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Abstract—With the advent of Network Function 
Virtualization (NFV) and Software-Defined Networking (SDN), 
every network service type faces significant challenges induced 
by novel requirements. Mobile IPv6, the well-known IETF 
standard for network-level mobility management, is not an 
exemption. Cloud-native Mobile IPv6 has acquired several new 
capabilities due to the technological advancements of NFV/SDN 
evolution. This paper presents how automatic failover and 
scaling can be envisioned in the context of cloud-native Mobile 
IPv6 with closed-loop orchestration on the top of the Open 
Network Automation Platform. Numerical results are also 
presented to indicate the usefulness of the new operational 
features (failover, scaling) driven by the cloud-native approach 
and highlight the advantages of network automation in 
virtualized and softwarized environments. 

Index Terms— IP mobility, CN-MIPv6, ONAP, failover, 

scaling 

I. INTRODUCTION 

Network Function Virtualization (NFV) and Software 
Defined Networking (SDN) have not left any Network 
Function (NF) untouched. Meanwhile, cloud systems, either 
virtual machine or container-based, have created new 
execution environments. Nowadays, cloud-native service 
provisioning can bring in failover and scaling scenarios more 
straightforwardly than ever before. This implicitly indicates 
the usage of orchestration, which helps to organize the right 
amount of resources to the right place in time. In this paper, 
we use Open Network Automation Platform (ONAP) [1] for 
the practical experiments. With ONAP, we can run automatic 
failover and scaling scenarios when specific circumstances are 
met. In our experiments, we entirely rely on the closed-loop 
orchestration platform of ONAP. This is where Mobile IPv6 
(MIPv6) [2] comes into the picture, whose functionality and 
operational procedures can be extended using the cloud. 
MIPv6 is part of a broader protocol family called IP-level 
mobility management. The current technological trends of 
cloudification spanned over the NFV, and SDN paradigms, 
together with orchestration requirements, do not leave MIPv6-
based mobility support untouched. Cloud-native Mobile IPv6 
(CN-MIPv6) [3] [4]was proposed to meet the expectations and 
apply the benefits of the trends mentioned above.  

This paper aims to show how failover and scaling can be 
applied to CN-MIPv6 in the context of closed-loop 
orchestration. Here we define failover as the time of restoring 
redundancy. Furthermore, the article presents numerical 
results and calculations on the utilization of failover, scaling, 
and availability in the case of cloud-native IP-level mobility 
management. At the end of the paper, an analysis shows the 

benefits of network automation from the reliability and 
redundancy point of view.  

The remaining sections are organized as follows. Section 
II presents related works. The connection between ONAP and 
CN-MIPv6 is elaborated in Section III, followed by the 
measurements and numerical calculations in Section IV. 
Conclusions and possible future research directions are in 
Section V and Section VI, respectively. 

II. RELATED WORKS 

A. Literature 

Cloudification of 5G network functions has been a 
trending paradigm. Du et al. [5] consider the cloud-native 
bases of 5G Access and Mobility Management Function 
(AMF). 

Another member of IP-based mobility management, such 
as Proxy Mobile IPv6 [6], has also been shaped to be cloud-
native: cloud-native Proxy Mobile IPv6 (CN-PMIPv6) [7]. 
Flow Mobility, a concept standardized for Proxy Mobile IPv6 
(PMIPv6) and discussed in Section III for MIPv6, makes it 
possible to separate IP flows by 5-tuples and assign individual 
mobility policies for each flow. 

In our work, the Single-Point-of-Failure (SPOF) problem 
is solved by immediate and automatic redeployment of the 
mobility anchor (Home Agent). Furthermore, the number of 
anchors can be increased dynamically with automatic scaling. 
Obviously, there are other strategies for mitigating the SPOF 
problem in IPv6-based mobility management. With the help 
of SDN and Openflow, IPv6-based mobility management can 
be implemented in many different ways [8] [9] [10] [11] [12].  

Dimitris Giatsios et al. [13] examine the failover of 
Network Slices. The paper written by Veronica Quintuna 
Rodriguez et al. examines ONAP-based deployment and 
management of Network Slices [14] [15]. ONAP has also 
been used to enhance access discovery and selection functions 
in the 5G core network in an article by Rahul Banerji et al. 
[16].  

Predictive failover of Virtual Network Functions (VNF) in 
the context of edge computing is presented by Huawei Huang 
et al. [17]. A unique programming language is shown to 
ensure fault tolerance in SDN by Reitblatt et al. [18]. Scaling 
and failover can also be executed with Kubernetes on the Pod 
level by Kubernetes Horizontal Pod Autoscaler (HPA) [19] 
and Kubernetes Deployment [20]. But these are not suitable 
for inter-Kubernetes cluster failover and scaling: ONAP can 
manage many Kubernetes clusters simultaneously. As our 
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of SDN and Openflow, IPv6-based mobility management can 
be implemented in many different ways [8] [9] [10] [11] [12].  

Dimitris Giatsios et al. [13] examine the failover of 
Network Slices. The paper written by Veronica Quintuna 
Rodriguez et al. examines ONAP-based deployment and 
management of Network Slices [14] [15]. ONAP has also 
been used to enhance access discovery and selection functions 
in the 5G core network in an article by Rahul Banerji et al. 
[16].  

Predictive failover of Virtual Network Functions (VNF) in 
the context of edge computing is presented by Huawei Huang 
et al. [17]. A unique programming language is shown to 
ensure fault tolerance in SDN by Reitblatt et al. [18]. Scaling 
and failover can also be executed with Kubernetes on the Pod 
level by Kubernetes Horizontal Pod Autoscaler (HPA) [19] 
and Kubernetes Deployment [20]. But these are not suitable 
for inter-Kubernetes cluster failover and scaling: ONAP can 
manage many Kubernetes clusters simultaneously. As our 
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Abstract—With the advent of Network Function 
Virtualization (NFV) and Software-Defined Networking (SDN), 
every network service type faces significant challenges induced 
by novel requirements. Mobile IPv6, the well-known IETF 
standard for network-level mobility management, is not an 
exemption. Cloud-native Mobile IPv6 has acquired several new 
capabilities due to the technological advancements of NFV/SDN 
evolution. This paper presents how automatic failover and 
scaling can be envisioned in the context of cloud-native Mobile 
IPv6 with closed-loop orchestration on the top of the Open 
Network Automation Platform. Numerical results are also 
presented to indicate the usefulness of the new operational 
features (failover, scaling) driven by the cloud-native approach 
and highlight the advantages of network automation in 
virtualized and softwarized environments. 

Index Terms— IP mobility, CN-MIPv6, ONAP, failover, 
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I. INTRODUCTION 

Network Function Virtualization (NFV) and Software 
Defined Networking (SDN) have not left any Network 
Function (NF) untouched. Meanwhile, cloud systems, either 
virtual machine or container-based, have created new 
execution environments. Nowadays, cloud-native service 
provisioning can bring in failover and scaling scenarios more 
straightforwardly than ever before. This implicitly indicates 
the usage of orchestration, which helps to organize the right 
amount of resources to the right place in time. In this paper, 
we use Open Network Automation Platform (ONAP) [1] for 
the practical experiments. With ONAP, we can run automatic 
failover and scaling scenarios when specific circumstances are 
met. In our experiments, we entirely rely on the closed-loop 
orchestration platform of ONAP. This is where Mobile IPv6 
(MIPv6) [2] comes into the picture, whose functionality and 
operational procedures can be extended using the cloud. 
MIPv6 is part of a broader protocol family called IP-level 
mobility management. The current technological trends of 
cloudification spanned over the NFV, and SDN paradigms, 
together with orchestration requirements, do not leave MIPv6-
based mobility support untouched. Cloud-native Mobile IPv6 
(CN-MIPv6) [3] [4]was proposed to meet the expectations and 
apply the benefits of the trends mentioned above.  

This paper aims to show how failover and scaling can be 
applied to CN-MIPv6 in the context of closed-loop 
orchestration. Here we define failover as the time of restoring 
redundancy. Furthermore, the article presents numerical 
results and calculations on the utilization of failover, scaling, 
and availability in the case of cloud-native IP-level mobility 
management. At the end of the paper, an analysis shows the 

benefits of network automation from the reliability and 
redundancy point of view.  

The remaining sections are organized as follows. Section 
II presents related works. The connection between ONAP and 
CN-MIPv6 is elaborated in Section III, followed by the 
measurements and numerical calculations in Section IV. 
Conclusions and possible future research directions are in 
Section V and Section VI, respectively. 

II. RELATED WORKS 

A. Literature 

Cloudification of 5G network functions has been a 
trending paradigm. Du et al. [5] consider the cloud-native 
bases of 5G Access and Mobility Management Function 
(AMF). 

Another member of IP-based mobility management, such 
as Proxy Mobile IPv6 [6], has also been shaped to be cloud-
native: cloud-native Proxy Mobile IPv6 (CN-PMIPv6) [7]. 
Flow Mobility, a concept standardized for Proxy Mobile IPv6 
(PMIPv6) and discussed in Section III for MIPv6, makes it 
possible to separate IP flows by 5-tuples and assign individual 
mobility policies for each flow. 

In our work, the Single-Point-of-Failure (SPOF) problem 
is solved by immediate and automatic redeployment of the 
mobility anchor (Home Agent). Furthermore, the number of 
anchors can be increased dynamically with automatic scaling. 
Obviously, there are other strategies for mitigating the SPOF 
problem in IPv6-based mobility management. With the help 
of SDN and Openflow, IPv6-based mobility management can 
be implemented in many different ways [8] [9] [10] [11] [12].  

Dimitris Giatsios et al. [13] examine the failover of 
Network Slices. The paper written by Veronica Quintuna 
Rodriguez et al. examines ONAP-based deployment and 
management of Network Slices [14] [15]. ONAP has also 
been used to enhance access discovery and selection functions 
in the 5G core network in an article by Rahul Banerji et al. 
[16].  

Predictive failover of Virtual Network Functions (VNF) in 
the context of edge computing is presented by Huawei Huang 
et al. [17]. A unique programming language is shown to 
ensure fault tolerance in SDN by Reitblatt et al. [18]. Scaling 
and failover can also be executed with Kubernetes on the Pod 
level by Kubernetes Horizontal Pod Autoscaler (HPA) [19] 
and Kubernetes Deployment [20]. But these are not suitable 
for inter-Kubernetes cluster failover and scaling: ONAP can 
manage many Kubernetes clusters simultaneously. As our 
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every network service type faces significant challenges induced 
by novel requirements. Mobile IPv6, the well-known IETF 
standard for network-level mobility management, is not an 
exemption. Cloud-native Mobile IPv6 has acquired several new 
capabilities due to the technological advancements of NFV/SDN 
evolution. This paper presents how automatic failover and 
scaling can be envisioned in the context of cloud-native Mobile 
IPv6 with closed-loop orchestration on the top of the Open 
Network Automation Platform. Numerical results are also 
presented to indicate the usefulness of the new operational 
features (failover, scaling) driven by the cloud-native approach 
and highlight the advantages of network automation in 
virtualized and softwarized environments. 

Index Terms— IP mobility, CN-MIPv6, ONAP, failover, 

scaling 

I. INTRODUCTION 

Network Function Virtualization (NFV) and Software 
Defined Networking (SDN) have not left any Network 
Function (NF) untouched. Meanwhile, cloud systems, either 
virtual machine or container-based, have created new 
execution environments. Nowadays, cloud-native service 
provisioning can bring in failover and scaling scenarios more 
straightforwardly than ever before. This implicitly indicates 
the usage of orchestration, which helps to organize the right 
amount of resources to the right place in time. In this paper, 
we use Open Network Automation Platform (ONAP) [1] for 
the practical experiments. With ONAP, we can run automatic 
failover and scaling scenarios when specific circumstances are 
met. In our experiments, we entirely rely on the closed-loop 
orchestration platform of ONAP. This is where Mobile IPv6 
(MIPv6) [2] comes into the picture, whose functionality and 
operational procedures can be extended using the cloud. 
MIPv6 is part of a broader protocol family called IP-level 
mobility management. The current technological trends of 
cloudification spanned over the NFV, and SDN paradigms, 
together with orchestration requirements, do not leave MIPv6-
based mobility support untouched. Cloud-native Mobile IPv6 
(CN-MIPv6) [3] [4]was proposed to meet the expectations and 
apply the benefits of the trends mentioned above.  

This paper aims to show how failover and scaling can be 
applied to CN-MIPv6 in the context of closed-loop 
orchestration. Here we define failover as the time of restoring 
redundancy. Furthermore, the article presents numerical 
results and calculations on the utilization of failover, scaling, 
and availability in the case of cloud-native IP-level mobility 
management. At the end of the paper, an analysis shows the 

benefits of network automation from the reliability and 
redundancy point of view.  

The remaining sections are organized as follows. Section 
II presents related works. The connection between ONAP and 
CN-MIPv6 is elaborated in Section III, followed by the 
measurements and numerical calculations in Section IV. 
Conclusions and possible future research directions are in 
Section V and Section VI, respectively. 

II. RELATED WORKS 

A. Literature 

Cloudification of 5G network functions has been a 
trending paradigm. Du et al. [5] consider the cloud-native 
bases of 5G Access and Mobility Management Function 
(AMF). 

Another member of IP-based mobility management, such 
as Proxy Mobile IPv6 [6], has also been shaped to be cloud-
native: cloud-native Proxy Mobile IPv6 (CN-PMIPv6) [7]. 
Flow Mobility, a concept standardized for Proxy Mobile IPv6 
(PMIPv6) and discussed in Section III for MIPv6, makes it 
possible to separate IP flows by 5-tuples and assign individual 
mobility policies for each flow. 

In our work, the Single-Point-of-Failure (SPOF) problem 
is solved by immediate and automatic redeployment of the 
mobility anchor (Home Agent). Furthermore, the number of 
anchors can be increased dynamically with automatic scaling. 
Obviously, there are other strategies for mitigating the SPOF 
problem in IPv6-based mobility management. With the help 
of SDN and Openflow, IPv6-based mobility management can 
be implemented in many different ways [8] [9] [10] [11] [12].  

Dimitris Giatsios et al. [13] examine the failover of 
Network Slices. The paper written by Veronica Quintuna 
Rodriguez et al. examines ONAP-based deployment and 
management of Network Slices [14] [15]. ONAP has also 
been used to enhance access discovery and selection functions 
in the 5G core network in an article by Rahul Banerji et al. 
[16].  

Predictive failover of Virtual Network Functions (VNF) in 
the context of edge computing is presented by Huawei Huang 
et al. [17]. A unique programming language is shown to 
ensure fault tolerance in SDN by Reitblatt et al. [18]. Scaling 
and failover can also be executed with Kubernetes on the Pod 
level by Kubernetes Horizontal Pod Autoscaler (HPA) [19] 
and Kubernetes Deployment [20]. But these are not suitable 
for inter-Kubernetes cluster failover and scaling: ONAP can 
manage many Kubernetes clusters simultaneously. As our 
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Virtualization (NFV) and Software-Defined Networking (SDN), 
every network service type faces significant challenges induced 
by novel requirements. Mobile IPv6, the well-known IETF 
standard for network-level mobility management, is not an 
exemption. Cloud-native Mobile IPv6 has acquired several new 
capabilities due to the technological advancements of NFV/SDN 
evolution. This paper presents how automatic failover and 
scaling can be envisioned in the context of cloud-native Mobile 
IPv6 with closed-loop orchestration on the top of the Open 
Network Automation Platform. Numerical results are also 
presented to indicate the usefulness of the new operational 
features (failover, scaling) driven by the cloud-native approach 
and highlight the advantages of network automation in 
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Index Terms— IP mobility, CN-MIPv6, ONAP, failover, 

scaling 

I. INTRODUCTION 

Network Function Virtualization (NFV) and Software 
Defined Networking (SDN) have not left any Network 
Function (NF) untouched. Meanwhile, cloud systems, either 
virtual machine or container-based, have created new 
execution environments. Nowadays, cloud-native service 
provisioning can bring in failover and scaling scenarios more 
straightforwardly than ever before. This implicitly indicates 
the usage of orchestration, which helps to organize the right 
amount of resources to the right place in time. In this paper, 
we use Open Network Automation Platform (ONAP) [1] for 
the practical experiments. With ONAP, we can run automatic 
failover and scaling scenarios when specific circumstances are 
met. In our experiments, we entirely rely on the closed-loop 
orchestration platform of ONAP. This is where Mobile IPv6 
(MIPv6) [2] comes into the picture, whose functionality and 
operational procedures can be extended using the cloud. 
MIPv6 is part of a broader protocol family called IP-level 
mobility management. The current technological trends of 
cloudification spanned over the NFV, and SDN paradigms, 
together with orchestration requirements, do not leave MIPv6-
based mobility support untouched. Cloud-native Mobile IPv6 
(CN-MIPv6) [3] [4]was proposed to meet the expectations and 
apply the benefits of the trends mentioned above.  

This paper aims to show how failover and scaling can be 
applied to CN-MIPv6 in the context of closed-loop 
orchestration. Here we define failover as the time of restoring 
redundancy. Furthermore, the article presents numerical 
results and calculations on the utilization of failover, scaling, 
and availability in the case of cloud-native IP-level mobility 
management. At the end of the paper, an analysis shows the 

benefits of network automation from the reliability and 
redundancy point of view.  

The remaining sections are organized as follows. Section 
II presents related works. The connection between ONAP and 
CN-MIPv6 is elaborated in Section III, followed by the 
measurements and numerical calculations in Section IV. 
Conclusions and possible future research directions are in 
Section V and Section VI, respectively. 

II. RELATED WORKS 

A. Literature 

Cloudification of 5G network functions has been a 
trending paradigm. Du et al. [5] consider the cloud-native 
bases of 5G Access and Mobility Management Function 
(AMF). 

Another member of IP-based mobility management, such 
as Proxy Mobile IPv6 [6], has also been shaped to be cloud-
native: cloud-native Proxy Mobile IPv6 (CN-PMIPv6) [7]. 
Flow Mobility, a concept standardized for Proxy Mobile IPv6 
(PMIPv6) and discussed in Section III for MIPv6, makes it 
possible to separate IP flows by 5-tuples and assign individual 
mobility policies for each flow. 

In our work, the Single-Point-of-Failure (SPOF) problem 
is solved by immediate and automatic redeployment of the 
mobility anchor (Home Agent). Furthermore, the number of 
anchors can be increased dynamically with automatic scaling. 
Obviously, there are other strategies for mitigating the SPOF 
problem in IPv6-based mobility management. With the help 
of SDN and Openflow, IPv6-based mobility management can 
be implemented in many different ways [8] [9] [10] [11] [12].  

Dimitris Giatsios et al. [13] examine the failover of 
Network Slices. The paper written by Veronica Quintuna 
Rodriguez et al. examines ONAP-based deployment and 
management of Network Slices [14] [15]. ONAP has also 
been used to enhance access discovery and selection functions 
in the 5G core network in an article by Rahul Banerji et al. 
[16].  

Predictive failover of Virtual Network Functions (VNF) in 
the context of edge computing is presented by Huawei Huang 
et al. [17]. A unique programming language is shown to 
ensure fault tolerance in SDN by Reitblatt et al. [18]. Scaling 
and failover can also be executed with Kubernetes on the Pod 
level by Kubernetes Horizontal Pod Autoscaler (HPA) [19] 
and Kubernetes Deployment [20]. But these are not suitable 
for inter-Kubernetes cluster failover and scaling: ONAP can 
manage many Kubernetes clusters simultaneously. As our 
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I. INTRODUCTION 

Network Function Virtualization (NFV) and Software 
Defined Networking (SDN) have not left any Network 
Function (NF) untouched. Meanwhile, cloud systems, either 
virtual machine or container-based, have created new 
execution environments. Nowadays, cloud-native service 
provisioning can bring in failover and scaling scenarios more 
straightforwardly than ever before. This implicitly indicates 
the usage of orchestration, which helps to organize the right 
amount of resources to the right place in time. In this paper, 
we use Open Network Automation Platform (ONAP) [1] for 
the practical experiments. With ONAP, we can run automatic 
failover and scaling scenarios when specific circumstances are 
met. In our experiments, we entirely rely on the closed-loop 
orchestration platform of ONAP. This is where Mobile IPv6 
(MIPv6) [2] comes into the picture, whose functionality and 
operational procedures can be extended using the cloud. 
MIPv6 is part of a broader protocol family called IP-level 
mobility management. The current technological trends of 
cloudification spanned over the NFV, and SDN paradigms, 
together with orchestration requirements, do not leave MIPv6-
based mobility support untouched. Cloud-native Mobile IPv6 
(CN-MIPv6) [3] [4]was proposed to meet the expectations and 
apply the benefits of the trends mentioned above.  

This paper aims to show how failover and scaling can be 
applied to CN-MIPv6 in the context of closed-loop 
orchestration. Here we define failover as the time of restoring 
redundancy. Furthermore, the article presents numerical 
results and calculations on the utilization of failover, scaling, 
and availability in the case of cloud-native IP-level mobility 
management. At the end of the paper, an analysis shows the 

benefits of network automation from the reliability and 
redundancy point of view.  

The remaining sections are organized as follows. Section 
II presents related works. The connection between ONAP and 
CN-MIPv6 is elaborated in Section III, followed by the 
measurements and numerical calculations in Section IV. 
Conclusions and possible future research directions are in 
Section V and Section VI, respectively. 

II. RELATED WORKS 

A. Literature 

Cloudification of 5G network functions has been a 
trending paradigm. Du et al. [5] consider the cloud-native 
bases of 5G Access and Mobility Management Function 
(AMF). 

Another member of IP-based mobility management, such 
as Proxy Mobile IPv6 [6], has also been shaped to be cloud-
native: cloud-native Proxy Mobile IPv6 (CN-PMIPv6) [7]. 
Flow Mobility, a concept standardized for Proxy Mobile IPv6 
(PMIPv6) and discussed in Section III for MIPv6, makes it 
possible to separate IP flows by 5-tuples and assign individual 
mobility policies for each flow. 

In our work, the Single-Point-of-Failure (SPOF) problem 
is solved by immediate and automatic redeployment of the 
mobility anchor (Home Agent). Furthermore, the number of 
anchors can be increased dynamically with automatic scaling. 
Obviously, there are other strategies for mitigating the SPOF 
problem in IPv6-based mobility management. With the help 
of SDN and Openflow, IPv6-based mobility management can 
be implemented in many different ways [8] [9] [10] [11] [12].  

Dimitris Giatsios et al. [13] examine the failover of 
Network Slices. The paper written by Veronica Quintuna 
Rodriguez et al. examines ONAP-based deployment and 
management of Network Slices [14] [15]. ONAP has also 
been used to enhance access discovery and selection functions 
in the 5G core network in an article by Rahul Banerji et al. 
[16].  

Predictive failover of Virtual Network Functions (VNF) in 
the context of edge computing is presented by Huawei Huang 
et al. [17]. A unique programming language is shown to 
ensure fault tolerance in SDN by Reitblatt et al. [18]. Scaling 
and failover can also be executed with Kubernetes on the Pod 
level by Kubernetes Horizontal Pod Autoscaler (HPA) [19] 
and Kubernetes Deployment [20]. But these are not suitable 
for inter-Kubernetes cluster failover and scaling: ONAP can 
manage many Kubernetes clusters simultaneously. As our 

 

 

concept opens the way to machine learning applications of 
IPv6-based mobility management, it is worth mentioning that 
mobility management itself is also examined in the field of 
Machine Learning optimization [21] [22] [23]. 

There is a good collection of mobility management issues 
in 5G networks with low-latency services by Johanna 
Heinonen et al. [24]. The identified challenges include 
topology-aware gateway selection, handover management, 
and gateway relocation. Our proposal inherits features of 
automatic gateway relocation from the system architecture 
level: appropriate functions are triggered automatically in case 
of failures. 

Network automation and mobility management are not 
only in the interest of scientific papers. There are several other 
forums and publications, like blogs, which are worth 
mentioning (e.g., [25] [26] [27]). To the best of our 
knowledge, no publicly available literature deals with 
integrating closed-loop orchestration, cloud-native IPv6-
based mobility management, and ONAP. The whole operation 
model of CN-MIPv6 – presented in this paper – is a novel 
concept. Of course, the scope of our article is limited to 
failover and scaling scenarios of CN-MIPv6, but these are the 
essential use cases demonstrating the power of our scheme. 
The microservice architecture CN-MIPv6 used in this paper 
for evaluation can be found in [4].  

B. Orchestration and ONAP in a nutshell 

Orchestration (in telecommunication) is about ensuring 
the right amount of resources at the right time and location for 
a particular service. In practice, this means enough pieces of 
virtual machines and containers must be placed behind a 
specific service. 

Figure 1 depicts another function of orchestration which 
operates with control loops. The system watches the particular 
service's actual states continuously and consistently enforces 
the desired state. This is how closed-loop orchestration or 
Kubernetes Operators [28] work on a very high level. 

 
Figure 1 – Orchestration in general [29] 

ONAP is an open-source network automation and closed-
loop orchestration platform. A simplified view of its 
architecture can be seen in Figure 2. Its main component is the 
Service Orchestrator (SO) [30], which is responsible for 
executing abstract steps (Building Blocks, BB) to instantiate a 
particular Network Service (NS) instance. Network Service 
Models are designed in the Service Design and Creation 
(SDC) component [31]. These two components indicate that 
ONAP strictly separates the design time (Day 0) and the 
deployment time (Day 1). Particular workflows and 
controllers can be written to any NS with the help of the 
Controller Design Studio (CDS) [32]. CDS can also store Day 

2 configuration changes or any other workflows intended to 
the part of a closed-loop control function. Software 
components of a Network Service Model, including Custom 
Controllers (Controller Blueprint Archive, CBA), are 
encapsulated as Vendor Software Package (VSP). In the case 
of CNF, a Helm chart is included in the VSP. 

The Policy Framework [33] is the heart of the closed-loop 
functions of ONAP. It stores what to do when a particular 
event happens with an NF. The Policy Framework uses Policy 
Models, which hide the actual API calls to SO and CDS. Every 
Policy Model is assigned to a Network Service Model. The 
Onset event is sent out by a custom-made Analytic 
Application (AA) to trigger a Policy Model. Deciding when to 
send out an Onset message is entirely up to the developer of 
AA. The primary source of measurements for AA is VES 
messages sent out by a running NF. Every message, including 
Onset, VNF Event Streaming (VES), is transferred via 
DMAAP [34], which is the central message bus of ONAP.  

 
Figure 2 – The ONAP architecture [35] 

III. ONAP CONSIDERATIONS FROM THE CN-MIPV6 SERVICE 

PROVISIONING POINT OF VIEW 

Our proposed approach of closed-loop orchestration in the 
context of CN-MIPv6 is depicted in Figure 3. On one hand, a 
Kubernetes layer is responsible for executing readiness and 
liveness probes for basic health checks. On the other hand, 
there is a broader scope of the control loop based on ONAP. 
This is where complex logic of automatic workflows is placed, 
such as analytics and machine learning-based operations. Of 
course, multiple control loops can be deployed here, such as 
autoscaling, auto-healing, etc. Furthermore, the scope of these 
control loops is not only restricted to one Kubernetes cluster. 
This is where inter-cloud control logic can be deployed.  

In the context of ONAP and CN-MIPv6 integration, we 
use a multi-site VNF during the failover and scaling 
particularly. When a new instance of Home Agent Packet 
Procesor (HA-PP) is created, a new Virtual Function (VF) 
module is added to the existing VNF but with a different cloud 
region. This VF module hosts the corresponding Helm charts 
of HA-PP, which are added as a VSP to that particular 
Network Service Model. 
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There is a good collection of mobility management issues 
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Figure 6 shows the network traffic during failover. The 
content of the data plane is emulated by ICMPv6 messages. 
First, MN attaches to HA-PP#1. When HA-PP#1 fails, a new 
Binding Update (BU) is sent out to HA-PP#2 from MN, and 
the IPv6inIPv6 tunnel is set up to the new HA-PP. The CN is 
now reachable via HA-PP#2. MN can detect HA failure as 
routing is no longer working towards the tunnel. The details 
of the IPv6 address allocation during failover can be found at 
the end of the paper in Figure 12 and Figure 13. Home Address 
(HoA) is represented by the tunnel endpoint IPv6 address of 
MN, which is permanent. After the failover, the routing in 
connection with the HA-PP and CN is modified as the MN, 
and HoA is reachable via a different forwarding entity 
(different HA-PP). Of course, this can be updated by any 
dynamic routing protocol or static routing, but this is not in the 
scope of this paper. 

 
Figure 6 – CN-MIPv6 signaling flow in case of ONAP-

based failover 

A complete test framework is used with several 
measurement points for the process mentioned above. The 
exact measurement steps of failover can be seen at the end of 
the paper in Figure 14. The test framework is a separate entity 
measuring service outage time. By service outage, we mean 
the time when the bidirectional tunnel is broken and the new 
one is set up on a newly created HA-PP. Furthermore, the test 
framework connects to all the elements to initialize BU and 
adjust routing before and after failover, details in Figure 12, 
Figure 13, Figure 14, Figure 15, Figure 16 and Figure 17. 

We have executed the failover scenario 100 times. The 
corresponding box plot can be seen in Figure 7. Meanwhile, 
numerical results are shown in Table 1. The failover is 
executed within 106.26 sec on average (median: 103.93, 
stdev: 30.42. The maximum is 210.19 sec, while the minimum 
is 58.83 sec. During measurements, we experienced that, 
sometimes, ONAP waited for an uncertain time during the 
same process. This explains the stdev and the high difference 
between the minimum and maximum. 

 
Figure 7 - Failover time results 

MIN AVG Median MAX STDEV 
58.83 106.26 103.92 210.19 30.42 
Table 1. - Numerical results of failover time (sec) 

C. Utilisation for Scaling 

Scaling is the workflow when additional executors are added 
or removed to/from the system in order to deal with the 
changed traffic. In the case of our CN-MIPv6 mobility 
management service, we emulated how to add a new HA-PP 
when a certain traffic threshold is reached. At the end of the 
automatic scaling, both HA-PP components will serve the 
traffic. 

 
Figure 8 - ONAP-based execution workflow of scaling 

Scaling execution steps from the ONAP point of view - 
shown in Figure 8 – are the followings: 

1. HA-B sends out VES Measurement event. 
2. VES Collector validates its schema and puts it to the 

corresponding DMAAP topic. 
3. AA gets the VES message and calculates if scaling 

is needed or not. 
4. AA sends out the Onset message to DMAAP to 

trigger a Policy model. 
5. The Policy gets the Onset message. 
6. The Policy calls for scale-out workflow in CDS. 
7. CDS and SO executes the scale-out request and 

create a new VF module instance in a different 
namespace. 
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Figure 10 – Measured throughput gain after scaling out (in Mbps)

Figure 11 – Measured throughput gain after scaling out (in percentage)

 

 

 
Figure 9 - Signaling of CN-MIPv6 in case of scaling 

Figure 9 shows how scaling is executed from the CN-MIPv6 
point of view. First, two MNs (MN#1, MN#2) are attached to 
one HA-PP (HA-PP#1). After the ONAP recognizes the 
overload of HA-PP#1, then the management system creates a 
new one. From this point, MN#2 is reregistered via sending 
BU to the newly created HA-PP#2, and the bidirectional 
tunnel is set up to HA-PP#2 in the case of MN#2. Thus, the 
CN is reachable via HA-PP#2 in the case of MN#2. 
At the end of this paper, Figure 15 and Figure 17 present the 
IPv6 address allocation during scaling. Similar logic can be 
seen for IPv6 address allocation as in the case of failover.The 
detailed measurement steps of the scaling use case can be 
found at the end of the paper in Figure 16. This also uses the 
same elements as the failover scenario. Meanwhile, Pods' 
network interface capacities are limited to 1 Gbps to simulate 
the limited capacity of a network device and packet 
processing. The original throughput was about cc 900 Mpbs 
for the MNs using one HA-PP instance. This leads to a 
common base on measurement, and it is easier to compare 
results. The scaling scenario has been executed 20 times. 
Figure 10 and Figure 11 show the box plot of the results in 
Mbps and percentage, respectively. Table 2 shows the 
numerical results of the average gain for both MNs. After the 
scaling, the throughput gain for MN#1 is 362.1 Mbps 
(67.94%), while on MN#2, it is 329.5Mbps (65.4%). MN#2 
shows a little less throughput gain, as it has an unconnected 
period which includes new binding message exchanges and 
tunnel setup time, while MN#1 is continuously connected to 
the HA-PP#1. 
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D. Availability and redundancy calculations 

The availability of a telecommunication system is one of the 
most critical quality metrics. By automating the failover 
procedure of a network function, the availability of the 
network function significantly improves. 
A short recap, the availability of a single NF can be calculated 
by 

  



 (1) 

where MTBF is Mean Time Between Failures, MTTR is 
Mean Time to Repair. 
Telco services provide high availability; for Ulra-Reliably 
Low-Latency (URLLC) services, these expectations are 
growing further. When the availability expectations for 
service are in the range of five or six nines for the service 
components, including the network function software, the 
availability expectation is even higher. These figures are 
achieved by applying redundancy schemes. There are no 
widely agreed/accepted figures for software MTBF and 
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Low-Latency (URLLC) services, these expectations are 
growing further. When the availability expectations for 
service are in the range of five or six nines for the service 
components, including the network function software, the 
availability expectation is even higher. These figures are 
achieved by applying redundancy schemes. There are no 
widely agreed/accepted figures for software MTBF and 
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Figure 9 shows how scaling is executed from the CN-MIPv6 
point of view. First, two MNs (MN#1, MN#2) are attached to 
one HA-PP (HA-PP#1). After the ONAP recognizes the 
overload of HA-PP#1, then the management system creates a 
new one. From this point, MN#2 is reregistered via sending 
BU to the newly created HA-PP#2, and the bidirectional 
tunnel is set up to HA-PP#2 in the case of MN#2. Thus, the 
CN is reachable via HA-PP#2 in the case of MN#2. 
At the end of this paper, Figure 15 and Figure 17 present the 
IPv6 address allocation during scaling. Similar logic can be 
seen for IPv6 address allocation as in the case of failover.The 
detailed measurement steps of the scaling use case can be 
found at the end of the paper in Figure 16. This also uses the 
same elements as the failover scenario. Meanwhile, Pods' 
network interface capacities are limited to 1 Gbps to simulate 
the limited capacity of a network device and packet 
processing. The original throughput was about cc 900 Mpbs 
for the MNs using one HA-PP instance. This leads to a 
common base on measurement, and it is easier to compare 
results. The scaling scenario has been executed 20 times. 
Figure 10 and Figure 11 show the box plot of the results in 
Mbps and percentage, respectively. Table 2 shows the 
numerical results of the average gain for both MNs. After the 
scaling, the throughput gain for MN#1 is 362.1 Mbps 
(67.94%), while on MN#2, it is 329.5Mbps (65.4%). MN#2 
shows a little less throughput gain, as it has an unconnected 
period which includes new binding message exchanges and 
tunnel setup time, while MN#1 is continuously connected to 
the HA-PP#1. 
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MTTR values, so we calculated with a range of values 
(MTBF from a month to two years, MTTR from 5 minutes to 
45 minutes). We applied different redundancy schemes for 
these values to ensure that the availability of the redundant 
solutions is above six nines. Obviously, the reduced MTTR 
in every case improves the availability. This improvement 
allows the deployment of lighter redundancy schemes for the 
network function when its failover is automated and the same 
availability is still provided. For example, a 2N redundant 
deployment allows deploying a 3+1 redundant scheme, and 
the same availability is provided (thus, for four software 
instances, three instances become active instead of two [36] 
[37]). Suppose the original MTTR was on the higher end (i.e., 
above 15 minutes). Even the 6+1 redundant scheme provides 
the same availability (for all MTBF values) as the 2N 
redundant solution without failover automation. Thus a 
significant amount of resources can be saved. Note that it is 
also possible to use the "saved availability budget" for other 
components of the system (e.g., lowering hardware 
availability by employing less personnel and saving cost) and 
keep end-to-end availability on the same level or simply offer 
better availability for customers. 
With 2N and 3N redundant systems, the availability 
calculation is the following: 
    1 − (1 − )  (2) 
    1 − (1 − ) (3) 
In Section IV. B, we have shown the average time for 
failover, which is 106.23 sec. This value can be considered as 
the MTTR of the function we evaluate.  
The goal of these calculations is the following: in our ONAP-
based failover case, it is possible to reduce the level of 
redundancy. This means the number of deployed instances 
can be decreased in order to save resources. Meanwhile, the 
availability of service is not jeopardized. For calculation 
simplicity reasons, we apply 99.999% availability for NF, but 
in a real-world scenario, higher availability is expected. 

1N non-redundant case: 
Based on the above-mentioned equations, we calculated the 
MTBF value for the 1N system if availability must be at least 
99.999%, which is 123 days. This means the frequency of 
system collapse cannot be less than 123 days; otherwise, the 
system availability cannot reach 99.999%, supposed the 
cc.106 sec failover time 
We also consider that this MTBF value describes the by-
default behavior of our software system.  

2N redundant case: 
With the MTTR=106.23 sec value and 2N redundancy, the 
MTBF value is 9.3 hours (MTBF2N=9.3 hours) if minimum 
99.999% availability is kept. Thus, if the MTBF2N is 9.3 
hours or less, the system is below the target of 99.999% 
availability. So, if every 9.3 hours, there is an failure with the 
given MTTR value, the system will still operate on at least 
99.999% availability. 

3N redundant case: 
With the MTTR=106.23 sec value and 3N redundancy, the 
MTBF value is 1.3 hours (MTBF3N=1.3 hours) if minimum 
99.999% availability is kept. Thus, if the MTBF3N is 1.3 
hours or less, the system is below the target of 99.999% 
availability. So, if every 1.3 hours, there is an error with the 

given MTTR value, the system still operates on at least 
99.999% availability. 
 
We can save resources if the same availability can be kept 
with fewer redundant pairs. If we know that our system has 
an error on average every 123 days, then let’s check the 
maximum MTTR value that is allowed with 2N redundancy 
to keep at least 99.999% availability. This is 9.365 hours 
(MTTR2N=9.365 hours). This means that every 2N system 
with MTBF = 123 days can be reduced to our 1N system, 
where the MTTR is minimum 9.365 hours. Because this 
MTTR value reaches a certain level, where the availability of 
the 2N system does not keep 99.999% even though it may be 
better than the 1N, but the over-availability requirement is not 
fulfilled. But using 1N instead of 2N means a service outage 
as there is no active pair to maintain service. To circumvent 
this, a 3N redundancy system is needed. A similar logic is 
applied: if the MTBF = 123 days, then let’s calculate the min 
MTTR when the 3N system does not add availability gain 
(not reaching 99.999%) compared to the 2N system. Every 
3N system can be reduced to a 2N system where the MTTR 
is between 12 min and 65 hours. The whole calculation is 
represented in Figure 18 at the end of the paper. 

V. CONCLUSION 

In this paper, we have presented that the redundancy 
restoration time (restoring a cold backup) can be decreased to 
the level of minutes with network automation and 
orchestration. Note that according to the GSMA [38], a new 
instance deployment of a Physical Network Function lays in 
the range of days. In this paper, we have shown that this can 
be decreased to the range of minutes. This definitely shows 
the power of network automation; meanwhile, cloud, 
virtualization, and containerization are utilized as well.  

This failover time is also considered to restore the cold backup 
of a particular network function. We also believe that this does 
not only pertain to CN-MIPv6; general conclusions can be 
drawn for any NF. 

Even though we have shown that the redeployment time 
has gone to the range of minutes, there are further possibilities 
for optimization: detailed measurements are needed to 
conclude the minimum value of liveness and readiness probe 
to minimize the failover or scaling time. Right now, they are 
arbitrary. A new measurement point can also be added to the 
test framework, which watches the ONAP internal states to 
identify the slowest part of the execution accurately. Failover 
time may be higher in a real-world scenario because our 
testbed does not deal with complex routing and configuration. 
This is similar to the scaling as well because the gain may be 
lower due to the cloud's actual computing and network load 
uncertainty. We have also shown that, with the help of the 
scaling procedure, significant throughput gain can be reached. 

Improvement of failover time also has a positive impact 
on service availability. It saves resources for the automated 
NF function or any other part of the chain of processes 
contributing to service provision. 

VI. FUTURE WORK 

Current Kubernetes network approaches are not "network-
native". More and more novel Kubernetes networking 
approaches are emerging [39] [40], which are the natural 
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these values to ensure that the availability of the redundant 
solutions is above six nines. Obviously, the reduced MTTR 
in every case improves the availability. This improvement 
allows the deployment of lighter redundancy schemes for the 
network function when its failover is automated and the same 
availability is still provided. For example, a 2N redundant 
deployment allows deploying a 3+1 redundant scheme, and 
the same availability is provided (thus, for four software 
instances, three instances become active instead of two [36] 
[37]). Suppose the original MTTR was on the higher end (i.e., 
above 15 minutes). Even the 6+1 redundant scheme provides 
the same availability (for all MTBF values) as the 2N 
redundant solution without failover automation. Thus a 
significant amount of resources can be saved. Note that it is 
also possible to use the "saved availability budget" for other 
components of the system (e.g., lowering hardware 
availability by employing less personnel and saving cost) and 
keep end-to-end availability on the same level or simply offer 
better availability for customers. 
With 2N and 3N redundant systems, the availability 
calculation is the following: 
    1 − (1 − )  (2) 
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In Section IV. B, we have shown the average time for 
failover, which is 106.23 sec. This value can be considered as 
the MTTR of the function we evaluate.  
The goal of these calculations is the following: in our ONAP-
based failover case, it is possible to reduce the level of 
redundancy. This means the number of deployed instances 
can be decreased in order to save resources. Meanwhile, the 
availability of service is not jeopardized. For calculation 
simplicity reasons, we apply 99.999% availability for NF, but 
in a real-world scenario, higher availability is expected. 

1N non-redundant case: 
Based on the above-mentioned equations, we calculated the 
MTBF value for the 1N system if availability must be at least 
99.999%, which is 123 days. This means the frequency of 
system collapse cannot be less than 123 days; otherwise, the 
system availability cannot reach 99.999%, supposed the 
cc.106 sec failover time 
We also consider that this MTBF value describes the by-
default behavior of our software system.  

2N redundant case: 
With the MTTR=106.23 sec value and 2N redundancy, the 
MTBF value is 9.3 hours (MTBF2N=9.3 hours) if minimum 
99.999% availability is kept. Thus, if the MTBF2N is 9.3 
hours or less, the system is below the target of 99.999% 
availability. So, if every 9.3 hours, there is an failure with the 
given MTTR value, the system will still operate on at least 
99.999% availability. 

3N redundant case: 
With the MTTR=106.23 sec value and 3N redundancy, the 
MTBF value is 1.3 hours (MTBF3N=1.3 hours) if minimum 
99.999% availability is kept. Thus, if the MTBF3N is 1.3 
hours or less, the system is below the target of 99.999% 
availability. So, if every 1.3 hours, there is an error with the 

given MTTR value, the system still operates on at least 
99.999% availability. 
 
We can save resources if the same availability can be kept 
with fewer redundant pairs. If we know that our system has 
an error on average every 123 days, then let’s check the 
maximum MTTR value that is allowed with 2N redundancy 
to keep at least 99.999% availability. This is 9.365 hours 
(MTTR2N=9.365 hours). This means that every 2N system 
with MTBF = 123 days can be reduced to our 1N system, 
where the MTTR is minimum 9.365 hours. Because this 
MTTR value reaches a certain level, where the availability of 
the 2N system does not keep 99.999% even though it may be 
better than the 1N, but the over-availability requirement is not 
fulfilled. But using 1N instead of 2N means a service outage 
as there is no active pair to maintain service. To circumvent 
this, a 3N redundancy system is needed. A similar logic is 
applied: if the MTBF = 123 days, then let’s calculate the min 
MTTR when the 3N system does not add availability gain 
(not reaching 99.999%) compared to the 2N system. Every 
3N system can be reduced to a 2N system where the MTTR 
is between 12 min and 65 hours. The whole calculation is 
represented in Figure 18 at the end of the paper. 

V. CONCLUSION 

In this paper, we have presented that the redundancy 
restoration time (restoring a cold backup) can be decreased to 
the level of minutes with network automation and 
orchestration. Note that according to the GSMA [38], a new 
instance deployment of a Physical Network Function lays in 
the range of days. In this paper, we have shown that this can 
be decreased to the range of minutes. This definitely shows 
the power of network automation; meanwhile, cloud, 
virtualization, and containerization are utilized as well.  

This failover time is also considered to restore the cold backup 
of a particular network function. We also believe that this does 
not only pertain to CN-MIPv6; general conclusions can be 
drawn for any NF. 

Even though we have shown that the redeployment time 
has gone to the range of minutes, there are further possibilities 
for optimization: detailed measurements are needed to 
conclude the minimum value of liveness and readiness probe 
to minimize the failover or scaling time. Right now, they are 
arbitrary. A new measurement point can also be added to the 
test framework, which watches the ONAP internal states to 
identify the slowest part of the execution accurately. Failover 
time may be higher in a real-world scenario because our 
testbed does not deal with complex routing and configuration. 
This is similar to the scaling as well because the gain may be 
lower due to the cloud's actual computing and network load 
uncertainty. We have also shown that, with the help of the 
scaling procedure, significant throughput gain can be reached. 

Improvement of failover time also has a positive impact 
on service availability. It saves resources for the automated 
NF function or any other part of the chain of processes 
contributing to service provision. 
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Current Kubernetes network approaches are not "network-
native". More and more novel Kubernetes networking 
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In this paper, we have presented that the redundancy 
restoration time (restoring a cold backup) can be decreased to 
the level of minutes with network automation and 
orchestration. Note that according to the GSMA [38], a new 
instance deployment of a Physical Network Function lays in 
the range of days. In this paper, we have shown that this can 
be decreased to the range of minutes. This definitely shows 
the power of network automation; meanwhile, cloud, 
virtualization, and containerization are utilized as well.  

This failover time is also considered to restore the cold backup 
of a particular network function. We also believe that this does 
not only pertain to CN-MIPv6; general conclusions can be 
drawn for any NF. 

Even though we have shown that the redeployment time 
has gone to the range of minutes, there are further possibilities 
for optimization: detailed measurements are needed to 
conclude the minimum value of liveness and readiness probe 
to minimize the failover or scaling time. Right now, they are 
arbitrary. A new measurement point can also be added to the 
test framework, which watches the ONAP internal states to 
identify the slowest part of the execution accurately. Failover 
time may be higher in a real-world scenario because our 
testbed does not deal with complex routing and configuration. 
This is similar to the scaling as well because the gain may be 
lower due to the cloud's actual computing and network load 
uncertainty. We have also shown that, with the help of the 
scaling procedure, significant throughput gain can be reached. 

Improvement of failover time also has a positive impact 
on service availability. It saves resources for the automated 
NF function or any other part of the chain of processes 
contributing to service provision. 

VI. FUTURE WORK 

Current Kubernetes network approaches are not "network-
native". More and more novel Kubernetes networking 
approaches are emerging [39] [40], which are the natural 
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MTTR values, so we calculated with a range of values 
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45 minutes). We applied different redundancy schemes for 
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99.999% availability. 
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MTTR when the 3N system does not add availability gain 
(not reaching 99.999%) compared to the 2N system. Every 
3N system can be reduced to a 2N system where the MTTR 
is between 12 min and 65 hours. The whole calculation is 
represented in Figure 18 at the end of the paper. 
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restoration time (restoring a cold backup) can be decreased to 
the level of minutes with network automation and 
orchestration. Note that according to the GSMA [38], a new 
instance deployment of a Physical Network Function lays in 
the range of days. In this paper, we have shown that this can 
be decreased to the range of minutes. This definitely shows 
the power of network automation; meanwhile, cloud, 
virtualization, and containerization are utilized as well.  

This failover time is also considered to restore the cold backup 
of a particular network function. We also believe that this does 
not only pertain to CN-MIPv6; general conclusions can be 
drawn for any NF. 

Even though we have shown that the redeployment time 
has gone to the range of minutes, there are further possibilities 
for optimization: detailed measurements are needed to 
conclude the minimum value of liveness and readiness probe 
to minimize the failover or scaling time. Right now, they are 
arbitrary. A new measurement point can also be added to the 
test framework, which watches the ONAP internal states to 
identify the slowest part of the execution accurately. Failover 
time may be higher in a real-world scenario because our 
testbed does not deal with complex routing and configuration. 
This is similar to the scaling as well because the gain may be 
lower due to the cloud's actual computing and network load 
uncertainty. We have also shown that, with the help of the 
scaling procedure, significant throughput gain can be reached. 

Improvement of failover time also has a positive impact 
on service availability. It saves resources for the automated 
NF function or any other part of the chain of processes 
contributing to service provision. 

VI. FUTURE WORK 

Current Kubernetes network approaches are not "network-
native". More and more novel Kubernetes networking 
approaches are emerging [39] [40], which are the natural 

 

 

evolution steps of the current version of our PoC 
implementation. For a simplified but more advanced use case, 
using an external load balancer instead of a direct Pod 
connection is also in the scope of future implementations. 
ONAP has also paved the way for machine learning 
applications, which may not only deal with traffic level 
optimization in failover or scaling. Machine learning can add 
new perspectives to predictive mobility management and 
other potential application areas. 
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Figure 12 - IPv6 address allocation before failover 
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foreign network. Packets originated at CN and targeted to the 
MN go through HA. HA tunnels the packets to FA. Finally, 
FA processes the encapsulated packets and forwards those to 
the MN. Figure 1 describes the Control flow of MIPv4. Figure 
2 depicts the basic architecture of MIPv4. 

 

Figure 1 – The standard MIPv4 message flow[8] 

The drawbacks of MIPv4 are the triangular routing which 
adds more latency, single point of failure (SPOF), and 
consumes bandwidth. In contrast, the traffic does not move 
directly between the sender and the receiver (CN and MN). 
Instead, traffic goes through the HA in the middle.  

 

Figure 2 – The basic architecture of MIPv4 [8] 

MIPv6 is similar to MIPv4, with enhancements and 
additional features. MIPv6 uses the Neighbor Discovery 
Protocol (NDP) of IPv6 [10]. NDP uses Router Solicitation 
(RS) and Router Advertisement (RA) messages to detect IP 
network prefix changes. Furthermore, NDP also deals with 
neighbor reachability. An IPv6 capable access router has 
replaced the functions of a Foreign Agent in MIPv4. This 
means FAs are eliminated in the context of MIPv6.  

The mobility procedure in MIPv6 works as follows. The 
communication between MN and CN is addressed by 
native/ordinary IPv6 routing when MN stays on its Home 
Link. If the MN moves to Foreign Network, it has a new IP 
address called the CoA. After that, the MN sends a registration 
request to the HA (Binding Update) and receives the 
registration reply (Binding Acknowledgment). Traffic is 
encapsulated between HA and MN. MN may send a BU to CN 
to avoid triangle routing in route optimization mode (RO). The 
detailed message flow of MIPv6 is illustrated in Figure 3 .  

Figure 3 – The standard MIPv6 message flow [9]  

Home Test Init (HoTI) and Care-of Test Init (CoTI) 
messages are part of the return routeability procedure. It is an 
authorization procedure to enable registration by a 
cryptographic token exchange. This procedure helps to give 
some assurance to CN if MN is reachable on that particular 
CoA. CN can securely accept BU from MN at the end of this 
procedure and circumvent HA (route optimization). 

B. Proxy Mobile IPv6 

Proxy Mobile IPv6 (PMIPv6) [3] is a network-based 
mobility management protocol working at the network layer. 
The network-based mobility management extends the network 
side and lets the network handle the mobility management 
instead of modifying the host part. Thus, MNs may not even 
know they are under any mobility process. 

In PMIPv6 (Figure 4), the MN considers the whole 
PMIPv6 domain as a home network, so the MN uses just a 
unique HoA and different care-of addresses used by the 
MAGs. Mobile Access Gateway (MAG) and Local Mobility 
Anchor (LMA) are introduced in PMIPv6. MAG works as the 
access router; it detects the MN's movements and does the 
signaling and tunneling with the LMA, while the LMA works 
similarly to the HA in MIPv6 but with some additional 
potentials. LMA preserves accessibility to the MN's address 
as it travels through PMIPv6 domains. Binding Cache exists 
in the LMA, which is particularly a database that keeps track 
of the movement of MNs.  

 

Figure 4 – The basic architecture of PMIPv6 [3]  

PMIPv6 operates as follows. The MN attaches to MAG and 
sends Router Solicitation (RS) messages. Then MAG 
transmits a Proxy Binding Update (PBU) to the LMA, 
informing the attachment. LMA replies to the MAG via Proxy 

 

 

 
Figure 14 - Detailed description of the failover use case 

 
Figure 15 - IPv6 address allocation before scaling 
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Figure 17 - IPv6 address allocation after scaling 

 
Figure 18 - Availability and redundancy calculations 
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