
Closed-loop Orchestration for
Cloud-native Mobile IPv6

MARCH 2023 • VOLUME XV • NUMBER 144

INFOCOMMUNICATIONS JOURNAL

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Closed-loop Orchestration for Cloud-native Mobile
IPv6

Ákos Leiter1, Edina Lami1,2, Attila Hegyi1, József Varga1, and László Bokor2,3
1Nokia Bell Labs, Bókay János utca 36-42, 1083 Budapest, Hungary,

e-mail: {akos.leiter, attila.hegyi, jozsef.varga}@nokia-bell-labs.com; edina.lami@nokia.com
2Department of Networked Systems and Services, Faculty of Electrical Engineering and Informatics, Budapest University of Technology

and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary, e-mail: bokorl@hit.bme.hu
3ELKH-BME Cloud Applications Research Group, BME Informatics Building, Magyar tudósok krt. 2, H-1117 Budapest, Hungary

Abstract—With the advent of Network Function
Virtualization (NFV) and Software-Defined Networking (SDN),
every network service type faces significant challenges induced
by novel requirements. Mobile IPv6, the well-known IETF
standard for network-level mobility management, is not an
exemption. Cloud-native Mobile IPv6 has acquired several new
capabilities due to the technological advancements of NFV/SDN
evolution. This paper presents how automatic failover and
scaling can be envisioned in the context of cloud-native Mobile
IPv6 with closed-loop orchestration on the top of the Open
Network Automation Platform. Numerical results are also
presented to indicate the usefulness of the new operational
features (failover, scaling) driven by the cloud-native approach
and highlight the advantages of network automation in
virtualized and softwarized environments.

Index Terms— IP mobility, CN-MIPv6, ONAP, failover,

scaling

I. INTRODUCTION

Network Function Virtualization (NFV) and Software
Defined Networking (SDN) have not left any Network
Function (NF) untouched. Meanwhile, cloud systems, either
virtual machine or container-based, have created new
execution environments. Nowadays, cloud-native service
provisioning can bring in failover and scaling scenarios more
straightforwardly than ever before. This implicitly indicates
the usage of orchestration, which helps to organize the right
amount of resources to the right place in time. In this paper,
we use Open Network Automation Platform (ONAP) [1] for
the practical experiments. With ONAP, we can run automatic
failover and scaling scenarios when specific circumstances are
met. In our experiments, we entirely rely on the closed-loop
orchestration platform of ONAP. This is where Mobile IPv6
(MIPv6) [2] comes into the picture, whose functionality and
operational procedures can be extended using the cloud.
MIPv6 is part of a broader protocol family called IP-level
mobility management. The current technological trends of
cloudification spanned over the NFV, and SDN paradigms,
together with orchestration requirements, do not leave MIPv6-
based mobility support untouched. Cloud-native Mobile IPv6
(CN-MIPv6) [3] [4]was proposed to meet the expectations and
apply the benefits of the trends mentioned above.

This paper aims to show how failover and scaling can be
applied to CN-MIPv6 in the context of closed-loop
orchestration. Here we define failover as the time of restoring
redundancy. Furthermore, the article presents numerical
results and calculations on the utilization of failover, scaling,
and availability in the case of cloud-native IP-level mobility
management. At the end of the paper, an analysis shows the

benefits of network automation from the reliability and
redundancy point of view.

The remaining sections are organized as follows. Section
II presents related works. The connection between ONAP and
CN-MIPv6 is elaborated in Section III, followed by the
measurements and numerical calculations in Section IV.
Conclusions and possible future research directions are in
Section V and Section VI, respectively.

II. RELATED WORKS

A. Literature

Cloudification of 5G network functions has been a
trending paradigm. Du et al. [5] consider the cloud-native
bases of 5G Access and Mobility Management Function
(AMF).

Another member of IP-based mobility management, such
as Proxy Mobile IPv6 [6], has also been shaped to be cloud-
native: cloud-native Proxy Mobile IPv6 (CN-PMIPv6) [7].
Flow Mobility, a concept standardized for Proxy Mobile IPv6
(PMIPv6) and discussed in Section III for MIPv6, makes it
possible to separate IP flows by 5-tuples and assign individual
mobility policies for each flow.

In our work, the Single-Point-of-Failure (SPOF) problem
is solved by immediate and automatic redeployment of the
mobility anchor (Home Agent). Furthermore, the number of
anchors can be increased dynamically with automatic scaling.
Obviously, there are other strategies for mitigating the SPOF
problem in IPv6-based mobility management. With the help
of SDN and Openflow, IPv6-based mobility management can
be implemented in many different ways [8] [9] [10] [11] [12].

Dimitris Giatsios et al. [13] examine the failover of
Network Slices. The paper written by Veronica Quintuna
Rodriguez et al. examines ONAP-based deployment and
management of Network Slices [14] [15]. ONAP has also
been used to enhance access discovery and selection functions
in the 5G core network in an article by Rahul Banerji et al.
[16].

Predictive failover of Virtual Network Functions (VNF) in
the context of edge computing is presented by Huawei Huang
et al. [17]. A unique programming language is shown to
ensure fault tolerance in SDN by Reitblatt et al. [18]. Scaling
and failover can also be executed with Kubernetes on the Pod
level by Kubernetes Horizontal Pod Autoscaler (HPA) [19]
and Kubernetes Deployment [20]. But these are not suitable
for inter-Kubernetes cluster failover and scaling: ONAP can
manage many Kubernetes clusters simultaneously. As our

Closed-loop Orchestration for
Cloud-native Mobile IPv6

Ákos Leiter1, Edina Lami1,2, Attila Hegyi1, József Varga1, and László Bokor2,3

Abstract—With the advent of Network Function Virtualization
(NFV) and Software-Defined Networking (SDN), every network
service type faces significant challenges induced by novel
requirements. Mobile IPv6, the well-known IETF standard
for network-level mobility management, is not an exemption.
Cloud-native Mobile IPv6 has acquired several new capabilities
due to the technological advancements of NFV/SDN evolution.
This paper presents how automatic failover and scaling can
be envisioned in the context of cloud-native Mobile IPv6 with
closed-loop orchestration on the top of the Open Network
Automation Platform. Numerical results are also presented to
indicate the usefulness of the new operational features (failover,
scaling) driven by the cloud-native approach and highlight
the advantages of network automation in virtualized and
softwarized environments.

Index Terms—IP mobility, CN-MIPv6, ONAP, failover, scaling

1 Nokia Bell Labs, Budapest, Hungary, (E-mail: {akos.leiter, attila.hegyi,
jozsef.varga}@nokia-bell-labs.com; edina.lami@nokia.com)

2 Department of Networked Systems and Services, Faculty of Electrical
Engineering and Informatics, Budapest University of Technology and
Economics, Budapest, Hungary, (E-mail: bokorl@hit.bme.hu)

3 ELKH-BME Cloud Applications Research Group, BME Informatics
Building, Budapest, Hungary

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Closed-loop Orchestration for Cloud-native Mobile
IPv6

Ákos Leiter1, Edina Lami1,2, Attila Hegyi1, József Varga1, and László Bokor2,3
1Nokia Bell Labs, Bókay János utca 36-42, 1083 Budapest, Hungary,

e-mail: {akos.leiter, attila.hegyi, jozsef.varga}@nokia-bell-labs.com; edina.lami@nokia.com
2Department of Networked Systems and Services, Faculty of Electrical Engineering and Informatics, Budapest University of Technology

and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary, e-mail: bokorl@hit.bme.hu
3ELKH-BME Cloud Applications Research Group, BME Informatics Building, Magyar tudósok krt. 2, H-1117 Budapest, Hungary

Abstract—With the advent of Network Function
Virtualization (NFV) and Software-Defined Networking (SDN),
every network service type faces significant challenges induced
by novel requirements. Mobile IPv6, the well-known IETF
standard for network-level mobility management, is not an
exemption. Cloud-native Mobile IPv6 has acquired several new
capabilities due to the technological advancements of NFV/SDN
evolution. This paper presents how automatic failover and
scaling can be envisioned in the context of cloud-native Mobile
IPv6 with closed-loop orchestration on the top of the Open
Network Automation Platform. Numerical results are also
presented to indicate the usefulness of the new operational
features (failover, scaling) driven by the cloud-native approach
and highlight the advantages of network automation in
virtualized and softwarized environments.

Index Terms— IP mobility, CN-MIPv6, ONAP, failover,

scaling

I. INTRODUCTION

Network Function Virtualization (NFV) and Software
Defined Networking (SDN) have not left any Network
Function (NF) untouched. Meanwhile, cloud systems, either
virtual machine or container-based, have created new
execution environments. Nowadays, cloud-native service
provisioning can bring in failover and scaling scenarios more
straightforwardly than ever before. This implicitly indicates
the usage of orchestration, which helps to organize the right
amount of resources to the right place in time. In this paper,
we use Open Network Automation Platform (ONAP) [1] for
the practical experiments. With ONAP, we can run automatic
failover and scaling scenarios when specific circumstances are
met. In our experiments, we entirely rely on the closed-loop
orchestration platform of ONAP. This is where Mobile IPv6
(MIPv6) [2] comes into the picture, whose functionality and
operational procedures can be extended using the cloud.
MIPv6 is part of a broader protocol family called IP-level
mobility management. The current technological trends of
cloudification spanned over the NFV, and SDN paradigms,
together with orchestration requirements, do not leave MIPv6-
based mobility support untouched. Cloud-native Mobile IPv6
(CN-MIPv6) [3] [4]was proposed to meet the expectations and
apply the benefits of the trends mentioned above.

This paper aims to show how failover and scaling can be
applied to CN-MIPv6 in the context of closed-loop
orchestration. Here we define failover as the time of restoring
redundancy. Furthermore, the article presents numerical
results and calculations on the utilization of failover, scaling,
and availability in the case of cloud-native IP-level mobility
management. At the end of the paper, an analysis shows the

benefits of network automation from the reliability and
redundancy point of view.

The remaining sections are organized as follows. Section
II presents related works. The connection between ONAP and
CN-MIPv6 is elaborated in Section III, followed by the
measurements and numerical calculations in Section IV.
Conclusions and possible future research directions are in
Section V and Section VI, respectively.

II. RELATED WORKS

A. Literature

Cloudification of 5G network functions has been a
trending paradigm. Du et al. [5] consider the cloud-native
bases of 5G Access and Mobility Management Function
(AMF).

Another member of IP-based mobility management, such
as Proxy Mobile IPv6 [6], has also been shaped to be cloud-
native: cloud-native Proxy Mobile IPv6 (CN-PMIPv6) [7].
Flow Mobility, a concept standardized for Proxy Mobile IPv6
(PMIPv6) and discussed in Section III for MIPv6, makes it
possible to separate IP flows by 5-tuples and assign individual
mobility policies for each flow.

In our work, the Single-Point-of-Failure (SPOF) problem
is solved by immediate and automatic redeployment of the
mobility anchor (Home Agent). Furthermore, the number of
anchors can be increased dynamically with automatic scaling.
Obviously, there are other strategies for mitigating the SPOF
problem in IPv6-based mobility management. With the help
of SDN and Openflow, IPv6-based mobility management can
be implemented in many different ways [8] [9] [10] [11] [12].

Dimitris Giatsios et al. [13] examine the failover of
Network Slices. The paper written by Veronica Quintuna
Rodriguez et al. examines ONAP-based deployment and
management of Network Slices [14] [15]. ONAP has also
been used to enhance access discovery and selection functions
in the 5G core network in an article by Rahul Banerji et al.
[16].

Predictive failover of Virtual Network Functions (VNF) in
the context of edge computing is presented by Huawei Huang
et al. [17]. A unique programming language is shown to
ensure fault tolerance in SDN by Reitblatt et al. [18]. Scaling
and failover can also be executed with Kubernetes on the Pod
level by Kubernetes Horizontal Pod Autoscaler (HPA) [19]
and Kubernetes Deployment [20]. But these are not suitable
for inter-Kubernetes cluster failover and scaling: ONAP can
manage many Kubernetes clusters simultaneously. As our

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Closed-loop Orchestration for Cloud-native Mobile
IPv6

Ákos Leiter1, Edina Lami1,2, Attila Hegyi1, József Varga1, and László Bokor2,3
1Nokia Bell Labs, Bókay János utca 36-42, 1083 Budapest, Hungary,

e-mail: {akos.leiter, attila.hegyi, jozsef.varga}@nokia-bell-labs.com; edina.lami@nokia.com
2Department of Networked Systems and Services, Faculty of Electrical Engineering and Informatics, Budapest University of Technology

and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary, e-mail: bokorl@hit.bme.hu
3ELKH-BME Cloud Applications Research Group, BME Informatics Building, Magyar tudósok krt. 2, H-1117 Budapest, Hungary

Abstract—With the advent of Network Function
Virtualization (NFV) and Software-Defined Networking (SDN),
every network service type faces significant challenges induced
by novel requirements. Mobile IPv6, the well-known IETF
standard for network-level mobility management, is not an
exemption. Cloud-native Mobile IPv6 has acquired several new
capabilities due to the technological advancements of NFV/SDN
evolution. This paper presents how automatic failover and
scaling can be envisioned in the context of cloud-native Mobile
IPv6 with closed-loop orchestration on the top of the Open
Network Automation Platform. Numerical results are also
presented to indicate the usefulness of the new operational
features (failover, scaling) driven by the cloud-native approach
and highlight the advantages of network automation in
virtualized and softwarized environments.

Index Terms— IP mobility, CN-MIPv6, ONAP, failover,

scaling

I. INTRODUCTION

Network Function Virtualization (NFV) and Software
Defined Networking (SDN) have not left any Network
Function (NF) untouched. Meanwhile, cloud systems, either
virtual machine or container-based, have created new
execution environments. Nowadays, cloud-native service
provisioning can bring in failover and scaling scenarios more
straightforwardly than ever before. This implicitly indicates
the usage of orchestration, which helps to organize the right
amount of resources to the right place in time. In this paper,
we use Open Network Automation Platform (ONAP) [1] for
the practical experiments. With ONAP, we can run automatic
failover and scaling scenarios when specific circumstances are
met. In our experiments, we entirely rely on the closed-loop
orchestration platform of ONAP. This is where Mobile IPv6
(MIPv6) [2] comes into the picture, whose functionality and
operational procedures can be extended using the cloud.
MIPv6 is part of a broader protocol family called IP-level
mobility management. The current technological trends of
cloudification spanned over the NFV, and SDN paradigms,
together with orchestration requirements, do not leave MIPv6-
based mobility support untouched. Cloud-native Mobile IPv6
(CN-MIPv6) [3] [4]was proposed to meet the expectations and
apply the benefits of the trends mentioned above.

This paper aims to show how failover and scaling can be
applied to CN-MIPv6 in the context of closed-loop
orchestration. Here we define failover as the time of restoring
redundancy. Furthermore, the article presents numerical
results and calculations on the utilization of failover, scaling,
and availability in the case of cloud-native IP-level mobility
management. At the end of the paper, an analysis shows the

benefits of network automation from the reliability and
redundancy point of view.

The remaining sections are organized as follows. Section
II presents related works. The connection between ONAP and
CN-MIPv6 is elaborated in Section III, followed by the
measurements and numerical calculations in Section IV.
Conclusions and possible future research directions are in
Section V and Section VI, respectively.

II. RELATED WORKS

A. Literature

Cloudification of 5G network functions has been a
trending paradigm. Du et al. [5] consider the cloud-native
bases of 5G Access and Mobility Management Function
(AMF).

Another member of IP-based mobility management, such
as Proxy Mobile IPv6 [6], has also been shaped to be cloud-
native: cloud-native Proxy Mobile IPv6 (CN-PMIPv6) [7].
Flow Mobility, a concept standardized for Proxy Mobile IPv6
(PMIPv6) and discussed in Section III for MIPv6, makes it
possible to separate IP flows by 5-tuples and assign individual
mobility policies for each flow.

In our work, the Single-Point-of-Failure (SPOF) problem
is solved by immediate and automatic redeployment of the
mobility anchor (Home Agent). Furthermore, the number of
anchors can be increased dynamically with automatic scaling.
Obviously, there are other strategies for mitigating the SPOF
problem in IPv6-based mobility management. With the help
of SDN and Openflow, IPv6-based mobility management can
be implemented in many different ways [8] [9] [10] [11] [12].

Dimitris Giatsios et al. [13] examine the failover of
Network Slices. The paper written by Veronica Quintuna
Rodriguez et al. examines ONAP-based deployment and
management of Network Slices [14] [15]. ONAP has also
been used to enhance access discovery and selection functions
in the 5G core network in an article by Rahul Banerji et al.
[16].

Predictive failover of Virtual Network Functions (VNF) in
the context of edge computing is presented by Huawei Huang
et al. [17]. A unique programming language is shown to
ensure fault tolerance in SDN by Reitblatt et al. [18]. Scaling
and failover can also be executed with Kubernetes on the Pod
level by Kubernetes Horizontal Pod Autoscaler (HPA) [19]
and Kubernetes Deployment [20]. But these are not suitable
for inter-Kubernetes cluster failover and scaling: ONAP can
manage many Kubernetes clusters simultaneously. As our

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Closed-loop Orchestration for Cloud-native Mobile
IPv6

Ákos Leiter1, Edina Lami1,2, Attila Hegyi1, József Varga1, and László Bokor2,3
1Nokia Bell Labs, Bókay János utca 36-42, 1083 Budapest, Hungary,

e-mail: {akos.leiter, attila.hegyi, jozsef.varga}@nokia-bell-labs.com; edina.lami@nokia.com
2Department of Networked Systems and Services, Faculty of Electrical Engineering and Informatics, Budapest University of Technology

and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary, e-mail: bokorl@hit.bme.hu
3ELKH-BME Cloud Applications Research Group, BME Informatics Building, Magyar tudósok krt. 2, H-1117 Budapest, Hungary

Abstract—With the advent of Network Function
Virtualization (NFV) and Software-Defined Networking (SDN),
every network service type faces significant challenges induced
by novel requirements. Mobile IPv6, the well-known IETF
standard for network-level mobility management, is not an
exemption. Cloud-native Mobile IPv6 has acquired several new
capabilities due to the technological advancements of NFV/SDN
evolution. This paper presents how automatic failover and
scaling can be envisioned in the context of cloud-native Mobile
IPv6 with closed-loop orchestration on the top of the Open
Network Automation Platform. Numerical results are also
presented to indicate the usefulness of the new operational
features (failover, scaling) driven by the cloud-native approach
and highlight the advantages of network automation in
virtualized and softwarized environments.

Index Terms— IP mobility, CN-MIPv6, ONAP, failover,

scaling

I. INTRODUCTION

Network Function Virtualization (NFV) and Software
Defined Networking (SDN) have not left any Network
Function (NF) untouched. Meanwhile, cloud systems, either
virtual machine or container-based, have created new
execution environments. Nowadays, cloud-native service
provisioning can bring in failover and scaling scenarios more
straightforwardly than ever before. This implicitly indicates
the usage of orchestration, which helps to organize the right
amount of resources to the right place in time. In this paper,
we use Open Network Automation Platform (ONAP) [1] for
the practical experiments. With ONAP, we can run automatic
failover and scaling scenarios when specific circumstances are
met. In our experiments, we entirely rely on the closed-loop
orchestration platform of ONAP. This is where Mobile IPv6
(MIPv6) [2] comes into the picture, whose functionality and
operational procedures can be extended using the cloud.
MIPv6 is part of a broader protocol family called IP-level
mobility management. The current technological trends of
cloudification spanned over the NFV, and SDN paradigms,
together with orchestration requirements, do not leave MIPv6-
based mobility support untouched. Cloud-native Mobile IPv6
(CN-MIPv6) [3] [4]was proposed to meet the expectations and
apply the benefits of the trends mentioned above.

This paper aims to show how failover and scaling can be
applied to CN-MIPv6 in the context of closed-loop
orchestration. Here we define failover as the time of restoring
redundancy. Furthermore, the article presents numerical
results and calculations on the utilization of failover, scaling,
and availability in the case of cloud-native IP-level mobility
management. At the end of the paper, an analysis shows the

benefits of network automation from the reliability and
redundancy point of view.

The remaining sections are organized as follows. Section
II presents related works. The connection between ONAP and
CN-MIPv6 is elaborated in Section III, followed by the
measurements and numerical calculations in Section IV.
Conclusions and possible future research directions are in
Section V and Section VI, respectively.

II. RELATED WORKS

A. Literature

Cloudification of 5G network functions has been a
trending paradigm. Du et al. [5] consider the cloud-native
bases of 5G Access and Mobility Management Function
(AMF).

Another member of IP-based mobility management, such
as Proxy Mobile IPv6 [6], has also been shaped to be cloud-
native: cloud-native Proxy Mobile IPv6 (CN-PMIPv6) [7].
Flow Mobility, a concept standardized for Proxy Mobile IPv6
(PMIPv6) and discussed in Section III for MIPv6, makes it
possible to separate IP flows by 5-tuples and assign individual
mobility policies for each flow.

In our work, the Single-Point-of-Failure (SPOF) problem
is solved by immediate and automatic redeployment of the
mobility anchor (Home Agent). Furthermore, the number of
anchors can be increased dynamically with automatic scaling.
Obviously, there are other strategies for mitigating the SPOF
problem in IPv6-based mobility management. With the help
of SDN and Openflow, IPv6-based mobility management can
be implemented in many different ways [8] [9] [10] [11] [12].

Dimitris Giatsios et al. [13] examine the failover of
Network Slices. The paper written by Veronica Quintuna
Rodriguez et al. examines ONAP-based deployment and
management of Network Slices [14] [15]. ONAP has also
been used to enhance access discovery and selection functions
in the 5G core network in an article by Rahul Banerji et al.
[16].

Predictive failover of Virtual Network Functions (VNF) in
the context of edge computing is presented by Huawei Huang
et al. [17]. A unique programming language is shown to
ensure fault tolerance in SDN by Reitblatt et al. [18]. Scaling
and failover can also be executed with Kubernetes on the Pod
level by Kubernetes Horizontal Pod Autoscaler (HPA) [19]
and Kubernetes Deployment [20]. But these are not suitable
for inter-Kubernetes cluster failover and scaling: ONAP can
manage many Kubernetes clusters simultaneously. As our

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Closed-loop Orchestration for Cloud-native Mobile
IPv6

Ákos Leiter1, Edina Lami1,2, Attila Hegyi1, József Varga1, and László Bokor2,3
1Nokia Bell Labs, Bókay János utca 36-42, 1083 Budapest, Hungary,

e-mail: {akos.leiter, attila.hegyi, jozsef.varga}@nokia-bell-labs.com; edina.lami@nokia.com
2Department of Networked Systems and Services, Faculty of Electrical Engineering and Informatics, Budapest University of Technology

and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary, e-mail: bokorl@hit.bme.hu
3ELKH-BME Cloud Applications Research Group, BME Informatics Building, Magyar tudósok krt. 2, H-1117 Budapest, Hungary

Abstract—With the advent of Network Function
Virtualization (NFV) and Software-Defined Networking (SDN),
every network service type faces significant challenges induced
by novel requirements. Mobile IPv6, the well-known IETF
standard for network-level mobility management, is not an
exemption. Cloud-native Mobile IPv6 has acquired several new
capabilities due to the technological advancements of NFV/SDN
evolution. This paper presents how automatic failover and
scaling can be envisioned in the context of cloud-native Mobile
IPv6 with closed-loop orchestration on the top of the Open
Network Automation Platform. Numerical results are also
presented to indicate the usefulness of the new operational
features (failover, scaling) driven by the cloud-native approach
and highlight the advantages of network automation in
virtualized and softwarized environments.

Index Terms— IP mobility, CN-MIPv6, ONAP, failover,

scaling

I. INTRODUCTION

Network Function Virtualization (NFV) and Software
Defined Networking (SDN) have not left any Network
Function (NF) untouched. Meanwhile, cloud systems, either
virtual machine or container-based, have created new
execution environments. Nowadays, cloud-native service
provisioning can bring in failover and scaling scenarios more
straightforwardly than ever before. This implicitly indicates
the usage of orchestration, which helps to organize the right
amount of resources to the right place in time. In this paper,
we use Open Network Automation Platform (ONAP) [1] for
the practical experiments. With ONAP, we can run automatic
failover and scaling scenarios when specific circumstances are
met. In our experiments, we entirely rely on the closed-loop
orchestration platform of ONAP. This is where Mobile IPv6
(MIPv6) [2] comes into the picture, whose functionality and
operational procedures can be extended using the cloud.
MIPv6 is part of a broader protocol family called IP-level
mobility management. The current technological trends of
cloudification spanned over the NFV, and SDN paradigms,
together with orchestration requirements, do not leave MIPv6-
based mobility support untouched. Cloud-native Mobile IPv6
(CN-MIPv6) [3] [4]was proposed to meet the expectations and
apply the benefits of the trends mentioned above.

This paper aims to show how failover and scaling can be
applied to CN-MIPv6 in the context of closed-loop
orchestration. Here we define failover as the time of restoring
redundancy. Furthermore, the article presents numerical
results and calculations on the utilization of failover, scaling,
and availability in the case of cloud-native IP-level mobility
management. At the end of the paper, an analysis shows the

benefits of network automation from the reliability and
redundancy point of view.

The remaining sections are organized as follows. Section
II presents related works. The connection between ONAP and
CN-MIPv6 is elaborated in Section III, followed by the
measurements and numerical calculations in Section IV.
Conclusions and possible future research directions are in
Section V and Section VI, respectively.

II. RELATED WORKS

A. Literature

Cloudification of 5G network functions has been a
trending paradigm. Du et al. [5] consider the cloud-native
bases of 5G Access and Mobility Management Function
(AMF).

Another member of IP-based mobility management, such
as Proxy Mobile IPv6 [6], has also been shaped to be cloud-
native: cloud-native Proxy Mobile IPv6 (CN-PMIPv6) [7].
Flow Mobility, a concept standardized for Proxy Mobile IPv6
(PMIPv6) and discussed in Section III for MIPv6, makes it
possible to separate IP flows by 5-tuples and assign individual
mobility policies for each flow.

In our work, the Single-Point-of-Failure (SPOF) problem
is solved by immediate and automatic redeployment of the
mobility anchor (Home Agent). Furthermore, the number of
anchors can be increased dynamically with automatic scaling.
Obviously, there are other strategies for mitigating the SPOF
problem in IPv6-based mobility management. With the help
of SDN and Openflow, IPv6-based mobility management can
be implemented in many different ways [8] [9] [10] [11] [12].

Dimitris Giatsios et al. [13] examine the failover of
Network Slices. The paper written by Veronica Quintuna
Rodriguez et al. examines ONAP-based deployment and
management of Network Slices [14] [15]. ONAP has also
been used to enhance access discovery and selection functions
in the 5G core network in an article by Rahul Banerji et al.
[16].

Predictive failover of Virtual Network Functions (VNF) in
the context of edge computing is presented by Huawei Huang
et al. [17]. A unique programming language is shown to
ensure fault tolerance in SDN by Reitblatt et al. [18]. Scaling
and failover can also be executed with Kubernetes on the Pod
level by Kubernetes Horizontal Pod Autoscaler (HPA) [19]
and Kubernetes Deployment [20]. But these are not suitable
for inter-Kubernetes cluster failover and scaling: ONAP can
manage many Kubernetes clusters simultaneously. As our

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Closed-loop Orchestration for Cloud-native Mobile
IPv6

Ákos Leiter1, Edina Lami1,2, Attila Hegyi1, József Varga1, and László Bokor2,3
1Nokia Bell Labs, Bókay János utca 36-42, 1083 Budapest, Hungary,

e-mail: {akos.leiter, attila.hegyi, jozsef.varga}@nokia-bell-labs.com; edina.lami@nokia.com
2Department of Networked Systems and Services, Faculty of Electrical Engineering and Informatics, Budapest University of Technology

and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary, e-mail: bokorl@hit.bme.hu
3ELKH-BME Cloud Applications Research Group, BME Informatics Building, Magyar tudósok krt. 2, H-1117 Budapest, Hungary

Abstract—With the advent of Network Function
Virtualization (NFV) and Software-Defined Networking (SDN),
every network service type faces significant challenges induced
by novel requirements. Mobile IPv6, the well-known IETF
standard for network-level mobility management, is not an
exemption. Cloud-native Mobile IPv6 has acquired several new
capabilities due to the technological advancements of NFV/SDN
evolution. This paper presents how automatic failover and
scaling can be envisioned in the context of cloud-native Mobile
IPv6 with closed-loop orchestration on the top of the Open
Network Automation Platform. Numerical results are also
presented to indicate the usefulness of the new operational
features (failover, scaling) driven by the cloud-native approach
and highlight the advantages of network automation in
virtualized and softwarized environments.

Index Terms— IP mobility, CN-MIPv6, ONAP, failover,

scaling

I. INTRODUCTION

Network Function Virtualization (NFV) and Software
Defined Networking (SDN) have not left any Network
Function (NF) untouched. Meanwhile, cloud systems, either
virtual machine or container-based, have created new
execution environments. Nowadays, cloud-native service
provisioning can bring in failover and scaling scenarios more
straightforwardly than ever before. This implicitly indicates
the usage of orchestration, which helps to organize the right
amount of resources to the right place in time. In this paper,
we use Open Network Automation Platform (ONAP) [1] for
the practical experiments. With ONAP, we can run automatic
failover and scaling scenarios when specific circumstances are
met. In our experiments, we entirely rely on the closed-loop
orchestration platform of ONAP. This is where Mobile IPv6
(MIPv6) [2] comes into the picture, whose functionality and
operational procedures can be extended using the cloud.
MIPv6 is part of a broader protocol family called IP-level
mobility management. The current technological trends of
cloudification spanned over the NFV, and SDN paradigms,
together with orchestration requirements, do not leave MIPv6-
based mobility support untouched. Cloud-native Mobile IPv6
(CN-MIPv6) [3] [4]was proposed to meet the expectations and
apply the benefits of the trends mentioned above.

This paper aims to show how failover and scaling can be
applied to CN-MIPv6 in the context of closed-loop
orchestration. Here we define failover as the time of restoring
redundancy. Furthermore, the article presents numerical
results and calculations on the utilization of failover, scaling,
and availability in the case of cloud-native IP-level mobility
management. At the end of the paper, an analysis shows the

benefits of network automation from the reliability and
redundancy point of view.

The remaining sections are organized as follows. Section
II presents related works. The connection between ONAP and
CN-MIPv6 is elaborated in Section III, followed by the
measurements and numerical calculations in Section IV.
Conclusions and possible future research directions are in
Section V and Section VI, respectively.

II. RELATED WORKS

A. Literature

Cloudification of 5G network functions has been a
trending paradigm. Du et al. [5] consider the cloud-native
bases of 5G Access and Mobility Management Function
(AMF).

Another member of IP-based mobility management, such
as Proxy Mobile IPv6 [6], has also been shaped to be cloud-
native: cloud-native Proxy Mobile IPv6 (CN-PMIPv6) [7].
Flow Mobility, a concept standardized for Proxy Mobile IPv6
(PMIPv6) and discussed in Section III for MIPv6, makes it
possible to separate IP flows by 5-tuples and assign individual
mobility policies for each flow.

In our work, the Single-Point-of-Failure (SPOF) problem
is solved by immediate and automatic redeployment of the
mobility anchor (Home Agent). Furthermore, the number of
anchors can be increased dynamically with automatic scaling.
Obviously, there are other strategies for mitigating the SPOF
problem in IPv6-based mobility management. With the help
of SDN and Openflow, IPv6-based mobility management can
be implemented in many different ways [8] [9] [10] [11] [12].

Dimitris Giatsios et al. [13] examine the failover of
Network Slices. The paper written by Veronica Quintuna
Rodriguez et al. examines ONAP-based deployment and
management of Network Slices [14] [15]. ONAP has also
been used to enhance access discovery and selection functions
in the 5G core network in an article by Rahul Banerji et al.
[16].

Predictive failover of Virtual Network Functions (VNF) in
the context of edge computing is presented by Huawei Huang
et al. [17]. A unique programming language is shown to
ensure fault tolerance in SDN by Reitblatt et al. [18]. Scaling
and failover can also be executed with Kubernetes on the Pod
level by Kubernetes Horizontal Pod Autoscaler (HPA) [19]
and Kubernetes Deployment [20]. But these are not suitable
for inter-Kubernetes cluster failover and scaling: ONAP can
manage many Kubernetes clusters simultaneously. As our

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Closed-loop Orchestration for Cloud-native Mobile
IPv6

Ákos Leiter1, Edina Lami1,2, Attila Hegyi1, József Varga1, and László Bokor2,3
1Nokia Bell Labs, Bókay János utca 36-42, 1083 Budapest, Hungary,

e-mail: {akos.leiter, attila.hegyi, jozsef.varga}@nokia-bell-labs.com; edina.lami@nokia.com
2Department of Networked Systems and Services, Faculty of Electrical Engineering and Informatics, Budapest University of Technology

and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary, e-mail: bokorl@hit.bme.hu
3ELKH-BME Cloud Applications Research Group, BME Informatics Building, Magyar tudósok krt. 2, H-1117 Budapest, Hungary

Abstract—With the advent of Network Function
Virtualization (NFV) and Software-Defined Networking (SDN),
every network service type faces significant challenges induced
by novel requirements. Mobile IPv6, the well-known IETF
standard for network-level mobility management, is not an
exemption. Cloud-native Mobile IPv6 has acquired several new
capabilities due to the technological advancements of NFV/SDN
evolution. This paper presents how automatic failover and
scaling can be envisioned in the context of cloud-native Mobile
IPv6 with closed-loop orchestration on the top of the Open
Network Automation Platform. Numerical results are also
presented to indicate the usefulness of the new operational
features (failover, scaling) driven by the cloud-native approach
and highlight the advantages of network automation in
virtualized and softwarized environments.

Index Terms— IP mobility, CN-MIPv6, ONAP, failover,

scaling

I. INTRODUCTION

Network Function Virtualization (NFV) and Software
Defined Networking (SDN) have not left any Network
Function (NF) untouched. Meanwhile, cloud systems, either
virtual machine or container-based, have created new
execution environments. Nowadays, cloud-native service
provisioning can bring in failover and scaling scenarios more
straightforwardly than ever before. This implicitly indicates
the usage of orchestration, which helps to organize the right
amount of resources to the right place in time. In this paper,
we use Open Network Automation Platform (ONAP) [1] for
the practical experiments. With ONAP, we can run automatic
failover and scaling scenarios when specific circumstances are
met. In our experiments, we entirely rely on the closed-loop
orchestration platform of ONAP. This is where Mobile IPv6
(MIPv6) [2] comes into the picture, whose functionality and
operational procedures can be extended using the cloud.
MIPv6 is part of a broader protocol family called IP-level
mobility management. The current technological trends of
cloudification spanned over the NFV, and SDN paradigms,
together with orchestration requirements, do not leave MIPv6-
based mobility support untouched. Cloud-native Mobile IPv6
(CN-MIPv6) [3] [4]was proposed to meet the expectations and
apply the benefits of the trends mentioned above.

This paper aims to show how failover and scaling can be
applied to CN-MIPv6 in the context of closed-loop
orchestration. Here we define failover as the time of restoring
redundancy. Furthermore, the article presents numerical
results and calculations on the utilization of failover, scaling,
and availability in the case of cloud-native IP-level mobility
management. At the end of the paper, an analysis shows the

benefits of network automation from the reliability and
redundancy point of view.

The remaining sections are organized as follows. Section
II presents related works. The connection between ONAP and
CN-MIPv6 is elaborated in Section III, followed by the
measurements and numerical calculations in Section IV.
Conclusions and possible future research directions are in
Section V and Section VI, respectively.

II. RELATED WORKS

A. Literature

Cloudification of 5G network functions has been a
trending paradigm. Du et al. [5] consider the cloud-native
bases of 5G Access and Mobility Management Function
(AMF).

Another member of IP-based mobility management, such
as Proxy Mobile IPv6 [6], has also been shaped to be cloud-
native: cloud-native Proxy Mobile IPv6 (CN-PMIPv6) [7].
Flow Mobility, a concept standardized for Proxy Mobile IPv6
(PMIPv6) and discussed in Section III for MIPv6, makes it
possible to separate IP flows by 5-tuples and assign individual
mobility policies for each flow.

In our work, the Single-Point-of-Failure (SPOF) problem
is solved by immediate and automatic redeployment of the
mobility anchor (Home Agent). Furthermore, the number of
anchors can be increased dynamically with automatic scaling.
Obviously, there are other strategies for mitigating the SPOF
problem in IPv6-based mobility management. With the help
of SDN and Openflow, IPv6-based mobility management can
be implemented in many different ways [8] [9] [10] [11] [12].

Dimitris Giatsios et al. [13] examine the failover of
Network Slices. The paper written by Veronica Quintuna
Rodriguez et al. examines ONAP-based deployment and
management of Network Slices [14] [15]. ONAP has also
been used to enhance access discovery and selection functions
in the 5G core network in an article by Rahul Banerji et al.
[16].

Predictive failover of Virtual Network Functions (VNF) in
the context of edge computing is presented by Huawei Huang
et al. [17]. A unique programming language is shown to
ensure fault tolerance in SDN by Reitblatt et al. [18]. Scaling
and failover can also be executed with Kubernetes on the Pod
level by Kubernetes Horizontal Pod Autoscaler (HPA) [19]
and Kubernetes Deployment [20]. But these are not suitable
for inter-Kubernetes cluster failover and scaling: ONAP can
manage many Kubernetes clusters simultaneously. As our

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Closed-loop Orchestration for Cloud-native Mobile
IPv6

Ákos Leiter1, Edina Lami1,2, Attila Hegyi1, József Varga1, and László Bokor2,3
1Nokia Bell Labs, Bókay János utca 36-42, 1083 Budapest, Hungary,

e-mail: {akos.leiter, attila.hegyi, jozsef.varga}@nokia-bell-labs.com; edina.lami@nokia.com
2Department of Networked Systems and Services, Faculty of Electrical Engineering and Informatics, Budapest University of Technology

and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary, e-mail: bokorl@hit.bme.hu
3ELKH-BME Cloud Applications Research Group, BME Informatics Building, Magyar tudósok krt. 2, H-1117 Budapest, Hungary

Abstract—With the advent of Network Function
Virtualization (NFV) and Software-Defined Networking (SDN),
every network service type faces significant challenges induced
by novel requirements. Mobile IPv6, the well-known IETF
standard for network-level mobility management, is not an
exemption. Cloud-native Mobile IPv6 has acquired several new
capabilities due to the technological advancements of NFV/SDN
evolution. This paper presents how automatic failover and
scaling can be envisioned in the context of cloud-native Mobile
IPv6 with closed-loop orchestration on the top of the Open
Network Automation Platform. Numerical results are also
presented to indicate the usefulness of the new operational
features (failover, scaling) driven by the cloud-native approach
and highlight the advantages of network automation in
virtualized and softwarized environments.

Index Terms— IP mobility, CN-MIPv6, ONAP, failover,

scaling

I. INTRODUCTION

Network Function Virtualization (NFV) and Software
Defined Networking (SDN) have not left any Network
Function (NF) untouched. Meanwhile, cloud systems, either
virtual machine or container-based, have created new
execution environments. Nowadays, cloud-native service
provisioning can bring in failover and scaling scenarios more
straightforwardly than ever before. This implicitly indicates
the usage of orchestration, which helps to organize the right
amount of resources to the right place in time. In this paper,
we use Open Network Automation Platform (ONAP) [1] for
the practical experiments. With ONAP, we can run automatic
failover and scaling scenarios when specific circumstances are
met. In our experiments, we entirely rely on the closed-loop
orchestration platform of ONAP. This is where Mobile IPv6
(MIPv6) [2] comes into the picture, whose functionality and
operational procedures can be extended using the cloud.
MIPv6 is part of a broader protocol family called IP-level
mobility management. The current technological trends of
cloudification spanned over the NFV, and SDN paradigms,
together with orchestration requirements, do not leave MIPv6-
based mobility support untouched. Cloud-native Mobile IPv6
(CN-MIPv6) [3] [4]was proposed to meet the expectations and
apply the benefits of the trends mentioned above.

This paper aims to show how failover and scaling can be
applied to CN-MIPv6 in the context of closed-loop
orchestration. Here we define failover as the time of restoring
redundancy. Furthermore, the article presents numerical
results and calculations on the utilization of failover, scaling,
and availability in the case of cloud-native IP-level mobility
management. At the end of the paper, an analysis shows the

benefits of network automation from the reliability and
redundancy point of view.

The remaining sections are organized as follows. Section
II presents related works. The connection between ONAP and
CN-MIPv6 is elaborated in Section III, followed by the
measurements and numerical calculations in Section IV.
Conclusions and possible future research directions are in
Section V and Section VI, respectively.

II. RELATED WORKS

A. Literature

Cloudification of 5G network functions has been a
trending paradigm. Du et al. [5] consider the cloud-native
bases of 5G Access and Mobility Management Function
(AMF).

Another member of IP-based mobility management, such
as Proxy Mobile IPv6 [6], has also been shaped to be cloud-
native: cloud-native Proxy Mobile IPv6 (CN-PMIPv6) [7].
Flow Mobility, a concept standardized for Proxy Mobile IPv6
(PMIPv6) and discussed in Section III for MIPv6, makes it
possible to separate IP flows by 5-tuples and assign individual
mobility policies for each flow.

In our work, the Single-Point-of-Failure (SPOF) problem
is solved by immediate and automatic redeployment of the
mobility anchor (Home Agent). Furthermore, the number of
anchors can be increased dynamically with automatic scaling.
Obviously, there are other strategies for mitigating the SPOF
problem in IPv6-based mobility management. With the help
of SDN and Openflow, IPv6-based mobility management can
be implemented in many different ways [8] [9] [10] [11] [12].

Dimitris Giatsios et al. [13] examine the failover of
Network Slices. The paper written by Veronica Quintuna
Rodriguez et al. examines ONAP-based deployment and
management of Network Slices [14] [15]. ONAP has also
been used to enhance access discovery and selection functions
in the 5G core network in an article by Rahul Banerji et al.
[16].

Predictive failover of Virtual Network Functions (VNF) in
the context of edge computing is presented by Huawei Huang
et al. [17]. A unique programming language is shown to
ensure fault tolerance in SDN by Reitblatt et al. [18]. Scaling
and failover can also be executed with Kubernetes on the Pod
level by Kubernetes Horizontal Pod Autoscaler (HPA) [19]
and Kubernetes Deployment [20]. But these are not suitable
for inter-Kubernetes cluster failover and scaling: ONAP can
manage many Kubernetes clusters simultaneously. As our

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Closed-loop Orchestration for Cloud-native Mobile
IPv6

Ákos Leiter1, Edina Lami1,2, Attila Hegyi1, József Varga1, and László Bokor2,3
1Nokia Bell Labs, Bókay János utca 36-42, 1083 Budapest, Hungary,

e-mail: {akos.leiter, attila.hegyi, jozsef.varga}@nokia-bell-labs.com; edina.lami@nokia.com
2Department of Networked Systems and Services, Faculty of Electrical Engineering and Informatics, Budapest University of Technology

and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary, e-mail: bokorl@hit.bme.hu
3ELKH-BME Cloud Applications Research Group, BME Informatics Building, Magyar tudósok krt. 2, H-1117 Budapest, Hungary

Abstract—With the advent of Network Function
Virtualization (NFV) and Software-Defined Networking (SDN),
every network service type faces significant challenges induced
by novel requirements. Mobile IPv6, the well-known IETF
standard for network-level mobility management, is not an
exemption. Cloud-native Mobile IPv6 has acquired several new
capabilities due to the technological advancements of NFV/SDN
evolution. This paper presents how automatic failover and
scaling can be envisioned in the context of cloud-native Mobile
IPv6 with closed-loop orchestration on the top of the Open
Network Automation Platform. Numerical results are also
presented to indicate the usefulness of the new operational
features (failover, scaling) driven by the cloud-native approach
and highlight the advantages of network automation in
virtualized and softwarized environments.

Index Terms— IP mobility, CN-MIPv6, ONAP, failover,

scaling

I. INTRODUCTION

Network Function Virtualization (NFV) and Software
Defined Networking (SDN) have not left any Network
Function (NF) untouched. Meanwhile, cloud systems, either
virtual machine or container-based, have created new
execution environments. Nowadays, cloud-native service
provisioning can bring in failover and scaling scenarios more
straightforwardly than ever before. This implicitly indicates
the usage of orchestration, which helps to organize the right
amount of resources to the right place in time. In this paper,
we use Open Network Automation Platform (ONAP) [1] for
the practical experiments. With ONAP, we can run automatic
failover and scaling scenarios when specific circumstances are
met. In our experiments, we entirely rely on the closed-loop
orchestration platform of ONAP. This is where Mobile IPv6
(MIPv6) [2] comes into the picture, whose functionality and
operational procedures can be extended using the cloud.
MIPv6 is part of a broader protocol family called IP-level
mobility management. The current technological trends of
cloudification spanned over the NFV, and SDN paradigms,
together with orchestration requirements, do not leave MIPv6-
based mobility support untouched. Cloud-native Mobile IPv6
(CN-MIPv6) [3] [4]was proposed to meet the expectations and
apply the benefits of the trends mentioned above.

This paper aims to show how failover and scaling can be
applied to CN-MIPv6 in the context of closed-loop
orchestration. Here we define failover as the time of restoring
redundancy. Furthermore, the article presents numerical
results and calculations on the utilization of failover, scaling,
and availability in the case of cloud-native IP-level mobility
management. At the end of the paper, an analysis shows the

benefits of network automation from the reliability and
redundancy point of view.

The remaining sections are organized as follows. Section
II presents related works. The connection between ONAP and
CN-MIPv6 is elaborated in Section III, followed by the
measurements and numerical calculations in Section IV.
Conclusions and possible future research directions are in
Section V and Section VI, respectively.

II. RELATED WORKS

A. Literature

Cloudification of 5G network functions has been a
trending paradigm. Du et al. [5] consider the cloud-native
bases of 5G Access and Mobility Management Function
(AMF).

Another member of IP-based mobility management, such
as Proxy Mobile IPv6 [6], has also been shaped to be cloud-
native: cloud-native Proxy Mobile IPv6 (CN-PMIPv6) [7].
Flow Mobility, a concept standardized for Proxy Mobile IPv6
(PMIPv6) and discussed in Section III for MIPv6, makes it
possible to separate IP flows by 5-tuples and assign individual
mobility policies for each flow.

In our work, the Single-Point-of-Failure (SPOF) problem
is solved by immediate and automatic redeployment of the
mobility anchor (Home Agent). Furthermore, the number of
anchors can be increased dynamically with automatic scaling.
Obviously, there are other strategies for mitigating the SPOF
problem in IPv6-based mobility management. With the help
of SDN and Openflow, IPv6-based mobility management can
be implemented in many different ways [8] [9] [10] [11] [12].

Dimitris Giatsios et al. [13] examine the failover of
Network Slices. The paper written by Veronica Quintuna
Rodriguez et al. examines ONAP-based deployment and
management of Network Slices [14] [15]. ONAP has also
been used to enhance access discovery and selection functions
in the 5G core network in an article by Rahul Banerji et al.
[16].

Predictive failover of Virtual Network Functions (VNF) in
the context of edge computing is presented by Huawei Huang
et al. [17]. A unique programming language is shown to
ensure fault tolerance in SDN by Reitblatt et al. [18]. Scaling
and failover can also be executed with Kubernetes on the Pod
level by Kubernetes Horizontal Pod Autoscaler (HPA) [19]
and Kubernetes Deployment [20]. But these are not suitable
for inter-Kubernetes cluster failover and scaling: ONAP can
manage many Kubernetes clusters simultaneously. As our

concept opens the way to machine learning applications of
IPv6-based mobility management, it is worth mentioning that
mobility management itself is also examined in the field of
Machine Learning optimization [21] [22] [23].

There is a good collection of mobility management issues
in 5G networks with low-latency services by Johanna
Heinonen et al. [24]. The identified challenges include
topology-aware gateway selection, handover management,
and gateway relocation. Our proposal inherits features of
automatic gateway relocation from the system architecture
level: appropriate functions are triggered automatically in case
of failures.

Network automation and mobility management are not
only in the interest of scientific papers. There are several other
forums and publications, like blogs, which are worth
mentioning (e.g., [25] [26] [27]). To the best of our
knowledge, no publicly available literature deals with
integrating closed-loop orchestration, cloud-native IPv6-
based mobility management, and ONAP. The whole operation
model of CN-MIPv6 – presented in this paper – is a novel
concept. Of course, the scope of our article is limited to
failover and scaling scenarios of CN-MIPv6, but these are the
essential use cases demonstrating the power of our scheme.
The microservice architecture CN-MIPv6 used in this paper
for evaluation can be found in [4].

B. Orchestration and ONAP in a nutshell

Orchestration (in telecommunication) is about ensuring
the right amount of resources at the right time and location for
a particular service. In practice, this means enough pieces of
virtual machines and containers must be placed behind a
specific service.

Figure 1 depicts another function of orchestration which
operates with control loops. The system watches the particular
service's actual states continuously and consistently enforces
the desired state. This is how closed-loop orchestration or
Kubernetes Operators [28] work on a very high level.

Figure 1 – Orchestration in general [29]

ONAP is an open-source network automation and closed-
loop orchestration platform. A simplified view of its
architecture can be seen in Figure 2. Its main component is the
Service Orchestrator (SO) [30], which is responsible for
executing abstract steps (Building Blocks, BB) to instantiate a
particular Network Service (NS) instance. Network Service
Models are designed in the Service Design and Creation
(SDC) component [31]. These two components indicate that
ONAP strictly separates the design time (Day 0) and the
deployment time (Day 1). Particular workflows and
controllers can be written to any NS with the help of the
Controller Design Studio (CDS) [32]. CDS can also store Day

2 configuration changes or any other workflows intended to
the part of a closed-loop control function. Software
components of a Network Service Model, including Custom
Controllers (Controller Blueprint Archive, CBA), are
encapsulated as Vendor Software Package (VSP). In the case
of CNF, a Helm chart is included in the VSP.

The Policy Framework [33] is the heart of the closed-loop
functions of ONAP. It stores what to do when a particular
event happens with an NF. The Policy Framework uses Policy
Models, which hide the actual API calls to SO and CDS. Every
Policy Model is assigned to a Network Service Model. The
Onset event is sent out by a custom-made Analytic
Application (AA) to trigger a Policy Model. Deciding when to
send out an Onset message is entirely up to the developer of
AA. The primary source of measurements for AA is VES
messages sent out by a running NF. Every message, including
Onset, VNF Event Streaming (VES), is transferred via
DMAAP [34], which is the central message bus of ONAP.

Figure 2 – The ONAP architecture [35]

III. ONAP CONSIDERATIONS FROM THE CN-MIPV6 SERVICE

PROVISIONING POINT OF VIEW

Our proposed approach of closed-loop orchestration in the
context of CN-MIPv6 is depicted in Figure 3. On one hand, a
Kubernetes layer is responsible for executing readiness and
liveness probes for basic health checks. On the other hand,
there is a broader scope of the control loop based on ONAP.
This is where complex logic of automatic workflows is placed,
such as analytics and machine learning-based operations. Of
course, multiple control loops can be deployed here, such as
autoscaling, auto-healing, etc. Furthermore, the scope of these
control loops is not only restricted to one Kubernetes cluster.
This is where inter-cloud control logic can be deployed.

In the context of ONAP and CN-MIPv6 integration, we
use a multi-site VNF during the failover and scaling
particularly. When a new instance of Home Agent Packet
Procesor (HA-PP) is created, a new Virtual Function (VF)
module is added to the existing VNF but with a different cloud
region. This VF module hosts the corresponding Helm charts
of HA-PP, which are added as a VSP to that particular
Network Service Model.

concept opens the way to machine learning applications of
IPv6-based mobility management, it is worth mentioning that
mobility management itself is also examined in the field of
Machine Learning optimization [21] [22] [23].

There is a good collection of mobility management issues
in 5G networks with low-latency services by Johanna
Heinonen et al. [24]. The identified challenges include
topology-aware gateway selection, handover management,
and gateway relocation. Our proposal inherits features of
automatic gateway relocation from the system architecture
level: appropriate functions are triggered automatically in case
of failures.

Network automation and mobility management are not
only in the interest of scientific papers. There are several other
forums and publications, like blogs, which are worth
mentioning (e.g., [25] [26] [27]). To the best of our
knowledge, no publicly available literature deals with
integrating closed-loop orchestration, cloud-native IPv6-
based mobility management, and ONAP. The whole operation
model of CN-MIPv6 – presented in this paper – is a novel
concept. Of course, the scope of our article is limited to
failover and scaling scenarios of CN-MIPv6, but these are the
essential use cases demonstrating the power of our scheme.
The microservice architecture CN-MIPv6 used in this paper
for evaluation can be found in [4].

B. Orchestration and ONAP in a nutshell

Orchestration (in telecommunication) is about ensuring
the right amount of resources at the right time and location for
a particular service. In practice, this means enough pieces of
virtual machines and containers must be placed behind a
specific service.

Figure 1 depicts another function of orchestration which
operates with control loops. The system watches the particular
service's actual states continuously and consistently enforces
the desired state. This is how closed-loop orchestration or
Kubernetes Operators [28] work on a very high level.

Figure 1 – Orchestration in general [29]

ONAP is an open-source network automation and closed-
loop orchestration platform. A simplified view of its
architecture can be seen in Figure 2. Its main component is the
Service Orchestrator (SO) [30], which is responsible for
executing abstract steps (Building Blocks, BB) to instantiate a
particular Network Service (NS) instance. Network Service
Models are designed in the Service Design and Creation
(SDC) component [31]. These two components indicate that
ONAP strictly separates the design time (Day 0) and the
deployment time (Day 1). Particular workflows and
controllers can be written to any NS with the help of the
Controller Design Studio (CDS) [32]. CDS can also store Day

2 configuration changes or any other workflows intended to
the part of a closed-loop control function. Software
components of a Network Service Model, including Custom
Controllers (Controller Blueprint Archive, CBA), are
encapsulated as Vendor Software Package (VSP). In the case
of CNF, a Helm chart is included in the VSP.

The Policy Framework [33] is the heart of the closed-loop
functions of ONAP. It stores what to do when a particular
event happens with an NF. The Policy Framework uses Policy
Models, which hide the actual API calls to SO and CDS. Every
Policy Model is assigned to a Network Service Model. The
Onset event is sent out by a custom-made Analytic
Application (AA) to trigger a Policy Model. Deciding when to
send out an Onset message is entirely up to the developer of
AA. The primary source of measurements for AA is VES
messages sent out by a running NF. Every message, including
Onset, VNF Event Streaming (VES), is transferred via
DMAAP [34], which is the central message bus of ONAP.

Figure 2 – The ONAP architecture [35]

III. ONAP CONSIDERATIONS FROM THE CN-MIPV6 SERVICE

PROVISIONING POINT OF VIEW

Our proposed approach of closed-loop orchestration in the
context of CN-MIPv6 is depicted in Figure 3. On one hand, a
Kubernetes layer is responsible for executing readiness and
liveness probes for basic health checks. On the other hand,
there is a broader scope of the control loop based on ONAP.
This is where complex logic of automatic workflows is placed,
such as analytics and machine learning-based operations. Of
course, multiple control loops can be deployed here, such as
autoscaling, auto-healing, etc. Furthermore, the scope of these
control loops is not only restricted to one Kubernetes cluster.
This is where inter-cloud control logic can be deployed.

In the context of ONAP and CN-MIPv6 integration, we
use a multi-site VNF during the failover and scaling
particularly. When a new instance of Home Agent Packet
Procesor (HA-PP) is created, a new Virtual Function (VF)
module is added to the existing VNF but with a different cloud
region. This VF module hosts the corresponding Helm charts
of HA-PP, which are added as a VSP to that particular
Network Service Model.

concept opens the way to machine learning applications of
IPv6-based mobility management, it is worth mentioning that
mobility management itself is also examined in the field of
Machine Learning optimization [21] [22] [23].

There is a good collection of mobility management issues
in 5G networks with low-latency services by Johanna
Heinonen et al. [24]. The identified challenges include
topology-aware gateway selection, handover management,
and gateway relocation. Our proposal inherits features of
automatic gateway relocation from the system architecture
level: appropriate functions are triggered automatically in case
of failures.

Network automation and mobility management are not
only in the interest of scientific papers. There are several other
forums and publications, like blogs, which are worth
mentioning (e.g., [25] [26] [27]). To the best of our
knowledge, no publicly available literature deals with
integrating closed-loop orchestration, cloud-native IPv6-
based mobility management, and ONAP. The whole operation
model of CN-MIPv6 – presented in this paper – is a novel
concept. Of course, the scope of our article is limited to
failover and scaling scenarios of CN-MIPv6, but these are the
essential use cases demonstrating the power of our scheme.
The microservice architecture CN-MIPv6 used in this paper
for evaluation can be found in [4].

B. Orchestration and ONAP in a nutshell

Orchestration (in telecommunication) is about ensuring
the right amount of resources at the right time and location for
a particular service. In practice, this means enough pieces of
virtual machines and containers must be placed behind a
specific service.

Figure 1 depicts another function of orchestration which
operates with control loops. The system watches the particular
service's actual states continuously and consistently enforces
the desired state. This is how closed-loop orchestration or
Kubernetes Operators [28] work on a very high level.

Figure 1 – Orchestration in general [29]

ONAP is an open-source network automation and closed-
loop orchestration platform. A simplified view of its
architecture can be seen in Figure 2. Its main component is the
Service Orchestrator (SO) [30], which is responsible for
executing abstract steps (Building Blocks, BB) to instantiate a
particular Network Service (NS) instance. Network Service
Models are designed in the Service Design and Creation
(SDC) component [31]. These two components indicate that
ONAP strictly separates the design time (Day 0) and the
deployment time (Day 1). Particular workflows and
controllers can be written to any NS with the help of the
Controller Design Studio (CDS) [32]. CDS can also store Day

2 configuration changes or any other workflows intended to
the part of a closed-loop control function. Software
components of a Network Service Model, including Custom
Controllers (Controller Blueprint Archive, CBA), are
encapsulated as Vendor Software Package (VSP). In the case
of CNF, a Helm chart is included in the VSP.

The Policy Framework [33] is the heart of the closed-loop
functions of ONAP. It stores what to do when a particular
event happens with an NF. The Policy Framework uses Policy
Models, which hide the actual API calls to SO and CDS. Every
Policy Model is assigned to a Network Service Model. The
Onset event is sent out by a custom-made Analytic
Application (AA) to trigger a Policy Model. Deciding when to
send out an Onset message is entirely up to the developer of
AA. The primary source of measurements for AA is VES
messages sent out by a running NF. Every message, including
Onset, VNF Event Streaming (VES), is transferred via
DMAAP [34], which is the central message bus of ONAP.

Figure 2 – The ONAP architecture [35]

III. ONAP CONSIDERATIONS FROM THE CN-MIPV6 SERVICE

PROVISIONING POINT OF VIEW

Our proposed approach of closed-loop orchestration in the
context of CN-MIPv6 is depicted in Figure 3. On one hand, a
Kubernetes layer is responsible for executing readiness and
liveness probes for basic health checks. On the other hand,
there is a broader scope of the control loop based on ONAP.
This is where complex logic of automatic workflows is placed,
such as analytics and machine learning-based operations. Of
course, multiple control loops can be deployed here, such as
autoscaling, auto-healing, etc. Furthermore, the scope of these
control loops is not only restricted to one Kubernetes cluster.
This is where inter-cloud control logic can be deployed.

In the context of ONAP and CN-MIPv6 integration, we
use a multi-site VNF during the failover and scaling
particularly. When a new instance of Home Agent Packet
Procesor (HA-PP) is created, a new Virtual Function (VF)
module is added to the existing VNF but with a different cloud
region. This VF module hosts the corresponding Helm charts
of HA-PP, which are added as a VSP to that particular
Network Service Model.

concept opens the way to machine learning applications of
IPv6-based mobility management, it is worth mentioning that
mobility management itself is also examined in the field of
Machine Learning optimization [21] [22] [23].

There is a good collection of mobility management issues
in 5G networks with low-latency services by Johanna
Heinonen et al. [24]. The identified challenges include
topology-aware gateway selection, handover management,
and gateway relocation. Our proposal inherits features of
automatic gateway relocation from the system architecture
level: appropriate functions are triggered automatically in case
of failures.

Network automation and mobility management are not
only in the interest of scientific papers. There are several other
forums and publications, like blogs, which are worth
mentioning (e.g., [25] [26] [27]). To the best of our
knowledge, no publicly available literature deals with
integrating closed-loop orchestration, cloud-native IPv6-
based mobility management, and ONAP. The whole operation
model of CN-MIPv6 – presented in this paper – is a novel
concept. Of course, the scope of our article is limited to
failover and scaling scenarios of CN-MIPv6, but these are the
essential use cases demonstrating the power of our scheme.
The microservice architecture CN-MIPv6 used in this paper
for evaluation can be found in [4].

B. Orchestration and ONAP in a nutshell

Orchestration (in telecommunication) is about ensuring
the right amount of resources at the right time and location for
a particular service. In practice, this means enough pieces of
virtual machines and containers must be placed behind a
specific service.

Figure 1 depicts another function of orchestration which
operates with control loops. The system watches the particular
service's actual states continuously and consistently enforces
the desired state. This is how closed-loop orchestration or
Kubernetes Operators [28] work on a very high level.

Figure 1 – Orchestration in general [29]

ONAP is an open-source network automation and closed-
loop orchestration platform. A simplified view of its
architecture can be seen in Figure 2. Its main component is the
Service Orchestrator (SO) [30], which is responsible for
executing abstract steps (Building Blocks, BB) to instantiate a
particular Network Service (NS) instance. Network Service
Models are designed in the Service Design and Creation
(SDC) component [31]. These two components indicate that
ONAP strictly separates the design time (Day 0) and the
deployment time (Day 1). Particular workflows and
controllers can be written to any NS with the help of the
Controller Design Studio (CDS) [32]. CDS can also store Day

2 configuration changes or any other workflows intended to
the part of a closed-loop control function. Software
components of a Network Service Model, including Custom
Controllers (Controller Blueprint Archive, CBA), are
encapsulated as Vendor Software Package (VSP). In the case
of CNF, a Helm chart is included in the VSP.

The Policy Framework [33] is the heart of the closed-loop
functions of ONAP. It stores what to do when a particular
event happens with an NF. The Policy Framework uses Policy
Models, which hide the actual API calls to SO and CDS. Every
Policy Model is assigned to a Network Service Model. The
Onset event is sent out by a custom-made Analytic
Application (AA) to trigger a Policy Model. Deciding when to
send out an Onset message is entirely up to the developer of
AA. The primary source of measurements for AA is VES
messages sent out by a running NF. Every message, including
Onset, VNF Event Streaming (VES), is transferred via
DMAAP [34], which is the central message bus of ONAP.

Figure 2 – The ONAP architecture [35]

III. ONAP CONSIDERATIONS FROM THE CN-MIPV6 SERVICE

PROVISIONING POINT OF VIEW

Our proposed approach of closed-loop orchestration in the
context of CN-MIPv6 is depicted in Figure 3. On one hand, a
Kubernetes layer is responsible for executing readiness and
liveness probes for basic health checks. On the other hand,
there is a broader scope of the control loop based on ONAP.
This is where complex logic of automatic workflows is placed,
such as analytics and machine learning-based operations. Of
course, multiple control loops can be deployed here, such as
autoscaling, auto-healing, etc. Furthermore, the scope of these
control loops is not only restricted to one Kubernetes cluster.
This is where inter-cloud control logic can be deployed.

In the context of ONAP and CN-MIPv6 integration, we
use a multi-site VNF during the failover and scaling
particularly. When a new instance of Home Agent Packet
Procesor (HA-PP) is created, a new Virtual Function (VF)
module is added to the existing VNF but with a different cloud
region. This VF module hosts the corresponding Helm charts
of HA-PP, which are added as a VSP to that particular
Network Service Model.

concept opens the way to machine learning applications of
IPv6-based mobility management, it is worth mentioning that
mobility management itself is also examined in the field of
Machine Learning optimization [21] [22] [23].

There is a good collection of mobility management issues
in 5G networks with low-latency services by Johanna
Heinonen et al. [24]. The identified challenges include
topology-aware gateway selection, handover management,
and gateway relocation. Our proposal inherits features of
automatic gateway relocation from the system architecture
level: appropriate functions are triggered automatically in case
of failures.

Network automation and mobility management are not
only in the interest of scientific papers. There are several other
forums and publications, like blogs, which are worth
mentioning (e.g., [25] [26] [27]). To the best of our
knowledge, no publicly available literature deals with
integrating closed-loop orchestration, cloud-native IPv6-
based mobility management, and ONAP. The whole operation
model of CN-MIPv6 – presented in this paper – is a novel
concept. Of course, the scope of our article is limited to
failover and scaling scenarios of CN-MIPv6, but these are the
essential use cases demonstrating the power of our scheme.
The microservice architecture CN-MIPv6 used in this paper
for evaluation can be found in [4].

B. Orchestration and ONAP in a nutshell

Orchestration (in telecommunication) is about ensuring
the right amount of resources at the right time and location for
a particular service. In practice, this means enough pieces of
virtual machines and containers must be placed behind a
specific service.

Figure 1 depicts another function of orchestration which
operates with control loops. The system watches the particular
service's actual states continuously and consistently enforces
the desired state. This is how closed-loop orchestration or
Kubernetes Operators [28] work on a very high level.

Figure 1 – Orchestration in general [29]

ONAP is an open-source network automation and closed-
loop orchestration platform. A simplified view of its
architecture can be seen in Figure 2. Its main component is the
Service Orchestrator (SO) [30], which is responsible for
executing abstract steps (Building Blocks, BB) to instantiate a
particular Network Service (NS) instance. Network Service
Models are designed in the Service Design and Creation
(SDC) component [31]. These two components indicate that
ONAP strictly separates the design time (Day 0) and the
deployment time (Day 1). Particular workflows and
controllers can be written to any NS with the help of the
Controller Design Studio (CDS) [32]. CDS can also store Day

2 configuration changes or any other workflows intended to
the part of a closed-loop control function. Software
components of a Network Service Model, including Custom
Controllers (Controller Blueprint Archive, CBA), are
encapsulated as Vendor Software Package (VSP). In the case
of CNF, a Helm chart is included in the VSP.

The Policy Framework [33] is the heart of the closed-loop
functions of ONAP. It stores what to do when a particular
event happens with an NF. The Policy Framework uses Policy
Models, which hide the actual API calls to SO and CDS. Every
Policy Model is assigned to a Network Service Model. The
Onset event is sent out by a custom-made Analytic
Application (AA) to trigger a Policy Model. Deciding when to
send out an Onset message is entirely up to the developer of
AA. The primary source of measurements for AA is VES
messages sent out by a running NF. Every message, including
Onset, VNF Event Streaming (VES), is transferred via
DMAAP [34], which is the central message bus of ONAP.

Figure 2 – The ONAP architecture [35]

III. ONAP CONSIDERATIONS FROM THE CN-MIPV6 SERVICE

PROVISIONING POINT OF VIEW

Our proposed approach of closed-loop orchestration in the
context of CN-MIPv6 is depicted in Figure 3. On one hand, a
Kubernetes layer is responsible for executing readiness and
liveness probes for basic health checks. On the other hand,
there is a broader scope of the control loop based on ONAP.
This is where complex logic of automatic workflows is placed,
such as analytics and machine learning-based operations. Of
course, multiple control loops can be deployed here, such as
autoscaling, auto-healing, etc. Furthermore, the scope of these
control loops is not only restricted to one Kubernetes cluster.
This is where inter-cloud control logic can be deployed.

In the context of ONAP and CN-MIPv6 integration, we
use a multi-site VNF during the failover and scaling
particularly. When a new instance of Home Agent Packet
Procesor (HA-PP) is created, a new Virtual Function (VF)
module is added to the existing VNF but with a different cloud
region. This VF module hosts the corresponding Helm charts
of HA-PP, which are added as a VSP to that particular
Network Service Model.

concept opens the way to machine learning applications of
IPv6-based mobility management, it is worth mentioning that
mobility management itself is also examined in the field of
Machine Learning optimization [21] [22] [23].

There is a good collection of mobility management issues
in 5G networks with low-latency services by Johanna
Heinonen et al. [24]. The identified challenges include
topology-aware gateway selection, handover management,
and gateway relocation. Our proposal inherits features of
automatic gateway relocation from the system architecture
level: appropriate functions are triggered automatically in case
of failures.

Network automation and mobility management are not
only in the interest of scientific papers. There are several other
forums and publications, like blogs, which are worth
mentioning (e.g., [25] [26] [27]). To the best of our
knowledge, no publicly available literature deals with
integrating closed-loop orchestration, cloud-native IPv6-
based mobility management, and ONAP. The whole operation
model of CN-MIPv6 – presented in this paper – is a novel
concept. Of course, the scope of our article is limited to
failover and scaling scenarios of CN-MIPv6, but these are the
essential use cases demonstrating the power of our scheme.
The microservice architecture CN-MIPv6 used in this paper
for evaluation can be found in [4].

B. Orchestration and ONAP in a nutshell

Orchestration (in telecommunication) is about ensuring
the right amount of resources at the right time and location for
a particular service. In practice, this means enough pieces of
virtual machines and containers must be placed behind a
specific service.

Figure 1 depicts another function of orchestration which
operates with control loops. The system watches the particular
service's actual states continuously and consistently enforces
the desired state. This is how closed-loop orchestration or
Kubernetes Operators [28] work on a very high level.

Figure 1 – Orchestration in general [29]

ONAP is an open-source network automation and closed-
loop orchestration platform. A simplified view of its
architecture can be seen in Figure 2. Its main component is the
Service Orchestrator (SO) [30], which is responsible for
executing abstract steps (Building Blocks, BB) to instantiate a
particular Network Service (NS) instance. Network Service
Models are designed in the Service Design and Creation
(SDC) component [31]. These two components indicate that
ONAP strictly separates the design time (Day 0) and the
deployment time (Day 1). Particular workflows and
controllers can be written to any NS with the help of the
Controller Design Studio (CDS) [32]. CDS can also store Day

2 configuration changes or any other workflows intended to
the part of a closed-loop control function. Software
components of a Network Service Model, including Custom
Controllers (Controller Blueprint Archive, CBA), are
encapsulated as Vendor Software Package (VSP). In the case
of CNF, a Helm chart is included in the VSP.

The Policy Framework [33] is the heart of the closed-loop
functions of ONAP. It stores what to do when a particular
event happens with an NF. The Policy Framework uses Policy
Models, which hide the actual API calls to SO and CDS. Every
Policy Model is assigned to a Network Service Model. The
Onset event is sent out by a custom-made Analytic
Application (AA) to trigger a Policy Model. Deciding when to
send out an Onset message is entirely up to the developer of
AA. The primary source of measurements for AA is VES
messages sent out by a running NF. Every message, including
Onset, VNF Event Streaming (VES), is transferred via
DMAAP [34], which is the central message bus of ONAP.

Figure 2 – The ONAP architecture [35]

III. ONAP CONSIDERATIONS FROM THE CN-MIPV6 SERVICE

PROVISIONING POINT OF VIEW

Our proposed approach of closed-loop orchestration in the
context of CN-MIPv6 is depicted in Figure 3. On one hand, a
Kubernetes layer is responsible for executing readiness and
liveness probes for basic health checks. On the other hand,
there is a broader scope of the control loop based on ONAP.
This is where complex logic of automatic workflows is placed,
such as analytics and machine learning-based operations. Of
course, multiple control loops can be deployed here, such as
autoscaling, auto-healing, etc. Furthermore, the scope of these
control loops is not only restricted to one Kubernetes cluster.
This is where inter-cloud control logic can be deployed.

In the context of ONAP and CN-MIPv6 integration, we
use a multi-site VNF during the failover and scaling
particularly. When a new instance of Home Agent Packet
Procesor (HA-PP) is created, a new Virtual Function (VF)
module is added to the existing VNF but with a different cloud
region. This VF module hosts the corresponding Helm charts
of HA-PP, which are added as a VSP to that particular
Network Service Model.

concept opens the way to machine learning applications of
IPv6-based mobility management, it is worth mentioning that
mobility management itself is also examined in the field of
Machine Learning optimization [21] [22] [23].

There is a good collection of mobility management issues
in 5G networks with low-latency services by Johanna
Heinonen et al. [24]. The identified challenges include
topology-aware gateway selection, handover management,
and gateway relocation. Our proposal inherits features of
automatic gateway relocation from the system architecture
level: appropriate functions are triggered automatically in case
of failures.

Network automation and mobility management are not
only in the interest of scientific papers. There are several other
forums and publications, like blogs, which are worth
mentioning (e.g., [25] [26] [27]). To the best of our
knowledge, no publicly available literature deals with
integrating closed-loop orchestration, cloud-native IPv6-
based mobility management, and ONAP. The whole operation
model of CN-MIPv6 – presented in this paper – is a novel
concept. Of course, the scope of our article is limited to
failover and scaling scenarios of CN-MIPv6, but these are the
essential use cases demonstrating the power of our scheme.
The microservice architecture CN-MIPv6 used in this paper
for evaluation can be found in [4].

B. Orchestration and ONAP in a nutshell

Orchestration (in telecommunication) is about ensuring
the right amount of resources at the right time and location for
a particular service. In practice, this means enough pieces of
virtual machines and containers must be placed behind a
specific service.

Figure 1 depicts another function of orchestration which
operates with control loops. The system watches the particular
service's actual states continuously and consistently enforces
the desired state. This is how closed-loop orchestration or
Kubernetes Operators [28] work on a very high level.

Figure 1 – Orchestration in general [29]

ONAP is an open-source network automation and closed-
loop orchestration platform. A simplified view of its
architecture can be seen in Figure 2. Its main component is the
Service Orchestrator (SO) [30], which is responsible for
executing abstract steps (Building Blocks, BB) to instantiate a
particular Network Service (NS) instance. Network Service
Models are designed in the Service Design and Creation
(SDC) component [31]. These two components indicate that
ONAP strictly separates the design time (Day 0) and the
deployment time (Day 1). Particular workflows and
controllers can be written to any NS with the help of the
Controller Design Studio (CDS) [32]. CDS can also store Day

2 configuration changes or any other workflows intended to
the part of a closed-loop control function. Software
components of a Network Service Model, including Custom
Controllers (Controller Blueprint Archive, CBA), are
encapsulated as Vendor Software Package (VSP). In the case
of CNF, a Helm chart is included in the VSP.

The Policy Framework [33] is the heart of the closed-loop
functions of ONAP. It stores what to do when a particular
event happens with an NF. The Policy Framework uses Policy
Models, which hide the actual API calls to SO and CDS. Every
Policy Model is assigned to a Network Service Model. The
Onset event is sent out by a custom-made Analytic
Application (AA) to trigger a Policy Model. Deciding when to
send out an Onset message is entirely up to the developer of
AA. The primary source of measurements for AA is VES
messages sent out by a running NF. Every message, including
Onset, VNF Event Streaming (VES), is transferred via
DMAAP [34], which is the central message bus of ONAP.

Figure 2 – The ONAP architecture [35]

III. ONAP CONSIDERATIONS FROM THE CN-MIPV6 SERVICE

PROVISIONING POINT OF VIEW

Our proposed approach of closed-loop orchestration in the
context of CN-MIPv6 is depicted in Figure 3. On one hand, a
Kubernetes layer is responsible for executing readiness and
liveness probes for basic health checks. On the other hand,
there is a broader scope of the control loop based on ONAP.
This is where complex logic of automatic workflows is placed,
such as analytics and machine learning-based operations. Of
course, multiple control loops can be deployed here, such as
autoscaling, auto-healing, etc. Furthermore, the scope of these
control loops is not only restricted to one Kubernetes cluster.
This is where inter-cloud control logic can be deployed.

In the context of ONAP and CN-MIPv6 integration, we
use a multi-site VNF during the failover and scaling
particularly. When a new instance of Home Agent Packet
Procesor (HA-PP) is created, a new Virtual Function (VF)
module is added to the existing VNF but with a different cloud
region. This VF module hosts the corresponding Helm charts
of HA-PP, which are added as a VSP to that particular
Network Service Model.

concept opens the way to machine learning applications of
IPv6-based mobility management, it is worth mentioning that
mobility management itself is also examined in the field of
Machine Learning optimization [21] [22] [23].

There is a good collection of mobility management issues
in 5G networks with low-latency services by Johanna
Heinonen et al. [24]. The identified challenges include
topology-aware gateway selection, handover management,
and gateway relocation. Our proposal inherits features of
automatic gateway relocation from the system architecture
level: appropriate functions are triggered automatically in case
of failures.

Network automation and mobility management are not
only in the interest of scientific papers. There are several other
forums and publications, like blogs, which are worth
mentioning (e.g., [25] [26] [27]). To the best of our
knowledge, no publicly available literature deals with
integrating closed-loop orchestration, cloud-native IPv6-
based mobility management, and ONAP. The whole operation
model of CN-MIPv6 – presented in this paper – is a novel
concept. Of course, the scope of our article is limited to
failover and scaling scenarios of CN-MIPv6, but these are the
essential use cases demonstrating the power of our scheme.
The microservice architecture CN-MIPv6 used in this paper
for evaluation can be found in [4].

B. Orchestration and ONAP in a nutshell

Orchestration (in telecommunication) is about ensuring
the right amount of resources at the right time and location for
a particular service. In practice, this means enough pieces of
virtual machines and containers must be placed behind a
specific service.

Figure 1 depicts another function of orchestration which
operates with control loops. The system watches the particular
service's actual states continuously and consistently enforces
the desired state. This is how closed-loop orchestration or
Kubernetes Operators [28] work on a very high level.

Figure 1 – Orchestration in general [29]

ONAP is an open-source network automation and closed-
loop orchestration platform. A simplified view of its
architecture can be seen in Figure 2. Its main component is the
Service Orchestrator (SO) [30], which is responsible for
executing abstract steps (Building Blocks, BB) to instantiate a
particular Network Service (NS) instance. Network Service
Models are designed in the Service Design and Creation
(SDC) component [31]. These two components indicate that
ONAP strictly separates the design time (Day 0) and the
deployment time (Day 1). Particular workflows and
controllers can be written to any NS with the help of the
Controller Design Studio (CDS) [32]. CDS can also store Day

2 configuration changes or any other workflows intended to
the part of a closed-loop control function. Software
components of a Network Service Model, including Custom
Controllers (Controller Blueprint Archive, CBA), are
encapsulated as Vendor Software Package (VSP). In the case
of CNF, a Helm chart is included in the VSP.

The Policy Framework [33] is the heart of the closed-loop
functions of ONAP. It stores what to do when a particular
event happens with an NF. The Policy Framework uses Policy
Models, which hide the actual API calls to SO and CDS. Every
Policy Model is assigned to a Network Service Model. The
Onset event is sent out by a custom-made Analytic
Application (AA) to trigger a Policy Model. Deciding when to
send out an Onset message is entirely up to the developer of
AA. The primary source of measurements for AA is VES
messages sent out by a running NF. Every message, including
Onset, VNF Event Streaming (VES), is transferred via
DMAAP [34], which is the central message bus of ONAP.

Figure 2 – The ONAP architecture [35]

III. ONAP CONSIDERATIONS FROM THE CN-MIPV6 SERVICE

PROVISIONING POINT OF VIEW

Our proposed approach of closed-loop orchestration in the
context of CN-MIPv6 is depicted in Figure 3. On one hand, a
Kubernetes layer is responsible for executing readiness and
liveness probes for basic health checks. On the other hand,
there is a broader scope of the control loop based on ONAP.
This is where complex logic of automatic workflows is placed,
such as analytics and machine learning-based operations. Of
course, multiple control loops can be deployed here, such as
autoscaling, auto-healing, etc. Furthermore, the scope of these
control loops is not only restricted to one Kubernetes cluster.
This is where inter-cloud control logic can be deployed.

In the context of ONAP and CN-MIPv6 integration, we
use a multi-site VNF during the failover and scaling
particularly. When a new instance of Home Agent Packet
Procesor (HA-PP) is created, a new Virtual Function (VF)
module is added to the existing VNF but with a different cloud
region. This VF module hosts the corresponding Helm charts
of HA-PP, which are added as a VSP to that particular
Network Service Model.

DOI: 10.36244/ICJ.2023.1.5

mailto:akos.leiter%40nokia-bell-labs.com?subject=
mailto:attila.hegyi%40nokia-bell-labs.com?subject=
mailto:jozsef.varga%40nokia-bell-labs.com?subject=
mailto:edina.lami%40nokia.com?subject=
mailto:bokorl%40hit.bme.hu?subject=
https://doi.org/10.36244/ICJ.2023.1.5

Closed-loop Orchestration for
Cloud-native Mobile IPv6

INFOCOMMUNICATIONS JOURNAL

MARCH 2023 • VOLUME XV • NUMBER 1 45

concept opens the way to machine learning applications of
IPv6-based mobility management, it is worth mentioning that
mobility management itself is also examined in the field of
Machine Learning optimization [21] [22] [23].

There is a good collection of mobility management issues
in 5G networks with low-latency services by Johanna
Heinonen et al. [24]. The identified challenges include
topology-aware gateway selection, handover management,
and gateway relocation. Our proposal inherits features of
automatic gateway relocation from the system architecture
level: appropriate functions are triggered automatically in case
of failures.

Network automation and mobility management are not
only in the interest of scientific papers. There are several other
forums and publications, like blogs, which are worth
mentioning (e.g., [25] [26] [27]). To the best of our
knowledge, no publicly available literature deals with
integrating closed-loop orchestration, cloud-native IPv6-
based mobility management, and ONAP. The whole operation
model of CN-MIPv6 – presented in this paper – is a novel
concept. Of course, the scope of our article is limited to
failover and scaling scenarios of CN-MIPv6, but these are the
essential use cases demonstrating the power of our scheme.
The microservice architecture CN-MIPv6 used in this paper
for evaluation can be found in [4].

B. Orchestration and ONAP in a nutshell

Orchestration (in telecommunication) is about ensuring
the right amount of resources at the right time and location for
a particular service. In practice, this means enough pieces of
virtual machines and containers must be placed behind a
specific service.

Figure 1 depicts another function of orchestration which
operates with control loops. The system watches the particular
service's actual states continuously and consistently enforces
the desired state. This is how closed-loop orchestration or
Kubernetes Operators [28] work on a very high level.

Figure 1 – Orchestration in general [29]

ONAP is an open-source network automation and closed-
loop orchestration platform. A simplified view of its
architecture can be seen in Figure 2. Its main component is the
Service Orchestrator (SO) [30], which is responsible for
executing abstract steps (Building Blocks, BB) to instantiate a
particular Network Service (NS) instance. Network Service
Models are designed in the Service Design and Creation
(SDC) component [31]. These two components indicate that
ONAP strictly separates the design time (Day 0) and the
deployment time (Day 1). Particular workflows and
controllers can be written to any NS with the help of the
Controller Design Studio (CDS) [32]. CDS can also store Day

2 configuration changes or any other workflows intended to
the part of a closed-loop control function. Software
components of a Network Service Model, including Custom
Controllers (Controller Blueprint Archive, CBA), are
encapsulated as Vendor Software Package (VSP). In the case
of CNF, a Helm chart is included in the VSP.

The Policy Framework [33] is the heart of the closed-loop
functions of ONAP. It stores what to do when a particular
event happens with an NF. The Policy Framework uses Policy
Models, which hide the actual API calls to SO and CDS. Every
Policy Model is assigned to a Network Service Model. The
Onset event is sent out by a custom-made Analytic
Application (AA) to trigger a Policy Model. Deciding when to
send out an Onset message is entirely up to the developer of
AA. The primary source of measurements for AA is VES
messages sent out by a running NF. Every message, including
Onset, VNF Event Streaming (VES), is transferred via
DMAAP [34], which is the central message bus of ONAP.

Figure 2 – The ONAP architecture [35]

III. ONAP CONSIDERATIONS FROM THE CN-MIPV6 SERVICE

PROVISIONING POINT OF VIEW

Our proposed approach of closed-loop orchestration in the
context of CN-MIPv6 is depicted in Figure 3. On one hand, a
Kubernetes layer is responsible for executing readiness and
liveness probes for basic health checks. On the other hand,
there is a broader scope of the control loop based on ONAP.
This is where complex logic of automatic workflows is placed,
such as analytics and machine learning-based operations. Of
course, multiple control loops can be deployed here, such as
autoscaling, auto-healing, etc. Furthermore, the scope of these
control loops is not only restricted to one Kubernetes cluster.
This is where inter-cloud control logic can be deployed.

In the context of ONAP and CN-MIPv6 integration, we
use a multi-site VNF during the failover and scaling
particularly. When a new instance of Home Agent Packet
Procesor (HA-PP) is created, a new Virtual Function (VF)
module is added to the existing VNF but with a different cloud
region. This VF module hosts the corresponding Helm charts
of HA-PP, which are added as a VSP to that particular
Network Service Model.

concept opens the way to machine learning applications of
IPv6-based mobility management, it is worth mentioning that
mobility management itself is also examined in the field of
Machine Learning optimization [21] [22] [23].

There is a good collection of mobility management issues
in 5G networks with low-latency services by Johanna
Heinonen et al. [24]. The identified challenges include
topology-aware gateway selection, handover management,
and gateway relocation. Our proposal inherits features of
automatic gateway relocation from the system architecture
level: appropriate functions are triggered automatically in case
of failures.

Network automation and mobility management are not
only in the interest of scientific papers. There are several other
forums and publications, like blogs, which are worth
mentioning (e.g., [25] [26] [27]). To the best of our
knowledge, no publicly available literature deals with
integrating closed-loop orchestration, cloud-native IPv6-
based mobility management, and ONAP. The whole operation
model of CN-MIPv6 – presented in this paper – is a novel
concept. Of course, the scope of our article is limited to
failover and scaling scenarios of CN-MIPv6, but these are the
essential use cases demonstrating the power of our scheme.
The microservice architecture CN-MIPv6 used in this paper
for evaluation can be found in [4].

B. Orchestration and ONAP in a nutshell

Orchestration (in telecommunication) is about ensuring
the right amount of resources at the right time and location for
a particular service. In practice, this means enough pieces of
virtual machines and containers must be placed behind a
specific service.

Figure 1 depicts another function of orchestration which
operates with control loops. The system watches the particular
service's actual states continuously and consistently enforces
the desired state. This is how closed-loop orchestration or
Kubernetes Operators [28] work on a very high level.

Figure 1 – Orchestration in general [29]

ONAP is an open-source network automation and closed-
loop orchestration platform. A simplified view of its
architecture can be seen in Figure 2. Its main component is the
Service Orchestrator (SO) [30], which is responsible for
executing abstract steps (Building Blocks, BB) to instantiate a
particular Network Service (NS) instance. Network Service
Models are designed in the Service Design and Creation
(SDC) component [31]. These two components indicate that
ONAP strictly separates the design time (Day 0) and the
deployment time (Day 1). Particular workflows and
controllers can be written to any NS with the help of the
Controller Design Studio (CDS) [32]. CDS can also store Day

2 configuration changes or any other workflows intended to
the part of a closed-loop control function. Software
components of a Network Service Model, including Custom
Controllers (Controller Blueprint Archive, CBA), are
encapsulated as Vendor Software Package (VSP). In the case
of CNF, a Helm chart is included in the VSP.

The Policy Framework [33] is the heart of the closed-loop
functions of ONAP. It stores what to do when a particular
event happens with an NF. The Policy Framework uses Policy
Models, which hide the actual API calls to SO and CDS. Every
Policy Model is assigned to a Network Service Model. The
Onset event is sent out by a custom-made Analytic
Application (AA) to trigger a Policy Model. Deciding when to
send out an Onset message is entirely up to the developer of
AA. The primary source of measurements for AA is VES
messages sent out by a running NF. Every message, including
Onset, VNF Event Streaming (VES), is transferred via
DMAAP [34], which is the central message bus of ONAP.

Figure 2 – The ONAP architecture [35]

III. ONAP CONSIDERATIONS FROM THE CN-MIPV6 SERVICE

PROVISIONING POINT OF VIEW

Our proposed approach of closed-loop orchestration in the
context of CN-MIPv6 is depicted in Figure 3. On one hand, a
Kubernetes layer is responsible for executing readiness and
liveness probes for basic health checks. On the other hand,
there is a broader scope of the control loop based on ONAP.
This is where complex logic of automatic workflows is placed,
such as analytics and machine learning-based operations. Of
course, multiple control loops can be deployed here, such as
autoscaling, auto-healing, etc. Furthermore, the scope of these
control loops is not only restricted to one Kubernetes cluster.
This is where inter-cloud control logic can be deployed.

In the context of ONAP and CN-MIPv6 integration, we
use a multi-site VNF during the failover and scaling
particularly. When a new instance of Home Agent Packet
Procesor (HA-PP) is created, a new Virtual Function (VF)
module is added to the existing VNF but with a different cloud
region. This VF module hosts the corresponding Helm charts
of HA-PP, which are added as a VSP to that particular
Network Service Model.

concept opens the way to machine learning applications of
IPv6-based mobility management, it is worth mentioning that
mobility management itself is also examined in the field of
Machine Learning optimization [21] [22] [23].

There is a good collection of mobility management issues
in 5G networks with low-latency services by Johanna
Heinonen et al. [24]. The identified challenges include
topology-aware gateway selection, handover management,
and gateway relocation. Our proposal inherits features of
automatic gateway relocation from the system architecture
level: appropriate functions are triggered automatically in case
of failures.

Network automation and mobility management are not
only in the interest of scientific papers. There are several other
forums and publications, like blogs, which are worth
mentioning (e.g., [25] [26] [27]). To the best of our
knowledge, no publicly available literature deals with
integrating closed-loop orchestration, cloud-native IPv6-
based mobility management, and ONAP. The whole operation
model of CN-MIPv6 – presented in this paper – is a novel
concept. Of course, the scope of our article is limited to
failover and scaling scenarios of CN-MIPv6, but these are the
essential use cases demonstrating the power of our scheme.
The microservice architecture CN-MIPv6 used in this paper
for evaluation can be found in [4].

B. Orchestration and ONAP in a nutshell

Orchestration (in telecommunication) is about ensuring
the right amount of resources at the right time and location for
a particular service. In practice, this means enough pieces of
virtual machines and containers must be placed behind a
specific service.

Figure 1 depicts another function of orchestration which
operates with control loops. The system watches the particular
service's actual states continuously and consistently enforces
the desired state. This is how closed-loop orchestration or
Kubernetes Operators [28] work on a very high level.

Figure 1 – Orchestration in general [29]

ONAP is an open-source network automation and closed-
loop orchestration platform. A simplified view of its
architecture can be seen in Figure 2. Its main component is the
Service Orchestrator (SO) [30], which is responsible for
executing abstract steps (Building Blocks, BB) to instantiate a
particular Network Service (NS) instance. Network Service
Models are designed in the Service Design and Creation
(SDC) component [31]. These two components indicate that
ONAP strictly separates the design time (Day 0) and the
deployment time (Day 1). Particular workflows and
controllers can be written to any NS with the help of the
Controller Design Studio (CDS) [32]. CDS can also store Day

2 configuration changes or any other workflows intended to
the part of a closed-loop control function. Software
components of a Network Service Model, including Custom
Controllers (Controller Blueprint Archive, CBA), are
encapsulated as Vendor Software Package (VSP). In the case
of CNF, a Helm chart is included in the VSP.

The Policy Framework [33] is the heart of the closed-loop
functions of ONAP. It stores what to do when a particular
event happens with an NF. The Policy Framework uses Policy
Models, which hide the actual API calls to SO and CDS. Every
Policy Model is assigned to a Network Service Model. The
Onset event is sent out by a custom-made Analytic
Application (AA) to trigger a Policy Model. Deciding when to
send out an Onset message is entirely up to the developer of
AA. The primary source of measurements for AA is VES
messages sent out by a running NF. Every message, including
Onset, VNF Event Streaming (VES), is transferred via
DMAAP [34], which is the central message bus of ONAP.

Figure 2 – The ONAP architecture [35]

III. ONAP CONSIDERATIONS FROM THE CN-MIPV6 SERVICE

PROVISIONING POINT OF VIEW

Our proposed approach of closed-loop orchestration in the
context of CN-MIPv6 is depicted in Figure 3. On one hand, a
Kubernetes layer is responsible for executing readiness and
liveness probes for basic health checks. On the other hand,
there is a broader scope of the control loop based on ONAP.
This is where complex logic of automatic workflows is placed,
such as analytics and machine learning-based operations. Of
course, multiple control loops can be deployed here, such as
autoscaling, auto-healing, etc. Furthermore, the scope of these
control loops is not only restricted to one Kubernetes cluster.
This is where inter-cloud control logic can be deployed.

In the context of ONAP and CN-MIPv6 integration, we
use a multi-site VNF during the failover and scaling
particularly. When a new instance of Home Agent Packet
Procesor (HA-PP) is created, a new Virtual Function (VF)
module is added to the existing VNF but with a different cloud
region. This VF module hosts the corresponding Helm charts
of HA-PP, which are added as a VSP to that particular
Network Service Model.

concept opens the way to machine learning applications of
IPv6-based mobility management, it is worth mentioning that
mobility management itself is also examined in the field of
Machine Learning optimization [21] [22] [23].

There is a good collection of mobility management issues
in 5G networks with low-latency services by Johanna
Heinonen et al. [24]. The identified challenges include
topology-aware gateway selection, handover management,
and gateway relocation. Our proposal inherits features of
automatic gateway relocation from the system architecture
level: appropriate functions are triggered automatically in case
of failures.

Network automation and mobility management are not
only in the interest of scientific papers. There are several other
forums and publications, like blogs, which are worth
mentioning (e.g., [25] [26] [27]). To the best of our
knowledge, no publicly available literature deals with
integrating closed-loop orchestration, cloud-native IPv6-
based mobility management, and ONAP. The whole operation
model of CN-MIPv6 – presented in this paper – is a novel
concept. Of course, the scope of our article is limited to
failover and scaling scenarios of CN-MIPv6, but these are the
essential use cases demonstrating the power of our scheme.
The microservice architecture CN-MIPv6 used in this paper
for evaluation can be found in [4].

B. Orchestration and ONAP in a nutshell

Orchestration (in telecommunication) is about ensuring
the right amount of resources at the right time and location for
a particular service. In practice, this means enough pieces of
virtual machines and containers must be placed behind a
specific service.

Figure 1 depicts another function of orchestration which
operates with control loops. The system watches the particular
service's actual states continuously and consistently enforces
the desired state. This is how closed-loop orchestration or
Kubernetes Operators [28] work on a very high level.

Figure 1 – Orchestration in general [29]

ONAP is an open-source network automation and closed-
loop orchestration platform. A simplified view of its
architecture can be seen in Figure 2. Its main component is the
Service Orchestrator (SO) [30], which is responsible for
executing abstract steps (Building Blocks, BB) to instantiate a
particular Network Service (NS) instance. Network Service
Models are designed in the Service Design and Creation
(SDC) component [31]. These two components indicate that
ONAP strictly separates the design time (Day 0) and the
deployment time (Day 1). Particular workflows and
controllers can be written to any NS with the help of the
Controller Design Studio (CDS) [32]. CDS can also store Day

2 configuration changes or any other workflows intended to
the part of a closed-loop control function. Software
components of a Network Service Model, including Custom
Controllers (Controller Blueprint Archive, CBA), are
encapsulated as Vendor Software Package (VSP). In the case
of CNF, a Helm chart is included in the VSP.

The Policy Framework [33] is the heart of the closed-loop
functions of ONAP. It stores what to do when a particular
event happens with an NF. The Policy Framework uses Policy
Models, which hide the actual API calls to SO and CDS. Every
Policy Model is assigned to a Network Service Model. The
Onset event is sent out by a custom-made Analytic
Application (AA) to trigger a Policy Model. Deciding when to
send out an Onset message is entirely up to the developer of
AA. The primary source of measurements for AA is VES
messages sent out by a running NF. Every message, including
Onset, VNF Event Streaming (VES), is transferred via
DMAAP [34], which is the central message bus of ONAP.

Figure 2 – The ONAP architecture [35]

III. ONAP CONSIDERATIONS FROM THE CN-MIPV6 SERVICE

PROVISIONING POINT OF VIEW

Our proposed approach of closed-loop orchestration in the
context of CN-MIPv6 is depicted in Figure 3. On one hand, a
Kubernetes layer is responsible for executing readiness and
liveness probes for basic health checks. On the other hand,
there is a broader scope of the control loop based on ONAP.
This is where complex logic of automatic workflows is placed,
such as analytics and machine learning-based operations. Of
course, multiple control loops can be deployed here, such as
autoscaling, auto-healing, etc. Furthermore, the scope of these
control loops is not only restricted to one Kubernetes cluster.
This is where inter-cloud control logic can be deployed.

In the context of ONAP and CN-MIPv6 integration, we
use a multi-site VNF during the failover and scaling
particularly. When a new instance of Home Agent Packet
Procesor (HA-PP) is created, a new Virtual Function (VF)
module is added to the existing VNF but with a different cloud
region. This VF module hosts the corresponding Helm charts
of HA-PP, which are added as a VSP to that particular
Network Service Model.

concept opens the way to machine learning applications of
IPv6-based mobility management, it is worth mentioning that
mobility management itself is also examined in the field of
Machine Learning optimization [21] [22] [23].

There is a good collection of mobility management issues
in 5G networks with low-latency services by Johanna
Heinonen et al. [24]. The identified challenges include
topology-aware gateway selection, handover management,
and gateway relocation. Our proposal inherits features of
automatic gateway relocation from the system architecture
level: appropriate functions are triggered automatically in case
of failures.

Network automation and mobility management are not
only in the interest of scientific papers. There are several other
forums and publications, like blogs, which are worth
mentioning (e.g., [25] [26] [27]). To the best of our
knowledge, no publicly available literature deals with
integrating closed-loop orchestration, cloud-native IPv6-
based mobility management, and ONAP. The whole operation
model of CN-MIPv6 – presented in this paper – is a novel
concept. Of course, the scope of our article is limited to
failover and scaling scenarios of CN-MIPv6, but these are the
essential use cases demonstrating the power of our scheme.
The microservice architecture CN-MIPv6 used in this paper
for evaluation can be found in [4].

B. Orchestration and ONAP in a nutshell

Orchestration (in telecommunication) is about ensuring
the right amount of resources at the right time and location for
a particular service. In practice, this means enough pieces of
virtual machines and containers must be placed behind a
specific service.

Figure 1 depicts another function of orchestration which
operates with control loops. The system watches the particular
service's actual states continuously and consistently enforces
the desired state. This is how closed-loop orchestration or
Kubernetes Operators [28] work on a very high level.

Figure 1 – Orchestration in general [29]

ONAP is an open-source network automation and closed-
loop orchestration platform. A simplified view of its
architecture can be seen in Figure 2. Its main component is the
Service Orchestrator (SO) [30], which is responsible for
executing abstract steps (Building Blocks, BB) to instantiate a
particular Network Service (NS) instance. Network Service
Models are designed in the Service Design and Creation
(SDC) component [31]. These two components indicate that
ONAP strictly separates the design time (Day 0) and the
deployment time (Day 1). Particular workflows and
controllers can be written to any NS with the help of the
Controller Design Studio (CDS) [32]. CDS can also store Day

2 configuration changes or any other workflows intended to
the part of a closed-loop control function. Software
components of a Network Service Model, including Custom
Controllers (Controller Blueprint Archive, CBA), are
encapsulated as Vendor Software Package (VSP). In the case
of CNF, a Helm chart is included in the VSP.

The Policy Framework [33] is the heart of the closed-loop
functions of ONAP. It stores what to do when a particular
event happens with an NF. The Policy Framework uses Policy
Models, which hide the actual API calls to SO and CDS. Every
Policy Model is assigned to a Network Service Model. The
Onset event is sent out by a custom-made Analytic
Application (AA) to trigger a Policy Model. Deciding when to
send out an Onset message is entirely up to the developer of
AA. The primary source of measurements for AA is VES
messages sent out by a running NF. Every message, including
Onset, VNF Event Streaming (VES), is transferred via
DMAAP [34], which is the central message bus of ONAP.

Figure 2 – The ONAP architecture [35]

III. ONAP CONSIDERATIONS FROM THE CN-MIPV6 SERVICE

PROVISIONING POINT OF VIEW

Our proposed approach of closed-loop orchestration in the
context of CN-MIPv6 is depicted in Figure 3. On one hand, a
Kubernetes layer is responsible for executing readiness and
liveness probes for basic health checks. On the other hand,
there is a broader scope of the control loop based on ONAP.
This is where complex logic of automatic workflows is placed,
such as analytics and machine learning-based operations. Of
course, multiple control loops can be deployed here, such as
autoscaling, auto-healing, etc. Furthermore, the scope of these
control loops is not only restricted to one Kubernetes cluster.
This is where inter-cloud control logic can be deployed.

In the context of ONAP and CN-MIPv6 integration, we
use a multi-site VNF during the failover and scaling
particularly. When a new instance of Home Agent Packet
Procesor (HA-PP) is created, a new Virtual Function (VF)
module is added to the existing VNF but with a different cloud
region. This VF module hosts the corresponding Helm charts
of HA-PP, which are added as a VSP to that particular
Network Service Model.

concept opens the way to machine learning applications of
IPv6-based mobility management, it is worth mentioning that
mobility management itself is also examined in the field of
Machine Learning optimization [21] [22] [23].

There is a good collection of mobility management issues
in 5G networks with low-latency services by Johanna
Heinonen et al. [24]. The identified challenges include
topology-aware gateway selection, handover management,
and gateway relocation. Our proposal inherits features of
automatic gateway relocation from the system architecture
level: appropriate functions are triggered automatically in case
of failures.

Network automation and mobility management are not
only in the interest of scientific papers. There are several other
forums and publications, like blogs, which are worth
mentioning (e.g., [25] [26] [27]). To the best of our
knowledge, no publicly available literature deals with
integrating closed-loop orchestration, cloud-native IPv6-
based mobility management, and ONAP. The whole operation
model of CN-MIPv6 – presented in this paper – is a novel
concept. Of course, the scope of our article is limited to
failover and scaling scenarios of CN-MIPv6, but these are the
essential use cases demonstrating the power of our scheme.
The microservice architecture CN-MIPv6 used in this paper
for evaluation can be found in [4].

B. Orchestration and ONAP in a nutshell

Orchestration (in telecommunication) is about ensuring
the right amount of resources at the right time and location for
a particular service. In practice, this means enough pieces of
virtual machines and containers must be placed behind a
specific service.

Figure 1 depicts another function of orchestration which
operates with control loops. The system watches the particular
service's actual states continuously and consistently enforces
the desired state. This is how closed-loop orchestration or
Kubernetes Operators [28] work on a very high level.

Figure 1 – Orchestration in general [29]

ONAP is an open-source network automation and closed-
loop orchestration platform. A simplified view of its
architecture can be seen in Figure 2. Its main component is the
Service Orchestrator (SO) [30], which is responsible for
executing abstract steps (Building Blocks, BB) to instantiate a
particular Network Service (NS) instance. Network Service
Models are designed in the Service Design and Creation
(SDC) component [31]. These two components indicate that
ONAP strictly separates the design time (Day 0) and the
deployment time (Day 1). Particular workflows and
controllers can be written to any NS with the help of the
Controller Design Studio (CDS) [32]. CDS can also store Day

2 configuration changes or any other workflows intended to
the part of a closed-loop control function. Software
components of a Network Service Model, including Custom
Controllers (Controller Blueprint Archive, CBA), are
encapsulated as Vendor Software Package (VSP). In the case
of CNF, a Helm chart is included in the VSP.

The Policy Framework [33] is the heart of the closed-loop
functions of ONAP. It stores what to do when a particular
event happens with an NF. The Policy Framework uses Policy
Models, which hide the actual API calls to SO and CDS. Every
Policy Model is assigned to a Network Service Model. The
Onset event is sent out by a custom-made Analytic
Application (AA) to trigger a Policy Model. Deciding when to
send out an Onset message is entirely up to the developer of
AA. The primary source of measurements for AA is VES
messages sent out by a running NF. Every message, including
Onset, VNF Event Streaming (VES), is transferred via
DMAAP [34], which is the central message bus of ONAP.

Figure 2 – The ONAP architecture [35]

III. ONAP CONSIDERATIONS FROM THE CN-MIPV6 SERVICE

PROVISIONING POINT OF VIEW

Our proposed approach of closed-loop orchestration in the
context of CN-MIPv6 is depicted in Figure 3. On one hand, a
Kubernetes layer is responsible for executing readiness and
liveness probes for basic health checks. On the other hand,
there is a broader scope of the control loop based on ONAP.
This is where complex logic of automatic workflows is placed,
such as analytics and machine learning-based operations. Of
course, multiple control loops can be deployed here, such as
autoscaling, auto-healing, etc. Furthermore, the scope of these
control loops is not only restricted to one Kubernetes cluster.
This is where inter-cloud control logic can be deployed.

In the context of ONAP and CN-MIPv6 integration, we
use a multi-site VNF during the failover and scaling
particularly. When a new instance of Home Agent Packet
Procesor (HA-PP) is created, a new Virtual Function (VF)
module is added to the existing VNF but with a different cloud
region. This VF module hosts the corresponding Helm charts
of HA-PP, which are added as a VSP to that particular
Network Service Model.

concept opens the way to machine learning applications of
IPv6-based mobility management, it is worth mentioning that
mobility management itself is also examined in the field of
Machine Learning optimization [21] [22] [23].

There is a good collection of mobility management issues
in 5G networks with low-latency services by Johanna
Heinonen et al. [24]. The identified challenges include
topology-aware gateway selection, handover management,
and gateway relocation. Our proposal inherits features of
automatic gateway relocation from the system architecture
level: appropriate functions are triggered automatically in case
of failures.

Network automation and mobility management are not
only in the interest of scientific papers. There are several other
forums and publications, like blogs, which are worth
mentioning (e.g., [25] [26] [27]). To the best of our
knowledge, no publicly available literature deals with
integrating closed-loop orchestration, cloud-native IPv6-
based mobility management, and ONAP. The whole operation
model of CN-MIPv6 – presented in this paper – is a novel
concept. Of course, the scope of our article is limited to
failover and scaling scenarios of CN-MIPv6, but these are the
essential use cases demonstrating the power of our scheme.
The microservice architecture CN-MIPv6 used in this paper
for evaluation can be found in [4].

B. Orchestration and ONAP in a nutshell

Orchestration (in telecommunication) is about ensuring
the right amount of resources at the right time and location for
a particular service. In practice, this means enough pieces of
virtual machines and containers must be placed behind a
specific service.

Figure 1 depicts another function of orchestration which
operates with control loops. The system watches the particular
service's actual states continuously and consistently enforces
the desired state. This is how closed-loop orchestration or
Kubernetes Operators [28] work on a very high level.

Figure 1 – Orchestration in general [29]

ONAP is an open-source network automation and closed-
loop orchestration platform. A simplified view of its
architecture can be seen in Figure 2. Its main component is the
Service Orchestrator (SO) [30], which is responsible for
executing abstract steps (Building Blocks, BB) to instantiate a
particular Network Service (NS) instance. Network Service
Models are designed in the Service Design and Creation
(SDC) component [31]. These two components indicate that
ONAP strictly separates the design time (Day 0) and the
deployment time (Day 1). Particular workflows and
controllers can be written to any NS with the help of the
Controller Design Studio (CDS) [32]. CDS can also store Day

2 configuration changes or any other workflows intended to
the part of a closed-loop control function. Software
components of a Network Service Model, including Custom
Controllers (Controller Blueprint Archive, CBA), are
encapsulated as Vendor Software Package (VSP). In the case
of CNF, a Helm chart is included in the VSP.

The Policy Framework [33] is the heart of the closed-loop
functions of ONAP. It stores what to do when a particular
event happens with an NF. The Policy Framework uses Policy
Models, which hide the actual API calls to SO and CDS. Every
Policy Model is assigned to a Network Service Model. The
Onset event is sent out by a custom-made Analytic
Application (AA) to trigger a Policy Model. Deciding when to
send out an Onset message is entirely up to the developer of
AA. The primary source of measurements for AA is VES
messages sent out by a running NF. Every message, including
Onset, VNF Event Streaming (VES), is transferred via
DMAAP [34], which is the central message bus of ONAP.

Figure 2 – The ONAP architecture [35]

III. ONAP CONSIDERATIONS FROM THE CN-MIPV6 SERVICE

PROVISIONING POINT OF VIEW

Our proposed approach of closed-loop orchestration in the
context of CN-MIPv6 is depicted in Figure 3. On one hand, a
Kubernetes layer is responsible for executing readiness and
liveness probes for basic health checks. On the other hand,
there is a broader scope of the control loop based on ONAP.
This is where complex logic of automatic workflows is placed,
such as analytics and machine learning-based operations. Of
course, multiple control loops can be deployed here, such as
autoscaling, auto-healing, etc. Furthermore, the scope of these
control loops is not only restricted to one Kubernetes cluster.
This is where inter-cloud control logic can be deployed.

In the context of ONAP and CN-MIPv6 integration, we
use a multi-site VNF during the failover and scaling
particularly. When a new instance of Home Agent Packet
Procesor (HA-PP) is created, a new Virtual Function (VF)
module is added to the existing VNF but with a different cloud
region. This VF module hosts the corresponding Helm charts
of HA-PP, which are added as a VSP to that particular
Network Service Model.

Figure 1 – Orchestration in general [29]

Figure 2 – The ONAP architecture [35]

concept opens the way to machine learning applications of
IPv6-based mobility management, it is worth mentioning that
mobility management itself is also examined in the field of
Machine Learning optimization [21] [22] [23].

There is a good collection of mobility management issues
in 5G networks with low-latency services by Johanna
Heinonen et al. [24]. The identified challenges include
topology-aware gateway selection, handover management,
and gateway relocation. Our proposal inherits features of
automatic gateway relocation from the system architecture
level: appropriate functions are triggered automatically in case
of failures.

Network automation and mobility management are not
only in the interest of scientific papers. There are several other
forums and publications, like blogs, which are worth
mentioning (e.g., [25] [26] [27]). To the best of our
knowledge, no publicly available literature deals with
integrating closed-loop orchestration, cloud-native IPv6-
based mobility management, and ONAP. The whole operation
model of CN-MIPv6 – presented in this paper – is a novel
concept. Of course, the scope of our article is limited to
failover and scaling scenarios of CN-MIPv6, but these are the
essential use cases demonstrating the power of our scheme.
The microservice architecture CN-MIPv6 used in this paper
for evaluation can be found in [4].

B. Orchestration and ONAP in a nutshell

Orchestration (in telecommunication) is about ensuring
the right amount of resources at the right time and location for
a particular service. In practice, this means enough pieces of
virtual machines and containers must be placed behind a
specific service.

Figure 1 depicts another function of orchestration which
operates with control loops. The system watches the particular
service's actual states continuously and consistently enforces
the desired state. This is how closed-loop orchestration or
Kubernetes Operators [28] work on a very high level.

Figure 1 – Orchestration in general [29]

ONAP is an open-source network automation and closed-
loop orchestration platform. A simplified view of its
architecture can be seen in Figure 2. Its main component is the
Service Orchestrator (SO) [30], which is responsible for
executing abstract steps (Building Blocks, BB) to instantiate a
particular Network Service (NS) instance. Network Service
Models are designed in the Service Design and Creation
(SDC) component [31]. These two components indicate that
ONAP strictly separates the design time (Day 0) and the
deployment time (Day 1). Particular workflows and
controllers can be written to any NS with the help of the
Controller Design Studio (CDS) [32]. CDS can also store Day

2 configuration changes or any other workflows intended to
the part of a closed-loop control function. Software
components of a Network Service Model, including Custom
Controllers (Controller Blueprint Archive, CBA), are
encapsulated as Vendor Software Package (VSP). In the case
of CNF, a Helm chart is included in the VSP.

The Policy Framework [33] is the heart of the closed-loop
functions of ONAP. It stores what to do when a particular
event happens with an NF. The Policy Framework uses Policy
Models, which hide the actual API calls to SO and CDS. Every
Policy Model is assigned to a Network Service Model. The
Onset event is sent out by a custom-made Analytic
Application (AA) to trigger a Policy Model. Deciding when to
send out an Onset message is entirely up to the developer of
AA. The primary source of measurements for AA is VES
messages sent out by a running NF. Every message, including
Onset, VNF Event Streaming (VES), is transferred via
DMAAP [34], which is the central message bus of ONAP.

Figure 2 – The ONAP architecture [35]

III. ONAP CONSIDERATIONS FROM THE CN-MIPV6 SERVICE

PROVISIONING POINT OF VIEW

Our proposed approach of closed-loop orchestration in the
context of CN-MIPv6 is depicted in Figure 3. On one hand, a
Kubernetes layer is responsible for executing readiness and
liveness probes for basic health checks. On the other hand,
there is a broader scope of the control loop based on ONAP.
This is where complex logic of automatic workflows is placed,
such as analytics and machine learning-based operations. Of
course, multiple control loops can be deployed here, such as
autoscaling, auto-healing, etc. Furthermore, the scope of these
control loops is not only restricted to one Kubernetes cluster.
This is where inter-cloud control logic can be deployed.

In the context of ONAP and CN-MIPv6 integration, we
use a multi-site VNF during the failover and scaling
particularly. When a new instance of Home Agent Packet
Procesor (HA-PP) is created, a new Virtual Function (VF)
module is added to the existing VNF but with a different cloud
region. This VF module hosts the corresponding Helm charts
of HA-PP, which are added as a VSP to that particular
Network Service Model.

concept opens the way to machine learning applications of
IPv6-based mobility management, it is worth mentioning that
mobility management itself is also examined in the field of
Machine Learning optimization [21] [22] [23].

There is a good collection of mobility management issues
in 5G networks with low-latency services by Johanna
Heinonen et al. [24]. The identified challenges include
topology-aware gateway selection, handover management,
and gateway relocation. Our proposal inherits features of
automatic gateway relocation from the system architecture
level: appropriate functions are triggered automatically in case
of failures.

Network automation and mobility management are not
only in the interest of scientific papers. There are several other
forums and publications, like blogs, which are worth
mentioning (e.g., [25] [26] [27]). To the best of our
knowledge, no publicly available literature deals with
integrating closed-loop orchestration, cloud-native IPv6-
based mobility management, and ONAP. The whole operation
model of CN-MIPv6 – presented in this paper – is a novel
concept. Of course, the scope of our article is limited to
failover and scaling scenarios of CN-MIPv6, but these are the
essential use cases demonstrating the power of our scheme.
The microservice architecture CN-MIPv6 used in this paper
for evaluation can be found in [4].

B. Orchestration and ONAP in a nutshell

Orchestration (in telecommunication) is about ensuring
the right amount of resources at the right time and location for
a particular service. In practice, this means enough pieces of
virtual machines and containers must be placed behind a
specific service.

Figure 1 depicts another function of orchestration which
operates with control loops. The system watches the particular
service's actual states continuously and consistently enforces
the desired state. This is how closed-loop orchestration or
Kubernetes Operators [28] work on a very high level.

Figure 1 – Orchestration in general [29]

ONAP is an open-source network automation and closed-
loop orchestration platform. A simplified view of its
architecture can be seen in Figure 2. Its main component is the
Service Orchestrator (SO) [30], which is responsible for
executing abstract steps (Building Blocks, BB) to instantiate a
particular Network Service (NS) instance. Network Service
Models are designed in the Service Design and Creation
(SDC) component [31]. These two components indicate that
ONAP strictly separates the design time (Day 0) and the
deployment time (Day 1). Particular workflows and
controllers can be written to any NS with the help of the
Controller Design Studio (CDS) [32]. CDS can also store Day

2 configuration changes or any other workflows intended to
the part of a closed-loop control function. Software
components of a Network Service Model, including Custom
Controllers (Controller Blueprint Archive, CBA), are
encapsulated as Vendor Software Package (VSP). In the case
of CNF, a Helm chart is included in the VSP.

The Policy Framework [33] is the heart of the closed-loop
functions of ONAP. It stores what to do when a particular
event happens with an NF. The Policy Framework uses Policy
Models, which hide the actual API calls to SO and CDS. Every
Policy Model is assigned to a Network Service Model. The
Onset event is sent out by a custom-made Analytic
Application (AA) to trigger a Policy Model. Deciding when to
send out an Onset message is entirely up to the developer of
AA. The primary source of measurements for AA is VES
messages sent out by a running NF. Every message, including
Onset, VNF Event Streaming (VES), is transferred via
DMAAP [34], which is the central message bus of ONAP.

Figure 2 – The ONAP architecture [35]

III. ONAP CONSIDERATIONS FROM THE CN-MIPV6 SERVICE

PROVISIONING POINT OF VIEW

Our proposed approach of closed-loop orchestration in the
context of CN-MIPv6 is depicted in Figure 3. On one hand, a
Kubernetes layer is responsible for executing readiness and
liveness probes for basic health checks. On the other hand,
there is a broader scope of the control loop based on ONAP.
This is where complex logic of automatic workflows is placed,
such as analytics and machine learning-based operations. Of
course, multiple control loops can be deployed here, such as
autoscaling, auto-healing, etc. Furthermore, the scope of these
control loops is not only restricted to one Kubernetes cluster.
This is where inter-cloud control logic can be deployed.

In the context of ONAP and CN-MIPv6 integration, we
use a multi-site VNF during the failover and scaling
particularly. When a new instance of Home Agent Packet
Procesor (HA-PP) is created, a new Virtual Function (VF)
module is added to the existing VNF but with a different cloud
region. This VF module hosts the corresponding Helm charts
of HA-PP, which are added as a VSP to that particular
Network Service Model.

concept opens the way to machine learning applications of
IPv6-based mobility management, it is worth mentioning that
mobility management itself is also examined in the field of
Machine Learning optimization [21] [22] [23].

There is a good collection of mobility management issues
in 5G networks with low-latency services by Johanna
Heinonen et al. [24]. The identified challenges include
topology-aware gateway selection, handover management,
and gateway relocation. Our proposal inherits features of
automatic gateway relocation from the system architecture
level: appropriate functions are triggered automatically in case
of failures.

Network automation and mobility management are not
only in the interest of scientific papers. There are several other
forums and publications, like blogs, which are worth
mentioning (e.g., [25] [26] [27]). To the best of our
knowledge, no publicly available literature deals with
integrating closed-loop orchestration, cloud-native IPv6-
based mobility management, and ONAP. The whole operation
model of CN-MIPv6 – presented in this paper – is a novel
concept. Of course, the scope of our article is limited to
failover and scaling scenarios of CN-MIPv6, but these are the
essential use cases demonstrating the power of our scheme.
The microservice architecture CN-MIPv6 used in this paper
for evaluation can be found in [4].

B. Orchestration and ONAP in a nutshell

Orchestration (in telecommunication) is about ensuring
the right amount of resources at the right time and location for
a particular service. In practice, this means enough pieces of
virtual machines and containers must be placed behind a
specific service.

Figure 1 depicts another function of orchestration which
operates with control loops. The system watches the particular
service's actual states continuously and consistently enforces
the desired state. This is how closed-loop orchestration or
Kubernetes Operators [28] work on a very high level.

Figure 1 – Orchestration in general [29]

ONAP is an open-source network automation and closed-
loop orchestration platform. A simplified view of its
architecture can be seen in Figure 2. Its main component is the
Service Orchestrator (SO) [30], which is responsible for
executing abstract steps (Building Blocks, BB) to instantiate a
particular Network Service (NS) instance. Network Service
Models are designed in the Service Design and Creation
(SDC) component [31]. These two components indicate that
ONAP strictly separates the design time (Day 0) and the
deployment time (Day 1). Particular workflows and
controllers can be written to any NS with the help of the
Controller Design Studio (CDS) [32]. CDS can also store Day

2 configuration changes or any other workflows intended to
the part of a closed-loop control function. Software
components of a Network Service Model, including Custom
Controllers (Controller Blueprint Archive, CBA), are
encapsulated as Vendor Software Package (VSP). In the case
of CNF, a Helm chart is included in the VSP.

The Policy Framework [33] is the heart of the closed-loop
functions of ONAP. It stores what to do when a particular
event happens with an NF. The Policy Framework uses Policy
Models, which hide the actual API calls to SO and CDS. Every
Policy Model is assigned to a Network Service Model. The
Onset event is sent out by a custom-made Analytic
Application (AA) to trigger a Policy Model. Deciding when to
send out an Onset message is entirely up to the developer of
AA. The primary source of measurements for AA is VES
messages sent out by a running NF. Every message, including
Onset, VNF Event Streaming (VES), is transferred via
DMAAP [34], which is the central message bus of ONAP.

Figure 2 – The ONAP architecture [35]

III. ONAP CONSIDERATIONS FROM THE CN-MIPV6 SERVICE

PROVISIONING POINT OF VIEW

Our proposed approach of closed-loop orchestration in the
context of CN-MIPv6 is depicted in Figure 3. On one hand, a
Kubernetes layer is responsible for executing readiness and
liveness probes for basic health checks. On the other hand,
there is a broader scope of the control loop based on ONAP.
This is where complex logic of automatic workflows is placed,
such as analytics and machine learning-based operations. Of
course, multiple control loops can be deployed here, such as
autoscaling, auto-healing, etc. Furthermore, the scope of these
control loops is not only restricted to one Kubernetes cluster.
This is where inter-cloud control logic can be deployed.

In the context of ONAP and CN-MIPv6 integration, we
use a multi-site VNF during the failover and scaling
particularly. When a new instance of Home Agent Packet
Procesor (HA-PP) is created, a new Virtual Function (VF)
module is added to the existing VNF but with a different cloud
region. This VF module hosts the corresponding Helm charts
of HA-PP, which are added as a VSP to that particular
Network Service Model.

concept opens the way to machine learning applications of
IPv6-based mobility management, it is worth mentioning that
mobility management itself is also examined in the field of
Machine Learning optimization [21] [22] [23].

There is a good collection of mobility management issues
in 5G networks with low-latency services by Johanna
Heinonen et al. [24]. The identified challenges include
topology-aware gateway selection, handover management,
and gateway relocation. Our proposal inherits features of
automatic gateway relocation from the system architecture
level: appropriate functions are triggered automatically in case
of failures.

Network automation and mobility management are not
only in the interest of scientific papers. There are several other
forums and publications, like blogs, which are worth
mentioning (e.g., [25] [26] [27]). To the best of our
knowledge, no publicly available literature deals with
integrating closed-loop orchestration, cloud-native IPv6-
based mobility management, and ONAP. The whole operation
model of CN-MIPv6 – presented in this paper – is a novel
concept. Of course, the scope of our article is limited to
failover and scaling scenarios of CN-MIPv6, but these are the
essential use cases demonstrating the power of our scheme.
The microservice architecture CN-MIPv6 used in this paper
for evaluation can be found in [4].

B. Orchestration and ONAP in a nutshell

Orchestration (in telecommunication) is about ensuring
the right amount of resources at the right time and location for
a particular service. In practice, this means enough pieces of
virtual machines and containers must be placed behind a
specific service.

Figure 1 depicts another function of orchestration which
operates with control loops. The system watches the particular
service's actual states continuously and consistently enforces
the desired state. This is how closed-loop orchestration or
Kubernetes Operators [28] work on a very high level.

Figure 1 – Orchestration in general [29]

ONAP is an open-source network automation and closed-
loop orchestration platform. A simplified view of its
architecture can be seen in Figure 2. Its main component is the
Service Orchestrator (SO) [30], which is responsible for
executing abstract steps (Building Blocks, BB) to instantiate a
particular Network Service (NS) instance. Network Service
Models are designed in the Service Design and Creation
(SDC) component [31]. These two components indicate that
ONAP strictly separates the design time (Day 0) and the
deployment time (Day 1). Particular workflows and
controllers can be written to any NS with the help of the
Controller Design Studio (CDS) [32]. CDS can also store Day

2 configuration changes or any other workflows intended to
the part of a closed-loop control function. Software
components of a Network Service Model, including Custom
Controllers (Controller Blueprint Archive, CBA), are
encapsulated as Vendor Software Package (VSP). In the case
of CNF, a Helm chart is included in the VSP.

The Policy Framework [33] is the heart of the closed-loop
functions of ONAP. It stores what to do when a particular
event happens with an NF. The Policy Framework uses Policy
Models, which hide the actual API calls to SO and CDS. Every
Policy Model is assigned to a Network Service Model. The
Onset event is sent out by a custom-made Analytic
Application (AA) to trigger a Policy Model. Deciding when to
send out an Onset message is entirely up to the developer of
AA. The primary source of measurements for AA is VES
messages sent out by a running NF. Every message, including
Onset, VNF Event Streaming (VES), is transferred via
DMAAP [34], which is the central message bus of ONAP.

Figure 2 – The ONAP architecture [35]

III. ONAP CONSIDERATIONS FROM THE CN-MIPV6 SERVICE

PROVISIONING POINT OF VIEW

Our proposed approach of closed-loop orchestration in the
context of CN-MIPv6 is depicted in Figure 3. On one hand, a
Kubernetes layer is responsible for executing readiness and
liveness probes for basic health checks. On the other hand,
there is a broader scope of the control loop based on ONAP.
This is where complex logic of automatic workflows is placed,
such as analytics and machine learning-based operations. Of
course, multiple control loops can be deployed here, such as
autoscaling, auto-healing, etc. Furthermore, the scope of these
control loops is not only restricted to one Kubernetes cluster.
This is where inter-cloud control logic can be deployed.

In the context of ONAP and CN-MIPv6 integration, we
use a multi-site VNF during the failover and scaling
particularly. When a new instance of Home Agent Packet
Procesor (HA-PP) is created, a new Virtual Function (VF)
module is added to the existing VNF but with a different cloud
region. This VF module hosts the corresponding Helm charts
of HA-PP, which are added as a VSP to that particular
Network Service Model.

concept opens the way to machine learning applications of
IPv6-based mobility management, it is worth mentioning that
mobility management itself is also examined in the field of
Machine Learning optimization [21] [22] [23].

There is a good collection of mobility management issues
in 5G networks with low-latency services by Johanna
Heinonen et al. [24]. The identified challenges include
topology-aware gateway selection, handover management,
and gateway relocation. Our proposal inherits features of
automatic gateway relocation from the system architecture
level: appropriate functions are triggered automatically in case
of failures.

Network automation and mobility management are not
only in the interest of scientific papers. There are several other
forums and publications, like blogs, which are worth
mentioning (e.g., [25] [26] [27]). To the best of our
knowledge, no publicly available literature deals with
integrating closed-loop orchestration, cloud-native IPv6-
based mobility management, and ONAP. The whole operation
model of CN-MIPv6 – presented in this paper – is a novel
concept. Of course, the scope of our article is limited to
failover and scaling scenarios of CN-MIPv6, but these are the
essential use cases demonstrating the power of our scheme.
The microservice architecture CN-MIPv6 used in this paper
for evaluation can be found in [4].

B. Orchestration and ONAP in a nutshell

Orchestration (in telecommunication) is about ensuring
the right amount of resources at the right time and location for
a particular service. In practice, this means enough pieces of
virtual machines and containers must be placed behind a
specific service.

Figure 1 depicts another function of orchestration which
operates with control loops. The system watches the particular
service's actual states continuously and consistently enforces
the desired state. This is how closed-loop orchestration or
Kubernetes Operators [28] work on a very high level.

Figure 1 – Orchestration in general [29]

ONAP is an open-source network automation and closed-
loop orchestration platform. A simplified view of its
architecture can be seen in Figure 2. Its main component is the
Service Orchestrator (SO) [30], which is responsible for
executing abstract steps (Building Blocks, BB) to instantiate a
particular Network Service (NS) instance. Network Service
Models are designed in the Service Design and Creation
(SDC) component [31]. These two components indicate that
ONAP strictly separates the design time (Day 0) and the
deployment time (Day 1). Particular workflows and
controllers can be written to any NS with the help of the
Controller Design Studio (CDS) [32]. CDS can also store Day

2 configuration changes or any other workflows intended to
the part of a closed-loop control function. Software
components of a Network Service Model, including Custom
Controllers (Controller Blueprint Archive, CBA), are
encapsulated as Vendor Software Package (VSP). In the case
of CNF, a Helm chart is included in the VSP.

The Policy Framework [33] is the heart of the closed-loop
functions of ONAP. It stores what to do when a particular
event happens with an NF. The Policy Framework uses Policy
Models, which hide the actual API calls to SO and CDS. Every
Policy Model is assigned to a Network Service Model. The
Onset event is sent out by a custom-made Analytic
Application (AA) to trigger a Policy Model. Deciding when to
send out an Onset message is entirely up to the developer of
AA. The primary source of measurements for AA is VES
messages sent out by a running NF. Every message, including
Onset, VNF Event Streaming (VES), is transferred via
DMAAP [34], which is the central message bus of ONAP.

Figure 2 – The ONAP architecture [35]

III. ONAP CONSIDERATIONS FROM THE CN-MIPV6 SERVICE

PROVISIONING POINT OF VIEW

Our proposed approach of closed-loop orchestration in the
context of CN-MIPv6 is depicted in Figure 3. On one hand, a
Kubernetes layer is responsible for executing readiness and
liveness probes for basic health checks. On the other hand,
there is a broader scope of the control loop based on ONAP.
This is where complex logic of automatic workflows is placed,
such as analytics and machine learning-based operations. Of
course, multiple control loops can be deployed here, such as
autoscaling, auto-healing, etc. Furthermore, the scope of these
control loops is not only restricted to one Kubernetes cluster.
This is where inter-cloud control logic can be deployed.

In the context of ONAP and CN-MIPv6 integration, we
use a multi-site VNF during the failover and scaling
particularly. When a new instance of Home Agent Packet
Procesor (HA-PP) is created, a new Virtual Function (VF)
module is added to the existing VNF but with a different cloud
region. This VF module hosts the corresponding Helm charts
of HA-PP, which are added as a VSP to that particular
Network Service Model.

Closed-loop Orchestration for
Cloud-native Mobile IPv6

MARCH 2023 • VOLUME XV • NUMBER 146

INFOCOMMUNICATIONS JOURNAL

Figure 3 – Orchestration levels of CN-MIPv6

IV. MEASUREMENTS AND NUMERICAL ANALYSIS

A. Testbed design

The testbed runs on a Nokia Airframe server with Ubuntu
18.04 LTS. On the top of one VM, Kubernetes 1.20.2 is
installed, which hosts the HA-PPs. From a simplicity point of
view, we executed a namespace-to-namespace failover and
scaling in our experiments. Of course, such use cases can also
be applicable in a multi-cloud environment. Figure 4 shows
the low-level design of the testbed from networking point-of-
view. Mobile Node (MN) connects to a router (R) in order to
add additional network between MN and HA (not being
directly connected via home link). Corresponding Node (CN)
represent a node which is not inside the mobility management
domain.

Figure 4 - Low-level design of the testbed

We added readiness and liveness probes to our HA-PP Pod.
These probes monitor whether the corresponding RAW socket
for sending and receiving is open. The following values are
used:

• Initial delay of Readiness Probe: 20 sec

• PeriodSeconds of Readiness Probe: 90 sec

• Initial delay of Liveness Probe: 15 sec

• PeriodSeconds of Liveness Probe: 60 sec

B. Utilization for Failover

Failover is the process when the traffic to a malfunctioning
network function is offloaded to a working one. Our
measurements logged how long it takes for an automatic
failover managed by ONAP toolsets. In the context of CN-
MIPv6, this means adding a new HA-PP to a different
namespace, and at the end of the failover, this new HA-PP will
be the new anchor point.

Figure 5 - ONAP-based execution workflow of the

failover use case

Failover execution steps from the ONAP point of view are
depicted in Figure 5 with the following explanation:

1. VES fault message is sent out from Home Agent
Backend (HA-B).

2. VES collector catches VES fault message, does
scheme validation, and sends it out to DMAAP.

3. AA reads the corresponding DMAAP topic
continuously, whether or not a new message arrives.
If yes, based on its own logic, it decides what Policy
Model to trigger via the Onset message.

4. Onset message is sent out to the corresponding topic
of DMAAP.

5. The Policy framework reads that topic in DMAAP.

6. The Policy calls the Scale-out workflow (Create VF
module).

7. CDS and SO create the new VF module (Helm chart)
instance in a different namespace.

8. The Policy executes Scale-in workflow in CDS.

9. CDS and SO delete the existing VF module (Helm
chart) in the original namespace. The failover
management procedure is finished.

Figure 5 – ONAP-based execution workflow of the failover use case

Figure 4 – Low-level design of the testbed

Figure 3 – Orchestration levels of CN-MIPv6

IV. MEASUREMENTS AND NUMERICAL ANALYSIS

A. Testbed design

The testbed runs on a Nokia Airframe server with Ubuntu
18.04 LTS. On the top of one VM, Kubernetes 1.20.2 is
installed, which hosts the HA-PPs. From a simplicity point of
view, we executed a namespace-to-namespace failover and
scaling in our experiments. Of course, such use cases can also
be applicable in a multi-cloud environment. Figure 4 shows
the low-level design of the testbed from networking point-of-
view. Mobile Node (MN) connects to a router (R) in order to
add additional network between MN and HA (not being
directly connected via home link). Corresponding Node (CN)
represent a node which is not inside the mobility management
domain.

Figure 4 - Low-level design of the testbed

We added readiness and liveness probes to our HA-PP Pod.
These probes monitor whether the corresponding RAW socket
for sending and receiving is open. The following values are
used:

• Initial delay of Readiness Probe: 20 sec

• PeriodSeconds of Readiness Probe: 90 sec

• Initial delay of Liveness Probe: 15 sec

• PeriodSeconds of Liveness Probe: 60 sec

B. Utilization for Failover

Failover is the process when the traffic to a malfunctioning
network function is offloaded to a working one. Our
measurements logged how long it takes for an automatic
failover managed by ONAP toolsets. In the context of CN-
MIPv6, this means adding a new HA-PP to a different
namespace, and at the end of the failover, this new HA-PP will
be the new anchor point.

Figure 5 - ONAP-based execution workflow of the

failover use case

Failover execution steps from the ONAP point of view are
depicted in Figure 5 with the following explanation:

1. VES fault message is sent out from Home Agent
Backend (HA-B).

2. VES collector catches VES fault message, does
scheme validation, and sends it out to DMAAP.

3. AA reads the corresponding DMAAP topic
continuously, whether or not a new message arrives.
If yes, based on its own logic, it decides what Policy
Model to trigger via the Onset message.

4. Onset message is sent out to the corresponding topic
of DMAAP.

5. The Policy framework reads that topic in DMAAP.

6. The Policy calls the Scale-out workflow (Create VF
module).

7. CDS and SO create the new VF module (Helm chart)
instance in a different namespace.

8. The Policy executes Scale-in workflow in CDS.

9. CDS and SO delete the existing VF module (Helm
chart) in the original namespace. The failover
management procedure is finished.

Figure 3 – Orchestration levels of CN-MIPv6

Figure 3 – Orchestration levels of CN-MIPv6

IV. MEASUREMENTS AND NUMERICAL ANALYSIS

A. Testbed design

The testbed runs on a Nokia Airframe server with Ubuntu
18.04 LTS. On the top of one VM, Kubernetes 1.20.2 is
installed, which hosts the HA-PPs. From a simplicity point of
view, we executed a namespace-to-namespace failover and
scaling in our experiments. Of course, such use cases can also
be applicable in a multi-cloud environment. Figure 4 shows
the low-level design of the testbed from networking point-of-
view. Mobile Node (MN) connects to a router (R) in order to
add additional network between MN and HA (not being
directly connected via home link). Corresponding Node (CN)
represent a node which is not inside the mobility management
domain.

Figure 4 - Low-level design of the testbed

We added readiness and liveness probes to our HA-PP Pod.
These probes monitor whether the corresponding RAW socket
for sending and receiving is open. The following values are
used:

• Initial delay of Readiness Probe: 20 sec

• PeriodSeconds of Readiness Probe: 90 sec

• Initial delay of Liveness Probe: 15 sec

• PeriodSeconds of Liveness Probe: 60 sec

B. Utilization for Failover

Failover is the process when the traffic to a malfunctioning
network function is offloaded to a working one. Our
measurements logged how long it takes for an automatic
failover managed by ONAP toolsets. In the context of CN-
MIPv6, this means adding a new HA-PP to a different
namespace, and at the end of the failover, this new HA-PP will
be the new anchor point.

Figure 5 - ONAP-based execution workflow of the

failover use case

Failover execution steps from the ONAP point of view are
depicted in Figure 5 with the following explanation:

1. VES fault message is sent out from Home Agent
Backend (HA-B).

2. VES collector catches VES fault message, does
scheme validation, and sends it out to DMAAP.

3. AA reads the corresponding DMAAP topic
continuously, whether or not a new message arrives.
If yes, based on its own logic, it decides what Policy
Model to trigger via the Onset message.

4. Onset message is sent out to the corresponding topic
of DMAAP.

5. The Policy framework reads that topic in DMAAP.

6. The Policy calls the Scale-out workflow (Create VF
module).

7. CDS and SO create the new VF module (Helm chart)
instance in a different namespace.

8. The Policy executes Scale-in workflow in CDS.

9. CDS and SO delete the existing VF module (Helm
chart) in the original namespace. The failover
management procedure is finished.

Figure 3 – Orchestration levels of CN-MIPv6

IV. MEASUREMENTS AND NUMERICAL ANALYSIS

A. Testbed design

The testbed runs on a Nokia Airframe server with Ubuntu
18.04 LTS. On the top of one VM, Kubernetes 1.20.2 is
installed, which hosts the HA-PPs. From a simplicity point of
view, we executed a namespace-to-namespace failover and
scaling in our experiments. Of course, such use cases can also
be applicable in a multi-cloud environment. Figure 4 shows
the low-level design of the testbed from networking point-of-
view. Mobile Node (MN) connects to a router (R) in order to
add additional network between MN and HA (not being
directly connected via home link). Corresponding Node (CN)
represent a node which is not inside the mobility management
domain.

Figure 4 - Low-level design of the testbed

We added readiness and liveness probes to our HA-PP Pod.
These probes monitor whether the corresponding RAW socket
for sending and receiving is open. The following values are
used:

• Initial delay of Readiness Probe: 20 sec

• PeriodSeconds of Readiness Probe: 90 sec

• Initial delay of Liveness Probe: 15 sec

• PeriodSeconds of Liveness Probe: 60 sec

B. Utilization for Failover

Failover is the process when the traffic to a malfunctioning
network function is offloaded to a working one. Our
measurements logged how long it takes for an automatic
failover managed by ONAP toolsets. In the context of CN-
MIPv6, this means adding a new HA-PP to a different
namespace, and at the end of the failover, this new HA-PP will
be the new anchor point.

Figure 5 - ONAP-based execution workflow of the

failover use case

Failover execution steps from the ONAP point of view are
depicted in Figure 5 with the following explanation:

1. VES fault message is sent out from Home Agent
Backend (HA-B).

2. VES collector catches VES fault message, does
scheme validation, and sends it out to DMAAP.

3. AA reads the corresponding DMAAP topic
continuously, whether or not a new message arrives.
If yes, based on its own logic, it decides what Policy
Model to trigger via the Onset message.

4. Onset message is sent out to the corresponding topic
of DMAAP.

5. The Policy framework reads that topic in DMAAP.

6. The Policy calls the Scale-out workflow (Create VF
module).

7. CDS and SO create the new VF module (Helm chart)
instance in a different namespace.

8. The Policy executes Scale-in workflow in CDS.

9. CDS and SO delete the existing VF module (Helm
chart) in the original namespace. The failover
management procedure is finished.

Figure 3 – Orchestration levels of CN-MIPv6

IV. MEASUREMENTS AND NUMERICAL ANALYSIS

A. Testbed design

The testbed runs on a Nokia Airframe server with Ubuntu
18.04 LTS. On the top of one VM, Kubernetes 1.20.2 is
installed, which hosts the HA-PPs. From a simplicity point of
view, we executed a namespace-to-namespace failover and
scaling in our experiments. Of course, such use cases can also
be applicable in a multi-cloud environment. Figure 4 shows
the low-level design of the testbed from networking point-of-
view. Mobile Node (MN) connects to a router (R) in order to
add additional network between MN and HA (not being
directly connected via home link). Corresponding Node (CN)
represent a node which is not inside the mobility management
domain.

Figure 4 - Low-level design of the testbed

We added readiness and liveness probes to our HA-PP Pod.
These probes monitor whether the corresponding RAW socket
for sending and receiving is open. The following values are
used:

• Initial delay of Readiness Probe: 20 sec

• PeriodSeconds of Readiness Probe: 90 sec

• Initial delay of Liveness Probe: 15 sec

• PeriodSeconds of Liveness Probe: 60 sec

B. Utilization for Failover

Failover is the process when the traffic to a malfunctioning
network function is offloaded to a working one. Our
measurements logged how long it takes for an automatic
failover managed by ONAP toolsets. In the context of CN-
MIPv6, this means adding a new HA-PP to a different
namespace, and at the end of the failover, this new HA-PP will
be the new anchor point.

Figure 5 - ONAP-based execution workflow of the

failover use case

Failover execution steps from the ONAP point of view are
depicted in Figure 5 with the following explanation:

1. VES fault message is sent out from Home Agent
Backend (HA-B).

2. VES collector catches VES fault message, does
scheme validation, and sends it out to DMAAP.

3. AA reads the corresponding DMAAP topic
continuously, whether or not a new message arrives.
If yes, based on its own logic, it decides what Policy
Model to trigger via the Onset message.

4. Onset message is sent out to the corresponding topic
of DMAAP.

5. The Policy framework reads that topic in DMAAP.

6. The Policy calls the Scale-out workflow (Create VF
module).

7. CDS and SO create the new VF module (Helm chart)
instance in a different namespace.

8. The Policy executes Scale-in workflow in CDS.

9. CDS and SO delete the existing VF module (Helm
chart) in the original namespace. The failover
management procedure is finished.

Figure 3 – Orchestration levels of CN-MIPv6

IV. MEASUREMENTS AND NUMERICAL ANALYSIS

A. Testbed design

The testbed runs on a Nokia Airframe server with Ubuntu
18.04 LTS. On the top of one VM, Kubernetes 1.20.2 is
installed, which hosts the HA-PPs. From a simplicity point of
view, we executed a namespace-to-namespace failover and
scaling in our experiments. Of course, such use cases can also
be applicable in a multi-cloud environment. Figure 4 shows
the low-level design of the testbed from networking point-of-
view. Mobile Node (MN) connects to a router (R) in order to
add additional network between MN and HA (not being
directly connected via home link). Corresponding Node (CN)
represent a node which is not inside the mobility management
domain.

Figure 4 - Low-level design of the testbed

We added readiness and liveness probes to our HA-PP Pod.
These probes monitor whether the corresponding RAW socket
for sending and receiving is open. The following values are
used:

• Initial delay of Readiness Probe: 20 sec

• PeriodSeconds of Readiness Probe: 90 sec

• Initial delay of Liveness Probe: 15 sec

• PeriodSeconds of Liveness Probe: 60 sec

B. Utilization for Failover

Failover is the process when the traffic to a malfunctioning
network function is offloaded to a working one. Our
measurements logged how long it takes for an automatic
failover managed by ONAP toolsets. In the context of CN-
MIPv6, this means adding a new HA-PP to a different
namespace, and at the end of the failover, this new HA-PP will
be the new anchor point.

Figure 5 - ONAP-based execution workflow of the

failover use case

Failover execution steps from the ONAP point of view are
depicted in Figure 5 with the following explanation:

1. VES fault message is sent out from Home Agent
Backend (HA-B).

2. VES collector catches VES fault message, does
scheme validation, and sends it out to DMAAP.

3. AA reads the corresponding DMAAP topic
continuously, whether or not a new message arrives.
If yes, based on its own logic, it decides what Policy
Model to trigger via the Onset message.

4. Onset message is sent out to the corresponding topic
of DMAAP.

5. The Policy framework reads that topic in DMAAP.

6. The Policy calls the Scale-out workflow (Create VF
module).

7. CDS and SO create the new VF module (Helm chart)
instance in a different namespace.

8. The Policy executes Scale-in workflow in CDS.

9. CDS and SO delete the existing VF module (Helm
chart) in the original namespace. The failover
management procedure is finished.

Figure 3 – Orchestration levels of CN-MIPv6

IV. MEASUREMENTS AND NUMERICAL ANALYSIS

A. Testbed design

The testbed runs on a Nokia Airframe server with Ubuntu
18.04 LTS. On the top of one VM, Kubernetes 1.20.2 is
installed, which hosts the HA-PPs. From a simplicity point of
view, we executed a namespace-to-namespace failover and
scaling in our experiments. Of course, such use cases can also
be applicable in a multi-cloud environment. Figure 4 shows
the low-level design of the testbed from networking point-of-
view. Mobile Node (MN) connects to a router (R) in order to
add additional network between MN and HA (not being
directly connected via home link). Corresponding Node (CN)
represent a node which is not inside the mobility management
domain.

Figure 4 - Low-level design of the testbed

We added readiness and liveness probes to our HA-PP Pod.
These probes monitor whether the corresponding RAW socket
for sending and receiving is open. The following values are
used:

• Initial delay of Readiness Probe: 20 sec

• PeriodSeconds of Readiness Probe: 90 sec

• Initial delay of Liveness Probe: 15 sec

• PeriodSeconds of Liveness Probe: 60 sec

B. Utilization for Failover

Failover is the process when the traffic to a malfunctioning
network function is offloaded to a working one. Our
measurements logged how long it takes for an automatic
failover managed by ONAP toolsets. In the context of CN-
MIPv6, this means adding a new HA-PP to a different
namespace, and at the end of the failover, this new HA-PP will
be the new anchor point.

Figure 5 - ONAP-based execution workflow of the

failover use case

Failover execution steps from the ONAP point of view are
depicted in Figure 5 with the following explanation:

1. VES fault message is sent out from Home Agent
Backend (HA-B).

2. VES collector catches VES fault message, does
scheme validation, and sends it out to DMAAP.

3. AA reads the corresponding DMAAP topic
continuously, whether or not a new message arrives.
If yes, based on its own logic, it decides what Policy
Model to trigger via the Onset message.

4. Onset message is sent out to the corresponding topic
of DMAAP.

5. The Policy framework reads that topic in DMAAP.

6. The Policy calls the Scale-out workflow (Create VF
module).

7. CDS and SO create the new VF module (Helm chart)
instance in a different namespace.

8. The Policy executes Scale-in workflow in CDS.

9. CDS and SO delete the existing VF module (Helm
chart) in the original namespace. The failover
management procedure is finished.

Figure 3 – Orchestration levels of CN-MIPv6

IV. MEASUREMENTS AND NUMERICAL ANALYSIS

A. Testbed design

The testbed runs on a Nokia Airframe server with Ubuntu
18.04 LTS. On the top of one VM, Kubernetes 1.20.2 is
installed, which hosts the HA-PPs. From a simplicity point of
view, we executed a namespace-to-namespace failover and
scaling in our experiments. Of course, such use cases can also
be applicable in a multi-cloud environment. Figure 4 shows
the low-level design of the testbed from networking point-of-
view. Mobile Node (MN) connects to a router (R) in order to
add additional network between MN and HA (not being
directly connected via home link). Corresponding Node (CN)
represent a node which is not inside the mobility management
domain.

Figure 4 - Low-level design of the testbed

We added readiness and liveness probes to our HA-PP Pod.
These probes monitor whether the corresponding RAW socket
for sending and receiving is open. The following values are
used:

• Initial delay of Readiness Probe: 20 sec

• PeriodSeconds of Readiness Probe: 90 sec

• Initial delay of Liveness Probe: 15 sec

• PeriodSeconds of Liveness Probe: 60 sec

B. Utilization for Failover

Failover is the process when the traffic to a malfunctioning
network function is offloaded to a working one. Our
measurements logged how long it takes for an automatic
failover managed by ONAP toolsets. In the context of CN-
MIPv6, this means adding a new HA-PP to a different
namespace, and at the end of the failover, this new HA-PP will
be the new anchor point.

Figure 5 - ONAP-based execution workflow of the

failover use case

Failover execution steps from the ONAP point of view are
depicted in Figure 5 with the following explanation:

1. VES fault message is sent out from Home Agent
Backend (HA-B).

2. VES collector catches VES fault message, does
scheme validation, and sends it out to DMAAP.

3. AA reads the corresponding DMAAP topic
continuously, whether or not a new message arrives.
If yes, based on its own logic, it decides what Policy
Model to trigger via the Onset message.

4. Onset message is sent out to the corresponding topic
of DMAAP.

5. The Policy framework reads that topic in DMAAP.

6. The Policy calls the Scale-out workflow (Create VF
module).

7. CDS and SO create the new VF module (Helm chart)
instance in a different namespace.

8. The Policy executes Scale-in workflow in CDS.

9. CDS and SO delete the existing VF module (Helm
chart) in the original namespace. The failover
management procedure is finished.

Closed-loop Orchestration for
Cloud-native Mobile IPv6

INFOCOMMUNICATIONS JOURNAL

MARCH 2023 • VOLUME XV • NUMBER 1 47

Figure 6 shows the network traffic during failover. The
content of the data plane is emulated by ICMPv6 messages.
First, MN attaches to HA-PP#1. When HA-PP#1 fails, a new
Binding Update (BU) is sent out to HA-PP#2 from MN, and
the IPv6inIPv6 tunnel is set up to the new HA-PP. The CN is
now reachable via HA-PP#2. MN can detect HA failure as
routing is no longer working towards the tunnel. The details
of the IPv6 address allocation during failover can be found at
the end of the paper in Figure 12 and Figure 13. Home Address
(HoA) is represented by the tunnel endpoint IPv6 address of
MN, which is permanent. After the failover, the routing in
connection with the HA-PP and CN is modified as the MN,
and HoA is reachable via a different forwarding entity
(different HA-PP). Of course, this can be updated by any
dynamic routing protocol or static routing, but this is not in the
scope of this paper.

Figure 6 – CN-MIPv6 signaling flow in case of ONAP-

based failover

A complete test framework is used with several
measurement points for the process mentioned above. The
exact measurement steps of failover can be seen at the end of
the paper in Figure 14. The test framework is a separate entity
measuring service outage time. By service outage, we mean
the time when the bidirectional tunnel is broken and the new
one is set up on a newly created HA-PP. Furthermore, the test
framework connects to all the elements to initialize BU and
adjust routing before and after failover, details in Figure 12,
Figure 13, Figure 14, Figure 15, Figure 16 and Figure 17.

We have executed the failover scenario 100 times. The
corresponding box plot can be seen in Figure 7. Meanwhile,
numerical results are shown in Table 1. The failover is
executed within 106.26 sec on average (median: 103.93,
stdev: 30.42. The maximum is 210.19 sec, while the minimum
is 58.83 sec. During measurements, we experienced that,
sometimes, ONAP waited for an uncertain time during the
same process. This explains the stdev and the high difference
between the minimum and maximum.

Figure 7 - Failover time results

MIN AVG Median MAX STDEV
58.83 106.26 103.92 210.19 30.42
Table 1. - Numerical results of failover time (sec)

C. Utilisation for Scaling

Scaling is the workflow when additional executors are added
or removed to/from the system in order to deal with the
changed traffic. In the case of our CN-MIPv6 mobility
management service, we emulated how to add a new HA-PP
when a certain traffic threshold is reached. At the end of the
automatic scaling, both HA-PP components will serve the
traffic.

Figure 8 - ONAP-based execution workflow of scaling

Scaling execution steps from the ONAP point of view -
shown in Figure 8 – are the followings:

1. HA-B sends out VES Measurement event.
2. VES Collector validates its schema and puts it to the

corresponding DMAAP topic.
3. AA gets the VES message and calculates if scaling

is needed or not.
4. AA sends out the Onset message to DMAAP to

trigger a Policy model.
5. The Policy gets the Onset message.
6. The Policy calls for scale-out workflow in CDS.
7. CDS and SO executes the scale-out request and

create a new VF module instance in a different
namespace.

Figure 6 shows the network traffic during failover. The
content of the data plane is emulated by ICMPv6 messages.
First, MN attaches to HA-PP#1. When HA-PP#1 fails, a new
Binding Update (BU) is sent out to HA-PP#2 from MN, and
the IPv6inIPv6 tunnel is set up to the new HA-PP. The CN is
now reachable via HA-PP#2. MN can detect HA failure as
routing is no longer working towards the tunnel. The details
of the IPv6 address allocation during failover can be found at
the end of the paper in Figure 12 and Figure 13. Home Address
(HoA) is represented by the tunnel endpoint IPv6 address of
MN, which is permanent. After the failover, the routing in
connection with the HA-PP and CN is modified as the MN,
and HoA is reachable via a different forwarding entity
(different HA-PP). Of course, this can be updated by any
dynamic routing protocol or static routing, but this is not in the
scope of this paper.

Figure 6 – CN-MIPv6 signaling flow in case of ONAP-

based failover

A complete test framework is used with several
measurement points for the process mentioned above. The
exact measurement steps of failover can be seen at the end of
the paper in Figure 14. The test framework is a separate entity
measuring service outage time. By service outage, we mean
the time when the bidirectional tunnel is broken and the new
one is set up on a newly created HA-PP. Furthermore, the test
framework connects to all the elements to initialize BU and
adjust routing before and after failover, details in Figure 12,
Figure 13, Figure 14, Figure 15, Figure 16 and Figure 17.

We have executed the failover scenario 100 times. The
corresponding box plot can be seen in Figure 7. Meanwhile,
numerical results are shown in Table 1. The failover is
executed within 106.26 sec on average (median: 103.93,
stdev: 30.42. The maximum is 210.19 sec, while the minimum
is 58.83 sec. During measurements, we experienced that,
sometimes, ONAP waited for an uncertain time during the
same process. This explains the stdev and the high difference
between the minimum and maximum.

Figure 7 - Failover time results

MIN AVG Median MAX STDEV
58.83 106.26 103.92 210.19 30.42
Table 1. - Numerical results of failover time (sec)

C. Utilisation for Scaling

Scaling is the workflow when additional executors are added
or removed to/from the system in order to deal with the
changed traffic. In the case of our CN-MIPv6 mobility
management service, we emulated how to add a new HA-PP
when a certain traffic threshold is reached. At the end of the
automatic scaling, both HA-PP components will serve the
traffic.

Figure 8 - ONAP-based execution workflow of scaling

Scaling execution steps from the ONAP point of view -
shown in Figure 8 – are the followings:

1. HA-B sends out VES Measurement event.
2. VES Collector validates its schema and puts it to the

corresponding DMAAP topic.
3. AA gets the VES message and calculates if scaling

is needed or not.
4. AA sends out the Onset message to DMAAP to

trigger a Policy model.
5. The Policy gets the Onset message.
6. The Policy calls for scale-out workflow in CDS.
7. CDS and SO executes the scale-out request and

create a new VF module instance in a different
namespace.

Figure 6 shows the network traffic during failover. The
content of the data plane is emulated by ICMPv6 messages.
First, MN attaches to HA-PP#1. When HA-PP#1 fails, a new
Binding Update (BU) is sent out to HA-PP#2 from MN, and
the IPv6inIPv6 tunnel is set up to the new HA-PP. The CN is
now reachable via HA-PP#2. MN can detect HA failure as
routing is no longer working towards the tunnel. The details
of the IPv6 address allocation during failover can be found at
the end of the paper in Figure 12 and Figure 13. Home Address
(HoA) is represented by the tunnel endpoint IPv6 address of
MN, which is permanent. After the failover, the routing in
connection with the HA-PP and CN is modified as the MN,
and HoA is reachable via a different forwarding entity
(different HA-PP). Of course, this can be updated by any
dynamic routing protocol or static routing, but this is not in the
scope of this paper.

Figure 6 – CN-MIPv6 signaling flow in case of ONAP-

based failover

A complete test framework is used with several
measurement points for the process mentioned above. The
exact measurement steps of failover can be seen at the end of
the paper in Figure 14. The test framework is a separate entity
measuring service outage time. By service outage, we mean
the time when the bidirectional tunnel is broken and the new
one is set up on a newly created HA-PP. Furthermore, the test
framework connects to all the elements to initialize BU and
adjust routing before and after failover, details in Figure 12,
Figure 13, Figure 14, Figure 15, Figure 16 and Figure 17.

We have executed the failover scenario 100 times. The
corresponding box plot can be seen in Figure 7. Meanwhile,
numerical results are shown in Table 1. The failover is
executed within 106.26 sec on average (median: 103.93,
stdev: 30.42. The maximum is 210.19 sec, while the minimum
is 58.83 sec. During measurements, we experienced that,
sometimes, ONAP waited for an uncertain time during the
same process. This explains the stdev and the high difference
between the minimum and maximum.

Figure 7 - Failover time results

MIN AVG Median MAX STDEV
58.83 106.26 103.92 210.19 30.42
Table 1. - Numerical results of failover time (sec)

C. Utilisation for Scaling

Scaling is the workflow when additional executors are added
or removed to/from the system in order to deal with the
changed traffic. In the case of our CN-MIPv6 mobility
management service, we emulated how to add a new HA-PP
when a certain traffic threshold is reached. At the end of the
automatic scaling, both HA-PP components will serve the
traffic.

Figure 8 - ONAP-based execution workflow of scaling

Scaling execution steps from the ONAP point of view -
shown in Figure 8 – are the followings:

1. HA-B sends out VES Measurement event.
2. VES Collector validates its schema and puts it to the

corresponding DMAAP topic.
3. AA gets the VES message and calculates if scaling

is needed or not.
4. AA sends out the Onset message to DMAAP to

trigger a Policy model.
5. The Policy gets the Onset message.
6. The Policy calls for scale-out workflow in CDS.
7. CDS and SO executes the scale-out request and

create a new VF module instance in a different
namespace.

Figure 6 shows the network traffic during failover. The
content of the data plane is emulated by ICMPv6 messages.
First, MN attaches to HA-PP#1. When HA-PP#1 fails, a new
Binding Update (BU) is sent out to HA-PP#2 from MN, and
the IPv6inIPv6 tunnel is set up to the new HA-PP. The CN is
now reachable via HA-PP#2. MN can detect HA failure as
routing is no longer working towards the tunnel. The details
of the IPv6 address allocation during failover can be found at
the end of the paper in Figure 12 and Figure 13. Home Address
(HoA) is represented by the tunnel endpoint IPv6 address of
MN, which is permanent. After the failover, the routing in
connection with the HA-PP and CN is modified as the MN,
and HoA is reachable via a different forwarding entity
(different HA-PP). Of course, this can be updated by any
dynamic routing protocol or static routing, but this is not in the
scope of this paper.

Figure 6 – CN-MIPv6 signaling flow in case of ONAP-

based failover

A complete test framework is used with several
measurement points for the process mentioned above. The
exact measurement steps of failover can be seen at the end of
the paper in Figure 14. The test framework is a separate entity
measuring service outage time. By service outage, we mean
the time when the bidirectional tunnel is broken and the new
one is set up on a newly created HA-PP. Furthermore, the test
framework connects to all the elements to initialize BU and
adjust routing before and after failover, details in Figure 12,
Figure 13, Figure 14, Figure 15, Figure 16 and Figure 17.

We have executed the failover scenario 100 times. The
corresponding box plot can be seen in Figure 7. Meanwhile,
numerical results are shown in Table 1. The failover is
executed within 106.26 sec on average (median: 103.93,
stdev: 30.42. The maximum is 210.19 sec, while the minimum
is 58.83 sec. During measurements, we experienced that,
sometimes, ONAP waited for an uncertain time during the
same process. This explains the stdev and the high difference
between the minimum and maximum.

Figure 7 - Failover time results

MIN AVG Median MAX STDEV
58.83 106.26 103.92 210.19 30.42
Table 1. - Numerical results of failover time (sec)

C. Utilisation for Scaling

Scaling is the workflow when additional executors are added
or removed to/from the system in order to deal with the
changed traffic. In the case of our CN-MIPv6 mobility
management service, we emulated how to add a new HA-PP
when a certain traffic threshold is reached. At the end of the
automatic scaling, both HA-PP components will serve the
traffic.

Figure 8 - ONAP-based execution workflow of scaling

Scaling execution steps from the ONAP point of view -
shown in Figure 8 – are the followings:

1. HA-B sends out VES Measurement event.
2. VES Collector validates its schema and puts it to the

corresponding DMAAP topic.
3. AA gets the VES message and calculates if scaling

is needed or not.
4. AA sends out the Onset message to DMAAP to

trigger a Policy model.
5. The Policy gets the Onset message.
6. The Policy calls for scale-out workflow in CDS.
7. CDS and SO executes the scale-out request and

create a new VF module instance in a different
namespace.

Figure 6 – CN-MIPv6 signaling flow in case of ONAP- based failover

Figure 8 – ONAP-based execution workflow of scaling

Figure 7 – Failover time results

Figure 6 shows the network traffic during failover. The
content of the data plane is emulated by ICMPv6 messages.
First, MN attaches to HA-PP#1. When HA-PP#1 fails, a new
Binding Update (BU) is sent out to HA-PP#2 from MN, and
the IPv6inIPv6 tunnel is set up to the new HA-PP. The CN is
now reachable via HA-PP#2. MN can detect HA failure as
routing is no longer working towards the tunnel. The details
of the IPv6 address allocation during failover can be found at
the end of the paper in Figure 12 and Figure 13. Home Address
(HoA) is represented by the tunnel endpoint IPv6 address of
MN, which is permanent. After the failover, the routing in
connection with the HA-PP and CN is modified as the MN,
and HoA is reachable via a different forwarding entity
(different HA-PP). Of course, this can be updated by any
dynamic routing protocol or static routing, but this is not in the
scope of this paper.

Figure 6 – CN-MIPv6 signaling flow in case of ONAP-

based failover

A complete test framework is used with several
measurement points for the process mentioned above. The
exact measurement steps of failover can be seen at the end of
the paper in Figure 14. The test framework is a separate entity
measuring service outage time. By service outage, we mean
the time when the bidirectional tunnel is broken and the new
one is set up on a newly created HA-PP. Furthermore, the test
framework connects to all the elements to initialize BU and
adjust routing before and after failover, details in Figure 12,
Figure 13, Figure 14, Figure 15, Figure 16 and Figure 17.

We have executed the failover scenario 100 times. The
corresponding box plot can be seen in Figure 7. Meanwhile,
numerical results are shown in Table 1. The failover is
executed within 106.26 sec on average (median: 103.93,
stdev: 30.42. The maximum is 210.19 sec, while the minimum
is 58.83 sec. During measurements, we experienced that,
sometimes, ONAP waited for an uncertain time during the
same process. This explains the stdev and the high difference
between the minimum and maximum.

Figure 7 - Failover time results

MIN AVG Median MAX STDEV
58.83 106.26 103.92 210.19 30.42
Table 1. - Numerical results of failover time (sec)

C. Utilisation for Scaling

Scaling is the workflow when additional executors are added
or removed to/from the system in order to deal with the
changed traffic. In the case of our CN-MIPv6 mobility
management service, we emulated how to add a new HA-PP
when a certain traffic threshold is reached. At the end of the
automatic scaling, both HA-PP components will serve the
traffic.

Figure 8 - ONAP-based execution workflow of scaling

Scaling execution steps from the ONAP point of view -
shown in Figure 8 – are the followings:

1. HA-B sends out VES Measurement event.
2. VES Collector validates its schema and puts it to the

corresponding DMAAP topic.
3. AA gets the VES message and calculates if scaling

is needed or not.
4. AA sends out the Onset message to DMAAP to

trigger a Policy model.
5. The Policy gets the Onset message.
6. The Policy calls for scale-out workflow in CDS.
7. CDS and SO executes the scale-out request and

create a new VF module instance in a different
namespace.

Figure 6 shows the network traffic during failover. The
content of the data plane is emulated by ICMPv6 messages.
First, MN attaches to HA-PP#1. When HA-PP#1 fails, a new
Binding Update (BU) is sent out to HA-PP#2 from MN, and
the IPv6inIPv6 tunnel is set up to the new HA-PP. The CN is
now reachable via HA-PP#2. MN can detect HA failure as
routing is no longer working towards the tunnel. The details
of the IPv6 address allocation during failover can be found at
the end of the paper in Figure 12 and Figure 13. Home Address
(HoA) is represented by the tunnel endpoint IPv6 address of
MN, which is permanent. After the failover, the routing in
connection with the HA-PP and CN is modified as the MN,
and HoA is reachable via a different forwarding entity
(different HA-PP). Of course, this can be updated by any
dynamic routing protocol or static routing, but this is not in the
scope of this paper.

Figure 6 – CN-MIPv6 signaling flow in case of ONAP-

based failover

A complete test framework is used with several
measurement points for the process mentioned above. The
exact measurement steps of failover can be seen at the end of
the paper in Figure 14. The test framework is a separate entity
measuring service outage time. By service outage, we mean
the time when the bidirectional tunnel is broken and the new
one is set up on a newly created HA-PP. Furthermore, the test
framework connects to all the elements to initialize BU and
adjust routing before and after failover, details in Figure 12,
Figure 13, Figure 14, Figure 15, Figure 16 and Figure 17.

We have executed the failover scenario 100 times. The
corresponding box plot can be seen in Figure 7. Meanwhile,
numerical results are shown in Table 1. The failover is
executed within 106.26 sec on average (median: 103.93,
stdev: 30.42. The maximum is 210.19 sec, while the minimum
is 58.83 sec. During measurements, we experienced that,
sometimes, ONAP waited for an uncertain time during the
same process. This explains the stdev and the high difference
between the minimum and maximum.

Figure 7 - Failover time results

MIN AVG Median MAX STDEV
58.83 106.26 103.92 210.19 30.42
Table 1. - Numerical results of failover time (sec)

C. Utilisation for Scaling

Scaling is the workflow when additional executors are added
or removed to/from the system in order to deal with the
changed traffic. In the case of our CN-MIPv6 mobility
management service, we emulated how to add a new HA-PP
when a certain traffic threshold is reached. At the end of the
automatic scaling, both HA-PP components will serve the
traffic.

Figure 8 - ONAP-based execution workflow of scaling

Scaling execution steps from the ONAP point of view -
shown in Figure 8 – are the followings:

1. HA-B sends out VES Measurement event.
2. VES Collector validates its schema and puts it to the

corresponding DMAAP topic.
3. AA gets the VES message and calculates if scaling

is needed or not.
4. AA sends out the Onset message to DMAAP to

trigger a Policy model.
5. The Policy gets the Onset message.
6. The Policy calls for scale-out workflow in CDS.
7. CDS and SO executes the scale-out request and

create a new VF module instance in a different
namespace.

Figure 6 shows the network traffic during failover. The
content of the data plane is emulated by ICMPv6 messages.
First, MN attaches to HA-PP#1. When HA-PP#1 fails, a new
Binding Update (BU) is sent out to HA-PP#2 from MN, and
the IPv6inIPv6 tunnel is set up to the new HA-PP. The CN is
now reachable via HA-PP#2. MN can detect HA failure as
routing is no longer working towards the tunnel. The details
of the IPv6 address allocation during failover can be found at
the end of the paper in Figure 12 and Figure 13. Home Address
(HoA) is represented by the tunnel endpoint IPv6 address of
MN, which is permanent. After the failover, the routing in
connection with the HA-PP and CN is modified as the MN,
and HoA is reachable via a different forwarding entity
(different HA-PP). Of course, this can be updated by any
dynamic routing protocol or static routing, but this is not in the
scope of this paper.

Figure 6 – CN-MIPv6 signaling flow in case of ONAP-

based failover

A complete test framework is used with several
measurement points for the process mentioned above. The
exact measurement steps of failover can be seen at the end of
the paper in Figure 14. The test framework is a separate entity
measuring service outage time. By service outage, we mean
the time when the bidirectional tunnel is broken and the new
one is set up on a newly created HA-PP. Furthermore, the test
framework connects to all the elements to initialize BU and
adjust routing before and after failover, details in Figure 12,
Figure 13, Figure 14, Figure 15, Figure 16 and Figure 17.

We have executed the failover scenario 100 times. The
corresponding box plot can be seen in Figure 7. Meanwhile,
numerical results are shown in Table 1. The failover is
executed within 106.26 sec on average (median: 103.93,
stdev: 30.42. The maximum is 210.19 sec, while the minimum
is 58.83 sec. During measurements, we experienced that,
sometimes, ONAP waited for an uncertain time during the
same process. This explains the stdev and the high difference
between the minimum and maximum.

Figure 7 - Failover time results

MIN AVG Median MAX STDEV
58.83 106.26 103.92 210.19 30.42
Table 1. - Numerical results of failover time (sec)

C. Utilisation for Scaling

Scaling is the workflow when additional executors are added
or removed to/from the system in order to deal with the
changed traffic. In the case of our CN-MIPv6 mobility
management service, we emulated how to add a new HA-PP
when a certain traffic threshold is reached. At the end of the
automatic scaling, both HA-PP components will serve the
traffic.

Figure 8 - ONAP-based execution workflow of scaling

Scaling execution steps from the ONAP point of view -
shown in Figure 8 – are the followings:

1. HA-B sends out VES Measurement event.
2. VES Collector validates its schema and puts it to the

corresponding DMAAP topic.
3. AA gets the VES message and calculates if scaling

is needed or not.
4. AA sends out the Onset message to DMAAP to

trigger a Policy model.
5. The Policy gets the Onset message.
6. The Policy calls for scale-out workflow in CDS.
7. CDS and SO executes the scale-out request and

create a new VF module instance in a different
namespace.

Figure 6 shows the network traffic during failover. The
content of the data plane is emulated by ICMPv6 messages.
First, MN attaches to HA-PP#1. When HA-PP#1 fails, a new
Binding Update (BU) is sent out to HA-PP#2 from MN, and
the IPv6inIPv6 tunnel is set up to the new HA-PP. The CN is
now reachable via HA-PP#2. MN can detect HA failure as
routing is no longer working towards the tunnel. The details
of the IPv6 address allocation during failover can be found at
the end of the paper in Figure 12 and Figure 13. Home Address
(HoA) is represented by the tunnel endpoint IPv6 address of
MN, which is permanent. After the failover, the routing in
connection with the HA-PP and CN is modified as the MN,
and HoA is reachable via a different forwarding entity
(different HA-PP). Of course, this can be updated by any
dynamic routing protocol or static routing, but this is not in the
scope of this paper.

Figure 6 – CN-MIPv6 signaling flow in case of ONAP-

based failover

A complete test framework is used with several
measurement points for the process mentioned above. The
exact measurement steps of failover can be seen at the end of
the paper in Figure 14. The test framework is a separate entity
measuring service outage time. By service outage, we mean
the time when the bidirectional tunnel is broken and the new
one is set up on a newly created HA-PP. Furthermore, the test
framework connects to all the elements to initialize BU and
adjust routing before and after failover, details in Figure 12,
Figure 13, Figure 14, Figure 15, Figure 16 and Figure 17.

We have executed the failover scenario 100 times. The
corresponding box plot can be seen in Figure 7. Meanwhile,
numerical results are shown in Table 1. The failover is
executed within 106.26 sec on average (median: 103.93,
stdev: 30.42. The maximum is 210.19 sec, while the minimum
is 58.83 sec. During measurements, we experienced that,
sometimes, ONAP waited for an uncertain time during the
same process. This explains the stdev and the high difference
between the minimum and maximum.

Figure 7 - Failover time results

MIN AVG Median MAX STDEV
58.83 106.26 103.92 210.19 30.42
Table 1. - Numerical results of failover time (sec)

C. Utilisation for Scaling

Scaling is the workflow when additional executors are added
or removed to/from the system in order to deal with the
changed traffic. In the case of our CN-MIPv6 mobility
management service, we emulated how to add a new HA-PP
when a certain traffic threshold is reached. At the end of the
automatic scaling, both HA-PP components will serve the
traffic.

Figure 8 - ONAP-based execution workflow of scaling

Scaling execution steps from the ONAP point of view -
shown in Figure 8 – are the followings:

1. HA-B sends out VES Measurement event.
2. VES Collector validates its schema and puts it to the

corresponding DMAAP topic.
3. AA gets the VES message and calculates if scaling

is needed or not.
4. AA sends out the Onset message to DMAAP to

trigger a Policy model.
5. The Policy gets the Onset message.
6. The Policy calls for scale-out workflow in CDS.
7. CDS and SO executes the scale-out request and

create a new VF module instance in a different
namespace.

TABLE I
Numerical results of failover time (sec)

Closed-loop Orchestration for
Cloud-native Mobile IPv6

MARCH 2023 • VOLUME XV • NUMBER 148

INFOCOMMUNICATIONS JOURNAL

Figure 10 – Measured throughput gain after scaling out (in Mbps)

Figure 11 – Measured throughput gain after scaling out (in percentage)

Figure 9 - Signaling of CN-MIPv6 in case of scaling

Figure 9 shows how scaling is executed from the CN-MIPv6
point of view. First, two MNs (MN#1, MN#2) are attached to
one HA-PP (HA-PP#1). After the ONAP recognizes the
overload of HA-PP#1, then the management system creates a
new one. From this point, MN#2 is reregistered via sending
BU to the newly created HA-PP#2, and the bidirectional
tunnel is set up to HA-PP#2 in the case of MN#2. Thus, the
CN is reachable via HA-PP#2 in the case of MN#2.
At the end of this paper, Figure 15 and Figure 17 present the
IPv6 address allocation during scaling. Similar logic can be
seen for IPv6 address allocation as in the case of failover.The
detailed measurement steps of the scaling use case can be
found at the end of the paper in Figure 16. This also uses the
same elements as the failover scenario. Meanwhile, Pods'
network interface capacities are limited to 1 Gbps to simulate
the limited capacity of a network device and packet
processing. The original throughput was about cc 900 Mpbs
for the MNs using one HA-PP instance. This leads to a
common base on measurement, and it is easier to compare
results. The scaling scenario has been executed 20 times.
Figure 10 and Figure 11 show the box plot of the results in
Mbps and percentage, respectively. Table 2 shows the
numerical results of the average gain for both MNs. After the
scaling, the throughput gain for MN#1 is 362.1 Mbps
(67.94%), while on MN#2, it is 329.5Mbps (65.4%). MN#2
shows a little less throughput gain, as it has an unconnected
period which includes new binding message exchanges and
tunnel setup time, while MN#1 is continuously connected to
the HA-PP#1.

Figure 10 – Measured throughput gain after scaling out

(in Mbps)

Figure 11 – Measured throughput gain after scaling out

(in percentage)

MN1

throughput
gain

(Mbps)

MN1
throughput

gain (%)

MN2
throughput

gain
(Mbps)

MN2
throughput

gain (%)

362.1 67.94 329.5 65.4
Table 2. - Numerical results of average throughput gain

after scaling

D. Availability and redundancy calculations

The availability of a telecommunication system is one of the
most critical quality metrics. By automating the failover
procedure of a network function, the availability of the
network function significantly improves.
A short recap, the availability of a single NF can be calculated
by

  



 (1)

where MTBF is Mean Time Between Failures, MTTR is
Mean Time to Repair.
Telco services provide high availability; for Ulra-Reliably
Low-Latency (URLLC) services, these expectations are
growing further. When the availability expectations for
service are in the range of five or six nines for the service
components, including the network function software, the
availability expectation is even higher. These figures are
achieved by applying redundancy schemes. There are no
widely agreed/accepted figures for software MTBF and

Figure 9 – Signaling of CN-MIPv6 in case of scaling

TABLE II
Numerical results of average throughput gain after scaling

Figure 9 - Signaling of CN-MIPv6 in case of scaling

Figure 9 shows how scaling is executed from the CN-MIPv6
point of view. First, two MNs (MN#1, MN#2) are attached to
one HA-PP (HA-PP#1). After the ONAP recognizes the
overload of HA-PP#1, then the management system creates a
new one. From this point, MN#2 is reregistered via sending
BU to the newly created HA-PP#2, and the bidirectional
tunnel is set up to HA-PP#2 in the case of MN#2. Thus, the
CN is reachable via HA-PP#2 in the case of MN#2.
At the end of this paper, Figure 15 and Figure 17 present the
IPv6 address allocation during scaling. Similar logic can be
seen for IPv6 address allocation as in the case of failover.The
detailed measurement steps of the scaling use case can be
found at the end of the paper in Figure 16. This also uses the
same elements as the failover scenario. Meanwhile, Pods'
network interface capacities are limited to 1 Gbps to simulate
the limited capacity of a network device and packet
processing. The original throughput was about cc 900 Mpbs
for the MNs using one HA-PP instance. This leads to a
common base on measurement, and it is easier to compare
results. The scaling scenario has been executed 20 times.
Figure 10 and Figure 11 show the box plot of the results in
Mbps and percentage, respectively. Table 2 shows the
numerical results of the average gain for both MNs. After the
scaling, the throughput gain for MN#1 is 362.1 Mbps
(67.94%), while on MN#2, it is 329.5Mbps (65.4%). MN#2
shows a little less throughput gain, as it has an unconnected
period which includes new binding message exchanges and
tunnel setup time, while MN#1 is continuously connected to
the HA-PP#1.

Figure 10 – Measured throughput gain after scaling out

(in Mbps)

Figure 11 – Measured throughput gain after scaling out

(in percentage)

MN1

throughput
gain

(Mbps)

MN1
throughput

gain (%)

MN2
throughput

gain
(Mbps)

MN2
throughput

gain (%)

362.1 67.94 329.5 65.4
Table 2. - Numerical results of average throughput gain

after scaling

D. Availability and redundancy calculations

The availability of a telecommunication system is one of the
most critical quality metrics. By automating the failover
procedure of a network function, the availability of the
network function significantly improves.
A short recap, the availability of a single NF can be calculated
by

  



 (1)

where MTBF is Mean Time Between Failures, MTTR is
Mean Time to Repair.
Telco services provide high availability; for Ulra-Reliably
Low-Latency (URLLC) services, these expectations are
growing further. When the availability expectations for
service are in the range of five or six nines for the service
components, including the network function software, the
availability expectation is even higher. These figures are
achieved by applying redundancy schemes. There are no
widely agreed/accepted figures for software MTBF and

Figure 9 - Signaling of CN-MIPv6 in case of scaling

Figure 9 shows how scaling is executed from the CN-MIPv6
point of view. First, two MNs (MN#1, MN#2) are attached to
one HA-PP (HA-PP#1). After the ONAP recognizes the
overload of HA-PP#1, then the management system creates a
new one. From this point, MN#2 is reregistered via sending
BU to the newly created HA-PP#2, and the bidirectional
tunnel is set up to HA-PP#2 in the case of MN#2. Thus, the
CN is reachable via HA-PP#2 in the case of MN#2.
At the end of this paper, Figure 15 and Figure 17 present the
IPv6 address allocation during scaling. Similar logic can be
seen for IPv6 address allocation as in the case of failover.The
detailed measurement steps of the scaling use case can be
found at the end of the paper in Figure 16. This also uses the
same elements as the failover scenario. Meanwhile, Pods'
network interface capacities are limited to 1 Gbps to simulate
the limited capacity of a network device and packet
processing. The original throughput was about cc 900 Mpbs
for the MNs using one HA-PP instance. This leads to a
common base on measurement, and it is easier to compare
results. The scaling scenario has been executed 20 times.
Figure 10 and Figure 11 show the box plot of the results in
Mbps and percentage, respectively. Table 2 shows the
numerical results of the average gain for both MNs. After the
scaling, the throughput gain for MN#1 is 362.1 Mbps
(67.94%), while on MN#2, it is 329.5Mbps (65.4%). MN#2
shows a little less throughput gain, as it has an unconnected
period which includes new binding message exchanges and
tunnel setup time, while MN#1 is continuously connected to
the HA-PP#1.

Figure 10 – Measured throughput gain after scaling out

(in Mbps)

Figure 11 – Measured throughput gain after scaling out

(in percentage)

MN1

throughput
gain

(Mbps)

MN1
throughput

gain (%)

MN2
throughput

gain
(Mbps)

MN2
throughput

gain (%)

362.1 67.94 329.5 65.4
Table 2. - Numerical results of average throughput gain

after scaling

D. Availability and redundancy calculations

The availability of a telecommunication system is one of the
most critical quality metrics. By automating the failover
procedure of a network function, the availability of the
network function significantly improves.
A short recap, the availability of a single NF can be calculated
by

  



 (1)

where MTBF is Mean Time Between Failures, MTTR is
Mean Time to Repair.
Telco services provide high availability; for Ulra-Reliably
Low-Latency (URLLC) services, these expectations are
growing further. When the availability expectations for
service are in the range of five or six nines for the service
components, including the network function software, the
availability expectation is even higher. These figures are
achieved by applying redundancy schemes. There are no
widely agreed/accepted figures for software MTBF and

Figure 9 - Signaling of CN-MIPv6 in case of scaling

Figure 9 shows how scaling is executed from the CN-MIPv6
point of view. First, two MNs (MN#1, MN#2) are attached to
one HA-PP (HA-PP#1). After the ONAP recognizes the
overload of HA-PP#1, then the management system creates a
new one. From this point, MN#2 is reregistered via sending
BU to the newly created HA-PP#2, and the bidirectional
tunnel is set up to HA-PP#2 in the case of MN#2. Thus, the
CN is reachable via HA-PP#2 in the case of MN#2.
At the end of this paper, Figure 15 and Figure 17 present the
IPv6 address allocation during scaling. Similar logic can be
seen for IPv6 address allocation as in the case of failover.The
detailed measurement steps of the scaling use case can be
found at the end of the paper in Figure 16. This also uses the
same elements as the failover scenario. Meanwhile, Pods'
network interface capacities are limited to 1 Gbps to simulate
the limited capacity of a network device and packet
processing. The original throughput was about cc 900 Mpbs
for the MNs using one HA-PP instance. This leads to a
common base on measurement, and it is easier to compare
results. The scaling scenario has been executed 20 times.
Figure 10 and Figure 11 show the box plot of the results in
Mbps and percentage, respectively. Table 2 shows the
numerical results of the average gain for both MNs. After the
scaling, the throughput gain for MN#1 is 362.1 Mbps
(67.94%), while on MN#2, it is 329.5Mbps (65.4%). MN#2
shows a little less throughput gain, as it has an unconnected
period which includes new binding message exchanges and
tunnel setup time, while MN#1 is continuously connected to
the HA-PP#1.

Figure 10 – Measured throughput gain after scaling out

(in Mbps)

Figure 11 – Measured throughput gain after scaling out

(in percentage)

MN1

throughput
gain

(Mbps)

MN1
throughput

gain (%)

MN2
throughput

gain
(Mbps)

MN2
throughput

gain (%)

362.1 67.94 329.5 65.4
Table 2. - Numerical results of average throughput gain

after scaling

D. Availability and redundancy calculations

The availability of a telecommunication system is one of the
most critical quality metrics. By automating the failover
procedure of a network function, the availability of the
network function significantly improves.
A short recap, the availability of a single NF can be calculated
by

  



 (1)

where MTBF is Mean Time Between Failures, MTTR is
Mean Time to Repair.
Telco services provide high availability; for Ulra-Reliably
Low-Latency (URLLC) services, these expectations are
growing further. When the availability expectations for
service are in the range of five or six nines for the service
components, including the network function software, the
availability expectation is even higher. These figures are
achieved by applying redundancy schemes. There are no
widely agreed/accepted figures for software MTBF and

Figure 9 - Signaling of CN-MIPv6 in case of scaling

Figure 9 shows how scaling is executed from the CN-MIPv6
point of view. First, two MNs (MN#1, MN#2) are attached to
one HA-PP (HA-PP#1). After the ONAP recognizes the
overload of HA-PP#1, then the management system creates a
new one. From this point, MN#2 is reregistered via sending
BU to the newly created HA-PP#2, and the bidirectional
tunnel is set up to HA-PP#2 in the case of MN#2. Thus, the
CN is reachable via HA-PP#2 in the case of MN#2.
At the end of this paper, Figure 15 and Figure 17 present the
IPv6 address allocation during scaling. Similar logic can be
seen for IPv6 address allocation as in the case of failover.The
detailed measurement steps of the scaling use case can be
found at the end of the paper in Figure 16. This also uses the
same elements as the failover scenario. Meanwhile, Pods'
network interface capacities are limited to 1 Gbps to simulate
the limited capacity of a network device and packet
processing. The original throughput was about cc 900 Mpbs
for the MNs using one HA-PP instance. This leads to a
common base on measurement, and it is easier to compare
results. The scaling scenario has been executed 20 times.
Figure 10 and Figure 11 show the box plot of the results in
Mbps and percentage, respectively. Table 2 shows the
numerical results of the average gain for both MNs. After the
scaling, the throughput gain for MN#1 is 362.1 Mbps
(67.94%), while on MN#2, it is 329.5Mbps (65.4%). MN#2
shows a little less throughput gain, as it has an unconnected
period which includes new binding message exchanges and
tunnel setup time, while MN#1 is continuously connected to
the HA-PP#1.

Figure 10 – Measured throughput gain after scaling out

(in Mbps)

Figure 11 – Measured throughput gain after scaling out

(in percentage)

MN1

throughput
gain

(Mbps)

MN1
throughput

gain (%)

MN2
throughput

gain
(Mbps)

MN2
throughput

gain (%)

362.1 67.94 329.5 65.4
Table 2. - Numerical results of average throughput gain

after scaling

D. Availability and redundancy calculations

The availability of a telecommunication system is one of the
most critical quality metrics. By automating the failover
procedure of a network function, the availability of the
network function significantly improves.
A short recap, the availability of a single NF can be calculated
by

  



 (1)

where MTBF is Mean Time Between Failures, MTTR is
Mean Time to Repair.
Telco services provide high availability; for Ulra-Reliably
Low-Latency (URLLC) services, these expectations are
growing further. When the availability expectations for
service are in the range of five or six nines for the service
components, including the network function software, the
availability expectation is even higher. These figures are
achieved by applying redundancy schemes. There are no
widely agreed/accepted figures for software MTBF and

Figure 9 - Signaling of CN-MIPv6 in case of scaling

Figure 9 shows how scaling is executed from the CN-MIPv6
point of view. First, two MNs (MN#1, MN#2) are attached to
one HA-PP (HA-PP#1). After the ONAP recognizes the
overload of HA-PP#1, then the management system creates a
new one. From this point, MN#2 is reregistered via sending
BU to the newly created HA-PP#2, and the bidirectional
tunnel is set up to HA-PP#2 in the case of MN#2. Thus, the
CN is reachable via HA-PP#2 in the case of MN#2.
At the end of this paper, Figure 15 and Figure 17 present the
IPv6 address allocation during scaling. Similar logic can be
seen for IPv6 address allocation as in the case of failover.The
detailed measurement steps of the scaling use case can be
found at the end of the paper in Figure 16. This also uses the
same elements as the failover scenario. Meanwhile, Pods'
network interface capacities are limited to 1 Gbps to simulate
the limited capacity of a network device and packet
processing. The original throughput was about cc 900 Mpbs
for the MNs using one HA-PP instance. This leads to a
common base on measurement, and it is easier to compare
results. The scaling scenario has been executed 20 times.
Figure 10 and Figure 11 show the box plot of the results in
Mbps and percentage, respectively. Table 2 shows the
numerical results of the average gain for both MNs. After the
scaling, the throughput gain for MN#1 is 362.1 Mbps
(67.94%), while on MN#2, it is 329.5Mbps (65.4%). MN#2
shows a little less throughput gain, as it has an unconnected
period which includes new binding message exchanges and
tunnel setup time, while MN#1 is continuously connected to
the HA-PP#1.

Figure 10 – Measured throughput gain after scaling out

(in Mbps)

Figure 11 – Measured throughput gain after scaling out

(in percentage)

MN1

throughput
gain

(Mbps)

MN1
throughput

gain (%)

MN2
throughput

gain
(Mbps)

MN2
throughput

gain (%)

362.1 67.94 329.5 65.4
Table 2. - Numerical results of average throughput gain

after scaling

D. Availability and redundancy calculations

The availability of a telecommunication system is one of the
most critical quality metrics. By automating the failover
procedure of a network function, the availability of the
network function significantly improves.
A short recap, the availability of a single NF can be calculated
by

  



 (1)

where MTBF is Mean Time Between Failures, MTTR is
Mean Time to Repair.
Telco services provide high availability; for Ulra-Reliably
Low-Latency (URLLC) services, these expectations are
growing further. When the availability expectations for
service are in the range of five or six nines for the service
components, including the network function software, the
availability expectation is even higher. These figures are
achieved by applying redundancy schemes. There are no
widely agreed/accepted figures for software MTBF and

Figure 9 - Signaling of CN-MIPv6 in case of scaling

Figure 9 shows how scaling is executed from the CN-MIPv6
point of view. First, two MNs (MN#1, MN#2) are attached to
one HA-PP (HA-PP#1). After the ONAP recognizes the
overload of HA-PP#1, then the management system creates a
new one. From this point, MN#2 is reregistered via sending
BU to the newly created HA-PP#2, and the bidirectional
tunnel is set up to HA-PP#2 in the case of MN#2. Thus, the
CN is reachable via HA-PP#2 in the case of MN#2.
At the end of this paper, Figure 15 and Figure 17 present the
IPv6 address allocation during scaling. Similar logic can be
seen for IPv6 address allocation as in the case of failover.The
detailed measurement steps of the scaling use case can be
found at the end of the paper in Figure 16. This also uses the
same elements as the failover scenario. Meanwhile, Pods'
network interface capacities are limited to 1 Gbps to simulate
the limited capacity of a network device and packet
processing. The original throughput was about cc 900 Mpbs
for the MNs using one HA-PP instance. This leads to a
common base on measurement, and it is easier to compare
results. The scaling scenario has been executed 20 times.
Figure 10 and Figure 11 show the box plot of the results in
Mbps and percentage, respectively. Table 2 shows the
numerical results of the average gain for both MNs. After the
scaling, the throughput gain for MN#1 is 362.1 Mbps
(67.94%), while on MN#2, it is 329.5Mbps (65.4%). MN#2
shows a little less throughput gain, as it has an unconnected
period which includes new binding message exchanges and
tunnel setup time, while MN#1 is continuously connected to
the HA-PP#1.

Figure 10 – Measured throughput gain after scaling out

(in Mbps)

Figure 11 – Measured throughput gain after scaling out

(in percentage)

MN1

throughput
gain

(Mbps)

MN1
throughput

gain (%)

MN2
throughput

gain
(Mbps)

MN2
throughput

gain (%)

362.1 67.94 329.5 65.4
Table 2. - Numerical results of average throughput gain

after scaling

D. Availability and redundancy calculations

The availability of a telecommunication system is one of the
most critical quality metrics. By automating the failover
procedure of a network function, the availability of the
network function significantly improves.
A short recap, the availability of a single NF can be calculated
by

  



 (1)

where MTBF is Mean Time Between Failures, MTTR is
Mean Time to Repair.
Telco services provide high availability; for Ulra-Reliably
Low-Latency (URLLC) services, these expectations are
growing further. When the availability expectations for
service are in the range of five or six nines for the service
components, including the network function software, the
availability expectation is even higher. These figures are
achieved by applying redundancy schemes. There are no
widely agreed/accepted figures for software MTBF and

Figure 9 - Signaling of CN-MIPv6 in case of scaling

Figure 9 shows how scaling is executed from the CN-MIPv6
point of view. First, two MNs (MN#1, MN#2) are attached to
one HA-PP (HA-PP#1). After the ONAP recognizes the
overload of HA-PP#1, then the management system creates a
new one. From this point, MN#2 is reregistered via sending
BU to the newly created HA-PP#2, and the bidirectional
tunnel is set up to HA-PP#2 in the case of MN#2. Thus, the
CN is reachable via HA-PP#2 in the case of MN#2.
At the end of this paper, Figure 15 and Figure 17 present the
IPv6 address allocation during scaling. Similar logic can be
seen for IPv6 address allocation as in the case of failover.The
detailed measurement steps of the scaling use case can be
found at the end of the paper in Figure 16. This also uses the
same elements as the failover scenario. Meanwhile, Pods'
network interface capacities are limited to 1 Gbps to simulate
the limited capacity of a network device and packet
processing. The original throughput was about cc 900 Mpbs
for the MNs using one HA-PP instance. This leads to a
common base on measurement, and it is easier to compare
results. The scaling scenario has been executed 20 times.
Figure 10 and Figure 11 show the box plot of the results in
Mbps and percentage, respectively. Table 2 shows the
numerical results of the average gain for both MNs. After the
scaling, the throughput gain for MN#1 is 362.1 Mbps
(67.94%), while on MN#2, it is 329.5Mbps (65.4%). MN#2
shows a little less throughput gain, as it has an unconnected
period which includes new binding message exchanges and
tunnel setup time, while MN#1 is continuously connected to
the HA-PP#1.

Figure 10 – Measured throughput gain after scaling out

(in Mbps)

Figure 11 – Measured throughput gain after scaling out

(in percentage)

MN1

throughput
gain

(Mbps)

MN1
throughput

gain (%)

MN2
throughput

gain
(Mbps)

MN2
throughput

gain (%)

362.1 67.94 329.5 65.4
Table 2. - Numerical results of average throughput gain

after scaling

D. Availability and redundancy calculations

The availability of a telecommunication system is one of the
most critical quality metrics. By automating the failover
procedure of a network function, the availability of the
network function significantly improves.
A short recap, the availability of a single NF can be calculated
by

  



 (1)

where MTBF is Mean Time Between Failures, MTTR is
Mean Time to Repair.
Telco services provide high availability; for Ulra-Reliably
Low-Latency (URLLC) services, these expectations are
growing further. When the availability expectations for
service are in the range of five or six nines for the service
components, including the network function software, the
availability expectation is even higher. These figures are
achieved by applying redundancy schemes. There are no
widely agreed/accepted figures for software MTBF and

MTTR values, so we calculated with a range of values
(MTBF from a month to two years, MTTR from 5 minutes to
45 minutes). We applied different redundancy schemes for
these values to ensure that the availability of the redundant
solutions is above six nines. Obviously, the reduced MTTR
in every case improves the availability. This improvement
allows the deployment of lighter redundancy schemes for the
network function when its failover is automated and the same
availability is still provided. For example, a 2N redundant
deployment allows deploying a 3+1 redundant scheme, and
the same availability is provided (thus, for four software
instances, three instances become active instead of two [36]
[37]). Suppose the original MTTR was on the higher end (i.e.,
above 15 minutes). Even the 6+1 redundant scheme provides
the same availability (for all MTBF values) as the 2N
redundant solution without failover automation. Thus a
significant amount of resources can be saved. Note that it is
also possible to use the "saved availability budget" for other
components of the system (e.g., lowering hardware
availability by employing less personnel and saving cost) and
keep end-to-end availability on the same level or simply offer
better availability for customers.
With 2N and 3N redundant systems, the availability
calculation is the following:
   1 − (1 − ) (2)
   1 − (1 − ) (3)
In Section IV. B, we have shown the average time for
failover, which is 106.23 sec. This value can be considered as
the MTTR of the function we evaluate.
The goal of these calculations is the following: in our ONAP-
based failover case, it is possible to reduce the level of
redundancy. This means the number of deployed instances
can be decreased in order to save resources. Meanwhile, the
availability of service is not jeopardized. For calculation
simplicity reasons, we apply 99.999% availability for NF, but
in a real-world scenario, higher availability is expected.

1N non-redundant case:
Based on the above-mentioned equations, we calculated the
MTBF value for the 1N system if availability must be at least
99.999%, which is 123 days. This means the frequency of
system collapse cannot be less than 123 days; otherwise, the
system availability cannot reach 99.999%, supposed the
cc.106 sec failover time
We also consider that this MTBF value describes the by-
default behavior of our software system.

2N redundant case:
With the MTTR=106.23 sec value and 2N redundancy, the
MTBF value is 9.3 hours (MTBF2N=9.3 hours) if minimum
99.999% availability is kept. Thus, if the MTBF2N is 9.3
hours or less, the system is below the target of 99.999%
availability. So, if every 9.3 hours, there is an failure with the
given MTTR value, the system will still operate on at least
99.999% availability.

3N redundant case:
With the MTTR=106.23 sec value and 3N redundancy, the
MTBF value is 1.3 hours (MTBF3N=1.3 hours) if minimum
99.999% availability is kept. Thus, if the MTBF3N is 1.3
hours or less, the system is below the target of 99.999%
availability. So, if every 1.3 hours, there is an error with the

given MTTR value, the system still operates on at least
99.999% availability.

We can save resources if the same availability can be kept
with fewer redundant pairs. If we know that our system has
an error on average every 123 days, then let’s check the
maximum MTTR value that is allowed with 2N redundancy
to keep at least 99.999% availability. This is 9.365 hours
(MTTR2N=9.365 hours). This means that every 2N system
with MTBF = 123 days can be reduced to our 1N system,
where the MTTR is minimum 9.365 hours. Because this
MTTR value reaches a certain level, where the availability of
the 2N system does not keep 99.999% even though it may be
better than the 1N, but the over-availability requirement is not
fulfilled. But using 1N instead of 2N means a service outage
as there is no active pair to maintain service. To circumvent
this, a 3N redundancy system is needed. A similar logic is
applied: if the MTBF = 123 days, then let’s calculate the min
MTTR when the 3N system does not add availability gain
(not reaching 99.999%) compared to the 2N system. Every
3N system can be reduced to a 2N system where the MTTR
is between 12 min and 65 hours. The whole calculation is
represented in Figure 18 at the end of the paper.

V. CONCLUSION

In this paper, we have presented that the redundancy
restoration time (restoring a cold backup) can be decreased to
the level of minutes with network automation and
orchestration. Note that according to the GSMA [38], a new
instance deployment of a Physical Network Function lays in
the range of days. In this paper, we have shown that this can
be decreased to the range of minutes. This definitely shows
the power of network automation; meanwhile, cloud,
virtualization, and containerization are utilized as well.

This failover time is also considered to restore the cold backup
of a particular network function. We also believe that this does
not only pertain to CN-MIPv6; general conclusions can be
drawn for any NF.

Even though we have shown that the redeployment time
has gone to the range of minutes, there are further possibilities
for optimization: detailed measurements are needed to
conclude the minimum value of liveness and readiness probe
to minimize the failover or scaling time. Right now, they are
arbitrary. A new measurement point can also be added to the
test framework, which watches the ONAP internal states to
identify the slowest part of the execution accurately. Failover
time may be higher in a real-world scenario because our
testbed does not deal with complex routing and configuration.
This is similar to the scaling as well because the gain may be
lower due to the cloud's actual computing and network load
uncertainty. We have also shown that, with the help of the
scaling procedure, significant throughput gain can be reached.

Improvement of failover time also has a positive impact
on service availability. It saves resources for the automated
NF function or any other part of the chain of processes
contributing to service provision.

VI. FUTURE WORK

Current Kubernetes network approaches are not "network-
native". More and more novel Kubernetes networking
approaches are emerging [39] [40], which are the natural

MTTR values, so we calculated with a range of values
(MTBF from a month to two years, MTTR from 5 minutes to
45 minutes). We applied different redundancy schemes for
these values to ensure that the availability of the redundant
solutions is above six nines. Obviously, the reduced MTTR
in every case improves the availability. This improvement
allows the deployment of lighter redundancy schemes for the
network function when its failover is automated and the same
availability is still provided. For example, a 2N redundant
deployment allows deploying a 3+1 redundant scheme, and
the same availability is provided (thus, for four software
instances, three instances become active instead of two [36]
[37]). Suppose the original MTTR was on the higher end (i.e.,
above 15 minutes). Even the 6+1 redundant scheme provides
the same availability (for all MTBF values) as the 2N
redundant solution without failover automation. Thus a
significant amount of resources can be saved. Note that it is
also possible to use the "saved availability budget" for other
components of the system (e.g., lowering hardware
availability by employing less personnel and saving cost) and
keep end-to-end availability on the same level or simply offer
better availability for customers.
With 2N and 3N redundant systems, the availability
calculation is the following:
   1 − (1 − ) (2)
   1 − (1 − ) (3)
In Section IV. B, we have shown the average time for
failover, which is 106.23 sec. This value can be considered as
the MTTR of the function we evaluate.
The goal of these calculations is the following: in our ONAP-
based failover case, it is possible to reduce the level of
redundancy. This means the number of deployed instances
can be decreased in order to save resources. Meanwhile, the
availability of service is not jeopardized. For calculation
simplicity reasons, we apply 99.999% availability for NF, but
in a real-world scenario, higher availability is expected.

1N non-redundant case:
Based on the above-mentioned equations, we calculated the
MTBF value for the 1N system if availability must be at least
99.999%, which is 123 days. This means the frequency of
system collapse cannot be less than 123 days; otherwise, the
system availability cannot reach 99.999%, supposed the
cc.106 sec failover time
We also consider that this MTBF value describes the by-
default behavior of our software system.

2N redundant case:
With the MTTR=106.23 sec value and 2N redundancy, the
MTBF value is 9.3 hours (MTBF2N=9.3 hours) if minimum
99.999% availability is kept. Thus, if the MTBF2N is 9.3
hours or less, the system is below the target of 99.999%
availability. So, if every 9.3 hours, there is an failure with the
given MTTR value, the system will still operate on at least
99.999% availability.

3N redundant case:
With the MTTR=106.23 sec value and 3N redundancy, the
MTBF value is 1.3 hours (MTBF3N=1.3 hours) if minimum
99.999% availability is kept. Thus, if the MTBF3N is 1.3
hours or less, the system is below the target of 99.999%
availability. So, if every 1.3 hours, there is an error with the

given MTTR value, the system still operates on at least
99.999% availability.

We can save resources if the same availability can be kept
with fewer redundant pairs. If we know that our system has
an error on average every 123 days, then let’s check the
maximum MTTR value that is allowed with 2N redundancy
to keep at least 99.999% availability. This is 9.365 hours
(MTTR2N=9.365 hours). This means that every 2N system
with MTBF = 123 days can be reduced to our 1N system,
where the MTTR is minimum 9.365 hours. Because this
MTTR value reaches a certain level, where the availability of
the 2N system does not keep 99.999% even though it may be
better than the 1N, but the over-availability requirement is not
fulfilled. But using 1N instead of 2N means a service outage
as there is no active pair to maintain service. To circumvent
this, a 3N redundancy system is needed. A similar logic is
applied: if the MTBF = 123 days, then let’s calculate the min
MTTR when the 3N system does not add availability gain
(not reaching 99.999%) compared to the 2N system. Every
3N system can be reduced to a 2N system where the MTTR
is between 12 min and 65 hours. The whole calculation is
represented in Figure 18 at the end of the paper.

V. CONCLUSION

In this paper, we have presented that the redundancy
restoration time (restoring a cold backup) can be decreased to
the level of minutes with network automation and
orchestration. Note that according to the GSMA [38], a new
instance deployment of a Physical Network Function lays in
the range of days. In this paper, we have shown that this can
be decreased to the range of minutes. This definitely shows
the power of network automation; meanwhile, cloud,
virtualization, and containerization are utilized as well.

This failover time is also considered to restore the cold backup
of a particular network function. We also believe that this does
not only pertain to CN-MIPv6; general conclusions can be
drawn for any NF.

Even though we have shown that the redeployment time
has gone to the range of minutes, there are further possibilities
for optimization: detailed measurements are needed to
conclude the minimum value of liveness and readiness probe
to minimize the failover or scaling time. Right now, they are
arbitrary. A new measurement point can also be added to the
test framework, which watches the ONAP internal states to
identify the slowest part of the execution accurately. Failover
time may be higher in a real-world scenario because our
testbed does not deal with complex routing and configuration.
This is similar to the scaling as well because the gain may be
lower due to the cloud's actual computing and network load
uncertainty. We have also shown that, with the help of the
scaling procedure, significant throughput gain can be reached.

Improvement of failover time also has a positive impact
on service availability. It saves resources for the automated
NF function or any other part of the chain of processes
contributing to service provision.

VI. FUTURE WORK

Current Kubernetes network approaches are not "network-
native". More and more novel Kubernetes networking
approaches are emerging [39] [40], which are the natural

Closed-loop Orchestration for
Cloud-native Mobile IPv6

INFOCOMMUNICATIONS JOURNAL

MARCH 2023 • VOLUME XV • NUMBER 1 49

MTTR values, so we calculated with a range of values
(MTBF from a month to two years, MTTR from 5 minutes to
45 minutes). We applied different redundancy schemes for
these values to ensure that the availability of the redundant
solutions is above six nines. Obviously, the reduced MTTR
in every case improves the availability. This improvement
allows the deployment of lighter redundancy schemes for the
network function when its failover is automated and the same
availability is still provided. For example, a 2N redundant
deployment allows deploying a 3+1 redundant scheme, and
the same availability is provided (thus, for four software
instances, three instances become active instead of two [36]
[37]). Suppose the original MTTR was on the higher end (i.e.,
above 15 minutes). Even the 6+1 redundant scheme provides
the same availability (for all MTBF values) as the 2N
redundant solution without failover automation. Thus a
significant amount of resources can be saved. Note that it is
also possible to use the "saved availability budget" for other
components of the system (e.g., lowering hardware
availability by employing less personnel and saving cost) and
keep end-to-end availability on the same level or simply offer
better availability for customers.
With 2N and 3N redundant systems, the availability
calculation is the following:
   1 − (1 − ) (2)
   1 − (1 − ) (3)
In Section IV. B, we have shown the average time for
failover, which is 106.23 sec. This value can be considered as
the MTTR of the function we evaluate.
The goal of these calculations is the following: in our ONAP-
based failover case, it is possible to reduce the level of
redundancy. This means the number of deployed instances
can be decreased in order to save resources. Meanwhile, the
availability of service is not jeopardized. For calculation
simplicity reasons, we apply 99.999% availability for NF, but
in a real-world scenario, higher availability is expected.

1N non-redundant case:
Based on the above-mentioned equations, we calculated the
MTBF value for the 1N system if availability must be at least
99.999%, which is 123 days. This means the frequency of
system collapse cannot be less than 123 days; otherwise, the
system availability cannot reach 99.999%, supposed the
cc.106 sec failover time
We also consider that this MTBF value describes the by-
default behavior of our software system.

2N redundant case:
With the MTTR=106.23 sec value and 2N redundancy, the
MTBF value is 9.3 hours (MTBF2N=9.3 hours) if minimum
99.999% availability is kept. Thus, if the MTBF2N is 9.3
hours or less, the system is below the target of 99.999%
availability. So, if every 9.3 hours, there is an failure with the
given MTTR value, the system will still operate on at least
99.999% availability.

3N redundant case:
With the MTTR=106.23 sec value and 3N redundancy, the
MTBF value is 1.3 hours (MTBF3N=1.3 hours) if minimum
99.999% availability is kept. Thus, if the MTBF3N is 1.3
hours or less, the system is below the target of 99.999%
availability. So, if every 1.3 hours, there is an error with the

given MTTR value, the system still operates on at least
99.999% availability.

We can save resources if the same availability can be kept
with fewer redundant pairs. If we know that our system has
an error on average every 123 days, then let’s check the
maximum MTTR value that is allowed with 2N redundancy
to keep at least 99.999% availability. This is 9.365 hours
(MTTR2N=9.365 hours). This means that every 2N system
with MTBF = 123 days can be reduced to our 1N system,
where the MTTR is minimum 9.365 hours. Because this
MTTR value reaches a certain level, where the availability of
the 2N system does not keep 99.999% even though it may be
better than the 1N, but the over-availability requirement is not
fulfilled. But using 1N instead of 2N means a service outage
as there is no active pair to maintain service. To circumvent
this, a 3N redundancy system is needed. A similar logic is
applied: if the MTBF = 123 days, then let’s calculate the min
MTTR when the 3N system does not add availability gain
(not reaching 99.999%) compared to the 2N system. Every
3N system can be reduced to a 2N system where the MTTR
is between 12 min and 65 hours. The whole calculation is
represented in Figure 18 at the end of the paper.

V. CONCLUSION

In this paper, we have presented that the redundancy
restoration time (restoring a cold backup) can be decreased to
the level of minutes with network automation and
orchestration. Note that according to the GSMA [38], a new
instance deployment of a Physical Network Function lays in
the range of days. In this paper, we have shown that this can
be decreased to the range of minutes. This definitely shows
the power of network automation; meanwhile, cloud,
virtualization, and containerization are utilized as well.

This failover time is also considered to restore the cold backup
of a particular network function. We also believe that this does
not only pertain to CN-MIPv6; general conclusions can be
drawn for any NF.

Even though we have shown that the redeployment time
has gone to the range of minutes, there are further possibilities
for optimization: detailed measurements are needed to
conclude the minimum value of liveness and readiness probe
to minimize the failover or scaling time. Right now, they are
arbitrary. A new measurement point can also be added to the
test framework, which watches the ONAP internal states to
identify the slowest part of the execution accurately. Failover
time may be higher in a real-world scenario because our
testbed does not deal with complex routing and configuration.
This is similar to the scaling as well because the gain may be
lower due to the cloud's actual computing and network load
uncertainty. We have also shown that, with the help of the
scaling procedure, significant throughput gain can be reached.

Improvement of failover time also has a positive impact
on service availability. It saves resources for the automated
NF function or any other part of the chain of processes
contributing to service provision.

VI. FUTURE WORK

Current Kubernetes network approaches are not "network-
native". More and more novel Kubernetes networking
approaches are emerging [39] [40], which are the natural

MTTR values, so we calculated with a range of values
(MTBF from a month to two years, MTTR from 5 minutes to
45 minutes). We applied different redundancy schemes for
these values to ensure that the availability of the redundant
solutions is above six nines. Obviously, the reduced MTTR
in every case improves the availability. This improvement
allows the deployment of lighter redundancy schemes for the
network function when its failover is automated and the same
availability is still provided. For example, a 2N redundant
deployment allows deploying a 3+1 redundant scheme, and
the same availability is provided (thus, for four software
instances, three instances become active instead of two [36]
[37]). Suppose the original MTTR was on the higher end (i.e.,
above 15 minutes). Even the 6+1 redundant scheme provides
the same availability (for all MTBF values) as the 2N
redundant solution without failover automation. Thus a
significant amount of resources can be saved. Note that it is
also possible to use the "saved availability budget" for other
components of the system (e.g., lowering hardware
availability by employing less personnel and saving cost) and
keep end-to-end availability on the same level or simply offer
better availability for customers.
With 2N and 3N redundant systems, the availability
calculation is the following:
   1 − (1 − ) (2)
   1 − (1 − ) (3)
In Section IV. B, we have shown the average time for
failover, which is 106.23 sec. This value can be considered as
the MTTR of the function we evaluate.
The goal of these calculations is the following: in our ONAP-
based failover case, it is possible to reduce the level of
redundancy. This means the number of deployed instances
can be decreased in order to save resources. Meanwhile, the
availability of service is not jeopardized. For calculation
simplicity reasons, we apply 99.999% availability for NF, but
in a real-world scenario, higher availability is expected.

1N non-redundant case:
Based on the above-mentioned equations, we calculated the
MTBF value for the 1N system if availability must be at least
99.999%, which is 123 days. This means the frequency of
system collapse cannot be less than 123 days; otherwise, the
system availability cannot reach 99.999%, supposed the
cc.106 sec failover time
We also consider that this MTBF value describes the by-
default behavior of our software system.

2N redundant case:
With the MTTR=106.23 sec value and 2N redundancy, the
MTBF value is 9.3 hours (MTBF2N=9.3 hours) if minimum
99.999% availability is kept. Thus, if the MTBF2N is 9.3
hours or less, the system is below the target of 99.999%
availability. So, if every 9.3 hours, there is an failure with the
given MTTR value, the system will still operate on at least
99.999% availability.

3N redundant case:
With the MTTR=106.23 sec value and 3N redundancy, the
MTBF value is 1.3 hours (MTBF3N=1.3 hours) if minimum
99.999% availability is kept. Thus, if the MTBF3N is 1.3
hours or less, the system is below the target of 99.999%
availability. So, if every 1.3 hours, there is an error with the

given MTTR value, the system still operates on at least
99.999% availability.

We can save resources if the same availability can be kept
with fewer redundant pairs. If we know that our system has
an error on average every 123 days, then let’s check the
maximum MTTR value that is allowed with 2N redundancy
to keep at least 99.999% availability. This is 9.365 hours
(MTTR2N=9.365 hours). This means that every 2N system
with MTBF = 123 days can be reduced to our 1N system,
where the MTTR is minimum 9.365 hours. Because this
MTTR value reaches a certain level, where the availability of
the 2N system does not keep 99.999% even though it may be
better than the 1N, but the over-availability requirement is not
fulfilled. But using 1N instead of 2N means a service outage
as there is no active pair to maintain service. To circumvent
this, a 3N redundancy system is needed. A similar logic is
applied: if the MTBF = 123 days, then let’s calculate the min
MTTR when the 3N system does not add availability gain
(not reaching 99.999%) compared to the 2N system. Every
3N system can be reduced to a 2N system where the MTTR
is between 12 min and 65 hours. The whole calculation is
represented in Figure 18 at the end of the paper.

V. CONCLUSION

In this paper, we have presented that the redundancy
restoration time (restoring a cold backup) can be decreased to
the level of minutes with network automation and
orchestration. Note that according to the GSMA [38], a new
instance deployment of a Physical Network Function lays in
the range of days. In this paper, we have shown that this can
be decreased to the range of minutes. This definitely shows
the power of network automation; meanwhile, cloud,
virtualization, and containerization are utilized as well.

This failover time is also considered to restore the cold backup
of a particular network function. We also believe that this does
not only pertain to CN-MIPv6; general conclusions can be
drawn for any NF.

Even though we have shown that the redeployment time
has gone to the range of minutes, there are further possibilities
for optimization: detailed measurements are needed to
conclude the minimum value of liveness and readiness probe
to minimize the failover or scaling time. Right now, they are
arbitrary. A new measurement point can also be added to the
test framework, which watches the ONAP internal states to
identify the slowest part of the execution accurately. Failover
time may be higher in a real-world scenario because our
testbed does not deal with complex routing and configuration.
This is similar to the scaling as well because the gain may be
lower due to the cloud's actual computing and network load
uncertainty. We have also shown that, with the help of the
scaling procedure, significant throughput gain can be reached.

Improvement of failover time also has a positive impact
on service availability. It saves resources for the automated
NF function or any other part of the chain of processes
contributing to service provision.

VI. FUTURE WORK

Current Kubernetes network approaches are not "network-
native". More and more novel Kubernetes networking
approaches are emerging [39] [40], which are the natural

MTTR values, so we calculated with a range of values
(MTBF from a month to two years, MTTR from 5 minutes to
45 minutes). We applied different redundancy schemes for
these values to ensure that the availability of the redundant
solutions is above six nines. Obviously, the reduced MTTR
in every case improves the availability. This improvement
allows the deployment of lighter redundancy schemes for the
network function when its failover is automated and the same
availability is still provided. For example, a 2N redundant
deployment allows deploying a 3+1 redundant scheme, and
the same availability is provided (thus, for four software
instances, three instances become active instead of two [36]
[37]). Suppose the original MTTR was on the higher end (i.e.,
above 15 minutes). Even the 6+1 redundant scheme provides
the same availability (for all MTBF values) as the 2N
redundant solution without failover automation. Thus a
significant amount of resources can be saved. Note that it is
also possible to use the "saved availability budget" for other
components of the system (e.g., lowering hardware
availability by employing less personnel and saving cost) and
keep end-to-end availability on the same level or simply offer
better availability for customers.
With 2N and 3N redundant systems, the availability
calculation is the following:
   1 − (1 − ) (2)
   1 − (1 − ) (3)
In Section IV. B, we have shown the average time for
failover, which is 106.23 sec. This value can be considered as
the MTTR of the function we evaluate.
The goal of these calculations is the following: in our ONAP-
based failover case, it is possible to reduce the level of
redundancy. This means the number of deployed instances
can be decreased in order to save resources. Meanwhile, the
availability of service is not jeopardized. For calculation
simplicity reasons, we apply 99.999% availability for NF, but
in a real-world scenario, higher availability is expected.

1N non-redundant case:
Based on the above-mentioned equations, we calculated the
MTBF value for the 1N system if availability must be at least
99.999%, which is 123 days. This means the frequency of
system collapse cannot be less than 123 days; otherwise, the
system availability cannot reach 99.999%, supposed the
cc.106 sec failover time
We also consider that this MTBF value describes the by-
default behavior of our software system.

2N redundant case:
With the MTTR=106.23 sec value and 2N redundancy, the
MTBF value is 9.3 hours (MTBF2N=9.3 hours) if minimum
99.999% availability is kept. Thus, if the MTBF2N is 9.3
hours or less, the system is below the target of 99.999%
availability. So, if every 9.3 hours, there is an failure with the
given MTTR value, the system will still operate on at least
99.999% availability.

3N redundant case:
With the MTTR=106.23 sec value and 3N redundancy, the
MTBF value is 1.3 hours (MTBF3N=1.3 hours) if minimum
99.999% availability is kept. Thus, if the MTBF3N is 1.3
hours or less, the system is below the target of 99.999%
availability. So, if every 1.3 hours, there is an error with the

given MTTR value, the system still operates on at least
99.999% availability.

We can save resources if the same availability can be kept
with fewer redundant pairs. If we know that our system has
an error on average every 123 days, then let’s check the
maximum MTTR value that is allowed with 2N redundancy
to keep at least 99.999% availability. This is 9.365 hours
(MTTR2N=9.365 hours). This means that every 2N system
with MTBF = 123 days can be reduced to our 1N system,
where the MTTR is minimum 9.365 hours. Because this
MTTR value reaches a certain level, where the availability of
the 2N system does not keep 99.999% even though it may be
better than the 1N, but the over-availability requirement is not
fulfilled. But using 1N instead of 2N means a service outage
as there is no active pair to maintain service. To circumvent
this, a 3N redundancy system is needed. A similar logic is
applied: if the MTBF = 123 days, then let’s calculate the min
MTTR when the 3N system does not add availability gain
(not reaching 99.999%) compared to the 2N system. Every
3N system can be reduced to a 2N system where the MTTR
is between 12 min and 65 hours. The whole calculation is
represented in Figure 18 at the end of the paper.

V. CONCLUSION

In this paper, we have presented that the redundancy
restoration time (restoring a cold backup) can be decreased to
the level of minutes with network automation and
orchestration. Note that according to the GSMA [38], a new
instance deployment of a Physical Network Function lays in
the range of days. In this paper, we have shown that this can
be decreased to the range of minutes. This definitely shows
the power of network automation; meanwhile, cloud,
virtualization, and containerization are utilized as well.

This failover time is also considered to restore the cold backup
of a particular network function. We also believe that this does
not only pertain to CN-MIPv6; general conclusions can be
drawn for any NF.

Even though we have shown that the redeployment time
has gone to the range of minutes, there are further possibilities
for optimization: detailed measurements are needed to
conclude the minimum value of liveness and readiness probe
to minimize the failover or scaling time. Right now, they are
arbitrary. A new measurement point can also be added to the
test framework, which watches the ONAP internal states to
identify the slowest part of the execution accurately. Failover
time may be higher in a real-world scenario because our
testbed does not deal with complex routing and configuration.
This is similar to the scaling as well because the gain may be
lower due to the cloud's actual computing and network load
uncertainty. We have also shown that, with the help of the
scaling procedure, significant throughput gain can be reached.

Improvement of failover time also has a positive impact
on service availability. It saves resources for the automated
NF function or any other part of the chain of processes
contributing to service provision.

VI. FUTURE WORK

Current Kubernetes network approaches are not "network-
native". More and more novel Kubernetes networking
approaches are emerging [39] [40], which are the natural

MTTR values, so we calculated with a range of values
(MTBF from a month to two years, MTTR from 5 minutes to
45 minutes). We applied different redundancy schemes for
these values to ensure that the availability of the redundant
solutions is above six nines. Obviously, the reduced MTTR
in every case improves the availability. This improvement
allows the deployment of lighter redundancy schemes for the
network function when its failover is automated and the same
availability is still provided. For example, a 2N redundant
deployment allows deploying a 3+1 redundant scheme, and
the same availability is provided (thus, for four software
instances, three instances become active instead of two [36]
[37]). Suppose the original MTTR was on the higher end (i.e.,
above 15 minutes). Even the 6+1 redundant scheme provides
the same availability (for all MTBF values) as the 2N
redundant solution without failover automation. Thus a
significant amount of resources can be saved. Note that it is
also possible to use the "saved availability budget" for other
components of the system (e.g., lowering hardware
availability by employing less personnel and saving cost) and
keep end-to-end availability on the same level or simply offer
better availability for customers.
With 2N and 3N redundant systems, the availability
calculation is the following:
   1 − (1 − ) (2)
   1 − (1 − ) (3)
In Section IV. B, we have shown the average time for
failover, which is 106.23 sec. This value can be considered as
the MTTR of the function we evaluate.
The goal of these calculations is the following: in our ONAP-
based failover case, it is possible to reduce the level of
redundancy. This means the number of deployed instances
can be decreased in order to save resources. Meanwhile, the
availability of service is not jeopardized. For calculation
simplicity reasons, we apply 99.999% availability for NF, but
in a real-world scenario, higher availability is expected.

1N non-redundant case:
Based on the above-mentioned equations, we calculated the
MTBF value for the 1N system if availability must be at least
99.999%, which is 123 days. This means the frequency of
system collapse cannot be less than 123 days; otherwise, the
system availability cannot reach 99.999%, supposed the
cc.106 sec failover time
We also consider that this MTBF value describes the by-
default behavior of our software system.

2N redundant case:
With the MTTR=106.23 sec value and 2N redundancy, the
MTBF value is 9.3 hours (MTBF2N=9.3 hours) if minimum
99.999% availability is kept. Thus, if the MTBF2N is 9.3
hours or less, the system is below the target of 99.999%
availability. So, if every 9.3 hours, there is an failure with the
given MTTR value, the system will still operate on at least
99.999% availability.

3N redundant case:
With the MTTR=106.23 sec value and 3N redundancy, the
MTBF value is 1.3 hours (MTBF3N=1.3 hours) if minimum
99.999% availability is kept. Thus, if the MTBF3N is 1.3
hours or less, the system is below the target of 99.999%
availability. So, if every 1.3 hours, there is an error with the

given MTTR value, the system still operates on at least
99.999% availability.

We can save resources if the same availability can be kept
with fewer redundant pairs. If we know that our system has
an error on average every 123 days, then let’s check the
maximum MTTR value that is allowed with 2N redundancy
to keep at least 99.999% availability. This is 9.365 hours
(MTTR2N=9.365 hours). This means that every 2N system
with MTBF = 123 days can be reduced to our 1N system,
where the MTTR is minimum 9.365 hours. Because this
MTTR value reaches a certain level, where the availability of
the 2N system does not keep 99.999% even though it may be
better than the 1N, but the over-availability requirement is not
fulfilled. But using 1N instead of 2N means a service outage
as there is no active pair to maintain service. To circumvent
this, a 3N redundancy system is needed. A similar logic is
applied: if the MTBF = 123 days, then let’s calculate the min
MTTR when the 3N system does not add availability gain
(not reaching 99.999%) compared to the 2N system. Every
3N system can be reduced to a 2N system where the MTTR
is between 12 min and 65 hours. The whole calculation is
represented in Figure 18 at the end of the paper.

V. CONCLUSION

In this paper, we have presented that the redundancy
restoration time (restoring a cold backup) can be decreased to
the level of minutes with network automation and
orchestration. Note that according to the GSMA [38], a new
instance deployment of a Physical Network Function lays in
the range of days. In this paper, we have shown that this can
be decreased to the range of minutes. This definitely shows
the power of network automation; meanwhile, cloud,
virtualization, and containerization are utilized as well.

This failover time is also considered to restore the cold backup
of a particular network function. We also believe that this does
not only pertain to CN-MIPv6; general conclusions can be
drawn for any NF.

Even though we have shown that the redeployment time
has gone to the range of minutes, there are further possibilities
for optimization: detailed measurements are needed to
conclude the minimum value of liveness and readiness probe
to minimize the failover or scaling time. Right now, they are
arbitrary. A new measurement point can also be added to the
test framework, which watches the ONAP internal states to
identify the slowest part of the execution accurately. Failover
time may be higher in a real-world scenario because our
testbed does not deal with complex routing and configuration.
This is similar to the scaling as well because the gain may be
lower due to the cloud's actual computing and network load
uncertainty. We have also shown that, with the help of the
scaling procedure, significant throughput gain can be reached.

Improvement of failover time also has a positive impact
on service availability. It saves resources for the automated
NF function or any other part of the chain of processes
contributing to service provision.

VI. FUTURE WORK

Current Kubernetes network approaches are not "network-
native". More and more novel Kubernetes networking
approaches are emerging [39] [40], which are the natural

MTTR values, so we calculated with a range of values
(MTBF from a month to two years, MTTR from 5 minutes to
45 minutes). We applied different redundancy schemes for
these values to ensure that the availability of the redundant
solutions is above six nines. Obviously, the reduced MTTR
in every case improves the availability. This improvement
allows the deployment of lighter redundancy schemes for the
network function when its failover is automated and the same
availability is still provided. For example, a 2N redundant
deployment allows deploying a 3+1 redundant scheme, and
the same availability is provided (thus, for four software
instances, three instances become active instead of two [36]
[37]). Suppose the original MTTR was on the higher end (i.e.,
above 15 minutes). Even the 6+1 redundant scheme provides
the same availability (for all MTBF values) as the 2N
redundant solution without failover automation. Thus a
significant amount of resources can be saved. Note that it is
also possible to use the "saved availability budget" for other
components of the system (e.g., lowering hardware
availability by employing less personnel and saving cost) and
keep end-to-end availability on the same level or simply offer
better availability for customers.
With 2N and 3N redundant systems, the availability
calculation is the following:
   1 − (1 − ) (2)
   1 − (1 − ) (3)
In Section IV. B, we have shown the average time for
failover, which is 106.23 sec. This value can be considered as
the MTTR of the function we evaluate.
The goal of these calculations is the following: in our ONAP-
based failover case, it is possible to reduce the level of
redundancy. This means the number of deployed instances
can be decreased in order to save resources. Meanwhile, the
availability of service is not jeopardized. For calculation
simplicity reasons, we apply 99.999% availability for NF, but
in a real-world scenario, higher availability is expected.

1N non-redundant case:
Based on the above-mentioned equations, we calculated the
MTBF value for the 1N system if availability must be at least
99.999%, which is 123 days. This means the frequency of
system collapse cannot be less than 123 days; otherwise, the
system availability cannot reach 99.999%, supposed the
cc.106 sec failover time
We also consider that this MTBF value describes the by-
default behavior of our software system.

2N redundant case:
With the MTTR=106.23 sec value and 2N redundancy, the
MTBF value is 9.3 hours (MTBF2N=9.3 hours) if minimum
99.999% availability is kept. Thus, if the MTBF2N is 9.3
hours or less, the system is below the target of 99.999%
availability. So, if every 9.3 hours, there is an failure with the
given MTTR value, the system will still operate on at least
99.999% availability.

3N redundant case:
With the MTTR=106.23 sec value and 3N redundancy, the
MTBF value is 1.3 hours (MTBF3N=1.3 hours) if minimum
99.999% availability is kept. Thus, if the MTBF3N is 1.3
hours or less, the system is below the target of 99.999%
availability. So, if every 1.3 hours, there is an error with the

given MTTR value, the system still operates on at least
99.999% availability.

We can save resources if the same availability can be kept
with fewer redundant pairs. If we know that our system has
an error on average every 123 days, then let’s check the
maximum MTTR value that is allowed with 2N redundancy
to keep at least 99.999% availability. This is 9.365 hours
(MTTR2N=9.365 hours). This means that every 2N system
with MTBF = 123 days can be reduced to our 1N system,
where the MTTR is minimum 9.365 hours. Because this
MTTR value reaches a certain level, where the availability of
the 2N system does not keep 99.999% even though it may be
better than the 1N, but the over-availability requirement is not
fulfilled. But using 1N instead of 2N means a service outage
as there is no active pair to maintain service. To circumvent
this, a 3N redundancy system is needed. A similar logic is
applied: if the MTBF = 123 days, then let’s calculate the min
MTTR when the 3N system does not add availability gain
(not reaching 99.999%) compared to the 2N system. Every
3N system can be reduced to a 2N system where the MTTR
is between 12 min and 65 hours. The whole calculation is
represented in Figure 18 at the end of the paper.

V. CONCLUSION

In this paper, we have presented that the redundancy
restoration time (restoring a cold backup) can be decreased to
the level of minutes with network automation and
orchestration. Note that according to the GSMA [38], a new
instance deployment of a Physical Network Function lays in
the range of days. In this paper, we have shown that this can
be decreased to the range of minutes. This definitely shows
the power of network automation; meanwhile, cloud,
virtualization, and containerization are utilized as well.

This failover time is also considered to restore the cold backup
of a particular network function. We also believe that this does
not only pertain to CN-MIPv6; general conclusions can be
drawn for any NF.

Even though we have shown that the redeployment time
has gone to the range of minutes, there are further possibilities
for optimization: detailed measurements are needed to
conclude the minimum value of liveness and readiness probe
to minimize the failover or scaling time. Right now, they are
arbitrary. A new measurement point can also be added to the
test framework, which watches the ONAP internal states to
identify the slowest part of the execution accurately. Failover
time may be higher in a real-world scenario because our
testbed does not deal with complex routing and configuration.
This is similar to the scaling as well because the gain may be
lower due to the cloud's actual computing and network load
uncertainty. We have also shown that, with the help of the
scaling procedure, significant throughput gain can be reached.

Improvement of failover time also has a positive impact
on service availability. It saves resources for the automated
NF function or any other part of the chain of processes
contributing to service provision.

VI. FUTURE WORK

Current Kubernetes network approaches are not "network-
native". More and more novel Kubernetes networking
approaches are emerging [39] [40], which are the natural

Closed-loop Orchestration for
Cloud-native Mobile IPv6

MARCH 2023 • VOLUME XV • NUMBER 150

INFOCOMMUNICATIONS JOURNAL

MTTR values, so we calculated with a range of values
(MTBF from a month to two years, MTTR from 5 minutes to
45 minutes). We applied different redundancy schemes for
these values to ensure that the availability of the redundant
solutions is above six nines. Obviously, the reduced MTTR
in every case improves the availability. This improvement
allows the deployment of lighter redundancy schemes for the
network function when its failover is automated and the same
availability is still provided. For example, a 2N redundant
deployment allows deploying a 3+1 redundant scheme, and
the same availability is provided (thus, for four software
instances, three instances become active instead of two [36]
[37]). Suppose the original MTTR was on the higher end (i.e.,
above 15 minutes). Even the 6+1 redundant scheme provides
the same availability (for all MTBF values) as the 2N
redundant solution without failover automation. Thus a
significant amount of resources can be saved. Note that it is
also possible to use the "saved availability budget" for other
components of the system (e.g., lowering hardware
availability by employing less personnel and saving cost) and
keep end-to-end availability on the same level or simply offer
better availability for customers.
With 2N and 3N redundant systems, the availability
calculation is the following:
   1 − (1 − ) (2)
   1 − (1 − ) (3)
In Section IV. B, we have shown the average time for
failover, which is 106.23 sec. This value can be considered as
the MTTR of the function we evaluate.
The goal of these calculations is the following: in our ONAP-
based failover case, it is possible to reduce the level of
redundancy. This means the number of deployed instances
can be decreased in order to save resources. Meanwhile, the
availability of service is not jeopardized. For calculation
simplicity reasons, we apply 99.999% availability for NF, but
in a real-world scenario, higher availability is expected.

1N non-redundant case:
Based on the above-mentioned equations, we calculated the
MTBF value for the 1N system if availability must be at least
99.999%, which is 123 days. This means the frequency of
system collapse cannot be less than 123 days; otherwise, the
system availability cannot reach 99.999%, supposed the
cc.106 sec failover time
We also consider that this MTBF value describes the by-
default behavior of our software system.

2N redundant case:
With the MTTR=106.23 sec value and 2N redundancy, the
MTBF value is 9.3 hours (MTBF2N=9.3 hours) if minimum
99.999% availability is kept. Thus, if the MTBF2N is 9.3
hours or less, the system is below the target of 99.999%
availability. So, if every 9.3 hours, there is an failure with the
given MTTR value, the system will still operate on at least
99.999% availability.

3N redundant case:
With the MTTR=106.23 sec value and 3N redundancy, the
MTBF value is 1.3 hours (MTBF3N=1.3 hours) if minimum
99.999% availability is kept. Thus, if the MTBF3N is 1.3
hours or less, the system is below the target of 99.999%
availability. So, if every 1.3 hours, there is an error with the

given MTTR value, the system still operates on at least
99.999% availability.

We can save resources if the same availability can be kept
with fewer redundant pairs. If we know that our system has
an error on average every 123 days, then let’s check the
maximum MTTR value that is allowed with 2N redundancy
to keep at least 99.999% availability. This is 9.365 hours
(MTTR2N=9.365 hours). This means that every 2N system
with MTBF = 123 days can be reduced to our 1N system,
where the MTTR is minimum 9.365 hours. Because this
MTTR value reaches a certain level, where the availability of
the 2N system does not keep 99.999% even though it may be
better than the 1N, but the over-availability requirement is not
fulfilled. But using 1N instead of 2N means a service outage
as there is no active pair to maintain service. To circumvent
this, a 3N redundancy system is needed. A similar logic is
applied: if the MTBF = 123 days, then let’s calculate the min
MTTR when the 3N system does not add availability gain
(not reaching 99.999%) compared to the 2N system. Every
3N system can be reduced to a 2N system where the MTTR
is between 12 min and 65 hours. The whole calculation is
represented in Figure 18 at the end of the paper.

V. CONCLUSION

In this paper, we have presented that the redundancy
restoration time (restoring a cold backup) can be decreased to
the level of minutes with network automation and
orchestration. Note that according to the GSMA [38], a new
instance deployment of a Physical Network Function lays in
the range of days. In this paper, we have shown that this can
be decreased to the range of minutes. This definitely shows
the power of network automation; meanwhile, cloud,
virtualization, and containerization are utilized as well.

This failover time is also considered to restore the cold backup
of a particular network function. We also believe that this does
not only pertain to CN-MIPv6; general conclusions can be
drawn for any NF.

Even though we have shown that the redeployment time
has gone to the range of minutes, there are further possibilities
for optimization: detailed measurements are needed to
conclude the minimum value of liveness and readiness probe
to minimize the failover or scaling time. Right now, they are
arbitrary. A new measurement point can also be added to the
test framework, which watches the ONAP internal states to
identify the slowest part of the execution accurately. Failover
time may be higher in a real-world scenario because our
testbed does not deal with complex routing and configuration.
This is similar to the scaling as well because the gain may be
lower due to the cloud's actual computing and network load
uncertainty. We have also shown that, with the help of the
scaling procedure, significant throughput gain can be reached.

Improvement of failover time also has a positive impact
on service availability. It saves resources for the automated
NF function or any other part of the chain of processes
contributing to service provision.

VI. FUTURE WORK

Current Kubernetes network approaches are not "network-
native". More and more novel Kubernetes networking
approaches are emerging [39] [40], which are the natural

evolution steps of the current version of our PoC
implementation. For a simplified but more advanced use case,
using an external load balancer instead of a direct Pod
connection is also in the scope of future implementations.
ONAP has also paved the way for machine learning
applications, which may not only deal with traffic level
optimization in failover or scaling. Machine learning can add
new perspectives to predictive mobility management and
other potential application areas.

REFERENCES
[1] ‘Open Network Automation Platform (ONAP)’.

https://www.onap.org/ (accessed Jul. 28, 2022).
[2] C. Perkins, D. Johnson, and J. Arkko, Mobility Support in IPv6. IETF,

2011. [Online]. Available: http://www.ietf.org/rfc/rfc6275.txt
[3] Á. Leiter, L. Bokor, and I. Kispál, ‘An Evolution of Mobile IPv6 to the

Cloud’, in Proceedings of the 18th ACM Symposium on Mobility

Management and Wireless Access, New York, NY, USA, 2020, pp.
137–141. doi: 10.1145/3416012.3424633.

[4] Á. Leiter et al., ‘Cloud-native IP-based mobility management: a
MIPv6 Home Agent standalone microservice design’, in 2022 13th

International Symposium on Communication Systems, Networks and

Digital Signal Processing (CSNDSP), 2022, pp. 252–257. doi:
10.1109/CSNDSP54353.2022.9908059.

[5] K. Du, X. Wen, L. Wang, and T.-T. Nguyen, ‘A Cloud-Native Based
Access and Mobility Management Function Implementation in 5G
Core’, in 2020 IEEE 6th International Conference on Computer and

Communications (ICCC), 2020, pp. 1251–1256. doi:
10.1109/ICCC51575.2020.9345262.

[6] S. Gundavelli (Ed.), K. Leung, V. Devarapalli, K. Chowdhury, and B.
Patil, Proxy Mobile IPv6. Fremont, CA, USA: RFC Editor, 2008. doi:
10.17487/RFC5213.

[7] Á. Leiter, N. Galambosi, and L. Bokor, ‘An Evolution of Proxy Mobile
IPv6 to the Cloud’, in Proceedings of the 19th ACM International

Symposium on Mobility Management and Wireless Access, New York,
NY, USA: Association for Computing Machinery, 2021, pp. 107–115.
[Online]. Available: https://doi.org/10.1145/3479241.3486684

[8] S. Kim, H. Choi, P. Park, S. Min, and Y. Han, ‘OpenFlow-based Proxy
mobile IPv6 over software defined network (SDN)’, in 2014 IEEE 11th

Consumer Communications and Networking Conference (CCNC), Jan.
2014, pp. 119–125. doi: 10.1109/CCNC.2014.6866558.

[9] S. M. Raza, D. S. Kim, D. Shin, and H. Choo, ‘Leveraging proxy
mobile IPv6 with SDN’, Journal of Communications and Networks,
vol. 18, no. 3, Art. no. 3, Jun. 2016, doi: 10.1109/JCN.2016.000061.

[10] K. M. Sue, S. Kamolphiwong, T. Kamolphiwong, and L. Damyos,
‘SDN Based Fast Handover over IP Mobility’, in 2019 23rd

International Computer Science and Engineering Conference

(ICSEC), 2019, pp. 345–350. doi:
10.1109/ICSEC47112.2019.8974787.

[11] K. Hee Lee, ‘Mobility Management Framework in Software Defined
Networks’, International Journal of Software Engineering and Its

Applications, vol. 8, no. 8, pp. 1–10.
[12] Á. Leiter, M. S. Saleh, L. Pap, and Bokor, ‘Survey on PMIPv6-based

Mobility Management Architectures for Software-Defined
Networking’, Infocommunications Journal, vol. XIV, no. 2, doi:
10.36244/ICJ.2022.2.1.

[13] D. Giatsios, K. Choumas, P. Flegkas, T. Korakis, and D. Camps-Mur,
‘SDN implementation of slicing and fast failover in 5G transport
networks’, in 2017 European Conference on Networks and

Communications (EuCNC), 2017, pp. 1–6. doi:
10.1109/EuCNC.2017.7980671.

[14] V. Q. Rodriguez, F. Guillemin, and A. Boubendir, ‘Automating the
deployment of 5G Network Slices using ONAP’, in 2019 10th

International Conference on Networks of the Future (NoF), 2019, pp.
32–39. doi: 10.1109/NoF47743.2019.9015043.

[15] V. Q. Rodriguez, F. Guillemin, and A. Boubendir, ‘5G E2E Network
Slicing Management with ONAP’, in 2020 23rd Conference on

Innovation in Clouds, Internet and Networks and Workshops (ICIN),
2020, pp. 87–94. doi: 10.1109/ICIN48450.2020.9059507.

[16] R. Banerji et al., ‘ONAP Based Pro-Active Access Discovery and
Selection for 5G Networks’, in 2020 IEEE Wireless Communications

and Networking Conference Workshops (WCNCW), 2020, pp. 1–6.
doi: 10.1109/WCNCW48565.2020.9124724.

[17] H. Huang and S. Guo, ‘Proactive Failure Recovery for NFV in
Distributed Edge Computing’, IEEE Communications Magazine, vol.
57, no. 5, pp. 131–137, 2019, doi: 10.1109/MCOM.2019.1701366.

[18] M. Reitblatt, M. Canini, A. Guha, and N. Foster, ‘FatTire: Declarative
Fault Tolerance for Software-Defined Networks’, in Proceedings of

the Second ACM SIGCOMM Workshop on Hot Topics in Software

Defined Networking, New York, NY, USA, 2013, pp. 109–114. doi:
10.1145/2491185.2491187.

[19] ‘Kubernetes: Horizontal Pod Autoscaler’.
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-
autoscale/ (accessed Jul. 15, 2022).

[20] ‘Deployment element of Kubernetes’.
https://kubernetes.io/docs/concepts/workloads/controllers/deploymen
t/ (accessed Mar. 12, 2021).

[21] J. W. Mwangoka, P. Marques, and J. Rodriguez, ‘Cognitive Mobility
Management in Heterogeneous Networks’, in Proceedings of the 8th

ACM International Workshop on Mobility Management and Wireless

Access, New York, NY, USA, 2010, pp. 37–44. doi:
10.1145/1868497.1868504.

[22] M. Simsek, M. Bennis, and I. Guvenc, ‘Mobility management in
HetNets: a learning-based perspective’, EURASIP Journal on Wireless

Communications and Networking, vol. 2015, no. 1, p. 26, Feb. 2015,
doi: 10.1186/s13638-015-0244-2.

[23] R. Boutaba, N. Shahriar, M. A. Salahuddin, S. R. Chowdhury, N. Saha,
and A. James, ‘AI-Driven Closed-Loop Automation in 5G and beyond
Mobile Networks’, in Proceedings of the 4th FlexNets Workshop on

Flexible Networks Artificial Intelligence Supported Network

Flexibility and Agility, New York, NY, USA, 2021, pp. 1–6. doi:
10.1145/3472735.3474458.

[24] J. Heinonen, P. Korja, T. Partti, H. Flinck, and P. Pöyhönen, ‘Mobility
management enhancements for 5G low latency services’, in 2016 IEEE

International Conference on Communications Workshops (ICC),
2016, pp. 68–73. doi: 10.1109/ICCW.2016.7503766.

[25] Chantel Soumis, ‘AMM: WHAT IS AUTOMATED MOBILITY
MANAGEMENT?’
https://www.valicomcorp.com/blog/2018/4/2/amm-what-is-
automated-mobility-management (accessed Mar. 21, 2022).

[26] Pallavi Vanacharla, ‘SP360: Service Provider Winning business
customers with automated mobility management’.
https://blogs.cisco.com/sp/winning-business-customers-with-
automated-mobility-management (accessed Mar. 21, 2022).

[27] Pallavi Vanacharla, ‘Digital Transformation Automation: Moving
beyond manual mobility management’.
https://blogs.cisco.com/digital/automation-moving-beyond-manual-
mobility-management (accessed Mar. 21, 2022).

[28] ‘Kubernetes Operators’. https://kubernetes.io/docs/concepts/extend-
kubernetes/operator/ (accessed Jan. 15, 2022).

[29] ‘An introduction to closed-loop automation’.
https://developer.ibm.com/articles/an-introduction-to-closed-loop-
automation/ (accessed Mar. 21, 2022).

[30] ‘ONAP - Service Orchestrator’.
https://wiki.onap.org/pages/viewpage.action?pageId=1015834
(accessed Jul. 15, 2022).

[31] ‘ONAP - Service Design and Creation’.
https://wiki.onap.org/pages/viewpage.action?pageId=1015837
(accessed Jul. 15, 2022).

[32] ‘ONAP - Controller Design Studio’.
https://docs.onap.org/projects/onap-ccsdk-cds/en/latest/ (accessed Jul.
15, 2022).

[33] ‘ONAP - Policy Framework’. https://docs.onap.org/projects/onap-
policy-parent/en/latest/architecture/architecture.html (accessed Jul.
15, 2022).

[34] ‘ONAP - Data Movement as a Platform’.
https://wiki.onap.org/pages/viewpage.action?pageId=3247130
(accessed Jul. 15, 2022).

[35] F. Slim, F. Guillemin, A. Gravey, and Y. Hadjadj-Aoul, ‘Towards a
dynamic adaptive placement of virtual network functions under
ONAP’, in 2017 IEEE Conference on Network Function Virtualization

and Software Defined Networks (NFV-SDN), 2017, pp. 210–215. doi:
10.1109/NFV-SDN.2017.8169880.

[36] A. Hilt, I. Bakos, and G. Járó, ‘Reliability and availability modelling
of telecommunication servers on cloud’, in 2015 17th International

Conference on Transparent Optical Networks (ICTON), 2015, pp. 1–
4. doi: 10.1109/ICTON.2015.7193412.

[37] J. Varga, A. Hilt, J. Bíró, C. Rotter, and G. Jaro, ‘Reducing operational
costs of ultra-reliable low latency services in 5G’, Infocommunications

Journal, vol. X, pp. 37–45, 2018, doi: 10.36244/ICJ.2018.4.6.

References
	 [1]	 ‘Open Network Automation Platform (ONAP)’.
		 https://www.onap.org/ (accessed Jul. 28, 2022).
	 [2]	 C. Perkins, D. Johnson, and J. Arkko, Mobility Support in IPv6. IETF,

2011. [Online]. Available: http://www.ietf.org/rfc/rfc6275.txt
	 [3]	 Á. Leiter, L. Bokor, and I. Kispál, ‘An Evolution of Mobile IPv6 to

the Cloud’, in Proceedings of the 18th ACM Symposium on Mobility
Management and Wireless Access, New York, NY, USA, 2020, pp.
137–141. doi: 10.1145/3416012.3424633.

	 [4]	 Á. Leiter et al., ‘Cloud-native IP-based mobility management: a
MIPv6 Home Agent standalone microservice design’, in 2022 13th
International Symposium on Communication Systems, Networks and
Digital Signal Processing (CSNDSP), 2022, pp. 252–257.

		 doi: 10.1109/CSNDSP54353.2022.9908059.
	 [5]	 K. Du, X. Wen, L. Wang, and T.-T. Nguyen, ‘A Cloud-Native Based

Access and Mobility Management Function Implementation in 5G
Core’, in 2020 IEEE 6th International Conference on Computer and
Communications (ICCC), 2020, pp. 1251–1256.

		 doi: 10.1109/ICCC51575.2020.9345262.
	 [6]	 S. Gundavelli (Ed.), K. Leung, V. Devarapalli, K. Chowdhury, and

B. Patil, Proxy Mobile IPv6. Fremont, CA, USA: RFC Editor, 2008.
doi: 10.17487/RFC5213.

	 [7]	 Á. Leiter, N. Galambosi, and L. Bokor, ‘An Evolution of Proxy Mobile
IPv6 to the Cloud’, in Proceedings of the 19th ACM International
Symposium on Mobility Management and Wireless Access, New York,
NY, USA: Association for Computing Machinery, 2021, pp. 107–115.
[Online]. Available: doi: 10.1145/3479241.3486684

	 [8]	 S. Kim, H. Choi, P. Park, S. Min, and Y. Han, ‘OpenFlow-based Proxy
mobile IPv6 over software defined network (SDN)’, in 2014 IEEE
11th Consumer Communications and Networking Conference (CCNC),
Jan. 2014, pp. 119–125. doi: 10.1109/CCNC.2014.6866558.

	 [9]	 S. M. Raza, D. S. Kim, D. Shin, and H. Choo, ‘Leveraging proxy
mobile IPv6 with SDN’, Journal of Communications and Networks,
vol. 18, no. 3, Art. no. 3, Jun. 2016, doi: 10.1109/JCN.2016.000061.

	[10]	 K. M. Sue, S. Kamolphiwong, T. Kamolphiwong, and L. Damyos,
‘SDN Based Fast Handover over IP Mobility’, in 2019 23rd
International Computer Science and Engineering Conference (ICSEC),
2019, pp. 345–350. doi: 10.1109/ICSEC47112.2019.8974787.

	[11]	 K. Hee Lee, ‘Mobility Management Framework in Software Defined
Networks’, International Journal of Software Engineering and Its
Applications, vol. 8, no. 8, pp. 1–10.

	[12]	 Á. Leiter, M. S. Saleh, L. Pap, and Bokor, ‘Survey on PMIPv6-
based Mobility Management Architectures for Software-Defined
Networking’, Infocommunications Journal, vol. XIV, no. 2,
doi: 10.36244/ICJ.2022.2.1.

	[13]	 D. Giatsios, K. Choumas, P. Flegkas, T. Korakis, and D. Camps-
Mur, ‘SDN implementation of slicing and fast failover in 5G
transport networks’, in 2017 European Conference on Networks and
Communications (EuCNC), 2017, pp. 1–6.

		 doi: 10.1109/EuCNC.2017.7980671.
	[14]	 V. Q. Rodriguez, F. Guillemin, and A. Boubendir, ‘Automating

the deployment of 5G Network Slices using ONAP’, in 2019 10th
International Conference on Networks of the Future (NoF), 2019, pp.
32–39. doi: 10.1109/NoF47743.2019.9015043.

	[15]	 V. Q. Rodriguez, F. Guillemin, and A. Boubendir, ‘5G E2E Network
Slicing Management with ONAP’, in 2020 23rd Conference on
Innovation in Clouds, Internet and Networks and Workshops (ICIN),
2020, pp. 87–94. doi: 10.1109/ICIN48450.2020.9059507.

	[16]	 R. Banerji et al., ‘ONAP Based Pro-Active Access Discovery and
Selection for 5G Networks’, in 2020 IEEE Wireless Communications
and Networking Conference Workshops (WCNCW), 2020, pp. 1–6.
doi: 10.1109/WCNCW48565.2020.9124724.

	[17]	 H. Huang and S. Guo, ‘Proactive Failure Recovery for NFV in
Distributed Edge Computing’, IEEE Communications Magazine, vol.
57, no. 5, pp. 131–137, 2019, doi: 10.1109/MCOM.2019.1701366.

	[18]	 M. Reitblatt, M. Canini, A. Guha, and N. Foster, ‘FatTire: Declarative
Fault Tolerance for Software-Defined Networks’, in Proceedings of the
Second ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking, New York, NY, USA, 2013, pp. 109–114.

		 doi: 10.1145/2491185.2491187.
	[19]	 ‘Kubernetes: Horizontal Pod Autoscaler’. https://kubernetes.io/docs/

tasks/run-application/horizontal-pod-autoscale/ (accessed Jul. 15, 2022).
	[20]	 ‘Deployment element of Kubernetes’. https://kubernetes.io/docs/

concepts/workloads/controllers/deployment/ (accessed Mar. 12, 2021).
	[21]	 J. W. Mwangoka, P. Marques, and J. Rodriguez, ‘Cognitive Mobility

Management in Heterogeneous Networks’, in Proceedings of the 8th
ACM International Workshop on Mobility Management and Wireless
Access, New York, NY, USA, 2010, pp. 37–44.

		 doi: 10.1145/1868497.1868504.
	[22]	 M. Simsek, M. Bennis, and I. Guvenc, ‘Mobility management in

HetNets: a learning-based perspective’, EURASIP Journal on Wireless
Communications and Networking, vol. 2015, no. 1, p. 26, Feb. 2015,
doi: 10.1186/s13638-015-0244-2.

	[23]	 R. Boutaba, N. Shahriar, M. A. Salahuddin, S. R. Chowdhury, N. Saha,
and A. James, ‘AI-Driven Closed-Loop Automation in 5G and beyond
Mobile Networks’, in Proceedings of the 4th FlexNets Workshop on
Flexible Networks Artificial Intelligence Supported Network Flexibility
and Agility, New York, NY, USA, 2021, pp. 1–6.

		 doi: 10.1145/3472735.3474458.
[24]	 J. Heinonen, P. Korja, T. Partti, H. Flinck, and P. Pöyhönen, ‘Mobility

management enhancements for 5G low latency services’, in 2016 IEEE
International Conference on Communications Workshops (ICC), 2016,
pp. 68–73. doi: 10.1109/ICCW.2016.7503766.

[25]	 Chantel Soumis, ‘AMM: WHA T IS AUTOMA TED
MANAGEMENT?’ https://www.valicomcorp.com/blog/2018/4/2/
amm-what-is-automated-mobility-management (accessed Mar. 21,
2022).

	[26]	 Pallavi Vanacharla, ‘SP360: Service Provider Winning business
customers with automated mobility management’. https://blogs.
cisco.com/sp/winning-business-customers-with-automated-mobility-
management (accessed Mar. 21, 2022).

	[27]	 Pallavi Vanacharla, ‘Digital Transformation Automation: Moving
beyond manual mobility management’. https://blogs.cisco.com/digital/
automation-moving-beyond-manual-mobility-management (accessed
Mar. 21, 2022).

[28]	 ‘Kubernetes Operators’. https://kubernetes.io/docs/concepts/extend-
kubernetes/operator/ (accessed Jan. 15, 2022).

	[29]	 ‘An introduction to closed-loop automation’. https://developer.ibm.
com/articles/an-introduction-to-closed-loop-automation/ (accessed
Mar. 21, 2022).

	[30]	 ‘ONAP – Service Orchestrator’. https://wiki.onap.org/pages/viewpage.
action?pageId=1015834 (accessed Jul. 15, 2022).

	[31]	 ‘ONAP – Service Design and Creation’. https://wiki.onap.org/pages/
viewpage.action?pageId=1015837 (accessed Jul. 15, 2022).

	[32]	 ‘ONAP – Controller Design Studio’. https://docs.onap.org/projects/
onap-ccsdk-cds/en/latest/ (accessed Jul. 15, 2022).

	[33]	 ‘ONAP – Policy Framework’. https://docs.onap.org/projects/onap-
policy-parent/en/latest/architecture/architecture.html (accessed Jul.
15, 2022).

	[34]	 ‘ONAP - Data Movement as a Platform’. https://wiki.onap.org/pages/
viewpage.action?pageId=3247130 (accessed Jul. 15, 2022).

	[35]	 F. Slim, F. Guillemin, A. Gravey, and Y. Hadjadj-Aoul, ‘Towards
a dynamic adaptive placement of virtual network functions under
ONAP’, in 2017 IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN), 2017, pp. 210–215.
doi: 10.1109/NFV-SDN.2017.8169880.

http://www.ietf.org/rfc/rfc6275.txt
https://doi.org/10.1145/3416012.3424633
https://doi.org/10.1109/CSNDSP54353.2022.9908059
https://doi.org/10.1109/ICCC51575.2020.9345262
https://doi.org/10.17487/RFC5213
https://doi.org/10.1145/3479241.3486684
https://doi.org/10.1109/CCNC.2014.6866558
https://doi.org/10.1109/JCN.2016.000061
https://doi.org/10.1109/ICSEC47112.2019.8974787
https://doi.org/10.36244/ICJ.2022.2.1
https://doi.org/10.1109/EuCNC.2017.7980671
https://doi.org/10.1109/NoF47743.2019.9015043
https://doi.org/10.1109/ICIN48450.2020.9059507
https://doi.org/10.1109/WCNCW48565.2020.9124724
https://doi.org/10.1109/MCOM.2019.1701366
https://doi.org/10.1145/2491185.2491187
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://doi.org/10.1145/1868497.1868504
https://doi.org/10.1145/3472735.3474458
https://doi.org/10.1109/ICCW.2016.7503766
https://www.valicomcorp.com/blog/2018/4/2/amm-what-is-automated-mobility-management
https://www.valicomcorp.com/blog/2018/4/2/amm-what-is-automated-mobility-management
https://blogs.cisco.com/sp/winning-business-customers-with-automated-mobility-management
https://blogs.cisco.com/sp/winning-business-customers-with-automated-mobility-management
https://blogs.cisco.com/sp/winning-business-customers-with-automated-mobility-management
https://blogs.cisco.com/digital/automation-moving-beyond-manual-mobility-management
https://blogs.cisco.com/digital/automation-moving-beyond-manual-mobility-management
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://developer.ibm.com/articles/an-introduction-to-closed-loop-automation/
https://developer.ibm.com/articles/an-introduction-to-closed-loop-automation/
https://wiki.onap.org/pages/viewpage.action?pageId=1015834
https://wiki.onap.org/pages/viewpage.action?pageId=1015834
https://wiki.onap.org/pages/viewpage.action?pageId=1015837
https://wiki.onap.org/pages/viewpage.action?pageId=1015837
https://docs.onap.org/projects/onap-ccsdk-cds/en/latest/
https://docs.onap.org/projects/onap-ccsdk-cds/en/latest/
https://docs.onap.org/projects/onap-policy-parent/en/latest/architecture/architecture.html
https://docs.onap.org/projects/onap-policy-parent/en/latest/architecture/architecture.html
https://wiki.onap.org/pages/viewpage.action?pageId=3247130
https://wiki.onap.org/pages/viewpage.action?pageId=3247130
https://doi.org/10.1109/NFV-SDN.2017.8169880

Closed-loop Orchestration for
Cloud-native Mobile IPv6

INFOCOMMUNICATIONS JOURNAL

MARCH 2023 • VOLUME XV • NUMBER 1 51

	[36]	 A. Hilt, I. Bakos, and G. Járó, ‘Reliability and availability modelling
of telecommunication servers on cloud’, in 2015 17th International
Conference on Transparent Optical Networks (ICTON), 2015, pp. 1– 4.
doi: 10.1109/ICTON.2015.7193412.

	[37]	 J. Varga, A. Hilt, J. Bíró, C. Rotter, and G. Jaro, ‘Reducing operational
costs of ultra-reliable low latency services in 5G’, Infocommunications
Journal, vol. X, pp. 37–45, 2018, doi: 10.36244/ICJ.2018.4.6.

	[38]	 GSMA, ‘Migration from Physical to Virtual Network Functions:
Best Practices and Lessons Learned’. https://www.gsma.com/
futurenetworks/5g/migration-from-physical-to-virtual-network-
functions-best-practices-and-lessons-learned/ (accessed Jul. 15, 2022).

[39]	 ‘Kubernetes – Network Speciel Interest Group’.
		 https://github.com/kubernetes/community/tree/master/sig-network

(accessed Sep. 28, 2021).
[40]	 ‘Network Service Mesh’. https://networkservicemesh.io/ (accessed

Mar. 12, 2021).

József Varga, PhD, is a senior research engineer at
Nokia, member of the 'Multi Cloud Orchestration’ re-
search group in Nokia Bell Labs. He received his MSc
in computer science and mathematics from the Univer-
sity of Szeged in 1991, PhD in IT from the University
of Veszprém in 2002. He was an assistant professor
at the University of Szeged, then at the University of
Veszprém. He joined Nokia in 1999, he was involved in
IP Multimedia Subsystem development, then represent-
ed Nokia as a standardization delegate in 3GPP from

2004 to 2011. In 2011 he joined Nokia Research Center (now Nokia Bell Labs)
dealing with topics like SDN, virtualization, and orchestration. Currently he is
focusing on resource management in 6G, including the economic aspects. He
co-authored more than 10 papers and more than 10 granted patents.

László Bokor received his Ph.D. degree in computer
engineering from Budapest University of Technol-
ogy and Economics in 2014. He is currently an associ-
ate professor at the Dept. of Networked Systems and
Services where he leads the Commsignia-BME HIT
Automotive Communications Research Group. He is
a member of the HTE, the Hungarian Standards Institu-
tion's Technical Committee for ITS (MSZT/MB 911),
the TPEGoverC-ITS Task Force within the TPEG Ap-
plication Working Group of TISA, the ITS Hungary

Association, and the BME's MediaNets Laboratory. In recognition of his pro-
fessional work and achievements in mobile telecommunications, he received
the HTE Silver Medal (2013), the HTE Pollák-Virág Award (2015, 2022), and
the HTE Gold Medal (2018). He was a recipient of the UNKP-16-4-I. Post-
Doctoral Fellowship in 2016 from the New National Excellence Program of
the Ministry of Human Capacities of Hungary. In 2018 he was awarded the
Dean's Honor (BME VIK) for education and research achievements in the field
of communication of autonomous vehicles; in 2020, he received the BME HIT
Excellence in Education Award.

Ákos Leiter has graduated as a Computer Engineer
MSC in Department of Networked Systems and Ser-
vices (HIT), Budapest University of Technology and
Economics (BME) in 2015, specialized in Computer
Networks. His theses was about proposing an opera-
tor-centric, dynamic flow mobility protocol with IP in
Evolved Packet Core. Currently he is a PhD candidate
at the Department of Networked Systems and Services
in the Multimedia Networks and Services Laboratory
(MEDIANETS) and a Research Engineer at Nokia Bell

Labs. His main research field is Network Function Virtualization and Software
Defined Networking including Orchestration and Network Automation. His
work-in-progress Phd theses is about the cloudification of Mobile IPv6 protocol
family on the top of Kubernetes.

Edina Lami is a solution expert at Nokia, technical
lead of the Nokia Core Slicing team since 2022. She
received her MSc degree in computer engineering from
Budapest University of Technology and Economics in
2022. She wrote her thesis about the closed-loop or-
chestration of cloud-native IP-based mobility manage-
ment. She joined Nokia Bell Labs in 2020 as a Research
Engineer Trainee where she was involved in mobility
management and orchestration related research topics.

Attila Hegyi received the MSc in computer science and
mathematics from the University of Szeged (SZTE) in
2010. He had worked for multiple companies in the
telecommunication domain as software engineer and
currently he is a senior research engineer at Nokia Bell
Labs. His main research topics are in the field of cloud-
native network automation, multi-cloud orchestration
and edge computing.

https://doi.org/10.1109/ICTON.2015.7193412
https://doi.org/10.36244/ICJ.2018.4.6
https://www.gsma.com/futurenetworks/5g/migration-from-physical-to-virtual-network-functions-best-practices-and-lessons-learned/
https://www.gsma.com/futurenetworks/5g/migration-from-physical-to-virtual-network-functions-best-practices-and-lessons-learned/
https://www.gsma.com/futurenetworks/5g/migration-from-physical-to-virtual-network-functions-best-practices-and-lessons-learned/
https://github.com/kubernetes/community/tree/master/sig-network
https://networkservicemesh.io/

Closed-loop Orchestration for
Cloud-native Mobile IPv6

MARCH 2023 • VOLUME XV • NUMBER 152

INFOCOMMUNICATIONS JOURNAL

Figure 12 - IPv6 address allocation before failover

Figure 13 - IPv6 address allocation after failover

Figure 12 - IPv6 address allocation before failover

Figure 13 - IPv6 address allocation after failover

Figure 12 – IPv6 address allocation before failover

Figure 13 – IPv6 address allocation after failover

Closed-loop Orchestration for
Cloud-native Mobile IPv6

INFOCOMMUNICATIONS JOURNAL

MARCH 2023 • VOLUME XV • NUMBER 1 53

foreign network. Packets originated at CN and targeted to the
MN go through HA. HA tunnels the packets to FA. Finally,
FA processes the encapsulated packets and forwards those to
the MN. Figure 1 describes the Control flow of MIPv4. Figure
2 depicts the basic architecture of MIPv4.

Figure 1 – The standard MIPv4 message flow[8]

The drawbacks of MIPv4 are the triangular routing which
adds more latency, single point of failure (SPOF), and
consumes bandwidth. In contrast, the traffic does not move
directly between the sender and the receiver (CN and MN).
Instead, traffic goes through the HA in the middle.

Figure 2 – The basic architecture of MIPv4 [8]

MIPv6 is similar to MIPv4, with enhancements and
additional features. MIPv6 uses the Neighbor Discovery
Protocol (NDP) of IPv6 [10]. NDP uses Router Solicitation
(RS) and Router Advertisement (RA) messages to detect IP
network prefix changes. Furthermore, NDP also deals with
neighbor reachability. An IPv6 capable access router has
replaced the functions of a Foreign Agent in MIPv4. This
means FAs are eliminated in the context of MIPv6.

The mobility procedure in MIPv6 works as follows. The
communication between MN and CN is addressed by
native/ordinary IPv6 routing when MN stays on its Home
Link. If the MN moves to Foreign Network, it has a new IP
address called the CoA. After that, the MN sends a registration
request to the HA (Binding Update) and receives the
registration reply (Binding Acknowledgment). Traffic is
encapsulated between HA and MN. MN may send a BU to CN
to avoid triangle routing in route optimization mode (RO). The
detailed message flow of MIPv6 is illustrated in Figure 3 .

Figure 3 – The standard MIPv6 message flow [9]

Home Test Init (HoTI) and Care-of Test Init (CoTI)
messages are part of the return routeability procedure. It is an
authorization procedure to enable registration by a
cryptographic token exchange. This procedure helps to give
some assurance to CN if MN is reachable on that particular
CoA. CN can securely accept BU from MN at the end of this
procedure and circumvent HA (route optimization).

B. Proxy Mobile IPv6

Proxy Mobile IPv6 (PMIPv6) [3] is a network-based
mobility management protocol working at the network layer.
The network-based mobility management extends the network
side and lets the network handle the mobility management
instead of modifying the host part. Thus, MNs may not even
know they are under any mobility process.

In PMIPv6 (Figure 4), the MN considers the whole
PMIPv6 domain as a home network, so the MN uses just a
unique HoA and different care-of addresses used by the
MAGs. Mobile Access Gateway (MAG) and Local Mobility
Anchor (LMA) are introduced in PMIPv6. MAG works as the
access router; it detects the MN's movements and does the
signaling and tunneling with the LMA, while the LMA works
similarly to the HA in MIPv6 but with some additional
potentials. LMA preserves accessibility to the MN's address
as it travels through PMIPv6 domains. Binding Cache exists
in the LMA, which is particularly a database that keeps track
of the movement of MNs.

Figure 4 – The basic architecture of PMIPv6 [3]

PMIPv6 operates as follows. The MN attaches to MAG and
sends Router Solicitation (RS) messages. Then MAG
transmits a Proxy Binding Update (PBU) to the LMA,
informing the attachment. LMA replies to the MAG via Proxy

Figure 14 - Detailed description of the failover use case

Figure 15 - IPv6 address allocation before scaling

Figure 16 - Detailed description of the scaling use case

Figure 14 – Detailed description of the failover use case

Figure 15 – IPv6 address allocation before scaling

Figure 16 – Detailed description of the scaling use case

Figure 14 - Detailed description of the failover use case

Figure 15 - IPv6 address allocation before scaling

Figure 16 - Detailed description of the scaling use case

Figure 14 - Detailed description of the failover use case

Figure 15 - IPv6 address allocation before scaling

Figure 16 - Detailed description of the scaling use case

Closed-loop Orchestration for
Cloud-native Mobile IPv6

MARCH 2023 • VOLUME XV • NUMBER 154

INFOCOMMUNICATIONS JOURNAL

Figure 17 - IPv6 address allocation after scaling

Figure 18 - Availability and redundancy calculations

Figure 17 – IPv6 address allocation after scaling

Figure 18 – Availability and redundancy calculations

Figure 17 - IPv6 address allocation after scaling

Figure 18 - Availability and redundancy calculations

Figure 17 - IPv6 address allocation after scaling

Figure 18 - Availability and redundancy calculations

Figure 17 - IPv6 address allocation after scaling

Figure 18 - Availability and redundancy calculations

