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Abstract—In the few years since the Raspberry Pi was released 

in 2012, countless microcomputers based on the ARM architecture 
have been introduced. Their small size, high performance relative 
to their power consumption, and the ability to run the popular 
Linux operating system make them ideal for a wide range of tasks. 
Information security is an area of particular importance. Different 
encryption and encoding algorithms play an important role in 
almost all areas of information security. However, these 
algorithms are very computationally intensive, so it is important 
to investigate which microcomputers can be used for these tasks, 
and under which trade-offs.

The performance of ten different microcomputers is 
investigated and presented for the application of common 
symmetric and public-key encryption and decryption, digest 
creation and message authentication protocols, such as RSA, AES, 
HMAC, MD5, SHA.

Reliable encryption requires the generation of reliable 
(pseudo)random numbers (Cryptographically Secure Random 
Numbers, CSRN), and microcomputers based on ARM SoCs 
usually have hardware implemented (pseudo)random number 
generators. The applicability of the random number generators of 
different microcomputers are investigated and presented; test 
methods are described, and recommendations are made.

Index Terms—ARM; encryption; performance; security; 
random numbers

I. INTRODUCTION

s semiconductor technologies continue to evolve, 
microprocessors and microcontrollers have emerged that 

can be produced at ever lower cost and with ever lower power 
consumption, and offer ever higher performance. As the degree 
of integration has increased, it has become possible to produce 
integrated circuits that incorporate both the microprocessor and 
the additional circuitry (e.g. memory, graphics, and USB 
controllers.). These chips (System on a Chip, SoC) are used to 
build the increasingly popular smart phones, and the popularity 
of smart handsets is accelerating the development of these 
circuits. Increasingly powerful SoCs have also enabled the 
emergence of Single Board Computers (SBCs), the best known 
of which is the ARM architecture-based [1] Raspberry Pi [2] 
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with a 700 MHz single-core processor and 256 MB of memory, 
released in 2012. Thanks to rapid development, SBCs with 
eight cores and 2GB of memory are now available [3].

Today information security plays an increasingly important 
role, with encryption, decryption, digital signatures and 
signature verification being of high importance. However, 
encryption operations are mathematical operations with a very 
high computational demand. With the proliferation of 
increasingly powerful yet cost-effective SBCs, an important 
question is what encryption capabilities SBCs have, and thus 
how effectively they can be applied in the field of information 
security.

In the following, we present in detail our methods used to 
investigate the encryption capabilities of SBCs, as well as the 
results.

II. SUMMARY OF THE CURRENT RESEARCH RESULTS

Many papers have been published on Raspberry Pi and other 
SBCs, but none of them have explicitly investigated their 
encryption capabilities.

In [4], the authors present, among other results, their solution 
for the Raspberry Pi to create a secure TFTP (Secure Trivial 
File Transfer Protocol) to ensure the security of remote updates.

Researchers have investigated the performance of 
BeagleBone Black [5], BeagleBone, and Raspberry Pi SBCs 
using LMbench [6], and their proprietary application (CoAP, 
Constrained Application Protocol) to measure performance on 
constrained devices [7]. They concluded that the SBCs were 
less than half the speed of a modern computer, and the 
BeagleBone Black had the lowest latency of the three devices. 
Their important conclusion is that for IoT (Internet of Things) 
applications, faster and more expensive external memory has 
significantly less impact on the performance of an SBC than the 
type of the processor. In addition, running the graphical
interface did not have a significant impact on performance.

In two papers, researchers presented results of memory and 
processor performance tests on four different ARM platforms 
in [8] and [9]. Their measurements were also compared to Intel 
Atom [10] processors, which produced similar results, but with 
significantly lower power consumption on ARM SoC-based 
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devices. The authors also point out that this may change in the 
future.

Using BeagleBoard and PandaBoard [11], researchers 
investigated the potential of using ARM SoC-based devices in 
HPC (High Performance Computing) applications [12], with a 
focus on computing performance and power consumption. The 
authors concluded that due to the high power consumption of
devices that are redundant for HPC applications (e.g. USB, 
HDMI, VGA, etc.), SBCs based on generic SoCs are not well 
suited for HPC designs.

In [13], the authors investigated six different types of SBCs 
from several aspects, with the aim of finding out the
performance of a heterogeneous cluster built from different 
SBCs in discrete-time simulations performed in parallel as 
described in [14] and [15]. Their important result is that 
multicore performance should be the primary consideration in 
the calculations.

These publications do not investigate the performance of 
SBCs during encryption operations; therefore, it is necessary to 
develop methods for measuring this and to perform the tests.

III. TEST METHODS

The devices chosen for the performance tests and the test
methods applied are described below.

A. Selection of Devices
In selecting the SBCs, the primarily following criteria were 

considered:
• The Raspberry Pi is a must due to its pervasiveness, as it 

greatly increases the usability of the results.
• It is important to measure as many different SoCs as 

possible, thus providing a comprehensive picture for 
comparing each SoC.

• Include in the tests two SBCs from different 
manufacturers, based on the same SoC. This should help 
to find out how much of the performance depends on the 
SoC and how much on the external components (e.g. 
memory) used with the SoC.

• At least one SBC based on a SoC using the Big-Little [16]
architecture will be investigated. In this way, the 
advantages and disadvantages of such an SoC will be 
identified.

Table I shows the main parameters of the selected SBCs.
(The datasheets for each SoC were not always made available 

by the manufacturers, so I could not include some parameters, 
such as cache size.)

B. Test Environment for the Encryption Performance 
Measurements

Linux was installed on all SBC devices to perform the tests. 
If the manufacturer provides or recommends a Linux version 
for the device, that version was used. In all cases, we tried to 
make only the most necessary changes, avoiding any 
modifications that could affect performance. The only 
exception to this was disabling the launch of the graphical 
interface on all devices so that it did not affect the measurement 
results.

To perform the measurements, we needed to implement the 
network shown in Fig. 1. The measurement process was started 
from the laptop at the top of the figure and its progress could 
also be monitored from there. The server on the left of the figure 
controlled the measurement, and collected and pre-processed 
the data. The ten SBCs tested are shown at the bottom of the 
figure. To ensure comparability, all measurements were also 
performed on the Sun Sunfire X2100 M2 computer on the right 
side of the figure, which contained an Opteron 1222 dual core 
CPU and 4 pieces of 2GB DDR2-5300 ECC RAM modules.

IV. MEASUREMENTS AND RESULTS

To ensure accurate results, the measurements were 
automated using bash shell scripts. Each measurement was 
repeated 16 times, of which only the results of the last 11 times 

TABLE I
THE MOST IMPORTANT PARAMETERS OF THE SELECTED SBCS

Model CPU
architecture SoC type

CPU cores
(pcs)

CPU freq.
(GHz)

RAM size
(GB)

Banana Pi Cortex A7 AllWinner A20 2 1 1
Banana Pi M2 Cortex A7 AllWinner A31s 4 1 1
BeagleBone Black Cortex A8 TI AM3359 1 1 0.5
ODROID-C1 Cortex A5 Amlogic S805 4 1.5 1
ODROID-U3 Cortex A9 Samsung Exynos 4412 4 1.7 2
ODROID-XU3 Lite Cortex A15+A7 Samsung Exynos 5422 4+4 1.8+1.3 2
Orange Pi Mini Cortex A7 AllWinner A20 2 1 1
Orange Pi Plus Cortex A7 AllWinner H3 4 1.6 1
Raspberry Pi Model B+ 1176JZ(F)-S Broadcom BCM2835 1 0.7 0.5
Raspberry Pi 2 Model B+ Cortex A7 Broadcom BCM2836 4 0.9 1

10 x 

IPv4: 192.168.99.16/24

IPv4: 192.168.99.8/24

IPv4: 192.168.99.25/24

IPv4: 192.168.99.1/24 IPv4: 192.168.99.26/24

Fig. 1.  Topology of the test network for the measurements
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were processed. This avoided the influence of the storage 
system’s speed during the measurements (by using cache). The 
openssl program was used for the measurements. Where it is 
applicable, measurements were also made using one and then 
all cores. The measurements were also performed on the 
Sunfire X2100 M2 computer, making comparison easier.

In order to avoid errors, the results were collected in text 
files, pre-processed using awk scripts and then evaluated.

In the following, the measurement results will be described 
and then evaluated in detail.
A. Symmetric Key Encryption

Today's most widely used symmetric key encryption is the 
Advanced Encryption Standard (AES) using the Rijndael 
algorithm [17]. It is also used with 128, 192 and 256-bit-long 
keys. Its use is very widespread. Its performance in file 
encryption has been investigated in Cipher Block Chaining 
(CBC) mode, which greatly increases the protection against 
algorithmic attacks.

The measurements were performed using the openssl speed 
command, with all three key lengths, 8k block size, on 1 and 
then with multiple threads. The use of multiple threads allowed 
the simultaneous use of multiple CPU cores.
1) Single Thread Results 

The average values of the speed results obtained in the runs is 
shown in Table II, while the standard deviations are shown in 
Table III. The averages are visualized for better comparison in 
Fig. 2.

The first column of Table II shows the type of SBC tested.
The second column is the average of the amount of data 
encrypted per second in MB when using 128-bit key length 
AES CBC (AES-128-CBC). The third column contains the 
average of the data volume encoded per second using AES-192-
CBC, and the last column contains the average of the data 
volume encoded per second using AES-256-CBC. The 
corresponding columns in Table III contain the standard 
deviation values for the calculated mean values.

2) Discussion of the Results 
The analysis of the values shows that:
• Odroid-XU3 Lite is the fastest, Odroid-U3 is the second, 

and BeagleBone Black is the third one.
• The Raspberry Pi is the slowest.
• The two SBCs based on the same SoC produced different 

results (Banana Pi and Orange Pi Mini), but the 
difference is only around 10%.

• The standard deviation values are low compared to the 
average values, so the measured values are stable for the 
devices tested.

• The performance of each SBC relative to the other is not 
significantly affected by the key length used for 
encoding.

• Even the speed of the fastest SBC is a fraction of that of 
the Opteron 1222-based system (e.g. for AES-128-CBC: 
209.5/81.85=2.56).

3) Multi-thread Results
Multi-threaded runs have been used to test SBCs based on 

SoCs that contain multiple processor cores. In each case, the 
measurement was performed on as many threads as the 
processor has in the given SoC, so that all cores participated in 
the coding and the aggregate performance could be measured. 
In the case of Odroid-XU3 Lite using the Big-Little 
architecture, the measurement was also performed using 4 
threads due to the different core speeds. To present the results, 
we have chosen the AES-256-CBC encoding values, which are 
shown in Table IV.

The second column shows how many threads were used for 
each measurement. The third column shows the average amount 
of the encoded data from the last 11 measurements. The data in 
the fourth column has already been presented for the single 

TABLE II
AVERAGE SPEED VALUES OF AES-CBC ENCRYPTION (MB/S), SINGLE 

THREAD, 8K BLOCK

Model AES-128 AES-192 AES-256

Banana Pi 22.06 18.88 16.60
Banana Pi M2 23.15 19.74 17.49
BeagleBone Black 41.85 34.70 30.82
ODROID-C1 35.95 30.86 27.26
ODROID-U3 56.59 50.44 43.27
ODROID-XU3 Lite 81.85 71.05 61.77
Orange Pi Mini 24.45 20.81 18.33
Orange Pi Plus 29.72 25.32 22.29
Raspberry Pi Model B+ 15.06 13.04 11.50
Raspberry Pi 2 Model B+ 20.62 17.58 15.59
Opteron 1222 209.50 179.08 156.01

TABLE III
STANDARD DEVIATION OF SPEED VALUES OF AES-CBC ENCRYPTION

(MB/S), SINGLE THREAD, 8K BLOCK

Model AES-128 AES-192 AES-256

Banana Pi 0.04 0.03 0.03
Banana Pi M2 0.07 0.04 0.04
BeagleBone Black 0.08 0.06 0.05
ODROID-C1 0.20 0.16 0.14
ODROID-U3 0.48 0.42 0.37
ODROID-XU3 Lite 0.07 0.01 0.03
Orange Pi Mini 0.04 0.08 0.05
Orange Pi Plus 0.03 0.00 0.00
Raspberry Pi Model B+ 0.00 0.00 0.00
Raspberry Pi 2 Model B+ 0.01 0.03 0.01
Opteron 1222 0.13 0.09 0.07

Fig. 2.  Average speed values of AES-CBC encryption (MB/s), 1 thread, 8k 
block
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thread measurement, it is only presented again here for ease of 
reference.

The relative acceleration in column 5 is the ratio of the 
average speeds in the fourth and third columns. The last column 
contains the standard deviation values for the third column.
4) Discussion of the Results 

The analysis of the values shows that:
• Odroid-XU3 Lite is the fastest, Odroid-C1 is the second 

and Odroid-U3 is the third.
• The Odroid-U3 and Orange Pi Plus produce large 

standard deviations. The measured performance is not 
constant, shows large fluctuations and the system 
behavior can only be estimated imprecisely.

• Among devices with low standard deviation, the fastest 
SBCs are Odroid-XU3 Lite, Odroid-C1, Banana Pi M2 
and Raspberry Pi 2.

• The relative acceleration is almost equal to the number of 
cores used, except for the two devices with high standard 
deviation and the Big-Little architecture Odroid-XU3 
Lite. By increasing the number of cores, a linearly 
proportional acceleration is obtained.

• The performance of the fastest SBC (Odroid-XU3 Lite 
with 8 threads) now approaches that of the Opteron 1222 
system.

5) Message Digest and Authentication
• The use of hash function and message authentication 

code is also essential to ensure secure communication. 
They are generally used to ensure integrity and detect 
tampering. The analyzed protocols and some of their 
characteristics:

• MD5
o 128 bit-long digest
o Not secure, but used for compatibility reasons.

• SHA1
o 160 bit-long digest
o No longer recommended
o Widespread, widely known and used.

• SHA256
o 256 bit-long digest
o Recommended for use.

• SHA512
o 512 bit long digest
o Not always recommended due to its slowness.

• HMAC
o MD5-based message authenticator
o Keyed-Hash Message Authentication Code

6) Single Thread Results
The average values of the results obtained in the runs is shown 

in Table V, while the standard deviations are shown in Table 
VI. The averages are visualized for better comparison in Fig. 3.

The structure of the table is very similar to the one used for 
the previous tables, so it is not explained in detail.

7) Discussion of the Results 
The analysis of the values shows that:
• The fastest is Odroid-XU3 Lite, the second is Odroid-U3.
• The slowest is Raspberry Pi.
• The two SBCs based on the same SoC produced different 

results (Banana Pi and Orange Pi Mini), but again the 
difference is only around 10%.

• The standard deviation values are low compared to the 
average values, so the measured values are stable for the 
devices tested.

• The relative performance of each SBC is not necessarily 
the same for different tasks (e.g. Odroid-C1 and 
BeagleBone Black MD5: 118.71/102.88=1.15, while for 
SHA1: 73.62/77.57=0.95).

• Even the speed of the fastest SBC is a fraction of that of 
the Opteron 1222-based system (e.g. for MD5: 
562.56/240.15=2.34, while for SHA512: 
290.29/95.70=3.03).

TABLE IV
AVERAGE SPEED VALUES OF AES-256-CBC ENCRYPTION (MB/S), MULTIPLE

THREADS, 8K BLOCK

Model Thr.
AES-256 
x threads 
(MB/s)

AES-256
1 thread
(MB/s)

Rel. 
acc.

Std. 
dev.

Banana Pi 2 33.22 16.60 2.00 0.02
Banana Pi M2 4 69.96 17.49 4.00 0.02
ODROID-C1 4 109.57 27.26 4.02 0.04
ODROID-U3 4 88.43 43.27 2.04 7.38
ODROID-XU3 L. 4 195.01 61.77 3.16 1.01
ODROID-XU3 L. 8 276.21 61.77 4.47 2.20
Orange Pi Mini 2 36.36 18.33 1.98 0.01
Orange Pi Plus 4 46.55 22.29 2.09 6.40
Raspberry Pi 2 4 62.31 15.59 4.00 0.01
Opteron 1222 2 310.88 156.01 1.99 0.32

TABLE V
AVERAGE SPEED VALUES OF DIGEST AND MESSAGE AUTHENTICATION (MB/S),

SINGLE THREAD, 8K BLOCK

Model MD5 SHA
1

SHA
256

SHA
512 HMAC

Banana Pi 82.49 44.29 26.01 22.35 82.62
Banana Pi M2 82.96 46.30 27.93 14.12 82.83
BeagleBone Black 102.88 77.57 56.30 37.88 104.70
ODROID-C1 118.71 73.62 43.43 36.66 118.88
ODROID-U3 200.43 118.47 69.70 59.88 200.17
ODROID-XU3 L. 240.15 158.88 91.43 95.70 242.87
Orange Pi Mini 91.53 48.22 28.33 24.41 91.90
Orange Pi Plus 111.43 58.67 34.52 29.69 111.98
Raspberry Pi 51.92 29.12 18.79 9.11 53.15
Raspberry Pi 2 73.77 41.19 24.84 12.56 73.65
Opteron 1222 562.56 430.60 186.18 290.29 562.81

TABLE VI
STANDARD DEVIATION OF SPEED VALUES OF DIGEST AND MESSAGE 

AUTHENTICATION (MB/S), SINGLE THREAD, 8K BLOCK

Model MD5 SHA
1

SHA
256

SHA
512 HMAC

Banana Pi 0.23 0.11 0.05 0.02 0.16
Banana Pi M2 0.13 0.11 0.04 0.03 0.17
BeagleBone Black 0.08 0.10 0.09 0.07 0.15
ODROID-C1 0.72 0.37 0.23 0.19 0.69
ODROID-U3 2.05 1.21 0.68 0.54 1.80
ODROID-XU3 L. 0.18 0.25 0.14 0.08 0.20
Orange Pi Mini 0.53 0.47 0.05 0.02 0.20
Orange Pi Plus 0.03 0.01 0.00 0.00 0.08
Raspberry Pi 0.10 0.01 0.03 0.00 0.03
Raspberry Pi 2 0.08 0.03 0.06 0.01 0.15
Opteron 1222 1.11 0.17 0.85 0.08 0.71
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562.56/240.15=2.34, while for SHA512: 
290.29/95.70=3.03).

TABLE IV
AVERAGE SPEED VALUES OF AES-256-CBC ENCRYPTION (MB/S), MULTIPLE

THREADS, 8K BLOCK

Model Thr.
AES-256 
x threads 
(MB/s)

AES-256
1 thread
(MB/s)

Rel. 
acc.

Std. 
dev.

Banana Pi 2 33.22 16.60 2.00 0.02
Banana Pi M2 4 69.96 17.49 4.00 0.02
ODROID-C1 4 109.57 27.26 4.02 0.04
ODROID-U3 4 88.43 43.27 2.04 7.38
ODROID-XU3 L. 4 195.01 61.77 3.16 1.01
ODROID-XU3 L. 8 276.21 61.77 4.47 2.20
Orange Pi Mini 2 36.36 18.33 1.98 0.01
Orange Pi Plus 4 46.55 22.29 2.09 6.40
Raspberry Pi 2 4 62.31 15.59 4.00 0.01
Opteron 1222 2 310.88 156.01 1.99 0.32

TABLE V
AVERAGE SPEED VALUES OF DIGEST AND MESSAGE AUTHENTICATION (MB/S),

SINGLE THREAD, 8K BLOCK

Model MD5 SHA
1

SHA
256

SHA
512 HMAC
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Banana Pi M2 82.96 46.30 27.93 14.12 82.83
BeagleBone Black 102.88 77.57 56.30 37.88 104.70
ODROID-C1 118.71 73.62 43.43 36.66 118.88
ODROID-U3 200.43 118.47 69.70 59.88 200.17
ODROID-XU3 L. 240.15 158.88 91.43 95.70 242.87
Orange Pi Mini 91.53 48.22 28.33 24.41 91.90
Orange Pi Plus 111.43 58.67 34.52 29.69 111.98
Raspberry Pi 51.92 29.12 18.79 9.11 53.15
Raspberry Pi 2 73.77 41.19 24.84 12.56 73.65
Opteron 1222 562.56 430.60 186.18 290.29 562.81

TABLE VI
STANDARD DEVIATION OF SPEED VALUES OF DIGEST AND MESSAGE 

AUTHENTICATION (MB/S), SINGLE THREAD, 8K BLOCK

Model MD5 SHA
1

SHA
256

SHA
512 HMAC

Banana Pi 0.23 0.11 0.05 0.02 0.16
Banana Pi M2 0.13 0.11 0.04 0.03 0.17
BeagleBone Black 0.08 0.10 0.09 0.07 0.15
ODROID-C1 0.72 0.37 0.23 0.19 0.69
ODROID-U3 2.05 1.21 0.68 0.54 1.80
ODROID-XU3 L. 0.18 0.25 0.14 0.08 0.20
Orange Pi Mini 0.53 0.47 0.05 0.02 0.20
Orange Pi Plus 0.03 0.01 0.00 0.00 0.08
Raspberry Pi 0.10 0.01 0.03 0.00 0.03
Raspberry Pi 2 0.08 0.03 0.06 0.01 0.15
Opteron 1222 1.11 0.17 0.85 0.08 0.71
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8) Multi-thread Results
To present the results, we have chosen the SHA256 digest 

generation, which are shown in Table VII. The structure of the 
table is the same as in Table IV.
9) Discussion of the Results

The analysis of the values shows that:
• Odroid-XU3 Lite is the fastest, Odroid-U3 is the second, 

and Odroid-C1 is the third.
• The Odroid-XU3 Lite, Odroid-U3 and Orange Pi Plus 

produce large standard deviations (The ratio of speed to 
standard deviation for devices Odroid-U3 and Orange Pi 
Plus are almost identical). The measured performance is 
not constant, shows significant fluctuations and the 
system behavior is not predictable.

• Among devices with low standard deviation, the fastest 
SBCs are Odroid-C1, Banana Pi M2 and Raspberry Pi 2.

• The relative acceleration is almost equal to the number of 
cores used, except for the three devices with high 
standard deviation. By increasing the number of cores, a 
linearly proportional acceleration is obtained.

B. Public key Cryptography
Public key cryptography is generally used for the encrypted 

transmission of symmetric keys, and the creation of digital 
signatures. The methods currently in use are extremely 
computationally intensive and slow, so they are usually used in 
combination with symmetric encryption for transmitting large 
amounts of data. The most widely used RSA encryption, 
developed by Ron Rivest, Adi Shamir and Leonard Adleman, 
was investigated with 2048 and 4096 bit long keys, as the 
minimum key length currently recommended for adequate 
security is 2048 bits.

1) RSA Encryption Results
In the RSA encryption, the same randomly generated file was 

encrypted and decrypted with the same key pair for each SBC. 
To test the performance of encryption using the 2048-bit key, 
one 1920-bit file was encrypted or decrypted 100 times in each 
measurement cycle for the 2048-bit key, and a 4000-bit file for 
the 4096-bit key (RSA is only able to encrypt data to a 
maximum amount equal to the key size, minus padding and 
header data.). The results of the test are presented in Table VIII
and graphically displayed in Fig. 4.
2) Discussion of the Results

The analysis of the values shows that:
• Odroid-U3 is the fastest for encoding, Odroid-XU3 Lite 

is the second, while for decoding, the order is reversed. 
Odroid-C1 is the third one in all cases.

• The slowest is the Raspberry Pi.
• The two SBCs based on the same SoC produced different 

results (Banana Pi and Orange Pi Mini), with the Banana 
Pi being faster in the encoding operation and the Orange 
Pi Mini in the decoding operation. In all cases, the 
differences were below 10% for the two SoCs.

• The relative performance of each SBC to the other is not 
necessarily the same for the different tasks.

• Even the speed of the fastest SBC is a fraction of that of 
the Opteron 1222-based system (e.g. for 4096-bit key 

Fig. 3.  Average speed values of digest and message authentication (MB/s), 
single thread, 8k block

TABLE VII
AVERAGE SPEED VALUES OF SHA256 MESSAGE DIGEST CREATION (MB/S),

MULTIPLE THREADS, 8K BLOCK

Model Thr.
SHA256 
x threads 
(MB/s)

SHA256
1 thread
(MB/s)

Rel. 
acc.

Std. 
dev.

Banana Pi 2 52.04 26.01 2.00 0.08
Banana Pi M2 4 111.79 27.93 4.00 0.13
ODROID-C1 4 174.79 43.43 4.02 0.21
ODROID-U3 4 260.81 69.70 3.74 112.01
ODROID-XU3 L. 4 317.19 91.43 3.47 6.99
ODROID-XU3 L. 8 442.94 91.43 4.84 31.49
Orange Pi Mini 2 56.32 28.33 1.99 0.13
Orange Pi Plus 4 72.00 34.52 2.09 32.10
Raspberry Pi 2 4 99.54 24.84 4.01 0.09
Opteron 1222 2 370.94 186.18 1.99 1.72

TABLE VIII
AVERAGE EXECUTION TIMES OF 100 PIECES OF ENCRYPTION AND 

DECRYPTION BY RSA ALGORITHM (IN SECONDS) – LOWER IS BETTER!

Model 2048 bit 
encr.

2048 bit 
decr.

4096 bit 
encr.

4096 bit 
decr.

Banana Pi 2.71 7.89 3.14 38.54
Banana Pi M2 2.43 7.07 2.82 34.42
BeagleBone Black 3.03 7.68 3.42 34.58
ODROID-C1 1.74 5.05 2.02 24.56
ODROID-U3 1.10 3.30 1.28 16.12
ODROID-XU3 L. 1.18 2.73 1.31 11.41
Orange Pi Mini 2.88 7.62 3.28 35.33
Orange Pi Plus 2.22 6.16 2.55 29.27
Raspberry Pi 6.63 15.19 7.36 64.64
Raspberry Pi 2 2.93 8.15 3.37 38.84
Opteron 1222 0.50 0.74 0.52 1.89

Fig. 4.  Average execution times of 100 pieces of encryption and decryption by 
RSA algorithm (in seconds) – Lower is better!
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8) Multi-thread Results
To present the results, we have chosen the SHA256 digest 

generation, which are shown in Table VII. The structure of the 
table is the same as in Table IV.
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To present the results, we have chosen the SHA256 digest 

generation, which are shown in Table VII. The structure of the 
table is the same as in Table IV.
9) Discussion of the Results
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one 1920-bit file was encrypted or decrypted 100 times in each 
measurement cycle for the 2048-bit key, and a 4000-bit file for 
the 4096-bit key (RSA is only able to encrypt data to a 
maximum amount equal to the key size, minus padding and 
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length decoding: 11.41/1.89=6.04).

C. Random Number Generation
Random numbers and their generation play a key role in 

cryptography. Without the right random numbers, secure 
encryption cannot be done. Generating true random numbers 
(TRNs) with computers is almost impossible. There are several 
algorithms for generating pseudo random numbers (PRN), 
which are recommended for different purposes. Some are 
explicitly not recommended for encryption tasks, while others 
are suitable (e.g. Dual_EC_DRBG).

According to the available information, (almost) all ARM-
based SoCs under investigation have some kind of hardware 
random number generator (HWRNG). The following 
information has been extracted from publicly available 
documentation:

• Amlogic S805: Built-in LSFR Random number 
generator.

• TI AM3359: Crypto Hardware Accelerators (AES, SHA, 
PKA, RNG).

• Allwinner A20: 160-bit hardware PRNG with 192-bit 
seed.

• Allwinner A31: 160-bit hardware PRNG with 192-bit 
seed.

• Allwinner H3: 160-bits hardware PRNG with 175-bits 
seed. 256-bits TRNG.

• Samsung Exynos 5422: Hardware Crypto Accelerators: 
AES, DES/3DES, ARC4, SHA-1/SHA-
256/MD5/HMAC/PRNG, TRNG, PKA, and Secure Key 
Manager.

The two SoCs produced by Broadcom also contain some 
form of HWRNG, but no documentation has been found.

1) Support
HWRNG is not well documented for any of the SoCs 

examined. Only partial information could be found.
A common Linux driver for all Allwinner SoCs HWRNG is 

produced, but at the time of testing it was not yet working 
reliably.

No information could be found for Samsung SoCs.
The HWRNG of the TI AM3359 SoC is supported in the new 

kernels, however the Linux released for the BeagleBone Black 
does not yet have this kernel.

The Amlogic S805 in Odroid-C1 is supported.
The two Broadcom SoCs found in the Raspberry Pi SBCs are 

also supported.

2) Tests
a) Entropy

Due to the shortcomings of the documentation, we were only 
able to examine the quality of the random numbers to a limited 
extent: we only performed statistical analysis on the 
(pseudo)random numbers generated by the SBCs. The most 
commonly used tools for statistical analysis and their latest 
versions are the following:

• Diehard [18]
• Dieharder 3.31.1 [19]
• NIST Special Publication 800-22rev1a 2.1.2 [20]

• Ent [21]
• rngtest [22]
• TestU01 1.2.3 [23]
• Practically Random 0.94 [24]
To perform the tests, 10GB of (pseudo)random numbers were 

generated and analyzed. The results of the analyses are 
summarized in Table IX.

The results show that none of the random numbers generated 
by the systems can be used for encryption. However, the Linux 
kernel is prepared to use multiple sources for random number 
generation, so the weakness of one source is not necessarily a 
problem, but the use of HWRNG can speed up random number 
generation. It is also important to note that the lack of proper 
documentation (hence knowledge of how the SoC HWRNG 
works) is also a drawback for its use in encryption applications.

b) Visual Analysis
Rather just for interest, we also visually examined the quality 

of the random numbers produced. Fig. 5. shows the images 
created from the generated random numbers in 256 by 256 grids
of (24 bit) RGB values. A close inspection of the figures does 
not reveal any anomalous repetition or shape.

c) Speed
Table X shows the speed of random number generation using 

the HWRNG for the three SBCs under study.

V. CONCLUSIONS

The results show that even the slowest SBC has sufficient 
performance to perform the encryption task required in a 
normal application. For more specialized applications with 
higher amount of encrypted traffic, the characteristics of each 

Fig. 5.  Images created from random numbers generated by Odroid-C1, 
Raspberry Pi, and Raspberry Pi 2

TABLE IX
RESULTS OF THE STATISTICAL ANALYSIS OF THE GENERATED RANDOM

NUMBERS

Model
Dieharder Ent Χ2

distribution
NIST 

800-22

ODROID-C1 Passed suspect 
(98,71%) 1 error

Raspberry Pi 1 weak 
(bitstream) Ok (59,7%) Success

Raspberry Pi 2 1 weak (rank 
32x32)

almost suspect 
(90,83%) 1 error

TABLE X
THE SPEED VALUES OF THE HARDWARE RANDOM NUMBER GENERATORS

Model
Speed

ODROID-C1 7.3MB/s
Raspberry Pi 105kB/s
Raspberry Pi 2 147kB/s
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length decoding: 11.41/1.89=6.04).

C. Random Number Generation
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cryptography. Without the right random numbers, secure 
encryption cannot be done. Generating true random numbers 
(TRNs) with computers is almost impossible. There are several 
algorithms for generating pseudo random numbers (PRN), 
which are recommended for different purposes. Some are 
explicitly not recommended for encryption tasks, while others 
are suitable (e.g. Dual_EC_DRBG).
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generated and analyzed. The results of the analyses are 
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by the systems can be used for encryption. However, the Linux 
kernel is prepared to use multiple sources for random number 
generation, so the weakness of one source is not necessarily a 
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The results show that none of the random numbers generated 
by the systems can be used for encryption. However, the Linux 
kernel is prepared to use multiple sources for random number 
generation, so the weakness of one source is not necessarily a 
problem, but the use of HWRNG can speed up random number 
generation. It is also important to note that the lack of proper 
documentation (hence knowledge of how the SoC HWRNG 
works) is also a drawback for its use in encryption applications.

b) Visual Analysis
Rather just for interest, we also visually examined the quality 

of the random numbers produced. Fig. 5. shows the images 
created from the generated random numbers in 256 by 256 grids
of (24 bit) RGB values. A close inspection of the figures does 
not reveal any anomalous repetition or shape.

c) Speed
Table X shows the speed of random number generation using 

the HWRNG for the three SBCs under study.

V. CONCLUSIONS

The results show that even the slowest SBC has sufficient 
performance to perform the encryption task required in a 
normal application. For more specialized applications with 
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TABLE IX
RESULTS OF THE STATISTICAL ANALYSIS OF THE GENERATED RANDOM

NUMBERS

Model
Dieharder Ent Χ2

distribution
NIST 

800-22

ODROID-C1 Passed suspect 
(98,71%) 1 error

Raspberry Pi 1 weak 
(bitstream) Ok (59,7%) Success

Raspberry Pi 2 1 weak (rank 
32x32)

almost suspect 
(90,83%) 1 error

TABLE X
THE SPEED VALUES OF THE HARDWARE RANDOM NUMBER GENERATORS

Model
Speed

ODROID-C1 7.3MB/s
Raspberry Pi 105kB/s
Raspberry Pi 2 147kB/s
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8) Multi-thread Results
To present the results, we have chosen the SHA256 digest 

generation, which are shown in Table VII. The structure of the 
table is the same as in Table IV.
9) Discussion of the Results

The analysis of the values shows that:
• Odroid-XU3 Lite is the fastest, Odroid-U3 is the second, 

and Odroid-C1 is the third.
• The Odroid-XU3 Lite, Odroid-U3 and Orange Pi Plus 

produce large standard deviations (The ratio of speed to 
standard deviation for devices Odroid-U3 and Orange Pi 
Plus are almost identical). The measured performance is 
not constant, shows significant fluctuations and the 
system behavior is not predictable.

• Among devices with low standard deviation, the fastest 
SBCs are Odroid-C1, Banana Pi M2 and Raspberry Pi 2.

• The relative acceleration is almost equal to the number of 
cores used, except for the three devices with high 
standard deviation. By increasing the number of cores, a 
linearly proportional acceleration is obtained.

B. Public key Cryptography
Public key cryptography is generally used for the encrypted 

transmission of symmetric keys, and the creation of digital 
signatures. The methods currently in use are extremely 
computationally intensive and slow, so they are usually used in 
combination with symmetric encryption for transmitting large 
amounts of data. The most widely used RSA encryption, 
developed by Ron Rivest, Adi Shamir and Leonard Adleman, 
was investigated with 2048 and 4096 bit long keys, as the 
minimum key length currently recommended for adequate 
security is 2048 bits.

1) RSA Encryption Results
In the RSA encryption, the same randomly generated file was 

encrypted and decrypted with the same key pair for each SBC. 
To test the performance of encryption using the 2048-bit key, 
one 1920-bit file was encrypted or decrypted 100 times in each 
measurement cycle for the 2048-bit key, and a 4000-bit file for 
the 4096-bit key (RSA is only able to encrypt data to a 
maximum amount equal to the key size, minus padding and 
header data.). The results of the test are presented in Table VIII
and graphically displayed in Fig. 4.
2) Discussion of the Results

The analysis of the values shows that:
• Odroid-U3 is the fastest for encoding, Odroid-XU3 Lite 

is the second, while for decoding, the order is reversed. 
Odroid-C1 is the third one in all cases.

• The slowest is the Raspberry Pi.
• The two SBCs based on the same SoC produced different 

results (Banana Pi and Orange Pi Mini), with the Banana 
Pi being faster in the encoding operation and the Orange 
Pi Mini in the decoding operation. In all cases, the 
differences were below 10% for the two SoCs.

• The relative performance of each SBC to the other is not 
necessarily the same for the different tasks.

• Even the speed of the fastest SBC is a fraction of that of 
the Opteron 1222-based system (e.g. for 4096-bit key 

Fig. 3.  Average speed values of digest and message authentication (MB/s), 
single thread, 8k block

TABLE VII
AVERAGE SPEED VALUES OF SHA256 MESSAGE DIGEST CREATION (MB/S),

MULTIPLE THREADS, 8K BLOCK

Model Thr.
SHA256 
x threads 
(MB/s)

SHA256
1 thread
(MB/s)

Rel. 
acc.

Std. 
dev.

Banana Pi 2 52.04 26.01 2.00 0.08
Banana Pi M2 4 111.79 27.93 4.00 0.13
ODROID-C1 4 174.79 43.43 4.02 0.21
ODROID-U3 4 260.81 69.70 3.74 112.01
ODROID-XU3 L. 4 317.19 91.43 3.47 6.99
ODROID-XU3 L. 8 442.94 91.43 4.84 31.49
Orange Pi Mini 2 56.32 28.33 1.99 0.13
Orange Pi Plus 4 72.00 34.52 2.09 32.10
Raspberry Pi 2 4 99.54 24.84 4.01 0.09
Opteron 1222 2 370.94 186.18 1.99 1.72

TABLE VIII
AVERAGE EXECUTION TIMES OF 100 PIECES OF ENCRYPTION AND 

DECRYPTION BY RSA ALGORITHM (IN SECONDS) – LOWER IS BETTER!

Model 2048 bit 
encr.

2048 bit 
decr.

4096 bit 
encr.

4096 bit 
decr.

Banana Pi 2.71 7.89 3.14 38.54
Banana Pi M2 2.43 7.07 2.82 34.42
BeagleBone Black 3.03 7.68 3.42 34.58
ODROID-C1 1.74 5.05 2.02 24.56
ODROID-U3 1.10 3.30 1.28 16.12
ODROID-XU3 L. 1.18 2.73 1.31 11.41
Orange Pi Mini 2.88 7.62 3.28 35.33
Orange Pi Plus 2.22 6.16 2.55 29.27
Raspberry Pi 6.63 15.19 7.36 64.64
Raspberry Pi 2 2.93 8.15 3.37 38.84
Opteron 1222 0.50 0.74 0.52 1.89

Fig. 4.  Average execution times of 100 pieces of encryption and decryption by 
RSA algorithm (in seconds) – Lower is better!
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1) Support
HWRNG is not well documented for any of the SoCs 

examined. Only partial information could be found.
A common Linux driver for all Allwinner SoCs HWRNG is 

produced, but at the time of testing it was not yet working 
reliably.

No information could be found for Samsung SoCs.
The HWRNG of the TI AM3359 SoC is supported in the new 

kernels, however the Linux released for the BeagleBone Black 
does not yet have this kernel.

The Amlogic S805 in Odroid-C1 is supported.
The two Broadcom SoCs found in the Raspberry Pi SBCs are 

also supported.

2) Tests
a) Entropy

Due to the shortcomings of the documentation, we were only 
able to examine the quality of the random numbers to a limited 
extent: we only performed statistical analysis on the 
(pseudo)random numbers generated by the SBCs. The most 
commonly used tools for statistical analysis and their latest 
versions are the following:

• Diehard [18]
• Dieharder 3.31.1 [19]
• NIST Special Publication 800-22rev1a 2.1.2 [20]

• Ent [21]
• rngtest [22]
• TestU01 1.2.3 [23]
• Practically Random 0.94 [24]
To perform the tests, 10GB of (pseudo)random numbers were 

generated and analyzed. The results of the analyses are 
summarized in Table IX.

The results show that none of the random numbers generated 
by the systems can be used for encryption. However, the Linux 
kernel is prepared to use multiple sources for random number 
generation, so the weakness of one source is not necessarily a 
problem, but the use of HWRNG can speed up random number 
generation. It is also important to note that the lack of proper 
documentation (hence knowledge of how the SoC HWRNG 
works) is also a drawback for its use in encryption applications.

b) Visual Analysis
Rather just for interest, we also visually examined the quality 

of the random numbers produced. Fig. 5. shows the images 
created from the generated random numbers in 256 by 256 grids
of (24 bit) RGB values. A close inspection of the figures does 
not reveal any anomalous repetition or shape.

c) Speed
Table X shows the speed of random number generation using 

the HWRNG for the three SBCs under study.

V. CONCLUSIONS

The results show that even the slowest SBC has sufficient 
performance to perform the encryption task required in a 
normal application. For more specialized applications with 
higher amount of encrypted traffic, the characteristics of each 

Fig. 5.  Images created from random numbers generated by Odroid-C1, 
Raspberry Pi, and Raspberry Pi 2

TABLE IX
RESULTS OF THE STATISTICAL ANALYSIS OF THE GENERATED RANDOM

NUMBERS

Model
Dieharder Ent Χ2

distribution
NIST 

800-22

ODROID-C1 Passed suspect 
(98,71%) 1 error

Raspberry Pi 1 weak 
(bitstream) Ok (59,7%) Success

Raspberry Pi 2 1 weak (rank 
32x32)

almost suspect 
(90,83%) 1 error

TABLE X
THE SPEED VALUES OF THE HARDWARE RANDOM NUMBER GENERATORS

Model
Speed

ODROID-C1 7.3MB/s
Raspberry Pi 105kB/s
Raspberry Pi 2 147kB/s
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length decoding: 11.41/1.89=6.04).
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• Samsung Exynos 5422: Hardware Crypto Accelerators: 
AES, DES/3DES, ARC4, SHA-1/SHA-
256/MD5/HMAC/PRNG, TRNG, PKA, and Secure Key 
Manager.

The two SoCs produced by Broadcom also contain some 
form of HWRNG, but no documentation has been found.

1) Support
HWRNG is not well documented for any of the SoCs 

examined. Only partial information could be found.
A common Linux driver for all Allwinner SoCs HWRNG is 

produced, but at the time of testing it was not yet working 
reliably.

No information could be found for Samsung SoCs.
The HWRNG of the TI AM3359 SoC is supported in the new 

kernels, however the Linux released for the BeagleBone Black 
does not yet have this kernel.

The Amlogic S805 in Odroid-C1 is supported.
The two Broadcom SoCs found in the Raspberry Pi SBCs are 

also supported.

2) Tests
a) Entropy

Due to the shortcomings of the documentation, we were only 
able to examine the quality of the random numbers to a limited 
extent: we only performed statistical analysis on the 
(pseudo)random numbers generated by the SBCs. The most 
commonly used tools for statistical analysis and their latest 
versions are the following:

• Diehard [18]
• Dieharder 3.31.1 [19]
• NIST Special Publication 800-22rev1a 2.1.2 [20]

• Ent [21]
• rngtest [22]
• TestU01 1.2.3 [23]
• Practically Random 0.94 [24]
To perform the tests, 10GB of (pseudo)random numbers were 

generated and analyzed. The results of the analyses are 
summarized in Table IX.

The results show that none of the random numbers generated 
by the systems can be used for encryption. However, the Linux 
kernel is prepared to use multiple sources for random number 
generation, so the weakness of one source is not necessarily a 
problem, but the use of HWRNG can speed up random number 
generation. It is also important to note that the lack of proper 
documentation (hence knowledge of how the SoC HWRNG 
works) is also a drawback for its use in encryption applications.

b) Visual Analysis
Rather just for interest, we also visually examined the quality 

of the random numbers produced. Fig. 5. shows the images 
created from the generated random numbers in 256 by 256 grids
of (24 bit) RGB values. A close inspection of the figures does 
not reveal any anomalous repetition or shape.

c) Speed
Table X shows the speed of random number generation using 

the HWRNG for the three SBCs under study.

V. CONCLUSIONS

The results show that even the slowest SBC has sufficient 
performance to perform the encryption task required in a 
normal application. For more specialized applications with 
higher amount of encrypted traffic, the characteristics of each 

Fig. 5.  Images created from random numbers generated by Odroid-C1, 
Raspberry Pi, and Raspberry Pi 2

TABLE IX
RESULTS OF THE STATISTICAL ANALYSIS OF THE GENERATED RANDOM

NUMBERS

Model
Dieharder Ent Χ2

distribution
NIST 

800-22

ODROID-C1 Passed suspect 
(98,71%) 1 error

Raspberry Pi 1 weak 
(bitstream) Ok (59,7%) Success

Raspberry Pi 2 1 weak (rank 
32x32)

almost suspect 
(90,83%) 1 error

TABLE X
THE SPEED VALUES OF THE HARDWARE RANDOM NUMBER GENERATORS

Model
Speed

ODROID-C1 7.3MB/s
Raspberry Pi 105kB/s
Raspberry Pi 2 147kB/s
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 [2] Raspberry Pi Foundation, https://www.raspberrypi.org/
 [3] ODROID-XU3 Lite, https://www.hardkernel.com/shop/odroid-xu3-

lite/
 [4] M. A. M. Isa et al., “A Series of Secret Keys in a Key Distribution 

Protocol,” in Transactions on Engineering Technologies, London, UK,  
2-4 July 2014, pp. 615–628. doi: 10.1007/978-94-017-9804-4_43
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SBC need to be taken into account. 
If only one processor core can be used efficiently due to the 

application, then the BeagleBone Black is recommended rather 
than Raspberry Pi Model B+ (While it is worth noting that the 
Odroid-XU3 Lite produces the highest speed with single thread 
in almost all cases.). 

The use of Odroid-XU3 Lite, Odroid-U3 and Orange Pi Plus 
should be avoided due to their performance fluctuation under 
heavy load. Further investigation is required to determine the 
reasons. 

Due to its performance and predictable, stable operation, we 
recommend using Odroid-C1 for encryption applications 
(moreover, its HWRNG is the fastest among the devices tested). 
For its speed, the Bana Pi M2 is also a good choice. For its 
coverage, and thus support and awareness, the Raspberry Pi 2 
is recommended. 

The HWRNGs we tested do not provide reassuring entropy, 
but we found the fewest problems with Raspberry Pi. 

Different memory speeds of SBCs based on the same SoCs 
do not significantly affect the performance of the SBC. 

VI. SUMMARY AND FURTHER RESEARCH 
Based on the results, SBCs are cost-effective, energy-efficient 

devices that are well suited for information security 
applications. 

Further measurements of encryption capabilities (e.g. 
HTTPS, SCP, SFTP, IPsec) need to be developed and 
performed to determine their potential applications. The 
performance of network transmissions is an important area to 
be investigated. 

Finally, it is important to investigate the virtualization 
capabilities of each SBC, as well as its compatibility with other 
operating systems in the security domain. (e.g. OpenBSD, 
FreeBSD.) 
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SBC need to be taken into account. 
If only one processor core can be used efficiently due to the 

application, then the BeagleBone Black is recommended rather 
than Raspberry Pi Model B+ (While it is worth noting that the 
Odroid-XU3 Lite produces the highest speed with single thread 
in almost all cases.). 

The use of Odroid-XU3 Lite, Odroid-U3 and Orange Pi Plus 
should be avoided due to their performance fluctuation under 
heavy load. Further investigation is required to determine the 
reasons. 

Due to its performance and predictable, stable operation, we 
recommend using Odroid-C1 for encryption applications 
(moreover, its HWRNG is the fastest among the devices tested). 
For its speed, the Bana Pi M2 is also a good choice. For its 
coverage, and thus support and awareness, the Raspberry Pi 2 
is recommended. 

The HWRNGs we tested do not provide reassuring entropy, 
but we found the fewest problems with Raspberry Pi. 

Different memory speeds of SBCs based on the same SoCs 
do not significantly affect the performance of the SBC. 

VI. SUMMARY AND FURTHER RESEARCH 
Based on the results, SBCs are cost-effective, energy-efficient 

devices that are well suited for information security 
applications. 

Further measurements of encryption capabilities (e.g. 
HTTPS, SCP, SFTP, IPsec) need to be developed and 
performed to determine their potential applications. The 
performance of network transmissions is an important area to 
be investigated. 

Finally, it is important to investigate the virtualization 
capabilities of each SBC, as well as its compatibility with other 
operating systems in the security domain. (e.g. OpenBSD, 
FreeBSD.) 
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