
Performance Analysisof Encryption Capabilities
of ARM-based Single Board Microcomputers

INFOCOMMUNICATIONS JOURNAL

JUNE 2023 • VOLUME XV • NUMBER 2 37

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1

Abstract—In the few years since the Raspberry Pi was released

in 2012, countless microcomputers based on the ARM architecture
have been introduced. Their small size, high performance relative
to their power consumption, and the ability to run the popular
Linux operating system make them ideal for a wide range of tasks.
Information security is an area of particular importance. Different
encryption and encoding algorithms play an important role in
almost all areas of information security. However, these
algorithms are very computationally intensive, so it is important
to investigate which microcomputers can be used for these tasks,
and under which trade-offs.

The performance of ten different microcomputers is
investigated and presented for the application of common
symmetric and public-key encryption and decryption, digest
creation and message authentication protocols, such as RSA, AES,
HMAC, MD5, SHA.

Reliable encryption requires the generation of reliable
(pseudo)random numbers (Cryptographically Secure Random
Numbers, CSRN), and microcomputers based on ARM SoCs
usually have hardware implemented (pseudo)random number
generators. The applicability of the random number generators of
different microcomputers are investigated and presented; test
methods are described, and recommendations are made.

Index Terms—ARM; encryption; performance; security;
random numbers

I. INTRODUCTION

s semiconductor technologies continue to evolve,
microprocessors and microcontrollers have emerged that

can be produced at ever lower cost and with ever lower power
consumption, and offer ever higher performance. As the degree
of integration has increased, it has become possible to produce
integrated circuits that incorporate both the microprocessor and
the additional circuitry (e.g. memory, graphics, and USB
controllers.). These chips (System on a Chip, SoC) are used to
build the increasingly popular smart phones, and the popularity
of smart handsets is accelerating the development of these
circuits. Increasingly powerful SoCs have also enabled the
emergence of Single Board Computers (SBCs), the best known
of which is the ARM architecture-based [1] Raspberry Pi [2]

S. R. Repas is with the Department of Telecommunications, Széchenyi
István University, Győr, H-9026, Hungary (e-mail: repas.sandor@sze.hu).

with a 700 MHz single-core processor and 256 MB of memory,
released in 2012. Thanks to rapid development, SBCs with
eight cores and 2GB of memory are now available [3].

Today information security plays an increasingly important
role, with encryption, decryption, digital signatures and
signature verification being of high importance. However,
encryption operations are mathematical operations with a very
high computational demand. With the proliferation of
increasingly powerful yet cost-effective SBCs, an important
question is what encryption capabilities SBCs have, and thus
how effectively they can be applied in the field of information
security.

In the following, we present in detail our methods used to
investigate the encryption capabilities of SBCs, as well as the
results.

II. SUMMARY OF THE CURRENT RESEARCH RESULTS

Many papers have been published on Raspberry Pi and other
SBCs, but none of them have explicitly investigated their
encryption capabilities.

In [4], the authors present, among other results, their solution
for the Raspberry Pi to create a secure TFTP (Secure Trivial
File Transfer Protocol) to ensure the security of remote updates.

Researchers have investigated the performance of
BeagleBone Black [5], BeagleBone, and Raspberry Pi SBCs
using LMbench [6], and their proprietary application (CoAP,
Constrained Application Protocol) to measure performance on
constrained devices [7]. They concluded that the SBCs were
less than half the speed of a modern computer, and the
BeagleBone Black had the lowest latency of the three devices.
Their important conclusion is that for IoT (Internet of Things)
applications, faster and more expensive external memory has
significantly less impact on the performance of an SBC than the
type of the processor. In addition, running the graphical
interface did not have a significant impact on performance.

In two papers, researchers presented results of memory and
processor performance tests on four different ARM platforms
in [8] and [9]. Their measurements were also compared to Intel
Atom [10] processors, which produced similar results, but with
significantly lower power consumption on ARM SoC-based

Performance Analysis
of Encryption Capabilities of ARM-based

Single Board Microcomputers
Sandor R. Repas

A

S. R. Repas is with the Department of Telecommunications, Széchenyi István
University, Győr, Hungary (e-mail: repas.sandor@sze.hu).

Performance Analysis
of Encryption Capabilities of ARM-based Single

Board Microcomputers
Sandor R. Repas

Abstract—In the few years since the Raspberry Pi was re-
leased in 2012, countless microcomputers based on the ARM
architecture have been introduced. Their small size, high per-
formance relative to their power consumption, and the ability
to run the popular Linux operating system make them ideal
for a wide range of tasks. Information security is an area of
particular importance. Different encryption and encoding algo-
rithms play an important role in almost all areas of information
security. However, these algorithms are very computationally
intensive, so it is important to investigate which microcomput-
ers can be used for these tasks, and under which trade-offs.

The performance of ten different microcomputers is investi-
gated and presented for the application of common symmetric
and public-key encryption and decryption, digest creation and
message authentication protocols, such as RSA, AES, HMAC,
MD5, SHA.

Reliable encryption requires the generation of reliable (pseu-
do)random numbers (Cryptographically Secure Random Num-
bers, CSRN), and microcomputers based on ARM SoCs usually
have hardware implemented (pseudo)random number genera-
tors. The applicability of the random number generators of
different microcomputers are investigated and presented; test
methods are described, and recommendations are made.

Index Terms—ARM; encryption; performance; security;
random numbers

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1

Abstract—In the few years since the Raspberry Pi was released

in 2012, countless microcomputers based on the ARM architecture
have been introduced. Their small size, high performance relative
to their power consumption, and the ability to run the popular
Linux operating system make them ideal for a wide range of tasks.
Information security is an area of particular importance. Different
encryption and encoding algorithms play an important role in
almost all areas of information security. However, these
algorithms are very computationally intensive, so it is important
to investigate which microcomputers can be used for these tasks,
and under which trade-offs.

The performance of ten different microcomputers is
investigated and presented for the application of common
symmetric and public-key encryption and decryption, digest
creation and message authentication protocols, such as RSA, AES,
HMAC, MD5, SHA.

Reliable encryption requires the generation of reliable
(pseudo)random numbers (Cryptographically Secure Random
Numbers, CSRN), and microcomputers based on ARM SoCs
usually have hardware implemented (pseudo)random number
generators. The applicability of the random number generators of
different microcomputers are investigated and presented; test
methods are described, and recommendations are made.

Index Terms—ARM; encryption; performance; security;
random numbers

I. INTRODUCTION

s semiconductor technologies continue to evolve,
microprocessors and microcontrollers have emerged that

can be produced at ever lower cost and with ever lower power
consumption, and offer ever higher performance. As the degree
of integration has increased, it has become possible to produce
integrated circuits that incorporate both the microprocessor and
the additional circuitry (e.g. memory, graphics, and USB
controllers.). These chips (System on a Chip, SoC) are used to
build the increasingly popular smart phones, and the popularity
of smart handsets is accelerating the development of these
circuits. Increasingly powerful SoCs have also enabled the
emergence of Single Board Computers (SBCs), the best known
of which is the ARM architecture-based [1] Raspberry Pi [2]

S. R. Repas is with the Department of Telecommunications, Széchenyi
István University, Győr, H-9026, Hungary (e-mail: repas.sandor@sze.hu).

with a 700 MHz single-core processor and 256 MB of memory,
released in 2012. Thanks to rapid development, SBCs with
eight cores and 2GB of memory are now available [3].

Today information security plays an increasingly important
role, with encryption, decryption, digital signatures and
signature verification being of high importance. However,
encryption operations are mathematical operations with a very
high computational demand. With the proliferation of
increasingly powerful yet cost-effective SBCs, an important
question is what encryption capabilities SBCs have, and thus
how effectively they can be applied in the field of information
security.

In the following, we present in detail our methods used to
investigate the encryption capabilities of SBCs, as well as the
results.

II. SUMMARY OF THE CURRENT RESEARCH RESULTS

Many papers have been published on Raspberry Pi and other
SBCs, but none of them have explicitly investigated their
encryption capabilities.

In [4], the authors present, among other results, their solution
for the Raspberry Pi to create a secure TFTP (Secure Trivial
File Transfer Protocol) to ensure the security of remote updates.

Researchers have investigated the performance of
BeagleBone Black [5], BeagleBone, and Raspberry Pi SBCs
using LMbench [6], and their proprietary application (CoAP,
Constrained Application Protocol) to measure performance on
constrained devices [7]. They concluded that the SBCs were
less than half the speed of a modern computer, and the
BeagleBone Black had the lowest latency of the three devices.
Their important conclusion is that for IoT (Internet of Things)
applications, faster and more expensive external memory has
significantly less impact on the performance of an SBC than the
type of the processor. In addition, running the graphical
interface did not have a significant impact on performance.

In two papers, researchers presented results of memory and
processor performance tests on four different ARM platforms
in [8] and [9]. Their measurements were also compared to Intel
Atom [10] processors, which produced similar results, but with
significantly lower power consumption on ARM SoC-based

Performance Analysis
of Encryption Capabilities of ARM-based

Single Board Microcomputers
Sandor R. Repas

A

DOI: 10.36244/ICJ.2023.2.6

mailto:repas.sandor%40sze.hu?subject=
https://doi.org/10.36244/ICJ.2023.2.6

Performance Analysisof Encryption Capabilities
of ARM-based Single Board Microcomputers

JUNE 2023 • VOLUME XV • NUMBER 238

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

devices. The authors also point out that this may change in the
future.

Using BeagleBoard and PandaBoard [11], researchers
investigated the potential of using ARM SoC-based devices in
HPC (High Performance Computing) applications [12], with a
focus on computing performance and power consumption. The
authors concluded that due to the high power consumption of
devices that are redundant for HPC applications (e.g. USB,
HDMI, VGA, etc.), SBCs based on generic SoCs are not well
suited for HPC designs.

In [13], the authors investigated six different types of SBCs
from several aspects, with the aim of finding out the
performance of a heterogeneous cluster built from different
SBCs in discrete-time simulations performed in parallel as
described in [14] and [15]. Their important result is that
multicore performance should be the primary consideration in
the calculations.

These publications do not investigate the performance of
SBCs during encryption operations; therefore, it is necessary to
develop methods for measuring this and to perform the tests.

III. TEST METHODS

The devices chosen for the performance tests and the test
methods applied are described below.

A. Selection of Devices
In selecting the SBCs, the primarily following criteria were

considered:
• The Raspberry Pi is a must due to its pervasiveness, as it

greatly increases the usability of the results.
• It is important to measure as many different SoCs as

possible, thus providing a comprehensive picture for
comparing each SoC.

• Include in the tests two SBCs from different
manufacturers, based on the same SoC. This should help
to find out how much of the performance depends on the
SoC and how much on the external components (e.g.
memory) used with the SoC.

• At least one SBC based on a SoC using the Big-Little [16]
architecture will be investigated. In this way, the
advantages and disadvantages of such an SoC will be
identified.

Table I shows the main parameters of the selected SBCs.
(The datasheets for each SoC were not always made available

by the manufacturers, so I could not include some parameters,
such as cache size.)

B. Test Environment for the Encryption Performance
Measurements

Linux was installed on all SBC devices to perform the tests.
If the manufacturer provides or recommends a Linux version
for the device, that version was used. In all cases, we tried to
make only the most necessary changes, avoiding any
modifications that could affect performance. The only
exception to this was disabling the launch of the graphical
interface on all devices so that it did not affect the measurement
results.

To perform the measurements, we needed to implement the
network shown in Fig. 1. The measurement process was started
from the laptop at the top of the figure and its progress could
also be monitored from there. The server on the left of the figure
controlled the measurement, and collected and pre-processed
the data. The ten SBCs tested are shown at the bottom of the
figure. To ensure comparability, all measurements were also
performed on the Sun Sunfire X2100 M2 computer on the right
side of the figure, which contained an Opteron 1222 dual core
CPU and 4 pieces of 2GB DDR2-5300 ECC RAM modules.

IV. MEASUREMENTS AND RESULTS

To ensure accurate results, the measurements were
automated using bash shell scripts. Each measurement was
repeated 16 times, of which only the results of the last 11 times

TABLE I
THE MOST IMPORTANT PARAMETERS OF THE SELECTED SBCS

Model CPU
architecture SoC type

CPU cores
(pcs)

CPU freq.
(GHz)

RAM size
(GB)

Banana Pi Cortex A7 AllWinner A20 2 1 1
Banana Pi M2 Cortex A7 AllWinner A31s 4 1 1
BeagleBone Black Cortex A8 TI AM3359 1 1 0.5
ODROID-C1 Cortex A5 Amlogic S805 4 1.5 1
ODROID-U3 Cortex A9 Samsung Exynos 4412 4 1.7 2
ODROID-XU3 Lite Cortex A15+A7 Samsung Exynos 5422 4+4 1.8+1.3 2
Orange Pi Mini Cortex A7 AllWinner A20 2 1 1
Orange Pi Plus Cortex A7 AllWinner H3 4 1.6 1
Raspberry Pi Model B+ 1176JZ(F)-S Broadcom BCM2835 1 0.7 0.5
Raspberry Pi 2 Model B+ Cortex A7 Broadcom BCM2836 4 0.9 1

10 x

IPv4: 192.168.99.16/24

IPv4: 192.168.99.8/24

IPv4: 192.168.99.25/24

IPv4: 192.168.99.1/24 IPv4: 192.168.99.26/24

Fig. 1. Topology of the test network for the measurements

Performance Analysisof Encryption Capabilities
of ARM-based Single Board Microcomputers

INFOCOMMUNICATIONS JOURNAL

JUNE 2023 • VOLUME XV • NUMBER 2 39

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 3

were processed. This avoided the influence of the storage
system’s speed during the measurements (by using cache). The
openssl program was used for the measurements. Where it is
applicable, measurements were also made using one and then
all cores. The measurements were also performed on the
Sunfire X2100 M2 computer, making comparison easier.

In order to avoid errors, the results were collected in text
files, pre-processed using awk scripts and then evaluated.

In the following, the measurement results will be described
and then evaluated in detail.
A. Symmetric Key Encryption

Today's most widely used symmetric key encryption is the
Advanced Encryption Standard (AES) using the Rijndael
algorithm [17]. It is also used with 128, 192 and 256-bit-long
keys. Its use is very widespread. Its performance in file
encryption has been investigated in Cipher Block Chaining
(CBC) mode, which greatly increases the protection against
algorithmic attacks.

The measurements were performed using the openssl speed
command, with all three key lengths, 8k block size, on 1 and
then with multiple threads. The use of multiple threads allowed
the simultaneous use of multiple CPU cores.
1) Single Thread Results

The average values of the speed results obtained in the runs is
shown in Table II, while the standard deviations are shown in
Table III. The averages are visualized for better comparison in
Fig. 2.

The first column of Table II shows the type of SBC tested.
The second column is the average of the amount of data
encrypted per second in MB when using 128-bit key length
AES CBC (AES-128-CBC). The third column contains the
average of the data volume encoded per second using AES-192-
CBC, and the last column contains the average of the data
volume encoded per second using AES-256-CBC. The
corresponding columns in Table III contain the standard
deviation values for the calculated mean values.

2) Discussion of the Results
The analysis of the values shows that:
• Odroid-XU3 Lite is the fastest, Odroid-U3 is the second,

and BeagleBone Black is the third one.
• The Raspberry Pi is the slowest.
• The two SBCs based on the same SoC produced different

results (Banana Pi and Orange Pi Mini), but the
difference is only around 10%.

• The standard deviation values are low compared to the
average values, so the measured values are stable for the
devices tested.

• The performance of each SBC relative to the other is not
significantly affected by the key length used for
encoding.

• Even the speed of the fastest SBC is a fraction of that of
the Opteron 1222-based system (e.g. for AES-128-CBC:
209.5/81.85=2.56).

3) Multi-thread Results
Multi-threaded runs have been used to test SBCs based on

SoCs that contain multiple processor cores. In each case, the
measurement was performed on as many threads as the
processor has in the given SoC, so that all cores participated in
the coding and the aggregate performance could be measured.
In the case of Odroid-XU3 Lite using the Big-Little
architecture, the measurement was also performed using 4
threads due to the different core speeds. To present the results,
we have chosen the AES-256-CBC encoding values, which are
shown in Table IV.

The second column shows how many threads were used for
each measurement. The third column shows the average amount
of the encoded data from the last 11 measurements. The data in
the fourth column has already been presented for the single

TABLE II
AVERAGE SPEED VALUES OF AES-CBC ENCRYPTION (MB/S), SINGLE

THREAD, 8K BLOCK

Model AES-128 AES-192 AES-256

Banana Pi 22.06 18.88 16.60
Banana Pi M2 23.15 19.74 17.49
BeagleBone Black 41.85 34.70 30.82
ODROID-C1 35.95 30.86 27.26
ODROID-U3 56.59 50.44 43.27
ODROID-XU3 Lite 81.85 71.05 61.77
Orange Pi Mini 24.45 20.81 18.33
Orange Pi Plus 29.72 25.32 22.29
Raspberry Pi Model B+ 15.06 13.04 11.50
Raspberry Pi 2 Model B+ 20.62 17.58 15.59
Opteron 1222 209.50 179.08 156.01

TABLE III
STANDARD DEVIATION OF SPEED VALUES OF AES-CBC ENCRYPTION

(MB/S), SINGLE THREAD, 8K BLOCK

Model AES-128 AES-192 AES-256

Banana Pi 0.04 0.03 0.03
Banana Pi M2 0.07 0.04 0.04
BeagleBone Black 0.08 0.06 0.05
ODROID-C1 0.20 0.16 0.14
ODROID-U3 0.48 0.42 0.37
ODROID-XU3 Lite 0.07 0.01 0.03
Orange Pi Mini 0.04 0.08 0.05
Orange Pi Plus 0.03 0.00 0.00
Raspberry Pi Model B+ 0.00 0.00 0.00
Raspberry Pi 2 Model B+ 0.01 0.03 0.01
Opteron 1222 0.13 0.09 0.07

Fig. 2. Average speed values of AES-CBC encryption (MB/s), 1 thread, 8k
block

Performance Analysisof Encryption Capabilities
of ARM-based Single Board Microcomputers

JUNE 2023 • VOLUME XV • NUMBER 240

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

thread measurement, it is only presented again here for ease of
reference.

The relative acceleration in column 5 is the ratio of the
average speeds in the fourth and third columns. The last column
contains the standard deviation values for the third column.
4) Discussion of the Results

The analysis of the values shows that:
• Odroid-XU3 Lite is the fastest, Odroid-C1 is the second

and Odroid-U3 is the third.
• The Odroid-U3 and Orange Pi Plus produce large

standard deviations. The measured performance is not
constant, shows large fluctuations and the system
behavior can only be estimated imprecisely.

• Among devices with low standard deviation, the fastest
SBCs are Odroid-XU3 Lite, Odroid-C1, Banana Pi M2
and Raspberry Pi 2.

• The relative acceleration is almost equal to the number of
cores used, except for the two devices with high standard
deviation and the Big-Little architecture Odroid-XU3
Lite. By increasing the number of cores, a linearly
proportional acceleration is obtained.

• The performance of the fastest SBC (Odroid-XU3 Lite
with 8 threads) now approaches that of the Opteron 1222
system.

5) Message Digest and Authentication
• The use of hash function and message authentication

code is also essential to ensure secure communication.
They are generally used to ensure integrity and detect
tampering. The analyzed protocols and some of their
characteristics:

• MD5
o 128 bit-long digest
o Not secure, but used for compatibility reasons.

• SHA1
o 160 bit-long digest
o No longer recommended
o Widespread, widely known and used.

• SHA256
o 256 bit-long digest
o Recommended for use.

• SHA512
o 512 bit long digest
o Not always recommended due to its slowness.

• HMAC
o MD5-based message authenticator
o Keyed-Hash Message Authentication Code

6) Single Thread Results
The average values of the results obtained in the runs is shown

in Table V, while the standard deviations are shown in Table
VI. The averages are visualized for better comparison in Fig. 3.

The structure of the table is very similar to the one used for
the previous tables, so it is not explained in detail.

7) Discussion of the Results
The analysis of the values shows that:
• The fastest is Odroid-XU3 Lite, the second is Odroid-U3.
• The slowest is Raspberry Pi.
• The two SBCs based on the same SoC produced different

results (Banana Pi and Orange Pi Mini), but again the
difference is only around 10%.

• The standard deviation values are low compared to the
average values, so the measured values are stable for the
devices tested.

• The relative performance of each SBC is not necessarily
the same for different tasks (e.g. Odroid-C1 and
BeagleBone Black MD5: 118.71/102.88=1.15, while for
SHA1: 73.62/77.57=0.95).

• Even the speed of the fastest SBC is a fraction of that of
the Opteron 1222-based system (e.g. for MD5:
562.56/240.15=2.34, while for SHA512:
290.29/95.70=3.03).

TABLE IV
AVERAGE SPEED VALUES OF AES-256-CBC ENCRYPTION (MB/S), MULTIPLE

THREADS, 8K BLOCK

Model Thr.
AES-256
x threads
(MB/s)

AES-256
1 thread
(MB/s)

Rel.
acc.

Std.
dev.

Banana Pi 2 33.22 16.60 2.00 0.02
Banana Pi M2 4 69.96 17.49 4.00 0.02
ODROID-C1 4 109.57 27.26 4.02 0.04
ODROID-U3 4 88.43 43.27 2.04 7.38
ODROID-XU3 L. 4 195.01 61.77 3.16 1.01
ODROID-XU3 L. 8 276.21 61.77 4.47 2.20
Orange Pi Mini 2 36.36 18.33 1.98 0.01
Orange Pi Plus 4 46.55 22.29 2.09 6.40
Raspberry Pi 2 4 62.31 15.59 4.00 0.01
Opteron 1222 2 310.88 156.01 1.99 0.32

TABLE V
AVERAGE SPEED VALUES OF DIGEST AND MESSAGE AUTHENTICATION (MB/S),

SINGLE THREAD, 8K BLOCK

Model MD5 SHA
1

SHA
256

SHA
512 HMAC

Banana Pi 82.49 44.29 26.01 22.35 82.62
Banana Pi M2 82.96 46.30 27.93 14.12 82.83
BeagleBone Black 102.88 77.57 56.30 37.88 104.70
ODROID-C1 118.71 73.62 43.43 36.66 118.88
ODROID-U3 200.43 118.47 69.70 59.88 200.17
ODROID-XU3 L. 240.15 158.88 91.43 95.70 242.87
Orange Pi Mini 91.53 48.22 28.33 24.41 91.90
Orange Pi Plus 111.43 58.67 34.52 29.69 111.98
Raspberry Pi 51.92 29.12 18.79 9.11 53.15
Raspberry Pi 2 73.77 41.19 24.84 12.56 73.65
Opteron 1222 562.56 430.60 186.18 290.29 562.81

TABLE VI
STANDARD DEVIATION OF SPEED VALUES OF DIGEST AND MESSAGE

AUTHENTICATION (MB/S), SINGLE THREAD, 8K BLOCK

Model MD5 SHA
1

SHA
256

SHA
512 HMAC

Banana Pi 0.23 0.11 0.05 0.02 0.16
Banana Pi M2 0.13 0.11 0.04 0.03 0.17
BeagleBone Black 0.08 0.10 0.09 0.07 0.15
ODROID-C1 0.72 0.37 0.23 0.19 0.69
ODROID-U3 2.05 1.21 0.68 0.54 1.80
ODROID-XU3 L. 0.18 0.25 0.14 0.08 0.20
Orange Pi Mini 0.53 0.47 0.05 0.02 0.20
Orange Pi Plus 0.03 0.01 0.00 0.00 0.08
Raspberry Pi 0.10 0.01 0.03 0.00 0.03
Raspberry Pi 2 0.08 0.03 0.06 0.01 0.15
Opteron 1222 1.11 0.17 0.85 0.08 0.71

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

thread measurement, it is only presented again here for ease of
reference.

The relative acceleration in column 5 is the ratio of the
average speeds in the fourth and third columns. The last column
contains the standard deviation values for the third column.
4) Discussion of the Results

The analysis of the values shows that:
• Odroid-XU3 Lite is the fastest, Odroid-C1 is the second

and Odroid-U3 is the third.
• The Odroid-U3 and Orange Pi Plus produce large

standard deviations. The measured performance is not
constant, shows large fluctuations and the system
behavior can only be estimated imprecisely.

• Among devices with low standard deviation, the fastest
SBCs are Odroid-XU3 Lite, Odroid-C1, Banana Pi M2
and Raspberry Pi 2.

• The relative acceleration is almost equal to the number of
cores used, except for the two devices with high standard
deviation and the Big-Little architecture Odroid-XU3
Lite. By increasing the number of cores, a linearly
proportional acceleration is obtained.

• The performance of the fastest SBC (Odroid-XU3 Lite
with 8 threads) now approaches that of the Opteron 1222
system.

5) Message Digest and Authentication
• The use of hash function and message authentication

code is also essential to ensure secure communication.
They are generally used to ensure integrity and detect
tampering. The analyzed protocols and some of their
characteristics:

• MD5
o 128 bit-long digest
o Not secure, but used for compatibility reasons.

• SHA1
o 160 bit-long digest
o No longer recommended
o Widespread, widely known and used.

• SHA256
o 256 bit-long digest
o Recommended for use.

• SHA512
o 512 bit long digest
o Not always recommended due to its slowness.

• HMAC
o MD5-based message authenticator
o Keyed-Hash Message Authentication Code

6) Single Thread Results
The average values of the results obtained in the runs is shown

in Table V, while the standard deviations are shown in Table
VI. The averages are visualized for better comparison in Fig. 3.

The structure of the table is very similar to the one used for
the previous tables, so it is not explained in detail.

7) Discussion of the Results
The analysis of the values shows that:
• The fastest is Odroid-XU3 Lite, the second is Odroid-U3.
• The slowest is Raspberry Pi.
• The two SBCs based on the same SoC produced different

results (Banana Pi and Orange Pi Mini), but again the
difference is only around 10%.

• The standard deviation values are low compared to the
average values, so the measured values are stable for the
devices tested.

• The relative performance of each SBC is not necessarily
the same for different tasks (e.g. Odroid-C1 and
BeagleBone Black MD5: 118.71/102.88=1.15, while for
SHA1: 73.62/77.57=0.95).

• Even the speed of the fastest SBC is a fraction of that of
the Opteron 1222-based system (e.g. for MD5:
562.56/240.15=2.34, while for SHA512:
290.29/95.70=3.03).

TABLE IV
AVERAGE SPEED VALUES OF AES-256-CBC ENCRYPTION (MB/S), MULTIPLE

THREADS, 8K BLOCK

Model Thr.
AES-256
x threads
(MB/s)

AES-256
1 thread
(MB/s)

Rel.
acc.

Std.
dev.

Banana Pi 2 33.22 16.60 2.00 0.02
Banana Pi M2 4 69.96 17.49 4.00 0.02
ODROID-C1 4 109.57 27.26 4.02 0.04
ODROID-U3 4 88.43 43.27 2.04 7.38
ODROID-XU3 L. 4 195.01 61.77 3.16 1.01
ODROID-XU3 L. 8 276.21 61.77 4.47 2.20
Orange Pi Mini 2 36.36 18.33 1.98 0.01
Orange Pi Plus 4 46.55 22.29 2.09 6.40
Raspberry Pi 2 4 62.31 15.59 4.00 0.01
Opteron 1222 2 310.88 156.01 1.99 0.32

TABLE V
AVERAGE SPEED VALUES OF DIGEST AND MESSAGE AUTHENTICATION (MB/S),

SINGLE THREAD, 8K BLOCK

Model MD5 SHA
1

SHA
256

SHA
512 HMAC

Banana Pi 82.49 44.29 26.01 22.35 82.62
Banana Pi M2 82.96 46.30 27.93 14.12 82.83
BeagleBone Black 102.88 77.57 56.30 37.88 104.70
ODROID-C1 118.71 73.62 43.43 36.66 118.88
ODROID-U3 200.43 118.47 69.70 59.88 200.17
ODROID-XU3 L. 240.15 158.88 91.43 95.70 242.87
Orange Pi Mini 91.53 48.22 28.33 24.41 91.90
Orange Pi Plus 111.43 58.67 34.52 29.69 111.98
Raspberry Pi 51.92 29.12 18.79 9.11 53.15
Raspberry Pi 2 73.77 41.19 24.84 12.56 73.65
Opteron 1222 562.56 430.60 186.18 290.29 562.81

TABLE VI
STANDARD DEVIATION OF SPEED VALUES OF DIGEST AND MESSAGE

AUTHENTICATION (MB/S), SINGLE THREAD, 8K BLOCK

Model MD5 SHA
1

SHA
256

SHA
512 HMAC

Banana Pi 0.23 0.11 0.05 0.02 0.16
Banana Pi M2 0.13 0.11 0.04 0.03 0.17
BeagleBone Black 0.08 0.10 0.09 0.07 0.15
ODROID-C1 0.72 0.37 0.23 0.19 0.69
ODROID-U3 2.05 1.21 0.68 0.54 1.80
ODROID-XU3 L. 0.18 0.25 0.14 0.08 0.20
Orange Pi Mini 0.53 0.47 0.05 0.02 0.20
Orange Pi Plus 0.03 0.01 0.00 0.00 0.08
Raspberry Pi 0.10 0.01 0.03 0.00 0.03
Raspberry Pi 2 0.08 0.03 0.06 0.01 0.15
Opteron 1222 1.11 0.17 0.85 0.08 0.71

Performance Analysisof Encryption Capabilities
of ARM-based Single Board Microcomputers

INFOCOMMUNICATIONS JOURNAL

JUNE 2023 • VOLUME XV • NUMBER 2 41

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

8) Multi-thread Results
To present the results, we have chosen the SHA256 digest

generation, which are shown in Table VII. The structure of the
table is the same as in Table IV.
9) Discussion of the Results

The analysis of the values shows that:
• Odroid-XU3 Lite is the fastest, Odroid-U3 is the second,

and Odroid-C1 is the third.
• The Odroid-XU3 Lite, Odroid-U3 and Orange Pi Plus

produce large standard deviations (The ratio of speed to
standard deviation for devices Odroid-U3 and Orange Pi
Plus are almost identical). The measured performance is
not constant, shows significant fluctuations and the
system behavior is not predictable.

• Among devices with low standard deviation, the fastest
SBCs are Odroid-C1, Banana Pi M2 and Raspberry Pi 2.

• The relative acceleration is almost equal to the number of
cores used, except for the three devices with high
standard deviation. By increasing the number of cores, a
linearly proportional acceleration is obtained.

B. Public key Cryptography
Public key cryptography is generally used for the encrypted

transmission of symmetric keys, and the creation of digital
signatures. The methods currently in use are extremely
computationally intensive and slow, so they are usually used in
combination with symmetric encryption for transmitting large
amounts of data. The most widely used RSA encryption,
developed by Ron Rivest, Adi Shamir and Leonard Adleman,
was investigated with 2048 and 4096 bit long keys, as the
minimum key length currently recommended for adequate
security is 2048 bits.

1) RSA Encryption Results
In the RSA encryption, the same randomly generated file was

encrypted and decrypted with the same key pair for each SBC.
To test the performance of encryption using the 2048-bit key,
one 1920-bit file was encrypted or decrypted 100 times in each
measurement cycle for the 2048-bit key, and a 4000-bit file for
the 4096-bit key (RSA is only able to encrypt data to a
maximum amount equal to the key size, minus padding and
header data.). The results of the test are presented in Table VIII
and graphically displayed in Fig. 4.
2) Discussion of the Results

The analysis of the values shows that:
• Odroid-U3 is the fastest for encoding, Odroid-XU3 Lite

is the second, while for decoding, the order is reversed.
Odroid-C1 is the third one in all cases.

• The slowest is the Raspberry Pi.
• The two SBCs based on the same SoC produced different

results (Banana Pi and Orange Pi Mini), with the Banana
Pi being faster in the encoding operation and the Orange
Pi Mini in the decoding operation. In all cases, the
differences were below 10% for the two SoCs.

• The relative performance of each SBC to the other is not
necessarily the same for the different tasks.

• Even the speed of the fastest SBC is a fraction of that of
the Opteron 1222-based system (e.g. for 4096-bit key

Fig. 3. Average speed values of digest and message authentication (MB/s),
single thread, 8k block

TABLE VII
AVERAGE SPEED VALUES OF SHA256 MESSAGE DIGEST CREATION (MB/S),

MULTIPLE THREADS, 8K BLOCK

Model Thr.
SHA256
x threads
(MB/s)

SHA256
1 thread
(MB/s)

Rel.
acc.

Std.
dev.

Banana Pi 2 52.04 26.01 2.00 0.08
Banana Pi M2 4 111.79 27.93 4.00 0.13
ODROID-C1 4 174.79 43.43 4.02 0.21
ODROID-U3 4 260.81 69.70 3.74 112.01
ODROID-XU3 L. 4 317.19 91.43 3.47 6.99
ODROID-XU3 L. 8 442.94 91.43 4.84 31.49
Orange Pi Mini 2 56.32 28.33 1.99 0.13
Orange Pi Plus 4 72.00 34.52 2.09 32.10
Raspberry Pi 2 4 99.54 24.84 4.01 0.09
Opteron 1222 2 370.94 186.18 1.99 1.72

TABLE VIII
AVERAGE EXECUTION TIMES OF 100 PIECES OF ENCRYPTION AND

DECRYPTION BY RSA ALGORITHM (IN SECONDS) – LOWER IS BETTER!

Model 2048 bit
encr.

2048 bit
decr.

4096 bit
encr.

4096 bit
decr.

Banana Pi 2.71 7.89 3.14 38.54
Banana Pi M2 2.43 7.07 2.82 34.42
BeagleBone Black 3.03 7.68 3.42 34.58
ODROID-C1 1.74 5.05 2.02 24.56
ODROID-U3 1.10 3.30 1.28 16.12
ODROID-XU3 L. 1.18 2.73 1.31 11.41
Orange Pi Mini 2.88 7.62 3.28 35.33
Orange Pi Plus 2.22 6.16 2.55 29.27
Raspberry Pi 6.63 15.19 7.36 64.64
Raspberry Pi 2 2.93 8.15 3.37 38.84
Opteron 1222 0.50 0.74 0.52 1.89

Fig. 4. Average execution times of 100 pieces of encryption and decryption by
RSA algorithm (in seconds) – Lower is better!

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

8) Multi-thread Results
To present the results, we have chosen the SHA256 digest

generation, which are shown in Table VII. The structure of the
table is the same as in Table IV.
9) Discussion of the Results

The analysis of the values shows that:
• Odroid-XU3 Lite is the fastest, Odroid-U3 is the second,

and Odroid-C1 is the third.
• The Odroid-XU3 Lite, Odroid-U3 and Orange Pi Plus

produce large standard deviations (The ratio of speed to
standard deviation for devices Odroid-U3 and Orange Pi
Plus are almost identical). The measured performance is
not constant, shows significant fluctuations and the
system behavior is not predictable.

• Among devices with low standard deviation, the fastest
SBCs are Odroid-C1, Banana Pi M2 and Raspberry Pi 2.

• The relative acceleration is almost equal to the number of
cores used, except for the three devices with high
standard deviation. By increasing the number of cores, a
linearly proportional acceleration is obtained.

B. Public key Cryptography
Public key cryptography is generally used for the encrypted

transmission of symmetric keys, and the creation of digital
signatures. The methods currently in use are extremely
computationally intensive and slow, so they are usually used in
combination with symmetric encryption for transmitting large
amounts of data. The most widely used RSA encryption,
developed by Ron Rivest, Adi Shamir and Leonard Adleman,
was investigated with 2048 and 4096 bit long keys, as the
minimum key length currently recommended for adequate
security is 2048 bits.

1) RSA Encryption Results
In the RSA encryption, the same randomly generated file was

encrypted and decrypted with the same key pair for each SBC.
To test the performance of encryption using the 2048-bit key,
one 1920-bit file was encrypted or decrypted 100 times in each
measurement cycle for the 2048-bit key, and a 4000-bit file for
the 4096-bit key (RSA is only able to encrypt data to a
maximum amount equal to the key size, minus padding and
header data.). The results of the test are presented in Table VIII
and graphically displayed in Fig. 4.
2) Discussion of the Results

The analysis of the values shows that:
• Odroid-U3 is the fastest for encoding, Odroid-XU3 Lite

is the second, while for decoding, the order is reversed.
Odroid-C1 is the third one in all cases.

• The slowest is the Raspberry Pi.
• The two SBCs based on the same SoC produced different

results (Banana Pi and Orange Pi Mini), with the Banana
Pi being faster in the encoding operation and the Orange
Pi Mini in the decoding operation. In all cases, the
differences were below 10% for the two SoCs.

• The relative performance of each SBC to the other is not
necessarily the same for the different tasks.

• Even the speed of the fastest SBC is a fraction of that of
the Opteron 1222-based system (e.g. for 4096-bit key

Fig. 3. Average speed values of digest and message authentication (MB/s),
single thread, 8k block

TABLE VII
AVERAGE SPEED VALUES OF SHA256 MESSAGE DIGEST CREATION (MB/S),

MULTIPLE THREADS, 8K BLOCK

Model Thr.
SHA256
x threads
(MB/s)

SHA256
1 thread
(MB/s)

Rel.
acc.

Std.
dev.

Banana Pi 2 52.04 26.01 2.00 0.08
Banana Pi M2 4 111.79 27.93 4.00 0.13
ODROID-C1 4 174.79 43.43 4.02 0.21
ODROID-U3 4 260.81 69.70 3.74 112.01
ODROID-XU3 L. 4 317.19 91.43 3.47 6.99
ODROID-XU3 L. 8 442.94 91.43 4.84 31.49
Orange Pi Mini 2 56.32 28.33 1.99 0.13
Orange Pi Plus 4 72.00 34.52 2.09 32.10
Raspberry Pi 2 4 99.54 24.84 4.01 0.09
Opteron 1222 2 370.94 186.18 1.99 1.72

TABLE VIII
AVERAGE EXECUTION TIMES OF 100 PIECES OF ENCRYPTION AND

DECRYPTION BY RSA ALGORITHM (IN SECONDS) – LOWER IS BETTER!

Model 2048 bit
encr.

2048 bit
decr.

4096 bit
encr.

4096 bit
decr.

Banana Pi 2.71 7.89 3.14 38.54
Banana Pi M2 2.43 7.07 2.82 34.42
BeagleBone Black 3.03 7.68 3.42 34.58
ODROID-C1 1.74 5.05 2.02 24.56
ODROID-U3 1.10 3.30 1.28 16.12
ODROID-XU3 L. 1.18 2.73 1.31 11.41
Orange Pi Mini 2.88 7.62 3.28 35.33
Orange Pi Plus 2.22 6.16 2.55 29.27
Raspberry Pi 6.63 15.19 7.36 64.64
Raspberry Pi 2 2.93 8.15 3.37 38.84
Opteron 1222 0.50 0.74 0.52 1.89

Fig. 4. Average execution times of 100 pieces of encryption and decryption by
RSA algorithm (in seconds) – Lower is better!

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

8) Multi-thread Results
To present the results, we have chosen the SHA256 digest

generation, which are shown in Table VII. The structure of the
table is the same as in Table IV.
9) Discussion of the Results

The analysis of the values shows that:
• Odroid-XU3 Lite is the fastest, Odroid-U3 is the second,

and Odroid-C1 is the third.
• The Odroid-XU3 Lite, Odroid-U3 and Orange Pi Plus

produce large standard deviations (The ratio of speed to
standard deviation for devices Odroid-U3 and Orange Pi
Plus are almost identical). The measured performance is
not constant, shows significant fluctuations and the
system behavior is not predictable.

• Among devices with low standard deviation, the fastest
SBCs are Odroid-C1, Banana Pi M2 and Raspberry Pi 2.

• The relative acceleration is almost equal to the number of
cores used, except for the three devices with high
standard deviation. By increasing the number of cores, a
linearly proportional acceleration is obtained.

B. Public key Cryptography
Public key cryptography is generally used for the encrypted

transmission of symmetric keys, and the creation of digital
signatures. The methods currently in use are extremely
computationally intensive and slow, so they are usually used in
combination with symmetric encryption for transmitting large
amounts of data. The most widely used RSA encryption,
developed by Ron Rivest, Adi Shamir and Leonard Adleman,
was investigated with 2048 and 4096 bit long keys, as the
minimum key length currently recommended for adequate
security is 2048 bits.

1) RSA Encryption Results
In the RSA encryption, the same randomly generated file was

encrypted and decrypted with the same key pair for each SBC.
To test the performance of encryption using the 2048-bit key,
one 1920-bit file was encrypted or decrypted 100 times in each
measurement cycle for the 2048-bit key, and a 4000-bit file for
the 4096-bit key (RSA is only able to encrypt data to a
maximum amount equal to the key size, minus padding and
header data.). The results of the test are presented in Table VIII
and graphically displayed in Fig. 4.
2) Discussion of the Results

The analysis of the values shows that:
• Odroid-U3 is the fastest for encoding, Odroid-XU3 Lite

is the second, while for decoding, the order is reversed.
Odroid-C1 is the third one in all cases.

• The slowest is the Raspberry Pi.
• The two SBCs based on the same SoC produced different

results (Banana Pi and Orange Pi Mini), with the Banana
Pi being faster in the encoding operation and the Orange
Pi Mini in the decoding operation. In all cases, the
differences were below 10% for the two SoCs.

• The relative performance of each SBC to the other is not
necessarily the same for the different tasks.

• Even the speed of the fastest SBC is a fraction of that of
the Opteron 1222-based system (e.g. for 4096-bit key

Fig. 3. Average speed values of digest and message authentication (MB/s),
single thread, 8k block

TABLE VII
AVERAGE SPEED VALUES OF SHA256 MESSAGE DIGEST CREATION (MB/S),

MULTIPLE THREADS, 8K BLOCK

Model Thr.
SHA256
x threads
(MB/s)

SHA256
1 thread
(MB/s)

Rel.
acc.

Std.
dev.

Banana Pi 2 52.04 26.01 2.00 0.08
Banana Pi M2 4 111.79 27.93 4.00 0.13
ODROID-C1 4 174.79 43.43 4.02 0.21
ODROID-U3 4 260.81 69.70 3.74 112.01
ODROID-XU3 L. 4 317.19 91.43 3.47 6.99
ODROID-XU3 L. 8 442.94 91.43 4.84 31.49
Orange Pi Mini 2 56.32 28.33 1.99 0.13
Orange Pi Plus 4 72.00 34.52 2.09 32.10
Raspberry Pi 2 4 99.54 24.84 4.01 0.09
Opteron 1222 2 370.94 186.18 1.99 1.72

TABLE VIII
AVERAGE EXECUTION TIMES OF 100 PIECES OF ENCRYPTION AND

DECRYPTION BY RSA ALGORITHM (IN SECONDS) – LOWER IS BETTER!

Model 2048 bit
encr.

2048 bit
decr.

4096 bit
encr.

4096 bit
decr.

Banana Pi 2.71 7.89 3.14 38.54
Banana Pi M2 2.43 7.07 2.82 34.42
BeagleBone Black 3.03 7.68 3.42 34.58
ODROID-C1 1.74 5.05 2.02 24.56
ODROID-U3 1.10 3.30 1.28 16.12
ODROID-XU3 L. 1.18 2.73 1.31 11.41
Orange Pi Mini 2.88 7.62 3.28 35.33
Orange Pi Plus 2.22 6.16 2.55 29.27
Raspberry Pi 6.63 15.19 7.36 64.64
Raspberry Pi 2 2.93 8.15 3.37 38.84
Opteron 1222 0.50 0.74 0.52 1.89

Fig. 4. Average execution times of 100 pieces of encryption and decryption by
RSA algorithm (in seconds) – Lower is better!

Performance Analysisof Encryption Capabilities
of ARM-based Single Board Microcomputers

JUNE 2023 • VOLUME XV • NUMBER 242

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

length decoding: 11.41/1.89=6.04).

C. Random Number Generation
Random numbers and their generation play a key role in

cryptography. Without the right random numbers, secure
encryption cannot be done. Generating true random numbers
(TRNs) with computers is almost impossible. There are several
algorithms for generating pseudo random numbers (PRN),
which are recommended for different purposes. Some are
explicitly not recommended for encryption tasks, while others
are suitable (e.g. Dual_EC_DRBG).

According to the available information, (almost) all ARM-
based SoCs under investigation have some kind of hardware
random number generator (HWRNG). The following
information has been extracted from publicly available
documentation:

• Amlogic S805: Built-in LSFR Random number
generator.

• TI AM3359: Crypto Hardware Accelerators (AES, SHA,
PKA, RNG).

• Allwinner A20: 160-bit hardware PRNG with 192-bit
seed.

• Allwinner A31: 160-bit hardware PRNG with 192-bit
seed.

• Allwinner H3: 160-bits hardware PRNG with 175-bits
seed. 256-bits TRNG.

• Samsung Exynos 5422: Hardware Crypto Accelerators:
AES, DES/3DES, ARC4, SHA-1/SHA-
256/MD5/HMAC/PRNG, TRNG, PKA, and Secure Key
Manager.

The two SoCs produced by Broadcom also contain some
form of HWRNG, but no documentation has been found.

1) Support
HWRNG is not well documented for any of the SoCs

examined. Only partial information could be found.
A common Linux driver for all Allwinner SoCs HWRNG is

produced, but at the time of testing it was not yet working
reliably.

No information could be found for Samsung SoCs.
The HWRNG of the TI AM3359 SoC is supported in the new

kernels, however the Linux released for the BeagleBone Black
does not yet have this kernel.

The Amlogic S805 in Odroid-C1 is supported.
The two Broadcom SoCs found in the Raspberry Pi SBCs are

also supported.

2) Tests
a) Entropy

Due to the shortcomings of the documentation, we were only
able to examine the quality of the random numbers to a limited
extent: we only performed statistical analysis on the
(pseudo)random numbers generated by the SBCs. The most
commonly used tools for statistical analysis and their latest
versions are the following:

• Diehard [18]
• Dieharder 3.31.1 [19]
• NIST Special Publication 800-22rev1a 2.1.2 [20]

• Ent [21]
• rngtest [22]
• TestU01 1.2.3 [23]
• Practically Random 0.94 [24]
To perform the tests, 10GB of (pseudo)random numbers were

generated and analyzed. The results of the analyses are
summarized in Table IX.

The results show that none of the random numbers generated
by the systems can be used for encryption. However, the Linux
kernel is prepared to use multiple sources for random number
generation, so the weakness of one source is not necessarily a
problem, but the use of HWRNG can speed up random number
generation. It is also important to note that the lack of proper
documentation (hence knowledge of how the SoC HWRNG
works) is also a drawback for its use in encryption applications.

b) Visual Analysis
Rather just for interest, we also visually examined the quality

of the random numbers produced. Fig. 5. shows the images
created from the generated random numbers in 256 by 256 grids
of (24 bit) RGB values. A close inspection of the figures does
not reveal any anomalous repetition or shape.

c) Speed
Table X shows the speed of random number generation using

the HWRNG for the three SBCs under study.

V. CONCLUSIONS

The results show that even the slowest SBC has sufficient
performance to perform the encryption task required in a
normal application. For more specialized applications with
higher amount of encrypted traffic, the characteristics of each

Fig. 5. Images created from random numbers generated by Odroid-C1,
Raspberry Pi, and Raspberry Pi 2

TABLE IX
RESULTS OF THE STATISTICAL ANALYSIS OF THE GENERATED RANDOM

NUMBERS

Model
Dieharder Ent Χ2

distribution
NIST

800-22

ODROID-C1 Passed suspect
(98,71%) 1 error

Raspberry Pi 1 weak
(bitstream) Ok (59,7%) Success

Raspberry Pi 2 1 weak (rank
32x32)

almost suspect
(90,83%) 1 error

TABLE X
THE SPEED VALUES OF THE HARDWARE RANDOM NUMBER GENERATORS

Model
Speed

ODROID-C1 7.3MB/s
Raspberry Pi 105kB/s
Raspberry Pi 2 147kB/s

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

length decoding: 11.41/1.89=6.04).

C. Random Number Generation
Random numbers and their generation play a key role in

cryptography. Without the right random numbers, secure
encryption cannot be done. Generating true random numbers
(TRNs) with computers is almost impossible. There are several
algorithms for generating pseudo random numbers (PRN),
which are recommended for different purposes. Some are
explicitly not recommended for encryption tasks, while others
are suitable (e.g. Dual_EC_DRBG).

According to the available information, (almost) all ARM-
based SoCs under investigation have some kind of hardware
random number generator (HWRNG). The following
information has been extracted from publicly available
documentation:

• Amlogic S805: Built-in LSFR Random number
generator.

• TI AM3359: Crypto Hardware Accelerators (AES, SHA,
PKA, RNG).

• Allwinner A20: 160-bit hardware PRNG with 192-bit
seed.

• Allwinner A31: 160-bit hardware PRNG with 192-bit
seed.

• Allwinner H3: 160-bits hardware PRNG with 175-bits
seed. 256-bits TRNG.

• Samsung Exynos 5422: Hardware Crypto Accelerators:
AES, DES/3DES, ARC4, SHA-1/SHA-
256/MD5/HMAC/PRNG, TRNG, PKA, and Secure Key
Manager.

The two SoCs produced by Broadcom also contain some
form of HWRNG, but no documentation has been found.

1) Support
HWRNG is not well documented for any of the SoCs

examined. Only partial information could be found.
A common Linux driver for all Allwinner SoCs HWRNG is

produced, but at the time of testing it was not yet working
reliably.

No information could be found for Samsung SoCs.
The HWRNG of the TI AM3359 SoC is supported in the new

kernels, however the Linux released for the BeagleBone Black
does not yet have this kernel.

The Amlogic S805 in Odroid-C1 is supported.
The two Broadcom SoCs found in the Raspberry Pi SBCs are

also supported.

2) Tests
a) Entropy

Due to the shortcomings of the documentation, we were only
able to examine the quality of the random numbers to a limited
extent: we only performed statistical analysis on the
(pseudo)random numbers generated by the SBCs. The most
commonly used tools for statistical analysis and their latest
versions are the following:

• Diehard [18]
• Dieharder 3.31.1 [19]
• NIST Special Publication 800-22rev1a 2.1.2 [20]

• Ent [21]
• rngtest [22]
• TestU01 1.2.3 [23]
• Practically Random 0.94 [24]
To perform the tests, 10GB of (pseudo)random numbers were

generated and analyzed. The results of the analyses are
summarized in Table IX.

The results show that none of the random numbers generated
by the systems can be used for encryption. However, the Linux
kernel is prepared to use multiple sources for random number
generation, so the weakness of one source is not necessarily a
problem, but the use of HWRNG can speed up random number
generation. It is also important to note that the lack of proper
documentation (hence knowledge of how the SoC HWRNG
works) is also a drawback for its use in encryption applications.

b) Visual Analysis
Rather just for interest, we also visually examined the quality

of the random numbers produced. Fig. 5. shows the images
created from the generated random numbers in 256 by 256 grids
of (24 bit) RGB values. A close inspection of the figures does
not reveal any anomalous repetition or shape.

c) Speed
Table X shows the speed of random number generation using

the HWRNG for the three SBCs under study.

V. CONCLUSIONS

The results show that even the slowest SBC has sufficient
performance to perform the encryption task required in a
normal application. For more specialized applications with
higher amount of encrypted traffic, the characteristics of each

Fig. 5. Images created from random numbers generated by Odroid-C1,
Raspberry Pi, and Raspberry Pi 2

TABLE IX
RESULTS OF THE STATISTICAL ANALYSIS OF THE GENERATED RANDOM

NUMBERS

Model
Dieharder Ent Χ2

distribution
NIST

800-22

ODROID-C1 Passed suspect
(98,71%) 1 error

Raspberry Pi 1 weak
(bitstream) Ok (59,7%) Success

Raspberry Pi 2 1 weak (rank
32x32)

almost suspect
(90,83%) 1 error

TABLE X
THE SPEED VALUES OF THE HARDWARE RANDOM NUMBER GENERATORS

Model
Speed

ODROID-C1 7.3MB/s
Raspberry Pi 105kB/s
Raspberry Pi 2 147kB/s

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

length decoding: 11.41/1.89=6.04).

C. Random Number Generation
Random numbers and their generation play a key role in

cryptography. Without the right random numbers, secure
encryption cannot be done. Generating true random numbers
(TRNs) with computers is almost impossible. There are several
algorithms for generating pseudo random numbers (PRN),
which are recommended for different purposes. Some are
explicitly not recommended for encryption tasks, while others
are suitable (e.g. Dual_EC_DRBG).

According to the available information, (almost) all ARM-
based SoCs under investigation have some kind of hardware
random number generator (HWRNG). The following
information has been extracted from publicly available
documentation:

• Amlogic S805: Built-in LSFR Random number
generator.

• TI AM3359: Crypto Hardware Accelerators (AES, SHA,
PKA, RNG).

• Allwinner A20: 160-bit hardware PRNG with 192-bit
seed.

• Allwinner A31: 160-bit hardware PRNG with 192-bit
seed.

• Allwinner H3: 160-bits hardware PRNG with 175-bits
seed. 256-bits TRNG.

• Samsung Exynos 5422: Hardware Crypto Accelerators:
AES, DES/3DES, ARC4, SHA-1/SHA-
256/MD5/HMAC/PRNG, TRNG, PKA, and Secure Key
Manager.

The two SoCs produced by Broadcom also contain some
form of HWRNG, but no documentation has been found.

1) Support
HWRNG is not well documented for any of the SoCs

examined. Only partial information could be found.
A common Linux driver for all Allwinner SoCs HWRNG is

produced, but at the time of testing it was not yet working
reliably.

No information could be found for Samsung SoCs.
The HWRNG of the TI AM3359 SoC is supported in the new

kernels, however the Linux released for the BeagleBone Black
does not yet have this kernel.

The Amlogic S805 in Odroid-C1 is supported.
The two Broadcom SoCs found in the Raspberry Pi SBCs are

also supported.

2) Tests
a) Entropy

Due to the shortcomings of the documentation, we were only
able to examine the quality of the random numbers to a limited
extent: we only performed statistical analysis on the
(pseudo)random numbers generated by the SBCs. The most
commonly used tools for statistical analysis and their latest
versions are the following:

• Diehard [18]
• Dieharder 3.31.1 [19]
• NIST Special Publication 800-22rev1a 2.1.2 [20]

• Ent [21]
• rngtest [22]
• TestU01 1.2.3 [23]
• Practically Random 0.94 [24]
To perform the tests, 10GB of (pseudo)random numbers were

generated and analyzed. The results of the analyses are
summarized in Table IX.

The results show that none of the random numbers generated
by the systems can be used for encryption. However, the Linux
kernel is prepared to use multiple sources for random number
generation, so the weakness of one source is not necessarily a
problem, but the use of HWRNG can speed up random number
generation. It is also important to note that the lack of proper
documentation (hence knowledge of how the SoC HWRNG
works) is also a drawback for its use in encryption applications.

b) Visual Analysis
Rather just for interest, we also visually examined the quality

of the random numbers produced. Fig. 5. shows the images
created from the generated random numbers in 256 by 256 grids
of (24 bit) RGB values. A close inspection of the figures does
not reveal any anomalous repetition or shape.

c) Speed
Table X shows the speed of random number generation using

the HWRNG for the three SBCs under study.

V. CONCLUSIONS

The results show that even the slowest SBC has sufficient
performance to perform the encryption task required in a
normal application. For more specialized applications with
higher amount of encrypted traffic, the characteristics of each

Fig. 5. Images created from random numbers generated by Odroid-C1,
Raspberry Pi, and Raspberry Pi 2

TABLE IX
RESULTS OF THE STATISTICAL ANALYSIS OF THE GENERATED RANDOM

NUMBERS

Model
Dieharder Ent Χ2

distribution
NIST

800-22

ODROID-C1 Passed suspect
(98,71%) 1 error

Raspberry Pi 1 weak
(bitstream) Ok (59,7%) Success

Raspberry Pi 2 1 weak (rank
32x32)

almost suspect
(90,83%) 1 error

TABLE X
THE SPEED VALUES OF THE HARDWARE RANDOM NUMBER GENERATORS

Model
Speed

ODROID-C1 7.3MB/s
Raspberry Pi 105kB/s
Raspberry Pi 2 147kB/s

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

length decoding: 11.41/1.89=6.04).

C. Random Number Generation
Random numbers and their generation play a key role in

cryptography. Without the right random numbers, secure
encryption cannot be done. Generating true random numbers
(TRNs) with computers is almost impossible. There are several
algorithms for generating pseudo random numbers (PRN),
which are recommended for different purposes. Some are
explicitly not recommended for encryption tasks, while others
are suitable (e.g. Dual_EC_DRBG).

According to the available information, (almost) all ARM-
based SoCs under investigation have some kind of hardware
random number generator (HWRNG). The following
information has been extracted from publicly available
documentation:

• Amlogic S805: Built-in LSFR Random number
generator.

• TI AM3359: Crypto Hardware Accelerators (AES, SHA,
PKA, RNG).

• Allwinner A20: 160-bit hardware PRNG with 192-bit
seed.

• Allwinner A31: 160-bit hardware PRNG with 192-bit
seed.

• Allwinner H3: 160-bits hardware PRNG with 175-bits
seed. 256-bits TRNG.

• Samsung Exynos 5422: Hardware Crypto Accelerators:
AES, DES/3DES, ARC4, SHA-1/SHA-
256/MD5/HMAC/PRNG, TRNG, PKA, and Secure Key
Manager.

The two SoCs produced by Broadcom also contain some
form of HWRNG, but no documentation has been found.

1) Support
HWRNG is not well documented for any of the SoCs

examined. Only partial information could be found.
A common Linux driver for all Allwinner SoCs HWRNG is

produced, but at the time of testing it was not yet working
reliably.

No information could be found for Samsung SoCs.
The HWRNG of the TI AM3359 SoC is supported in the new

kernels, however the Linux released for the BeagleBone Black
does not yet have this kernel.

The Amlogic S805 in Odroid-C1 is supported.
The two Broadcom SoCs found in the Raspberry Pi SBCs are

also supported.

2) Tests
a) Entropy

Due to the shortcomings of the documentation, we were only
able to examine the quality of the random numbers to a limited
extent: we only performed statistical analysis on the
(pseudo)random numbers generated by the SBCs. The most
commonly used tools for statistical analysis and their latest
versions are the following:

• Diehard [18]
• Dieharder 3.31.1 [19]
• NIST Special Publication 800-22rev1a 2.1.2 [20]

• Ent [21]
• rngtest [22]
• TestU01 1.2.3 [23]
• Practically Random 0.94 [24]
To perform the tests, 10GB of (pseudo)random numbers were

generated and analyzed. The results of the analyses are
summarized in Table IX.

The results show that none of the random numbers generated
by the systems can be used for encryption. However, the Linux
kernel is prepared to use multiple sources for random number
generation, so the weakness of one source is not necessarily a
problem, but the use of HWRNG can speed up random number
generation. It is also important to note that the lack of proper
documentation (hence knowledge of how the SoC HWRNG
works) is also a drawback for its use in encryption applications.

b) Visual Analysis
Rather just for interest, we also visually examined the quality

of the random numbers produced. Fig. 5. shows the images
created from the generated random numbers in 256 by 256 grids
of (24 bit) RGB values. A close inspection of the figures does
not reveal any anomalous repetition or shape.

c) Speed
Table X shows the speed of random number generation using

the HWRNG for the three SBCs under study.

V. CONCLUSIONS

The results show that even the slowest SBC has sufficient
performance to perform the encryption task required in a
normal application. For more specialized applications with
higher amount of encrypted traffic, the characteristics of each

Fig. 5. Images created from random numbers generated by Odroid-C1,
Raspberry Pi, and Raspberry Pi 2

TABLE IX
RESULTS OF THE STATISTICAL ANALYSIS OF THE GENERATED RANDOM

NUMBERS

Model
Dieharder Ent Χ2

distribution
NIST

800-22

ODROID-C1 Passed suspect
(98,71%) 1 error

Raspberry Pi 1 weak
(bitstream) Ok (59,7%) Success

Raspberry Pi 2 1 weak (rank
32x32)

almost suspect
(90,83%) 1 error

TABLE X
THE SPEED VALUES OF THE HARDWARE RANDOM NUMBER GENERATORS

Model
Speed

ODROID-C1 7.3MB/s
Raspberry Pi 105kB/s
Raspberry Pi 2 147kB/s

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

length decoding: 11.41/1.89=6.04).

C. Random Number Generation
Random numbers and their generation play a key role in

cryptography. Without the right random numbers, secure
encryption cannot be done. Generating true random numbers
(TRNs) with computers is almost impossible. There are several
algorithms for generating pseudo random numbers (PRN),
which are recommended for different purposes. Some are
explicitly not recommended for encryption tasks, while others
are suitable (e.g. Dual_EC_DRBG).

According to the available information, (almost) all ARM-
based SoCs under investigation have some kind of hardware
random number generator (HWRNG). The following
information has been extracted from publicly available
documentation:

• Amlogic S805: Built-in LSFR Random number
generator.

• TI AM3359: Crypto Hardware Accelerators (AES, SHA,
PKA, RNG).

• Allwinner A20: 160-bit hardware PRNG with 192-bit
seed.

• Allwinner A31: 160-bit hardware PRNG with 192-bit
seed.

• Allwinner H3: 160-bits hardware PRNG with 175-bits
seed. 256-bits TRNG.

• Samsung Exynos 5422: Hardware Crypto Accelerators:
AES, DES/3DES, ARC4, SHA-1/SHA-
256/MD5/HMAC/PRNG, TRNG, PKA, and Secure Key
Manager.

The two SoCs produced by Broadcom also contain some
form of HWRNG, but no documentation has been found.

1) Support
HWRNG is not well documented for any of the SoCs

examined. Only partial information could be found.
A common Linux driver for all Allwinner SoCs HWRNG is

produced, but at the time of testing it was not yet working
reliably.

No information could be found for Samsung SoCs.
The HWRNG of the TI AM3359 SoC is supported in the new

kernels, however the Linux released for the BeagleBone Black
does not yet have this kernel.

The Amlogic S805 in Odroid-C1 is supported.
The two Broadcom SoCs found in the Raspberry Pi SBCs are

also supported.

2) Tests
a) Entropy

Due to the shortcomings of the documentation, we were only
able to examine the quality of the random numbers to a limited
extent: we only performed statistical analysis on the
(pseudo)random numbers generated by the SBCs. The most
commonly used tools for statistical analysis and their latest
versions are the following:

• Diehard [18]
• Dieharder 3.31.1 [19]
• NIST Special Publication 800-22rev1a 2.1.2 [20]

• Ent [21]
• rngtest [22]
• TestU01 1.2.3 [23]
• Practically Random 0.94 [24]
To perform the tests, 10GB of (pseudo)random numbers were

generated and analyzed. The results of the analyses are
summarized in Table IX.

The results show that none of the random numbers generated
by the systems can be used for encryption. However, the Linux
kernel is prepared to use multiple sources for random number
generation, so the weakness of one source is not necessarily a
problem, but the use of HWRNG can speed up random number
generation. It is also important to note that the lack of proper
documentation (hence knowledge of how the SoC HWRNG
works) is also a drawback for its use in encryption applications.

b) Visual Analysis
Rather just for interest, we also visually examined the quality

of the random numbers produced. Fig. 5. shows the images
created from the generated random numbers in 256 by 256 grids
of (24 bit) RGB values. A close inspection of the figures does
not reveal any anomalous repetition or shape.

c) Speed
Table X shows the speed of random number generation using

the HWRNG for the three SBCs under study.

V. CONCLUSIONS

The results show that even the slowest SBC has sufficient
performance to perform the encryption task required in a
normal application. For more specialized applications with
higher amount of encrypted traffic, the characteristics of each

Fig. 5. Images created from random numbers generated by Odroid-C1,
Raspberry Pi, and Raspberry Pi 2

TABLE IX
RESULTS OF THE STATISTICAL ANALYSIS OF THE GENERATED RANDOM

NUMBERS

Model
Dieharder Ent Χ2

distribution
NIST

800-22

ODROID-C1 Passed suspect
(98,71%) 1 error

Raspberry Pi 1 weak
(bitstream) Ok (59,7%) Success

Raspberry Pi 2 1 weak (rank
32x32)

almost suspect
(90,83%) 1 error

TABLE X
THE SPEED VALUES OF THE HARDWARE RANDOM NUMBER GENERATORS

Model
Speed

ODROID-C1 7.3MB/s
Raspberry Pi 105kB/s
Raspberry Pi 2 147kB/s

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

length decoding: 11.41/1.89=6.04).

C. Random Number Generation
Random numbers and their generation play a key role in

cryptography. Without the right random numbers, secure
encryption cannot be done. Generating true random numbers
(TRNs) with computers is almost impossible. There are several
algorithms for generating pseudo random numbers (PRN),
which are recommended for different purposes. Some are
explicitly not recommended for encryption tasks, while others
are suitable (e.g. Dual_EC_DRBG).

According to the available information, (almost) all ARM-
based SoCs under investigation have some kind of hardware
random number generator (HWRNG). The following
information has been extracted from publicly available
documentation:

• Amlogic S805: Built-in LSFR Random number
generator.

• TI AM3359: Crypto Hardware Accelerators (AES, SHA,
PKA, RNG).

• Allwinner A20: 160-bit hardware PRNG with 192-bit
seed.

• Allwinner A31: 160-bit hardware PRNG with 192-bit
seed.

• Allwinner H3: 160-bits hardware PRNG with 175-bits
seed. 256-bits TRNG.

• Samsung Exynos 5422: Hardware Crypto Accelerators:
AES, DES/3DES, ARC4, SHA-1/SHA-
256/MD5/HMAC/PRNG, TRNG, PKA, and Secure Key
Manager.

The two SoCs produced by Broadcom also contain some
form of HWRNG, but no documentation has been found.

1) Support
HWRNG is not well documented for any of the SoCs

examined. Only partial information could be found.
A common Linux driver for all Allwinner SoCs HWRNG is

produced, but at the time of testing it was not yet working
reliably.

No information could be found for Samsung SoCs.
The HWRNG of the TI AM3359 SoC is supported in the new

kernels, however the Linux released for the BeagleBone Black
does not yet have this kernel.

The Amlogic S805 in Odroid-C1 is supported.
The two Broadcom SoCs found in the Raspberry Pi SBCs are

also supported.

2) Tests
a) Entropy

Due to the shortcomings of the documentation, we were only
able to examine the quality of the random numbers to a limited
extent: we only performed statistical analysis on the
(pseudo)random numbers generated by the SBCs. The most
commonly used tools for statistical analysis and their latest
versions are the following:

• Diehard [18]
• Dieharder 3.31.1 [19]
• NIST Special Publication 800-22rev1a 2.1.2 [20]

• Ent [21]
• rngtest [22]
• TestU01 1.2.3 [23]
• Practically Random 0.94 [24]
To perform the tests, 10GB of (pseudo)random numbers were

generated and analyzed. The results of the analyses are
summarized in Table IX.

The results show that none of the random numbers generated
by the systems can be used for encryption. However, the Linux
kernel is prepared to use multiple sources for random number
generation, so the weakness of one source is not necessarily a
problem, but the use of HWRNG can speed up random number
generation. It is also important to note that the lack of proper
documentation (hence knowledge of how the SoC HWRNG
works) is also a drawback for its use in encryption applications.

b) Visual Analysis
Rather just for interest, we also visually examined the quality

of the random numbers produced. Fig. 5. shows the images
created from the generated random numbers in 256 by 256 grids
of (24 bit) RGB values. A close inspection of the figures does
not reveal any anomalous repetition or shape.

c) Speed
Table X shows the speed of random number generation using

the HWRNG for the three SBCs under study.

V. CONCLUSIONS

The results show that even the slowest SBC has sufficient
performance to perform the encryption task required in a
normal application. For more specialized applications with
higher amount of encrypted traffic, the characteristics of each

Fig. 5. Images created from random numbers generated by Odroid-C1,
Raspberry Pi, and Raspberry Pi 2

TABLE IX
RESULTS OF THE STATISTICAL ANALYSIS OF THE GENERATED RANDOM

NUMBERS

Model
Dieharder Ent Χ2

distribution
NIST

800-22

ODROID-C1 Passed suspect
(98,71%) 1 error

Raspberry Pi 1 weak
(bitstream) Ok (59,7%) Success

Raspberry Pi 2 1 weak (rank
32x32)

almost suspect
(90,83%) 1 error

TABLE X
THE SPEED VALUES OF THE HARDWARE RANDOM NUMBER GENERATORS

Model
Speed

ODROID-C1 7.3MB/s
Raspberry Pi 105kB/s
Raspberry Pi 2 147kB/s

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

length decoding: 11.41/1.89=6.04).

C. Random Number Generation
Random numbers and their generation play a key role in

cryptography. Without the right random numbers, secure
encryption cannot be done. Generating true random numbers
(TRNs) with computers is almost impossible. There are several
algorithms for generating pseudo random numbers (PRN),
which are recommended for different purposes. Some are
explicitly not recommended for encryption tasks, while others
are suitable (e.g. Dual_EC_DRBG).

According to the available information, (almost) all ARM-
based SoCs under investigation have some kind of hardware
random number generator (HWRNG). The following
information has been extracted from publicly available
documentation:

• Amlogic S805: Built-in LSFR Random number
generator.

• TI AM3359: Crypto Hardware Accelerators (AES, SHA,
PKA, RNG).

• Allwinner A20: 160-bit hardware PRNG with 192-bit
seed.

• Allwinner A31: 160-bit hardware PRNG with 192-bit
seed.

• Allwinner H3: 160-bits hardware PRNG with 175-bits
seed. 256-bits TRNG.

• Samsung Exynos 5422: Hardware Crypto Accelerators:
AES, DES/3DES, ARC4, SHA-1/SHA-
256/MD5/HMAC/PRNG, TRNG, PKA, and Secure Key
Manager.

The two SoCs produced by Broadcom also contain some
form of HWRNG, but no documentation has been found.

1) Support
HWRNG is not well documented for any of the SoCs

examined. Only partial information could be found.
A common Linux driver for all Allwinner SoCs HWRNG is

produced, but at the time of testing it was not yet working
reliably.

No information could be found for Samsung SoCs.
The HWRNG of the TI AM3359 SoC is supported in the new

kernels, however the Linux released for the BeagleBone Black
does not yet have this kernel.

The Amlogic S805 in Odroid-C1 is supported.
The two Broadcom SoCs found in the Raspberry Pi SBCs are

also supported.

2) Tests
a) Entropy

Due to the shortcomings of the documentation, we were only
able to examine the quality of the random numbers to a limited
extent: we only performed statistical analysis on the
(pseudo)random numbers generated by the SBCs. The most
commonly used tools for statistical analysis and their latest
versions are the following:

• Diehard [18]
• Dieharder 3.31.1 [19]
• NIST Special Publication 800-22rev1a 2.1.2 [20]

• Ent [21]
• rngtest [22]
• TestU01 1.2.3 [23]
• Practically Random 0.94 [24]
To perform the tests, 10GB of (pseudo)random numbers were

generated and analyzed. The results of the analyses are
summarized in Table IX.

The results show that none of the random numbers generated
by the systems can be used for encryption. However, the Linux
kernel is prepared to use multiple sources for random number
generation, so the weakness of one source is not necessarily a
problem, but the use of HWRNG can speed up random number
generation. It is also important to note that the lack of proper
documentation (hence knowledge of how the SoC HWRNG
works) is also a drawback for its use in encryption applications.

b) Visual Analysis
Rather just for interest, we also visually examined the quality

of the random numbers produced. Fig. 5. shows the images
created from the generated random numbers in 256 by 256 grids
of (24 bit) RGB values. A close inspection of the figures does
not reveal any anomalous repetition or shape.

c) Speed
Table X shows the speed of random number generation using

the HWRNG for the three SBCs under study.

V. CONCLUSIONS

The results show that even the slowest SBC has sufficient
performance to perform the encryption task required in a
normal application. For more specialized applications with
higher amount of encrypted traffic, the characteristics of each

Fig. 5. Images created from random numbers generated by Odroid-C1,
Raspberry Pi, and Raspberry Pi 2

TABLE IX
RESULTS OF THE STATISTICAL ANALYSIS OF THE GENERATED RANDOM

NUMBERS

Model
Dieharder Ent Χ2

distribution
NIST

800-22

ODROID-C1 Passed suspect
(98,71%) 1 error

Raspberry Pi 1 weak
(bitstream) Ok (59,7%) Success

Raspberry Pi 2 1 weak (rank
32x32)

almost suspect
(90,83%) 1 error

TABLE X
THE SPEED VALUES OF THE HARDWARE RANDOM NUMBER GENERATORS

Model
Speed

ODROID-C1 7.3MB/s
Raspberry Pi 105kB/s
Raspberry Pi 2 147kB/s

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

8) Multi-thread Results
To present the results, we have chosen the SHA256 digest

generation, which are shown in Table VII. The structure of the
table is the same as in Table IV.
9) Discussion of the Results

The analysis of the values shows that:
• Odroid-XU3 Lite is the fastest, Odroid-U3 is the second,

and Odroid-C1 is the third.
• The Odroid-XU3 Lite, Odroid-U3 and Orange Pi Plus

produce large standard deviations (The ratio of speed to
standard deviation for devices Odroid-U3 and Orange Pi
Plus are almost identical). The measured performance is
not constant, shows significant fluctuations and the
system behavior is not predictable.

• Among devices with low standard deviation, the fastest
SBCs are Odroid-C1, Banana Pi M2 and Raspberry Pi 2.

• The relative acceleration is almost equal to the number of
cores used, except for the three devices with high
standard deviation. By increasing the number of cores, a
linearly proportional acceleration is obtained.

B. Public key Cryptography
Public key cryptography is generally used for the encrypted

transmission of symmetric keys, and the creation of digital
signatures. The methods currently in use are extremely
computationally intensive and slow, so they are usually used in
combination with symmetric encryption for transmitting large
amounts of data. The most widely used RSA encryption,
developed by Ron Rivest, Adi Shamir and Leonard Adleman,
was investigated with 2048 and 4096 bit long keys, as the
minimum key length currently recommended for adequate
security is 2048 bits.

1) RSA Encryption Results
In the RSA encryption, the same randomly generated file was

encrypted and decrypted with the same key pair for each SBC.
To test the performance of encryption using the 2048-bit key,
one 1920-bit file was encrypted or decrypted 100 times in each
measurement cycle for the 2048-bit key, and a 4000-bit file for
the 4096-bit key (RSA is only able to encrypt data to a
maximum amount equal to the key size, minus padding and
header data.). The results of the test are presented in Table VIII
and graphically displayed in Fig. 4.
2) Discussion of the Results

The analysis of the values shows that:
• Odroid-U3 is the fastest for encoding, Odroid-XU3 Lite

is the second, while for decoding, the order is reversed.
Odroid-C1 is the third one in all cases.

• The slowest is the Raspberry Pi.
• The two SBCs based on the same SoC produced different

results (Banana Pi and Orange Pi Mini), with the Banana
Pi being faster in the encoding operation and the Orange
Pi Mini in the decoding operation. In all cases, the
differences were below 10% for the two SoCs.

• The relative performance of each SBC to the other is not
necessarily the same for the different tasks.

• Even the speed of the fastest SBC is a fraction of that of
the Opteron 1222-based system (e.g. for 4096-bit key

Fig. 3. Average speed values of digest and message authentication (MB/s),
single thread, 8k block

TABLE VII
AVERAGE SPEED VALUES OF SHA256 MESSAGE DIGEST CREATION (MB/S),

MULTIPLE THREADS, 8K BLOCK

Model Thr.
SHA256
x threads
(MB/s)

SHA256
1 thread
(MB/s)

Rel.
acc.

Std.
dev.

Banana Pi 2 52.04 26.01 2.00 0.08
Banana Pi M2 4 111.79 27.93 4.00 0.13
ODROID-C1 4 174.79 43.43 4.02 0.21
ODROID-U3 4 260.81 69.70 3.74 112.01
ODROID-XU3 L. 4 317.19 91.43 3.47 6.99
ODROID-XU3 L. 8 442.94 91.43 4.84 31.49
Orange Pi Mini 2 56.32 28.33 1.99 0.13
Orange Pi Plus 4 72.00 34.52 2.09 32.10
Raspberry Pi 2 4 99.54 24.84 4.01 0.09
Opteron 1222 2 370.94 186.18 1.99 1.72

TABLE VIII
AVERAGE EXECUTION TIMES OF 100 PIECES OF ENCRYPTION AND

DECRYPTION BY RSA ALGORITHM (IN SECONDS) – LOWER IS BETTER!

Model 2048 bit
encr.

2048 bit
decr.

4096 bit
encr.

4096 bit
decr.

Banana Pi 2.71 7.89 3.14 38.54
Banana Pi M2 2.43 7.07 2.82 34.42
BeagleBone Black 3.03 7.68 3.42 34.58
ODROID-C1 1.74 5.05 2.02 24.56
ODROID-U3 1.10 3.30 1.28 16.12
ODROID-XU3 L. 1.18 2.73 1.31 11.41
Orange Pi Mini 2.88 7.62 3.28 35.33
Orange Pi Plus 2.22 6.16 2.55 29.27
Raspberry Pi 6.63 15.19 7.36 64.64
Raspberry Pi 2 2.93 8.15 3.37 38.84
Opteron 1222 0.50 0.74 0.52 1.89

Fig. 4. Average execution times of 100 pieces of encryption and decryption by
RSA algorithm (in seconds) – Lower is better!

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

length decoding: 11.41/1.89=6.04).

C. Random Number Generation
Random numbers and their generation play a key role in

cryptography. Without the right random numbers, secure
encryption cannot be done. Generating true random numbers
(TRNs) with computers is almost impossible. There are several
algorithms for generating pseudo random numbers (PRN),
which are recommended for different purposes. Some are
explicitly not recommended for encryption tasks, while others
are suitable (e.g. Dual_EC_DRBG).

According to the available information, (almost) all ARM-
based SoCs under investigation have some kind of hardware
random number generator (HWRNG). The following
information has been extracted from publicly available
documentation:

• Amlogic S805: Built-in LSFR Random number
generator.

• TI AM3359: Crypto Hardware Accelerators (AES, SHA,
PKA, RNG).

• Allwinner A20: 160-bit hardware PRNG with 192-bit
seed.

• Allwinner A31: 160-bit hardware PRNG with 192-bit
seed.

• Allwinner H3: 160-bits hardware PRNG with 175-bits
seed. 256-bits TRNG.

• Samsung Exynos 5422: Hardware Crypto Accelerators:
AES, DES/3DES, ARC4, SHA-1/SHA-
256/MD5/HMAC/PRNG, TRNG, PKA, and Secure Key
Manager.

The two SoCs produced by Broadcom also contain some
form of HWRNG, but no documentation has been found.

1) Support
HWRNG is not well documented for any of the SoCs

examined. Only partial information could be found.
A common Linux driver for all Allwinner SoCs HWRNG is

produced, but at the time of testing it was not yet working
reliably.

No information could be found for Samsung SoCs.
The HWRNG of the TI AM3359 SoC is supported in the new

kernels, however the Linux released for the BeagleBone Black
does not yet have this kernel.

The Amlogic S805 in Odroid-C1 is supported.
The two Broadcom SoCs found in the Raspberry Pi SBCs are

also supported.

2) Tests
a) Entropy

Due to the shortcomings of the documentation, we were only
able to examine the quality of the random numbers to a limited
extent: we only performed statistical analysis on the
(pseudo)random numbers generated by the SBCs. The most
commonly used tools for statistical analysis and their latest
versions are the following:

• Diehard [18]
• Dieharder 3.31.1 [19]
• NIST Special Publication 800-22rev1a 2.1.2 [20]

• Ent [21]
• rngtest [22]
• TestU01 1.2.3 [23]
• Practically Random 0.94 [24]
To perform the tests, 10GB of (pseudo)random numbers were

generated and analyzed. The results of the analyses are
summarized in Table IX.

The results show that none of the random numbers generated
by the systems can be used for encryption. However, the Linux
kernel is prepared to use multiple sources for random number
generation, so the weakness of one source is not necessarily a
problem, but the use of HWRNG can speed up random number
generation. It is also important to note that the lack of proper
documentation (hence knowledge of how the SoC HWRNG
works) is also a drawback for its use in encryption applications.

b) Visual Analysis
Rather just for interest, we also visually examined the quality

of the random numbers produced. Fig. 5. shows the images
created from the generated random numbers in 256 by 256 grids
of (24 bit) RGB values. A close inspection of the figures does
not reveal any anomalous repetition or shape.

c) Speed
Table X shows the speed of random number generation using

the HWRNG for the three SBCs under study.

V. CONCLUSIONS

The results show that even the slowest SBC has sufficient
performance to perform the encryption task required in a
normal application. For more specialized applications with
higher amount of encrypted traffic, the characteristics of each

Fig. 5. Images created from random numbers generated by Odroid-C1,
Raspberry Pi, and Raspberry Pi 2

TABLE IX
RESULTS OF THE STATISTICAL ANALYSIS OF THE GENERATED RANDOM

NUMBERS

Model
Dieharder Ent Χ2

distribution
NIST

800-22

ODROID-C1 Passed suspect
(98,71%) 1 error

Raspberry Pi 1 weak
(bitstream) Ok (59,7%) Success

Raspberry Pi 2 1 weak (rank
32x32)

almost suspect
(90,83%) 1 error

TABLE X
THE SPEED VALUES OF THE HARDWARE RANDOM NUMBER GENERATORS

Model
Speed

ODROID-C1 7.3MB/s
Raspberry Pi 105kB/s
Raspberry Pi 2 147kB/s

Performance Analysisof Encryption Capabilities
of ARM-based Single Board Microcomputers

INFOCOMMUNICATIONS JOURNAL

JUNE 2023 • VOLUME XV • NUMBER 2 43

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

length decoding: 11.41/1.89=6.04).

C. Random Number Generation
Random numbers and their generation play a key role in

cryptography. Without the right random numbers, secure
encryption cannot be done. Generating true random numbers
(TRNs) with computers is almost impossible. There are several
algorithms for generating pseudo random numbers (PRN),
which are recommended for different purposes. Some are
explicitly not recommended for encryption tasks, while others
are suitable (e.g. Dual_EC_DRBG).

According to the available information, (almost) all ARM-
based SoCs under investigation have some kind of hardware
random number generator (HWRNG). The following
information has been extracted from publicly available
documentation:

• Amlogic S805: Built-in LSFR Random number
generator.

• TI AM3359: Crypto Hardware Accelerators (AES, SHA,
PKA, RNG).

• Allwinner A20: 160-bit hardware PRNG with 192-bit
seed.

• Allwinner A31: 160-bit hardware PRNG with 192-bit
seed.

• Allwinner H3: 160-bits hardware PRNG with 175-bits
seed. 256-bits TRNG.

• Samsung Exynos 5422: Hardware Crypto Accelerators:
AES, DES/3DES, ARC4, SHA-1/SHA-
256/MD5/HMAC/PRNG, TRNG, PKA, and Secure Key
Manager.

The two SoCs produced by Broadcom also contain some
form of HWRNG, but no documentation has been found.

1) Support
HWRNG is not well documented for any of the SoCs

examined. Only partial information could be found.
A common Linux driver for all Allwinner SoCs HWRNG is

produced, but at the time of testing it was not yet working
reliably.

No information could be found for Samsung SoCs.
The HWRNG of the TI AM3359 SoC is supported in the new

kernels, however the Linux released for the BeagleBone Black
does not yet have this kernel.

The Amlogic S805 in Odroid-C1 is supported.
The two Broadcom SoCs found in the Raspberry Pi SBCs are

also supported.

2) Tests
a) Entropy

Due to the shortcomings of the documentation, we were only
able to examine the quality of the random numbers to a limited
extent: we only performed statistical analysis on the
(pseudo)random numbers generated by the SBCs. The most
commonly used tools for statistical analysis and their latest
versions are the following:

• Diehard [18]
• Dieharder 3.31.1 [19]
• NIST Special Publication 800-22rev1a 2.1.2 [20]

• Ent [21]
• rngtest [22]
• TestU01 1.2.3 [23]
• Practically Random 0.94 [24]
To perform the tests, 10GB of (pseudo)random numbers were

generated and analyzed. The results of the analyses are
summarized in Table IX.

The results show that none of the random numbers generated
by the systems can be used for encryption. However, the Linux
kernel is prepared to use multiple sources for random number
generation, so the weakness of one source is not necessarily a
problem, but the use of HWRNG can speed up random number
generation. It is also important to note that the lack of proper
documentation (hence knowledge of how the SoC HWRNG
works) is also a drawback for its use in encryption applications.

b) Visual Analysis
Rather just for interest, we also visually examined the quality

of the random numbers produced. Fig. 5. shows the images
created from the generated random numbers in 256 by 256 grids
of (24 bit) RGB values. A close inspection of the figures does
not reveal any anomalous repetition or shape.

c) Speed
Table X shows the speed of random number generation using

the HWRNG for the three SBCs under study.

V. CONCLUSIONS

The results show that even the slowest SBC has sufficient
performance to perform the encryption task required in a
normal application. For more specialized applications with
higher amount of encrypted traffic, the characteristics of each

Fig. 5. Images created from random numbers generated by Odroid-C1,
Raspberry Pi, and Raspberry Pi 2

TABLE IX
RESULTS OF THE STATISTICAL ANALYSIS OF THE GENERATED RANDOM

NUMBERS

Model
Dieharder Ent Χ2

distribution
NIST

800-22

ODROID-C1 Passed suspect
(98,71%) 1 error

Raspberry Pi 1 weak
(bitstream) Ok (59,7%) Success

Raspberry Pi 2 1 weak (rank
32x32)

almost suspect
(90,83%) 1 error

TABLE X
THE SPEED VALUES OF THE HARDWARE RANDOM NUMBER GENERATORS

Model
Speed

ODROID-C1 7.3MB/s
Raspberry Pi 105kB/s
Raspberry Pi 2 147kB/s

 [1] https://www.arm.com/
 [2] Raspberry Pi Foundation, https://www.raspberrypi.org/
 [3] ODROID-XU3 Lite, https://www.hardkernel.com/shop/odroid-xu3-

lite/
 [4] M. A. M. Isa et al., “A Series of Secret Keys in a Key Distribution

Protocol,” in Transactions on Engineering Technologies, London, UK,
2-4 July 2014, pp. 615–628. doi: 10.1007/978-94-017-9804-4_43

 [5] BeagleBone Black, https://beagleboard.org/black
 [6] LMbench - Tools for Performance Analysis,
 http://lmbench.sourceforge.net/

References

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

SBC need to be taken into account.
If only one processor core can be used efficiently due to the

application, then the BeagleBone Black is recommended rather
than Raspberry Pi Model B+ (While it is worth noting that the
Odroid-XU3 Lite produces the highest speed with single thread
in almost all cases.).

The use of Odroid-XU3 Lite, Odroid-U3 and Orange Pi Plus
should be avoided due to their performance fluctuation under
heavy load. Further investigation is required to determine the
reasons.

Due to its performance and predictable, stable operation, we
recommend using Odroid-C1 for encryption applications
(moreover, its HWRNG is the fastest among the devices tested).
For its speed, the Bana Pi M2 is also a good choice. For its
coverage, and thus support and awareness, the Raspberry Pi 2
is recommended.

The HWRNGs we tested do not provide reassuring entropy,
but we found the fewest problems with Raspberry Pi.

Different memory speeds of SBCs based on the same SoCs
do not significantly affect the performance of the SBC.

VI. SUMMARY AND FURTHER RESEARCH
Based on the results, SBCs are cost-effective, energy-efficient

devices that are well suited for information security
applications.

Further measurements of encryption capabilities (e.g.
HTTPS, SCP, SFTP, IPsec) need to be developed and
performed to determine their potential applications. The
performance of network transmissions is an important area to
be investigated.

Finally, it is important to investigate the virtualization
capabilities of each SBC, as well as its compatibility with other
operating systems in the security domain. (e.g. OpenBSD,
FreeBSD.)

ACKNOWLEDGMENT
We thank HunNet-Média Ltd. for providing us with the

single-board computers for the studies, thus contributing to the
publication.

REFERENCES

[1] https://www.arm.com/
[2] Raspberry Pi Foundation, https://www.raspberrypi.org/
[3] ODROID-XU3 Lite, https://www.hardkernel.com/shop/odroid-xu3-lite/
[4] M. A. M. Isa et al., “A Series of Secret Keys in a Key Distribution

Protocol,” in Transactions on Engineering Technologies, London, UK,
2-4 July 2014, pp. 615-628. DOI: 10.1007/978-94-017-9804-4_43

[5] BeagleBone Black, https://beagleboard.org/black
[6] LMbench - Tools for Performance Analysis,

http://lmbench.sourceforge.net/
[7] C. P. Kruger and G. P. Hancke, “Benchmarking Internet of things

devices,” in Proc. 2014 12th IEEE International Conference on
Industrial Informatics (INDIN), Porto Alegre, Brazil, 27-30 July 2014,
pp. 611-616. DOI: 10.1109/INDIN.2014.6945583

[8] R. G. Reed et al., “A CPU benchmarking characterization of ARM
based processors,” Computer Research and Modeling, vol. 7, issue 3,
pp. 581-586. 2015. DOI: 10.20537/2076-7633-2015-7-3-505-509

[9] G. T. Wrigley, R. G. Reed, B. Mellado, “Memory benchmarking
characterisation of ARM-based SoCs,” Computer Research and

Modeling, vol. 7, issue 3, pp. 607-613. 2015. DOI: 10.20537/2076-7633-
2015-7-3-607-613

[10] Intel Atom processor,
https://www.intel.com/content/www/us/en/products/details/processors/at
om.html

[11] https://hu.mouser.com/new/pandaboardorg/pandaboardES/
[12] E. L. Padoin et al., “Evaluating Performance and Energy on ARM-based

Clusters for High Performance Computing,” in Proc. 2012 41st
International Conference on Parallel Processing Workshops, Pittsburgh,
USA, 10-13. September 2012, pp. 165-172. DOI:
10.1109/ICPPW.2012.21

[13] G. Lencse and S. Répás, “Method for Benchmarking Single Board
Computers for Building a Mini Supercomputer for Simulation of
Telecommunication Systems,” in Proc. 2015 38th International
Conference on Telecommunications and Signal Processing (TSP),
Prague, Czech Republic, 9-11 July 2015, pp. 246-251. DOI:
10.1109/TSP.2015.7296261

[14] G. Lencse, I. Derka, L. Muka, “Towards the Efficient Simulation of
Telecommunication Systems in Heterogeneous Distributed Execution
Environments,” in Proc. 2013 36th International Conference on
Telecommunications and Signal Processing (TSP), Rome, Italy, 2-4 July
2013, pp. 304-310. DOI: 10.1109/TSP.2013.6613941

[15] G. Lencse and I. Derka, "Measuring the Efficiency of Parallel Discrete
Event Simulation in Heterogeneous Execution Environments", Acta
Technica Jaurinensis, vol. 9. no. 1. pp. 42-53, DOI:
10.14513/actatechjaur.v9.n1.394

[16] H. D. Cho, K. Chung, T. Kim, “Benefits of the big.LITTLE Architecture”,
TechOnline, https://www.techonline.com/tech-papers/benefits-of-the-
big-little-architecture/

[17] Announcing the ADVANCED ENCRYPTION STANDARD (AES),
Federal Information Processing Standards Publication 197, National
Institute of Standards and Technology, November 26, 2001. Available:
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf

[18] The Marsaglia Random Number CDROM including the Diehard Battery
of Tests of Randomness,
https://web.archive.org/web/20160125103112/http://stat.fsu.edu/pub/die
hard/

[19] Dieharder: A Random Number Test Suite,
https://webhome.phy.duke.edu/~rgb/General/dieharder.php

[20] A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications,
https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final, DOI:
10.6028/NIST.SP.800-22r1a

[21] ENT A Pseudorandom Number Sequence Test Program,
https://www.fourmilab.ch/random/

[22] rng-tools, https://github.com/nhorman/rng-tools
[23] TestU01, http://simul.iro.umontreal.ca/testu01/tu01.html
[24] PractRand, https://github.com/MartyMacGyver/PractRand

Sandor R. Repas received his BA in
Business Administration and
Management from the Corvinus
University of Budapest, Budapest
Hungary in 2009, BSc in Electrical
Engineering from the Óbuda University
in 2011, MSc in Electrical Engineering
from the Széchenyi István University in

2013 and MSc in Defence C3 System Manager from National
University of Public Service in 2017. He received his PhD in
computer science from the Széchenyi István University in 2018.

He is an Associate Professor at the Széchenyi István
University, Győr Hungary. The main field of his research is the
IPv6 implementation technologies. His other favorite topics are
computer networking and information security. He has several
certificates from Microsoft, Cisco, ISACA and other vendors.

 [7] C. P. Kruger and G. P. Hancke, “Benchmarking Internet of things
devices,” in Proc. 2014 12th IEEE International Conference on
Industrial Informatics (INDIN), Porto Alegre, Brazil, 27-30 July
2014, pp. 611–616. doi: 10.1109/INDIN.2014.6945583

 [8] R. G. Reed et al., “A CPU benchmarking characterization of ARM
based processors,” Computer Research and Modeling, vol. 7, issue 3,
pp. 581–586. 2015. doi: 10.20537/2076-7633-2015-7-3-505-509

 [9] G. T. Wrigley, R. G. Reed, B. Mellado, “Memory benchmarking
characterisation of ARM-based SoCs,” Computer Research and
Modeling, vol. 7, issue 3, pp. 607–613. 2015.

 doi: 10.20537/2076-7633-2015-7-3-607-613
 [10] Intel Atom processor, https://www.intel.com/content/www/us/en/

products/details/processors/atom.html
 [11] https://hu.mouser.com/new/pandaboardorg/pandaboardES/
 [12] E. L. Padoinetal., “Evaluating Performance and Energy on ARM-

based Clusters for High Performance Computing,” in Proc. 2012
41st International Conference on Parallel Processing Workshops,
Pittsburgh, USA, 10-13. September 2012, pp. 165–172.

 doi: 10.1109/ICPPW.2012.21
 [13] G. Lencse and S. Répás, “Method for Benchmarking Single Board

Computers for Building a Mini Supercomputer for Simulation of
Telecommunication Systems,” in Proc. 2015 38th International
Conference on Telecommunications and Signal Processing (TSP),
Prague, Czech Republic, 9-11 July 2015, pp. 246–251.

 doi: 10.1109/TSP.2015.7296261
 [14] G. Lencse, I. Derka, L. Muka, “Towards the Efficient Simulation of

Telecommunication Systems in Heterogeneous Distributed Execu-
tion Environments,” in Proc. 2013 36th International Conference on
Telecommunications and Signal Processing (TSP), Rome, Italy, 2-4
July 2013, pp. 304–310. doi: 10.1109/TSP.2013.6613941

 [15] G. Lencse and I. Derka, "Measuring the Efficiency of Parallel Discrete
Event Simulation in Heterogeneous Execution Environments", Acta
Technica Jaurinensis, vol. 9. no. 1. pp. 42–53,

 doi: 10.14513/actatechjaur.v9.n1.394
 [16] H. D. Cho, K. Chung, T. Kim, “Benefits of the big. LITTLE

Architecture”, TechOnline, https://www.techonline.com/tech-
papers/benefits-of-the-big-little-architecture/

[17] Announcing the ADVANCED ENCRYPTION STANDARD (AES),
Federal Information Processing Standards Publication 197, National
Institute of Standards and Technology, November 26, 2001.
Available: https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf

 [18] The Marsaglia Random Number CDROM including the Diehard
Battery of Tests of Randomness, https://web.archive.org/
web/20160125103112/ http://stat.fsu.edu/pub/diehard/

 [19] Dieharder: A Random Number Test Suite,
 https://webhome.phy.duke.edu/~rgb/General/dieharder.php
[20] A Statistical Test Suite for Random and Pseudorandom Number

Generators for Cryptographic Applications, https://csrc.nist.gov/
publications/detail/sp/800-22/rev-1a/final,

 DOI: 10.6028/NIST.SP.800-22r1a
[21] ENT A Pseudorandom Number Sequence Test Program,
 https://www.fourmilab.ch/random/
[22] rng-tools, https://github.com/nhorman/rng-tools
[23] TestU01, http://simul.iro.umontreal.ca/testu01/tu01.html
[24] PractRand, https://github.com/MartyMacGyver/PractRand

Sandor R. Repas received his BA in Business Man-
agement University Hungary in 2009, BSc in Electrical
Engineering from the Óbuda University in 2011, MSc
in Electrical Engineering from the Széchenyi István
University in Administration and from the Corvinus
of Budapest, Budapest 2013 and MSc in Defence C3
System Manager from National University of Public
Service in 2017. He received his PhD in computer sci-
ence from the Széchenyi István University in 2018.
He is an Associate Professor at the Széchenyi István

University, Győr Hungary. The main field of his research is the IPv6 imple-
mentation technologies. His other favorite topics are computer networking and
information security. He has several certificates from Microsoft, Cisco, ISACA
and other vendors.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

SBC need to be taken into account.
If only one processor core can be used efficiently due to the

application, then the BeagleBone Black is recommended rather
than Raspberry Pi Model B+ (While it is worth noting that the
Odroid-XU3 Lite produces the highest speed with single thread
in almost all cases.).

The use of Odroid-XU3 Lite, Odroid-U3 and Orange Pi Plus
should be avoided due to their performance fluctuation under
heavy load. Further investigation is required to determine the
reasons.

Due to its performance and predictable, stable operation, we
recommend using Odroid-C1 for encryption applications
(moreover, its HWRNG is the fastest among the devices tested).
For its speed, the Bana Pi M2 is also a good choice. For its
coverage, and thus support and awareness, the Raspberry Pi 2
is recommended.

The HWRNGs we tested do not provide reassuring entropy,
but we found the fewest problems with Raspberry Pi.

Different memory speeds of SBCs based on the same SoCs
do not significantly affect the performance of the SBC.

VI. SUMMARY AND FURTHER RESEARCH
Based on the results, SBCs are cost-effective, energy-efficient

devices that are well suited for information security
applications.

Further measurements of encryption capabilities (e.g.
HTTPS, SCP, SFTP, IPsec) need to be developed and
performed to determine their potential applications. The
performance of network transmissions is an important area to
be investigated.

Finally, it is important to investigate the virtualization
capabilities of each SBC, as well as its compatibility with other
operating systems in the security domain. (e.g. OpenBSD,
FreeBSD.)

ACKNOWLEDGMENT
We thank HunNet-Média Ltd. for providing us with the

single-board computers for the studies, thus contributing to the
publication.

REFERENCES

[1] https://www.arm.com/
[2] Raspberry Pi Foundation, https://www.raspberrypi.org/
[3] ODROID-XU3 Lite, https://www.hardkernel.com/shop/odroid-xu3-lite/
[4] M. A. M. Isa et al., “A Series of Secret Keys in a Key Distribution

Protocol,” in Transactions on Engineering Technologies, London, UK,
2-4 July 2014, pp. 615-628. DOI: 10.1007/978-94-017-9804-4_43

[5] BeagleBone Black, https://beagleboard.org/black
[6] LMbench - Tools for Performance Analysis,

http://lmbench.sourceforge.net/
[7] C. P. Kruger and G. P. Hancke, “Benchmarking Internet of things

devices,” in Proc. 2014 12th IEEE International Conference on
Industrial Informatics (INDIN), Porto Alegre, Brazil, 27-30 July 2014,
pp. 611-616. DOI: 10.1109/INDIN.2014.6945583

[8] R. G. Reed et al., “A CPU benchmarking characterization of ARM
based processors,” Computer Research and Modeling, vol. 7, issue 3,
pp. 581-586. 2015. DOI: 10.20537/2076-7633-2015-7-3-505-509

[9] G. T. Wrigley, R. G. Reed, B. Mellado, “Memory benchmarking
characterisation of ARM-based SoCs,” Computer Research and

Modeling, vol. 7, issue 3, pp. 607-613. 2015. DOI: 10.20537/2076-7633-
2015-7-3-607-613

[10] Intel Atom processor,
https://www.intel.com/content/www/us/en/products/details/processors/at
om.html

[11] https://hu.mouser.com/new/pandaboardorg/pandaboardES/
[12] E. L. Padoin et al., “Evaluating Performance and Energy on ARM-based

Clusters for High Performance Computing,” in Proc. 2012 41st
International Conference on Parallel Processing Workshops, Pittsburgh,
USA, 10-13. September 2012, pp. 165-172. DOI:
10.1109/ICPPW.2012.21

[13] G. Lencse and S. Répás, “Method for Benchmarking Single Board
Computers for Building a Mini Supercomputer for Simulation of
Telecommunication Systems,” in Proc. 2015 38th International
Conference on Telecommunications and Signal Processing (TSP),
Prague, Czech Republic, 9-11 July 2015, pp. 246-251. DOI:
10.1109/TSP.2015.7296261

[14] G. Lencse, I. Derka, L. Muka, “Towards the Efficient Simulation of
Telecommunication Systems in Heterogeneous Distributed Execution
Environments,” in Proc. 2013 36th International Conference on
Telecommunications and Signal Processing (TSP), Rome, Italy, 2-4 July
2013, pp. 304-310. DOI: 10.1109/TSP.2013.6613941

[15] G. Lencse and I. Derka, "Measuring the Efficiency of Parallel Discrete
Event Simulation in Heterogeneous Execution Environments", Acta
Technica Jaurinensis, vol. 9. no. 1. pp. 42-53, DOI:
10.14513/actatechjaur.v9.n1.394

[16] H. D. Cho, K. Chung, T. Kim, “Benefits of the big.LITTLE Architecture”,
TechOnline, https://www.techonline.com/tech-papers/benefits-of-the-
big-little-architecture/

[17] Announcing the ADVANCED ENCRYPTION STANDARD (AES),
Federal Information Processing Standards Publication 197, National
Institute of Standards and Technology, November 26, 2001. Available:
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf

[18] The Marsaglia Random Number CDROM including the Diehard Battery
of Tests of Randomness,
https://web.archive.org/web/20160125103112/http://stat.fsu.edu/pub/die
hard/

[19] Dieharder: A Random Number Test Suite,
https://webhome.phy.duke.edu/~rgb/General/dieharder.php

[20] A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications,
https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final, DOI:
10.6028/NIST.SP.800-22r1a

[21] ENT A Pseudorandom Number Sequence Test Program,
https://www.fourmilab.ch/random/

[22] rng-tools, https://github.com/nhorman/rng-tools
[23] TestU01, http://simul.iro.umontreal.ca/testu01/tu01.html
[24] PractRand, https://github.com/MartyMacGyver/PractRand

Sandor R. Repas received his BA in
Business Administration and
Management from the Corvinus
University of Budapest, Budapest
Hungary in 2009, BSc in Electrical
Engineering from the Óbuda University
in 2011, MSc in Electrical Engineering
from the Széchenyi István University in

2013 and MSc in Defence C3 System Manager from National
University of Public Service in 2017. He received his PhD in
computer science from the Széchenyi István University in 2018.

He is an Associate Professor at the Széchenyi István
University, Győr Hungary. The main field of his research is the
IPv6 implementation technologies. His other favorite topics are
computer networking and information security. He has several
certificates from Microsoft, Cisco, ISACA and other vendors.

https://www.arm.com/
https://www.raspberrypi.org/
https://www.hardkernel.com/shop/odroid-xu3-lite/
https://www.hardkernel.com/shop/odroid-xu3-lite/
https://doi.org/10.1007/978-94-017-9804-4_43
https://beagleboard.org/black
http://lmbench.sourceforge.net/
https://doi.org/10.1109/INDIN.2014.6945583
https://doi.org/10.20537/2076-7633-2015-7-3-505-509
https://doi.org/10.20537/2076-7633-2015-7-3-607-613
https://www.intel.com/content/www/us/en/products/details/processors/atom.html
https://www.intel.com/content/www/us/en/products/details/processors/atom.html
https://hu.mouser.com/new/pandaboardorg/pandaboardES/
https://doi.org/10.1109/ICPPW.2012.21
https://doi.org/10.1109/TSP.2015.7296261
https://doi.org/10.1109/TSP.2013.6613941
https://doi.org/10.14513/actatechjaur.v9.n1.394
https://www.techonline.com/tech-papers/benefits-of-the-big-little-architecture/
https://www.techonline.com/tech-papers/benefits-of-the-big-little-architecture/
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf
https://web.archive.org/web/20160125103112/
https://web.archive.org/web/20160125103112/
http://stat.fsu.edu/pub/diehard/
https://webhome.phy.duke.edu/~rgb/General/dieharder.php
https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final
https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final
https://doi.org/10.6028/NIST.SP.800-22r1a
https://www.fourmilab.ch/random/
https://github.com/nhorman/rng-tools
http://simul.iro.umontreal.ca/testu01/tu01.html
https://github.com/MartyMacGyver/PractRand

