INFOCOMMUNICATIONS JOURNAL

Enhancing Visual Domain Randomization
with Real Images for Sim-to-Real Transfer

Enhancing Visual Domain Randomization
with Real Images for Sim-to-Real Transfer

Andrés Béres and Bélint Gyires-Téth

Abstract—In order to train reinforcement learning algorithms,
a significant amount of experience is required, so it is common
practice to train them in simulation, even when they are intended
to be applied in the real world. To improve robustness, camera-
based agents can be trained using visual domain randomization,
which involves changing the visual characteristics of the simula-
tor between training episodes in order to improve their resilience
to visual changes in their environment.

In this work, we propose a method, which includes real-
world images alongside visual domain randomization in the
reinforcement learning training procedure to further enhance
the performance after sim-to-real transfer. We train variational
autoencoders using both real and simulated frames, and the
representations produced by the encoders are then used to train
reinforcement learning agents.

The proposed method is evaluated against a variety of base-
lines, including direct and indirect visual domain randomization,
end-to-end reinforcement learning, and supervised and unsuper-
vised state representation learning.

By controlling a differential drive vehicle using only camera
images, the method is tested in the Duckietown self-driving car
environment. We demonstrate through our experimental results
that our method improves learnt representation effectiveness
and robustness by achieving the best performance of all tested
methods.

Index Terms— Artificial intelligence, Neural networks, Rein-
forcement learning, Self-driving, Sim-to-real transfer

I. INTRODUCTION

ECENTLY, reinforcement learning-based algorithms

have demonstrated strong capabilities in challenging
simulated environments, but real-world applications still pose
challenges.

Typically, they require large amounts of experience, which
can be obtained by training the agents in a simulator. Since
simulators are imperfect and incomplete representations of re-
ality, agents’ performance typically decreases when transferred
back into the real world. This is especially true for agents using
cameras, due to the visual differences between the simulated
and real environments.

It is advantageous to use cameras as sensors since they are
inexpensive, easy to acquire, and can be used for a wide variety
of purposes. They record a large amount of high-dimensional
data, but algorithmically it is challenging to extract the relevant
high-level information from them.

An agent that uses a camera sensor can be trained in a
simulator by rendering an image of a simulated camera and

Andréas Béres and Bdlint Gyires-T6th, Department of Networked Systems
and Services, Budapest University of Technology and Economics, Budapest,
Hungary (E-mail: beres@tmit.bme .hu, toth.b@tmit.bme.hu)

DOI: 10.36244/1CJ.2023.1.3

MARCH 2023 « VOLUME XV « NUMBER 1

using that as input. The difficulty of transferring to the real
world stems from the fact that the diversity of images in a
simulator is much lower than in the real world. There is a
danger that the model learns some specific properties of the
simulator (like the colors and textures of some objects), that
will not be the same in reality, or will be much more diverse.
In that case since these inputs are different from anything the
network has seen, its outputs become unpredictable.

In order to increase the robustness of agents to visual
changes in their environment, visual domain randomization
can be used, which alters the visual characteristics of the
simulator in a randomized way between training episodes.

One possibility to further improve performance after sim-to-
real transfer would be to include real images in some way into
the training procedure. This has the difficulty that while real
world images are usually inexpensive to gather, reinforcement
learning also requires corresponding rewards, which are more
difficult to gather, since they would require precise estimation
of the state, which is more error-prone and also more noisy
due to imperfect sensors, compared to simulation.

As a result, in order to overcome this limitation while still
retaining the ability to utilize real-world data, we propose
using an unsupervised method for state representation learning.
Our method does not require either rewards or labels in
order to learn state representations. Our proposal is to train
variational autoencoders (VAE) on both real and simulated
frames, so that the training distribution incorporates real
frames. Training reinforcement learning agents in simulators
using the representations of these pretrained VAE encoders
can be transferred and robustly applied to the real world.

II. RELATED WORK

In order to decrease the gap between the simulation and
the real world, a number of techniques can be employed, as
follows:

e More realistic simulator environments.

— More realistic rendering and textures [1].
— System identification and calibration [2]: more accu-
rate dynamics parameters based on measurements.
— Novel views of real 3D scenes using Neural Radiance
Fields [3][4]
o Domain adaptation [5]: in order to reduce the perfor-
mance difference between the simulated and real envi-
ronment, certain statistics can be adjusted to make the

15

mailto:beres%40tmit.bme.hu?subject=
mailto:toth.b%40tmit.bme.hu?subject=
https://doi.org/10.36244/ICJ.2023.1.3

INFOCOMMUNICATIONS JOURNAL

Enhancing Visual Domain Randomization
with Real Images for Sim-to-Real Transfer

simulated and real environments more similar, auxiliary
loss functions can be applied, or transfer learning can be
used.

o Domain randomization [6][7]: A random perturbation of
some parameters (e.g. visuals) of the simulated environ-
ment is performed in each training episode to broaden
the range of environments where the agent performs
correctly.

« Regularization:

— Observation-noise [2]: making the agent more re-
silient to discrepancies in its observations can in-
crease its robustness.

— Action-noise [2]: can force the agent to plan more
robustly or behave more conservatively.

— Network regularization [8]: application of techniques
typically used against overfitting in deep learning,
such as L2 regularization [9], droupout [10], and
parameter noise [11].

In the following subsections we introduce those methods, that
are most relevant to this work.

A. Domain Randomization

In domain randomization, selected parameters of the simu-
lator are randomly perturbed during every training episode. By
training reinforcement learning agents in a variety of virtual
environments, the range of environments they can perform
well will be widened, increasing the likelihood of a successful
simulation-to-real transfer.

The two main methods of domain randomization are vi-
sual domain randomization [6][7], where visual parameters
are perturbed, such as textures, lightning, background, and
dynamics randomization [12], where the parameters of the
process dynamics are changed.

In the case of visual domain randomization and image
observations, one could also use image augmentation methods
instead of re-rendering the images. These however should not
distort the perceived state of the simulator, which is observed
by the agent. In first-person view environments such as car
driving, random cropping the image would distort the agent’s
perception of its own position on the track, so we consider it
observation-noise instead of visual domain randomization, this
however was also shown recently [13][14] to be effective in
regularizing the networks to improve training performance. A
simple non-distorting image augmentation example is Gaus-
sian pixel noise, but one could change the brightness, contrast
or the saturation of the images as well.

These two methods are quite different, and promote gen-
eralization in different aspects. While a large diversity can
be helpful in the case of visual domain randomization, it is
usually detrimental for dynamics randomization. This means
that the randomization ranges are important hyperparameters
for both methods. In this work we investigate both of them,
and will introduce the most relevant works in the following
sections.

Visual domain randomization is commonly used for high-
dimensional sensors, primarily camera-based tasks, although
it may also be applied to LIDARs.

16

Fig. 1. Example frames with visual domain randomization from the Ducki-
etown Gym self-driving simulated environment.

B. Direct Visual Domain Randomization

This is the most straightforward way to apply visual domain
randomization: the randomized environments are used in the
same way as the original one — their observations are directly
used for training.

One of the first applications of the technique, in which
the goal was to ensure generalization by visual diversity and
not to make it visually more realistic, was for the task of
indoor camera-based drone control [6]. The authors carried
out the training in simulated indoor environments, in which
they placed lightsources, furniture, closed and open doors in
random positions and directions. They also randomly chose
realistic wall textures. Though their network was pretrained
on realistic images, they did not use any further real images
during training, and their algorithm was capable of flying in
the reality as well, with approximately one crash every minute.

The technique was also successfully applied in robotics
for object localization [7]. The task of the network was to
determine the positions of objects on a table, with other
distracting objects present, based on camera images. The
training was carried out without any real images, with a
random amount of objects with randomized shape, texture
and position, and with a random amount of lightsources with
randomized direction, temperature and position. They also
perturbed the position and direction of the camera, and the
parameters of noise added to the images. They used multiple
thousand non-realistic textures with randomized colors. Based
on the ablation study, the randomized texture and camera
positions had the highest impact, which is a finding that we
have seen in multiple robotics applications.

The method has also been applied to object detection [15]
as well, where the authors used it along with a wide range
of image augmentation techniques. Findings show that their
model has an accuracy similar to as if it has been trained on
a highly realistic virtual dataset. In their case the randomized
light sources and textures had the greatest impact on the result.

C. Indirect Visual Domain Randomization

Indirect approaches do not use the randomized environments
for training, but for network regularization or domain adapta-
tion instead.

Invariance regularized domain randomization [16] uses the
following idea: the robustness of a policy can be measured by

MARCH 2023 « VOLUME XV * NUMBER 1

INFOCOMMUNICATIONS JOURNAL

calculating the average distance between the policy outputs
for a randomized observation and the outputs for its original
counterpart. So we can add this as a regularization term to the
loss function, and use it for optimization, thereby ensuring
robustness of the learned strategies.

A similar solution is the following, where the distances are
not calculated between the outputs, but between the activations
of the last hidden layers instead [17], which can be seen
as a high level representation of the input. This helps to
avoid the situation where the two parts of the loss function
have opposite effects, therefore in this case increasing the
strength of the regularization parameter does not cause a
performance drop when comparing with [16], as it is shown
in the appendix. Another work proposes this same method
[18], however an interesting detail is that they use a randomly
initialized convolutional layers for data augmentation.

Another method is to train an autoencoder to reconstruct
original observations based on visually randomized obser-
vations [19], so that the encoder can be used to compress
simulator frames to a representation that is invariant to visual
changes of the environment.

Visual domain randomization can also be used for domain
adaptation [20]. In this case a network is trained to generate
a canonical observation (an observation that is similar to
the observations of the original environment) based on the
randomized observation. This network can also be used to
adapt real observations, which we then train our agent on.

A drawback of all works mentioned above is, that they
require paired canonical - randomized images, which makes
incorporating real frames difficult. Real camera images can
be considered as randomized observations, but finding their
canonical versions is nontrivial and would require image-to-
image translation. Another option [21] is to train a generative
network to translate simulated images to the domain of real
images instead, and use it during simulator-based training.

D. Sim-to-Real Transfer

It can generally be stated that model-free reinforcement
learning algorithms are not using gathered experience effi-
ciently, so they need several interactions with their environ-
ment to learn to complete certain tasks. That makes training
in the real world slow, and since it also usually needs human
supervision, it is generally too expensive and for some appli-
cations, such as self-diriving cars, even dangerous to train in
the real world. A common solution to this problem is that the
agents learn in simulated environments and are then transferred
to the real world.

Sim-to-real transfer has already been successfully applied in
robot arm manipulation [2], robot locomotion [22] and simple
self-driving tasks [23].

However, our simulators can only be imperfect digital twins
of reality, so the performance of agents is usually reduced after
the transfer.This is called the sim-to-real gap, and one has to
take it into account if they want to apply agents trained in
simulation to the real world.

MARCH 2023 « VOLUME XV « NUMBER 1

Enhancing Visual Domain Randomization
with Real Images for Sim-to-Real Transfer

III. PROPOSED METHOD

Invariance-regularized methods (see Section II) require
paired randomized and canonical images, which would require
producing semantically equivalent versions of the real images
— which is hard to produce. To overcome this difficulty,
we chose to apply the method on top of direct domain
randomization methods instead.

Since supervised state representation learning methods re-
quire labels (e.g. physical quantities) for each image, they
would be noisy to measure and in some cases difficult to obtain
in the real world. As an alternative, we used unsupervised
representation learning, which requires only real images and
no labels, so all what is needed is a camera to take photos.

Based on these considerations, we propose a two stage
training method of the reinforcement learning agent.

1) In the first stage, direct visual domain randomization

with unsupervised state representation learning is used.
The visually randomized simulated images are extended
with real images in the training dataset. For unsuper-
vised state representation learning, we utilize variational
autoencoders [24][25] with calibrated decoders [26].

2) The trained VAE encoder is then applied to encode the
observations to its learned latent space, and the rein-
forcement learning agent is trained in this latent space.
Le. the simulator output frames are encoded by the
pretrained VAE encoder, and these encoded observations
are processed by the agent to predict the best possible
actions.

The method is depicted on Figure 2.

During state representation learning, the goal is to learn
representations that are (1) compact and informative about
the environment state, making them useful for the control
agent, and are (2) robust to visual changes, making the agent
transferable into the real world.

The first criterion can be evaluated by training a rein-
forcement learning agent using the observations that are pre-
processed by the VAE encoder with its weights frozen, and
measuring the task performance in the simulator. We test the
second criterion by transferring agents into the real world, and
evaluating their performance.

Variational Autoencoder

For state representation learning, we decided to use vari-
ational autoencoders as their utility for learning image rep-
resentations for reinforcement learning algorithms has been
demonstrated in previous works [27], including self-driving,
both in simulation [28] and the real world [29].

]E:ceXDEqu(z\:L‘) [_ 10gp($|2:)] + DKL(Q(Z|$)HP(Z))] ()

Equation 1 shows the objective [30] of variational autoen-
coders, which can be optimized using the loss function in
Equation 2, with X being the set of images in the dataset,
x an image sample, p(z) being the prior distribution of the
latent variables, ¢(z|z) being the posterior latent distribution
an image is encoded into by the encoder, and p(z|z) being
the output distribution of pixel values, a reconstruction of the

17

INFOCOMMUNICATIONS JOURNAL

Enhancing Visual Domain Randomization
with Real Images for Sim-to-Real Transfer

visually randomized

real images

simulator images

simulator images

VAE |
encoder environment
o
3
i Q
o
; 3
: 8
latent control i o |
represen- agent action process . camera =
tation dynamics %
2 r
VAE ||
decoder reward
L L J

T
|. Unsupervised Representation Learning

T
1. Reinforcement Learning

Fig. 2. High level overview of the proposed method. We use real images alongside visually randomized simulator images during unsupervised state
representation learning, to improve robustness for sim-to-real transfer. In the first stage we use variational autoencoders for state representation learning,
where an encoder is trained to compress the real and simulated images x into latent variables Z and a decoder is trained to reconstruct them Z. In the
second stage a control agent is trained with reinforcement learning and proximal policy optimization in simulator, where the observations are simulated frames

preprocessed by the pretrained, frozen encoder network.

original image by the decoder, decoded using a sample z from
the posterior latent distribution. In our method X contains both
visually randomized simulated and real images.

Lyae = —log p(z|2) + Drer(q(2]2)|[p(2)) @

The loss consists of two terms. The negative log-likelihood
term measures the reconstruction error between the original
images and their reconstructed distributions, and the Kullbach-
Leibler divergence term (KL-divergence), which measures the
difference between the latent variable distributions the image
is encoded into, and their priors.

Sometimes a 3 hyperparameter [31] is introduced, which
scales the KL-divergence term to balance the relative strengths
of the two loss terms. To eliminate the need of tuning
this additional hyperparameter, we used pixelwise calibrated
decoder distributions [26], which eliminate the need for it by
scaling the reconstruction term instead, by setting the variance
of its distribution based on the variance of the pixel values in
the training data. For consistency we estimated the variances
of the distributions by iterating over the whole training dataset
once, and used it throughout the training, instead of estimating
it on each minibatch, as was done in [26].

Following previous works, we use a unit Gaussian as the
latent prior, and another Gaussian distribution with diagonal
covariance matrix as the latent posterior. Using these assump-
tions the loss terms can be computed analytically, and the
reconstruction loss term can be written as Equation 3, and the
KL-divergence term as Equation 4.

(x — &)
—logp(z|z) = =5~ +logo, +logV2r (3)
244.°2 1
Dir(a(z|2)llp(z)) = —F—— —logd= =5 4

18

The latent posterior mean 2 and standard deviation o, are
vectors predicted by the encoder, while the image posterior
mean Z is predicted by the decoder. The image posterior stan-
dard deviation, o,, is set beforehand. Removing the constants
from the terms, we arrive at our final loss, shown in Equation
5, where N is the minibatch size, D the number of latent
dimensions, X the set of images in the batch and Z the set
of latent variables.

vaoZQNZ

zeX

Z 2 —l—(sz—log(cfz2

zEZ

)N (5)

IV. EVALUATION

We implemented and evaluated the proposed method in the
Duckietown self-driving car environment [32], on the camera-
based lane following task. We used the Stable-Baselines3
[33] reinforcement learning library, and the proximal policy
optimization (PPO) reinforcement learning algorithm [34] with
a continuous action space.

We evaluated a wide range of baselines not using real
images. The examined configurations are listed in Table I, and
the baselines are shown in Figure 3, the bottom row is our
proposed method. We also included end-to-end reinforcement
learning as a baseline, without the application of a pretrained
image encoder. Our hyperparameters are detailed in Appendix
A, loss functions used for baseline methods are detailed in
Appendix B and C.

A. The Duckietown Platform

The Duckietown self-driving platform consists of multiple
main parts, one of which are the Duckiebots, which are small-
sized autonomy-capable vehicles, that are controlled by a
Raspberry Pi or an Nvidia Jetson Nano, and are equipped with

MARCH 2023 « VOLUME XV * NUMBER 1

INFOCOMMUNICATIONS JOURNAL

Supervised State
Representation Learning

Randomization

Enhancing Visual Domain Randomization
with Real Images for Sim-to-Real Transfer

Unsupervised State
Representation Learning

Direct Visual I] vaical I e Jatent e I
) 3 eature | | physica 3 : ~
Domain ”| extractor | | quantities "] encoder || "*PIESE™ [decoder | S
feature physical VAE fatent VAE
ic represen-
extractor || quantities encoder Do decoder

Invariance-
regularized
Visual Domain

Randomization |

& feature physical
quantities

minimize
difference

>
extractor

—_—

minimize
difference

latent
represen-
tation

& VAE
encoder

Fig. 3. Benchmarked baseline methods. Direct vs. invariance regularized domain randomization, and supervised vs. self-supervised state representaion learning.

TABLE 1
OVERVIEW OF THE BENCHMARKED METHOD CONFIGURATIONS, OUR
PROPOSED METHOD IS IN THE BOTTOM ROW IN BOLD.

Domain Encoder Canonical ~ Randomized Real
Randomization Pretraining Images Images Images
None None v X X
None Supervised v X X
None Unsupervised v X X
Invariance-Reg Supervised v 4 X
Invariance-Reg ~ Unsupervised v/ 4 X
Direct None X 4 X
Direct Supervised X 4 X
Direct Unsupervised X 4 X
Direct Unsupervised X 4 v

a single camera. If a Jetson Nano is present, the camera frames
can be processed by it on-device, or alternatively they can
be streamed over the network to a remote computer, which
is common practice in camera-based robotics [35]. During
evaluation we applied the latter option for greater throughput.
Duckiebots are differential drive vehicles, they do not use a
servo motor for steering, instead their motors are independent
on their sides, and they can turn by driving their motors at
different speeds.

Another part of the system is Duckietown, which is a small
scale well-specified, real, physical driving environment, which
can be used by the Duckiebots for driving, therefore their
performance can be evaluated in a real environment.

The last main part is the Duckietown Gym, which is a
self-driving car simulator, implementing the OpenAl Gym
interface. The simulator contains multiple maps that provide
tasks such as lane following, navigation in intersections, and
pedestrian- (duckie-) and vehicle- (duckiebot-) avoidance. The
simulator is capable of simulating multiple agents, opening the
possibility for analyzing the joint behaviour of multiple traffic
participants [36], however in this work we only consider the
single-agent setting.

An important feature of the simulator is that it implements

MARCH 2023 « vOLUME XV * NUMBER 1

optional
frame
stacking

bottom

640x480x3 resize 160x120x3 160x80x3 160x80x9

Fig. 4. An illustration of the preprocessing pipeline

visual domain randomization by optionally perturbing the
following components:

o Position and color of the light source

o Camera position, angle, and field of view

o Color of the sky

o Texture and color of road tiles

o Amount, type, position and color of environment objects

We perturbed all of these components when training the re-
inforcement learning agent with visual domain randomization.

B. Observation Space

Following the work of [37], we downscaled the 640x480
input image by a factor of 4 on both sides to a resolution
of 160x120, then we cropped out the upper third of the
image, which generally only contained information about the
background objects and the sky, which yielded an observation
of size 160x80.

Theoretically, stacking multiple past frames can be useful,
as this enables the network to infer information about its speed
and angular velocity (which need at least 2 frames), and its
acceleration and angular acceleration (which need at least 3
frames). These theoretical considerations have been reinforced
by prior work [37], and it has also been experimentally shown
that stacking more than 3 frames does not yield considerable
benefits, therefore we stacked 3 past frames together for every
observation for the RL agents when not using rotary encoders.
Since we used colored images, the final size of the input image

19

INFOCOMMUNICATIONS JOURNAL

Enhancing Visual Domain Randomization
with Real Images for Sim-to-Real Transfer

observations became 160x80x9, as shown in Figure 4. We did
not apply any other preprocessing on the input images, such
as tresholding certain colors or filtering.

The alternative solution for sensing speed and angular
velocity is to use the rotary encoders that the latest edition
of Duckiebots are equipped with. This option brings its own
set of challenges, and we leave exploring this option to future
work.

C. Action Space

A differential robot is usually controlled by driving its
motors on its sides at different speeds. In the case of the
Duckiebot, one can control the duty cycles of the pulse width
modulated (PWM) signals that drive its DC motors.

That means that the space of possible actions is two-
dimensional and by each dimension it spans the range of
[—1.0;1.0]. This action space permits some actions that are
not useful, for example we do not want the vehicle to drive
backwards or to drive it much more slowly than what it is
capable of.

Since the task of vehicle control and lane following is
inherently continuous, we have chosen to use a continuous
action space. We followed prior work [37], and have defined
a l-dimensional action space. The only thing the agent can
directly influence is its steering angle, which is then mapped
to two target speeds of its two motors. These speeds are chosen
to be as high as possible while still having a difference that
is proportional to the steering angle. This has the effect that
when taking sharp turns the car has to slow down to be able
to provide the needed difference between the wheel speeds.

1
Ugpg = MiN(Unom, (6)
o = minltnom)
uleft = Clip(ua719(1+¢)7_1>1) (7)
Uright = Clip(uavg(l - ¢)7 _1» 1) (8)

The exact derivation is described in Equation 8, where ,,oy,
is the desired maximal duty cycle (nominal duty cycle), tq.4 is
the average duty cycle of the two motors (this depends on the
desired steering angle), e and w,ign are the duty cycles of
the corresponding motors, and ¢ is the desired steering angle,
while clip(value, min, mazx) is a function that clips its input
to be between a minimal and maximal value.

For small values ¢ can actually be interpreted as a steering
angle in radians, however for larger values it should be
interpreted as a scalar value that is proportional to the angular
velocity of the vehicle, with |¢| = 1 meaning that either one
of the motors stops completely while the other one runs at full
speed, meaning that the vehicle goes at half of its maximal
speed.

D. Reward Function

Reward functions for lane following may be based
on throttle [28], speed [38], speed parallel to lane
[39][40][41][42][29], traveled distance [43], and progress [38],
and can include penalties for leaving the lane [28], distance
from lane center [42][40][41], or collision [43][41].

20

Our initial experiments showed that with the default reward
function provided by the Duckietown environment, the agents
perform suboptimally. Though multiple different reward func-
tions have been tested in previous work [44][45], it has been
shown, that a speed-based reward function is already a strong
baseline [45]. Based on these results, we have chosen to use
a reward function that is physically motivated and is speed-
based. In each timestep the reward of the agent is the speed
at which it is progressing in its lane (with which speed it
is completing the track). A more accurate description is that
the reward is the speed of a virtual twin vehicle that moves
exactly in the middle of the lane, is exactly parallel to it, and
completes its route at the same rate as the actual car.

The exact formula of the reward function is shown in
Equation 9, where v is the physical speed of the car, § is
the signed angle of the car and lane, 7 is the signed radius of
the turn, c is the signed curvature of the turn (¢ = 1/7), and
p is the signed distance of the car from the lane.

. 1
R= Uprogress = U - 608(6) : r+p =v 008(6) . 1+4+cp ©)

The formula can be understood in the following way: v -
cos(0) is the component of the vehicle’s speed that is parallel
to the lane, v - cos(d)/(r + p) is the angular velocity of the
vehicle in a turn, and v-cos(8)/(r+p)-r is the circumferential
velocity of the equivalent virtual vehicle in the turn, that is
moving exactly on the middle of the lane.

This reward function has the advantage that it penalizes high
angles and turns taken in the outer regions of the road, while
it promotes high speeds and turns taken on the inner regions
of the road. In practice the value is generally quite close to
simply the speed of the vehicle, which has also been shown
to be a plausible reward function [37].

When using this reward function however, care has to be
taken to limit how much the car can leave its lane, otherwise
it will tend to take left turns by going over to the other lane.

E. Dataset Collection

To be able to apply state representation learning efficiently,
we generated a dataset of observations and corresponding
physical parameters. Though one could use a streaming-type
dataset, which is generated by the simulator, this would not
only bottleneck the training speed, but the samples would not
be statistically independent and identically distributed.

Based on these considerations, we generated and saved
images of 200.000 scenes during the training of a baseline end-
to-end convolutional reinforcement learning agent, and stored
3 different renderings for each image: a visually randomized,
a canonical (non-randomized), and a segmented one, as shown
in Figure 5. We also saved the corresponding speeds, angular
velocities, lane angles, lane distances, and lane curvatures for
future work. The generated dataset has a 22.6 GB storage size.

Four different maps were used, all being a part of the
official Duckietown simulator (Duckietown Gym [32]): 4way,
loop_empty, udeml and zigzag_dists.

Note that there are intersections on two out of these four
maps, which we included on one hand to increase diversity,
but also to help future efforts dealing with intersections.

MARCH 2023 « VOLUME XV * NUMBER 1

INFOCOMMUNICATIONS JOURNAL

randomized

segmented

Fig. 5. Samples from the gathered offline dataset showing the 3 different
renderings for each scene.

Using the dataset, the mean and variance observations for
each image type have been determined on the training set
before the training, to enable the usage of calibrated decoders
[26].

We have created another dataset as well, which contains
19.000 real images, downloaded from online logs of Duck-
iebots from the Duckietown website [32]. We handpicked 3
videos of agents with reasonable performance and diverse
lighting conditions, extracted and saved the frames from them.
These images have been saved under the randomized im-
ages category, with no corresponding canonical or segmented
frames, nor physical quantities.

F. Evaluation Metrics

We used the following metrics to monitor the performance
of lane following agents during and after the training in
simulation:

e« Mean angle error: The mean absolute angle between

vehicle and the lane

« Mean position error: The mean absolute distance between

vehicle and the center of the lane

e« Mean completion speed: the same as the mean reward

per timestep

o The average length of the evaluation episodes in

timesteps, which can be used to calculate the average
completion rate, which is the ratio of average evaluation
episode length and the maximal episode length

The averages have been calculated over the whole process of
the evaluation, which generally consisted of multiple episodes:
10 during training, 50 during final evaluation.

During real world testing, these metrics would be difficult
and error-prone to measure, so we used the following evalua-
tion metrics:

e Mean number of traveled tiles: correlates with the dis-

tance traveled

e Mean survival time: the ratio of the evaluation time and

the number of manual resets required to keep the agent
on track

The real world metrics were measured for each algorithm
for 60-60 seconds, on both the outer lane and the inner lane of
a closed Duckietown track without intersections, with manual

MARCH 2023 « VOLUME XV « NUMBER 1

Enhancing Visual Domain Randomization
with Real Images for Sim-to-Real Transfer

TABLE II
MEAN EVALUATION METRICS OF THE VAE-BASED STATE
REPRESENTATION LEARNING METHODS. THE PROPOSED METHOD IS IN
THE BOTTOM ROW IN BOLD.

Algorithm Reconstr. error KL-div. Inv. KL-div.
[nats/dim] [nats/dim] [nats/dim]

VAE 0.125 5.5 -

VAE inv. reg. 0.126 3.9 8.3

VAE direct 0.160 5.4 -

VAE direct real 0.087 4.9 -

resets to the center of the lane if an agent attempted to leave
its lane.

Note that the same metrics are used by the Duckietown Al
Driving Olympics evaluation [46], but we report mean values
instead of medians, which was more practical to measure
manually real-time during real world evaluation.

V. RESULTS

In this section we introduce the results of the first stage, and
of the second stage (in simulation and real environments).

A. Representation Learning (first stage)

Though our main goal was to evaluate the quality and
robustness of the learned state representations by training
reinforcement learning agents using the pretrained encoders,
we also report the pretraining performance metrics of our
method and the other baselines.

The metrics of variational-autoencoder based methods are
shown on Table II.

Overall the evaluation metrics are in a similar range across
the methods, with the exception of the reconstruction error of
our proposed method, which is noticeably lower than its coun-
terparts. This could be caused by the fact that both real and
simulated images are used for its training, so the distribution of
training images is bimodal, while the loss parametrization only
assumed a unimodal Gaussian pixel output distribution. This
could have led to overestimated output image pixel variance
values, making the loss reconstruction error lower under our
imperfect assumption.

However our main goal was not to optimize the pretraining
metrics, but to evaluate the quality and robustness of the learnt
representations by using them for reinforcement learning (in
the second stage), so this is what we present in the following
sections.

B. Simulation Environment (second stage)

Table III and IV shows the results of state representation
learning algorithms with their default control modules (trained
using their representations of their input image type in the
Duckietown Gym), evaluated in simulation, evaluated either
without or with domain randomization.

Our results in the simulator without domain randomization
(Table III) show that from the algorithms that did not use
canonical (non-randomized) images for their training (see
Table I), our proposed method performs the best. The usage

21

INFOCOMMUNICATIONS JOURNAL

Enhancing Visual Domain Randomization
with Real Images for Sim-to-Real Transfer

TABLE III
EVALUATION RESULTS IN THE SIMULATOR WITHOUT VISUAL DOMAIN
RANDOMIZATION. COMPLETION RATIOS ABOVE 70% ARE UNDERLINED.
THE PROPOSED METHOD IS IN THE BOTTOM ROW IN BOLD. SEE THE
CORRESPONDING ROWS OF TABLE I FOR MORE DETAILS ON THE

ALGORITHMS.
Algorithm Abs. angle Abs. pos. Completion ~ Completion
error [deg] error [cm] speed [m/s] ratio [%]
E2E 11.5 39 0.40 30.0
SUP 6.0 2.5 0.47 88.6
VAE 6.4 2.5 0.48 54.4
SUP inv. reg. 6.6 2.0 0.48 90.8
VAE inv. reg. 7.8 2.5 0.51 83.4
E2E direct 12.9 32 0.35 29.3
SUP direct 9.0 34 0.44 39.2
VAE direct 8.7 24 0.46 52.9
VAE dir. real 7.6 2.8 0.47 73.9
TABLE IV

EVALUATION RESULTS IN THE SIMULATOR WITH VISUAL DOMAIN
RANDOMIZATION. COMPLETION RATIOS ABOVE 70% ARE UNDERLINED.
THE PROPOSED METHOD IS IN THE BOTTOM ROW IN BOLD. SEE THE
CORRESPONDING ROWS OF TABLE I FOR MORE DETAILS ON THE

ALGORITHMS.
Algorithm Abs. angle Abs. pos. Completion ~ Completion
error [deg] error [cm] speed [m/s] ratio [%]
E2E 10.1 38 0.42 23.0
SUP 17.8 4.0 0.28 12.5
VAE 11.0 39 0.41 18.2
SUP inv. reg. 6.6 2.0 0.48 84.0
VAE inv. reg. 7.7 2.5 0.50 82.3
E2E direct 12.4 33 0.38 27.0
SUP direct 7.3 2.8 0.47 79.9
VAE direct 6.9 29 0.49 82.7
VAE dir. real 6.0 2.5 0.50 88.1

of real images might have enabled the network to generalize
better to canonical images. However the two invariance-
regularized methods do show a higher performance in this
evaluation setting. The reason can be that the visual domain
randomization in the Duckietown Gym might be too extreme,
visual inspection of the images show that the images are
usually much darker in comparison to the canonical images.
Further evaluation will show however (Table 1V, Table V)
that they have worse generalization compared to our proposed
method in the simulated environment with domain randomiza-
tion, and also in reality.

End-to-end reinforcement learning seems to have underper-
formed in these experiments. As one can see on tables III, IV
and V, end-to-end reinforcement learning did not manage to
perform well in any of the evaluation settings.

Table IV shows our evaluation results in the simulator,
with domain randomization. They show that all investigated
state representation learning methods that are trained using
some sort of visual domain randomization, direct or invariance
regularized, are capable of solving the lane following task in
the simulator with randomized visuals at near 80% or higher
completion ratio. However our proposed method (bottom
row) outperformed all of them, achieving the highest, 88%
completion ratio.

22

TABLE V
EVALUATION RESULTS IN REALITY. SURVIVAL TIMES GREATER THAN OR
EQUAL TO 20 ARE UNDERLINED. THE PROPOSED METHOD IS IN THE
BOTTOM ROW IN BOLD. SEE THE CORRESPONDING ROWS OF TABLE I FOR
MORE DETAILS ON THE ALGORITHMS.

Algorithm Traveled Traveled Surv. time Surv. time
tiles (outer) tiles (inner) (outer) [s] (inner) [s]

E2E 30 30 5.5 4.6

SUP 0 0 0.0 0.0

VAE 22 26 5.0 4.6

SUP inv. reg. 41 44 60.0 30.0

VAE inv. reg. 43 48 no resets no resets

E2E direct 30 29 7.5 6.7

SUP direct 35 41 10.0 20.0

VAE direct 40 49 30.0 no resets

VAE dir. real 44 51 no resets no resets

C. Real Environment (second stage)

Table V shows the results of state representation learning
algorithms evaluated in the real world. Our proposed method
was able to achieve 60 seconds of driving in both directions
without any resets, while also covering more distance than any
other method. Since all methods were run at the same speeds
(same DC motor pulse-width-modulation duty cycle of 50%),
more traveled distance signals a smoother driving with fewer
oscillations, which lines up with what we saw visually.

Our experiments also showed that none of the models
trained without visual domain randomization (top three rows
in Table V) were able to have good performance during real
testing. On the other hand, from the six models trained using
direct or invariance regularizing visual domain randomization,
four were able to achieve an average survival time of 30
seconds or above.

The trends are that supervised state representation learning
outperforms end-to-end reinforcement learning, but variational
autoencoder-based unsupervised state representations perform
the best. In terms of domain randomization, direct methods
outperform ones in which it was not used at all, but invariance
regularizing methods perform the best, with the exception
being our proposed method, which used direct visual domain
randomization, but also used real images for training.

We also took part with preliminary versions of the proposed
method in the Urban League of the 5th and 6th editions of the
Al Driving Olympics [47], and achieved first prize in the Lane
Following category in the 5th edition [48], and achieved third
and fourth place in the Lane Following with Intersections and
with Vehicles categories respectively in the 6th edition [49].

VI. CONCLUSION

In this work we proposed a novel method for learning
effective image representations for reinforcement learning,
whose core idea is to train a variational autoencoder using
visually randomized images from the simulator, but include
images from the real world as well, as if it was just another
visually different version of the simulator.

We evaluated the method in the Duckietown self-driving
environment on the lane-following task, and our experimental
results showed that the image representations of our proposed
method improved the performance of the tested reinforcement

MARCH 2023 « VOLUME XV * NUMBER 1

INFOCOMMUNICATIONS JOURNAL

learning agents both in simulation and reality. This demon-
strates the effectiveness and robustness of the representations
learned by the proposed method.

We benchmarked our method against a wide range of
baselines, and the proposed method performed among the best
in all cases. Our experiments showed that using some type of
visual domain randomization is necessary for a successful sim-
to-real transfer. Variational autoencoder-based representations
tended to outperform supervised representations, and both
outperformed representations learned during end-to-end rein-
forcement learning. Also, for visual domain randomization,
when using no real images, invariance regularization-based
methods seemed to outperform direct methods.

Based on our results, we conclude that including real images
in simulation-based reinforcement learning trainings is able to
enhance the real world performance of the agent — when using
the two-stage approach, proposed in this paper.

APPENDIX A
HYPERPARAMETERS

Tables VI and VII show the hyperparameters used for
pretraining and finetuning, while tables VIII and VIII show the
used encoder and decoder architectures. Note that the neural
network architectures were chosen to be able to fit into the
embedded hardware at a limited runtime.

TABLE VI
VARIATIONAL AUTOENCODER HYPERPARAMETERS

Name Value
Learning rate le-3
Number of epochs 20
Width 64

Number of latent dimensions 8
o parametrization

TABLE VII
PPO REINFORCEMENT LEARNING ALGORITHM HYPERPARAMETERS

Name Value
Optimization steps 64 * 2048
Learning rate 3e-4
Number of steps between updates 2048
Batch size 64
Optimization epochs 10

Time horizon (discount factor) 0.8s (0.96)
Gradient clip range 0.2
Entropy coefficient 0.0

Initial log standard deviation -1.2

TABLE VIII
ENCODER ARCHITECTURE. ALL CONVOLUTIONS USED A KERNEL SIZE OF
3, STRIDE OF 2, LEFT-RIGHT ZERO PADDING OF 1.

Layer Activation Output dimensions
Conv ReLU width x 40 x 80
Conv ReLU width x 20 x 40
Conv ReLU width x 10 x 20
Conv ReL.U width x 5 x 10
Linear 2 x latent dim

MARCH 2023 « vOLUME XV * NUMBER 1

Enhancing Visual Domain Randomization
with Real Images for Sim-to-Real Transfer

APPENDIX B
BASELINES WITH SUPERVISED FEATURE EXTRACTION

The loss functions of benchmarked baselines (shown in
Figure 3) using supervised image encoders were determined
following a similar logic to Section III, to have a fair compar-
ison.

Since the scale of multiple physical outputs that we predict
can be very different, we applied a method which works out-
of-the box, and doesn’t require further hyperparameter tuning.
The squared errors of all the physical quantities are normalized
by their variance as shown in Equation 10, which is calculated
beforehand on the training data.

~\2
() +logo + log V2r

202

y is the ground truth label (vector of physical quantities to
be estimated), ¢ is produced by the image encoder, and o is
the standard deviation of the output distribution. Removing
the constants we arrive at the mean squared error loss, up to a
constant scaling factor, shown in Equation 11, with X and Y
being the set of images and corresponding labels in a batch.

—logp(ylz) = (10)

1
Loup = Euyexy[=logpyle)] = 5= > (y—9)° (D)

N
yey
APPENDIX C

BASELINES WITH INVARIANCE REGULARIZATION

For those benchmarked baselines that use invariance
regularization-based visual domain randomization (shown in
Figure 3), the KL-divergences were calculated between the
decoder output distributions that were produced using a canon-
ical and a randomized image.

These KL-divergences are added as auxiliary losses without
reweighting to the training loss, which is motivated by a related
work [17] (Appendix B), which shows that the network’s
performance on the reference domain does not depend heavily
on the weight of the invariance loss, if it is not the controller’s
output which is regularized, but an earlier layer. This is true in
our case, since reinforcement learning agents (parametrized by
multilayer perceptrons) are trained later on top of the image
encoders.

For the variational autoencoder, the auxiliary loss is shown
in Equation 12.

~ 2\2 ~ 2 ~
T T 1
Gr=2P 407 10 0 L (1
o 2

KL(a(fe,)lla(:la)) = =51 r

TABLE IX
DECODER ARCHITECTURE. ALL CONVOLUTIONS USED A KERNEL SIZE OF
3, STRIDE OF 1, LEFT-RIGHT ZERO PADDING OF 1. ALL UPSAMPLING
LAYERS USED NEAREST NEIGHBOR UPSAMPLING WITH A SCALE FACTOR

OF 2.
Layer Activation Output dimensions
Linear ReLU width x 5 x 10
Upsampling + Conv ~ ReLU width x 10 x 20
Upsampling + Conv ~ ReLU width x 20 x 40
Upsampling + Conv ~ ReLU width x 40 x 80
Upsampling + Conv Sigmoid width x 80 x 160

23

INFOCOMMUNICATIONS JOURNAL

Enhancing Visual Domain Randomization
with Real Images for Sim-to-Real Transfer

The supervised case is shown in Equation 13. Using that
visual domain randomization does not change the underlying
physical quantities, and the output variance are predefined, the
loss can be further simplified to a scaled mean-squared-error
loss, shown in Equation 14.

(Gr —9)* + 07 o 1
KL(p(ylzr)llp(ylr)) = = 5 +log o 3 1
(@ —9)°

KLyl Iptle) = (14)

In the above auxiliary loss equations x, is the second input
image, in our case the visually randomized one, which we want
to be invariant to. g, is produced by the image encoder and
o, is the standard deviation for the encoder output distribution
based on the randomized image.

With that, we get a similar loss formulation to the work on
VAEs with consistency regularization [50], if the regularization
strength hyperparameter is set to 1.0, but without the task of
reconstructing the invariance-input images.

ACKNOWLEDGMENT

The research presented in this work has been supported by
the PIA Project, a collaboration between Budapest University
of Technology and Economics and Continental Hungary Ltd
with the goal of supporting students’ research in the field of
deep learning and autonomous driving.

The work reported in this paper, carried out at BME, has
been partly supported by the the European Union project RRF-
2.3.1-21-2022-00004 within the framework of the Artificial
Intelligence National Laboratory.

REFERENCES

[1] S.James and E. Johns, “3d simulation for robot arm control with deep
g-learning,” arXiv preprint arXiv:1609.03759,2016.
por: 10.48550/arXiv.1609.03759

[2] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz,
B. McGrew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray
et al., “Learning dexterous in-hand manipulation,” The International
Journal of Robotics Research, vol. 39, no. 1, pp. 3-20, 2020.
por: 10.1177/0278364919887447

[3] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron,
R. Ramamoorthi, and R. Ng, “Nerf: Representing scenes as neural
radiance fields for view synthesis,” Communications of the ACM, vol.
65,n0. 1, pp. 99-106, 2021. por: 10.1145/3503250

[4] T. Miiller, A. Evans, C. Schied, and A. Keller, “Instant neural graph-
ics primitives with a multiresolution hash encoding,” ACM Trans-
actions on Graphics (ToG), vol. 41, no. 4, pp. 1-15, 2022.
por: 10.1145/3528223.3530127

[5] M. Wang and W. Deng, “Deep visual domain adaptation: A survey,”
Neurocomputing, pp. 135-153,2018. por: 10.1016/j.neucom.2018.05.083

[6] F.Sadeghi and S. Levine, “Cad2rl: Real single-image flight without a
single real image,” in Proceedings of Robotics: Science and Systems,
2017. por: 10.15607/RSS.2017.X111.034

[7] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks
from simulation to the real world,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS).1EEE, 2017, pp.
23-30. por: 10.1109/IROS.2017.8202133

[8] Z. Liu, X. Li, B. Kang, and T. Darrell, “Regularization matters in
policy optimization-an empirical study on continuous control,” in
International Conference on Learning Representations,2020.
por: 10.48550/arXiv.1910.09191

24

[9] A.Y. Ng, “Feature selection, 11 vs. 12 regularization, and rotational
invariance,” in Proceedings of the 21st International Conference on
Machine Learning. Association for Computing Machinery, 2004, p.
78. por: 10.1145/1015330.1015435

[10] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural networks
from over-fitting,” Journal of Machine Learning Research, vol. 15, no.
56, pp. 1929-1958, 2014. por: 10.5555/2627435.2670313

[11] M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X.
Chen, T. Asfour, P. Abbeel, and M. Andrychowicz, “Parameter space
noise for exploration,” in International Conference on Learning
Representations, 2018. por: 10.48550/arXiv.1706.01905

[12] X.B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” in 2018
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2018, pp. 1-8. por: 10.1109/ICRA.2018.8460528

[13] D. Yarats, I. Kostrikov, and R. Fergus, “Image augmentation is all
you need: Regularizing deep reinforcement learning from pixels,” in
International Conference on Learning Representations, 2021.
por: 10.48550/arXiv.2004.13649

[14] M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas,
“Reinforcement learning with augmented data,” Advances in Neural
Information Processing Systems, vol. 33,2020.
por: 10.48550/arXiv.2004.14990

[15] J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil,
T. To, E. Cameracci, S. Boochoon, and S. Birchfield, “Training deep
networks with synthetic data: Bridging the reality gap by domain
randomization,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, 2018, pp. 969-977.
por: 10.1109/CVPRW.2018.00143

[16] M. Aractingi, C. Dance, J. Perez, and T. Silander, “Improving
the generalization of visual navigation policies using invariance
regularization,” 36th International Conference on Machine Learning,
Workshop RL4RealLife,2019.

[17] R. B. Slaoui, W. R. Clements, J. N. Foerster, and S. Toth, “Robust
domain randomization for reinforcement learning,” arXiv preprint
arXiv:1910.10537,2019.

[18] K. Lee, K. Lee, J. Shin, and H. Lee, “Network randomization: A
simple technique for generalization in deep reinforcement learning,”
in 8th International Conference on Learning Representations, 2020.
por: 10.48550/arXiv.1910.05396

[19] A. Amiranashvili, M. Argus, L. Hermann, W. Burgard, and T. Brox,
“Pre-training of deep rl agents for improved learning under do- main
randomization,” arXiv preprint arXiv:2104.14386,2021.
por: 10.48550/arXiv.2104.14386

[20] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan,
J. Ibarz, S. Levine, R. Hadsell, and K. Bousmalis, “Sim-to-real via
sim-to-sim: Data-efficient robotic grasping via randomized-to-
canonical adaptation networks,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,2019.
por: 10.1109/CVPR.2019.01291

[21] M. Tim, M. Szemenyei, and R. Moni, “Simulation to real domain
adaptation for lane segmentation,” in 2020 23rd International
Symposium on Measurement and Control in Robotics (ISMCR), 2020,
pp. 1-6. por: 10.1109/ISMCR51255.2020.9263406

[22] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner,
S. Bohez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion
for quadruped robots,” arXiv preprint arXiv:1804.10332,2018.
por: 10.15607/RSS.2018.XIV.010

[23] A. Bewley, J. Rigley, Y. Liu, J. Hawke, R. Shen, V.-D. Lam, and A.
Kendall, “Learning to drive from simulation without real world labels,”
in 2019 International Conference on Robotics and Automation (ICRA).
IEEE, 2019, pp. 4818-4824. por: 10.1109/ICRA.2019.8793668

[24] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
arXiv preprint arXiv:1312.6114,2013. por: 10.48550/arXiv.1312.6114

[25] D.J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backprop-
agation and approximate inference in deep generative models,”
in Proceedings of the 31st International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research, vol. 32,
no. 2. PMLR, 2014, pp. 1278-1286. por: 10.5555/3044805.3045035

[26] O. Rybkin, K. Daniilidis, and S. Levine, “Simple and effective vae
training with calibrated decoders,” in Proceedings of the 38th Inter-
national Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, vol. 139. PMLR, 2021, pp. 9179-9189.
por: 10.48550/arXiv.2006.13202

MARCH 2023 « VOLUME XV * NUMBER 1

https://arxiv.org/abs/1609.03759
https://doi.org/10.48550/arXiv.1609.03759
https://doi.org/10.1177/0278364919887447
https://doi.org/10.1145/3503250
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1016/j.neucom.2018.05.083
https://doi.org/10.15607/RSS.2017.XIII.034
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.48550/arXiv.1910.09191
https://doi.org/10.1145/1015330.1015435
https://doi.org/10.5555/2627435.2670313
https://doi.org/10.48550/arXiv.1706.01905
https://doi.org/10.1109/ICRA.2018.8460528
https://doi.org/10.48550/arXiv.2004.13649
https://doi.org/10.48550/arXiv.2004.14990
https://doi.org/10.1109/CVPRW.2018.00143
https://arxiv.org/abs/1910.10537
https://doi.org/10.48550/arXiv.1910.05396
https://arxiv.org/abs/2104.14386
https://doi.org/10.48550/arXiv.2104.14386
https://doi.org/10.1109/CVPR.2019.01291
https://doi.org/10.1109/ISMCR51255.2020.9263406
https://arxiv.org/abs/ 1804.10332
https://doi.org/10.15607/RSS.2018.XIV.010
https://doi.org/10.1109/ICRA.2019.8793668
https://arxiv.org/abs/1312.6114
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.5555/3044805.3045035
https://doi.org/10.48550/arXiv.2006.13202

INFOCOMMUNICATIONS JOURNAL

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

MARCH 2023 « vOLUME XV * NUMBER 1

D. Ha and J. Schmidhuber, “World models,” in Advances in Neural
Information Processing Systems, vol. 31,2018.

por: 10.5281/zenodo.1207631

B. Prakash, M. Horton, N. R. Waytowich, W. D. Hairston, T. Oates, and
T. Mohsenin, “On the use of deep autoencoders for efficient embedded
reinforcement learning,” in Proceedings of the 2019 on Great Lakes
Symposium on VLSI, 2019, pp. 507-512. por: 10.1145/3299874.3319493
A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen, V.-D.
Lam, A. Bewley, and A. Shah, “Learning to drive in a day,” in 20719
International Conference on Robotics and Automation (ICRA). 1EEE,
2019, pp. 8248-8254. por: 10.1109/ICRA.2019.8793742

C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint
arXiv:1606.05908, 2016. por: 10.48550/arXiv.1606.05908

1. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S.
Mohamed, and A. Lerchner, “beta-vae: Learning basic visual concepts
with a constrained variational framework,” International Conference
on Learning Representations, 2017.

M. Chevalier-Boisvert, E. Golemo, Y. Cao, B. Mehta, and L. Paull,
“Duckietown environments for openai gym,”
https://github.com/duckietown/gym-duckietown, 2018.

A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N.
Dormann, “Stable baselines3,”
https://github.com/DLR-RM/stable-baselines3, 2019.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017. por: 10.48550/arXiv.1707.06347

M. Balogh and A. Viddcs, “Optimizing camera stream transport in
cloud-based industrial robotic systems,” Infocommunications Journal,
vol. XIV, no. 1, pp. 3642, March 2022. por: 10.36244/1CJ.2022.1.5
G. Hollési, C. Lukovszki, M. Bancsics, and G. Magyar, “Traffic swarm
behaviour: Machine learning and game theory in behaviour analysis,”
Infocommunications Journal, vol. XIII, no. 4, pp. 19-27, December
2021. por: 10.36244/1CJ.2021.4.3

A. Kalapos, “Applying transfer learning to autonomous driving task,”
Master’s thesis, Budapest University of Technology and Economics, 2020.
A. Santara, S. Rudra, S. A. Buridi, M. Kaushik, A. Naik, B. Kaul, and
B. Ravindran, “MADRaS: Multi agent driving simulator,” Journal of
Artificial Intelligence Research, vol. 70, pp. 1517-1555, apr 2021.
por: 10.1613/jair.1.12531

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Harley, T. P. Lil- licrap,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in Proceedings of the 33rd International
Conference on International Conference on Machine Learning -
Volume 48, ser. ICML’16. JMLR.org, 2016, p. 1928-1937.

por: 10.48550/arXiv.1602.01783

E. Perot, M. Jaritz, M. Toromanoff, and R. de Charette, “End-to-end
driving in a realistic racing game with deep reinforcement learning,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, July 2017.

por: 10.1109/CVPRW.2017.64

Z. W. Xinlei Pan, Yurong You and C. Lu, “Virtual to real reinforcement
learning for autonomous driving,” in Proceedings of the British
Machine Vision Conference (BMVC), G. B. Tae-Kyun Kim, Stefanos
Zafeiriou and K. Mikolajczyk, Eds. BMVA Press, September 2017, pp.
11.1- 11.13. por: 10.5244/C.31.11. ISBN 1-901725-60-X

M. Jaritz, R. de Charette, M. Toromanoff, E. Perot, and F. Nashashibi,
“End-to-end race driving with deep reinforcement learning,” 2018
IEEE International Conference on Robotics and Automation (ICRA),
pp. 2070-2075, 2018. por: 10.1109/ICRA.2018.8460934

A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the 1st
Annual Conference on Robot Learning, 2017, pp. 1-16.

por: 10.48550/arXiv.1711.03938

P. Almasi, R. Moni, and B. Gyires-Toth, “Robust reinforcement
learning- based autonomous driving agent for simulation and real
world,” in 2020 International Joint Conference on Neural Networks
(IJCNN), 2020, pp. 1-8. por: 10.1109/1IJCNN48605.2020.9207497
A.Kalapos, C. G6r, R. Moni, and I. Harmati, “Sim-to-realreinforcement
learning applied to end-to-end vehicle control,” in 23rd International
Symposium on Measurement and Control in Robotics (ISMCR), 2020,
pp. 1-6. por: 10.1109/ISMCR51255.2020.9263751

Duckietown Foundation. Ai driving olympics lane following metrics.
[Online]. Available: https://docs.duckietown.org/dafty/AIDO/out/
measuring_performance.html

Enhancing Visual Domain Randomization
with Real Images for Sim-to-Real Transfer

[47] ——. Ai driving olympics. [Online]. Available:
https://driving-olympics.ai/

[48] . Ai driving olympics 5: Urban league winners. [Online].
Available: https://www.duckietown.org/archives/66156
[49] . Ai driving olympics 6: Urban league. [Online]. Available:

https://www.duckietown.org/archives/8503 1
[50] S. Sinha and A. B. Dieng, “Consistency regularization for variational

auto-encoders,” in Advances in Neural Information Processing Systems,
vol. 34, 2021, pp. 12 943-12 954. por: 10.48550/arXiv.2105.14859

Andras Béres received his BSc and MSc degrees from
the Budapest University of Technology and Economics
(BME) as an electrical engineer, and currently works as
adeep learning engineer at the Continental AI Develop-
ment Center in Budapest. His interests range from deep
learning through robotics to embedded systems.

Balint Gyires-Téth is an associate professor at BME.
He conducts research on fundamental and applied
machine learning since 2007. With his leadership, the
first Hungarian hidden Markov-model based Text-To-
Speech (TTS) system was introduced in 2008. He ob-
tained his PhD degree with summa cum laude in Janu-
ary 2014. Since then, his primary research field is deep
learning. His main research interests are sequential data
modelling with deep learning, self-supervised learning
and deep reinforcement learning. He also participates in
applied deep learning projects, including time series modelling, anomaly detec-
tion, computer vision and conversational AI. He was involved in various suc-
cessful research and commercial projects. In 2017 he was certified as NVidia
Deep Learning Institute (DLI) Instructor and University Ambassador. His latest
Al- related research achievements contribute to the recently launched Artificial
Intelligence Systems National Laboratory as a subproject leader.

25

https://doi.org/10.5281/zenodo.1207631
https://doi.org/10.1145/3299874.3319493
https://doi.org/10.1109/ICRA.2019.8793742
https://arxiv.org/abs/1606.05908
https://doi.org/10.48550/arXiv.1606.05908
https://github.com/duckietown/gym-duckietown
https://github.com/DLR-RM/stable-baselines3
https://arxiv.org/abs/1707.06347
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.36244/ICJ.2022.1.5
https://doi.org/10.36244/ICJ.2021.4.3
https://doi.org/10.1613/jair.1.12531
https://doi.org/10.48550/arXiv.1602.01783
https://doi.org/10.1109/CVPRW.2017.64
https://doi.org/10.5244/C.31
https://doi.org/10.1109/ICRA.2018.8460934
https://doi.org/10.48550/arXiv.1711.03938
https://doi.org/10.1109/IJCNN48605.2020.9207497
https://doi.org/10.1109/ISMCR51255.2020.9263751
https://docs.duckietown.org/daffy/AIDO/out/measuring_performance.html
https://docs.duckietown.org/daffy/AIDO/out/measuring_performance.html
https://driving-olympics.ai/
https://www.duckietown.org/archives/66156
https://www.duckietown.org/archives/85031
https://doi.org/10.48550/arXiv.2105.14859

