
Application-Aware Analysis of Network Neutrality:
A Scalable Real-Time Method

INFOCOMMUNICATIONS JOURNAL

MARCH 2023 • VOLUME XV • NUMBER 1 77

DOI: 10.36244/ICJ.2023.1.8

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Application-Aware Analysis of Network Neutrality:
A Scalable Real-Time Method
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Abstract—Internet access subscribers expect a satisfying qual-
ity of experience for any accessed service, independently from
time, place, and service- and content-type. Besides the ever-
increasing amount of Internet data, the spectrum of video service
platforms offering sharing and streaming also got significantly
more comprehensive. Internet access providers try to avoid
the exhaustion of network bandwidth by investing in network
capacity or setting up higher-level resource management within
their infrastructure. The primary question in this domain is
how resource management constrains the subscriber to access
an arbitrary service and experience good service quality. This
question directly relates to network neutrality fundamentals.

This paper presents a real-time full-reference objective method
to assess network neutrality. It contributes three novelties to
support user-centric analysis of potential restraints affecting In-
ternet access quality: i) the proposal supports application-specific
measurements and involves real content and real traffic, ii) the
measured traffic originates from the content provider’s cloud
infrastructure, iii) reference is created in real time. Accordingly,
the proposal introduces a novel measurement layout. The key
component is the emulated client that provides the real-time
reference by emulating the access properties of the real client
and accessing the same content simultaneously.

We demonstrate the method’s feasibility with an application-
aware proof-of-concept use case: video streaming from a public
VoD provider. We have validated the method against the emulated
network parameters using an extensive series of laboratory
measurements.

Index Terms—Network neutrality, quality measurement, video
streaming, objective quality model.

I. INTRODUCTION

CLOUD-BASED services have become the dominators
of global Internet communication in the last decade.

Evolved data-center technologies and architectures opened the
way toward centralized, global service platforms. From an
Internet provider’s perspective, it is a crucial challenge to
manage network resources optimizing its subscribers’ quality
of experience for those cloud services that dominate their
traffic mix. Its endeavor to control resources, i.e., traffic engi-
neering based on service popularity, may offend the original
best-effort paradigm of the global Internet. Handling a wide
scale of traffic types requires tools and techniques that support
the network to fulfill various transmission requirements. Since
the best-effort communication model effectively fosters new
services and technologies, prioritizing the service platforms
based on popularity ranking may set up numerous constraints
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to new technologies and services. The primary question in
this domain is how advanced resource management constraints
the subscriber to access an arbitrary service and experience
good service quality. This question directly relates to network
neutrality fundamentals which are supported by the legal
framework Regulation (EU) 2015/2120 of the European Par-
liament and the Council [1]. The regulation and the status quo
imply a pivotal question: How can consumers and authorities
objectively verify Internet access neutrality for a wide range
of services in the cloud-era?

Although the regulation itself is intended to be the legal
mechanism in this field, a complete consumer protection suit
also requires a dedicated technological background to enable
verifying the neutrality of an Internet access, and the latter is
still missing. The primary reason for this large gap between
the availability of legal and technical tools is that the scientific
fundamentals providing the underlying measurement paradigm
and scalable methods are yet to be established. Analyzing
a wide scale of network neutrality attributes (defined by
EU’s BEREC Office [2] [3] and introduces new ones for
cloud services) is a research “green-field” without dedicated
standards and methods.

The network neutrality paradigm expects Internet access
providers to treat all user traffic equally, independently from
the type of device, platform, service, and content [1]. In
contrast, the last decade has seen many user restrictions and
traffic differentiation cases that violate the neutrality principle.
Early cases typically covered service functionality restric-
tions by explicitly blocking domains, IP address ranges, and
transport protocol port identifiers. With the evolution of deep
packet inspection (DPI) technologies, operators can identify
a service while its traffic enters their networks. The service
identification, whether it is based on protocol identifiers or
traffic pattern recognition, enables performing prioritization.
As a result, some preferred applications may offer guaranteed
perceptive quality by assuring bandwidth or latency. Other
services use the rest of the network resources, thus being
transmitted according to the best-effort model or even with
administratively limited throughput.

For assessing the service (and mainly audio and video)
quality, objective quality models can be categorized into two
major categories, i.e., full-reference and no-reference models.
While the full-reference models require a reference source to
perform quality analysis on the received media and typically
have a high correlation to the perceived service quality, the no-
reference models do not use such references but have lower
accuracy. Applying full-reference models to assessing public
services is problematic. The central question is how a valid
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to new technologies and services. The primary question in
this domain is how advanced resource management constraints
the subscriber to access an arbitrary service and experience
good service quality. This question directly relates to network
neutrality fundamentals which are supported by the legal
framework Regulation (EU) 2015/2120 of the European Par-
liament and the Council [1]. The regulation and the status quo
imply a pivotal question: How can consumers and authorities
objectively verify Internet access neutrality for a wide range
of services in the cloud-era?

Although the regulation itself is intended to be the legal
mechanism in this field, a complete consumer protection suit
also requires a dedicated technological background to enable
verifying the neutrality of an Internet access, and the latter is
still missing. The primary reason for this large gap between
the availability of legal and technical tools is that the scientific
fundamentals providing the underlying measurement paradigm
and scalable methods are yet to be established. Analyzing
a wide scale of network neutrality attributes (defined by
EU’s BEREC Office [2] [3] and introduces new ones for
cloud services) is a research “green-field” without dedicated
standards and methods.

The network neutrality paradigm expects Internet access
providers to treat all user traffic equally, independently from
the type of device, platform, service, and content [1]. In
contrast, the last decade has seen many user restrictions and
traffic differentiation cases that violate the neutrality principle.
Early cases typically covered service functionality restric-
tions by explicitly blocking domains, IP address ranges, and
transport protocol port identifiers. With the evolution of deep
packet inspection (DPI) technologies, operators can identify
a service while its traffic enters their networks. The service
identification, whether it is based on protocol identifiers or
traffic pattern recognition, enables performing prioritization.
As a result, some preferred applications may offer guaranteed
perceptive quality by assuring bandwidth or latency. Other
services use the rest of the network resources, thus being
transmitted according to the best-effort model or even with
administratively limited throughput.

For assessing the service (and mainly audio and video)
quality, objective quality models can be categorized into two
major categories, i.e., full-reference and no-reference models.
While the full-reference models require a reference source to
perform quality analysis on the received media and typically
have a high correlation to the perceived service quality, the no-
reference models do not use such references but have lower
accuracy. Applying full-reference models to assessing public
services is problematic. The central question is how a valid
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reference source can be obtained. The primary disadvantages
of the full-reference model are a) offline operation (i.e., post-
processing), b) requirement for the original sample (as a
reference) and as a fundamental privacy issue, c) analysis
of user data. Based on the new methodology, we propose a
real-time full-reference assessment model to identify service
quality restrictions the Internet access provider applies.

Considering the assessment of network neutrality (and par-
ticularly with an application-specific focus), objective assess-
ment methods can be categorized into three major categories
based on the applied traffic pattern, i.e., real, replayed, and
generated traffic. The two central questions are: i) How an
assessment method relates to the real user scenarios and traffic
patterns? ii) How can false detection be identified, and what is
the probability of a false result? Network neutrality measure-
ments on the public Internet cannot be considered a repeatable,
all-the-way objective measurement from the metrological per-
spective. A comprehensive neutrality analysis covers a wide
scale of measurement types that should be performed reliably
on a live network. While the protocol-based test can be
executed with a relatively low false ratio, application-specific
measurements raise multiple methodology-related issues.

The primary goal of this paper is to establish a new
assessment paradigm - real-time application- and platform-
specific analysis of network neutrality on the public Internet
(assessment anytime, anywhere). The involvement of public
cloud services enables the elaborated objective models to
continuously adapt to the ever-changing public networks and
platforms by exploiting the benefits of real service traffic.
Moreover, the novel measurement paradigm allows the assess-
ment of network neutrality for a wide range of applications
with a low false rate.

The remainder of the paper is organized as follows. Section
II presents the related works in the field of technology- and
application-specific analysis of network neutrality. Section
III introduces the new methodology focusing on the novel
principles, and Section IV describes the assessment method
that aligns with the criteria specified in BEREC measurement
directives [2] [3]. In contrast, Section V presents a proof-
of-concept use case applying the method to detect video
streaming restrictions. Section VI shows validation results to
demonstrate the effectiveness of our model. Finally, Section
VII concludes the paper.

II. RELATED WORK

Previous works on network neutrality assessment, in gen-
eral, try to detect possible differentiation with a manipulated
user traffic pattern and compare the metrics of the transmis-
sions [4] [5], being the latter the reference. Some of them aim
to detect the shaper algorithm and its parameters as well [6]
[7]. The real challenge for all of them is to lower the false
positive ratio (differentiation detected, but there is none) and
false negative (differentiation stays under the radar) detection.

NetPolice’s idea uses two flows between the endpoints: the
original is the reference, and a generated one with a similar
timing but with different ports and payload is to be replayed
[8]. The flows are transmitted among similar packet loss if no

shaping is applied between the endpoints. Routing information
is also considered. Since it is based on ICMP replies of the
hops, its usability is affected by rate-limiting and protocol
prioritization.

Glasnost uses real traffic and its randomized copies with
similar timing [9]. To detect shaping, these copies are replayed
via the measurement servers at the same or higher rates
than the original one. Maximum application throughput is
compared with application control flow throughput as well.
To improve its accuracy, user traffic traces were collected and
analyzed; different flow types were compared on the same
network path, as well as measurements were executed at least
five times and at least for 60 seconds per use case. It used a
dedicated application (discontinued).

DiffProbe also uses packet replay at different rates, and link
saturation [10]. It takes packet loss and end-to-end delay into
account when detecting possible differentiation. Its limitation
is that it also classifies by port numbers and payload type since
behavior-based differentiation methods were unreliable at the
time.

OONI’s goal is detecting Internet surveillance and censor-
ship [11]. Using active probing, it tries to connect various
HTTP-based services. It also utilizes DNS lookup and multi-
protocol traceroute, detects TCP resets, and man-in-the-middle
(MITM) SSL/TLS interventions. However, more of these tests
affect the application level; it does not perform application or
service-specific tests.

Network tomography and inference framework use a dif-
ferent approach [12]. It measures TCP and UDP traffic flow
congestion between a set of endpoints and constructs a linear
system of equations. An unsolvable system means positive
detection. However, this solution needs extensive infrastructure
and a large number of users. The advantage is a low false
detection rate and keeping count of TCP dynamics.

Researchers behind CONNEcT realized that identifying
network neutrality measurements can help ISPs divert the
results [13]. The detection is based on packet loss and pas-
sive path capacity measurement. Their solution uses a covert
communication channel between measurement hosts: these
metadata and samples are hidden within the application data.
No application-specific measures are made, however.

WindRider focuses on measurements between its measure-
ment servers and mobile endpoints [14]. Although measure-
ment is lightweight, the method requires user feedback, and
demands are special on OS features (packet capturing, etc.)
that limit the wide implementation. The user feedback does
not judge an application’s QoE (Quality of Experience) itself.

Statistical analysis is commonly used to minimize the effect
of background traffic as well as to reduce the false detection
ratio with more or less success [15]. Only a few methods
use real application traffic during the measurement, and none
of them use QoE as the base of their detection. Some of
the methods above require endpoints placed at other ISPs
or dedicated applications or frameworks on the endpoints. If
a measurement server is used, ISPs can also recognize and
whitelist the measurement traffic.
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III. METHODOLOGY

A. Measurement on live networks

Our measurement method approaches the detection by the
real user QoE. First, the user’s access parameters are deter-
mined. Then the measurement is executed with two instances
simultaneously: it is measured at the user endpoint and in
a container with the same access parameters at an Internet
exchange point (IX). Since IX can be considered a neutral
access point, the measurement results will be used as a real-
time generated reference for the measurement. The measure-
ment itself measures the specific service in subject instead
of only replaying a recorded traffic pattern and measuring
QoS metrics. Despite the ISP being inspected could detect
the measurement control server’s IP addresses, the baseline of
the measurement cannot be altered.

Measurements performed on a live public network (i.e.,
the Internet) are not repeatable in the sense that we execute
measurements in a controlled laboratory environment. Ac-
cordingly, evaluating the measurement results requires a new
perspective and alternative methods. Whether the assessment
involves packet-level or application-level performance metrics,
consecutive measurements never give the same result, even
between two designated endpoints. In order to improve the
reliability of the outcome, there are existing methods to filter
out traffic interference and other endpoint-related constraints
[16] [17]. On the one hand, there exist measurement methods
supporting a single measurement by eliminating the effect of
transient events that occurred during the assessment process.
Finally, there are statistical methods to handle anomalies based
on a large number of measurements. When such an assessment
tool is made publicly available, we must handle the most
challenging scenario, i.e., the network neutrality assessment
is allowed to perform by anybody using his/her computer
and Internet access. The primary question this scenario raises
is how we can get a reliable result, possibly free from
false detection or identifying an invalid case at least. From
the metrological perspective, the main task is to minimize
measurement error even with these constraints. Accordingly,
we will discuss the factors that affect measurement reliability
and may induce false detection on a public network.

B. Handling false detection

Focusing on the root cause of false detection, we can
categorize the sources of unwanted events and properties
into two categories: i) traffic interference and ii) resource
interference. While the former covers background traffic that
is concurrently transmitted on any segment of the IP path
during the measurement process, the latter refers to the host’s
hardware resources (e.g., CPU and system memory) that are
shared between running processes, including the measurement
itself. While lightweight background traffic and concurrent
processes do not affect the reliability of the measurement
result, heavy workloads may induce false detection of traffic
manipulation. Verifying resource availability is a pivotal step
to minimize the probability of false detection. We propose a
preliminary measurement phase for a web-based approach that
aims to estimate the available access bandwidth and the packet

loss ratio. Alternatively, an application-based approach also
enables to verify CPU, memory, and bandwidth availability
preceding the network neutrality measurement.

C. Causes of detection uncertainties

1) Background user traffic: Background traffic may alter
the time-domain behavior of the measurement traffic and
thus affect the measured transmission properties. Since the
presence of background traffic is inevitable in public net-
work measurements, our goal is to minimize its effect on
the measurement result. In the worst-case scenario, excessive
background traffic congests a network link, resulting in packet
loss in the measured traffic. These loss events directly affect
the application-level performance of the measured service.

2) Process-level interference on client-side resources:
Available CPU cores, system memory, and Internet access
capacity are shared resources between concurrently running
system and user processes.

3) Congestion on the content provider’s infrastructure:
Our proposal involves the content provider’s infrastructure
in the measurement process. Accordingly, bottlenecks occur-
ring on the provider-side directly impact the measurement
outcome. However, cloud-based virtualized content services
scale well by design to maintain high service quality even in
peak time periods. Meanwhile, specific scenarios may occur
when service quality drops due to unexpected security or
resource provisioning issues. Our proposed dual test method
can identify quality degradation originating from a bottleneck
that evolved in the provider’s infrastructure.

D. Whitelisting the measurement traffic

Most of the discussed proposals are based on the client-
server communication model. The drawback of this architec-
ture is the static nature of the server-side, which is easily
identifiable via its IP address. This enables Internet Service
Providers to dynamically detect and prioritize measurement
traffic at packet-level in real time.

Solution: Since the proposed method fetches real content
from the content provider, the server-side measurement IP
address belongs to the provider’s IP network. This feature
disallows ISPs to identify the measurement traffic on their
networks. However, a single TCP connection permanently
exists between the measurement client and the control server
throughout the entire measurement session. While the server’s
IP address is fixed, it can be masqueraded by deploying one or
multiple relay servers (exclusively for the control messaging)
in an arbitrary public cloud. In this case, ISP can only identify
the IP of the relay server that belongs to the public cloud
provider.

IV. THE PROPOSED METHOD

A. Feature overview

Our proposal has three key novelties: i) it is horizontally
scalable to any cloud-based service, ii) it measures real traffic
originating from a public service provider, and iii) measure-
ment reference is created concurrently in real time. While
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we proved the feasibility of the proposal using cloud-based
services, there are no technological constraints limiting its us-
age to web-based applications on the client side. The primary
goal of the method is to perform application-specific network
neutrality measurements on the public Internet reliably.

B. Measurement architecture

The architecture incorporates three major components to
support the dual measurement concept: the real client, the
measurement server, and the content provider service (see Fig.
1).

Every neutrality measurement is performed in parallel: the
real client and its emulated twin (imitating the Internet access
parameters of the real one) simultaneously measure the same
service. The real client is using the neutrality measurement
application on its host, and the emulated client is running the
same application in the emulated container on the server.

Fig. 1: The proposed measurement layout and architecture

The measurement server is a generic server architecture
for running the software components required for the mea-
surement process: performing Internet access parameter mea-
surements for the real clients, creating network containers for
Internet access emulation, executing service measurements for
the emulated clients, as well as controlling the real client
during the process. The server should have an uplink (marked
with a double black line) broad enough for measuring all
possible ISP access profile types (e.g., at least 10 Gbps if we
want to measure multiple clients with 1 or 2 Gbps access).
After bandwidth measurement, real clients exchange only
control messages with the measurement server. This logical
connection is marked with a red dashed line. The service
data stream between the real client and the content provider
is marked with green, and between emulated clients and the
provider is marked with blue dash lines.

C. Real-time reference: dual measurement with client emula-
tion

The most crucial component of the measurement architec-
ture is the emulated client that adopts the principal network
access properties of the real measurement client: download

and upload bandwidth, round-trip time (RTT) latency, and
optionally packet loss ratio. Furthermore, the measurement
server should be deployed to a location independent of the
user’s Internet Service Provider, i.e., to the logical proximity of
an Internet Exchange Point. A preliminary QoS measurement
phase can determine the network access properties of the real
client.

D. Measurement workflow

The Neutrality Measurement Controller (see Fig. 1) man-
ages the measurement by instructing both the real and the
emulated clients. The following phases are executed during a
measurement session:

1) Preliminary QoS measurement on the real client to
determine the major network access parameters.

2) The emulated client adopts the access profile of the real
client by software-based emulation of the same QoS
parameters within a network container.

3) Both clients initiate the measurement by requesting the
same content from the content provider.

4) While the content is streamed online, both clients mea-
sure the key performance indicators. We note that the
set of appropriate performance indicators should be
uniquely defined for each service (see Section V for
proof-of-concept use cases).

5) Both clients independently evaluate service quality
based on the measured KPIs.

6) Processing the evaluation results, the measurement con-
troller determines the overall service quality and repre-
sents it to the user on a predefined quality scale (e.g.,
the ITU P.800 MOS scale [18]).

The preliminary QoS measurement incorporates a method
developed in one of our previous research and development
projects (SCL Broadband Measurement System 1). This sys-
tem is validated and applied by the Hungarian National Media
and Infocommunications Authority as a reference for measur-
ing Internet access parameters. See Section VI for validation
details.

Handling false detection: Including a real-time measurement
reference, our method also enables identifying bottlenecks on
the content provider-side.

V. PROOF-OF-CONCEPT USE CASES

This section introduces a video-on-demand use case for
Youtube to prove that our method is feasible and applicable
to a wide range of cases. Though, the neutrality measurement
should be uniquely implemented for each service or platform.
A measurement session starts with a quick estimation of user
access parameters: upload and download bandwidth is deter-
mined, as well as packet loss and RTT. These parameters will
be used to create a measurement container on a measurement
host located at a neutral Internet access point. Reference
measurements are then executed within this container, and it
will be called emulated client. As mentioned previously, we

1https://szelessav.net/en/
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examine the service’s quality at the real and the emulated client
in parallel.

We had to look for the measurable and gradable phe-
nomenon of the use case to correlate them with QoE. However,
we should only consider phenomena whose cause is the QoS
degradation of the user’s Internet access or degradation of the
inspected service itself.

Examples of such a phenomenon: playout buffer be-
comes empty, video/audio stream quality changes (degrades),
video/audio stream source bitrate changes (decreasing bitrate
during adaptation), and video/audio decoding errors during the
playback.

As we measure services in the browser at the user endpoint,
we had to rely on the streaming service’s API (Youtube, in
this case). We chose the iFrame Player API [19] because it
provides functions for measuring the phenomena mentioned
above.

The following functions and events can be considered
helpers for the measurements:

• player.getVideoLoadedFraction():Float – queries the
downloaded ratio of the entire stream.

• player.getCurrentTime():Number – queries the seconds
elapsed since the start of the playback.

• onPlaybackQualityChange – the event triggered when
(the class of) playback quality changes.

Accordingly, we can construct a metric based on the ratio of
the time when the playback buffer is empty against the entire
playback time. Alternatively, the metric can express the time
ratio of the degraded playback quality against an explicitly
requested media quality (e.g., playing back in SD instead of
the requested 720p). Then, we can apply a weighted linear
combination of them.

We also had to consider the media playback process in the
user’s browser. Each playback starts with a pre-fetch phase
when the application loads the first part of the video stream
to the playout buffer, then it switches to a playback phase.
Supposing that the user equipment does not have resource
constraints, the playback only gets stalled when the playout
buffer becomes empty. We can query the downloaded ratio of
the stream by the player.getVideoLoadedFraction() function
at any time. This function reports the downloaded proportion
independent of the video quality and size. Since we know
the video’s duration, we can transform the loaded fraction
value into a time value to express the time position until the
video was already downloaded. We will call this video time. Of
course, parts of this downloaded content are already decoded
and rendered, but another part of the undecoded bitstream
may reside in the playout buffer. The player.getCurrentTime()
function reports the time elapsed since the playback started. If
we look at the time function of these two metrics, a continuous
playback’s time can be depicted by a line, but the loaded
amount (video time) is a monotonic growing curve, as seen in
Fig. 2.

We marked the buffer status in green and the playback time
in red. The buffer becomes empty when playback time is not
strictly monotonically increasing or rising above the video
time. In the presented scenario the green curve is always above
the red; that is buffer never gets empty.

Fig. 2: Relation between playback time and video time on a
4/1 Mbps connection

By continuously sampling the playback process, the
Youtube playback QoE can be estimated by the number of
samples with continuous playback (playout buffer never gets
empty) against the total number of samples, as of (1). Here,
the playback QoE indicates network neutrality, i.e., Network
Neutrality Index (NNI).

NNI1str =
# of samples of continuous playback

total # of samples
(1)

Besides the measurements executed locally in the user’s
web browser, we can indirectly rely on the Youtube service’s
download controller reports. These reports aim to inform the
content provider about the users’ communication environment
and help optimize the download process to improve the QoE.
One feature of this optimization is the automatic selection of
the bitstream format. The download controller is notified via
the onPlaybackQualityChange API event. The event reports a
quality class string, but indirectly refers to the video bitstream
format. The class identifies a subset of bitstream formats,
e.g., hd720p includes bitstream formats encoded with various
profiles of avc1 and vp9, all being 720p resolution. Thus,
we cannot determine the current bitstream format, bitrate,
framerate, etc., or the exact source data rate. Still, we have
received an explicit notification about the client’s Youtube
download controller; what is the best achievable quality class
that the client can receive besides the current (previously
measured) access parameters. A change in quality can denote
a change in available bandwidth and thus can be considered
a service quality metric. This event hook also completes our
estimation method without being limited to periodic sampling.

Fig. 3 shows the relationship between the abovementioned
status information. The graph also shows that decoding the
video content (i.e., rendering) can cause a performance bottle-
neck at the user endpoint, limiting the achievable quality, even
though the quality of raw data transmission is appropriate.
This test was executed at the bandwidth of 100 Mbps in both
directions, while the 8K video content’s source data rate does
not exceed 25 Mbps. Thus, available access link bandwidth
was not a limiting factor. We also repeatedly experienced
stalled downloads and noticed that the download controller
switched to a lower-quality class. For example, on Fig. 3 at
33 seconds, the playback stopped (see red graph), then the
buffer was purged, and after that, from 38 seconds, the buffer
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Fig. 3: Symptoms of video quality class change in function of
time on a 100/100 Mbps connection

size started to increase again (see green graph) but the source
rate - which relates to the video quality - was lower than before
(see blue graph).

The onPlaybackQualityChange event occurrs whenever the
quality class is changed during the playback, allowing us to
perceive the change immediately. This concludes with a more
precise reconstruction of the changes during the playback. We
can derive a metric from these series of events providing the
basis for the network neutrality index of the Youtube video
streaming service. A simple case of the metric relating to the
violation of network neutrality is presented by (2). The target
format is the same or better class than the auto-selected one
during the playback start. Accordingly, the metric is calculated
by the number of good-quality samples (i.e., that are not scaled
down) against the total number of samples.

NNI2str =
# of samples in target format

total # of samples
(2)

We can construct measurement results from any of the
metrics discussed previously. For a more precise estimation,
we decided to use the sum of equally-weighted normalized
values as of (3).

NNIstr = 0.5×NNI1str + 0.5×NNI2str (3)

Of course, the same formula must be used for both the
real and the emulated client. Suppose the reference (emulated
client) value is lower than the real client’s one. In that case,
we can suspect that degradation is not caused by the user’s
Internet access but a bottleneck at the content provider. To
create an index value that is easier for humans to interpret,
the NNI value can be formed between 1 and 10 as of (4).

NNIhuman
str = 10× (0.1 + 0.9×NNIstr) (4)

VI. VALIDATION

The proposed method relies on measuring the network
access properties of the client and applying it to the emulated
client to concurrently access content available at the same con-
tent/service provider. Accordingly, the performance of the QoS
emulation directly impacts the validity of the measurement
reference provided by the emulated client. Since the network
emulation incorporated download and upload bandwidth and
latency, the primary aim of the validation is to compare the

traffic properties of the real and emulated clients. This section
presents the validation results of the QoS emulation. We can
measure the effectiveness of the emulation by analyzing the
similarity between the two traffic patterns. In our proof-of-
concept system, the emulation subsystem is based on the Linux
kernel-based Network Emulator (NetEm).

Three criteria of the validity: 1. Independent Internet access
(Internet Exchange), 2. Valid QoS emulation of the access
properties, 3. Valid measurement reference.

Our method uses a trusted reference measurement exe-
cuted parallel with the user’s measurement during network
neutrality-related service inspection. The measurement hosts
use container technology to emulate the user’s access pa-
rameters properly. Our method can be considered valid if
the emulation is working correctly. Access parameters are
measured on a link without background traffic. Bandwidth, bi-
directional latency (RTT), jitter, and packet loss are measured.

Our proposal introduces a novel application-specific mea-
surement method incorporating a unique approach for the
measurement architecture as well. In contrast, previous works
on network neutrality assessment, in general, try to detect
possible differentiation with a manipulated or generated user
traffic pattern. Therefore, they cannot be effectively compared
to our proposed solution.

A. Measurement setup

For validation, a setup with two hosts connected directly
was used. One host is a bandwidth measurement system, and
the other one runs the browser in a container with specific
access parameters. Both hosts are capable of generating traffic
of at least 1 Gbps.

Fig. 1 details the measurement system’s structure. The
dedicated container is created each time a measurement has to
be run. At the beginning of the user’s measurement, a quick
quality of service assessment is run on the client side. This
phase determines its network access parameters (download and
upload bandwidth, delay, and packet loss rate). These access
parameters are used to create a similar environment for the
neutrality measurement at the initialization of the container.

The container is based on Linux Network Namespaces
(netns). It is a Linux kernel technology builder for software
containerization. A netns container has its own network in-
terface but can be run normally with the same computing
resources anyway. A point-to-point network connection is
established between the system and the container.

Linux Traffic Control (tc) is a generic tool used to con-
figure shaping and policing but also supports scheduling and
dropping. The proper configuration using the tc command
can emulate a link with specific access parameters. Since the
point-to-point connection is built between two virtual network
devices, each direction can be configured independently; thus
it can also emulate an asymmetric connection.

For the more sophisticated realization of specific network
access, we applied Linux NetEm (netem) scheduler since it
allows us to add delay, jitter, and packet loss.

After the container is set up, the neutrality measurement
is run simultaneously on the real client and the reference
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container. If the network access is emulated correctly and the
client has neutral Internet access, similar results should be
obtained from both parties.

B. Validation methodology

During the measurement sessions, we iterate through a set
of access parameters. After a session, the measured results
are compared to the nominal access parameters: average and
deviation are calculated to parameters bandwidth, delay, and
packet loss. We expect the values to be within an error margin
of 4%.

RTT is measured by generating consecutive websocket ping-
pong messages. These packets are sent within TCP packets
with an urgent flag and are replied to immediately by the
receiver’s websocket stack. Minimum and maximum RTTs are
determined, as well as the average and the standard deviation
of delays.

Throughput is measured by saturating the link in the af-
fected direction by using the appropriate number of parallel
websockets. The transfer is started with only one socket to
avoid overloading narrow links. If per-socket throughput is
over a target rate, new sockets are opened to try to saturate
the link.

Packet loss is measured using TCP analysis: TCP segments
are traced, and if a segment or its part is re-transmitted, it is
calculated as lost. We derive packet loss from the amount of
re-transmitted data against the total bytes transferred.

C. Container validation

The quality of service parameters of the connection seen by
the container was validated with the Broadband Measurement
System of the National Media and Infocommunications Au-
thority2. Thus, we proved that the connection available for a
container created in a net-neutral environment is equivalent in
terms of quality of service to the connection that the user of the
net-neutral metering system receives from its service provider.
The accuracy of this Broadband Measurement System and the
stability of the measurement series under laboratory conditions
were validated by measurements at known native interface
speeds and by using the Spirent Attero X network emulator as
a bandwidth and delay reference. According to the measure-
ments, the error of the internet speed measurements is under
2% between 100 kbps and 2 Gbps if the round-trip connection
delay does not exceed 100 ms or the BDP (Bandwidth Delay
Product) does not exceed 4 MB.

1) The correct value for the object to be measured: In the
tests, we use maximum-sized Ethernet frames without 802.1Q
VLAN tags to measure throughput, so their length is 1538
bytes in the physical layer. Because each packet contains a 12-
byte TCP option after the TCP header, the maximum length
of the TCP segment embedded in the IP packet within the
Ethernet frame is only 1448 bytes. Overall, the throughput
can be at most 1448/1538 = 94.1482% of the physical bit rate
at some native interface speed if the IFG (Inter-Frame Gap)
is not reduced. Suppose the speed limit is set with NetEm,

2https://szelessav.net/en/

and this limit is interpreted in the data link layer. In that case,
the theoretical maximum is 1448/1514 = 95.6407% of the set
value if we do not consider the possible reduction of the IFG.
The presented measurements were performed uniformly over
HTTPS.

Regarding the delay time, it should be noted that when
creating a packet delay on the prepared virtual interface,
NetEm even adds to the set value the time it takes for a
packet of the same size to pass through an interface with the
same physical speed. On HTTPS, we use 119-byte Ethernet
frames from either the client or server for delay measurement.
This would result in another 24 bytes in the physical layer
(IFG + Preamble + Start-of-Frame-Delimiter + CRC), but this
should not be considered, as NetEm’s rate limiter settings are
interpreted in the data link layer. Thus, the combined packet
forwarding delay of packets passing through the interface in
one direction or another, for example, on a 1 Mbps symmet-
rical connection 1.904 ms, which corresponds quite well to
the excess experienced, so we can correct the value of the
measured delay with it. In the higher speed range, the effect
is no longer significant.

2) Measurement results: In addition to the mean (m) and
standard deviation (σ) of the bidirectional delay, our data
include the mean and median of the cleaned set of samples per
second of download and upload speeds in the transport layer,
as well as the packet loss rate detected in each direction. For
us here, the mean and standard deviation of the bidirectional
delay and the downstream and upstream throughput will be the
most interesting. The following is a table-form presentation
of some of the measurement data, namely the mean and
standard deviation of the measurement results. At least 50
measurements were made at each setting.

The presented results in Tables I-III prove that we can
provide a network connection to the reference container in a
predictable way according to the interface emulation settings.
Table I provides the statistics of the measurements of a
container with 1 Mbps symmetric bandwidth, Table II presents
similar statistics of a container with 100 Mbps symmetric
bandwidth. In contrast, Table III provides the statistics of 1
Gbps symmetric bandwidth container. These bandwidths were
set in the NetEm. The first column of the tables shows the
intended bidirectional delay, also set in the emulator.

Table headers shorten the followings:
• Dset is the delay in ms, which was set as the interface

delay of the container’s virtual interface. This delay was
symmetrically distributed.

• RTTmeas
avg is the average of measured end-to-end delay

samples on the container’s virtual interface in ms.
• RTTmeas

stdev is the standard deviation of measured end-to-
end delay samples on the container’s virtual interface in
ms. This can be considered as the delay jitter.

• DSrateavg is the average downstream rate on the con-
tainer’s virtual interface in Mbps.

• USrateavg is the average upstream rate on the con-
tainer’s virtual interface in Mbps.

While DSrateavg and USrateavg are measured in the trans-
port layer, they represent the TCP throughput the user in each
direction can achieve.
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The cells of Tables I-III contain two numbers. As it is
mentioned in the 2nd column of the tables, the upper number
is the average of the measured quantity identified by the
header of the actual column. In contrast, the lower number
is the standard deviation of the same quantity. The averages
in columns 3, 5 and 6 can be compared to the values preset in
the emulator considering the argumentation mentioned above
about the correct value for the measured object.

TABLE I: Statistics of the measurement results at 1 Mbps

Dset RTTmeas
avg RTTmeas

stdev DSrateavg USrateavg

0 m 2.277667 0.089067 0.961765 0.952292
σ 0.029331 0.053768 0.00616 0.00168

1 m 3.271317 0.097783 0.960243 0.952468
σ 0.038381 0.042514 0.007081 0.001556

4 m 6.279983 0.085167 0.958726 0.952579
σ 0.029907 0.187768 0.006517 0.001949

10 m 12.2851 0.08595 0.958213 0.95258
σ 0.024229 0.057395 0.007618 0.001532

30 m 32.28538 0.1236 0.958262 0.952457
σ 0.032863 0.217209 0.007157 0.001705

100 m 102.3016 0.089153 0.958991 0.953304
σ 0.015433 0.055426 0.00711 0.00142

TABLE II: Statistics of the measurement results at 100 Mbps

Dset RTTmeas
avg RTTmeas

stdev DSrateavg USrateavg

0 m 0.205198 0.034887 95.65311 95.56265
σ 0.011178 0.004756 0.037675 0.012557

2 m 2.388895 0.039735 95.65777 95.55468
σ 0.026957 0.061805 0.048672 0.014351

4 m 4.394665 0.054578 95.64517 95.55992
σ 0.033135 0.106249 0.019685 0.014976

16 m 16.39481 0.042604 95.64445 95.54124
σ 0.022767 0.032298 0.020738 0.01707

30 m 30.39306 0.046067 95.63466 95.52246
σ 0.019898 0.026699 0.018684 0.027681

TABLE III: Statistics of the measurement results at 1 Gbps

Dset RTTmeas
avg RTTmeas

stdev DSrateavg USrateavg

0 m 0.087567 0.023533 956.8405 956.4033
σ 0.012218 0.007524 0.784973 0.225397

1 m 1.151567 0.025517 956.7349 956.31
σ 0.026311 0.009899 0.617618 0.19924

2 m 2.19315 0.0341 956.7329 956.3524
σ 0.028002 0.03899 0.646558 0.18775

4 m 4.197133 0.042383 956.7777 956.4288
σ 0.022469 0.055571 0.810262 0.284104

10 m 10.19637 0.03395 956.8733 956.8491
σ 0.021568 0.013686 0.65082 1.374928

16 m 16.19535 0.0404 956.7959 956.3924
σ 0.014769 0.046178 0.713448 0.26032

20 m 20.1927 0.037117 956.7736 956.2828
σ 0.017342 0.014367 0.848646 0.169963

We can see that the rates are very close to their theoretical
limits, which shows, that the emulation is very accurate. This
statement is confirmed by the values of sigmas (σ) which are
under 1% of the appropriate averages (m) at 1 Mbps and under
0.1% at 100 Mbps and 1 Gbps. The difference between the
measured and the expected RTT - note that this later differs
from the delay set in the emulator - is no more than 2%.
Obviously, except for the delay set to 0, where the standard
deviation of the average RTT can be higher. Column 4 presents
the average and the standard deviation of the delay jitter series

in the tested scenarios. Although NetEm would allow it, we
do not use this as a configuration parameter of the container,
but we measure it. As we can see, the average delay jitter is
less than 1 ms in every scenario, which is considerable for
real-time multimedia services and these values are stable.

As a summary of the container validation, it can be es-
tablished that for both the statistics presented here and those
omitted due to lack of space support that, we can infer
the measurement result from the given settings with high
reliability, i.e., the network emulation is accurate. The standard
deviations show that the results are very stable.

D. Validation of the VoD (Youtube) assessment method

Two different measuring devices - in this case, the arbitrary
browser used as a client and the Chromium browser engine
running in the node.js environment in the container - can be
considered the same if the distribution of their measurement
results is identical for a measured quantity. Instead of matching
the distribution, we can also accept the sameness of the
statistical indicators, provided that sufficient measurements are
made.

Among the features presented earlier, the download rate
returned by the player.getVideoLoadedFraction() function is
what gives a monotonically increasing curve over time and
can be considered a linear function of time. This offers the
option of fitting a line to this with the least-squares error,
as Fig. 4 shows. In the case of measurement, the fitted line
can be given by its intercept and slope, while the measuring
device is characterized by the statistical properties of the slope
and intercept of the regression lines of the measurements in
the measurement series. Based on the average of the axis
intersections and the average of the slopes, we can draw a
line - this will be referred to later as the “center line” -
which can actually be interpreted as a measure of the current
client configuration. However, we can derive the uncertainty
of this measurement based on the standard deviations of the
axial intersections and slopes. If we add or subtract twice the
standard deviation of the mean slope and add or subtract twice
the standard deviation from the average slope, we get two more
lines, later referred to as “bounding lines”, which delimit it on
both sides. The part of the plane to which the fitted line of the
individual measurements falls with a probability of 95%. In
fact, we gave the characteristic of the current configuration of
the measuring instrument, as shown in Fig. 5, where the center
line is drawn in blue, and the upper and lower boundary lines
are drawn in red, and green, respectively.

1) Dependence of the reference client’s parameters on the
operating system: Since Youtube traffic is over TCP3. There
is a measurable difference between TCP implementations on
different operating systems (e.g., Ubuntu Linux and Windows
10). So it is expected that the measurement results of the
video streaming service testing module of the net-neutrality
measurement system will also be affected by the client’s

3Youtube also supports QUIC/UDP, but the container limitations related to
Layer 2 traffic, thus they can be considered with the same impact in the case
of UDP. The API used for the Youtube-measuring method mentioned above
is independent of the transport protocol.
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The cells of Tables I-III contain two numbers. As it is
mentioned in the 2nd column of the tables, the upper number
is the average of the measured quantity identified by the
header of the actual column. In contrast, the lower number
is the standard deviation of the same quantity. The averages
in columns 3, 5 and 6 can be compared to the values preset in
the emulator considering the argumentation mentioned above
about the correct value for the measured object.

TABLE I: Statistics of the measurement results at 1 Mbps

Dset RTTmeas
avg RTTmeas

stdev DSrateavg USrateavg

0 m 2.277667 0.089067 0.961765 0.952292
σ 0.029331 0.053768 0.00616 0.00168

1 m 3.271317 0.097783 0.960243 0.952468
σ 0.038381 0.042514 0.007081 0.001556

4 m 6.279983 0.085167 0.958726 0.952579
σ 0.029907 0.187768 0.006517 0.001949

10 m 12.2851 0.08595 0.958213 0.95258
σ 0.024229 0.057395 0.007618 0.001532

30 m 32.28538 0.1236 0.958262 0.952457
σ 0.032863 0.217209 0.007157 0.001705

100 m 102.3016 0.089153 0.958991 0.953304
σ 0.015433 0.055426 0.00711 0.00142

TABLE II: Statistics of the measurement results at 100 Mbps

Dset RTTmeas
avg RTTmeas

stdev DSrateavg USrateavg

0 m 0.205198 0.034887 95.65311 95.56265
σ 0.011178 0.004756 0.037675 0.012557

2 m 2.388895 0.039735 95.65777 95.55468
σ 0.026957 0.061805 0.048672 0.014351

4 m 4.394665 0.054578 95.64517 95.55992
σ 0.033135 0.106249 0.019685 0.014976

16 m 16.39481 0.042604 95.64445 95.54124
σ 0.022767 0.032298 0.020738 0.01707

30 m 30.39306 0.046067 95.63466 95.52246
σ 0.019898 0.026699 0.018684 0.027681

TABLE III: Statistics of the measurement results at 1 Gbps

Dset RTTmeas
avg RTTmeas

stdev DSrateavg USrateavg

0 m 0.087567 0.023533 956.8405 956.4033
σ 0.012218 0.007524 0.784973 0.225397

1 m 1.151567 0.025517 956.7349 956.31
σ 0.026311 0.009899 0.617618 0.19924

2 m 2.19315 0.0341 956.7329 956.3524
σ 0.028002 0.03899 0.646558 0.18775

4 m 4.197133 0.042383 956.7777 956.4288
σ 0.022469 0.055571 0.810262 0.284104

10 m 10.19637 0.03395 956.8733 956.8491
σ 0.021568 0.013686 0.65082 1.374928

16 m 16.19535 0.0404 956.7959 956.3924
σ 0.014769 0.046178 0.713448 0.26032

20 m 20.1927 0.037117 956.7736 956.2828
σ 0.017342 0.014367 0.848646 0.169963

We can see that the rates are very close to their theoretical
limits, which shows, that the emulation is very accurate. This
statement is confirmed by the values of sigmas (σ) which are
under 1% of the appropriate averages (m) at 1 Mbps and under
0.1% at 100 Mbps and 1 Gbps. The difference between the
measured and the expected RTT - note that this later differs
from the delay set in the emulator - is no more than 2%.
Obviously, except for the delay set to 0, where the standard
deviation of the average RTT can be higher. Column 4 presents
the average and the standard deviation of the delay jitter series

in the tested scenarios. Although NetEm would allow it, we
do not use this as a configuration parameter of the container,
but we measure it. As we can see, the average delay jitter is
less than 1 ms in every scenario, which is considerable for
real-time multimedia services and these values are stable.

As a summary of the container validation, it can be es-
tablished that for both the statistics presented here and those
omitted due to lack of space support that, we can infer
the measurement result from the given settings with high
reliability, i.e., the network emulation is accurate. The standard
deviations show that the results are very stable.

D. Validation of the VoD (Youtube) assessment method

Two different measuring devices - in this case, the arbitrary
browser used as a client and the Chromium browser engine
running in the node.js environment in the container - can be
considered the same if the distribution of their measurement
results is identical for a measured quantity. Instead of matching
the distribution, we can also accept the sameness of the
statistical indicators, provided that sufficient measurements are
made.

Among the features presented earlier, the download rate
returned by the player.getVideoLoadedFraction() function is
what gives a monotonically increasing curve over time and
can be considered a linear function of time. This offers the
option of fitting a line to this with the least-squares error,
as Fig. 4 shows. In the case of measurement, the fitted line
can be given by its intercept and slope, while the measuring
device is characterized by the statistical properties of the slope
and intercept of the regression lines of the measurements in
the measurement series. Based on the average of the axis
intersections and the average of the slopes, we can draw a
line - this will be referred to later as the “center line” -
which can actually be interpreted as a measure of the current
client configuration. However, we can derive the uncertainty
of this measurement based on the standard deviations of the
axial intersections and slopes. If we add or subtract twice the
standard deviation of the mean slope and add or subtract twice
the standard deviation from the average slope, we get two more
lines, later referred to as “bounding lines”, which delimit it on
both sides. The part of the plane to which the fitted line of the
individual measurements falls with a probability of 95%. In
fact, we gave the characteristic of the current configuration of
the measuring instrument, as shown in Fig. 5, where the center
line is drawn in blue, and the upper and lower boundary lines
are drawn in red, and green, respectively.

1) Dependence of the reference client’s parameters on the
operating system: Since Youtube traffic is over TCP3. There
is a measurable difference between TCP implementations on
different operating systems (e.g., Ubuntu Linux and Windows
10). So it is expected that the measurement results of the
video streaming service testing module of the net-neutrality
measurement system will also be affected by the client’s

3Youtube also supports QUIC/UDP, but the container limitations related to
Layer 2 traffic, thus they can be considered with the same impact in the case
of UDP. The API used for the Youtube-measuring method mentioned above
is independent of the transport protocol.
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The cells of Tables I-III contain two numbers. As it is
mentioned in the 2nd column of the tables, the upper number
is the average of the measured quantity identified by the
header of the actual column. In contrast, the lower number
is the standard deviation of the same quantity. The averages
in columns 3, 5 and 6 can be compared to the values preset in
the emulator considering the argumentation mentioned above
about the correct value for the measured object.

TABLE I: Statistics of the measurement results at 1 Mbps

Dset RTTmeas
avg RTTmeas

stdev DSrateavg USrateavg

0 m 2.277667 0.089067 0.961765 0.952292
σ 0.029331 0.053768 0.00616 0.00168

1 m 3.271317 0.097783 0.960243 0.952468
σ 0.038381 0.042514 0.007081 0.001556

4 m 6.279983 0.085167 0.958726 0.952579
σ 0.029907 0.187768 0.006517 0.001949

10 m 12.2851 0.08595 0.958213 0.95258
σ 0.024229 0.057395 0.007618 0.001532

30 m 32.28538 0.1236 0.958262 0.952457
σ 0.032863 0.217209 0.007157 0.001705

100 m 102.3016 0.089153 0.958991 0.953304
σ 0.015433 0.055426 0.00711 0.00142

TABLE II: Statistics of the measurement results at 100 Mbps

Dset RTTmeas
avg RTTmeas

stdev DSrateavg USrateavg

0 m 0.205198 0.034887 95.65311 95.56265
σ 0.011178 0.004756 0.037675 0.012557

2 m 2.388895 0.039735 95.65777 95.55468
σ 0.026957 0.061805 0.048672 0.014351

4 m 4.394665 0.054578 95.64517 95.55992
σ 0.033135 0.106249 0.019685 0.014976

16 m 16.39481 0.042604 95.64445 95.54124
σ 0.022767 0.032298 0.020738 0.01707

30 m 30.39306 0.046067 95.63466 95.52246
σ 0.019898 0.026699 0.018684 0.027681

TABLE III: Statistics of the measurement results at 1 Gbps

Dset RTTmeas
avg RTTmeas

stdev DSrateavg USrateavg

0 m 0.087567 0.023533 956.8405 956.4033
σ 0.012218 0.007524 0.784973 0.225397

1 m 1.151567 0.025517 956.7349 956.31
σ 0.026311 0.009899 0.617618 0.19924

2 m 2.19315 0.0341 956.7329 956.3524
σ 0.028002 0.03899 0.646558 0.18775

4 m 4.197133 0.042383 956.7777 956.4288
σ 0.022469 0.055571 0.810262 0.284104

10 m 10.19637 0.03395 956.8733 956.8491
σ 0.021568 0.013686 0.65082 1.374928

16 m 16.19535 0.0404 956.7959 956.3924
σ 0.014769 0.046178 0.713448 0.26032

20 m 20.1927 0.037117 956.7736 956.2828
σ 0.017342 0.014367 0.848646 0.169963

We can see that the rates are very close to their theoretical
limits, which shows, that the emulation is very accurate. This
statement is confirmed by the values of sigmas (σ) which are
under 1% of the appropriate averages (m) at 1 Mbps and under
0.1% at 100 Mbps and 1 Gbps. The difference between the
measured and the expected RTT - note that this later differs
from the delay set in the emulator - is no more than 2%.
Obviously, except for the delay set to 0, where the standard
deviation of the average RTT can be higher. Column 4 presents
the average and the standard deviation of the delay jitter series

in the tested scenarios. Although NetEm would allow it, we
do not use this as a configuration parameter of the container,
but we measure it. As we can see, the average delay jitter is
less than 1 ms in every scenario, which is considerable for
real-time multimedia services and these values are stable.

As a summary of the container validation, it can be es-
tablished that for both the statistics presented here and those
omitted due to lack of space support that, we can infer
the measurement result from the given settings with high
reliability, i.e., the network emulation is accurate. The standard
deviations show that the results are very stable.

D. Validation of the VoD (Youtube) assessment method

Two different measuring devices - in this case, the arbitrary
browser used as a client and the Chromium browser engine
running in the node.js environment in the container - can be
considered the same if the distribution of their measurement
results is identical for a measured quantity. Instead of matching
the distribution, we can also accept the sameness of the
statistical indicators, provided that sufficient measurements are
made.

Among the features presented earlier, the download rate
returned by the player.getVideoLoadedFraction() function is
what gives a monotonically increasing curve over time and
can be considered a linear function of time. This offers the
option of fitting a line to this with the least-squares error,
as Fig. 4 shows. In the case of measurement, the fitted line
can be given by its intercept and slope, while the measuring
device is characterized by the statistical properties of the slope
and intercept of the regression lines of the measurements in
the measurement series. Based on the average of the axis
intersections and the average of the slopes, we can draw a
line - this will be referred to later as the “center line” -
which can actually be interpreted as a measure of the current
client configuration. However, we can derive the uncertainty
of this measurement based on the standard deviations of the
axial intersections and slopes. If we add or subtract twice the
standard deviation of the mean slope and add or subtract twice
the standard deviation from the average slope, we get two more
lines, later referred to as “bounding lines”, which delimit it on
both sides. The part of the plane to which the fitted line of the
individual measurements falls with a probability of 95%. In
fact, we gave the characteristic of the current configuration of
the measuring instrument, as shown in Fig. 5, where the center
line is drawn in blue, and the upper and lower boundary lines
are drawn in red, and green, respectively.

1) Dependence of the reference client’s parameters on the
operating system: Since Youtube traffic is over TCP3. There
is a measurable difference between TCP implementations on
different operating systems (e.g., Ubuntu Linux and Windows
10). So it is expected that the measurement results of the
video streaming service testing module of the net-neutrality
measurement system will also be affected by the client’s

3Youtube also supports QUIC/UDP, but the container limitations related to
Layer 2 traffic, thus they can be considered with the same impact in the case
of UDP. The API used for the Youtube-measuring method mentioned above
is independent of the transport protocol.
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The cells of Tables I-III contain two numbers. As it is
mentioned in the 2nd column of the tables, the upper number
is the average of the measured quantity identified by the
header of the actual column. In contrast, the lower number
is the standard deviation of the same quantity. The averages
in columns 3, 5 and 6 can be compared to the values preset in
the emulator considering the argumentation mentioned above
about the correct value for the measured object.

TABLE I: Statistics of the measurement results at 1 Mbps

Dset RTTmeas
avg RTTmeas

stdev DSrateavg USrateavg

0 m 2.277667 0.089067 0.961765 0.952292
σ 0.029331 0.053768 0.00616 0.00168

1 m 3.271317 0.097783 0.960243 0.952468
σ 0.038381 0.042514 0.007081 0.001556

4 m 6.279983 0.085167 0.958726 0.952579
σ 0.029907 0.187768 0.006517 0.001949

10 m 12.2851 0.08595 0.958213 0.95258
σ 0.024229 0.057395 0.007618 0.001532

30 m 32.28538 0.1236 0.958262 0.952457
σ 0.032863 0.217209 0.007157 0.001705

100 m 102.3016 0.089153 0.958991 0.953304
σ 0.015433 0.055426 0.00711 0.00142

TABLE II: Statistics of the measurement results at 100 Mbps

Dset RTTmeas
avg RTTmeas

stdev DSrateavg USrateavg

0 m 0.205198 0.034887 95.65311 95.56265
σ 0.011178 0.004756 0.037675 0.012557

2 m 2.388895 0.039735 95.65777 95.55468
σ 0.026957 0.061805 0.048672 0.014351

4 m 4.394665 0.054578 95.64517 95.55992
σ 0.033135 0.106249 0.019685 0.014976

16 m 16.39481 0.042604 95.64445 95.54124
σ 0.022767 0.032298 0.020738 0.01707

30 m 30.39306 0.046067 95.63466 95.52246
σ 0.019898 0.026699 0.018684 0.027681

TABLE III: Statistics of the measurement results at 1 Gbps

Dset RTTmeas
avg RTTmeas

stdev DSrateavg USrateavg

0 m 0.087567 0.023533 956.8405 956.4033
σ 0.012218 0.007524 0.784973 0.225397

1 m 1.151567 0.025517 956.7349 956.31
σ 0.026311 0.009899 0.617618 0.19924

2 m 2.19315 0.0341 956.7329 956.3524
σ 0.028002 0.03899 0.646558 0.18775

4 m 4.197133 0.042383 956.7777 956.4288
σ 0.022469 0.055571 0.810262 0.284104

10 m 10.19637 0.03395 956.8733 956.8491
σ 0.021568 0.013686 0.65082 1.374928

16 m 16.19535 0.0404 956.7959 956.3924
σ 0.014769 0.046178 0.713448 0.26032

20 m 20.1927 0.037117 956.7736 956.2828
σ 0.017342 0.014367 0.848646 0.169963

We can see that the rates are very close to their theoretical
limits, which shows, that the emulation is very accurate. This
statement is confirmed by the values of sigmas (σ) which are
under 1% of the appropriate averages (m) at 1 Mbps and under
0.1% at 100 Mbps and 1 Gbps. The difference between the
measured and the expected RTT - note that this later differs
from the delay set in the emulator - is no more than 2%.
Obviously, except for the delay set to 0, where the standard
deviation of the average RTT can be higher. Column 4 presents
the average and the standard deviation of the delay jitter series

in the tested scenarios. Although NetEm would allow it, we
do not use this as a configuration parameter of the container,
but we measure it. As we can see, the average delay jitter is
less than 1 ms in every scenario, which is considerable for
real-time multimedia services and these values are stable.

As a summary of the container validation, it can be es-
tablished that for both the statistics presented here and those
omitted due to lack of space support that, we can infer
the measurement result from the given settings with high
reliability, i.e., the network emulation is accurate. The standard
deviations show that the results are very stable.

D. Validation of the VoD (Youtube) assessment method

Two different measuring devices - in this case, the arbitrary
browser used as a client and the Chromium browser engine
running in the node.js environment in the container - can be
considered the same if the distribution of their measurement
results is identical for a measured quantity. Instead of matching
the distribution, we can also accept the sameness of the
statistical indicators, provided that sufficient measurements are
made.

Among the features presented earlier, the download rate
returned by the player.getVideoLoadedFraction() function is
what gives a monotonically increasing curve over time and
can be considered a linear function of time. This offers the
option of fitting a line to this with the least-squares error,
as Fig. 4 shows. In the case of measurement, the fitted line
can be given by its intercept and slope, while the measuring
device is characterized by the statistical properties of the slope
and intercept of the regression lines of the measurements in
the measurement series. Based on the average of the axis
intersections and the average of the slopes, we can draw a
line - this will be referred to later as the “center line” -
which can actually be interpreted as a measure of the current
client configuration. However, we can derive the uncertainty
of this measurement based on the standard deviations of the
axial intersections and slopes. If we add or subtract twice the
standard deviation of the mean slope and add or subtract twice
the standard deviation from the average slope, we get two more
lines, later referred to as “bounding lines”, which delimit it on
both sides. The part of the plane to which the fitted line of the
individual measurements falls with a probability of 95%. In
fact, we gave the characteristic of the current configuration of
the measuring instrument, as shown in Fig. 5, where the center
line is drawn in blue, and the upper and lower boundary lines
are drawn in red, and green, respectively.

1) Dependence of the reference client’s parameters on the
operating system: Since Youtube traffic is over TCP3. There
is a measurable difference between TCP implementations on
different operating systems (e.g., Ubuntu Linux and Windows
10). So it is expected that the measurement results of the
video streaming service testing module of the net-neutrality
measurement system will also be affected by the client’s

3Youtube also supports QUIC/UDP, but the container limitations related to
Layer 2 traffic, thus they can be considered with the same impact in the case
of UDP. The API used for the Youtube-measuring method mentioned above
is independent of the transport protocol.

TABLE I
Statistics of the measurement results at 1 Mbps

TABLE II
Statistics of the measurement results at 100 Mbps

TABLE III
Statistics of the measurement results at 1 Gbps
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The cells of Tables I-III contain two numbers. As it is
mentioned in the 2nd column of the tables, the upper number
is the average of the measured quantity identified by the
header of the actual column. In contrast, the lower number
is the standard deviation of the same quantity. The averages
in columns 3, 5 and 6 can be compared to the values preset in
the emulator considering the argumentation mentioned above
about the correct value for the measured object.

TABLE I: Statistics of the measurement results at 1 Mbps

Dset RTTmeas
avg RTTmeas

stdev DSrateavg USrateavg

0 m 2.277667 0.089067 0.961765 0.952292
σ 0.029331 0.053768 0.00616 0.00168

1 m 3.271317 0.097783 0.960243 0.952468
σ 0.038381 0.042514 0.007081 0.001556

4 m 6.279983 0.085167 0.958726 0.952579
σ 0.029907 0.187768 0.006517 0.001949

10 m 12.2851 0.08595 0.958213 0.95258
σ 0.024229 0.057395 0.007618 0.001532

30 m 32.28538 0.1236 0.958262 0.952457
σ 0.032863 0.217209 0.007157 0.001705

100 m 102.3016 0.089153 0.958991 0.953304
σ 0.015433 0.055426 0.00711 0.00142

TABLE II: Statistics of the measurement results at 100 Mbps

Dset RTTmeas
avg RTTmeas

stdev DSrateavg USrateavg

0 m 0.205198 0.034887 95.65311 95.56265
σ 0.011178 0.004756 0.037675 0.012557

2 m 2.388895 0.039735 95.65777 95.55468
σ 0.026957 0.061805 0.048672 0.014351

4 m 4.394665 0.054578 95.64517 95.55992
σ 0.033135 0.106249 0.019685 0.014976

16 m 16.39481 0.042604 95.64445 95.54124
σ 0.022767 0.032298 0.020738 0.01707

30 m 30.39306 0.046067 95.63466 95.52246
σ 0.019898 0.026699 0.018684 0.027681

TABLE III: Statistics of the measurement results at 1 Gbps

Dset RTTmeas
avg RTTmeas

stdev DSrateavg USrateavg

0 m 0.087567 0.023533 956.8405 956.4033
σ 0.012218 0.007524 0.784973 0.225397

1 m 1.151567 0.025517 956.7349 956.31
σ 0.026311 0.009899 0.617618 0.19924

2 m 2.19315 0.0341 956.7329 956.3524
σ 0.028002 0.03899 0.646558 0.18775

4 m 4.197133 0.042383 956.7777 956.4288
σ 0.022469 0.055571 0.810262 0.284104

10 m 10.19637 0.03395 956.8733 956.8491
σ 0.021568 0.013686 0.65082 1.374928

16 m 16.19535 0.0404 956.7959 956.3924
σ 0.014769 0.046178 0.713448 0.26032

20 m 20.1927 0.037117 956.7736 956.2828
σ 0.017342 0.014367 0.848646 0.169963

We can see that the rates are very close to their theoretical
limits, which shows, that the emulation is very accurate. This
statement is confirmed by the values of sigmas (σ) which are
under 1% of the appropriate averages (m) at 1 Mbps and under
0.1% at 100 Mbps and 1 Gbps. The difference between the
measured and the expected RTT - note that this later differs
from the delay set in the emulator - is no more than 2%.
Obviously, except for the delay set to 0, where the standard
deviation of the average RTT can be higher. Column 4 presents
the average and the standard deviation of the delay jitter series

in the tested scenarios. Although NetEm would allow it, we
do not use this as a configuration parameter of the container,
but we measure it. As we can see, the average delay jitter is
less than 1 ms in every scenario, which is considerable for
real-time multimedia services and these values are stable.

As a summary of the container validation, it can be es-
tablished that for both the statistics presented here and those
omitted due to lack of space support that, we can infer
the measurement result from the given settings with high
reliability, i.e., the network emulation is accurate. The standard
deviations show that the results are very stable.

D. Validation of the VoD (Youtube) assessment method

Two different measuring devices - in this case, the arbitrary
browser used as a client and the Chromium browser engine
running in the node.js environment in the container - can be
considered the same if the distribution of their measurement
results is identical for a measured quantity. Instead of matching
the distribution, we can also accept the sameness of the
statistical indicators, provided that sufficient measurements are
made.

Among the features presented earlier, the download rate
returned by the player.getVideoLoadedFraction() function is
what gives a monotonically increasing curve over time and
can be considered a linear function of time. This offers the
option of fitting a line to this with the least-squares error,
as Fig. 4 shows. In the case of measurement, the fitted line
can be given by its intercept and slope, while the measuring
device is characterized by the statistical properties of the slope
and intercept of the regression lines of the measurements in
the measurement series. Based on the average of the axis
intersections and the average of the slopes, we can draw a
line - this will be referred to later as the “center line” -
which can actually be interpreted as a measure of the current
client configuration. However, we can derive the uncertainty
of this measurement based on the standard deviations of the
axial intersections and slopes. If we add or subtract twice the
standard deviation of the mean slope and add or subtract twice
the standard deviation from the average slope, we get two more
lines, later referred to as “bounding lines”, which delimit it on
both sides. The part of the plane to which the fitted line of the
individual measurements falls with a probability of 95%. In
fact, we gave the characteristic of the current configuration of
the measuring instrument, as shown in Fig. 5, where the center
line is drawn in blue, and the upper and lower boundary lines
are drawn in red, and green, respectively.

1) Dependence of the reference client’s parameters on the
operating system: Since Youtube traffic is over TCP3. There
is a measurable difference between TCP implementations on
different operating systems (e.g., Ubuntu Linux and Windows
10). So it is expected that the measurement results of the
video streaming service testing module of the net-neutrality
measurement system will also be affected by the client’s

3Youtube also supports QUIC/UDP, but the container limitations related to
Layer 2 traffic, thus they can be considered with the same impact in the case
of UDP. The API used for the Youtube-measuring method mentioned above
is independent of the transport protocol.
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The cells of Tables I-III contain two numbers. As it is
mentioned in the 2nd column of the tables, the upper number
is the average of the measured quantity identified by the
header of the actual column. In contrast, the lower number
is the standard deviation of the same quantity. The averages
in columns 3, 5 and 6 can be compared to the values preset in
the emulator considering the argumentation mentioned above
about the correct value for the measured object.

TABLE I: Statistics of the measurement results at 1 Mbps

Dset RTTmeas
avg RTTmeas

stdev DSrateavg USrateavg

0 m 2.277667 0.089067 0.961765 0.952292
σ 0.029331 0.053768 0.00616 0.00168

1 m 3.271317 0.097783 0.960243 0.952468
σ 0.038381 0.042514 0.007081 0.001556

4 m 6.279983 0.085167 0.958726 0.952579
σ 0.029907 0.187768 0.006517 0.001949

10 m 12.2851 0.08595 0.958213 0.95258
σ 0.024229 0.057395 0.007618 0.001532

30 m 32.28538 0.1236 0.958262 0.952457
σ 0.032863 0.217209 0.007157 0.001705

100 m 102.3016 0.089153 0.958991 0.953304
σ 0.015433 0.055426 0.00711 0.00142

TABLE II: Statistics of the measurement results at 100 Mbps

Dset RTTmeas
avg RTTmeas

stdev DSrateavg USrateavg

0 m 0.205198 0.034887 95.65311 95.56265
σ 0.011178 0.004756 0.037675 0.012557

2 m 2.388895 0.039735 95.65777 95.55468
σ 0.026957 0.061805 0.048672 0.014351

4 m 4.394665 0.054578 95.64517 95.55992
σ 0.033135 0.106249 0.019685 0.014976

16 m 16.39481 0.042604 95.64445 95.54124
σ 0.022767 0.032298 0.020738 0.01707

30 m 30.39306 0.046067 95.63466 95.52246
σ 0.019898 0.026699 0.018684 0.027681

TABLE III: Statistics of the measurement results at 1 Gbps

Dset RTTmeas
avg RTTmeas

stdev DSrateavg USrateavg

0 m 0.087567 0.023533 956.8405 956.4033
σ 0.012218 0.007524 0.784973 0.225397

1 m 1.151567 0.025517 956.7349 956.31
σ 0.026311 0.009899 0.617618 0.19924

2 m 2.19315 0.0341 956.7329 956.3524
σ 0.028002 0.03899 0.646558 0.18775

4 m 4.197133 0.042383 956.7777 956.4288
σ 0.022469 0.055571 0.810262 0.284104

10 m 10.19637 0.03395 956.8733 956.8491
σ 0.021568 0.013686 0.65082 1.374928

16 m 16.19535 0.0404 956.7959 956.3924
σ 0.014769 0.046178 0.713448 0.26032

20 m 20.1927 0.037117 956.7736 956.2828
σ 0.017342 0.014367 0.848646 0.169963

We can see that the rates are very close to their theoretical
limits, which shows, that the emulation is very accurate. This
statement is confirmed by the values of sigmas (σ) which are
under 1% of the appropriate averages (m) at 1 Mbps and under
0.1% at 100 Mbps and 1 Gbps. The difference between the
measured and the expected RTT - note that this later differs
from the delay set in the emulator - is no more than 2%.
Obviously, except for the delay set to 0, where the standard
deviation of the average RTT can be higher. Column 4 presents
the average and the standard deviation of the delay jitter series

in the tested scenarios. Although NetEm would allow it, we
do not use this as a configuration parameter of the container,
but we measure it. As we can see, the average delay jitter is
less than 1 ms in every scenario, which is considerable for
real-time multimedia services and these values are stable.

As a summary of the container validation, it can be es-
tablished that for both the statistics presented here and those
omitted due to lack of space support that, we can infer
the measurement result from the given settings with high
reliability, i.e., the network emulation is accurate. The standard
deviations show that the results are very stable.

D. Validation of the VoD (Youtube) assessment method

Two different measuring devices - in this case, the arbitrary
browser used as a client and the Chromium browser engine
running in the node.js environment in the container - can be
considered the same if the distribution of their measurement
results is identical for a measured quantity. Instead of matching
the distribution, we can also accept the sameness of the
statistical indicators, provided that sufficient measurements are
made.

Among the features presented earlier, the download rate
returned by the player.getVideoLoadedFraction() function is
what gives a monotonically increasing curve over time and
can be considered a linear function of time. This offers the
option of fitting a line to this with the least-squares error,
as Fig. 4 shows. In the case of measurement, the fitted line
can be given by its intercept and slope, while the measuring
device is characterized by the statistical properties of the slope
and intercept of the regression lines of the measurements in
the measurement series. Based on the average of the axis
intersections and the average of the slopes, we can draw a
line - this will be referred to later as the “center line” -
which can actually be interpreted as a measure of the current
client configuration. However, we can derive the uncertainty
of this measurement based on the standard deviations of the
axial intersections and slopes. If we add or subtract twice the
standard deviation of the mean slope and add or subtract twice
the standard deviation from the average slope, we get two more
lines, later referred to as “bounding lines”, which delimit it on
both sides. The part of the plane to which the fitted line of the
individual measurements falls with a probability of 95%. In
fact, we gave the characteristic of the current configuration of
the measuring instrument, as shown in Fig. 5, where the center
line is drawn in blue, and the upper and lower boundary lines
are drawn in red, and green, respectively.

1) Dependence of the reference client’s parameters on the
operating system: Since Youtube traffic is over TCP3. There
is a measurable difference between TCP implementations on
different operating systems (e.g., Ubuntu Linux and Windows
10). So it is expected that the measurement results of the
video streaming service testing module of the net-neutrality
measurement system will also be affected by the client’s

3Youtube also supports QUIC/UDP, but the container limitations related to
Layer 2 traffic, thus they can be considered with the same impact in the case
of UDP. The API used for the Youtube-measuring method mentioned above
is independent of the transport protocol.
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Fig. 4: Download rate curve with the line fitted to it (50/20
Mbps, Firefox/Ubuntu)

Fig. 5: Characteristics of the 100/100 Mbps connection
(Opera/Ubuntu)

operating system. This permanent discrepancy is unavoidable
because node.js runs the Chromium browser engine in the
container replicating the client. However, based on our studies,
this deviation is linear. Based on the information available in
the measurement system, the permanent error can be reliably
estimated, and then the measurement result can be corrected.
In our experience, the extent of this discrepancy also depends
on which browser, possibly which version, is used and the
bandwidth of the connection available to the user.

2) Dependence of the reference client’s parameters on the
browser: In Fig. 6 below, we can see that when testing on
Ubuntu Linux over a 100 Mbps/100 Mbps connection, both
the Chrome browser and the Firefox browser outperform the
container. However, it is also noticeable that the behavior of
browsers is very similar to each other. Also, on Ubuntu, for
example, looking at a 30 Mbps/10 Mbps connection, we see
that the characteristics of the browser and the container get
closer together whether we use Chrome or Firefox, so the
difference is speed-dependent.

3) Dependence of the reference client’s parameters on the
Internet access speed: Since the most advanced video stream-
ing providers are constantly sampling the maximum available
speed of the available network connection, the behavior of the
download controller they use changes as the available capacity
begins to approach the source speed of the video stream from
above. As mentioned above, the Chrome browser outperforms
the container at higher speeds on Ubuntu Linux. However,
as the speed decreases, this advantage decreases, then dis-
appears and eventually becomes a disadvantage. A similar
phenomenon can be experienced using Firefox. However, there

(a) Chrome (b) Firefox

Fig. 6: Browser and container characteristics (100/100 Mbps,
Chrome/Ubuntu and Firefox/Ubuntu)

are much more minor differences between the cases, so for
ease of interpretation, Fig. 7 shows the characteristics of the
Chrome browser and the container at various access speeds
(100/100, 30/10, 10/5, 5/1 and 3/1 Mbps, respectively). For
transparency, the characteristics are now represented not by
the delimiting lines but by their center line.

(a) Container (b) Browser

Fig. 7: Chrome browser and container characteristics on dif-
ferent speeds on Ubuntu

VII. CONCLUSION

From an Internet provider’s perspective, managing network
resources is a crucial operational task, guaranteeing the quality
of experience for cloud services that dominate their traffic
mix. However, its endeavor to control resources, i.e., traffic
engineering based on service popularity, may offend the orig-
inal best-effort paradigm of the global Internet. This paper
presented a real-time full-reference objective method to assess
network neutrality with application awareness. The proposed
method may support the Regulation (EU) 2015/2120 with
scientific fundamentals. Furthermore, the expected scientific
results can indirectly support EU citizens to objectively assess
network quality by opening the way towards a new gener-
ation of network neutrality measurement tools for national
communications authorities. The method incorporates three
novelties to support the user-centric analysis of potential
restraints affecting public services on the Internet: i) it supports
application-specific measurements and involves real content
and traffic, ii) the measured traffic originates from the content
provider’s cloud infrastructure, iii) the reference is created
in real time. Accordingly, the paper also proposed a novel
measurement layout. We have validated the incorporated client
emulator and demonstrated the feasibility of the measurement
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method with a video-on-demand use-case using an extensive
set of laboratory measurements. In the future, we would like
to extend the measurement capability of the implementation to
a broader range of cloud services. Furthermore, the Hungarian
National Media and Infocommunications Authority is evalu-
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potentially be available for the public to perform web-based
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[15] X. Castoreo, P. Maillé, and B. Tuffin, “Weaknesses and Challenges of
Network Neutrality Measurement Tools,” in 2020 16th International
Conference on Network and Service Management (CNSM), Nov. 2020,
pp. 1–5. doi: 10.23919/CNSM50824.2020.9269077

[16] E. W. Chan, X. Luo, and R. K. Chang, “A minimum-delay-difference
method for mitigating cross-traffic impact on capacity measurement,” in
Proceedings of the 5th international conference on Emerging networking
experiments and technologies, ser. CoNEXT ’09. New York, NY, USA:
Association for Computing Machinery, Dec. 2009. ISBN 978-1-60558-
636-6 pp. 205–216. doi: 10.1145/1658939.1658963

[17] M. Li, Y.-L. Wu, and C.-R. Chang, “Available bandwidth estimation for
the network paths with multiple tight links and bursty traffic,” Journal
of Network and Computer Applications, vol. 36, no. 1, pp. 353–367,
Jan. 2013. doi: 10.1016/j.jnca.2012.05.007

[18] ITU, “Mean opinion score (MOS) terminology,” Recommendation ITU-
T P. 800.1. ITU-T Telecommunication Standardization Sector of ITU
Geneva, 2016.

[19] “YouTube Player API Reference for iframe Embeds,”
publication Title: Google Developers. [Online]. Available:
https://developers.google.com/youtube/iframe api reference (Accessed:
2021-09-23).
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