
Using Dynamic Programming to Optimize Cellular
Networks Modeled as Graphical Games

DECEMBER 2022 • VOLUME XIV • NUMBER 462

INFOCOMMUNICATIONS JOURNAL

Using Dynamic Programming to Optimize Cellular
Networks Modeled as Graphical Games

Artur Popławski, and Szymon Szott

Abstract—Cellular networks are often modeled using game the- 
ory, with base stations as players contending for a shared resource 
(the radio channel). Alternatively, if base stations are considered 
as nodes joined by edges (which represent significant interfer- 
ence), we obtain a graph structure. A game represented in this 
way is called a graphical game. We explore this representation 
by decomposing the network graph through tree decomposition 
and apply dynamic programming to find the optimum welfare, 
i.e., a resource allocation strategy profile most effective from 
the point of view of the overall network performance. We verify 
our approach through simulations and discuss the possibility of 
implementing this solution in a distributed manner.

Index Terms—cellular networks, game theory, graphical 
games, LTE, optimization, welfare, tree decomposition

A. Popławski is with Nokia Technology Center Krakow, Poland 
and AGH University of Science and Technology, Kraków, Poland  
(E-mail: artur.poplawski@nokia.com)

S. Szott is with AGH University of Science and Technology, Kraków, Poland 
(E-mail: szott@agh.edu.pl)

This work was partially supported by the Polish Ministry of Science and 
Higher Education with the subvention funds of the Faculty of Computer 
Science, Electronics, and Telecommunications of AGH University.

1

Using Dynamic Programming to Optimize Cellular
Networks Modeled as Graphical Games

Artur Popławski, Szymon Szott

Abstract—Cellular networks are often modeled using game the-
ory, with base stations as players contending for a shared resource
(the radio channel). Alternatively, if base stations are considered
as nodes joined by edges (which represent significant interfer-
ence), we obtain a graph structure. A game represented in this
way is called a graphical game. We explore this representation
by decomposing the network graph through tree decomposition
and apply dynamic programming to find the optimum welfare,
i.e., a resource allocation strategy profile most effective from the
point of view of the overall network performance. We verify
our approach through simulations and discuss the possibility of
implementing this solution in a distributed manner.

Index Terms—cellular networks, game theory, graphical
games, LTE, optimization, welfare, tree decomposition

I. INTRODUCTION

OPTIMISING the performance of a single base station
(BS) in a cellular network is a relatively well understood

problem. In an OFDM-based cellular network, such as Long
Term Evolution (LTE) or New Radio (NR), the core part of
this optimization task is to find the allocation of time and
frequency resources to optimally fulfill throughput demands
considering current radio conditions, fairness between user
equipment (UEs), etc. Optimising the global performance of a
network is a completely different problem. A basic issue is that
transmitters interact, i.e., a single BS receives both the signal
dedicated to it and signals from other BSs. On a rudimentary
level, the activity of these other transmitters adds to the noise
in the channel formed between the transmitter and receiver and
as such is destructive to the transmission. Advanced mech-
anisms such as coordinated multi-point (CoMP) [1] or dis-
tributed massive multiple-input and multiple-output (MIMO)
[2] are designed to gain from these interactions. In this paper,
however, we focus on network performance optimisation by
minimising the negative effects of interference rather than
gaining from them. We also work under the approximation
that only the most interfering transmitters (typically the closest
ones) are considered. Thus, the network is considered as a
graph where nodes represent BSs and edges connect the most
severely interfering ones (Fig. 1).

A situation where there is an internal conflict between
agents engaged in a joint activity is naturally modeled using

A. Popławski is with Nokia Technology Center Krakow, Poland and
AGH University of Science and Technology, Kraków, Poland, e-mail: ar-
tur.poplawski@nokia.com.

S. Szott is with AGH University of Science and Technology, Kraków,
Poland, e-mail: szott@agh.edu.pl.

This work was partially supported by the Polish Ministry of Science and
Higher Education with the subvention funds of the Faculty of Computer
Science, Electronics, and Telecommunications of AGH University.

0 1 2

3 4

5 6 7

Fig. 1. An arrangement of wireless base stations (left) and their corresponding
graph (right). The edges connect nodes corresponding to base stations whose
distance from each other does not exceed, in this case, half of the length of
the diagonal between the stations furthest apart from each other.

game theory [3], [4]. We consider a sequence of decisions
made by a BS, which can be an evolved Node B (eNB) in the
LTE case or a next generation Node B (gNB) in the NR case.
Each decision is of the form “transmit” or “do not transmit”
at a given moment. The “do not transmit” decision in this
framework does not arise from the fact that there is no data
to be sent. It is rather a kind of “sacrifice” made by the BS
to reduce interference and increase the overall performance of
the network. The strategy applied by the BS is a probability
distribution over these two possible decisions. In other words,
at any time the decision at the transmitter is made randomly
with a certain probability and this probability is considered
its strategy. Since decisions made by different transmitters are
independent, this brings us into the realm of games in mixed
strategies. Thus, the optimisation domain in our model is the
set of possible assignments of mixed strategies to all BSs and
the utility function of interest is the average throughput of the
whole network.

To find the optimal network operating point, we propose
an algorithm within the dynamic programming paradigm.
Dynamic programming is now a commonly used tool in
algorithm design, network science, control theory, and others
[5]. The specific method presented here is an adaptation of an
algorithm for computing a mixed strategy Nash equilibrium
in a graphical game where the graph structure associated
with the game is a tree [6]. We apply this algorithm to the
problem of finding the optimal assignment of a transmission
strategy for each BS. We relax the assumption of [6] about
the graph structure, as we consider general graphs, not only
trees. To consider general graphs, we turn our attention to
the tree decomposition of graphs, which constructs trees that
approximate arbitrary graphs. Another inspiration to use tree
decomposition is the dynamic programming algorithms of [6],
[7] and the methods described in [8].

DOI: 10.36244/ICJ.2022.4.9

1

Using Dynamic Programming to Optimize Cellular
Networks Modeled as Graphical Games

Artur Popławski, Szymon Szott

Abstract—Cellular networks are often modeled using game the-
ory, with base stations as players contending for a shared resource
(the radio channel). Alternatively, if base stations are considered
as nodes joined by edges (which represent significant interfer-
ence), we obtain a graph structure. A game represented in this
way is called a graphical game. We explore this representation
by decomposing the network graph through tree decomposition
and apply dynamic programming to find the optimum welfare,
i.e., a resource allocation strategy profile most effective from the
point of view of the overall network performance. We verify
our approach through simulations and discuss the possibility of
implementing this solution in a distributed manner.

Index Terms—cellular networks, game theory, graphical
games, LTE, optimization, welfare, tree decomposition

I. INTRODUCTION

OPTIMISING the performance of a single base station
(BS) in a cellular network is a relatively well understood

problem. In an OFDM-based cellular network, such as Long
Term Evolution (LTE) or New Radio (NR), the core part of
this optimization task is to find the allocation of time and
frequency resources to optimally fulfill throughput demands
considering current radio conditions, fairness between user
equipment (UEs), etc. Optimising the global performance of a
network is a completely different problem. A basic issue is that
transmitters interact, i.e., a single BS receives both the signal
dedicated to it and signals from other BSs. On a rudimentary
level, the activity of these other transmitters adds to the noise
in the channel formed between the transmitter and receiver and
as such is destructive to the transmission. Advanced mech-
anisms such as coordinated multi-point (CoMP) [1] or dis-
tributed massive multiple-input and multiple-output (MIMO)
[2] are designed to gain from these interactions. In this paper,
however, we focus on network performance optimisation by
minimising the negative effects of interference rather than
gaining from them. We also work under the approximation
that only the most interfering transmitters (typically the closest
ones) are considered. Thus, the network is considered as a
graph where nodes represent BSs and edges connect the most
severely interfering ones (Fig. 1).

A situation where there is an internal conflict between
agents engaged in a joint activity is naturally modeled using

A. Popławski is with Nokia Technology Center Krakow, Poland and
AGH University of Science and Technology, Kraków, Poland, e-mail: ar-
tur.poplawski@nokia.com.

S. Szott is with AGH University of Science and Technology, Kraków,
Poland, e-mail: szott@agh.edu.pl.

This work was partially supported by the Polish Ministry of Science and
Higher Education with the subvention funds of the Faculty of Computer
Science, Electronics, and Telecommunications of AGH University.

0 1 2

3 4

5 6 7

Fig. 1. An arrangement of wireless base stations (left) and their corresponding
graph (right). The edges connect nodes corresponding to base stations whose
distance from each other does not exceed, in this case, half of the length of
the diagonal between the stations furthest apart from each other.

game theory [3], [4]. We consider a sequence of decisions
made by a BS, which can be an evolved Node B (eNB) in the
LTE case or a next generation Node B (gNB) in the NR case.
Each decision is of the form “transmit” or “do not transmit”
at a given moment. The “do not transmit” decision in this
framework does not arise from the fact that there is no data
to be sent. It is rather a kind of “sacrifice” made by the BS
to reduce interference and increase the overall performance of
the network. The strategy applied by the BS is a probability
distribution over these two possible decisions. In other words,
at any time the decision at the transmitter is made randomly
with a certain probability and this probability is considered
its strategy. Since decisions made by different transmitters are
independent, this brings us into the realm of games in mixed
strategies. Thus, the optimisation domain in our model is the
set of possible assignments of mixed strategies to all BSs and
the utility function of interest is the average throughput of the
whole network.

To find the optimal network operating point, we propose
an algorithm within the dynamic programming paradigm.
Dynamic programming is now a commonly used tool in
algorithm design, network science, control theory, and others
[5]. The specific method presented here is an adaptation of an
algorithm for computing a mixed strategy Nash equilibrium
in a graphical game where the graph structure associated
with the game is a tree [6]. We apply this algorithm to the
problem of finding the optimal assignment of a transmission
strategy for each BS. We relax the assumption of [6] about
the graph structure, as we consider general graphs, not only
trees. To consider general graphs, we turn our attention to
the tree decomposition of graphs, which constructs trees that
approximate arbitrary graphs. Another inspiration to use tree
decomposition is the dynamic programming algorithms of [6],
[7] and the methods described in [8].

mailto:artur.poplawski%40nokia.com?subject=
mailto:szott%40agh.edu.pl?subject=
https://doi.org/10.36244/ICJ.2022.4.9


Using Dynamic Programming to Optimize Cellular
Networks Modeled as Graphical Games

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2022 • VOLUME XIV • NUMBER 4 63

2

The tree decomposition, as well as the associated notion
of treewidth (the minimum width of a tree decomposition, cf.
Section II-D), has been studied extensively since its introduc-
tion [9]. We refer the reader to [10] for a graph-theoretic
perspective on tree decomposition and treewidth. From an
algorithmic perspective, having a precomputed tree decompo-
sition of a graph where the treewidth of the decomposition is
small, dynamic programming allows computing functions of a
graph where the computation time depends on the size of the
graph as a small-degree polynomial. This approach reduces
the problem of efficiently calculating a function of the graph
to finding a good tree decomposition of the graph. Obviously,
not all graphs have a good decomposition and in general it is
not easy to find such a decomposition even if they have one.
However, algorithms have been proposed that allow us to find
the decomposition quickly if the treewidth is small: [11]–[13].

Methods based on dynamic programming for good tree
decomposition, in addition to having theoretical significance,
have found their way to practical engineering and computing.
An early review of applications, including those beyond the-
oretical interest, is given in [14]. In the area strictly related
to telecommunications, it is worth mentioning [15] in which
applications have been developed to the problem of routing in
wireless sensor networks.

We provide a dynamic programming algorithm that finds
the optimal assignment of strategies, from the point of view
of global performance, given its tree decomposition. As an im-
mediate application of the algorithm, motivating this study, we
propose a mechanism of downlink transmission optimisation
in an LTE or NR cellular network by changing the activity of
BSs in time and reducing the negative impact of interference
on network performance.

The remainder of the work is structured as follows. In
Section II, we recall basic definitions related to combinatorics
and game theory, including the notion of tree decomposition.
Then, in Section III, the main algorithm is proposed for
an abstract setting. Next, we describe the realization of the
algorithm in a network of interactive devices considering
distributed optimisation (Section IV). We also discuss the
application of the method to solve the problem of channel
allocation in cellular networks (Section V), which constitutes
the main motivation for this work, and validate our approach
with simulations (Section VI). Finally, Section VII summarises
the results and gives insight into the perspective of further
research and applications.

II. FORMAL DEFINITIONS AND NOTATION

In this section, we present notational conventions used later
in the text and basic definitions related to graphs, game theory,
and tree decomposition, which are relevant to the modelling
and analysis of cellular networks.

A. Conventions

If P is a set, then by {Sp}p∈P we understand the family
of sets indexed by P . Having such a family, by

∏
p∈P

Sp we

understand the Cartesian product indexed by P , i.e.,
∏
p∈P

Sp =

{f : P →
⋃

p∈P

Sp, s.t. for each p, f(p) ∈ Sp}.

Having K ⊂ P and the family {Sp}p∈P , by πK :∏
p∈P

Sp →
∏

k∈K

Sk we understand the projection operator,

i.e., for f ∈
∏
p∈P

Sp and x ∈ K, πK(f)(x) = f(x). When

using the Cartesian product, we label factors of the product
with an index taken from a set. The set-theoretic operation
of disjoint sum on the indexing sets easily transfers to the
product. Namely, if K ∩ L = ∅, (K ∪ L) ⊂ P , we have∏
k∈K

Sk ×
∏
l∈L

Sl =
∏

k∈K∪L

Sk. We also disregard the order

when referring to the elements of such a product, i.e., in our
convention with the same assumptions about sets K and L as
above we have: if x ∈

∏
k∈K

Sk, y ∈
∏
l∈L

Sl then we denote

(x, y) = (y, x) = z ∈
∏

k∈K

Sk ×
∏
l∈L

Sl =
∏

l∈K∪L

Sl. To

simplify exposition of the algorithm, we formally allow the
Cartesian product to be taken over empty sets. By convention,
a product over an empty set is the neutral element for the
operation on Cartesian products:

∏
k∈K

Sk ×
∏
l∈∅

Sl =
∏

k∈K

Sk.

With this convention, if formally s′ ∈
∏
l∈∅

Sl, we have

(s, s′) = s. For the arg max operator we take the convention
that for the function f :

∏
k∈K

Sk → R, s ∈
∏

k∈K

Sk we define

arg max
s′∈

∏
l∈∅

Sl

f(s′, s) = f(s). For function f : X → Y , we refer

to X also by dom(f).

B. Graphs

Definition 1. An undirected graph G is a pair G = (V,E)
where V is a finite set of vertices (representing BSs), E is the
set of edges (representing interference), and E ⊂ {e ⊂ V :
|e| = 2}.

We consider only undirected graphs, which we later refer
to simply as graphs.

Definition 2. A path between elements x, y ∈ V in graph
(E, V ) is a sequence x = v0, . . . , vk−1 = y, where for each
0 < i ≤ j < k we have:

1) if i �= j then vi �= vj ,
2) {vi−1, vi} ∈ E.

Having graph G = (V,E) and vertex v ∈ V we have a
function nbG : 2V → 2V defined as nbG(S) = {w ∈ V :
∃v ∈ S, {v, w} ∈ E}. We call nbG(S) the neighbourhood
of S in G. For the singleton {v}, we slightly abuse the
notation and simply write nbG(v) instead of nbG({v}). For
convenience, we define the extended neighbourhood of S in
G by xnbG(S) = S ∪ nbG(S), preserving the same notation
convention for singletons as in the case of the operator nbG.

Definition 3. An undirected graph is a tree when there is only
one path between any pair of vertices. Let G = (V,E) be a
tree and consider any arbitrary vertex t ∈ V . Then, the pair
(G, t) is called a rooted tree and t is called a root.



Using Dynamic Programming to Optimize Cellular
Networks Modeled as Graphical Games

DECEMBER 2022 • VOLUME XIV • NUMBER 464

INFOCOMMUNICATIONS JOURNAL

3

For a rooted tree (G, t), we define a function

parent : V \ {t} → V

such that parent(x) = y iff there is a x, y, . . . , t path in G.
We also define a function children : V :→ 2V such that

children(x) = {y : parent(y) = x}.

We refer to v ∈ V such that children(v) = ∅ as leaves.
For convenience, we also define a function offspring :

V → 2V inductively (by induction starting from the leaves)
as

offspring(x) = ∅,

where x is a leaf, and

offspring(x) = children(x) ∪
⋃

y∈children(x)

offspring(y).

C. Game Theory

Definition 4. An n−player game Γ is a triple

Γ = (P, {Sp}p∈P , {up}p∈P ),

where P is the set of players (|P | = n), for each p ∈ P ,
Sp is the set of strategies available to the players, and up :∏
p∈P

Sp → R is the payoff function.

For a finite set K, we define a simplex ∆K = {x ∈ R|K| :
x ≥ 0 ∧

∑
k∈K

xk = 1}. Elements of the simplex represent

possible probability distributions on the set K treated as a
finite probability space.

Definition 5. For game Γ = (P, {Si}i∈P , {ui}i∈P ), where P
and each Sp is finite, we call the game Γ in mixed strategies
and denote by M(Γ) the following game:

M(Γ) = (P, {∆Si
}i∈P , {u∆,i}i∈P ),

where
u∆,i :

∏
i∈P

∆Si
:→ R

is defined by

u∆,i(x) =
∑

s∈
∏

j∈P

Sp


∏

j∈P

xj(sj)


ui(s).

To capture the quantitative influence of nodes in a game Γ,
we define the function InflΓ : P × 2P → R as

InflΓ(i, I) = max
s−I∈S−I

( max
sI∈SI

ui(sI , s−I)− min
sI∈SI

ui(sI , s−I)).

We state that i ∈ P is ε−independent from I ⊂ P if
InflΓ(i, I) ≤ ε.

The intuitive meaning of this function is as follows: for
a given game Γ, player i, and set of players I , it provides
information about the maximal possible change of payoff of
player i caused by the actions of players from I . If the value
of InflΓ(i, I) is small it means that in practice player i is
not affected by other players in I . If the players are wireless
BSs and their interaction is the radio interference, this function

measures to what extent BSs from the set I interfere with the
transmissions from BS i to UEs.

We assume a fixed ε and that for each p we have a (non-
unique and possibly empty) set of non-influencing players
NIp ⊂ P such that p /∈ NIp and InflΓ(p,NI(p)) ≤ ε.
This set contains those elements of P different than p itself,
that collectively have little influence on the payoff p despite
the action they take. Then, fixing the choice of NIp for each
p, we associate with Γ a graph (P,EΓ,ε) in the following
manner:

{v, w} ∈ EΓ,ε ⇔ v /∈ NIw ∨ w /∈ NIv.

The graph (P,EΓ,ε) under a suitable choice of NI is called the
ε graphical representation of Γ. For ε = 0 it is the graphical
representation of Γ.

We emphasize once more that an ε graphical representation
depends not only on the choice of ε but also on the choice of
NI which is not canonical.

For a game with graphical representation G = (P,E) and
for player p, we formally consider up not as a function with the
domain

∏
v∈P

Sv but as a function with the domain
∏

v∈xnbG(p)
Sv .

We use the notation domG(p) for set xnbG(p) omitting the
subscript G when it is clear from the context. For the ε
graphical representation G of Γ, there is a graphical game
that approximates Γ.

The following theory gives the strongest results for games
for which there exist sparse ε graphical representations of Γ for
small ε. Games arising from the modeling of cellular networks
where the interaction between the players representing BSs is
caused by interference typically satisfy this condition. For any
given BS there is a relatively small number (compared to the
number of all BSs) of transmitters within the distance where
interference influences signal reception.

D. Tree Decomposition

An example of how to apply dynamic programming meth-
ods in graphical games where the underlying graph is a tree is
given in [6]. To apply algorithms suited to this regular structure
in more general settings, we need to transform a general graph
structure into a tree. A known technique of representing a
general graph as a tree is tree decomposition.

Definition 6. Let G = (V,E), be a graph. The tree decom-
position of G is a graph (X,F ) such that:

1) (X,F ) is a tree,
2) x ⊂ V for each x ∈ X ,
3)

⋃
x∈X

x = V ,

4) for each e ∈ E there is x ∈ X such that e ⊂ X ,
5) for each v ∈ V if there are x, y ∈ X such that v ∈ x

and v ∈ y, then for each z in the path from x to y in
graph (X,F ) we have v ∈ z.

Having a tree decomposition T = (X,F ) we call max
x∈X

|x|−
1 the treewidth of T . The set of all tree decompositions of
G = (V,E) is denoted by TD(G). We make the following
observation:



Using Dynamic Programming to Optimize Cellular
Networks Modeled as Graphical Games

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2022 • VOLUME XIV • NUMBER 4 65

4

Remark 1. TD(G) �= ∅ for any graph G.

This is the immediate consequence of the fact that the trivial
graph ({V }, ∅) is always a tree decomposition of G = (V,E).

One can compare Fig. 2b depicting the graph with Fig. 2c
depicting one of its tree decompositions to gain an intuitive
understanding of the concept.

III. WELFARE IN GRAPHICAL GAMES

Using the provided definitions, we first provide a scheme
for computing the welfare for a graphical game with tree
decomposition and then proceed to analyze its performance.
The scheme for calculating maximum welfare depends on:

• a graph G = (P,E) describing the structure of the
graphical game Γ,

• a particular representative T ∈ TD(G), i.e., a tree
decomposition of G.

Consider (X,F ) = T ∈ TD(G) and a distinguished element
t ∈ X as the root. We start with the following lemma:

Lemma 1. For the tree TD(G) � T = (X,F ) rooted at
t ∈ X , the following regularity condition is satisfied: for each
x �= t, if v ∈ x \ parent(x) and {v, w} ∈ E then

w ∈ x ∪
⋃

z∈offspring(x)

z.

Proof. Assume, contrary to the thesis, that there is an x ∈ X
such that there is a v ∈ (x \ parent(x)) and w ∈ V and such
that e = {v, w} ∈ E and w /∈ x ∪

⋃
z∈offspring(x)

z. From

Definition 6, we know there is a node y ∈ X such that e ⊂ y.
From the assumption we have y /∈ {x}∪ offspring(x). This
means, again from Definition 6, that v belongs to every node
of the tree T on the path from y to x, but such a path must
contain parent(x). This is a contradiction as we assumed that
v ∈ x \ parent(x).

Consider the following scheme of computing welfare of Γ
with operators dependent on the structure of T :

FD(x) = xnbG(parent(x)) ∩
⋃

y∈{x}∪offspring(x)

y

and
BD(x) = x ∪

⋃
y∈children(x)

FD(y).

Remark 2. For root t, FD(t) = ∅.

Remark 3. BD(x) = x ∪ (xnbG(x) ∩
⋃

y∈offspring(x)
y).

Proof.

BD(x) = x ∪
⋃

y∈children(x)

FD(y) =

x ∪
⋃

y∈children(x)

(xnbG(x) ∩
⋃

z∈{y}∪offspring(y)

z) =

x ∪ (xnbG(x) ∩
⋃

y∈children(x)

⋃
z∈{y}∪offspring(y)

z) =

x ∪ (xnbG(x) ∩
⋃

y∈offspring(x)

y

The scheme works in two passes, each with two stages. In
the first pass in stage one:

For x ∈ X \ {t}, let y = parent(x) compute the function:

fx→y :
∏

v∈FD(x)

Sv → R

as:

fx→y(s) =

max
s′∈(

∏
w∈BD(x)\FD(x)

Sw)


 ∑

v∈x\y

uv(πxnbG(v)(s′, s))+

∑
z∈children(x)

fz→x(πFD(z)(s′, s))




and the (possibly empty) function

mx→y :
∏

v∈FD(x)

Sv →
∏

w∈BD(x)\FD(x)

Sw

as:

mx→y(s) =

arg max
s′∈

(
∏

w∈BD(x)\FD(x)
Sw

)


 ∑

v∈x\y

uv(πxnbG(v)(s′, s))+

∑
z∈children(x)

fz→x(πFD(z)(s′, s))


 .

This ends stage one. At stage two, for root t we compute:

max
s′∈(

∏
w∈BD(t)

Sw)


 ∑

v∈x\y

uv(πxnbG(v)(s′, s))+

∑
z∈children(x)

fz→x(πFD(z)(s′, s))


 .

and

st = arg max
s′∈(

∏
w∈BD(t)

Sw)


 ∑

v∈x\y

uv(πxnbG(v)(s′, s))+

∑
z∈children(x)

fz→x(πFD(z)(s′, s))


 .

Moving to the second pass, in the first stage, elements
of BD(t) are assigned strategies according to st. Then,
in the second stage, assuming that for x ∈ X the
whole path from parent(x) to t is processed, elements
from s′ ∈ BD(x) \ FD(x) are assigned according to
mx→parent(x)(πBD(x)\FD(x)(s)), where s are states already
assigned.

We provide the following theorem that shows the correct-
ness of this procedure, i.e., that all functions are well defined



Using Dynamic Programming to Optimize Cellular
Networks Modeled as Graphical Games

DECEMBER 2022 • VOLUME XIV • NUMBER 466

INFOCOMMUNICATIONS JOURNAL

5

and the procedure assigns strategies to all nodes in V . We
show that the result of this assignment is indeed optimal in a
separate theorem.

Theorem 1. We have the following:
1) In the first stage of the first pass, if, for all y ∈

children(x), functions fy→x are known, then the com-
putation of fx→parent(x) is possible. For each v ∈ x \ y
we have dom(uv) ⊂ FD(x) ∪ (BD(x) \ FD(x)) =
BD(x) ∪ FD(x) and for each y ∈ children(x) we
have dom(fy→x) ⊂ BD(x) ∪ FD(x).

2) Computation in the second stage of the second pass is
possible, i.e., each dom(uv) is contained in nodes to
which a strategy is already assigned or in nodes over
which the max operator is calculated.

3) For each y ∈ children(x), dom(fy→x) is contained in
already set nodes and nodes over which the maximum
is taken.

4) After the second pass all nodes have assigned strategies.

Proof. First, we show that for v ∈ x \ parent(x) we have
xnbG(v) ⊂ BD(x) ∪ FD(x). Consider w ∈ xnbG(v). If
w = v then obviously w ∈ BD(x). If w ∈ nbG(v) then, by
Lemma 1, w ∈ x ∪

⋃
z∈offspring(x)

z and it obviously belongs

to xnbG(x). Thus, by Remark 3, it also belongs to BD(x).
This gives us w ∈ FD(x) ∪BD(x).

We also have, for all z ∈ children(x), FD(z) ⊂ BD(x).
Thus, any element of the domain of fz→parent(z) = fz→x is
available when computing fx→y according to the definition in
the first pass of the algorithm. The same reasoning applies to
mx→y as this is just the selection of arg max of fx→y .

Now, consider the second pass. The maxima can be calcu-
lated for the root, as according to the scheme functions and
fz→t for z ∈ children(t) are known. Assume that assign-
ments of the strategies are already done on the whole path
from x to t. This means that it is a known argument for which
the function mz→x must be computed. The computation of this
function extends the range over which the global solution is
known. We must show that this extension is consistent among
children of x. This is the case, however, where pieces of the
solution computed for different children do not overlap. More
formally, for y1, z2 ∈ children(x) such that z1 �= z2 we have
(BD(z1) \FD(z1))∩ (BD(z2) \FD(z2)) = ∅. Assume that
this is not true, i.e., there exists w ∈ (BD(z1) \ FD(z1)) ∩
(BD(z2) \ FD(z2)). We have an w ∈ BD(z1) that is either
in z1 or in one of its offspring. The same is true for z2. From
the definition of the tree, there is a path between any z1 and
any of its offspring to z2 and any of its offspring leading
through z1, x, and z2, as x is the common parent of z1 and z2.
From the definition of tree decomposition we then must have
w ∈ z1, w ∈ z2 and w ∈ x. This means that w ∈ FD(z1) and
w ∈ FD(z2), which leads to a contradiction and concludes
the proof.

Now, we prove the correctness of the scheme in the case
when domains Sv are finite.

Theorem 2. For (X,F ) = T ∈ TD(G) and t ∈ X being the
root, and a set of functions uv :

∏
xnbG(v)

Sv → R where Sv

is finite, the scheme finds a (global) maximum of the welfare
function:

wlf(x) =
∑
v∈V

uv(πxnbG(v)(x)).

Proof. Assume that s ∈
∏
v∈V

Sv is the optimal assignment.

In the second pass, the algorithm must consider it as part
of the calculation of the operators max and arg max in root
assignment πBD(t)(s).

IV. TOWARDS A DISTRIBUTED IMPLEMENTATION

We now outline an implementation of the algorithm pre-
sented in the previous section in a system where compu-
tations can be performed in a distributed manner. Assume
that interacting nodes are organized in a way that reflects
the structure of both graphs: the original interaction graph
G = (V,E) of the game and the chosen tree decomposition
(X,F ) = T ∈ TD(G). Further, assume that each v is
associated with a device. Devices can communicate with
one another. Each device frequently decides about its action
(strategy) from the set Sv and operates according to that
choice. The result measured with numerical utility depends
on the choice made by other devices associated with nodes in
nbG(v). This utility function is denoted by uv . Each device
also knows the dependency of uv from a combination of its
own choice and the choices of other devices it depends on.
This knowledge can be provided to the device or, in a more
realistic scenario, it may come from empirical extrapolation of
monitoring data. In the latter case, devices derive an empirical
approximation of uv from the observations of the actions
of other devices, the knowledge of its own action, and the
received utility1. Further, assume that for each x ∈ X there
is a distinguished device v ∈ x which is further called the
computation node and denoted by cn(x). As the nodes in
X (which are sets) are not disjoint, it is a valid situation
where cn(x) = cn(y) for x �= y. The computation node is
responsible for computing functions fx→parent(x). Nodes for
which uv needs to be known directly by cn(x), send to cn(x)
data which allows to compute uv or its approximation, while
the computation nodes c(y) for y ∈ children(x) send data
that allows to compute the appropriate fy→x.

At some point (e.g., periodically) the following process oc-
curs. Functions fx→parent(x) and mx→parent(x) are computed
in the node cn(x) for all x being leaves of T . Then, informa-
tion sufficient to compute the function (or a sufficiently good
approximation of the function) fxparent(x) and mx→parent(x)
is sent to cn(parent(x)). Each node not being the root, after
receiving data from all its children, performs computation
of fx→parent(x) and mx→parent(x) and sends information to
computation node of the parent, etc. Finally, the computation
node of the root t receives all information from computation
nodes of its children and nodes it knows directly and itself
performs computation corresponding to stage two of the first
pass of the scheme. Next, the root sends information about mt

to all the nodes for which it determined an optimal strategy

1Such an empirical model easily captures the elements of randomness of
the environment with statistical modeling.



Using Dynamic Programming to Optimize Cellular
Networks Modeled as Graphical Games

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2022 • VOLUME XIV • NUMBER 4 67

6

and for all children sends mx→t(mt) to the computational
node of child x. Then, for each x, the computational node
that receives mx→parent(x)(s) for an appropriate s sets the
data in appropriate nodes and continues the process by sending
appropriate data to its children. Upon receiving information
about its assigned strategy, the node starts to apply it. After
dissemination of the state across all nodes, the network should
work in a new optimal regime.

V. INTERFERENCE GAME

We apply the proposed scheme to an interference game in
a cellular network with downlink transmissions. To simplify
the terminology, we identify BSs with a single cell. A set of
these BSs is denoted by C. We assume that all stations use the
same carrier and that downlink transmissions from BSs happen
synchronously at discrete times. These assumptions are well
justified for a large set of configurations of OFDM networks,
e.g., for LTE TDD (Time Division Duplex) and NR networks.

For each discrete transmission opportunity, a BS decides
if it transmits to at least one of the receivers assigned to
it (UEs) or does not transmit at all. Again, to simplify
we limit ourselves only to transmissions carrying user data,
omitting in the model obligatory transmissions of reference
and synchronisation signals, broadcast channels, etc. We also
leave aside details of scheduling, i.e., to which of the devices
the BS transmits.

In this setting, at each downlink transmission opportunity,
the network is considered a game and each BS c ∈ C is
a player. With each player, we associate the strategy space
Sc = {0, 1}, where 0 means that the BS is not transmitting and
1 means that it is transmitting. The payoff uc :

∏
d∈C

Sd → R

is defined as:
uc(s) = E[Tputc(s)],

where E is the expected value and Tputc represents the
downlink throughput and can be treated as a random variable
depending on the selection of the receivers by the scheduling
algorithm (so also based on the arriving data, what can be
modeled as a stochastic process) and on activities of other
BSs which are treated as interference. In general, the function
of throughput may be complicated so, to pose the problem
more concretely, we assume that if there is a transmission at
all only one receiver is chosen for transmission at a given
opportunity t and the function is of the form

Tputc(s) = log2


1 + Pscd(c, ue)−θ

∑
w∈C\{c}

Pswd(w, ue)−θ + ν


 ,

where the ue is a random position representing the receiver
(UE) selected by c, d(x, y) is the Euclidean distance between
BS x and ue y , θ > 2 is a propagation coefficient describing
the attenuation of the signal with distance, ν is random noise
and the expected value in uc is taken over the distribution over
the choice of ue.

We neglect the interference from far away stations, stations
placed with an attenuating factor in between (e.g., walls), and
stations that are close, but there are no receivers in the area

where their interference is strong. The activity of these stations
contributes to the interference term but this contribution is
limited. This corresponds exactly to the elimination of the
subset of players for which the influence function described
in Section II-C is small. In this approximation, the sum in
the denominator in the formula for uc may be taken over the
proper subset of C \ {c}. In other words, this leads to the
assumption that the game has a graphical representation that
is sparse.

We also assume that nodes exchange information about
transmission allocation with their neighbours. That is, if a node
strongly interferes with a given one, so that both are linked in
the graph representing the game, it frequently sends informa-
tion about its activity. This allows each node to estimate their
uc. Note that this information does not need to be exchanged
in each cycle, which would be technically infeasible, but
rather communicated in larger batches. To realize the scheme
in a single cycle (i.e., when batches are sent and received,
the amount node x must send and receive is 2 × |nbG(x)|
messages. The length of the messages is proportional to the
interval between subsequent exchanges counted in cycles as
the information contains sequences of strategies used and
payoffs received during the cycles.

Next, we move to the game in mixed strategies. In this case,
the strategy space (we abuse notation and use the same letters
for the new game) Sc = [0, 1], and the choice of the strategy
is a choice of the probability for transmission. Writing u∆,c

explicitly leads us to the formula:

u∆,c(x) =
∑

s∈
∏

{c}∪nb(c)
Sp


 ∏

j∈{c}∪nb(c)

xj(sj)


ui(s).

Here we already incorporated into the formula the dependency
of u∆,c only on its neighbours in the graphical representation.
To restrict the domain of the utility functions to a finite set
instead of the interval [0, 1], for station c we restrict it to the
subset Sc = {p0, p1} ⊂ [0, 1]. Finally, the game over which
we optimize welfare is (C, {Sc}c∈C , {uc}∆,c).

Assuming that the treewidth of the graphical representation
is small and we can choose a proper tree decomposition T
rooted in t, we apply the arrangement we prepared in the
previous sections to calculate the maximum effectiveness of
the game in terms of welfare. What needs to be calculated for
node x is

fx→parent(x)(s) =

max
s′∈BD(x)\FD(x)


 ∑

v∈x\parent(x)

u∆,v(πv(s′, s))+

∑
z∈children(x)

fz→x(πFD(z)(s′, s))


 .

As functions fz→x are supposed to be known (and commu-
nicated to cn(x), cf. Section IV), what remains to be computed
is the maximum. The number of messages exchanged between
cn(x) in each step of the algorithm is proportional to |nbT (x)|.
The length of the message from cn(x) to cn(parent(x) in the



Using Dynamic Programming to Optimize Cellular
Networks Modeled as Graphical Games

DECEMBER 2022 • VOLUME XIV • NUMBER 468

INFOCOMMUNICATIONS JOURNAL

7

0 1

2

3

4

5

6

7 8

9

10

(a)

0 5 10

1 3 9

2 7 6

4 8

(b)

01 135 356

42 3467 69

78 9 10

(c)
Fig. 2. Simulation topology: (a) BS arrangement, (b) corresponding graph, (c) corresponding tree. UEs are placed in the shaded area.

first stage of the algorithm is bounded by |S|(|BD(x)\FD(x)|,
where S = max c ∈ C|Sc|. This information, however, is
passed between nodes once per single optimization run.

In this particular case, any computations of the maximum
may be done by brute force. As a result, the network finds
the best, from the global network’s operation perspective,
assignment of {pc}c∈C . Now, each node c in each moment
independently performs a random decision if it should transmit
(with probability pc) or not (with probability 1 − pc). The
whole process is repeated after a time reflecting the dynamic
situation in the network.

The amount of brute force computation required depends
on the treewidth, the structure of T . For networks with good
structural properties , the computation may be feasible for even
small computing units.

In the particular case discussed in this section, where we
start from the interference game with two strategies for each
player, then move to the mixed strategy game, and finally
approximate the space of mixed strategies by discrete subsets,
one can avoid brute force maximization over all possible
combinations of strategies. The mixed strategy spaces, in
this case, are one-dimensional and the payoff is monotonic
with respect to each “mixed strategy variable” and allows
maximization over each variable separately.

VI. SIMULATIONS

We evaluate the proposed algorithm by simulating the
network topology of Fig. 2. We use a random and uniform
distribution of 200 UEs within the grey-marked area. Each UE
is assigned to the closest BS. BSs 7, 8 and 9, which are outside
the grey rectangle, have all UEs assigned to them on the cell
edge. For this arrangement, we measure the performance of
the simulated network where BSs are busy 95% of the time.
Then we run the same simulation, but with the optimisation
algorithm enabled after 1000 steps. We restrict the choice of
the BS time occupancy algorithm to two values: original 95%
activity or decreased to 20%.

The results are presented in Fig. 3. The Y-axis is the
average throughput over the whole history of the simulation,
while the X-axis is the number of cycles since initializing
the simulation. The average over history means that for cycle

T we calculate 1
T

T∑
t=1

AvgTput(t), where AvgTput(t) is the

network throughput per UE in cycle t. The algorithm decides
to decrease the activity of BSs 1, 3, 8, and 9 which results
in an increase in overall network throughput compared to the

situation when all BSs were busy. The increase is, however, in
this setting relatively small (less than 5%). We conclude that
the algorithm finds an optimal solution (subject to Theorem 2)
under the proposed conditions.

0 2000 4000 6000 8000 10000
Cycle t

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

Av
er

ag
e 

th
ro

ug
hp

ut

No optimization
Optimization at t= 1000

Fig. 3. Performance in the static scenario.

The previous example was static, i.e., the distribution of
UE was constant and they were immobile. We obtain more
interesting results for a changing environment. We add mo-
bility to the initially randomly distributed UEs which are
always assigned to the closest BS. Each UE moves on a
piecewise linear trajectory with constant speed. We start from
the random distribution in the same grey-marked area from
Fig. 2a. Velocity changes only by changing direction which
occurs when the device reaches a boundary of the rectangle,
which is bigger than the initial area where we distributed UEs,
and the change in direction follows a “billiard ball” rule.

0 2000 4000 6000 8000 10000
Cycle t

10.4

10.6

10.8

11.0

11.2

11.4

11.6

Av
er

ag
e 

th
ro

ug
hp

ut

No optimization
Optimization at t= 5000
Optimization at t= n× 2500
Optimization at t= n× 1000
Optimization at t= n× 100

Fig. 4. Performance in the mobile scenario.

We check how the system performance changes when we
apply the algorithm at various discrete moments: every 5000,



Using Dynamic Programming to Optimize Cellular
Networks Modeled as Graphical Games

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2022 • VOLUME XIV • NUMBER 4 69

Artur Popławski received his M.Sc. degree in math- 
ematics from Jagiellonian University in 2000. He is 
currently working at Nokia Solutions and Networks as 
a specification engineer on 4G/5G radio resource man-
agement.

Szymon Szott received his Ph.D. degree in telecom- 
munications from AGH University in 2011, where he 
works as an associate professor. His professional inter-
ests are related to wireless networks (channel access, 
QoS provisioning, security). He is the author of over 70 
research papers.

8

2500, 1000, and 100 cycles (Fig. 4). For “no optimization”,
the only change in the environment is due to UE mobility and
we observe throughput to initially decrease and later increase.
Meanwhile, for the optimisation cases, throughput immedi-
ately improves and, as expected, more frequent optimisation
leads to better performance. An interesting phenomenon is,
however, observed for the initial parts of the curves corre-
sponding to 100 and 1000 where we see significant initial
degradation. This effect seems to be contrary to the proven
fact that the algorithm optimizes throughput. Two factors con-
tribute to this behaviour. First, when the environment changes
sufficiently fast, the optimisation performed at a given moment
does not necessarily optimize the system for future cycles.
The mobility model is such that the initial concentration of
UE in the early stage of the simulation is replaced, due to the
ergodicity of the movement, by uniform random distribution
in the late phase. So, we expect that the fastest changing
phase of the evolution of the environment is the initial one.
Second, the BSs in this example learn about the dependency
of the interference between them based on current activity.
Therefore, initially, when the number of samples is small, the
estimation of the influence of interference may be incorrect.
As soon as the number of samples gives statistically sound
estimations, the system starts to optimize the empirically
determined function which correctly captures the influence of
interference.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a dynamic programming method for
the computation of the sum of the welfare in a graphical
game assuming knowledge of the tree decomposition of the
underlying graph. We also have shown how the method can
optimize cellular networks modeled as graphical games where
the arising conflict between players (base stations) comes from
the interference between them. In the proposed algorithm,
we have omitted the analysis of the influence of important
parameters and factors on the quality of the solutions found
by the methods. These parameters include the cut-off threshold
for influence between the nodes leading to sparse graphical
game representation and the size and structure of the space Sc

that approximates the full space of mixed strategies [0, 1] in
Section V. Other important factors also not discussed here are
changing demand for traffic from individual UEs, the impact of
uncertainty about the utility function, and more sophisticated
strategies for limiting transmission. A detailed analysis of
these aspects is the subject of ongoing investigations.

We have also focused on the optimisation of a simple
network operation mode, i.e., we attempt to optimize welfare
over a subset of mixed strategies. More sophisticated schemes,
where the non-trivial correlation between nodes is involved,
can be also solved by this type of algorithm.

REFERENCES

[1] M. S. Ali, E. Hossain, and D. I. Kim, “Coordinated multipoint trans-
mission in downlink multi-cell noma systems: Models and spectral
efficiency performance,” IEEE Wireless Communications, vol. 25, no. 2,
pp. 24–31, 2018. doi: 10.1109/MWC.2018.1700094

[2] U. Madhow, D. R. Brown, S. Dasgupta, and R. Mudumbai, “Distributed
massive mimo: Algorithms, architectures and concept systems,” in
2014 Information Theory and Applications Workshop (ITA), 2014. doi:
10.1109/ITA.2014.6804225 pp. 1–7.

[3] H. Garmani, D. Ait Omar, M. El Amrani, M. Baslam, and M. Jourhmane,
“Joint beacon power and beacon rate control based on game theoretic
approach in vehicular ad hoc networks,” Infocommunications Journal,
vol. 13, no. 1, pp. 58–67, 2021. doi: 10.36244/ICJ.2021.1.7

[4] G. Hollósi, C. Lukovszki, M. Bancsics, and G. Magyar, “Traffic swarm
behaviour: Machine learning and game theory in behaviour analysis,”
Infocommunications Journal, vol. 13, no. 4, pp. 19–27, 2021. doi:
10.36244/ICJ.2021.4.3

[5] A. Lew and H. Mauch, Dynamic Programming: A Computational Tool
(Studies in Computational Intelligence). Berlin, Heidelberg: Springer-
Verlag, 2006. ISBN 3540370137

[6] M. J. Kearns, M. L. Littman, and S. P. Singh, “Graphical models for
game theory,” in Proceedings of the 17th Conference in Uncertainty in
Artificial Intelligence, ser. UAI ’01. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2001. ISBN 1558608001 p. 253–260.

[7] H. L. Bodlaender, “Dynamic programming on graphs with bounded
treewidth,” in Automata, Languages and Programming, T. Lepistö and
A. Salomaa, Eds. Springer, 1988. ISBN 978-3-540-39291-0 pp. 105–
118.

[8] R. G. Downey and M. R. Fellows, Fundamentals of Parameterized
Complexity, 1st ed. Springer Publishing Company, Incorporated, 2016.
ISBN 1447171640

[9] N. Robertson and P. Seymour, “Graph minors. ii. algorithmic aspects
of tree-width,” Journal of Algorithms, vol. 7, no. 3, pp. 309–322, 1986.
doi: https://doi.org/10.1016/0196-6774(86)90023-4

[10] R. Diestel, Graph Theory, ser. Electronic library of mathematics.
Springer, 2006. ISBN 9783540261834

[11] H. L. Bodlaender, “A linear time algorithm for finding tree-
decompositions of small treewidth,” in ACM Symposium on Theory of
Computing, ser. STOC ’93. New York, NY, USA: ACM, 1993. doi:
10.1145/167088.167161. ISBN 0897915917 p. 226–234.

[12] J. Matousek and R. Thomas, “Algorithms finding tree-decompositions of
graphs,” J. Algorithms, vol. 12, no. 1, pp. 1–22, 1991. doi: 10.1016/0196-
6774(91)90020-Y

[13] E. Amir, “Approximation algorithms for treewidth,” Algorithmica,
vol. 56, no. 4, pp. 448–479, 2010. doi: 10.1007/s00453-008-9180-4

[14] H. L. Bodlaender, “A tourist guide through treewidth,” Acta Cybernetica,
vol. 11, pp. 1–23, 1993.

[15] B. Li, “Tree decompositions and routing problems. (décompositions
arborescentes et problèmes de routage),” Ph.D. dissertation, University
of Nice Sophia Antipolis, France, 2014.

Artur Popławski received his M.Sc. degree in math-
ematics from Jagiellonian University in 2000. He is
currently working at Nokia Solutions and Networks
as a specification engineer on 4G/5G radio resource
management.

Szymon Szott received his Ph.D. degree in telecom-
munications from AGH University in 2011, where
he works as an associate professor. His professional
interests are related to wireless networks (channel
access, QoS provisioning, security). He is the author
of over 70 research papers.

References

 [1] M. S. Ali, E. Hossain, and D. I. Kim, “Coordinated multipoint trans- 
mission in downlink multi-cell noma systems: Models and spectral 
efficiency performance,” IEEE Wireless Communications, vol. 25, no. 
2, pp. 24–31, 2018. doi: 10.1109/MWC.2018.1700094

 [2] U. Madhow, D. R. Brown, S. Dasgupta, and R. Mudumbai, “Distributed 
massive mimo: Algorithms, architectures and concept systems,” in 
2014 Information Theory and Applications Workshop (ITA), 2014. pp. 
1–7. doi: 10.1109/ITA.2014.6804225

 [3] H. Garmani, D. Ait Omar, M. El Amrani, M. Baslam, and M. Jourhmane, 
“Joint beacon power and beacon rate control based on game theoretic 
approach in vehicular ad hoc networks,” Infocommunications Journal, 
vol. 13, no. 1, pp. 58–67, 2021. doi: 10.36244/ICJ.2021.1.7

 [4] G. Hollósi, C. Lukovszki, M. Bancsics, and G. Magyar, “Traffic swarm 
behaviour: Machine learning and game theory in behaviour analysis,” 
Infocommunications Journal, vol. 13, no. 4, pp. 19–27, 2021. 

  doi: 10.36244/ICJ.2021.4.3
 [5] A. Lew and H. Mauch, Dynamic Programming: A Computational Tool 

(Studies in Computational Intelligence). Berlin, Heidelberg: Springer- 
Verlag, 2006. ISBN 3540370137

 [6] M. J. Kearns, M. L. Littman, and S. P. Singh, “Graphical models for 
game theory,” in Proceedings of the 17th Conference in Uncertainty in 
Artificial Intelligence, ser. UAI ’01. San Francisco, CA, USA: Morgan 
Kaufmann Publishers Inc., 2001. ISBN 1558608001 pp. 253–260.

 [7] H. L. Bodlaender, “Dynamic programming on graphs with bounded 
treewidth,” in Automata, Languages and Programming, T. Lepistö and 
A. Salomaa, Eds. Springer, 1988. ISBN 978-3-540-39291-0 pp. 105– 
118.

 [8] R. G. Downey and M. R. Fellows, Fundamentals of Parameterized 
Complexity, 1st ed. Springer Publishing Company, Incorporated, 2016. 
ISBN 1447171640

 [9] N. Robertson and P. Seymour, “Graph minors. ii. algorithmic aspects 
of tree-width,” Journal of Algorithms, vol. 7, no. 3, pp. 309–322, 1986. 

  doi: 10.1016/0196-6774(86)90023-4
 [10] R. Diestel, Graph Theory, ser. Electronic library of mathematics. 

Springer, 2006. ISBN 9783540261834
 [11] H. L. Bodlaender, “A linear time algorithm for finding tree- 

decompositions of small treewidth,” in ACM Symposium on Theory of 
Computing, ser. STOC ’93. New York, NY, USA: ACM, 1993. ISBN 
0897915917 pp. 226–234. doi: 10.1145/167088.167161. 

 [12] J. Matousek and R. Thomas, “Algorithms finding tree-decompositions 
of graphs,” J. Algorithms, vol. 12, no. 1, pp. 1–22, 1991. 

  doi: 10.1016/0196-6774(91)90020-Y
 [13] E. Amir, “Approximation algorithms for treewidth,” Algorithmica, vol. 

56, no. 4, pp. 448–479, 2010. doi: 10.1007/s00453-008-9180-4
 [14] H. L. Bodlaender, “Atourist guide through treewidth,” Acta 

Cybernetica, vol. 11, pp. 1–23, 1993.
 [15] B. Li, “Tree decompositions and routing problems. (décompositions 

arborescentes et problèmes de routage),” Ph.D. dissertation, University 
of Nice Sophia Antipolis, France, 2014.

https://doi.org/10.1109/MWC.2018.1700094
https://doi.org/10.1109/ITA.2014.6804225
https://doi.org/10.36244/ICJ.2021.1.7
https://doi.org/10.36244/ICJ.2021.4.3
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1145/167088.167161
https://doi.org/10.1016/0196-6774(91)90020-Y
https://doi.org/10.1007/s00453-008-9180-4



