: 10.1098/rspa.1927.0118.

[16] S. Bikhchandani, D. Hirshleifer, and I. Welch, “A theory of fads,
fashion, custom, and cultural change as informational cascades,” Journal
of political Economy, vol. 100, no. 5, pp. 992–1026, 1992, DOI:
10.1086/261849.

[17] M. Granovetter and R. Soong, “Threshold models of diffusion and
collective behavior,” Journal of Mathematical sociology, vol. 9, no. 3,
pp. 165–179, 1983, DOI: 10.1080/0022250x.1983.9989941.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Fig. 14. The elapsed time during the calculation of centrality values on
Hamsterster social network.

Fig. 15. The elapsed time during the calculation of centrality values on Pages
network.

the incident edges on the nodes. LCH achieved the second-best
results. Like in the case of DC, this can be also explained by
the low complexity of the calculation of the H-Index and the
clustering coefficient. LFIC needs an order of magnitude more
time to calculate centrality measures. This is explained by the
usage of the shortest path between nodes. The same can be
said about BC. Lastly, because of the usage of k-shelling, GSM
needs the most time to calculate the centrality values of the
nodes.

IV. CONCLUSION

In this paper, we evaluated the performance of three modern
centrality measures, namely Local Fuzzy Information cen-
trality (LFIC), Local Clustering H-Index centrality (LCH),
and Global Structure Model centrality (GSM). All of these
measures take a different approach to centrality measure
calculation, like using the uncertainty in a box of nodes around
the inspected node, employing the H-Index and clustering
coefficient, or taking both the self and global influence of a
node into an aspect. For our experiments, we employed three
real-life networks with different characteristics. To analyze the
performance of modern centrality algorithms, in contrast to
the traditional ones, degree centrality (DC) and betweenness
centrality (BC) have also been used in the experiments. The
experimental results showed that modern algorithms are more
capable of assigning a value to a node in a more distinguish-
able way. The influential capability of the best-rated nodes
were about the same as in the case of traditional algorithms in
all three of the used information diffusion models. The modern
algorithms are capable of calculating the values relatively
quickly, the only exception is GSM, which needs magnitudes
more time due to the k-shelling that it employs.

In the future, it would be interesting to compare these
modern algorithms with other recently proposed methods. It
would also be advantageous to investigate if there is any
relation between the performance of the algorithms and the
characteristics of the networks. Employing dynamic networks
can also be profitable.

REFERENCES

[1] S. Bi, Y. Zeng, and R. Zhang, “Wireless powered communication
networks: An overview,” IEEE Wireless Communications, vol. 23, no. 2,
pp. 10–18, 2016, DOI: 10.1109/mwc.2016.7462480.

[2] X. You, C.-X. Wang, J. Huang, X. Gao, Z. Zhang, M. Wang, Y. Huang,
C. Zhang, Y. Jiang, J. Wang et al., “Towards 6g wireless communication
networks: Vision, enabling technologies, and new paradigm shifts,”
Science China Information Sciences, vol. 64, pp. 1–74, 2021, DOI:
10.1007/s11432-020-2955-6.

[3] W. Liu, X. Li, T. Liu, and B. Liu, “Approximating betweenness centrality
to identify key nodes in a weighted urban complex transportation
network,” Journal of Advanced Transportation, vol. 2019, 2019, DOI:
10.1155/2019/9024745.

[4] E. Kauffmann, J. Peral, D. Gil, A. Ferrández, R. Sellers, and H. Mora,
“A framework for big data analytics in commercial social networks: A
case study on sentiment analysis and fake review detection for marketing
decision-making,” Industrial Marketing Management, vol. 90, pp. 523–
537, 2020, DOI: 10.1016/j.indmarman.2019.08.003.

[5] M. Alshahrani, Z. Fuxi, A. Sameh, S. Mekouar, and S. Huang, “Efficient
algorithms based on centrality measures for identification of top-k
influential users in social networks,” Information Sciences, vol. 527, pp.
88–107, 2020, DOI: 10.1016/j.ins.2020.03.060.

[6] M. Doostmohammadian, H. R. Rabiee, and U. A. Khan, “Centrality-
based epidemic control in complex social networks,” Social Network
Analysis and Mining, vol. 10, pp. 1–11, 2020, DOI: 10.1007/s13278-
020-00638-7.

[7] A. Das and A. Biswas, “Rumor source identification on social networks:
a combined network centrality approach,” in Progress in Advanced
Computing and Intelligent Engineering: Proceedings of ICACIE 2020.
Springer, 2021, pp. 269–280, DOI: 10.1007/978-981-33-4299-6_22.

[8] H. Zhang, S. Zhong, Y. Deng, and K. H. Cheong, “Lfic: Identify-
ing influential nodes in complex networks by local fuzzy informa-
tion centrality,” IEEE Transactions on Fuzzy Systems, 2021, DOI:
10.1109/TFUZZ.2021.3112226.

[9] G.-Q. Xu, L. Meng, D.-Q. Tu, and P.-L. Yang, “Lch: A local clustering
h-index centrality measure for identifying and ranking influential nodes
in complex networks,” Chinese Physics B, vol. 30, no. 8, p. 088901,
2021, DOI: 10.1088/1674-1056/abea86.

[10] A. Ullah, B. Wang, J. Sheng, J. Long, N. Khan, and Z. Sun, “Identifica-
tion of nodes influence based on global structure model in complex
networks,” Scientific Reports, vol. 11, no. 1, pp. 1–11, 2021, DOI:
10.1038/s41598-021-84684-x.

[11] A. Saxena and S. Iyengar, “Centrality measures in complex networks:
A survey,” arXiv preprint arXiv:2011.07190, 2020, DOI: 10.1007/978-
3-642-61317-3_5.

[12] O. Ugurlu, “Comparative analysis of centrality measures for identifying
critical nodes in complex networks,” Journal of Computational Science,
vol. 62, p. 101738, 2022, DOI: 10.1016/j.jocs.2022.101738.

[13] R. R. Singh, “Centrality measures: a tool to identify key actors in
social networks,” Principles of Social Networking: The New Horizon
and Emerging Challenges, pp. 1–27, 2022, DOI: 10.1007/978-981-16-
3398-0_1.

[14] L. F. Bringmann, T. Elmer, S. Epskamp, R. W. Krause, D. Schoch,
M. Wichers, J. T. Wigman, and E. Snippe, “What do centrality measures
measure in psychological networks?” Journal of abnormal psychology,
vol. 128, no. 8, p. 892, 2019, DOI: 10.1037/abn0000446.

[15] W. O. Kermack and A. G. McKendrick, “A contribution to the mathe-
matical theory of epidemics,” Proceedings of the royal society of london.
Series A, Containing papers of a mathematical and physical character,
vol. 115, no. 772, pp. 700–721, 1927, DOI: 10.1098/rspa.1927.0118.

[16] S. Bikhchandani, D. Hirshleifer, and I. Welch, “A theory of fads,
fashion, custom, and cultural change as informational cascades,” Journal
of political Economy, vol. 100, no. 5, pp. 992–1026, 1992, DOI:
10.1086/261849.

[17] M. Granovetter and R. Soong, “Threshold models of diffusion and
collective behavior,” Journal of Mathematical sociology, vol. 9, no. 3,
pp. 165–179, 1983, DOI: 10.1080/0022250x.1983.9989941.

https://doi.org/10.1109/mwc.2016.7462480
https://doi.org/10.1007/s11432-020-2955-6
https://doi.org/10.1155/2019/9024745
https://doi.org/10.1016/j.indmarman.2019.08.003
https://doi.org/10.1016/j.ins.2020.03.060
https://doi.org/10.1007/s13278-020-00638-7
https://doi.org/10.1007/978-981-33-4299-6_22
https://doi.org/10.1109/TFUZZ.2021.3112226
https://doi.org/10.1088/1674-1056/abea86
https://doi.org/10.1038/s41598-021-84684-x
https://arxiv.org/abs/2011.07190
https://doi.org/10.1007/978-3-642-61317-3_5
https://doi.org/10.1016/j.jocs.2022.101738
https://doi.org/10.1007/978-981-16-3398-0_1
https://doi.org/10.1037/abn0000446
https://doi.org/10.1098/rspa.1927.0118

The performance of modern centrality measures on
different information models and networks

61

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

Marjai Péter received his MSc degree in computer
science at Eötvös Loránd University Faculty of
Informatics in Budapest, 2021 and currently doing
his PhD studies with specialization in information
systems. His scientific research is focusing on centrality
measures, log processing, parsing and compression.

Máté Nagy-Sándor received his MSc degree in
computer science at Eötvös Loránd University Faculty
of Informatics in Budapest, 2023.

Attila Kiss defended his PhD in the field of database
theory in 1991. His research is focused on information
systems, data mining, and artificial intelligence. He has
more than 190 scientific publications. Seven students
received their PhD degrees under his supervision.
Since 2010, he has been the head of Department of
Information Systems at Eötvös Loránd University,
Hungary. He is also teaching at J. Selye University,
Slovakia

[16] S. Bikhchandani, D. Hirshleifer, and I. Welch, “A theory of fads,
fashion, custom, and cultural change as informational cascades,”
Journal of political Economy, vol. 100, no. 5, pp. 992–1026, 1992,
doi: 10.1086/261849.

[17] M. Granovetter and R. Soong, “Threshold models of diffusion and
collective behavior,” Journal of Mathematical sociology, vol. 9, no. 3,
pp. 165–179, 1983, doi: 10.1080/0022250x.1983.9989941.

[18] T. Rana, P. Meel et al., “Rumor propagation: A state-of-theart
survey of current challenges and opportunities,” in 2019 2nd
International Conference on Intelligent Communication and
Computational Techniques (ICCT). IEEE, 2019, pp. 64–69,
doi: 10.1109/ICCT46177.2019.8969023.

 [19] L. C. Freeman, “Centrality in social networks conceptual
clarification,” Social networks, vol. 1, no. 3, pp. 215–239, 1978,
doi: 10.1016/s0378-8733(00)00031-9.

 [20] ——, “A set of measures of centrality based on betweenness,”
Sociometry, pp. 35–41, 1977, doi: 10.2307/3033543.

[21] P. W. Holland and S. Leinhardt, “Transitivity in structural models of
small groups,” Comparative group studies, vol. 2, no. 2, pp. 107–124,
1971, doi: 10.1177/104649647100200201.

 [22] Q. Liu, Y.-X. Zhu, Y. Jia, L. Deng, B. Zhou, J.-X. Zhu, and P. Zou,
“Leveraging local h-index to identify and rank influential spreaders in
networks,” Physica A: Statistical Mechanics and its Applications, vol.
512, pp. 379–391, 2018, doi: 10.1016/j.physa.2018.08.053.

[23] G. Maji, A. Namtirtha, A. Dutta, and M. C. Malta, “Influential spreaders
identification in complex networks with improved k-shell hybrid
method,” Expert Systems with Applications, vol. 144, p. 113092, 2020,
doi: 10.1016/j.eswa.2019.113092.

[24] R. A. Rossi and N. K. Ahmed, “The network data repository
with interactive graph analytics and visualization,” in AAAI,
2015, [Online]. Available: https://networkrepository.com.
doi: 10.1609/aaai.v29i1.9277.

https://doi.org/10.1086/261849
https://doi.org/10.1080/0022250x.1983.9989941
https://doi.org/10.1109/ICCT46177.2019.8969023
https://doi.org/10.1016/s0378-8733(00)00031-9
https://doi.org/10.2307/3033543
https://doi.org/10.1177/104649647100200201
https://doi.org/10.1016/j.physa.2018.08.053
https://doi.org/10.1016/j.eswa.2019.113092
https://networkrepository.com.
https://doi.org/10.1609/aaai.v29i1.9277

Improve Performance of Fine-tuning
Language Models with Prompting

62

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

Zijian Győző Yang and Noémi Ligeti-Nagy: Language Technology Research
Group, Institute for Language Technology and Applied Linguistics, Hungarian
Research Centre for Linguistics, Budapest, Hungary.

E-mail: {yang.zijian.gyozo, ligeti-nagy.noemi}@nytud.hu,
Manuscript received April 19, 2005; revised August 26, 2015.

Abstract—This paper explores the effectiveness of prompt
programming in the fine-tuning process of a Hungarian lan-
guage model. The study builds on the prior success of prompt
engineering in natural language processing tasks and employs
the prompting method to enhance the fine-tuning performance
of a huBERT model on several benchmark datasets of HuLU.
The experimentation involves testing 45 prompt combina-
tions for the HuCoPA dataset and 15 prompt variations for the
HuRTE and HuWNLI datasets. The findings reveal that the ad-
dition of an instructional text consistently produces the best re-
sults across all winning cases, and that the [CLS] token produces
the best results in the separator token experiments. The most
significant enhancement was observed in the HuWNLI dataset,
with an increase in accuracy from 65% to 85%. These results
demon- strate that the addition of instruct text is crucial and
sufficient in enabling the language model to effectively interpret
and solve the Winograd Schemata problem. These results show-
case the potential of prompt programming in enhancing the per-
formance of language models in fine-tuning tasks, and highlight
the importance of incorporating task-specific instructions to im-
prove model interpretability and accuracy.

Index Terms—BERT, prompting, fine-tuning

Improve Performance of Fine-tuning
Language Models with Prompting

Zijian Győző Yang, Member, HTE and Noémi Ligeti-Nagy

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Improve Performance of Fine-tuning
Language Models with Prompting

Zijian Győző Yang, Member, HTE and Noémi Ligeti-Nagy

Abstract—This paper explores the effectiveness of prompt
programming in the fine-tuning process of a Hungarian lan-
guage model. The study builds on the prior success of prompt
engineering in natural language processing tasks and employs
the prompting method to enhance the fine-tuning performance
of a huBERT model on several benchmark datasets of HuLU.
The experimentation involves testing 45 prompt combinations for
the HuCoPA dataset and 15 prompt variations for the HuRTE
and HuWNLI datasets. The findings reveal that the addition of
an instructional text consistently produces the best results across
all winning cases, and that the [CLS] token produces the best
results in the separator token experiments. The most significant
enhancement was observed in the HuWNLI dataset, with an
increase in accuracy from 65% to 85%. These results demon-
strate that the addition of instruct text is crucial and sufficient
in enabling the language model to effectively interpret and solve
the Winograd Schemata problem. These results showcase the
potential of prompt programming in enhancing the performance
of language models in fine-tuning tasks, and highlight the
importance of incorporating task-specific instructions to improve
model interpretability and accuracy.

Index Terms—BERT, prompting, fine-tuning

I. INTRODUCTION

PROMPTING is a technique used to guide language
models in generating specific types of language. With

prompting, a user provides a starting point or “prompt” for the
language model, and the model generates text that continues
from that point. Prompting can be used to control the topic,
style, tone, and other aspects of the generated text.

There are several types of prompting techniques that have
been studied in the context of language models. One common
technique is prefix-based prompting, where the user provides a
few words or a sentence as the starting point for the generated
text. Another technique is conditional prompting, where the
user specifies a condition or constraint that the generated text
must satisfy, such as a certain topic or sentiment. Additionally,
prompting can be done through natural language prompts,
multiple-choice prompts, or other forms of input.

Prompting can be a powerful tool for controlling the output
of language models and making them more useful for specific
applications. However, there are also challenges associated
with prompting. One challenge is designing effective prompts
that achieve the desired result. Another challenge is under-
standing how the language model is interpreting the prompt
and generating the resulting text.

Zijian Győző Yang and Noémi Ligeti-Nagy: Language Technology Re-
search Group, Institute for Language Technology and Applied Linguistics,
Hungarian Research Centre for Linguistics, Budapest, Hungary.
E-mail: {yang.zijian.gyozo, ligeti-nagy.noemi}@nytud.hu

Manuscript received April 19, 2005; revised August 26, 2015.

There is a growing body of research on prompting in the
context of language models [1]. Some studies have focused on
improving the effectiveness of prompting [2], [3], while others
have explored the ethical implications of using prompts to
control the output of language models [4]. Overall, prompting
is an important area of research in the field of natural language
processing, and it has the potential to shape the future of
human-computer interaction and content generation.

Drawing inspiration from the success of prompt engineer-
ing, the present study adapted this approach to enhance the
fine-tuning performance of a Hungarian language model and
associated benchmarks, employing the prompting method. By
doing so, our experimentation aimed to build on the prior
success of this method in natural language processing tasks.

The currently most performant language model for the
Hungarian language is huBERT [5]. Despite being a smaller
model, huBERT outperforms HILBERT [6] in available tests,
likely due to being trained on more data. Yang et al. [7]
have recently introduced three large models trained on large
amount of Hungarian data (PULI GPT-3SX, PULI GPT-2,
PULI BERT-Large) and evaluated all the above mentioned
models on the datasets of HuLU, the Hungarian Language
Understanding Benchmark Kit [8], [9].

HuLU was created on the basis of the GLUE [10] and
SuperGLUE [11] benchmark databases. The main purpose
of HuLU is to enable a standardized evaluation of neural
language models in a simple way while also enabling multi-
perspective analysis. It also compares the performance of var-
ious language models on various tasks. The HuLU comprises
7 corpora containing annotation for various standard language
comprehension tasks. As usual, these corpora are divided into
training, validation and test sets. The subcorpora of HuLU
are either translated datasets (Hungarian Choice of Plausible
Alternatives Corpus – translated from CoPA [12] –, Hungarian
Recognizing Textual Entailment dataset – translated from the
RTE1, RTE2, RTE3 and RTE5 datasets [13], [14], [15], [16]
–, Hungarian version of the Stanford Sentiment Treebank –
sentences translated from the SST5 dataset [17] –, Anaphora
resolution datasets for Hungarian as an inference task [18]
– the examples translated from the Winograd schemata and
the WNLI dataset [19], [10]) or datasets created from scratch
the design of which follows some English datasets (Hungarian
CommitmentBank Corpus – designed based on Commitment-
Bank [20] –, Hungarian Corpus of Linguistic Acceptability
– designed based on COLA [21] –, Hungarian Corpus for
Reading Comprehension with Commonsense Reasoning [22]
– designed based on ReCoRD [23]).

The primary objective of our research is to harness the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Improve Performance of Fine-tuning
Language Models with Prompting

Zijian Győző Yang, Member, HTE and Noémi Ligeti-Nagy

Abstract—This paper explores the effectiveness of prompt
programming in the fine-tuning process of a Hungarian lan-
guage model. The study builds on the prior success of prompt
engineering in natural language processing tasks and employs
the prompting method to enhance the fine-tuning performance
of a huBERT model on several benchmark datasets of HuLU.
The experimentation involves testing 45 prompt combinations for
the HuCoPA dataset and 15 prompt variations for the HuRTE
and HuWNLI datasets. The findings reveal that the addition of
an instructional text consistently produces the best results across
all winning cases, and that the [CLS] token produces the best
results in the separator token experiments. The most significant
enhancement was observed in the HuWNLI dataset, with an
increase in accuracy from 65% to 85%. These results demon-
strate that the addition of instruct text is crucial and sufficient
in enabling the language model to effectively interpret and solve
the Winograd Schemata problem. These results showcase the
potential of prompt programming in enhancing the performance
of language models in fine-tuning tasks, and highlight the
importance of incorporating task-specific instructions to improve
model interpretability and accuracy.

Index Terms—BERT, prompting, fine-tuning

I. INTRODUCTION

PROMPTING is a technique used to guide language
models in generating specific types of language. With

prompting, a user provides a starting point or “prompt” for the
language model, and the model generates text that continues
from that point. Prompting can be used to control the topic,
style, tone, and other aspects of the generated text.

There are several types of prompting techniques that have
been studied in the context of language models. One common
technique is prefix-based prompting, where the user provides a
few words or a sentence as the starting point for the generated
text. Another technique is conditional prompting, where the
user specifies a condition or constraint that the generated text
must satisfy, such as a certain topic or sentiment. Additionally,
prompting can be done through natural language prompts,
multiple-choice prompts, or other forms of input.

Prompting can be a powerful tool for controlling the output
of language models and making them more useful for specific
applications. However, there are also challenges associated
with prompting. One challenge is designing effective prompts
that achieve the desired result. Another challenge is under-
standing how the language model is interpreting the prompt
and generating the resulting text.

Zijian Győző Yang and Noémi Ligeti-Nagy: Language Technology Re-
search Group, Institute for Language Technology and Applied Linguistics,
Hungarian Research Centre for Linguistics, Budapest, Hungary.
E-mail: {yang.zijian.gyozo, ligeti-nagy.noemi}@nytud.hu

Manuscript received April 19, 2005; revised August 26, 2015.

There is a growing body of research on prompting in the
context of language models [1]. Some studies have focused on
improving the effectiveness of prompting [2], [3], while others
have explored the ethical implications of using prompts to
control the output of language models [4]. Overall, prompting
is an important area of research in the field of natural language
processing, and it has the potential to shape the future of
human-computer interaction and content generation.

Drawing inspiration from the success of prompt engineer-
ing, the present study adapted this approach to enhance the
fine-tuning performance of a Hungarian language model and
associated benchmarks, employing the prompting method. By
doing so, our experimentation aimed to build on the prior
success of this method in natural language processing tasks.

The currently most performant language model for the
Hungarian language is huBERT [5]. Despite being a smaller
model, huBERT outperforms HILBERT [6] in available tests,
likely due to being trained on more data. Yang et al. [7]
have recently introduced three large models trained on large
amount of Hungarian data (PULI GPT-3SX, PULI GPT-2,
PULI BERT-Large) and evaluated all the above mentioned
models on the datasets of HuLU, the Hungarian Language
Understanding Benchmark Kit [8], [9].

HuLU was created on the basis of the GLUE [10] and
SuperGLUE [11] benchmark databases. The main purpose
of HuLU is to enable a standardized evaluation of neural
language models in a simple way while also enabling multi-
perspective analysis. It also compares the performance of var-
ious language models on various tasks. The HuLU comprises
7 corpora containing annotation for various standard language
comprehension tasks. As usual, these corpora are divided into
training, validation and test sets. The subcorpora of HuLU
are either translated datasets (Hungarian Choice of Plausible
Alternatives Corpus – translated from CoPA [12] –, Hungarian
Recognizing Textual Entailment dataset – translated from the
RTE1, RTE2, RTE3 and RTE5 datasets [13], [14], [15], [16]
–, Hungarian version of the Stanford Sentiment Treebank –
sentences translated from the SST5 dataset [17] –, Anaphora
resolution datasets for Hungarian as an inference task [18]
– the examples translated from the Winograd schemata and
the WNLI dataset [19], [10]) or datasets created from scratch
the design of which follows some English datasets (Hungarian
CommitmentBank Corpus – designed based on Commitment-
Bank [20] –, Hungarian Corpus of Linguistic Acceptability
– designed based on COLA [21] –, Hungarian Corpus for
Reading Comprehension with Commonsense Reasoning [22]
– designed based on ReCoRD [23]).

The primary objective of our research is to harness the

DOI: 10.36244/ICJ.2023.5.10

mailto:yang.zijian.gyozo%40nytud.hu?subject=
mailto:ligeti-nagy.noemi%40nytud.hu?subject=
https://doi.org/10.36244/ICJ.2023.5.10

Improve Performance of Fine-tuning
Language Models with Prompting

63

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

power of prompt programming to refine the performance of a
Hungarian language model, a step forward that has not been
fully explored yet. We chose this area given the promise that
prompt engineering holds in enhancing the interpretability and
accuracy of language models, especially when dealing with
complex language problems. We consider this research vital
as it stands to bridge a significant gap in language modeling,
potentially setting a new standard for fine-tuning processes in
language model development across multiple languages, thus
paving the way for better language processing applications.

The structure of our paper is as follows: Section I provides
a brief background, discusses previous solutions, and outlines
the structure of this paper. In Section II, we present the data
and methods used. In Section III, a detailed description of
our prompt experiments is provided. Section IV contains the
results and evaluations, and Section V presents a concise
conclusion.

II. DATA AND METHODS

A. Datasets

In our experiment, we conducted fine-tuning of a huBERT
model on several benchmark datasets of HuLU. Our research
encompassed experimentation on the HuCoPA, HuRTE, and
HuWNLI datasets. The HuCoPA dataset [24] comprises 1,000
instances, each consisting of a premise and two alternatives.
The task involves selecting the alternative that describes a
situation that stands in a causal relation to the situation
described by the premise (example (1)). The train, validation
and test sets contain 400, 100 and 500 instances, respectively,
following the splits of the original English dataset (as in the
GLUE benchmark).

HuRTE [25] is the Hungarian version of the Recognizing
Textual Entailment dataset of GLUE, comprising 4,504 in-
stances. Each instance contains a sometimes multi-sentence
premise and a one-sentence hypothesis, and the task is to
determine whether the former entails the latter or not. The
task is a binary classification problem (see example (2)). The
train, validation and test sets contain 2 131, 242 and 2 131
instances, respectively.

The HuWNLI dataset [26] comprises the collection of the
Hungarian Winograd Schemata [27], extended with the set of
sentence pairs of the test set of the WNLI dataset of GLUE,
and transformed into a natural language inference task. The
NLI format was created by replacing the ambiguous pronoun
with each possible referent (see example (3)). The data is
distributed among three splits: training set (562), validation
set (59) and test set (134).

(1) premise: A testem árnyékot vetett a fűre. ’My body cast
a shadow over the grass.’
choice 1: Felkelt a nap. ’The sun was rising.’
choice 2: A füvet lenyı́rták. ’The grass was cut.’
question: cause
label: 1 (the number of the more plausible choice)

(2) premise: Még nem találtak tömegpusztı́tó fegyvereket
Irakban. ’No weapons of mass destruction have yet been
found in Iraq.’
hypothesis: Tömegpusztı́tó fegyvereket találtak Irakban.
’Weapons of mass destruction have been found in Iraq.’
label: 0 (1, if the premise entails the hypothesis, 0
otherwise.)

(3) sentence 1: A férfi nem tudta felemelni a fiát, mert olyan
nehéz volt. ’The man couldn’t lift his son because he was
so heavy.’,
sentence 2: A fia nehéz volt. ’His son was heavy.’,
label: 1 (1, if sentence 1 entails sentence 2, 0 otherwise.)

B. Fine-tuning process

In our fine-tuning process, we employed identical hyperpa-
rameter settings across all cases, and fine-tuned all models
for a period of 20 epochs. Our comparison was based on
selecting the highest result scores. For the experiments, we
used 2 NVIDIA A100 GPUs. The modified hyperparameters
are as follows:

• HuCoPA: sequence length: 128; batch size: 8 per GPU;
learning rate: 2e-5;

• HuRTE: sequence length: 512; batch size: 32 per GPU;
learning rate: 2e-5;

• HuWNLI: sequence length: 256; batch size: 6 per GPU;
learning rate: 8e-6.

For fine-tuning our language model, we used the scripts
provided by Hugging Face [28]. In the case of HuCoPA, we
treated the task as a multiple choice task, while for HuRTE and
HuWNLI, we employed the text classification script to train
our models. Initially, we used a learning rate value of 2e-5
for all cases. However, further experimentation with HuWNLI
revealed that 8e-6 yielded the best results and thus became the
preferred choice.

In our experiments, we fine-tuned our models on the training
set. Subsequently, we conducted experiments on the validation
set and selected the checkpoint that yielded the highest results.
Finally, we evaluated this selected checkpoint on the test sets.

III. PROMPT EXPERIMENTS

In our current research, we have explored various possible
prompt templates, ranging from not using prompts at all, to
adding only a separator token between the sentences, and even
to utilizing complex prompt templates with multiple sentence-
long instructions. In the case of using prompts, we explored
several versions of the separator token or text. When using text
as a separator, there were instances where it was necessary to
modify the syntax of the input sentence, such as converting
the original sentence to lowercase. We even experimented with
multiple instruction texts, which contain a detailed description
of the current task to be solved. All the instructions were in
Hungarian. Some examples of the different types of prompts
used with the HuCoPA dataset is provided below for your
reference:

Improve Performance of Fine-tuning
Language Models with Prompting

64

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

• Original text from HuCoPA:
– premise: A sofőr felkapcsolta az autó fényszóróit.

’The driver turned on the car’s headlights.’
– choice 1: Mennydörgést hallott. ’He/she heard a

thunderclap.’
– question: cause

• Input using a separator token: A sofőr felkapcsolta az autó
fényszóróit. [SEP] Mennydörgést hallott. – ’The driver
turned on the car’s headlights. [SEP] He/she heard a
thunderclap.’

• Input using text as separator: A sofőr felkapcsolta az autó
fényszóróit. Mert mennydörgést hallott. – ’The driver
turned on the car’s headlights. Because he/she heard a
thunderclap.’

• Input using an instruct text: Döntsd el, hogy következik-e
az első mondat a második mondatból. Első mondat: A
sofőr felkapcsolta az autó fényszóróit. Második mondat:
Mennydörgést hallott. – ’Decide whether the first sen-
tence is entailed by the second one. First sentence: The
driver turned on the car’s headlights. Second sentence:
He/she heard a thunderclap.’

In the samples above, the text/token that is added to the
original input text is bolded. Using this additional information
or these instructions, we can assist the language models in
their fine-tuning training. In some cases, when using text as a
separator (as you can see above), we had to modify the syntax
of the input sentence.

We conducted experiments in all cases using the following
category of prompts:

• [empty]: The examined texts were concatenated without
using any separator token.

• Separator token: Either/both the [CLS] or [SEP] token
was inserted as a separator between the two examined
texts.

• Conjunction phrase: Hungarian conjunction word/phrase
was employed as a separator token text (details can be
found in Table I).

• Question sentence: A question sentence was used as a
separator token text (see Table I).

• Instruct text: Instruct text was added to the beginning of
the input text (see Table II). The question sentence can
be an instruct text as well.

• Mix: Different prompt types were mixed, by combining
the use of a separator token with the instruct text, as an
example.

In Table I and Table II we provide a comprehensive list of
the various prompt texts we experimented with. Specifically,
for the HuCoPA dataset, we tested 45 different prompt com-
binations, whereas for the HuRTE and HuWNLI datasets, we
tested 15 prompt variations.

IV. RESULTS

In the results section, we have chosen to present only
the best scores obtained from each prompt category to en-
hance the readability of our findings. This decision was
made in consideration of the 75 experiment subscores that
were obtained, which could otherwise result in excessive

TABLE I
CONJUNCTION PHRASE AND QUESTION SENTENCE AS PROMPTS

IN THE CASE OF THE DIFFERENT DATASETS

Conjunction phrase Question sentence

HuCoPA
mert/ezért
Mert/Ezért
’because/because of this’

Oka?/Hatása?
’Cause of this?/Result of this?’
Mi az oka?/Mi a hatása?
’What is the cause of this?/
What is the result of this?’
Ez a következtetés helyes?
’Is this conclusion correct?’

HuRTE

Tehát ’Therefore’
Ezért ’Because of this’
Ebből következik, hogy
’This implies that’

Ez a következtetés helyes?
’Is this conclusion correct?’

HuWNLI

Tehát ’Therefore’
Ezért ’Because of this’
Ebből következik, hogy
’This implies that’

Ez a következtetés helyes?
’Is this conclusion correct?’

data presentation that may obscure the key insights. Figure 1
displays the highest results attained for each category on the
test sets. Our experimentation showed that in all corpora,
the highest results were achieved through the combination of
prompts. Notably, we achieved state-of-the-art results in all
three examined benchmarks. To further validate the effective-
ness of our prompting method, we submitted our results to
the HuLU benchmark competition [29], where our approach
outperformed the dedicated three benchmarks, as shown in
Table III. The three mixed prompt winners are listed below,
the original input texts are marked ({ ... }) as variables:

• HuCoPA: Ez a következtetés helyes? ’Is this conclu-
sion correct?’ { ... (premise text) } Mert/Ezért ’Be-
cause/Because of this’ { ... (choice sentence text) }
(To make the sentence grammatically correct, the choice
sentence is lowercased.)

• HuRTE: A következő példákban egy premissza és egy
hipotézis található. A premissza több mondatból is állhat.
A feladat az, hogy el kell dönteni, a hipotézis következik-
e a premisszából: azaz ha a premissza igaz, akkor a
hipotézis is igaz. ’The following examples consist of a
premise and a hypothesis. The premise may consist of
multiple sentences. The task is to determine whether
the hypothesis is entailed by the premise: that is, if
the premise is true, then the hypothesis is also true.’
[CLS] premissza: ’premise’ { ... (premise text) } [CLS]
hipotézis: ’hypothesis’ { ... (hypothesis text) }

• HuWNLI: Az alábbi példákban két mondat látható. El
kell dönteni, hogy a második mondat következik-e az
első mondatból. ’The following examples consist of two
sentences. The task is to determine whether the second
sentence is entailed by the first.’ [CLS] első mondat: ’first
sentence:’ { ... (sentence1 text) } [CLS] második mondat:
’second sentence:’ { ... (sentence2 text) }

As evident from the winning prompts, the addition of an
instructional text was consistently observed across all win-
ning cases. This observation aligns with our expectations, as
instructional texts typically provide a detailed description of
the task at hand, thereby aiding the language models in their
training.

Improve Performance of Fine-tuning
Language Models with Prompting

65

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

TABLE II
INSTRUCT TEXTS USED IN THE EXPERIMENT

Instruct text

HuCoPA

1.) Az alábbi példákban van egy mondat, egy kérdés (Ok vagy Hatás), és két lehetséges alternatı́va. A feladat az, hogy a két lehetséges
alternatı́va közül ki kell választani azt, amelyik valószı́nűbb válasz a kérdésre.
Mondat: ... Kérdés: ... 1. alternatı́va: ... 2. alternatı́va: ...
’The following examples consist of a sentence, a question (Cause or Effect), and two possible alternatives. The task is to select the alternative
that is more likely to be the answer to the question.
Sentence: ... Question ... 1st alternative: ... 2nd alternative: ...’

2.) Az alábbi példákban van egy mondat, és két lehetséges folytatás. A feladat az, hogy a két lehetséges folytatás közül ki kell választani
azt, amelyik valószı́nűbb folytatása a mondatnak.
Mondat: ... 1. folytatás: ... 2. folytatás: ...
’In the following examples, there is a sentence and two possible continuations. The task is to select the alternative that is more likely to be
the continuation of the sentence.
Sentence: ... 1st continuation: ... 2nd continuation: ...’

HuRTE

A következő példákban egy premissza és egy hipotézis található. A premissza több mondatból is állhat. A feladat az, hogy el kell dönteni,
a hipotézis következik-e a premisszából: azaz ha a premissza igaz, akkor a hipotézis is igaz.
Premissza: ... Hipotézis: ...
’The following examples consist of a premise and a hypothesis. The premise may consist of multiple sentences. The task is to determine
whether the hypothesis is entailed by the premise: that is, if the premise is true, then the hypothesis is also true.
Premise: ... Hypothesis:’

HuWNLI

Az alábbi példákban két mondat látható. El kell dönteni, hogy a második mondat következik-e az elsőből: azaz ha az első mondat igaz,
akkor ebből következik, hogy a második mondat is igaz.
Első mondat: ... Második mondat: ...
’The following examples consist of two sentences. The task is to determine whether the second sentence is entailed by the first: that is, if
the first sentence is true, then it follows that the second sentence is also true.
First sentence: ... Second sentence: ...’

In the separator token experiments, our findings indicate that
in all cases, the [CLS] token produced the best results.

The greatest enhancement was attained on the HuWNLI
dataset: the results increased from the preceding 65% accuracy
to 85%, thereby yielding a markedly superior outcome com-
pared to the previous attempts (see Table III for the comparison
of the results on the HuLU datasets). The results indicate
that the addition of an instruct text (i.e., the description of
the given task) was crucial and sufficient in enabling the
language model to effectively interpret and solve the Winograd
Schemata problem.

TABLE III
HULU COMPETITION

HuCoPA HuWNLI HuRTE
(MCC / acc) (acc) (MCC / acc)

huBERT 56.1 / 78.0 64.93 48.7 / 74.1
PULI BERT-Large 41.4 / 76.6 65.67 51.7 / 75.9
huBERT - Prompt 56.4 / 78.2 85.80 53.4 / 76.5

In Table IV, a snippet of our HuCoPA experiment is
presented. The rows represent different prompt sets, while the
columns represent epoch numbers (only the first 10 epochs
are shown). Upon examining the values in the first epoch, it
is evident that the model learned the task at varying speeds
depending on the prompt set. The 24th prompt set achieved
a precision value of 74.44 in the first epoch, whereas the
17th prompt set only reached 56.99. By the tenth epoch,
all models obtained acceptable results; however, there still
remains a difference of 7.3 between the highest and lowest
values (77.77 – 85.00). An interesting observation is that the
23rd prompt set achieved the highest value in epoch 7.

Due to the nature of our experiments being focused on fine-
tuning tasks, we were unable to directly compare our results

with large language models and their applications, such as
ChatGPT [30].

A. Discussion of the results on the HuWNLI dataset

As highlighted earlier, considerable progress is evident on
the HuWNLI dataset. An accuracy of 65% had previously been
recorded as the highest, achieved by a BERT-Large model
fine-tuned, however, our mixed setting experiment (utilizing
an instruct text and the [CLS] token) yielded a fine-tuned
model with an accuracy score of 85%.

Aside from being an allusion to Turing’s imitation game
[31], the term ”Turing Test” is broadly applied to any
test devised to gauge a computer’s ”intelligence”. Winograd
schemata are frequently dubbed the new ”Turing Test”. They
consist of sentence pairs as closely related in content as
possible (with a difference of one word or phrase), having
identical target pronouns that refer back to different precursors
(example 4).

(4) The city councilmen refused the demonstrators a permit
because they [feared/advocated] violence.
Who [feared/advocated] violence?
a. The city councilmen
b. The demonstrators

Levesque and colleagues [19] suggested a set of Winograd
schemata as a fresh AI testing method, inspired by the Turing
Test. A Winograd schema must fulfill three conditions to be
included in the challenge:

1) it should be easily discernible by a human reader
2) it should not be decipherable by selectional restrictions
3) it should not be searchable on Google
The strength of this new challenge lies in its simplicity:

the schemata answer is a binary decision. Furthermore, it’s

Improve Performance of Fine-tuning
Language Models with Prompting

66

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

Fig. 1. Performance of the model on three datasets fine-tuned with different prompting strategies

TABLE IV
EXPERIMENTS ON THE HUCOPA VALIDATION SET

id 1 epoch 2 epoch 3 epoch 4 epoch 5 epoch 6 epoch 7 epoch 8 epoch 9 epoch 10 epoch
1 66.55 72.00 79.66 81.77 80.44 80.11 80.33 79.88 80.22 80.22
2 65.55 75.88 81.77 83.77 83.33 82.55 82.99 81.66 81.44 81.66
3 69.99 76.55 81.66 81.99 83.88 82.11 83.66 83.33 82.44 82.77
4 65.44 76.33 82.77 84.55 83.44 84.11 83.66 81.77 81.55 82.11
5 69.11 76.99 82.99 81.77 83.99 82.11 83.55 82.22 82.55 82.55
6 63.88 72.11 78.55 78.66 80.00 78.66 78.66 79.33 79.11 79.22
7 70.44 73.11 80.55 82.88 82.44 80.55 81.33 81.33 81.77 81.33
8 65.22 75.00 79.55 80.44 81.77 79.33 80.88 81.00 80.66 80.77
9 65.77 74.88 80.33 81.99 81.77 81.44 81.00 80.55 80.77 80.77
10 65.88 74.22 81.11 82.88 81.66 81.33 81.88 81.00 81.22 80.66
11 63.33 71.22 77.11 79.77 80.11 80.33 79.55 80.22 80.11 80.11
12 65.33 73.22 76.22 80.33 80.33 78.77 79.00 79.22 79.33 79.22
13 67.44 75.88 80.55 81.33 82.44 82.77 81.77 81.55 81.77 81.99
14 66.66 76.99 78.55 80.66 81.66 81.44 81.55 80.77 80.00 80.33
15 68.66 77.88 81.55 82.99 80.77 82.11 83.33 82.99 81.33 81.77
16 63.44 73.66 79.00 80.66 82.66 81.55 81.99 81.99 80.88 81.00
17 56.99 69.22 70.55 75.55 75.77 77.88 76.99 77.77 77.44 77.77
18 62.33 66.44 72.55 78.11 78.77 79.00 78.11 77.22 77.88 78.00
19 64.77 73.11 76.11 80.55 81.33 79.88 80.33 80.88 80.77 80.44
20 64.11 70.55 79.11 78.55 79.88 81.11 81.00 81.33 79.88 79.77
21 68.11 76.88 80.55 81.77 82.22 81.00 82.66 82.11 81.66 81.99
22 69.11 76.99 84.88 84.88 82.44 82.77 83.44 82.66 83.22 83.33
23 67.77 77.11 83.33 82.99 84.88 84.44 85.11 84.88 84.66 85.00
24 74.44 79.88 84.88 83.33 83.77 84.66 83.77 83.99 84.77 84.78

illuminative: any layperson can deduce that a program that
fails to find the right answer lacks sufficient ”intelligence”,
i.e., it falls short of human understanding. Lastly, the schemata
are demanding: anaphora resolution, while easy for a human,
continues to challenge cutting-edge algorithms. This can be
attributed to the fact that only world knowledge and reasoning
can aid in addressing these issues.

The GLUE and SuperGLUE benchmarks include the WNLI
dataset, which features Winograd schemata as sentence pair
classification. Here, authors form sentence pairs by substitut-
ing the ambiguous pronoun with each possible referent. The

task involves predicting whether the sentence, with the pro-
noun replaced, is implied by the original sentence. In addition,
a compact evaluation set composed of new examples taken
from fiction books is used alongside the publicly accessible
Winograd schemata. This dataset has been shown to be one
of GLUE’s most challenging, with ELECTRA first breaking
the 90% accuracy barrier in 2019 [32].

Regardless of the impressive accuracy rates that neural
models can now achieve on this dataset, commonsense reason-
ing remains a significant hurdle in AI (for a comprehensive
analysis, refer to [33]). Our experiment supports these findings

Improve Performance of Fine-tuning
Language Models with Prompting

67

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

 [1] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-Train,
Prompt, and Predict: A Systematic Survey of Prompting Methods in
Natural Language Processing,” ACM Comput. Surv., vol. 55, no. 9, jan
2023. [Online]. Available: doi: 10.1145/3560815

 [2] B. Lester, R. Al-Rfou, and N. Constant, “The Power of Scale for
Parameter-Efficient Prompt Tuning,” in Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing.
Online and Punta Cana, Dominican Republic: Association for
Computational Linguistics, Nov. 2021, pp. 3045–3059. [Online].
Available: https://aclanthology.org/2021.emnlp-main.243

 doi: 10.18653/v1/2021.emnlp-main.243
 [3] X. L. Li and P. Liang, “Prefix-Tuning: Optimizing Continuous Prompts

for Generation,” in Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1:
Long Papers). Online: Association for Computational Linguistics,
Aug. 2021, pp. 4582–4597. [Online]. Available: https://aclanthology.
org/2021.acl-long.353; doi: 10.18653/v1/2021.acl-long.353

 [4] L. Weidinger, J. Mellor, M. Rauh, C. Griffin, J. Uesato, P.-S. Huang,
M. Cheng, M. Glaese, B. Balle, A. Kasirzadeh, Z. Kenton, S. Brown,
W. Hawkins, T. Stepleton, C. Biles, A. Birhane, J. Haas, L. Rimell,
L. A. Hendricks, W. Isaac, S. Legassick, G. Irving, and I. Gabriel,
“Ethical and social risks of harm from Language Models,” 2021.

 [5] D. M. Nemeskey, “Introducing huBERT,” in XVII. Magyar
Számítógépes Nyelvészeti Konferencia. Szeged, Magyarország:
Szegedi Tudományegyetem, Informatikai Intézet, 2021, pp. 3–14.

 [6] Á. Feldmann, R. Hajdu, B. Indig, B. Sass, M. Makrai, I. Mittelholcz,
D. Halász, Z. Gy. Yang, and T. Váradi, “HILBERT, magyar nyelvű
BERT-large modell tanítása felhő környezetben,” in XVII. Magyar
Számítógépes Nyelvészeti Konferencia. Szeged, Magyarország:
Szegedi Tudományegyetem, Informatikai Intézet, 2021, pp. 29–36.

 [7] Z. Gy. Yang, R. Dodé, G. Ferenczi, E. Héja, K. Jelencsik-Mátyus, Á.
Kőrös, L. J. Laki, N. Ligeti-Nagy, N. Vadász, and T. Váradi, “Jönnek
a nagyok! BERT-Large, GPT-2 és GPT-3 nyelvmodellek magyar
nyelvre,” in XIX. Magyar Számítógépes Nyelvészeti Konferencia
(MSZNY 2023). Szeged, Hungary: Szegedi Tudományegyetem, Infor-
matikai Intézet, 2023, pp. 247–262.

 [8] N. Ligeti-Nagy, G. Ferenczi, E. Héja, K. Jelencsik-Mátyus, L. J.
Laki, N. Vadász, Z. Gy. Yang, and T. Váradi, “HuLU: magyar nyelvű
benchmark adatbázis kiépítése a neurális nyelvmodellek kiértékelése
céljából,” in XVIII. Magyar Számítógépes Nyelvészeti Konferencia.
Szeged: Szegedi Tudományegyetem, Informatikai Intézet, 2022, pp.
431–446.

 [9] N. Ligeti-Nagy, E. Héja, L. J. Laki, D. Takács, Z. Gy. Yang, and
T. Váradi, “Hát te mekkorát nőttél! – A HuLU első életéve új
adatbázisokkal és webszolgáltatással,” in XIX. Magyar Számítógépes
Nyelvészeti Konferencia. Szeged: JATEPress, 2023, pp. 217–230.

 [10] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. Bowman,
“GLUE: A Multi-Task Benchmark and Analysis Platform for Natural
Language Understanding,” in Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpreting Neural
Networks for NLP. Brussels, Belgium: Association for Computational
Linguistics, Nov. 2018, pp. 353–355. [Online]. Available:
https://aclanthology.org/W18-5446, doi: 10.18653/v1/W18-5446

 [11] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill,
O. Levy, and S. R. Bowman, SuperGLUE: A Stickier Benchmark for
General-Purpose Language Understanding Systems. Red Hook, NY,
USA: Curran Associates Inc., 2019.

 [12] M. Roemmele, C. Bejan, and A. Gordon, “Choice of Plausible Alterna-
tives: An Evaluation of Commonsense Causal Reasoning,” AAAI
Spring Symposium - Technical Report, 01 2011.

 [13] I. Dagan, O. Glickman, and B. Magnini, “The PASCAL Recognising
Textual Entailment Challenge,” in Machine Learning Challenges.
Evaluating Predictive Uncertainty, Visual Object Classification, and
Recognising Tectual Entailment, J. Quiñonero-Candela, I. Dagan, B.
Magnini, and F. d’Alché Buc, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 177–190.

References

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

as it emphasizes the significance of the environment where
models are fine-tuned and evaluated. This is one of the major
criticisms of the Winograd schemata (and other datasets used
for evaluating language model performance) highlighted in
[33].

As can be seen in Figure 1, we could only approximate the
90% accuracy with the mix setting, all other prompt structures
resulted in an accuracy around 65%. The cause of this may lie
in the instruction text itself: we narrow the task with this text,
aiding the model to focus on the entailment. The [CLS] token
also assists in setting the boundaries. These two elements –
the instruction text and the separator token – appear to be
sufficient for the model to pass this test.

Our findings also concur with the aforementioned results,
as we observe a substantial leap with the right configuration
(prior to ELECTRA’s 91.8%, scores on the WNLI dataset in
GLUE were hovering between 65-70%). In order to match up
with the English results, further enhancements are required.
This could be achieved by experimenting with various neural
models or by modifying the fine-tuning process and the
prompting environment.

V. CONCLUSION

In this paper, we investigated the effectiveness of differ-
ent prompting techniques for fine-tuning huBERT on three
datasets of HuLU. We experimented with several types of
prompts, including conjunction phrases, question sentences,
and instruct texts. Our results demonstrate that prompting can
significantly improve the performance of huBERT on these
datasets.

Overall, our findings suggest that prompt engineering is
a promising area of research for improving the performance
of language models on specific tasks. By providing targeted
prompts that guide the generation of language, we can achieve
better results on tasks such as text classification and natural
language inference.

In our experiments, we found that the best results were
obtained adding instruction text and separator text as prompts.
This suggests that combining different types of prompts can
be an effective strategy for improving the performance of fine-
tuning language models on specific tasks.

Our study has several limitations that should be addressed in
future research. For example, we only investigated a limited set
of prompting techniques, and there may be other approaches
that are even more effective. Additionally, our study only
focused on three datasets of HuLU, and it is unclear how well
our findings generalize to other datasets and languages.

In the future, we plan to conduct experiments by fine-
tuning huBERT using Parameter-Efficient Fine-tuning tech-
niques (such as Lora [34], Prompt tuning [35], etc.). Addition-
ally, we aim to expand our research to include large language
models.

In conclusion, our study highlights the potential of prompt-
ing techniques for fine-tuning language models on specific
tasks. Further research is needed to explore the effectiveness
of different prompting strategies, experiments with fuzzy or
voting methods [36] and to investigate the generalizability of
our findings to other datasets and languages.

REFERENCES

[1] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-Train,
Prompt, and Predict: A Systematic Survey of Prompting Methods in
Natural Language Processing,” ACM Comput. Surv., vol. 55, no. 9, jan
2023. [Online]. Available: https://doi.org/10.1145/3560815

[2] B. Lester, R. Al-Rfou, and N. Constant, “The Power of Scale
for Parameter-Efficient Prompt Tuning,” in Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing.
Online and Punta Cana, Dominican Republic: Association for
Computational Linguistics, Nov. 2021, pp. 3045–3059. [Online].
Available: https://aclanthology.org/2021.emnlp-main.243

[3] X. L. Li and P. Liang, “Prefix-Tuning: Optimizing Continuous Prompts
for Generation,” in Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long
Papers). Online: Association for Computational Linguistics, Aug. 2021,
pp. 4582–4597. [Online]. Available: https://aclanthology.org/2021.acl-
long.353

[4] L. Weidinger, J. Mellor, M. Rauh, C. Griffin, J. Uesato, P.-S. Huang,
M. Cheng, M. Glaese, B. Balle, A. Kasirzadeh, Z. Kenton, S. Brown,
W. Hawkins, T. Stepleton, C. Biles, A. Birhane, J. Haas, L. Rimell, L. A.
Hendricks, W. Isaac, S. Legassick, G. Irving, and I. Gabriel, “Ethical
and social risks of harm from Language Models,” 2021.

[5] D. M. Nemeskey, “Introducing huBERT,” in XVII. Magyar Számı́tógépes
Nyelvészeti Konferencia. Szeged, Magyarország: Szegedi Tu-
dományegyetem, Informatikai Intézet, 2021, pp. 3–14.

[6] Á. Feldmann, R. Hajdu, B. Indig, B. Sass, M. Makrai, I. Mittelholcz,
D. Halász, Z. Gy. Yang, and T. Váradi, “HILBERT, magyar nyelvű
BERT-large modell tanı́tása felhő környezetben,” in XVII. Magyar
Számı́tógépes Nyelvészeti Konferencia. Szeged, Magyarország: Szegedi
Tudományegyetem, Informatikai Intézet, 2021, pp. 29–36.

[7] Z. Gy. Yang, R. Dodé, G. Ferenczi, E. Héja, K. Jelencsik-Mátyus,
Á. Kőrós, L. J. Laki, N. Ligeti-Nagy, N. Vadász, and T. Váradi,
“Jönnek a nagyok! BERT-Large, GPT-2 és GPT-3 nyelvmodellek mag-
yar nyelvre,” in XIX. Magyar Számı́tógépes Nyelvészeti Konferencia
(MSZNY 2023). Szeged, Hungary: Szegedi Tudományegyetem, Infor-
matikai Intézet, 2023, pp. 247–262.

[8] N. Ligeti-Nagy, G. Ferenczi, E. Héja, K. Jelencsik-Mátyus, L. J. Laki,
N. Vadász, Z. r. Yang, and T. Váradi, “HuLU: magyar nyelvű benchmark
adatbázis kiépı́tése a neurális nyelvmodellek kiértékelése céljából,” in
XVIII. Magyar Számı́tógépes Nyelvészeti Konferencia. Szeged: Szegedi
Tudományegyetem, Informatikai Intézet, 2022, pp. 431–446.

[9] N. Ligeti-Nagy, E. Héja, L. J. Laki, D. Takács, Z. Gy. Yang, and
T. Váradi, “Hát te mekkorát nőttél! - A HuLU első életéve új
adatbázisokkal és webszolgáltatással,” in XIX. Magyar Számı́tógépes
Nyelvészeti Konferencia. Szeged: JATEPress, 2023, p. 217–230.

[10] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and
S. Bowman, “GLUE: A Multi-Task Benchmark and Analysis
Platform for Natural Language Understanding,” in Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting
Neural Networks for NLP. Brussels, Belgium: Association for
Computational Linguistics, Nov. 2018, pp. 353–355. [Online]. Available:
https://aclanthology.org/W18-5446

[11] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill,
O. Levy, and S. R. Bowman, SuperGLUE: A Stickier Benchmark for
General-Purpose Language Understanding Systems. Red Hook, NY,
USA: Curran Associates Inc., 2019.

[12] M. Roemmele, C. Bejan, and A. Gordon, “Choice of Plausible Alterna-
tives: An Evaluation of Commonsense Causal Reasoning,” AAAI Spring
Symposium - Technical Report, 01 2011.

[13] I. Dagan, O. Glickman, and B. Magnini, “The PASCAL Recognising
Textual Entailment Challenge,” in Machine Learning Challenges. Evalu-
ating Predictive Uncertainty, Visual Object Classification, and Recognis-
ing Tectual Entailment, J. Quiñonero-Candela, I. Dagan, B. Magnini, and
F. d’Alché Buc, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 177–190.

[14] R. Bar-Haim, I. Dagan, B. Dolan, L. Ferro, D. Giampiccolo, B. Magnini,
and I. Szpektor, “The Second PASCAL Recognising Textual Entailment
Challenge,” in Proceedings of the Second PASCAL Challenges Workshop
on Recognizing Textual Entailment, Venice, Italy, 2006, pp. 1–9.

[15] D. Giampiccolo, B. Magnini, I. Dagan, and B. Dolan, “The Third
PASCAL Recognizing Textual Entailment Challenge,” in Proceedings of
the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing,
ser. RTE ’07, 2007, p. 1–9.

https://doi.org/10.1145/3560815
https://aclanthology.org/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://aclanthology.org/2021.acl- long.353
https://aclanthology.org/2021.acl- long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://aclanthology.org/W18-5446
https://doi.org/10.18653/v1/W18-5446

Improve Performance of Fine-tuning
Language Models with Prompting

68

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

Zijian Győző Yang is research fellow at Hungarian Re-
search Centre for Linguistics. He obtained his PhD de-
gree in Human Language Technology with summa cum
laude in 2019. His research areas include large language
models, machine translation and evaluation, text sum-
marization, sentiment analysis and text classification.

Noémi Ligeti-Nagy completed her PhD in Computa-
tional Linguistics in 2021 and is currently a Research
Fellow at the Hungarian Research Centre for Linguis-
tics. Her academic pursuits revolve around the design
and development of language corpora, the benchmark-
ing of language processing systems, and the investiga-
tion and evaluation of neural language models.

 [14] R. Bar-Haim, I. Dagan, B. Dolan, L. Ferro, D. Giampiccolo, B.
Magnini, and I. Szpektor, “The Second PASCAL Recognising Textual
Entailment Challenge,” in Proceedings of the Second PASCAL
Challenges Workshop on Recognizing Textual Entailment, Venice,
Italy, 2006, pp. 1–9.

[15] D. Giampiccolo, B. Magnini, I. Dagan, and B. Dolan, “The Third
PASCAL Recognizing Textual Entailment Challenge,” in Proceedings
of the ACL-PASCAL Workshop on Textual Entailment and
Paraphrasing, ser. RTE ’07, 2007, pp. 1–9.

[16] L. Bentivogli, I. Dagan, H. T. Dang, D. Giampiccolo, and B. Magnini,
“The Fifth PASCAL Recognizing Textual Entailment Challenge,” in
Proceedings of the TAC Workshop, 2009.

[17] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng,
and C. Potts, “Recursive Deep Models for Semantic Compositionality
Over a Sentiment Treebank,” in Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Processing. Seattle,
Washington, USA: Association for Computational Linguistics, Oct.
2013, pp. 1631–1642. [Online]. Available: https://aclanthology.org/
D13-1170

[18] N. Vadász and N. Ligeti-Nagy, “Winograd schemata and other datasets
for anaphora resolution in hungarian,” Acta Linguistica Academica,
vol. 69, no. 4, 2022, in press. doi: 10.1556/2062.2022.00575

[19] H. J. Levesque, E. Davis, and L. Morgenstern, “The Winograd Schema
Challenge,” in Proceedings of the Thitteenth International Conference
on Principles of Knowledge Representation and Reasoning, ser.
KR’12. AAAI Press, 2012, pp. 552–561.

[20] M.-C. de Marneffe, M. Simons, and J. Tonhauser, “The
commitmentbank: Investigating projection in naturally occurring
discourse,” Proceedings of Sinn und Bedeutung, vol. 23, no. 2, pp.
107–124, Jul. 2019. [Online]. Available: https://ojs.ub.uni-konstanz.
de/sub/index.php/sub/article/view/601

[21] A. Warstadt, A. Singh, and S. R. Bowman, “Neural network
acceptability judgments,” arXiv preprint arXiv:1805.12471, 2018.
doi: 10.48550/arXiv.1805.12471

[22] Z. Gy. Yang and N. Ligeti-Nagy, “Building machine reading
comprehension model from scratch,” Annales Mathematicae et
Informaticae, pp. 1–17, 2023. [Online]. Available:

 doi: 10.33039/ami.2023.03.001
[23] S. Zhang, X. Liu, J. Liu, J. Gao, K. Duh, and B. V. Durme, “ReCoRD:

Bridging the Gap between Human and Machine Commonsense
Reading Comprehension,” 2018.

[24] Hungarian Research Centre for Linguistics, “Hungarian Choice of
Plausible Alternatives Corpus.” [Online]. Available: https://github.
com/nytud/HuCoPA

[25] H. R. C. for Linguistics, “Hungarian Recognizing Textual Entailment
dataset.” [Online]. Available: https://github.com/nytud/HuRTE

[26] H. R. C. for Linguistics, “Anaphora resolution datasets for Hungarian
as an inference task.” [Online]. Available: https://github.com/nytud/
HuWNLI

[27] N. Vadász and N. Ligeti-Nagy, “Winograd schemata and other
datasets for anaphora resolution in Hungarian,” Acta Linguistica
Academica, vol. 69, no. 4, pp. 564–580, 2022. [Online]. Available:
https://akjournals.com/view/journals/2062/69/4/article-p564.xml

 doi: 10.1556/2062.2022.00575

[28] Hugging Face, “Examples.” [Online]. Available: https://github.co
m/huggingface/transformers/tree/main/examples/pytorch

[29] H. R. C. for Linguistics, “Hungarian Language Understanding
Benchmark Kit.” [Online]. Available: https://hulu.nytud.hu

[30] OpenAI, “Chatgpt.” [Online]. Available: https://chat.openai.com
[31] A. Turing, “Computing Machinery and Intelligence,” Mind, vol. 59,

no. 236, pp. 433–460, 1950.
[32] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning, “ELECTRA: Pre-

training Text Encoders as Discriminators Rather Than Generators,”
in International Conference on Learning Representations, 2020.
[Online]. Available: https://openreview.net/forum?id=r1xMH1BtvB

[33] V. Kocijan, E. Davis, T. Lukasiewicz, G. Marcus, and L. Morgenstern,
“The Defeat of the Winograd Schema Challenge,” 2023.

 doi: 10.1016/j.artint.2023.103971
[34] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and

W. Chen, “LoRA: Low-Rank Adaptation of Large Language Models,”
in International Conference on Learning Representations, 2022.
[Online]. Available: https://openreview.net/forum?id=nZeVKeeFYf9

[35] X. Liu, K. Ji, Y. Fu, W. Tam, Z. Du, Z. Yang, and J. Tang, “P-Tuning:
Prompt Tuning Can Be Comparable to Fine-tuning Across Scales and
Tasks,” in Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers). Dublin,
Ireland: Association for Computational Linguistics, May 2022, pp.
61–68. [Online]. Available: https://aclanthology.org/2022.acl-short.8,
doi: 10.18653/v1/2022.acl-short.8

[36] T. Tajti, “New voting functions for neural network algorithms,”
Annales Mathematicae et Informaticae, pp. 229–242, 2020. [Online].
Available: doi: 10.33039/ami.2020.10.003

https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://doi.org/10.1556/2062.2022.00575
https://ojs.ub.uni-konstanz.de/sub/index.php/sub/article/view/601
https://ojs.ub.uni-konstanz.de/sub/index.php/sub/article/view/601
https://arxiv.org/abs/1805.12471
https://doi.org/10.48550/arXiv.1805.12471
https://doi.org/10.33039/ami.2023.03.001
https://github.com/nytud/HuCoPA
https://github.com/nytud/HuCoPA
https://github.com/nytud/HuRTE
https://github.com/nytud/HuWNLI
https://github.com/nytud/HuWNLI
https://akjournals.com/view/journals/2062/69/4/article-p564.xml
https://doi.org/10.1556/2062.2022.00575
https://github.com/huggingface/transformers/tree/main/examples/pytorch
https://github.com/huggingface/transformers/tree/main/examples/pytorch
https://hulu.nytud.hu
https://chat.openai.com
https://openreview.net/forum?id=r1xMH1BtvB
http://dx.doi.org/10.1016/j.artint.2023.10397
https://aclanthology.org/2022.acl-short.8
https://doi.org/10.18653/v1/2022.acl-short.8
https://doi.org/10.33039/ami.2020.10.003

Challenges in service discovery for microservices
deployed in a Kubernetes cluster – a case study

69

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2023 1

Challenges in service discovery for microservices
deployed in a Kubernetes cluster – a case study

Baasanjargal Erdenebat, Bayarjargal Bud, and Tamás Kozsik

Abstract—With Kubernetes emerging as one of the most
popular infrastructures in the cloud-native era, the utilization
of containerization and tools alongside Kubernetes is steadily
gaining traction. The main goal of this paper is to evaluate the
service discovery mechanisms and DNS management (CoreDNS)
of Kubernetes, and to present a general study of an experiment on
service discovery challenges. In large scale Kubernetes clusters,
running pods, services, requests, and workloads can be substan-
tial. The increased number of HTTP-requests often result in
resource utilization concerns, e.g., spikes of errors [24], [25]. This
paper investigates potential optimization strategies for enhancing
the performance and scalability of CoreDNS in Kubernetes. We
propose a solution to address the concerns related to CoreDNS
and provide a detailed explanation of how our implementation
enhances service discovery functionality. Experimental results
in a real-world case show that our solution for the CoreDNS
ensures consistency of the workload. Compared with the default
CoreDNS configuration, our customized approach achieves better
performance in terms of number of errors for requests, average
latency of DNS requests, and resource usage rate.

Index Terms—Microservice, container, service discovery,
CoreDNS, Kubernetes

I. INTRODUCTION

W ITH the continuous development of technology, soft-
ware systems become larger and more complex, and

the architecture of their code must adapt to these changes in
order to enable the handling of the increased complexity. The
application of a traditional, monolithic architecture is becom-
ing less attractive and less useful in many business scenarios.
In a monolithic architecture, any modification made to a
small feature necessitates the recompilation and redeployment
of the entire application, resulting in long iteration cycles,
which is clearly unfavorable. On the contrary, microservices
provide an approach to developing a single application as a
collection of small services. Each service operates in its own
process and communicates through a lightweight mechanism.
Transitioning from monolithic applications to microservices
requires a significant shift in software design, but it offers
numerous advantages, particularly when combined with the in-
troduction of containerization technologies. The microservice-
based application code is small, independent, easy to manage,
compile and deploy, and allows short development iteration
cycles [1], [2]. Due to the small volume of deployment

Baasanjargal Erdenebat and Tamás Kozsik are with Department of Program-
ming Languages and Compilers, ELTE Eötvös Loránd University, Budapest,
Hungary
e-mail: baasanjargal@inf.elte.hu, ORCID: 0000-0003-0471-7183,
e-mail: tamas.kozsik@elte.hu, ORCID: 0000-0003-4484-9172.

Bayarjargal Bud is with National University of Mongolia, e-mail:
bud.bayarjargal@gmail.com

packages, fast service start-up and resource recovery, and easy
to achieve flexible scaling, it can well meet application sce-
narios with high concurrency and large fluctuation in load [3].
The integration of containerization technology and the mi-
croservice architecture significantly enhance the performance
and efficiency of information systems [4], [5]. We leverage
microservice architecture and containerization technology to
develop business applications. It allows us to maintain frequent
software development and deployment cycles while ensuring
consistent and high-quality product delivery. Furthermore, the
usage of those technologies facilitates smooth adaptation to the
continuous integration and continuous development (CI/CD)
methodology and cloud native development [6], allowing for
agile adjustments to accommodate evolving business require-
ments.

In a real world industrial scenario, our team embarked on a
Spring Cloud-based DevOps platform project with the objec-
tive of gradually transitioning from a monolithic architecture
to a microservice-based one. To accomplish this, the entire
system needed to be migrated from hypervisor to container
virtualization, which allowed us to build a highly available
cluster. Over time, we have progressively transitioned our
services from a monolithic architecture to a Spring Cloud-
based one. In the environment, numerous microservices are
constantly being created and perished, while they are making
calls to each other. Therefore, a component that specifies
the location of a given microservice is needed. This compo-
nent is called Service Discovery. Spring Cloud implements
Service Discovery through Eureka [7]. When shifting from
VM-based microservice applications to containerized ones,
there is a need of using Eureka for service discovery due to
the communication between the two different infrastructures:
service discovery operates smoothly via Eureka on co-existing
infrastructures of VM and Kubernetes. However, it exhibits
performance limitations, particularly in the large-scale.

The contributions of this paper are the two-fold. First, we
introduce the idea of an easy-to-use dynamic service discovery
functionality during the migration from virtual machines to a
containerized cluster. Then we provide a detailed evaluation
of the service discovery process in container-based clusters.
We offer solutions and strategies for service discovery issues
and for ensuring smooth operation of Kubernetes clusters.

The rest of the paper is structured as follows. Section II
is a brief overview of the background knowledge on service
discovery, microservices and containerization technology. Sec-
tion III introduces the pre-experimental activities including the
methodology employed in our study. The detailed investiga-
tion on performance overhead is provided in Section IV. In

Baasanjargal Erdenebat and Tamás Kozsik are with Department of
Programming Languages and Compilers, ELTE Eötvös Loránd University,
Budapest, Hungary (e-mail: baasanjargal@inf.elte.hu, ORCID: 0000-0003-
0471-7183; tamas.kozsik@elte.hu, ORCID: 0000-0003-4484-9172.)

Bayarjargal Bud is with National University of Mongolia, (e-mail:
bud.bayarjargal@gmail.com)

Abstract—With Kubernetes emerging as one of the most popu-
lar infrastructures in the cloud-native era, the utilization of con-
tainerization and tools alongside Kubernetes is steadily gaining
traction. The main goal of this paper is to evaluate the service dis-
covery mechanisms and DNS management (CoreDNS) of Kuber-
netes, and to present a general study of an experiment on service
discovery challenges. In large scale Kubernetes clusters, running
pods, services, requests, and workloads can be substantial. The
increased number of HTTP-requests often result in resource
utilization concerns, e.g., spikes of errors [24], [25]. This paper
investigates potential optimization strategies for enhancing the
performance and scalability of CoreDNS in Kubernetes. We
propose a solution to address the concerns related to CoreDNS
and provide a detailed explanation of how our implementation
enhances service discovery functionality. Experimental results in
a real-world case show that our solution for the CoreDNS en-
sures consistency of the workload. Compared with the default
CoreDNS configuration, our customized approach achieves bet-
ter performance in terms of number of errors for requests, aver-
age latency of DNS requests, and resource usage rate.

Index Terms—Microservice, container, service discovery,
CoreDNS, Kubernetes

Challenges in service discovery for microservices
deployed in a Kubernetes cluster – a case study

Baasanjargal Erdenebat, Bayarjargal Bud, and Tamás Kozsik

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2023 1

Challenges in service discovery for microservices
deployed in a Kubernetes cluster – a case study

Baasanjargal Erdenebat, Bayarjargal Bud, and Tamás Kozsik

Abstract—With Kubernetes emerging as one of the most
popular infrastructures in the cloud-native era, the utilization
of containerization and tools alongside Kubernetes is steadily
gaining traction. The main goal of this paper is to evaluate the
service discovery mechanisms and DNS management (CoreDNS)
of Kubernetes, and to present a general study of an experiment on
service discovery challenges. In large scale Kubernetes clusters,
running pods, services, requests, and workloads can be substan-
tial. The increased number of HTTP-requests often result in
resource utilization concerns, e.g., spikes of errors [24], [25]. This
paper investigates potential optimization strategies for enhancing
the performance and scalability of CoreDNS in Kubernetes. We
propose a solution to address the concerns related to CoreDNS
and provide a detailed explanation of how our implementation
enhances service discovery functionality. Experimental results
in a real-world case show that our solution for the CoreDNS
ensures consistency of the workload. Compared with the default
CoreDNS configuration, our customized approach achieves better
performance in terms of number of errors for requests, average
latency of DNS requests, and resource usage rate.

Index Terms—Microservice, container, service discovery,
CoreDNS, Kubernetes

I. INTRODUCTION

W ITH the continuous development of technology, soft-
ware systems become larger and more complex, and

the architecture of their code must adapt to these changes in
order to enable the handling of the increased complexity. The
application of a traditional, monolithic architecture is becom-
ing less attractive and less useful in many business scenarios.
In a monolithic architecture, any modification made to a
small feature necessitates the recompilation and redeployment
of the entire application, resulting in long iteration cycles,
which is clearly unfavorable. On the contrary, microservices
provide an approach to developing a single application as a
collection of small services. Each service operates in its own
process and communicates through a lightweight mechanism.
Transitioning from monolithic applications to microservices
requires a significant shift in software design, but it offers
numerous advantages, particularly when combined with the in-
troduction of containerization technologies. The microservice-
based application code is small, independent, easy to manage,
compile and deploy, and allows short development iteration
cycles [1], [2]. Due to the small volume of deployment

Baasanjargal Erdenebat and Tamás Kozsik are with Department of Program-
ming Languages and Compilers, ELTE Eötvös Loránd University, Budapest,
Hungary
e-mail: baasanjargal@inf.elte.hu, ORCID: 0000-0003-0471-7183,
e-mail: tamas.kozsik@elte.hu, ORCID: 0000-0003-4484-9172.

Bayarjargal Bud is with National University of Mongolia, e-mail:
bud.bayarjargal@gmail.com

packages, fast service start-up and resource recovery, and easy
to achieve flexible scaling, it can well meet application sce-
narios with high concurrency and large fluctuation in load [3].
The integration of containerization technology and the mi-
croservice architecture significantly enhance the performance
and efficiency of information systems [4], [5]. We leverage
microservice architecture and containerization technology to
develop business applications. It allows us to maintain frequent
software development and deployment cycles while ensuring
consistent and high-quality product delivery. Furthermore, the
usage of those technologies facilitates smooth adaptation to the
continuous integration and continuous development (CI/CD)
methodology and cloud native development [6], allowing for
agile adjustments to accommodate evolving business require-
ments.

In a real world industrial scenario, our team embarked on a
Spring Cloud-based DevOps platform project with the objec-
tive of gradually transitioning from a monolithic architecture
to a microservice-based one. To accomplish this, the entire
system needed to be migrated from hypervisor to container
virtualization, which allowed us to build a highly available
cluster. Over time, we have progressively transitioned our
services from a monolithic architecture to a Spring Cloud-
based one. In the environment, numerous microservices are
constantly being created and perished, while they are making
calls to each other. Therefore, a component that specifies
the location of a given microservice is needed. This compo-
nent is called Service Discovery. Spring Cloud implements
Service Discovery through Eureka [7]. When shifting from
VM-based microservice applications to containerized ones,
there is a need of using Eureka for service discovery due to
the communication between the two different infrastructures:
service discovery operates smoothly via Eureka on co-existing
infrastructures of VM and Kubernetes. However, it exhibits
performance limitations, particularly in the large-scale.

The contributions of this paper are the two-fold. First, we
introduce the idea of an easy-to-use dynamic service discovery
functionality during the migration from virtual machines to a
containerized cluster. Then we provide a detailed evaluation
of the service discovery process in container-based clusters.
We offer solutions and strategies for service discovery issues
and for ensuring smooth operation of Kubernetes clusters.

The rest of the paper is structured as follows. Section II
is a brief overview of the background knowledge on service
discovery, microservices and containerization technology. Sec-
tion III introduces the pre-experimental activities including the
methodology employed in our study. The detailed investiga-
tion on performance overhead is provided in Section IV. In

DOI: 10.36244/ICJ.2023.5.11

mailto:baasanjargal%40inf.elte.hu?subject=
mailto:tamas.kozsik%40elte.hu?subject=
mailto:bud.bayarjargal%40gmail.com?subject=
https://doi.org/10.36244/ICJ.2023.5.11

Challenges in service discovery for microservices
deployed in a Kubernetes cluster – a case study

70

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2023 2

Section V, we present our measurement results. Section VI
addresses related work. Finally, conclusions are drawn in
Section VII.

II. BACKGROUND

A. Microservices and containerization tools

Quoting from "microservices.io" [8], microservices are an
architectural style that organizes an application into a set of
services characterized by the following qualities: (1) suffi-
ciently decoupled to ensure high maintainability and testa-
bility; (2) loosely coupled from the application glue logic
(e.g., orchestration, monitoring, etc.); (3) independently de-
ployable; (4) organized around single business capabilities.
Containerization technology plays a crucial role as the key
enabler for microservices. From an organizational standpoint,
the combination of microservices and containerization em-
powers the microservice architecture style to facilitate the
evolution of an organization’s technology and organizational
stack in harmony with its architectural structures [9], [10].
In the scope of this work, we focus on Docker as a con-
tainerization tool and Kubernetes for the container orches-
tration. Docker helps to provide a quick and lightweight
environment and allows us to build, deploy, run, update and
manage container—standardized, executable components that
combine application source code with the operating system
(OS) libraries and dependencies required to run that code in
any environment [11], [5]. On the other hand, Kubernetes is
one of the most popular orchestration platforms for automating
the deployment of, and managing, containerized workloads
and services, as well as for scaling containerized applications
across a cluster [12], [13].

B. Service discovery

Service Discovery is a design pattern which can enable
clients or API gateways to discover the network information,
such as the IP address and port, of microservices [14]. This
discovery process relies on a component known as the Ser-
vice Registry or Discovery Server. The Service Registry is
responsible for tracking all individual microservices within
the architecture and storing their IP addresses and ports in
its database. Whenever a service scales up or down, it sends a
message to the discovery service, which updates its database
accordingly. The microservices are registered and cancelled
through a service registry, with Netflix Eureka serving as an
example of such a registry [15], [16].

Fig. 1. Client discovery mechanism.

To cater to different business application scenarios, mi-
croservices utilize a registration discovery mechanism that
combines client discovery and server discovery [17]. The client
discovery mechanism can rely on Netflix Eureka technology,
where clients query a service registry (“service center”) to
retrieve a list of available service instances [15], [18] as shown
in Figure 1. Using a load balancing algorithm, the client
selects one of the available service instances and sends out the
request. The registration management and querying of service
instances are facilitated through REST API calls provided
by Eureka within the application. Eureka’s client operates in
self-registration mode, requiring it to handle service instance
registration, cancellation, and sending regular heartbeats.

III. MIGRATION OF MICROSERVICES FROM VMS TO
CONTAINERS

Two main initiatives were undertaken as part of this study
to address service discovery challenges. The first one involved
migrating microservices from a virtual machine (VM) based
environment to a container-based one. Our microservice sys-
tem utilizes Spring Cloud development and is deployed on
a Docker-based Kubernetes cluster. Over time, we gradually
separated services from a monolithic architecture to Spring
Cloud. Currently, we are successfully operating approximately
600 instances and 110 application services on DevOps in-
frastructure and self-hosted Kubernetes cluster. However, to
enable service discovery between the VM-based and the
container-based infrastructures, a solution was needed. Thus,
we designed and implemented a seamless migration process
for the microservices, with a primary focus on introducing
easy-to-use dynamic service discovery during the transition
period.

The second initiative involves leveraging Kubernetes’ native
service discovery capabilities after the completion of the mi-
gration to containerized microservices. The motivation behind
this initiative was that we encountered abnormal functionality
with Kubernetes DNS and service discovery, particularly in
scenarios involving numerous external name services and
pods. Therefore, we conducted an investigation to identify
the root cause of the problem, to evaluate CoreDNS, and to
develop a solution for these challenges.

Performing a migration from legacy system to microservice-
based architecture while introducing major architecture
changes must be seamless for the product teams and for the
end-users. During this study, we performed a gradual migra-
tion of front-end applications into containerized microservices
deployed within a Kubernetes cluster. However, some of the
remaining applications still operate on virtual machines. Until
all the applications were completely migrated to a container-
based microservice architecture, we need to find a solution to
enable service discovery between the Kubernetes cluster and
the VM(s). Therefore, we utilized Netflix Eureka as a key
component to underpin the service discovery pattern and to
provide client-side load balancing. The microservices are able
to register themselves with the Eureka server, which stores the
microservices’ access information, including their respective
ports and IP addresses [7].

Challenges in service discovery for microservices
deployed in a Kubernetes cluster – a case study

71

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2023 3

Fig. 2. Service discovery between Kubernetes cluster and VM(s) through
Eureka.

For our case, when a microservice running in the Kubernetes
cluster needs to invoke another microservice located on a
VM, communication completely goes out of the Kubernetes
cluster, and reaches out to the Eureka server to discover the
location of the called microservice. Then it returns back to
the Kubernetes cluster with the desired data as shown in
Figure 2. Even when container-based microservices require
communication with one another, they rely on Eureka since it
is the primary service discovery mechanism within the entire
system for now. This approach is not quite efficient from a
performance perspective, particularly in large-scale clusters.
By transitioning to a container-based architecture, we are able
to eliminate certain components from the legacy infrastructure.
Once the microservices are fully containerized and deployed in
the Kubernetes cluster, we can remove Eureka. This not only
enhances performance, but also facilitates a cloud-native de-
ployment. Kubernetes itself can handle both service discovery
and load balancing, enabling a more streamlined and efficient
approach.

We have identified the necessary steps to smoothly decom-
mission the use of Netflix Eureka during the migration process,
with the aim of achieving zero downtime, resolving traffic
issues, minimizing effort, and reducing risks and impacts. Our
goal was to ensure that microservices should communicate
with each other using both Netflix Eureka and Kubernetes
service discovery in a seamless manner during the transition
phase, simply by switching a “discovery flag”. We conducted
tests on API endpoints before and after switching the Eureka
client flag to verify that the same code base functions properly
in both scenarios. The following changes were implemented
during the migration process.

A. Code-based changes

• Changes in the pom.xml [19] file regarding the depen-
dencies.

• Changes in the main Spring Boot application.java
file.

• Changes in the bootstrap.yaml [20] file of Spring
Boot.

B. Adjustments of the cluster configurations

• Modifications in the config-server database – When utiliz-
ing Kubernetes discovery, the microservice configuration
is automatically updated to include the “Kubernetes”
active profile. It is important to note that the default
configuration profile is labeled as “development”, which
differs from the “Kubernetes” profile. To ensure the relia-
bility of microservices, a new profile named “Kubernetes”
must be added to the config-server database.

• Add role [21] and role-binding [22] to service ac-
count [23] in the Kubernetes cluster – In order for Spring
Cloud Kubernetes to retrieve a list of addresses for pods
belonging to a specific service, it requires access to the
Kubernetes API. To ensure this access, deployment or pod
must be assigned to the relevant service accounts, and it
is essential to verify that they possess the correct roles.

• Changes in the global configuration file – This modifica-
tion allows for the convenient switching of the discovery
flag between Eureka and Discovery-client, or vice versa.

By implementing these necessary changes in the code base
and the configurations, a safe and straightforward transition
from Netflix Eureka to native Kubernetes service discovery
becomes achievable. After moving dozens of microservices,
our implementation proved to be effective and significantly
alleviated the burden of the migration process. The focus on
simplicity has played a crucial role in enabling a smoother
transition while saving effort and time.

IV. PERFORMANCE IMPROVEMENTS

In large scale Kubernetes clusters, the total number of
running pods, services, requests, and workloads can be high,
and the increased number of HTTP-requests often result in
resource utilization concerns, e.g., spikes of errors [24], [25].
The memory usage of Kubernetes DNS is predominantly
affected by the number of pods and services in the cluster [26],
[27]. Other factors include the size of the filled DNS an-
swer cache, and the rate of queries received per CoreDNS
instance [26].

Upon encountering resource consumption issues and a spike
of errors in HTTP-requests, we started to troubleshoot the core
pain points, and to solve the issues by fine-tuning the config-
uration of CoreDNS [24]. Our initial idea was to increase the
number of replicas for the application to assess whether it
would help enhance performance and mitigate errors. As we
delved deeper into the issue with the application developers,
we discovered that the majority of failures could be attributed
to DNS resolution. This discovery led us to shift our focus
towards improving the performance of DNS resolution in
Kubernetes.

We have carried out a stress test on service discovery to
identify bottlenecks. For our experiment, we used a cluster
with one master and 10 worker nodes, which were set up with
the default settings of Kubernetes. We executed Java-based

Challenges in service discovery for microservices
deployed in a Kubernetes cluster – a case study

72

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2023 4

TABLE I
PERFORMANCE BEFORE OPTIMIZATION

Number of pods
& services

Max memory
(MB)

Max CPU
(cores)

Average response
time in seconds

Network load:
Receive (MB/s)

Network load:
Transmit (MB/s)

0 19 0.0001 0.0008 0.0031 0.0047
250 776 2.74 0.67 3.7 6.37

1054 8914 5.27 4.02 8.10 13.98
2000 16664 9.14 8.19 11.25 18.36

front-end applications and microservices as Kubernetes pods
and Kubernetes services on that cluster. The figures presented
in Table I are based on data collected from the tests using the
following setup.

• Master: n1-standard-1 (16 vCPU, 32 GB memory)
• Nodes: n1-standard-2 (32 vCPUs, 125 GB memory)
• Networking: calico-3.19.1
• Kubernetes Version: 1.21.3
• CoreDNS Version: 1.7.0

As shown in Table I, resource consumption and network
load drastically increase when the total number of services
and pods are raised. We need to emphasize that here the type
of most of the services was externalName [28], which
was one of the reasons of the phenomena that when the total
number of services and pods were beyond 1054, the system
consumed high amount of resources such as around 16 GB
of memory and 9 CPU cores. The average response time for
2000 pods/services was around 8.19 seconds, which resulted
in high latency and high error rate for HTTP-requests.

The CoreDNS function with default configuration occasion-
ally crashed when running 500 external services and pods in
the Kubernetes cluster. After this incident, we adjusted the
memory resource “request/limit” in the CoreDNS deployment
up to 8 GB from 170 MB, and increased the total number of
instances to four. This high amount of resource consumption
indicates that the current implementation may exhibit abnor-
mal behavior, which can lead to malfunctions and failures of
the CoreDNS.

According to our experiences, it is insufficient to merely
add extra CoreDNS instances or configure Horizontal Pod
Autoscaler (HPA) for the cluster based on number of requests,
resource consumption, and number of workloads running on
the cluster to address the performance and stability problem ef-
fectively, especially for large-scale clusters in which numerous
projects and environments are being developed simultaneously.
Expanding resource utilization continuously in response to
increased requests is fruitless, even if the cluster possesses
sufficient resources. Therefore, an accurate and appropriate
solution is necessary to address these concerns. As we started
to investigate more into how the application is making requests
to CoreDNS, and troubleshooting the DNS resolution and
cluster configurations, we observed most of the outbound
requests happening through the application to an external API
which leads a high spike of errors. Also, we found out several
obstacles that hindered the smooth functioning of the system,
including the lack of a logical and well-defined DNS search

flow, and misconfigured Kubernetes service objects. These
matters had a substantial impact on CoreDNS, leading to
failures and excessive load that caused such high resource
consumption and latency issues.

Therefore, we developed a dedicated solution at the cluster
level, with which organizations can mitigate the previously
mentioned service discovery issues and ensure smooth func-
tioning of the Kubernetes clusters.

A. Reconfiguring service object

In our scenario, pods/instances frequently perform external
lookups through the externalName service object in Ku-
bernetes. We discovered that issues stemmed from unnecessary
port definitions in the externalName service. However,
rectifying this required code modifications on the microservice
side to create the externalName service without any port
definition. As a solution, we made updates to the source code,
incorporating the Fully Qualified Domain Name (FQDN) of
the client service. This approach prevents invalid DNS lookups
resulting from search domains. For example, if the client pod
needs to access rate-service, the domain name can be specified
as www.rate-service.com. To ensure the effectiveness of these
changes, comprehensive end-to-end tests were conducted in
the non-production environment.

B. Enabling local DNS Cache

In addition, we implemented a Node Level DNS Cache to
enhance the stability and performance of service discovery.
This involved optimizing DNS resolution, improving latency,
and reducing the burden of CoreDNS. With the current DNS
architecture, it is possible that pods with the highest DNS
QPS have to reach out to a different node, if there is no
local CoreDNS instance [29]. To address this, we deployed
local DNS Caching agents on nodes as a Daemonset, which
significantly improved the performance of Cluster DNS. It
works as a CoreDNS caching agent and pods will reach out to
the agent running on the same node. Thereby it helps to avoid
connection tracking and iptables DNAT rules. When the local
caching agent encounters cache misses for cluster hostnames,
it queries the core-dns service for resolution.

C. Defining search sequence

During our in-depth investigation into how the application
sends requests to CoreDNS, we discovered that a significant
portion of outbound requests were directed towards an external

Challenges in service discovery for microservices
deployed in a Kubernetes cluster – a case study

73

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2023 5

API. This led to domain name resolution errors occurring
within the cluster. To resolve this issue, we took the neces-
sary steps to optimize the resolv.conf file of the application
deployment pod.

nameserver 10.10.10.151
search local-namespace.svc.cluster.local \

global-available.svc.cluster.local \
svc.cluster.local cluster.local \
head-zones.local

Fig. 3. Defined DNS Search sequence.

We specify the domain name that a client pod needs to
access based on the rules as shown in Figure 3. These rules can
help minimize the number of attempts for resolving the domain
name, and make the DNS resolution service more efficient.
When the DNS resolver sends a query to the CoreDNS
server, it tries to search the domain considering the search
path. If the client pod needs to access a service in the same
namespace, the initial search attempt must always be inside
a local environment, then the second attempt, in this case,
will search in the next specified environment (global available
environment). If the domain remains unresolved, the search
process proceeds to the current cluster level. If the domain
is still not resolved at this stage, the search is expanded to
encompass the entire infrastructure of the organization.

If we are looking for a domain frontapp.io, the search
would make the queries which are presented in Figure 4, and
it receives a successful response in the last query.

Fig. 4. DNS query for lookup.

Due to the excessive number of external lookups, an ap-
plication may receive numerous NXDomain responses for
DNS searches. To optimize this, we customized dnsConfig in
the Deployment object of the container, which will change
resolve.conf accordingly on pods. The search is being
performed only for an external domain. This reduces the
number of queries to DNS servers, and helps mitigate spike
errors for the application.

D. Ensuring availability – Optimize resource allocation
During time periods of high DNS query volume and with

numerous services/pods in the cluster, CoreDNS tends to
consume additional memory and CPU resources. Therefore,
the default memory limit can lead to out of memory (OOM)
errors. As a result, CoreDNS pods undergo repetitive restart
attempts but fail to start successfully. To address this, we fine-
tuned CoreDNS and adjusted the resource requirements within
the cluster. Specifically, we modified the default values for
memory resource "requests and limits" from 170MB to 1GB,
and for CPU from 1 milli-core to 500 milli-cores, based on
the cluster’s status.

E. Enabling scalibility – Auto-scale the number of pods -
Horizontal Pod Autoscaler

We have implemented the Horizontal Pod Autoscaler (HPA)
to dynamically adjust the number of CoreDNS pods. Currently,
the cluster is provisioned with five CoreDNS pods. In the event
of increased resource utilization leading to overload, we have
incorporated a backup configuration within the autoscaler.
The HPA is configured with the policy settings illustrated in
Figure 5, enabling it to increase the number of CoreDNS pods
based on CPU utilization.

Fig. 5. HPA configuration based on CPU usage.

V. RESULTS

The combination of the above-mentioned changes and tun-
ing solutions has significantly addressed most of the previously
experienced issues, and provided a more optimal resource
consumption, minimized the blast radius of CoreDNS crashes,
mitigated DNS errors, timeouts, and latency. After the ad-
justments, the resource utilization of CoreDNS has drastically
dropped into a very low amount, as demonstrated in Table II.
Even when the total pod and service count reached 2000
(and above), it only consumed 524 MB of memory and 0.2
cores of CPU, which is a remarkable improvement compared
to the original state. In the initial measurement data (shown
in Table I) we could observe very high latency – around 8
seconds at peak load with 2000 pods/services.

With the new implementation, the average response time
has been reduced to less than 2 milliseconds, falling within an
acceptable range. This improvement has also helped us min-
imize spike errors in HTTP-requests. The new measurement
proves that the original implementation was functioning in an
abnormal way due to design and configuration flaws, resulting
in the malfunction and failures of CoreDNS.

VI. RELATED WORK

The solution for the increased load and errors of service
discovery in Kubernetes requires a multi-faceted approach that
addresses both scalability and reliability challenges. To miti-
gate the issues and ensure smooth operation of the execution
environment, a number of techniques can be employed.

Challenges in service discovery for microservices
deployed in a Kubernetes cluster – a case study

74

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2023 6

TABLE II
MEASUREMENT DATA AFTER THE ADJUSTMENTS.

Number of pods
& services

Max Memory
(MB)

Max CPU
(core)

Average Response
time in seconds

Network load:
Receive (MB/s)

Network load:
Transmit (MB/s)

0 19 0.0001 0.00071 0.0019 0.0025
250 76.480 0.096 0.00104 0.86 0.72

1054 280.72 0.155 0.00125 1.42 1.26
2000 524.09 0.203 0.00172 1.8 1.45

Nguyen et al. [30] proposes the horizontal scaling of the
containers using Kubernetes’ built-in autoscaling capabilities;
in this way resources can be dynamically allocated based
on demand, ensuring that DNS pods can adeptly manage
surges in traffic and efficiently distribute the workload. We
also applied horizontal scaling, but the technique turned out
to be insufficient to solve the problems on its own, therefore
we had to investigate other solutions as well.

Zhang Wei-guo et al. [31] emphasise that to prevent resource
exhaustion and reduce the occurrence of errors or crashes, it is
essential to optimize the allocation of resources for DNS pods,
including setting appropriate CPU and memory limits. By
ensuring accurate resource provisioning, a service discovery
pod can gain the necessary capacities to handle the workload
efficiently. This approach was still insufficient in our case,
thereby we applied it with additional techniques.

Nguyen and Kim [32] argue that implementing a robust
load balancing mechanism, either within Kubernetes or by
integrating with external load balancers, enables the even
distribution of DNS requests across multiple DNS instances.
Load balancing helps prevent bottlenecks and ensures high
availability. After introducing the changes to our cluster con-
figuration and service discovery, the use of a special load
balancer was not necessary. However, it might become so in
the future, when the number of system components grow even
higher.

Almaraz-Rivera [33] underlines the importance of establish-
ing comprehensive monitoring and alerting systems to track
containers’ performance, latency, error rates, and resource
utilization. Proactive monitoring enables the early detection
of potential issues and allows for timely remediation. In align
with this approach, we introduced Prometheus and Grafana as
monitoring and alerting tools for our Docker-based Kubernetes
infrastructure.

Horaleket et al. [34] point out that enabling detailed logging
for containers and leveraging logging aggregation solutions
can aid in troubleshooting errors and performance issues.
Analyzing logs can provide valuable insights into the root
causes of problems and guide further optimizations. This
technique was a key enabler in our methodology as well. The
execution environment and the applications referred to in this
paper employ Elasticsearch and Kibana for real-time search,
analysis, visualization, and management of massive datasets.

The combination of these techniques can help overcome the
challenges related with increased load and errors in CoreDNS
within Kubernetes, allowing for the stable and effective oper-

ation of DNS resolution. However, they may not be adequate,
or sufficient, to handle the arising problems in a variety
of scenarios. In our case, the aforementioned approaches
were still unsatisfactory to fully address the service discovery
challenges. Consequently, we investigated alternative technical
and engineering solutions. In this paper, we presented an in-
depth explanation of our strategy to tackling the experienced
difficulties.

VII. CONCLUSION

As containerization technologies become intensively used,
certain challenges and problems arise. This paper proposed
a technique to gradually migrate virtual machine based mi-
croservices to containerized ones, and solved an issue (which
was discovered in a large-scale migration process) in the name
service component of a popular cluster management solution.

We introduced a technique to help developers transition
from Netflix Eureka based service discovery to a more light-
weight native Kubernetes service discovery. This technique is
useful when an application is gradually refactored from VM-
based to Docker-based microservices, temporarily containing
both kinds of components.

We discovered an issue with the default configuration of
CoreDNS, the name service of Kubernetes, which causes
performance degradation and service failures for high loads.
We propose modifications which result improvements in the
range of 1–2 orders of magnitude, and drastically increases
the stability of CoreDNS.

ACKNOWLEDGMENT

We would like to acknowledge and thank the company and
company representatives for their contributions and involve-
ment in the study.

REFERENCES

[1] Blinowski, G., Ojdowska, A. & Przybylek, A. Monolithic vs. Microser-
vice Architecture: A Performance and Scalability Evaluation. IEEE
Access. 10 pp. 1-1 (2022,1)

[2] Thones, J. Microservices. IEEE Software. 32 pp. 116-116 (2015,1) DOI:
10.1109/MS.2015.11

[3] Qian, L., Chen, H., Yu, J., Zhu, G., Zhu, J., Ren, C., Mei, Z., Pang,
H., Xu, M. & Wang, L. Research on Micro Service Architecture of
Power Information System Based on Docker Container. IOP Conference
Series: Earth And Environmental Science. 440, 032147 (2020,2), DOI:
10.1088/1755-1315/440/3/032147

[4] Shifeng, Z. & Shanliang, P. Application of Docker technology in
micro-service. Electronic Technology And Software Engineerings. 4, 164
(2019)

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2023 6

TABLE II
MEASUREMENT DATA AFTER THE ADJUSTMENTS.

Number of pods
& services

Max Memory
(MB)

Max CPU
(core)

Average Response
time in seconds

Network load:
Receive (MB/s)

Network load:
Transmit (MB/s)

0 19 0.0001 0.00071 0.0019 0.0025
250 76.480 0.096 0.00104 0.86 0.72

1054 280.72 0.155 0.00125 1.42 1.26
2000 524.09 0.203 0.00172 1.8 1.45

Nguyen et al. [30] proposes the horizontal scaling of the
containers using Kubernetes’ built-in autoscaling capabilities;
in this way resources can be dynamically allocated based
on demand, ensuring that DNS pods can adeptly manage
surges in traffic and efficiently distribute the workload. We
also applied horizontal scaling, but the technique turned out
to be insufficient to solve the problems on its own, therefore
we had to investigate other solutions as well.

Zhang Wei-guo et al. [31] emphasise that to prevent resource
exhaustion and reduce the occurrence of errors or crashes, it is
essential to optimize the allocation of resources for DNS pods,
including setting appropriate CPU and memory limits. By
ensuring accurate resource provisioning, a service discovery
pod can gain the necessary capacities to handle the workload
efficiently. This approach was still insufficient in our case,
thereby we applied it with additional techniques.

Nguyen and Kim [32] argue that implementing a robust
load balancing mechanism, either within Kubernetes or by
integrating with external load balancers, enables the even
distribution of DNS requests across multiple DNS instances.
Load balancing helps prevent bottlenecks and ensures high
availability. After introducing the changes to our cluster con-
figuration and service discovery, the use of a special load
balancer was not necessary. However, it might become so in
the future, when the number of system components grow even
higher.

Almaraz-Rivera [33] underlines the importance of establish-
ing comprehensive monitoring and alerting systems to track
containers’ performance, latency, error rates, and resource
utilization. Proactive monitoring enables the early detection
of potential issues and allows for timely remediation. In align
with this approach, we introduced Prometheus and Grafana as
monitoring and alerting tools for our Docker-based Kubernetes
infrastructure.

Horaleket et al. [34] point out that enabling detailed logging
for containers and leveraging logging aggregation solutions
can aid in troubleshooting errors and performance issues.
Analyzing logs can provide valuable insights into the root
causes of problems and guide further optimizations. This
technique was a key enabler in our methodology as well. The
execution environment and the applications referred to in this
paper employ Elasticsearch and Kibana for real-time search,
analysis, visualization, and management of massive datasets.

The combination of these techniques can help overcome the
challenges related with increased load and errors in CoreDNS
within Kubernetes, allowing for the stable and effective oper-

ation of DNS resolution. However, they may not be adequate,
or sufficient, to handle the arising problems in a variety
of scenarios. In our case, the aforementioned approaches
were still unsatisfactory to fully address the service discovery
challenges. Consequently, we investigated alternative technical
and engineering solutions. In this paper, we presented an in-
depth explanation of our strategy to tackling the experienced
difficulties.

VII. CONCLUSION

As containerization technologies become intensively used,
certain challenges and problems arise. This paper proposed
a technique to gradually migrate virtual machine based mi-
croservices to containerized ones, and solved an issue (which
was discovered in a large-scale migration process) in the name
service component of a popular cluster management solution.

We introduced a technique to help developers transition
from Netflix Eureka based service discovery to a more light-
weight native Kubernetes service discovery. This technique is
useful when an application is gradually refactored from VM-
based to Docker-based microservices, temporarily containing
both kinds of components.

We discovered an issue with the default configuration of
CoreDNS, the name service of Kubernetes, which causes
performance degradation and service failures for high loads.
We propose modifications which result improvements in the
range of 1–2 orders of magnitude, and drastically increases
the stability of CoreDNS.

ACKNOWLEDGMENT

We would like to acknowledge and thank the company and
company representatives for their contributions and involve-
ment in the study.

REFERENCES

[1] Blinowski, G., Ojdowska, A. & Przybylek, A. Monolithic vs. Microser-
vice Architecture: A Performance and Scalability Evaluation. IEEE
Access. 10 pp. 1-1 (2022,1)

[2] Thones, J. Microservices. IEEE Software. 32 pp. 116-116 (2015,1) DOI:
10.1109/MS.2015.11

[3] Qian, L., Chen, H., Yu, J., Zhu, G., Zhu, J., Ren, C., Mei, Z., Pang,
H., Xu, M. & Wang, L. Research on Micro Service Architecture of
Power Information System Based on Docker Container. IOP Conference
Series: Earth And Environmental Science. 440, 032147 (2020,2), DOI:
10.1088/1755-1315/440/3/032147

[4] Shifeng, Z. & Shanliang, P. Application of Docker technology in
micro-service. Electronic Technology And Software Engineerings. 4, 164
(2019)

 [1] Blinowski, G., Ojdowska, A. & Przybylek, A. Monolithic vs.
Microservice Architecture: A Performance and Scalability Evaluation.
IEEE Access. 10 pp. 1–1 (2022,1)

 [2] Thones, J. Microservices. IEEE Software. 32 pp. 116–116 (2015,1)
doi: 10.1109/MS.2015.11

 [3] Qian, L., Chen, H., Yu, J., Zhu, G., Zhu, J., Ren, C., Mei, Z., Pang, H.,
Xu, M. & Wang, L. Research on Micro Service Architecture of Power
Information System Based on Docker Container. IOP Conference
Series: Earth And Environmental Science. 440, 032147 (2020,2),
doi: 10.1088/1755-1315/440/3/032147

 [4] Shifeng, Z. & Shanliang, P. Application of Docker technology in
micro-service. Electronic Technology And Software Engineerings. 4,
164 (2019)

References

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2023 6

TABLE II
MEASUREMENT DATA AFTER THE ADJUSTMENTS.

Number of pods
& services

Max Memory
(MB)

Max CPU
(core)

Average Response
time in seconds

Network load:
Receive (MB/s)

Network load:
Transmit (MB/s)

0 19 0.0001 0.00071 0.0019 0.0025
250 76.480 0.096 0.00104 0.86 0.72

1054 280.72 0.155 0.00125 1.42 1.26
2000 524.09 0.203 0.00172 1.8 1.45

Nguyen et al. [30] proposes the horizontal scaling of the
containers using Kubernetes’ built-in autoscaling capabilities;
in this way resources can be dynamically allocated based
on demand, ensuring that DNS pods can adeptly manage
surges in traffic and efficiently distribute the workload. We
also applied horizontal scaling, but the technique turned out
to be insufficient to solve the problems on its own, therefore
we had to investigate other solutions as well.

Zhang Wei-guo et al. [31] emphasise that to prevent resource
exhaustion and reduce the occurrence of errors or crashes, it is
essential to optimize the allocation of resources for DNS pods,
including setting appropriate CPU and memory limits. By
ensuring accurate resource provisioning, a service discovery
pod can gain the necessary capacities to handle the workload
efficiently. This approach was still insufficient in our case,
thereby we applied it with additional techniques.

Nguyen and Kim [32] argue that implementing a robust
load balancing mechanism, either within Kubernetes or by
integrating with external load balancers, enables the even
distribution of DNS requests across multiple DNS instances.
Load balancing helps prevent bottlenecks and ensures high
availability. After introducing the changes to our cluster con-
figuration and service discovery, the use of a special load
balancer was not necessary. However, it might become so in
the future, when the number of system components grow even
higher.

Almaraz-Rivera [33] underlines the importance of establish-
ing comprehensive monitoring and alerting systems to track
containers’ performance, latency, error rates, and resource
utilization. Proactive monitoring enables the early detection
of potential issues and allows for timely remediation. In align
with this approach, we introduced Prometheus and Grafana as
monitoring and alerting tools for our Docker-based Kubernetes
infrastructure.

Horaleket et al. [34] point out that enabling detailed logging
for containers and leveraging logging aggregation solutions
can aid in troubleshooting errors and performance issues.
Analyzing logs can provide valuable insights into the root
causes of problems and guide further optimizations. This
technique was a key enabler in our methodology as well. The
execution environment and the applications referred to in this
paper employ Elasticsearch and Kibana for real-time search,
analysis, visualization, and management of massive datasets.

The combination of these techniques can help overcome the
challenges related with increased load and errors in CoreDNS
within Kubernetes, allowing for the stable and effective oper-

ation of DNS resolution. However, they may not be adequate,
or sufficient, to handle the arising problems in a variety
of scenarios. In our case, the aforementioned approaches
were still unsatisfactory to fully address the service discovery
challenges. Consequently, we investigated alternative technical
and engineering solutions. In this paper, we presented an in-
depth explanation of our strategy to tackling the experienced
difficulties.

VII. CONCLUSION

As containerization technologies become intensively used,
certain challenges and problems arise. This paper proposed
a technique to gradually migrate virtual machine based mi-
croservices to containerized ones, and solved an issue (which
was discovered in a large-scale migration process) in the name
service component of a popular cluster management solution.

We introduced a technique to help developers transition
from Netflix Eureka based service discovery to a more light-
weight native Kubernetes service discovery. This technique is
useful when an application is gradually refactored from VM-
based to Docker-based microservices, temporarily containing
both kinds of components.

We discovered an issue with the default configuration of
CoreDNS, the name service of Kubernetes, which causes
performance degradation and service failures for high loads.
We propose modifications which result improvements in the
range of 1–2 orders of magnitude, and drastically increases
the stability of CoreDNS.

ACKNOWLEDGMENT

We would like to acknowledge and thank the company and
company representatives for their contributions and involve-
ment in the study.

REFERENCES

[1] Blinowski, G., Ojdowska, A. & Przybylek, A. Monolithic vs. Microser-
vice Architecture: A Performance and Scalability Evaluation. IEEE
Access. 10 pp. 1-1 (2022,1)

[2] Thones, J. Microservices. IEEE Software. 32 pp. 116-116 (2015,1) DOI:
10.1109/MS.2015.11

[3] Qian, L., Chen, H., Yu, J., Zhu, G., Zhu, J., Ren, C., Mei, Z., Pang,
H., Xu, M. & Wang, L. Research on Micro Service Architecture of
Power Information System Based on Docker Container. IOP Conference
Series: Earth And Environmental Science. 440, 032147 (2020,2), DOI:
10.1088/1755-1315/440/3/032147

[4] Shifeng, Z. & Shanliang, P. Application of Docker technology in
micro-service. Electronic Technology And Software Engineerings. 4, 164
(2019)

https://doi.org/10.1109/MS.2015.11
https://doi.org/10.1088/1755-1315/440/3/032147

Challenges in service discovery for microservices
deployed in a Kubernetes cluster – a case study

75

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

 [5] Merkel, D. Docker: lightweight linux containers for consistent
development and deployment. Linux Journal., 2 (2014)

 [6] Ákos, L., Edina, L., Attila, H., József, V., and László, B., "Closed-loop
Orchestration for Cloud-native Mobile IPv6", Infocommunications
Journal, Vol. XV, No 1, March 2023, pp. 44–54.,

 doi: 10.36244/ICJ.2023.1.5
 [7] Macero, M. Learn Microservices with Spring Boot: A Practical

Approach to RESTful Services using RabbitMQ, Eureka, Ribbon,
Zuul and Cucumber. Learn Microservices With Spring Boot, 1st ed.
Berkeley, CA:Apress, 2017, doi: 10.1007/978-1-4842-3165-4

 [8] Microservices: What are microservices, Available online: https://
microservices.io/ (Accessed: 2023)

 [9] Li, Z., Kihl, M., Lu, Q. & Andersson, J. Performance overhead
comparison between hypervisor and container based virtualization.
In Proceedings Of The 2017 IEEE 31st International Conference On
Advanced Information Networking And Applications (AINA). pp. 955–
962, 2017, doi: 10.1145/1342250.1342261

 [10] Germar, S., Paul, P., Matthias, F., Dirk, R., Feryel, Z., and Jerker, D.,
"Micro Service based Sensor Integration Efficiency and Feasibility in
the Semiconductor Industry", Infocommunications Journal, Vol. XIV,
No 3, September 2022, pp. 79–85., doi: 10.36244/ICJ.2022.3.10

 [11] IBM: Docker, Available online: https://www.ibm.com/topics/docker
(Accessed: 2023)

 [12] The Kubernetes Authors. Available online: https://kubernetes.io/
(Accessed: 2023)

 [13] Brewer, E. Kubernetes and the path to cloud native. SoCC ’15:
Proceedings of the Sixth ACM Symposium on Cloud Computing
(2015,8), doi: 10.1145/2806777.2809955

 [14] Ranjan R, W., A, L. & A, Q. Peer-to-peer cloud provisioning: Service
discovery and load-balancing. Cloud Computing. pp. 195–217, 2010.

 [15] Christudas, B. Practical Microservices Architectural Patterns: Event-
Based Java Microservices with Spring Boot and Spring Cloud. Apress
(2019,1) doi: 10.1007/978-1-4842-4501-9

 [16] Sharp, T. Deploying the Microservice as a Docker Container.
Introducing Micronaut. 2022, doi: 10.1007/978-1-4842-8290-8-9

 [17] Md, Varadarajan, A., Mandal, V. & Karan. Efficient Algorithm for
Identification and Cache Based Discovery of Cloud Services. Mobile
Networks And Applications. 24, pp. 1–17, 2019, doi: 10.1007/s11036-
019-01256-0

 [18] Suryotrisongko, H., Jayanto, D. & Tjahyanto, A. Design and
Development of Backend Application for Public Complaint Systems
Using Microservice Spring Boot. Procedia Computer Science. 124, pp.
736–743, 2017, doi: 10.1016/j.procs.2017.12.212

 [19] Apache Maven. Introduction to the POM. Available online: https://
maven.apache.org/guides/introduction/introduction-to-thepom.html
(Accessed: 2023)

 [20] Spring Cloud Context: Application Context Services. Available online:
https://cloud.spring.io/spring-cloud-commons/multi/multi__spring_
cloud_context_application_context_services.html (Accessed: 2023)

 [21] The Kubernetes Authors. Using RBAC Authorization. Available
online: https://Kubernetes.io/docs/reference/access-authn-authz/rbac/
(Accessed: 2023)

 [22] The Kubernetes Authors. RBAC Good Practices. Available online:
https://kubernetes.io/docs/concepts/security/rbac-good-practices/

 (Accessed: 2023)
 [23] The Kubernetes Authors: Service Accounts. Available online: https://

kubernetes.io/docs/concepts/security/service-accounts/ (Accessed:
2023)

[24] CoreDNS: DNS and Service Discovery, Available online: https://
coredns.io/, (Accessed: 2023)

[25] Kubernetes: Using CoreDNS for Service Discovery. Available online:
https://kubernetes.io/docs/tasks/administer-cluster/coredns (Accessed:
2023)

[26] Heidari, A., Navimipour, N. Service discovery mechanisms in
cloud computing: a comprehensive and systematic literature review.
Kybernetes. 51, pp. 952–981, 2022, doi: 10.1108/K-12-2020-0909

[27] Singh, N., Hamid, Y., Juneja, S., Srivastava, G., Dhiman, G., Gadekallu,
T. R., Mohd, A.S. Load balancing and service discovery using Docker
Swarm for microservice based big data applications. Journal of Cloud
Computing. 12:4, 2023, doi: 10.1186/s13677-022-00358-7

[28] The Kubernetes Authors. Services-External Name. Available online:
https://Kubernetes.io/docs/concepts/services-networking/service/
(Accessed: 2023).

[29] Using NodeLocal DNS Cache in Kubernetes Clusters. Available online:
https://kubernetes.io/docs/tasks/administer-cluster/nodelocaldns/
(Accessed: 2023)

 [30] Nguyen, T.-T., Yeom, Y.-J., Kim, T., Park, D.-H., Kim, S. Horizontal
Pod Autoscaling in Kubernetes for Elastic Container Orchestration,
Sensors, 20(16), p. 4621, Aug. 2020, doi: 10.3390/s20164621.

[31] Wei-guo, Z., Xi-lin, M., Jin-zhong, Z. Research on Kubernetes’
Resource Scheduling Scheme. In Proceedings of the 8th International
Conference on Communication and Network Security (ICCNS ’18).
Association for Computing Machinery, New York, NY, USA, 2018,
144–148. doi: 10.1145/3290480.3290507

[32] Nguyen, N., Kim, T. Toward Highly Scalable Load Balancing in
Kubernetes Clusters. IEEE Communications Magazine, 58(7):78–83,
July 2020, doi: 10.1109/MCOM.001.1900660.

[33] Almaraz-Rivera, J.G. An Anomaly-based Detection System for
Monitoring Kubernetes Infrastructures, IEEE Latin America
Transactions, 21(3):457–465, March 2023,

 doi: 10.1109/TLA.2023.10068850.
[34] Horalek, J., Urbanik, P., Sobeslav, V., Svoboda, T. "Proposed Solution

for Log Collection and Analysis in Kubernetes Environment." in
Nature of Computation and Communication. ICTCC 2022. vol 473.
Springer, Cham, 2023 doi: y10.1007/978-3-031-28790-9_2

Baasanjargal Erdenebat was born in 1993 in
Arkhangai, Mongolia. She earned the bachelor and
master degrees from the School of Applied Science and
Engineering at the National University of Mongolia, in
2013 and 2016 respectively. Currently, she is pursuing a
PhD at Eötvös Loránd University, Dept. Programming
Languages and Compilers. Her main research interests
are containerization technology (i.e., Docker, Kuber-
netes), cloud computing, DevOps methodology, as well
as the toolchains and implementation related to these
areas.

Bayarjargal Bud was born in 1987, Mongolia. He ob-
tained the bachelor’s degree from the National Univer-
sity of Mongolia (NUM) in 2010, and master’s degree
from NUM and Riga Technical University in 2021.
Currently, he works as Tech Lead at IT delivery service
department of the private sector. His research interests
include database system, machine learning, and con-
tainerization technology (i.e., Docker, Kubernetes).

Tamás Kozsik is associate professor at Eötvös Loránd
University, Dept. Programming Languages and Com-
pilers. His fields of interest are formal verification, pro-
gramming paradigms (i.e., concurrent programming),
static analysis, refactoring, and domain specific pro-
gramming languages. Currently he focuses on research-
ing programming languages and software technology
for quantum computing.

https://doi.org/10.36244/ICJ.2023.1.5
https://doi.org/10.1007/978-1-4842-3165-4
https://microservices.io/
https://microservices.io/
https://doi.org/10.1145/1342250.1342261
https://doi.org/10.36244/ICJ.2022.3.10
https://www.ibm.com/topics/docker
https://kubernetes.io/
https://doi.org/10.1145/2806777.2809955
https://doi.org/10.1007/978-1-4842-4501-9
https://doi.org/10.1007/978-1-4842-8290-8-9
https://doi.org/10.1007/s11036-019-01256-0
https://doi.org/10.1007/s11036-019-01256-0
https://doi.org/10.1016/j.procs.2017.12.212
https://maven.apache.org/guides/introduction/introduction-to-thepom.html
https://maven.apache.org/guides/introduction/introduction-to-thepom.html
https://cloud.spring.io/spring-cloud-commons/multi/multi__spring_cloud_context_application_context_services.html
https://cloud.spring.io/spring-cloud-commons/multi/multi__spring_cloud_context_application_context_services.html
https://Kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/concepts/security/rbac-good-practices/
https://kubernetes.io/docs/concepts/security/service-accounts/
https://kubernetes.io/docs/concepts/security/service-accounts/
https://coredns.io/
https://coredns.io/
https://kubernetes.io/docs/tasks/administer-cluster/coredns
https://doi.org/10.1108/K-12-2020-0909
https://doi.org/10.1186/s13677-022-00358-7
https://Kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/tasks/administer-cluster/nodelocaldns/
https://doi.org/10.3390/s20164621
https://doi.org/10.1145/3290480.3290507
https://doi.org/10.1109/MCOM.001.1900660
https://doi.org/10.1109/TLA.2023.10068850
https://doi.org/10.1007/978-3-031-28790-9_2

Guidelines for our Authors

76

Special Issue
of the Infocommunication Journal

SPECIAL ISSUE ON APPLIED INFORMATICS

Format of the manuscripts

Original manuscripts and final versions of papers
should be submitted in IEEE format according to the
formatting instructions available on
 https://journals.ieeeauthorcenter.ieee.org/
 Then click: "IEEE Author Tools for Journals"
 - "Article Templates"
 - "Templates for Transactions".

Length of the manuscripts

The length of papers in the aforementioned format
should be 6-8 journal pages.
Wherever appropriate, include 1-2 figures or tables
per journal page.

Paper structure

Papers should follow the standard structure, consist-
ing of Introduction (the part of paper numbered by
“1”), and Conclusion (the last numbered part) and
several Sections in between.
The Introduction should introduce the topic, tell why
the subject of the paper is important, summarize the
state of the art with references to existing works and
underline the main innovative results of the paper.
The Introduction should conclude with outlining the
structure of the paper.

Accompanying parts

Papers should be accompanied by an Abstract and a
few Index Terms (Keywords). For the final version of
accepted papers, please send the short cvs and photos
of the authors as well.

Authors

In the title of the paper, authors are listed in the or-
der given in the submitted manuscript. Their full affili-
ations and e-mail addresses will be given in a footnote
on the first page as shown in the template. No
degrees or other titles of the authors are given. Mem-
berships of IEEE, HTE and other professional socie-
ties will be indicated so please supply this information.
When submitting the manuscript, one of the authors
should be indicated as corresponding author provid-
ing his/her postal address, fax number and telephone
number for eventual correspondence and communi-
cation with the Editorial Board.

References

References should be listed at the end of the paper
in the IEEE format, see below:

a) Last name of author or authors and first name or
 initials, or name of organization
b) Title of article in quotation marks
c) Title of periodical in full and set in italics
d) Volume, number, and, if available, part
e) First and last pages of article
 f) Date of issue
g) Document Object Identifier (DOI)

[11] Boggs, S.A. and Fujimoto, N., “Techniques and
instrumentation for measurement of transients in
gas-insulated switchgear,” IEEE Transactions on
Electrical Installation, vol. ET-19, no. 2, pp.87–92,
April 1984. DOI: 10.1109/TEI.1984.298778
Format of a book reference:
[26] Peck, R.B., Hanson, W.E., and Thornburn,
T.H., Foundation Engineering, 2nd ed. New York:
McGraw-Hill, 1972, pp.230–292.
All references should be referred by the correspond-
ing numbers in the text.

Figures

Figures should be black-and-white, clear, and drawn
by the authors. Do not use figures or pictures down-
loaded from the Internet. Figures and pictures should
be submitted also as separate files. Captions are ob-
ligatory. Within the text, references should be made
by figure numbers, e.g. “see Fig. 2.”
When using figures from other printed materials, ex-
act references and note on copyright should be in-
cluded. Obtaining the copyright is the responsibility
of authors.

Contact address

Authors are requested to submit their papers elec-
tronically via the following portal address:
https://www.ojs.hte.hu/infocommunications_journal/
about/submissions
If you have any question about the journal or the
submission process, please do not hesitate to con-
tact us via e-mail:
Editor-in-Chief: Pál Varga – pvarga@tmit.bme.hu
Associate Editor-in-Chief:
Rolland Vida – vida@tmit.bme.hu
László Bacsárdi – bacsardi@hit.bme.hu

https://www.ojs.hte.hu/infocommunications_journal/about/submissions
https://www.ojs.hte.hu/infocommunications_journal/about/submissions
mailto:pvarga%40tmit.bme.hu?subject=
mailto:vida%40tmit.bme.hu?subject=
mailto:bacsardi%40hit.bme.hu?subject=

Special Issue
on Applied Informatics

 Infocommunications Journal

Selected papers of ICAI 2023
12th International Conference on Applied Informatics
Eger, Hungary on March 2-4, 2023

SCIENTIFIC ASSOCIATION FOR INFOCOMMUNICATIONS

Who we are
Founded in 1949, the Scientific Association for Info-
communications (formerly known as Scientific Society
for Telecommunications) is a voluntary and autono-
mous professional society of engineers and econo-
mists, researchers and businessmen, managers and
educational, regulatory and other professionals work-
ing in the fields of telecommunications, broadcast-
ing, electronics, information and media technologies
in Hungary.

Besides its 1000 individual members, the Scientific
Association for Infocommunications (in Hungarian:
HÍRKÖZLÉSI ÉS INFORMATIKAI TUDOMÁNYOS EGYESÜLET, HTE)
has more than 60 corporate members as well. Among
them there are large companies and small-and-medi-
um enterprises with industrial, trade, service-providing,
research and development activities, as well as educa-
tional institutions and research centers.

HTE is a Sister Society of the Institute of Electrical and
Electronics Engineers, Inc. (IEEE) and the IEEE Communi-
cations Society.

What we do
HTE has a broad range of activities that aim to pro-
mote the convergence of information and communi-
cation technologies and the deployment of synergic
applications and services, to broaden the knowledge
and skills of our members, to facilitate the exchange
of ideas and experiences, as well as to integrate and

harmonize the professional opinions and standpoints
derived from various group interests and market dy-
namics.

To achieve these goals, we…
• contribute to the analysis of technical, economic,

and social questions related to our field of compe-
tence, and forward the synthesized opinion of our
experts to scientific, legislative, industrial and edu-
cational organizations and institutions;

• follow the national and international trends and
results related to our field of competence, foster
the professional and business relations between
foreign and Hungarian companies and institutes;

• organize an extensive range of lectures, seminars,
debates, conferences, exhibitions, company pres-
entations, and club events in order to transfer and
deploy scientific, technical and economic knowl-
edge and skills;

• promote professional secondary and higher edu-
cation and take active part in the development of
professional education, teaching and training;

• establish and maintain relations with other domes-
tic and foreign fellow associations, IEEE sister soci-
eties;

• award prizes for outstanding scientific, education-
al, managerial, commercial and/or societal activities
and achievements in the fields of infocommunica-
tion.

Contact information
President: FERENC VÁGUJHELYI • elnok@hte.hu

Secretary-General: ISTVÁN MARADI • istvan.maradi@gmail.com
Operations Director: PÉTER NAGY • nagy.peter@hte.hu

International Affairs: ROLLAND VIDA, PhD • vida@tmit.bme.hu

Address: H-1051 Budapest, Bajcsy-Zsilinszky str. 12, HUNGARY, Room: 502
Phone: +36 1 353 1027

E-mail: info@hte.hu, Web: www.hte.hu

mailto:elnok%40hte.hu?subject=
mailto:istvan.maradi%40gmail.com?subject=
mailto:nagy.peter%40hte.hu?subject=
mailto:vida%40tmit.bme.hu?subject=
mailto:info%40hte.hu?subject=
www.hte.hu

