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Abstract—The radio frequency identification (RFID) passive
tag is a wireless communication device with high energy
sustainability, such that it uses the incident radio frequency
(RF) signal to backscatter its information. This paper investi-
gates the output load power maximization with optimal load
impedances selection in the backscatter communication (Back-
Com) network. The considered BackCom system comprises a
reader broadcasting an unmodulated carrier to the passive
tag in the downlink. The tag backscatters its information
signal to the reader with binary amplitude-shift keying (BASK)
modulation in the uplink. We formulated an average output
load power maximization problem by jointly optimizing the
reflection coefficients while satisfying the minimum bit error
rate (BER) requirement and tag sensitivity constraint. To
simplify the problem, we transform the BER constraint to
the modulation index constraint and reduce the 4 variables
problem to 2 variables convex optimization problem. Using
the Karush-Kuhn-Tucker (KKT) conditions, we design an
algorithm to obtain the closed-form expression for the global
optimal reflection coefficients that maximize the output load
power. The simulation results provide insight into the impact
of the information bit probability, tag sensitivity constraint, and
BER on the achievable average load power. An overall gain of
around 16% signifies the utility of our proposed design.

Index Terms—Backscattering, RFID, Passive Tag, ASK,
Energy Maximization, BER, Optimization.

I. INTRODUCTION

RAdio Frequency Identification (RFID) device is a
wireless communication tag that transmits information

when activated by an interrogation pulse from a dedicated
RFID interrogator. The first RFID passive tag was invented
in the 1970s by Mario Cardullo but did not gain atten-
tion from the world. With the advent of the Internet of
Things (IoT), RFID technology gained lots of interest and
significant development. RFID and wireless sensor networks
(WSNs) are the two main technologies being used and are
becoming the two pillars of IoT [1]. RFID technology has
played an important role in complementing the limitations of
WSNs in IoT, specifically in manufacturing cost and energy
source supplement of sensor nodes. The wireless sensor
nodes will no longer require any active radio frequency
(RF) component and have low power consumption, which
all benefit from integrating the backscattering technique of
RFID. However, the low energy efficiency in RFID far-field
applications is still a major bottleneck to overcome [2]–[4].
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A. State-of-the-Art

In a backscatter communication (BackCom) system, a
transmitter broadcasts a RF signal to power the passive RFID
tag. The tag is a data carrier device designed to backscatter
its information to the reader when interrogated, known as
the wireless information transfer (WIT) [5]. In general,
the passive tag generates information by load modulation,
which switches the output loads to modulate and ‘reflect’
the incoming signal into a backscattered signal [6]. The
2 prominent load modulation schemes are amplitude-shift
keying (ASK) and phase-shift keying (PSK) [7].

The RFID tag performance can be characterized by the
data transmission rate, tag-to-reader transmission range, out-
put load power, and bit error rate (BER) [8], [9]. The output
load power depends on the connected output load in the load
modulation scheme. The tag transfers the maximum load
power with a perfectly matched output load, whereas the
load power decreases with the mismatching degree. Since
the tag performance is highly load-dependent [10], [11],
existing research has revealed that load selection plays a
huge role in the BackCom system. In [9], Muralter et al.
have shown that the maximum transmission range varies
significantly with the different output loads. Another work
demonstrated simple rules for load selection to achieve a
long transmission range, with one load in perfectly matched
condition and another load greatly mismatched [12], [13].
Besides, in [11], Bletsas et al. illustrated the load selection
policy for minimizing BER for ASK and PSK modulations
without considering tag power sensitivity.

On the other hand, De Vita et al. proposed an output load
selection with an equal mismatch in both states [7], which is
different from [11]–[13]. In [14], Karthaus et al. investigated
the load impedance selections exploited in [7], [11], [12],
and showed the power efficiency varies with modulation
depth.

Here it maybe also noted that recently there has been
increasing focus on using multiple antennas at the reader
and emitter [15]–[17] to exploit beamforming gains for
overcoming the shortcomings of BackCom. However, this
paper aims at enhancing the performance of single antenna
reader aided RFID-based BackCom systems by optimally
designing the underlying reflection coefficients at the tag.

B. Motivation and Contributions

The BackCom system has poor efficiency in far-field
applications because the harvested output energy decreases
dramatically over longer distances [18]. Therefore, the utility
of the tag can be significantly improved by maximizing the
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Fig. 1: BackCom system and its transmission protocol.

output load power. Thus, allowing the tag to perform more
on-board tasks and suit more applications. Unlike existing
works considering equal probability for bits ‘0’ and ‘1’
during transmission, we determine the maximum average
load power with unequal information bits probability for
binary ASK (BASK) modulation scheme.

Besides, authors in [7], [11]–[14] have stated different
load selections without finding the optimal value for en-
hancing the tag performance. To the best of our knowledge,
the average load power maximization with optimal load
impedance selection under the BER and energy constraints
has not been investigated yet. This work will act as a bench-
mark whose results can be extended for other modulation
schemes like M-ary ASK and PSK in the future.

The key contribution of this work is three-fold. 1) We
formulated an RFID tag output load power maximization
problem by jointly optimizing the reflection coefficients
while considering the BER and tag sensitivity constraints.
2) We transformed the original 4-variable problem into
a reduced optimization 2-variable convex problem. Then,
we proposed an algorithm to determine the closed-form
expression for the global optimal solution with the Karush-
Kuhn-Tucker (KKT) conditions. 3)Simulation results are
presented to quantify the maximum average load power for
different applications under the varying value of the key
system parameters. Here, we provided the design insight on
the optimal value of the load impedances and verified the
utility of the proposed optimal design by determining the
achievable gain over the benchmark gain.

II. SYSTEM DESCRIPTION

A. System Model and Transmission Protocol

Fig.1 shows a monostatic BackCom system with one
reader and one passive RFID tag separated by distance d
in a free-space transmission medium. As a dedicated power
source, the reader stably broadcasts an unmodulated RF
carrier with constant power Pt to the passive tag in the
downlink. Then, the tag transmits the backscattered signal
to the reader in the uplink. The passive tag comprises a
receiver antenna, matching network (MN), voltage multiplier
(VM), low-pass filter (LPF), and an integrated circuit (IC)
chip1 [18]. When a sinusoidal electromagnetic (EM) wave is
presented, the tags will transfer the power of the EM wave
into DC power and deliver it to power the IC chip. Once the

1In the latest research, the traditional RFID tag integrated with sensing
electronics, transforming it into a sensing and computational platform, has
been studied for IoT applications. The tag with sensing capability is called
computational RFID (CRFID), which has higher power consumption during
operation [1].

IC chip is activated, it generates the information signals by
switching between 2 output loads (ZL,1, ZL,2). These loads
are selected depending on the modulation scheme, in which
we consider the BASK in this paper. Therefore, we set the
information bits ‘0’ and ‘1’ are generated when the output
load impedances are ZL,1 and ZL,2, respectively. Also, we
consider that the passive tag operates with the minimum
scattering antenna.

B. RFID Tag Load Power Analysis

As we aim to maximize the average load power transfer
to the tag, we first study the key parameters. According
to Kurokawa [19], the power wave reflection coefficient is
defined as the ratio of the reflected power wave to the total
incident power wave. This paper denotes Γi as the power
wave reflection coefficient, for i ∈ {1, 2} represent when
the tag connects to ZL,1 and ZL,2, respectively. The Γi is
given by [19]:

Γi ≜
ZL,i − Z̄A

ZL,i + ZA
, ∀i = {1, 2}, (1)

where ZA = RA + jXA is the antenna impedance, Z̄A is
the conjugate of ZA, and ZL,i = RL,i + jXL,i [19]. The
RL,i and RA are the output load resistance and antenna
resistance, respectively, whereas XL,i and XA are the output
load reactance and antenna reactance. To simplify the design
optimization without the loss of generality, we consider the
normalized load impedance Zn,i ≜ Rn,i+ jXn,i, and given
that [12]:

Rn,i + jXn,i ≜
RL,i

RA
+ j

XL,i +XA

RA
, ∀i = {1, 2}, (2)

where Rn,i is the normalized load resistance and Xn,i is the
normalized load reactance. Therefore, Γi can be expressed
in Zn,i as below:

Γi ≜
Zn,i − 1

Zn,i + 1

=
R2

n,i +X2
n,i − 1 + j2Xn,i

(Rn,i + 1)
2
+X2

n,i

= Γa,i + jΓb,i, ∀i = {1, 2}, (3)

where Γa,i ≜
R2

n,i+X2
n,i−1

(Rn,i+1)2+X2
n,i

and Γb,i ≜
2Xn,i

(Rn,i+1)2+X2
n,i

.

The output load power PL,i delivered to the IC chip is
given by [20]:

PL,i ≜ Pa

(
1− |Γi|2

)

= Pa

(
1− Γ2

a,i − Γ2
b,i

)
, ∀i = {1, 2}, (4)

where Pa ≜ PtGtGr

(
λ

4πd

)2
is the maximum available

power of PL,i [10]. The parameter Pt is the transmit power
of the reader, Gt and Gr are the antenna gain of tag and
reader, respectively, and λ is the wavelength of the RF
carrier.

III. PERFORMANCE METRICS FOR BACKSCATTERING

In [8], [9], the authors elaborated the main factors that
decide the maximum transmission range are load power,
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output load power. Thus, allowing the tag to perform more
on-board tasks and suit more applications. Unlike existing
works considering equal probability for bits ‘0’ and ‘1’
during transmission, we determine the maximum average
load power with unequal information bits probability for
binary ASK (BASK) modulation scheme.
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load selections without finding the optimal value for en-
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on-board tasks and suit more applications. Unlike existing
works considering equal probability for bits ‘0’ and ‘1’
during transmission, we determine the maximum average
load power with unequal information bits probability for
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The key contribution of this work is three-fold. 1) We
formulated an RFID tag output load power maximization
problem by jointly optimizing the reflection coefficients
while considering the BER and tag sensitivity constraints.
2) We transformed the original 4-variable problem into
a reduced optimization 2-variable convex problem. Then,
we proposed an algorithm to determine the closed-form
expression for the global optimal solution with the Karush-
Kuhn-Tucker (KKT) conditions. 3)Simulation results are
presented to quantify the maximum average load power for
different applications under the varying value of the key
system parameters. Here, we provided the design insight on
the optimal value of the load impedances and verified the
utility of the proposed optimal design by determining the
achievable gain over the benchmark gain.

II. SYSTEM DESCRIPTION

A. System Model and Transmission Protocol

Fig.1 shows a monostatic BackCom system with one
reader and one passive RFID tag separated by distance d
in a free-space transmission medium. As a dedicated power
source, the reader stably broadcasts an unmodulated RF
carrier with constant power Pt to the passive tag in the
downlink. Then, the tag transmits the backscattered signal
to the reader in the uplink. The passive tag comprises a
receiver antenna, matching network (MN), voltage multiplier
(VM), low-pass filter (LPF), and an integrated circuit (IC)
chip1 [18]. When a sinusoidal electromagnetic (EM) wave is
presented, the tags will transfer the power of the EM wave
into DC power and deliver it to power the IC chip. Once the

1In the latest research, the traditional RFID tag integrated with sensing
electronics, transforming it into a sensing and computational platform, has
been studied for IoT applications. The tag with sensing capability is called
computational RFID (CRFID), which has higher power consumption during
operation [1].

IC chip is activated, it generates the information signals by
switching between 2 output loads (ZL,1, ZL,2). These loads
are selected depending on the modulation scheme, in which
we consider the BASK in this paper. Therefore, we set the
information bits ‘0’ and ‘1’ are generated when the output
load impedances are ZL,1 and ZL,2, respectively. Also, we
consider that the passive tag operates with the minimum
scattering antenna.

B. RFID Tag Load Power Analysis

As we aim to maximize the average load power transfer
to the tag, we first study the key parameters. According
to Kurokawa [19], the power wave reflection coefficient is
defined as the ratio of the reflected power wave to the total
incident power wave. This paper denotes Γi as the power
wave reflection coefficient, for i ∈ {1, 2} represent when
the tag connects to ZL,1 and ZL,2, respectively. The Γi is
given by [19]:

Γi ≜
ZL,i − Z̄A

ZL,i + ZA
, ∀i = {1, 2}, (1)

where ZA = RA + jXA is the antenna impedance, Z̄A is
the conjugate of ZA, and ZL,i = RL,i + jXL,i [19]. The
RL,i and RA are the output load resistance and antenna
resistance, respectively, whereas XL,i and XA are the output
load reactance and antenna reactance. To simplify the design
optimization without the loss of generality, we consider the
normalized load impedance Zn,i ≜ Rn,i+ jXn,i, and given
that [12]:

Rn,i + jXn,i ≜
RL,i

RA
+ j

XL,i +XA

RA
, ∀i = {1, 2}, (2)

where Rn,i is the normalized load resistance and Xn,i is the
normalized load reactance. Therefore, Γi can be expressed
in Zn,i as below:

Γi ≜
Zn,i − 1

Zn,i + 1

=
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n,i +X2
n,i − 1 + j2Xn,i

(Rn,i + 1)
2
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and Γb,i ≜
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.

The output load power PL,i delivered to the IC chip is
given by [20]:

PL,i ≜ Pa

(
1− |Γi|2

)

= Pa

(
1− Γ2

a,i − Γ2
b,i

)
, ∀i = {1, 2}, (4)

where Pa ≜ PtGtGr

(
λ

4πd

)2
is the maximum available

power of PL,i [10]. The parameter Pt is the transmit power
of the reader, Gt and Gr are the antenna gain of tag and
reader, respectively, and λ is the wavelength of the RF
carrier.
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In [8], [9], the authors elaborated the main factors that
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output load power. Thus, allowing the tag to perform more
on-board tasks and suit more applications. Unlike existing
works considering equal probability for bits ‘0’ and ‘1’
during transmission, we determine the maximum average
load power with unequal information bits probability for
binary ASK (BASK) modulation scheme.

Besides, authors in [7], [11]–[14] have stated different
load selections without finding the optimal value for en-
hancing the tag performance. To the best of our knowledge,
the average load power maximization with optimal load
impedance selection under the BER and energy constraints
has not been investigated yet. This work will act as a bench-
mark whose results can be extended for other modulation
schemes like M-ary ASK and PSK in the future.

The key contribution of this work is three-fold. 1) We
formulated an RFID tag output load power maximization
problem by jointly optimizing the reflection coefficients
while considering the BER and tag sensitivity constraints.
2) We transformed the original 4-variable problem into
a reduced optimization 2-variable convex problem. Then,
we proposed an algorithm to determine the closed-form
expression for the global optimal solution with the Karush-
Kuhn-Tucker (KKT) conditions. 3)Simulation results are
presented to quantify the maximum average load power for
different applications under the varying value of the key
system parameters. Here, we provided the design insight on
the optimal value of the load impedances and verified the
utility of the proposed optimal design by determining the
achievable gain over the benchmark gain.

II. SYSTEM DESCRIPTION

A. System Model and Transmission Protocol

Fig.1 shows a monostatic BackCom system with one
reader and one passive RFID tag separated by distance d
in a free-space transmission medium. As a dedicated power
source, the reader stably broadcasts an unmodulated RF
carrier with constant power Pt to the passive tag in the
downlink. Then, the tag transmits the backscattered signal
to the reader in the uplink. The passive tag comprises a
receiver antenna, matching network (MN), voltage multiplier
(VM), low-pass filter (LPF), and an integrated circuit (IC)
chip1 [18]. When a sinusoidal electromagnetic (EM) wave is
presented, the tags will transfer the power of the EM wave
into DC power and deliver it to power the IC chip. Once the

1In the latest research, the traditional RFID tag integrated with sensing
electronics, transforming it into a sensing and computational platform, has
been studied for IoT applications. The tag with sensing capability is called
computational RFID (CRFID), which has higher power consumption during
operation [1].

IC chip is activated, it generates the information signals by
switching between 2 output loads (ZL,1, ZL,2). These loads
are selected depending on the modulation scheme, in which
we consider the BASK in this paper. Therefore, we set the
information bits ‘0’ and ‘1’ are generated when the output
load impedances are ZL,1 and ZL,2, respectively. Also, we
consider that the passive tag operates with the minimum
scattering antenna.

B. RFID Tag Load Power Analysis

As we aim to maximize the average load power transfer
to the tag, we first study the key parameters. According
to Kurokawa [19], the power wave reflection coefficient is
defined as the ratio of the reflected power wave to the total
incident power wave. This paper denotes Γi as the power
wave reflection coefficient, for i ∈ {1, 2} represent when
the tag connects to ZL,1 and ZL,2, respectively. The Γi is
given by [19]:

Γi ≜
ZL,i − Z̄A

ZL,i + ZA
, ∀i = {1, 2}, (1)

where ZA = RA + jXA is the antenna impedance, Z̄A is
the conjugate of ZA, and ZL,i = RL,i + jXL,i [19]. The
RL,i and RA are the output load resistance and antenna
resistance, respectively, whereas XL,i and XA are the output
load reactance and antenna reactance. To simplify the design
optimization without the loss of generality, we consider the
normalized load impedance Zn,i ≜ Rn,i+ jXn,i, and given
that [12]:

Rn,i + jXn,i ≜
RL,i

RA
+ j

XL,i +XA

RA
, ∀i = {1, 2}, (2)

where Rn,i is the normalized load resistance and Xn,i is the
normalized load reactance. Therefore, Γi can be expressed
in Zn,i as below:
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Zn,i − 1
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.

The output load power PL,i delivered to the IC chip is
given by [20]:

PL,i ≜ Pa

(
1− |Γi|2

)

= Pa

(
1− Γ2

a,i − Γ2
b,i

)
, ∀i = {1, 2}, (4)

where Pa ≜ PtGtGr

(
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4πd

)2
is the maximum available

power of PL,i [10]. The parameter Pt is the transmit power
of the reader, Gt and Gr are the antenna gain of tag and
reader, respectively, and λ is the wavelength of the RF
carrier.

III. PERFORMANCE METRICS FOR BACKSCATTERING

In [8], [9], the authors elaborated the main factors that
decide the maximum transmission range are load power,
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output load power. Thus, allowing the tag to perform more
on-board tasks and suit more applications. Unlike existing
works considering equal probability for bits ‘0’ and ‘1’
during transmission, we determine the maximum average
load power with unequal information bits probability for
binary ASK (BASK) modulation scheme.

Besides, authors in [7], [11]–[14] have stated different
load selections without finding the optimal value for en-
hancing the tag performance. To the best of our knowledge,
the average load power maximization with optimal load
impedance selection under the BER and energy constraints
has not been investigated yet. This work will act as a bench-
mark whose results can be extended for other modulation
schemes like M-ary ASK and PSK in the future.

The key contribution of this work is three-fold. 1) We
formulated an RFID tag output load power maximization
problem by jointly optimizing the reflection coefficients
while considering the BER and tag sensitivity constraints.
2) We transformed the original 4-variable problem into
a reduced optimization 2-variable convex problem. Then,
we proposed an algorithm to determine the closed-form
expression for the global optimal solution with the Karush-
Kuhn-Tucker (KKT) conditions. 3)Simulation results are
presented to quantify the maximum average load power for
different applications under the varying value of the key
system parameters. Here, we provided the design insight on
the optimal value of the load impedances and verified the
utility of the proposed optimal design by determining the
achievable gain over the benchmark gain.

II. SYSTEM DESCRIPTION

A. System Model and Transmission Protocol

Fig.1 shows a monostatic BackCom system with one
reader and one passive RFID tag separated by distance d
in a free-space transmission medium. As a dedicated power
source, the reader stably broadcasts an unmodulated RF
carrier with constant power Pt to the passive tag in the
downlink. Then, the tag transmits the backscattered signal
to the reader in the uplink. The passive tag comprises a
receiver antenna, matching network (MN), voltage multiplier
(VM), low-pass filter (LPF), and an integrated circuit (IC)
chip1 [18]. When a sinusoidal electromagnetic (EM) wave is
presented, the tags will transfer the power of the EM wave
into DC power and deliver it to power the IC chip. Once the

1In the latest research, the traditional RFID tag integrated with sensing
electronics, transforming it into a sensing and computational platform, has
been studied for IoT applications. The tag with sensing capability is called
computational RFID (CRFID), which has higher power consumption during
operation [1].

IC chip is activated, it generates the information signals by
switching between 2 output loads (ZL,1, ZL,2). These loads
are selected depending on the modulation scheme, in which
we consider the BASK in this paper. Therefore, we set the
information bits ‘0’ and ‘1’ are generated when the output
load impedances are ZL,1 and ZL,2, respectively. Also, we
consider that the passive tag operates with the minimum
scattering antenna.

B. RFID Tag Load Power Analysis

As we aim to maximize the average load power transfer
to the tag, we first study the key parameters. According
to Kurokawa [19], the power wave reflection coefficient is
defined as the ratio of the reflected power wave to the total
incident power wave. This paper denotes Γi as the power
wave reflection coefficient, for i ∈ {1, 2} represent when
the tag connects to ZL,1 and ZL,2, respectively. The Γi is
given by [19]:

Γi ≜
ZL,i − Z̄A

ZL,i + ZA
, ∀i = {1, 2}, (1)

where ZA = RA + jXA is the antenna impedance, Z̄A is
the conjugate of ZA, and ZL,i = RL,i + jXL,i [19]. The
RL,i and RA are the output load resistance and antenna
resistance, respectively, whereas XL,i and XA are the output
load reactance and antenna reactance. To simplify the design
optimization without the loss of generality, we consider the
normalized load impedance Zn,i ≜ Rn,i+ jXn,i, and given
that [12]:

Rn,i + jXn,i ≜
RL,i

RA
+ j

XL,i +XA

RA
, ∀i = {1, 2}, (2)

where Rn,i is the normalized load resistance and Xn,i is the
normalized load reactance. Therefore, Γi can be expressed
in Zn,i as below:

Γi ≜
Zn,i − 1

Zn,i + 1

=
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n,i +X2
n,i − 1 + j2Xn,i

(Rn,i + 1)
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= Γa,i + jΓb,i, ∀i = {1, 2}, (3)

where Γa,i ≜
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n,i−1

(Rn,i+1)2+X2
n,i

and Γb,i ≜
2Xn,i

(Rn,i+1)2+X2
n,i

.

The output load power PL,i delivered to the IC chip is
given by [20]:

PL,i ≜ Pa

(
1− |Γi|2

)

= Pa

(
1− Γ2

a,i − Γ2
b,i

)
, ∀i = {1, 2}, (4)

where Pa ≜ PtGtGr

(
λ

4πd

)2
is the maximum available

power of PL,i [10]. The parameter Pt is the transmit power
of the reader, Gt and Gr are the antenna gain of tag and
reader, respectively, and λ is the wavelength of the RF
carrier.

III. PERFORMANCE METRICS FOR BACKSCATTERING

In [8], [9], the authors elaborated the main factors that
decide the maximum transmission range are load power,
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output load power. Thus, allowing the tag to perform more
on-board tasks and suit more applications. Unlike existing
works considering equal probability for bits ‘0’ and ‘1’
during transmission, we determine the maximum average
load power with unequal information bits probability for
binary ASK (BASK) modulation scheme.

Besides, authors in [7], [11]–[14] have stated different
load selections without finding the optimal value for en-
hancing the tag performance. To the best of our knowledge,
the average load power maximization with optimal load
impedance selection under the BER and energy constraints
has not been investigated yet. This work will act as a bench-
mark whose results can be extended for other modulation
schemes like M-ary ASK and PSK in the future.

The key contribution of this work is three-fold. 1) We
formulated an RFID tag output load power maximization
problem by jointly optimizing the reflection coefficients
while considering the BER and tag sensitivity constraints.
2) We transformed the original 4-variable problem into
a reduced optimization 2-variable convex problem. Then,
we proposed an algorithm to determine the closed-form
expression for the global optimal solution with the Karush-
Kuhn-Tucker (KKT) conditions. 3)Simulation results are
presented to quantify the maximum average load power for
different applications under the varying value of the key
system parameters. Here, we provided the design insight on
the optimal value of the load impedances and verified the
utility of the proposed optimal design by determining the
achievable gain over the benchmark gain.

II. SYSTEM DESCRIPTION

A. System Model and Transmission Protocol

Fig.1 shows a monostatic BackCom system with one
reader and one passive RFID tag separated by distance d
in a free-space transmission medium. As a dedicated power
source, the reader stably broadcasts an unmodulated RF
carrier with constant power Pt to the passive tag in the
downlink. Then, the tag transmits the backscattered signal
to the reader in the uplink. The passive tag comprises a
receiver antenna, matching network (MN), voltage multiplier
(VM), low-pass filter (LPF), and an integrated circuit (IC)
chip1 [18]. When a sinusoidal electromagnetic (EM) wave is
presented, the tags will transfer the power of the EM wave
into DC power and deliver it to power the IC chip. Once the

1In the latest research, the traditional RFID tag integrated with sensing
electronics, transforming it into a sensing and computational platform, has
been studied for IoT applications. The tag with sensing capability is called
computational RFID (CRFID), which has higher power consumption during
operation [1].

IC chip is activated, it generates the information signals by
switching between 2 output loads (ZL,1, ZL,2). These loads
are selected depending on the modulation scheme, in which
we consider the BASK in this paper. Therefore, we set the
information bits ‘0’ and ‘1’ are generated when the output
load impedances are ZL,1 and ZL,2, respectively. Also, we
consider that the passive tag operates with the minimum
scattering antenna.

B. RFID Tag Load Power Analysis

As we aim to maximize the average load power transfer
to the tag, we first study the key parameters. According
to Kurokawa [19], the power wave reflection coefficient is
defined as the ratio of the reflected power wave to the total
incident power wave. This paper denotes Γi as the power
wave reflection coefficient, for i ∈ {1, 2} represent when
the tag connects to ZL,1 and ZL,2, respectively. The Γi is
given by [19]:

Γi ≜
ZL,i − Z̄A

ZL,i + ZA
, ∀i = {1, 2}, (1)

where ZA = RA + jXA is the antenna impedance, Z̄A is
the conjugate of ZA, and ZL,i = RL,i + jXL,i [19]. The
RL,i and RA are the output load resistance and antenna
resistance, respectively, whereas XL,i and XA are the output
load reactance and antenna reactance. To simplify the design
optimization without the loss of generality, we consider the
normalized load impedance Zn,i ≜ Rn,i+ jXn,i, and given
that [12]:

Rn,i + jXn,i ≜
RL,i

RA
+ j

XL,i +XA

RA
, ∀i = {1, 2}, (2)

where Rn,i is the normalized load resistance and Xn,i is the
normalized load reactance. Therefore, Γi can be expressed
in Zn,i as below:

Γi ≜
Zn,i − 1

Zn,i + 1

=
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n,i − 1 + j2Xn,i

(Rn,i + 1)
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(Rn,i+1)2+X2
n,i

and Γb,i ≜
2Xn,i

(Rn,i+1)2+X2
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.

The output load power PL,i delivered to the IC chip is
given by [20]:

PL,i ≜ Pa

(
1− |Γi|2

)

= Pa

(
1− Γ2

a,i − Γ2
b,i

)
, ∀i = {1, 2}, (4)

where Pa ≜ PtGtGr

(
λ

4πd

)2
is the maximum available

power of PL,i [10]. The parameter Pt is the transmit power
of the reader, Gt and Gr are the antenna gain of tag and
reader, respectively, and λ is the wavelength of the RF
carrier.

III. PERFORMANCE METRICS FOR BACKSCATTERING

In [8], [9], the authors elaborated the main factors that
decide the maximum transmission range are load power,
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output load power. Thus, allowing the tag to perform more
on-board tasks and suit more applications. Unlike existing
works considering equal probability for bits ‘0’ and ‘1’
during transmission, we determine the maximum average
load power with unequal information bits probability for
binary ASK (BASK) modulation scheme.

Besides, authors in [7], [11]–[14] have stated different
load selections without finding the optimal value for en-
hancing the tag performance. To the best of our knowledge,
the average load power maximization with optimal load
impedance selection under the BER and energy constraints
has not been investigated yet. This work will act as a bench-
mark whose results can be extended for other modulation
schemes like M-ary ASK and PSK in the future.

The key contribution of this work is three-fold. 1) We
formulated an RFID tag output load power maximization
problem by jointly optimizing the reflection coefficients
while considering the BER and tag sensitivity constraints.
2) We transformed the original 4-variable problem into
a reduced optimization 2-variable convex problem. Then,
we proposed an algorithm to determine the closed-form
expression for the global optimal solution with the Karush-
Kuhn-Tucker (KKT) conditions. 3)Simulation results are
presented to quantify the maximum average load power for
different applications under the varying value of the key
system parameters. Here, we provided the design insight on
the optimal value of the load impedances and verified the
utility of the proposed optimal design by determining the
achievable gain over the benchmark gain.

II. SYSTEM DESCRIPTION

A. System Model and Transmission Protocol

Fig.1 shows a monostatic BackCom system with one
reader and one passive RFID tag separated by distance d
in a free-space transmission medium. As a dedicated power
source, the reader stably broadcasts an unmodulated RF
carrier with constant power Pt to the passive tag in the
downlink. Then, the tag transmits the backscattered signal
to the reader in the uplink. The passive tag comprises a
receiver antenna, matching network (MN), voltage multiplier
(VM), low-pass filter (LPF), and an integrated circuit (IC)
chip1 [18]. When a sinusoidal electromagnetic (EM) wave is
presented, the tags will transfer the power of the EM wave
into DC power and deliver it to power the IC chip. Once the

1In the latest research, the traditional RFID tag integrated with sensing
electronics, transforming it into a sensing and computational platform, has
been studied for IoT applications. The tag with sensing capability is called
computational RFID (CRFID), which has higher power consumption during
operation [1].

IC chip is activated, it generates the information signals by
switching between 2 output loads (ZL,1, ZL,2). These loads
are selected depending on the modulation scheme, in which
we consider the BASK in this paper. Therefore, we set the
information bits ‘0’ and ‘1’ are generated when the output
load impedances are ZL,1 and ZL,2, respectively. Also, we
consider that the passive tag operates with the minimum
scattering antenna.

B. RFID Tag Load Power Analysis

As we aim to maximize the average load power transfer
to the tag, we first study the key parameters. According
to Kurokawa [19], the power wave reflection coefficient is
defined as the ratio of the reflected power wave to the total
incident power wave. This paper denotes Γi as the power
wave reflection coefficient, for i ∈ {1, 2} represent when
the tag connects to ZL,1 and ZL,2, respectively. The Γi is
given by [19]:

Γi ≜
ZL,i − Z̄A

ZL,i + ZA
, ∀i = {1, 2}, (1)

where ZA = RA + jXA is the antenna impedance, Z̄A is
the conjugate of ZA, and ZL,i = RL,i + jXL,i [19]. The
RL,i and RA are the output load resistance and antenna
resistance, respectively, whereas XL,i and XA are the output
load reactance and antenna reactance. To simplify the design
optimization without the loss of generality, we consider the
normalized load impedance Zn,i ≜ Rn,i+ jXn,i, and given
that [12]:

Rn,i + jXn,i ≜
RL,i

RA
+ j

XL,i +XA

RA
, ∀i = {1, 2}, (2)

where Rn,i is the normalized load resistance and Xn,i is the
normalized load reactance. Therefore, Γi can be expressed
in Zn,i as below:

Γi ≜
Zn,i − 1

Zn,i + 1

=
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(Rn,i+1)2+X2
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and Γb,i ≜
2Xn,i

(Rn,i+1)2+X2
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.

The output load power PL,i delivered to the IC chip is
given by [20]:

PL,i ≜ Pa

(
1− |Γi|2

)

= Pa

(
1− Γ2

a,i − Γ2
b,i

)
, ∀i = {1, 2}, (4)

where Pa ≜ PtGtGr

(
λ

4πd

)2
is the maximum available

power of PL,i [10]. The parameter Pt is the transmit power
of the reader, Gt and Gr are the antenna gain of tag and
reader, respectively, and λ is the wavelength of the RF
carrier.

III. PERFORMANCE METRICS FOR BACKSCATTERING

In [8], [9], the authors elaborated the main factors that
decide the maximum transmission range are load power,
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output load power. Thus, allowing the tag to perform more
on-board tasks and suit more applications. Unlike existing
works considering equal probability for bits ‘0’ and ‘1’
during transmission, we determine the maximum average
load power with unequal information bits probability for
binary ASK (BASK) modulation scheme.

Besides, authors in [7], [11]–[14] have stated different
load selections without finding the optimal value for en-
hancing the tag performance. To the best of our knowledge,
the average load power maximization with optimal load
impedance selection under the BER and energy constraints
has not been investigated yet. This work will act as a bench-
mark whose results can be extended for other modulation
schemes like M-ary ASK and PSK in the future.

The key contribution of this work is three-fold. 1) We
formulated an RFID tag output load power maximization
problem by jointly optimizing the reflection coefficients
while considering the BER and tag sensitivity constraints.
2) We transformed the original 4-variable problem into
a reduced optimization 2-variable convex problem. Then,
we proposed an algorithm to determine the closed-form
expression for the global optimal solution with the Karush-
Kuhn-Tucker (KKT) conditions. 3)Simulation results are
presented to quantify the maximum average load power for
different applications under the varying value of the key
system parameters. Here, we provided the design insight on
the optimal value of the load impedances and verified the
utility of the proposed optimal design by determining the
achievable gain over the benchmark gain.

II. SYSTEM DESCRIPTION

A. System Model and Transmission Protocol

Fig.1 shows a monostatic BackCom system with one
reader and one passive RFID tag separated by distance d
in a free-space transmission medium. As a dedicated power
source, the reader stably broadcasts an unmodulated RF
carrier with constant power Pt to the passive tag in the
downlink. Then, the tag transmits the backscattered signal
to the reader in the uplink. The passive tag comprises a
receiver antenna, matching network (MN), voltage multiplier
(VM), low-pass filter (LPF), and an integrated circuit (IC)
chip1 [18]. When a sinusoidal electromagnetic (EM) wave is
presented, the tags will transfer the power of the EM wave
into DC power and deliver it to power the IC chip. Once the

1In the latest research, the traditional RFID tag integrated with sensing
electronics, transforming it into a sensing and computational platform, has
been studied for IoT applications. The tag with sensing capability is called
computational RFID (CRFID), which has higher power consumption during
operation [1].

IC chip is activated, it generates the information signals by
switching between 2 output loads (ZL,1, ZL,2). These loads
are selected depending on the modulation scheme, in which
we consider the BASK in this paper. Therefore, we set the
information bits ‘0’ and ‘1’ are generated when the output
load impedances are ZL,1 and ZL,2, respectively. Also, we
consider that the passive tag operates with the minimum
scattering antenna.

B. RFID Tag Load Power Analysis

As we aim to maximize the average load power transfer
to the tag, we first study the key parameters. According
to Kurokawa [19], the power wave reflection coefficient is
defined as the ratio of the reflected power wave to the total
incident power wave. This paper denotes Γi as the power
wave reflection coefficient, for i ∈ {1, 2} represent when
the tag connects to ZL,1 and ZL,2, respectively. The Γi is
given by [19]:

Γi ≜
ZL,i − Z̄A

ZL,i + ZA
, ∀i = {1, 2}, (1)

where ZA = RA + jXA is the antenna impedance, Z̄A is
the conjugate of ZA, and ZL,i = RL,i + jXL,i [19]. The
RL,i and RA are the output load resistance and antenna
resistance, respectively, whereas XL,i and XA are the output
load reactance and antenna reactance. To simplify the design
optimization without the loss of generality, we consider the
normalized load impedance Zn,i ≜ Rn,i+ jXn,i, and given
that [12]:

Rn,i + jXn,i ≜
RL,i

RA
+ j

XL,i +XA

RA
, ∀i = {1, 2}, (2)

where Rn,i is the normalized load resistance and Xn,i is the
normalized load reactance. Therefore, Γi can be expressed
in Zn,i as below:

Γi ≜
Zn,i − 1

Zn,i + 1

=
R2

n,i +X2
n,i − 1 + j2Xn,i

(Rn,i + 1)
2
+X2

n,i

= Γa,i + jΓb,i, ∀i = {1, 2}, (3)

where Γa,i ≜
R2

n,i+X2
n,i−1

(Rn,i+1)2+X2
n,i

and Γb,i ≜
2Xn,i

(Rn,i+1)2+X2
n,i

.

The output load power PL,i delivered to the IC chip is
given by [20]:

PL,i ≜ Pa

(
1− |Γi|2

)

= Pa

(
1− Γ2

a,i − Γ2
b,i

)
, ∀i = {1, 2}, (4)

where Pa ≜ PtGtGr

(
λ

4πd

)2
is the maximum available

power of PL,i [10]. The parameter Pt is the transmit power
of the reader, Gt and Gr are the antenna gain of tag and
reader, respectively, and λ is the wavelength of the RF
carrier.

III. PERFORMANCE METRICS FOR BACKSCATTERING

In [8], [9], the authors elaborated the main factors that
decide the maximum transmission range are load power,

1In the latest research, the traditional RFID tag integrated with sensing 
electronics, transforming it into a sensing and computational platform, has been 
studied for IoT applications. The tag with sensing capability is called computational 
RFID (CRFID), which has higher power consumption during operation [1].
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Fig. 1: BackCom system and its transmission protocol.

output load power. Thus, allowing the tag to perform more
on-board tasks and suit more applications. Unlike existing
works considering equal probability for bits ‘0’ and ‘1’
during transmission, we determine the maximum average
load power with unequal information bits probability for
binary ASK (BASK) modulation scheme.

Besides, authors in [7], [11]–[14] have stated different
load selections without finding the optimal value for en-
hancing the tag performance. To the best of our knowledge,
the average load power maximization with optimal load
impedance selection under the BER and energy constraints
has not been investigated yet. This work will act as a bench-
mark whose results can be extended for other modulation
schemes like M-ary ASK and PSK in the future.

The key contribution of this work is three-fold. 1) We
formulated an RFID tag output load power maximization
problem by jointly optimizing the reflection coefficients
while considering the BER and tag sensitivity constraints.
2) We transformed the original 4-variable problem into
a reduced optimization 2-variable convex problem. Then,
we proposed an algorithm to determine the closed-form
expression for the global optimal solution with the Karush-
Kuhn-Tucker (KKT) conditions. 3)Simulation results are
presented to quantify the maximum average load power for
different applications under the varying value of the key
system parameters. Here, we provided the design insight on
the optimal value of the load impedances and verified the
utility of the proposed optimal design by determining the
achievable gain over the benchmark gain.

II. SYSTEM DESCRIPTION

A. System Model and Transmission Protocol

Fig.1 shows a monostatic BackCom system with one
reader and one passive RFID tag separated by distance d
in a free-space transmission medium. As a dedicated power
source, the reader stably broadcasts an unmodulated RF
carrier with constant power Pt to the passive tag in the
downlink. Then, the tag transmits the backscattered signal
to the reader in the uplink. The passive tag comprises a
receiver antenna, matching network (MN), voltage multiplier
(VM), low-pass filter (LPF), and an integrated circuit (IC)
chip1 [18]. When a sinusoidal electromagnetic (EM) wave is
presented, the tags will transfer the power of the EM wave
into DC power and deliver it to power the IC chip. Once the

1In the latest research, the traditional RFID tag integrated with sensing
electronics, transforming it into a sensing and computational platform, has
been studied for IoT applications. The tag with sensing capability is called
computational RFID (CRFID), which has higher power consumption during
operation [1].
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In [8], [9], the authors elaborated the main factors that
decide the maximum transmission range are load power,
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backscattered power, and BER. This paper considers the
tag power sensitivity and the BER minimum requirement
as the operation constraints to determine the optimal load
impedances and the maximum average load power.

A. Tag Power Sensitivity

In the BackCom system, the tag remains in sleep mode
and is only activated when enough power and a minimum
threshold voltage are provided. Therefore, PL,i must be
greater than the minimum load power threshold PL,min,
which is the sustainability requirement of the BackCom
system. When PL,i < PL,min, the tag is not activated, and
no information will be generated.

B. Bit Error Rate

The second factor that limits the tag performance is the
BER, which is defined as the number of bits misidentified
by the reader over the total number of transmitted bits at
a given time interval [21]. The probability Pe is the ratio
of bits in error to the total number of bits, which can be
determined by the following equation [22]:

Pe =
1

2
erfc

(
|V1 − V2|
4
√
2 · σ

)

=
1

2
erfc

(
|V0| ·m
2
√
2 · σ

)
, (5)

where Vi is the voltage applied to the reader’s output load
when the tag is connected to ZL,i, and Vi = V0 is when the
tag is operated in perfectly matched condition

(
ZL,i = Z̄A

)
.

The inevitable additive white Gaussian noise nr is assumed
to have zero mean with E{|nr|2} ≜ σ2.The modulation in-
dex m (0 ≤ m ≤ 1) is the characteristic difference between
the backscattered signal bits ‘0’ and ‘1’, and is defined as
below [22]:

m ≜
|Γ1 − Γ2|

2

=

√
(Γa,1 − Γa,2)

2
+ (Γb,1 − Γb,2)

2

2
, (6)

We set ν ≜ |V0|·m
2
√
2·σ , and the complementary error function

erfc (ν) = 1−erf (ν). Given that erf (ν) is the error function,
this implies the higher the m, the lower the BER.

IV. PROBLEM DEFINITION

A. Optimization Formulation

When the tag is activated, it generates signal information
with bits ‘0’ and ‘1’. We denote p1 and p2 (0 ≤ p1, p2 ≤ 1)
as the occurrence probability of bits ‘0’ and ‘1’, respectively,
with p1+p2 = 1. In general, it is not necessary that the bits
‘0’ and ‘1’ have the same occurrence probability. Therefore,
we consider p1 and p2 as application dependent constants,
and the average load power PL,avg is given by:

PL,avg ≜ p1PL,1 + (1− p1)PL,2, (7)

Given the average load power PL,avg as a function of
Γi, we are interested in determining the optimal reflection
coefficient to maximize PL,avg, subjecting to the following

constraints. Constraint C1 defines the domain of the power
reflection coefficient |Γi| ≤ 1, whereas C2 and C3 include
the boundary conditions for Γa,i and Γb,i, respectively. To
meet the minimum BER requirement, the passive tag must
operate with a threshold mth for the modulation index m
as in constraint C4. Furthermore, constraint C5 refers to
the minimum load power threshold PL,min that must be
achieved at each state. Incorporating these constraints, we
maximize the average load power PL,avg, and the corre-
sponding optimization problem (P1) can be defined as:

(P1) :max
Γ

PL,avg

subject to C1 :Γ2
a,i + Γ2

b,i ≤ 1, ∀i = {1, 2},
C2 :Γa,i ∈ [−1, 1] , ∀i = {1, 2},
C3 :Γb,i ∈ [−1, 1] , ∀i = {1, 2},

C4 :

√
(Γa,1 − Γa,2)

2
+ (Γb,1 − Γb,2)

2

2
≥ mth,

C5 :Pa

(
1− Γ2

a,i − Γ2
b,i

)
≥ PL,min, ∀i = {1, 2}.

where Γ ≜ [Γa,1,Γa,2,Γb,1,Γb,2].

Remark 1 The IC chip will consume the power PL,min

to generate the information signal, whereas the remaining
power is delivered to a storage system. The total stored
energy Est = (PL,avg − PL,min)T over the operation
period T is then used for the on-board task during the
non-interrogating period. Therefore, the allowable on-board
tasks depend on PL,avg.

The problem (P1) is a 4-variable optimization problem,
which is then reduced to a 2-variable problem with the
following Lemmas.

Lemma 1 The average load power is maximized when
either Γa,i = 0 or Γb,i = 0.

Proof First, we set Γb,i as a constant and we found that
∂2PL,i

∂Γ2
a,i

= −2Pa, which implies PL,i is a concave function in
Γa,i. Therefore, for a given Γb,i, the maximum load power as
obtained by solving ∂PL,i

∂Γa,i
= 0 is Γa,i = 0. Likewise, we set

Γa,i as a constant and we found that ∂2PL,i

∂Γ2
b,i

= −2Pa, which
implies PL,i is also a concave function in Γb,i. Similarly,
for a given Γa,i, the maximum load power as obtained by
solving ∂PL,i

∂Γb,i
= 0 is Γb,i = 0. Hence, we proved Lemma 1.

Lemma 2 To ensure better receiver sensitivity at the reader
while maximizing the average load power, we have to set
Γb,i = 0 as compared to Γa,i = 0.

Proof Refer to Appendix A for the proof of Lemma 2.

The following remark explains the practical use of Lemma
2 in the tag design.

Remark 2 Since our BackCom system considers ASK mod-
ulation, the backscattered signal of the passive tag is de-
signed to satisfy the phase-equality condition. Accordance
to Lemma 2, we set Xn,i = 0, and Rn,i =

1+Γa,i

1−Γa,i
. The

normalized load impedance plays a key parameter in the
backscatter tag design [20].
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BER, which is defined as the number of bits misidentified
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which is the sustainability requirement of the BackCom
system. When PL,i < PL,min, the tag is not activated, and
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B. Bit Error Rate

The second factor that limits the tag performance is the
BER, which is defined as the number of bits misidentified
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a given time interval [21]. The probability Pe is the ratio
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with p1+p2 = 1. In general, it is not necessary that the bits
‘0’ and ‘1’ have the same occurrence probability. Therefore,
we consider p1 and p2 as application dependent constants,
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Γi, we are interested in determining the optimal reflection
coefficient to maximize PL,avg, subjecting to the following

constraints. Constraint C1 defines the domain of the power
reflection coefficient |Γi| ≤ 1, whereas C2 and C3 include
the boundary conditions for Γa,i and Γb,i, respectively. To
meet the minimum BER requirement, the passive tag must
operate with a threshold mth for the modulation index m
as in constraint C4. Furthermore, constraint C5 refers to
the minimum load power threshold PL,min that must be
achieved at each state. Incorporating these constraints, we
maximize the average load power PL,avg, and the corre-
sponding optimization problem (P1) can be defined as:

(P1) :max
Γ

PL,avg

subject to C1 :Γ2
a,i + Γ2

b,i ≤ 1, ∀i = {1, 2},
C2 :Γa,i ∈ [−1, 1] , ∀i = {1, 2},
C3 :Γb,i ∈ [−1, 1] , ∀i = {1, 2},

C4 :

√
(Γa,1 − Γa,2)

2
+ (Γb,1 − Γb,2)

2

2
≥ mth,

C5 :Pa

(
1− Γ2

a,i − Γ2
b,i

)
≥ PL,min, ∀i = {1, 2}.

where Γ ≜ [Γa,1,Γa,2,Γb,1,Γb,2].

Remark 1 The IC chip will consume the power PL,min

to generate the information signal, whereas the remaining
power is delivered to a storage system. The total stored
energy Est = (PL,avg − PL,min)T over the operation
period T is then used for the on-board task during the
non-interrogating period. Therefore, the allowable on-board
tasks depend on PL,avg.

The problem (P1) is a 4-variable optimization problem,
which is then reduced to a 2-variable problem with the
following Lemmas.

Lemma 1 The average load power is maximized when
either Γa,i = 0 or Γb,i = 0.

Proof First, we set Γb,i as a constant and we found that
∂2PL,i

∂Γ2
a,i

= −2Pa, which implies PL,i is a concave function in
Γa,i. Therefore, for a given Γb,i, the maximum load power as
obtained by solving ∂PL,i

∂Γa,i
= 0 is Γa,i = 0. Likewise, we set

Γa,i as a constant and we found that ∂2PL,i

∂Γ2
b,i

= −2Pa, which
implies PL,i is also a concave function in Γb,i. Similarly,
for a given Γa,i, the maximum load power as obtained by
solving ∂PL,i

∂Γb,i
= 0 is Γb,i = 0. Hence, we proved Lemma 1.

Lemma 2 To ensure better receiver sensitivity at the reader
while maximizing the average load power, we have to set
Γb,i = 0 as compared to Γa,i = 0.

Proof Refer to Appendix A for the proof of Lemma 2.

The following remark explains the practical use of Lemma
2 in the tag design.

Remark 2 Since our BackCom system considers ASK mod-
ulation, the backscattered signal of the passive tag is de-
signed to satisfy the phase-equality condition. Accordance
to Lemma 2, we set Xn,i = 0, and Rn,i =

1+Γa,i

1−Γa,i
. The

normalized load impedance plays a key parameter in the
backscatter tag design [20].

3

backscattered power, and BER. This paper considers the
tag power sensitivity and the BER minimum requirement
as the operation constraints to determine the optimal load
impedances and the maximum average load power.

A. Tag Power Sensitivity

In the BackCom system, the tag remains in sleep mode
and is only activated when enough power and a minimum
threshold voltage are provided. Therefore, PL,i must be
greater than the minimum load power threshold PL,min,
which is the sustainability requirement of the BackCom
system. When PL,i < PL,min, the tag is not activated, and
no information will be generated.

B. Bit Error Rate

The second factor that limits the tag performance is the
BER, which is defined as the number of bits misidentified
by the reader over the total number of transmitted bits at
a given time interval [21]. The probability Pe is the ratio
of bits in error to the total number of bits, which can be
determined by the following equation [22]:

Pe =
1

2
erfc

(
|V1 − V2|
4
√
2 · σ

)

=
1

2
erfc

(
|V0| ·m
2
√
2 · σ

)
, (5)

where Vi is the voltage applied to the reader’s output load
when the tag is connected to ZL,i, and Vi = V0 is when the
tag is operated in perfectly matched condition

(
ZL,i = Z̄A

)
.

The inevitable additive white Gaussian noise nr is assumed
to have zero mean with E{|nr|2} ≜ σ2.The modulation in-
dex m (0 ≤ m ≤ 1) is the characteristic difference between
the backscattered signal bits ‘0’ and ‘1’, and is defined as
below [22]:

m ≜
|Γ1 − Γ2|

2

=

√
(Γa,1 − Γa,2)

2
+ (Γb,1 − Γb,2)

2

2
, (6)

We set ν ≜ |V0|·m
2
√
2·σ , and the complementary error function

erfc (ν) = 1−erf (ν). Given that erf (ν) is the error function,
this implies the higher the m, the lower the BER.

IV. PROBLEM DEFINITION

A. Optimization Formulation

When the tag is activated, it generates signal information
with bits ‘0’ and ‘1’. We denote p1 and p2 (0 ≤ p1, p2 ≤ 1)
as the occurrence probability of bits ‘0’ and ‘1’, respectively,
with p1+p2 = 1. In general, it is not necessary that the bits
‘0’ and ‘1’ have the same occurrence probability. Therefore,
we consider p1 and p2 as application dependent constants,
and the average load power PL,avg is given by:

PL,avg ≜ p1PL,1 + (1− p1)PL,2, (7)

Given the average load power PL,avg as a function of
Γi, we are interested in determining the optimal reflection
coefficient to maximize PL,avg, subjecting to the following

constraints. Constraint C1 defines the domain of the power
reflection coefficient |Γi| ≤ 1, whereas C2 and C3 include
the boundary conditions for Γa,i and Γb,i, respectively. To
meet the minimum BER requirement, the passive tag must
operate with a threshold mth for the modulation index m
as in constraint C4. Furthermore, constraint C5 refers to
the minimum load power threshold PL,min that must be
achieved at each state. Incorporating these constraints, we
maximize the average load power PL,avg, and the corre-
sponding optimization problem (P1) can be defined as:

(P1) :max
Γ

PL,avg

subject to C1 :Γ2
a,i + Γ2

b,i ≤ 1, ∀i = {1, 2},
C2 :Γa,i ∈ [−1, 1] , ∀i = {1, 2},
C3 :Γb,i ∈ [−1, 1] , ∀i = {1, 2},

C4 :

√
(Γa,1 − Γa,2)

2
+ (Γb,1 − Γb,2)

2

2
≥ mth,

C5 :Pa

(
1− Γ2

a,i − Γ2
b,i

)
≥ PL,min, ∀i = {1, 2}.

where Γ ≜ [Γa,1,Γa,2,Γb,1,Γb,2].

Remark 1 The IC chip will consume the power PL,min

to generate the information signal, whereas the remaining
power is delivered to a storage system. The total stored
energy Est = (PL,avg − PL,min)T over the operation
period T is then used for the on-board task during the
non-interrogating period. Therefore, the allowable on-board
tasks depend on PL,avg.

The problem (P1) is a 4-variable optimization problem,
which is then reduced to a 2-variable problem with the
following Lemmas.

Lemma 1 The average load power is maximized when
either Γa,i = 0 or Γb,i = 0.

Proof First, we set Γb,i as a constant and we found that
∂2PL,i

∂Γ2
a,i

= −2Pa, which implies PL,i is a concave function in
Γa,i. Therefore, for a given Γb,i, the maximum load power as
obtained by solving ∂PL,i

∂Γa,i
= 0 is Γa,i = 0. Likewise, we set

Γa,i as a constant and we found that ∂2PL,i

∂Γ2
b,i

= −2Pa, which
implies PL,i is also a concave function in Γb,i. Similarly,
for a given Γa,i, the maximum load power as obtained by
solving ∂PL,i

∂Γb,i
= 0 is Γb,i = 0. Hence, we proved Lemma 1.

Lemma 2 To ensure better receiver sensitivity at the reader
while maximizing the average load power, we have to set
Γb,i = 0 as compared to Γa,i = 0.

Proof Refer to Appendix A for the proof of Lemma 2.

The following remark explains the practical use of Lemma
2 in the tag design.

Remark 2 Since our BackCom system considers ASK mod-
ulation, the backscattered signal of the passive tag is de-
signed to satisfy the phase-equality condition. Accordance
to Lemma 2, we set Xn,i = 0, and Rn,i =

1+Γa,i

1−Γa,i
. The

normalized load impedance plays a key parameter in the
backscatter tag design [20].
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Using Lemma 2, and assuming Γa,1 ≥ Γa,2 without
any loss of generality, we can reformulate the optimization
problem (P1) into (P2) as defined below:

(P2) : max
Γa,1,Γa,2

PL,avg

subject to C2,

C6 :
Γa,1 − Γa,2

2
≥ mth,

C7 : Pa

(
1− Γ2

a,i

)
≥ PL,min, ∀i = 1, 2.

V. PROPOSED SOLUTION METHODOLOGY

A. Problem Feasibility and Convexity

Before solving problem (P2), we discuss its feasibility
condition with Lemma 3.

Lemma 3 If problem (P2) is feasible, mth ≤
√
1− PL,min

Pa

is always true.

Proof Refer to Appendix B for the proof of Lemma 3.

Next, we discuss the convexity of problem (P2) with
Lemma 4.

Lemma 4 The problem (P2) is a convex problem.

Proof Refer to Appendix C for the proof of Lemma 4.

B. Implementation Detail

We denote the maximum average load power for prob-
lem (P2) as P ∗

L,avg, and the underlying optimal solution

as Γ∗ =
[
Γ∗
a,1,Γ

∗
a,2,Γ

∗
b,1 = 0,Γ∗

b,2 = 0
]
. Since (P2) is

a convex problem, we can claim that the Karush-Kuhn-
Tucker (KKT) point gives the global optimal solution. The
Lagrangian of (P2) is:

L = −p1Pa

(
1− Γ2

a,1

)
− (1− p1)Pa

(
1− Γ2

a,2

)

+ λ1

(
mth − Γa,1 − Γa,2

2

)
+ λ2

(
Γ2
a,1 − 1 +

PL,min

Pa

)

+ λ3

(
Γ2
a,2 − 1 +

PL,min

Pa

)
, (8)

where λ1 represents the Lagrange multipliers associated with
C6, and λ2, λ3 correspond to C7 for i ∈ {1, 2}, respectively.
The KKT point can be found by solving the following
equations.

∂L
∂Γa,1

= 2p1PaΓa,1 −
1

2
λ1 + 2λ2Γa,1 = 0, (9)

∂L
∂Γa,2

= 2 (1− p1)PaΓa,2 +
1

2
λ1 + 2λ3Γa,2 = 0, (10)

λ1

(
mth − Γa,1 − Γa,2

2

)
= 0, (11)

λ2

(
Γ2
a,1 − 1 +

PL,min

Pa

)
= 0, (12)

λ3

(
Γ2
a,2 − 1 +

PL,min

Pa

)
= 0. (13)

where (9) and (10) are the sub-gradient conditions, and
(11),(12),(13) are the complementary slackness conditions.

While solving (9) − (13), we obtain Γ∗ in terms of the
constant parameters, and thereby determine P ∗

L,avg. Subse-
quently, we discuss the method to determine the KKT point
in Lemma 5.

Lemma 5 We can obtain the global optimal solution Γ∗ by
considering 3 cases, which are case (a) : λ1 ̸= 0, λ2 =
λ3 = 0, case (b) : λ1, λ2 ̸= 0, λ3 = 0, and case (c) :
λ1, λ3 ̸= 0, λ2 = 0.

Proof Since the objective function is decreasing with Γa,1

and Γa,2, the optimal solution without the constraints will
have Γa,1 = Γa,2 = 0. However, constraint C6 requires
a minimum separation between Γa,1 and Γa,2. Therefore
constraint C6 is satisfied at equality, which implies λ1 is
always positive. It is noticed that λ2 and λ3 simultaneously
greater than zero only when mth =

√
1− PL,min

Pa
, which

will obtain the same Γ∗ at λ2 ̸= 0. Therefore, the optimal
solution is given by either or both λ2 and λ3 are zero, while
λ1 > 0.

Using Lemma 5, we proposed an algorithm to solve prob-
lem (P2) and determine Γ∗ and P ∗

L,avg. We first consider
case (a) and obtain the optimal solution by assuming it
satisfied the boundary condition, denoted as Γ

(a)
a,i . Since λ2

is associated with constraint C7, and Γa,1 ≥ Γa,2, the
upper boundary condition will always satisfied when we
set λ2 > 0. Similarly, the lower boundary condition will
always be satisfied when we set λ3 > 0. Therefore, the
global optimal solution is obtained from case (b) when Γ

(a)
a,1

is greater than the upper bound, and case (c) when Γ
(a)
a,2 is

smaller than the lower bound. We summarize the problem
(P2) solving steps in Algorithm 1.

Algorithm 1 Optimal reflection coefficient design to maxi-
mize PL,avg.
Input: p1, mth, PL,min and Pa

Output: Γ∗
a,1, Γ∗

a,2, P
∗
L,avg

Set λ1 ̸= 0, λ2 = λ3 = 0,

Γ
(a)
a,1 = 2 (1− p1)mth, Γ(a)

a,2 = −2p1mth

if Γ(a)
a,1 >

√
1− PL,min

Pa
then

Set λ1, λ2 ̸= 0, λ3 = 0,

Γ∗
a,1 =

√
1− PL,min

Pa
, Γ∗

a,2 =
√
1− PL,min

Pa
− 2mth

else if Γ(a)
a,2 < −

√
1− PL,min

Pa
then

Set λ1, λ3 ̸= 0, λ2 = 0,

Γ∗
a,1 = −

√
1− PL,min

Pa
+ 2mth, Γ∗

a,2 = −
√
1− PL,min

Pa

else
Γ∗
a,1 = Γ

(a)
a,1,Γ

∗
a,2 = Γ

(a)
a,2

end

P ∗
L,avg = p1Pa

(
1−

(
Γ∗
a,1

)2)
+(1− p1)Pa

(
1−

(
Γ∗
a,2

)2)

Algorithm 1 requires the system parameters p1, mth,
PL,min and Pa as the input. After that, it generates decision
making process subjected to the conditions derived from
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backscattered power, and BER. This paper considers the
tag power sensitivity and the BER minimum requirement
as the operation constraints to determine the optimal load
impedances and the maximum average load power.

A. Tag Power Sensitivity

In the BackCom system, the tag remains in sleep mode
and is only activated when enough power and a minimum
threshold voltage are provided. Therefore, PL,i must be
greater than the minimum load power threshold PL,min,
which is the sustainability requirement of the BackCom
system. When PL,i < PL,min, the tag is not activated, and
no information will be generated.

B. Bit Error Rate

The second factor that limits the tag performance is the
BER, which is defined as the number of bits misidentified
by the reader over the total number of transmitted bits at
a given time interval [21]. The probability Pe is the ratio
of bits in error to the total number of bits, which can be
determined by the following equation [22]:

Pe =
1

2
erfc

(
|V1 − V2|
4
√
2 · σ

)

=
1

2
erfc

(
|V0| ·m
2
√
2 · σ

)
, (5)

where Vi is the voltage applied to the reader’s output load
when the tag is connected to ZL,i, and Vi = V0 is when the
tag is operated in perfectly matched condition

(
ZL,i = Z̄A

)
.

The inevitable additive white Gaussian noise nr is assumed
to have zero mean with E{|nr|2} ≜ σ2.The modulation in-
dex m (0 ≤ m ≤ 1) is the characteristic difference between
the backscattered signal bits ‘0’ and ‘1’, and is defined as
below [22]:

m ≜
|Γ1 − Γ2|

2

=

√
(Γa,1 − Γa,2)

2
+ (Γb,1 − Γb,2)

2

2
, (6)

We set ν ≜ |V0|·m
2
√
2·σ , and the complementary error function

erfc (ν) = 1−erf (ν). Given that erf (ν) is the error function,
this implies the higher the m, the lower the BER.

IV. PROBLEM DEFINITION

A. Optimization Formulation

When the tag is activated, it generates signal information
with bits ‘0’ and ‘1’. We denote p1 and p2 (0 ≤ p1, p2 ≤ 1)
as the occurrence probability of bits ‘0’ and ‘1’, respectively,
with p1+p2 = 1. In general, it is not necessary that the bits
‘0’ and ‘1’ have the same occurrence probability. Therefore,
we consider p1 and p2 as application dependent constants,
and the average load power PL,avg is given by:

PL,avg ≜ p1PL,1 + (1− p1)PL,2, (7)

Given the average load power PL,avg as a function of
Γi, we are interested in determining the optimal reflection
coefficient to maximize PL,avg, subjecting to the following

constraints. Constraint C1 defines the domain of the power
reflection coefficient |Γi| ≤ 1, whereas C2 and C3 include
the boundary conditions for Γa,i and Γb,i, respectively. To
meet the minimum BER requirement, the passive tag must
operate with a threshold mth for the modulation index m
as in constraint C4. Furthermore, constraint C5 refers to
the minimum load power threshold PL,min that must be
achieved at each state. Incorporating these constraints, we
maximize the average load power PL,avg, and the corre-
sponding optimization problem (P1) can be defined as:

(P1) :max
Γ

PL,avg

subject to C1 :Γ2
a,i + Γ2

b,i ≤ 1, ∀i = {1, 2},
C2 :Γa,i ∈ [−1, 1] , ∀i = {1, 2},
C3 :Γb,i ∈ [−1, 1] , ∀i = {1, 2},

C4 :

√
(Γa,1 − Γa,2)

2
+ (Γb,1 − Γb,2)

2

2
≥ mth,

C5 :Pa

(
1− Γ2

a,i − Γ2
b,i

)
≥ PL,min, ∀i = {1, 2}.

where Γ ≜ [Γa,1,Γa,2,Γb,1,Γb,2].

Remark 1 The IC chip will consume the power PL,min

to generate the information signal, whereas the remaining
power is delivered to a storage system. The total stored
energy Est = (PL,avg − PL,min)T over the operation
period T is then used for the on-board task during the
non-interrogating period. Therefore, the allowable on-board
tasks depend on PL,avg.

The problem (P1) is a 4-variable optimization problem,
which is then reduced to a 2-variable problem with the
following Lemmas.

Lemma 1 The average load power is maximized when
either Γa,i = 0 or Γb,i = 0.

Proof First, we set Γb,i as a constant and we found that
∂2PL,i

∂Γ2
a,i

= −2Pa, which implies PL,i is a concave function in
Γa,i. Therefore, for a given Γb,i, the maximum load power as
obtained by solving ∂PL,i

∂Γa,i
= 0 is Γa,i = 0. Likewise, we set

Γa,i as a constant and we found that ∂2PL,i

∂Γ2
b,i

= −2Pa, which
implies PL,i is also a concave function in Γb,i. Similarly,
for a given Γa,i, the maximum load power as obtained by
solving ∂PL,i

∂Γb,i
= 0 is Γb,i = 0. Hence, we proved Lemma 1.

Lemma 2 To ensure better receiver sensitivity at the reader
while maximizing the average load power, we have to set
Γb,i = 0 as compared to Γa,i = 0.

Proof Refer to Appendix A for the proof of Lemma 2.

The following remark explains the practical use of Lemma
2 in the tag design.

Remark 2 Since our BackCom system considers ASK mod-
ulation, the backscattered signal of the passive tag is de-
signed to satisfy the phase-equality condition. Accordance
to Lemma 2, we set Xn,i = 0, and Rn,i =

1+Γa,i

1−Γa,i
. The

normalized load impedance plays a key parameter in the
backscatter tag design [20].
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Using Lemma 2, and assuming Γa,1 ≥ Γa,2 without
any loss of generality, we can reformulate the optimization
problem (P1) into (P2) as defined below:

(P2) : max
Γa,1,Γa,2

PL,avg

subject to C2,

C6 :
Γa,1 − Γa,2

2
≥ mth,

C7 : Pa

(
1− Γ2

a,i

)
≥ PL,min, ∀i = 1, 2.

V. PROPOSED SOLUTION METHODOLOGY

A. Problem Feasibility and Convexity

Before solving problem (P2), we discuss its feasibility
condition with Lemma 3.

Lemma 3 If problem (P2) is feasible, mth ≤
√
1− PL,min

Pa

is always true.

Proof Refer to Appendix B for the proof of Lemma 3.

Next, we discuss the convexity of problem (P2) with
Lemma 4.

Lemma 4 The problem (P2) is a convex problem.

Proof Refer to Appendix C for the proof of Lemma 4.

B. Implementation Detail

We denote the maximum average load power for prob-
lem (P2) as P ∗

L,avg, and the underlying optimal solution

as Γ∗ =
[
Γ∗
a,1,Γ

∗
a,2,Γ

∗
b,1 = 0,Γ∗

b,2 = 0
]
. Since (P2) is

a convex problem, we can claim that the Karush-Kuhn-
Tucker (KKT) point gives the global optimal solution. The
Lagrangian of (P2) is:

L = −p1Pa

(
1− Γ2

a,1

)
− (1− p1)Pa

(
1− Γ2

a,2

)

+ λ1

(
mth − Γa,1 − Γa,2

2

)
+ λ2

(
Γ2
a,1 − 1 +

PL,min

Pa

)

+ λ3

(
Γ2
a,2 − 1 +

PL,min

Pa

)
, (8)

where λ1 represents the Lagrange multipliers associated with
C6, and λ2, λ3 correspond to C7 for i ∈ {1, 2}, respectively.
The KKT point can be found by solving the following
equations.

∂L
∂Γa,1

= 2p1PaΓa,1 −
1

2
λ1 + 2λ2Γa,1 = 0, (9)

∂L
∂Γa,2

= 2 (1− p1)PaΓa,2 +
1

2
λ1 + 2λ3Γa,2 = 0, (10)

λ1

(
mth − Γa,1 − Γa,2

2

)
= 0, (11)

λ2

(
Γ2
a,1 − 1 +

PL,min

Pa

)
= 0, (12)

λ3

(
Γ2
a,2 − 1 +

PL,min

Pa

)
= 0. (13)

where (9) and (10) are the sub-gradient conditions, and
(11),(12),(13) are the complementary slackness conditions.

While solving (9) − (13), we obtain Γ∗ in terms of the
constant parameters, and thereby determine P ∗

L,avg. Subse-
quently, we discuss the method to determine the KKT point
in Lemma 5.

Lemma 5 We can obtain the global optimal solution Γ∗ by
considering 3 cases, which are case (a) : λ1 ̸= 0, λ2 =
λ3 = 0, case (b) : λ1, λ2 ̸= 0, λ3 = 0, and case (c) :
λ1, λ3 ̸= 0, λ2 = 0.

Proof Since the objective function is decreasing with Γa,1

and Γa,2, the optimal solution without the constraints will
have Γa,1 = Γa,2 = 0. However, constraint C6 requires
a minimum separation between Γa,1 and Γa,2. Therefore
constraint C6 is satisfied at equality, which implies λ1 is
always positive. It is noticed that λ2 and λ3 simultaneously
greater than zero only when mth =

√
1− PL,min

Pa
, which

will obtain the same Γ∗ at λ2 ̸= 0. Therefore, the optimal
solution is given by either or both λ2 and λ3 are zero, while
λ1 > 0.

Using Lemma 5, we proposed an algorithm to solve prob-
lem (P2) and determine Γ∗ and P ∗

L,avg. We first consider
case (a) and obtain the optimal solution by assuming it
satisfied the boundary condition, denoted as Γ

(a)
a,i . Since λ2

is associated with constraint C7, and Γa,1 ≥ Γa,2, the
upper boundary condition will always satisfied when we
set λ2 > 0. Similarly, the lower boundary condition will
always be satisfied when we set λ3 > 0. Therefore, the
global optimal solution is obtained from case (b) when Γ

(a)
a,1

is greater than the upper bound, and case (c) when Γ
(a)
a,2 is

smaller than the lower bound. We summarize the problem
(P2) solving steps in Algorithm 1.

Algorithm 1 Optimal reflection coefficient design to maxi-
mize PL,avg.
Input: p1, mth, PL,min and Pa

Output: Γ∗
a,1, Γ∗

a,2, P
∗
L,avg

Set λ1 ̸= 0, λ2 = λ3 = 0,

Γ
(a)
a,1 = 2 (1− p1)mth, Γ(a)

a,2 = −2p1mth

if Γ(a)
a,1 >

√
1− PL,min

Pa
then

Set λ1, λ2 ̸= 0, λ3 = 0,

Γ∗
a,1 =

√
1− PL,min

Pa
, Γ∗

a,2 =
√
1− PL,min

Pa
− 2mth

else if Γ(a)
a,2 < −

√
1− PL,min

Pa
then

Set λ1, λ3 ̸= 0, λ2 = 0,

Γ∗
a,1 = −

√
1− PL,min

Pa
+ 2mth, Γ∗

a,2 = −
√
1− PL,min

Pa

else
Γ∗
a,1 = Γ

(a)
a,1,Γ

∗
a,2 = Γ

(a)
a,2

end

P ∗
L,avg = p1Pa

(
1−

(
Γ∗
a,1

)2)
+(1− p1)Pa

(
1−

(
Γ∗
a,2

)2)

Algorithm 1 requires the system parameters p1, mth,
PL,min and Pa as the input. After that, it generates decision
making process subjected to the conditions derived from
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Using Lemma 2, and assuming Γa,1 ≥ Γa,2 without
any loss of generality, we can reformulate the optimization
problem (P1) into (P2) as defined below:

(P2) : max
Γa,1,Γa,2

PL,avg

subject to C2,

C6 :
Γa,1 − Γa,2

2
≥ mth,

C7 : Pa

(
1− Γ2

a,i

)
≥ PL,min, ∀i = 1, 2.

V. PROPOSED SOLUTION METHODOLOGY

A. Problem Feasibility and Convexity

Before solving problem (P2), we discuss its feasibility
condition with Lemma 3.

Lemma 3 If problem (P2) is feasible, mth ≤
√
1− PL,min

Pa

is always true.

Proof Refer to Appendix B for the proof of Lemma 3.

Next, we discuss the convexity of problem (P2) with
Lemma 4.

Lemma 4 The problem (P2) is a convex problem.

Proof Refer to Appendix C for the proof of Lemma 4.

B. Implementation Detail

We denote the maximum average load power for prob-
lem (P2) as P ∗

L,avg, and the underlying optimal solution

as Γ∗ =
[
Γ∗
a,1,Γ

∗
a,2,Γ

∗
b,1 = 0,Γ∗

b,2 = 0
]
. Since (P2) is

a convex problem, we can claim that the Karush-Kuhn-
Tucker (KKT) point gives the global optimal solution. The
Lagrangian of (P2) is:

L = −p1Pa

(
1− Γ2

a,1

)
− (1− p1)Pa

(
1− Γ2

a,2

)
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Γ2
a,1 − 1 +
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)
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a,2 − 1 +
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)
, (8)

where λ1 represents the Lagrange multipliers associated with
C6, and λ2, λ3 correspond to C7 for i ∈ {1, 2}, respectively.
The KKT point can be found by solving the following
equations.

∂L
∂Γa,1

= 2p1PaΓa,1 −
1

2
λ1 + 2λ2Γa,1 = 0, (9)

∂L
∂Γa,2

= 2 (1− p1)PaΓa,2 +
1
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λ1 + 2λ3Γa,2 = 0, (10)
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)
= 0, (12)

λ3

(
Γ2
a,2 − 1 +

PL,min

Pa

)
= 0. (13)

where (9) and (10) are the sub-gradient conditions, and
(11),(12),(13) are the complementary slackness conditions.
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lem (P2) and determine Γ∗ and P ∗

L,avg. We first consider
case (a) and obtain the optimal solution by assuming it
satisfied the boundary condition, denoted as Γ
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is associated with constraint C7, and Γa,1 ≥ Γa,2, the
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global optimal solution is obtained from case (b) when Γ

(a)
a,1

is greater than the upper bound, and case (c) when Γ
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a,2 is
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Using Lemma 2, and assuming Γa,1 ≥ Γa,2 without
any loss of generality, we can reformulate the optimization
problem (P1) into (P2) as defined below:

(P2) : max
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C6 :
Γa,1 − Γa,2
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≥ mth,

C7 : Pa

(
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≥ PL,min, ∀i = 1, 2.

V. PROPOSED SOLUTION METHODOLOGY
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Before solving problem (P2), we discuss its feasibility
condition with Lemma 3.

Lemma 3 If problem (P2) is feasible, mth ≤
√
1− PL,min

Pa

is always true.

Proof Refer to Appendix B for the proof of Lemma 3.

Next, we discuss the convexity of problem (P2) with
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Lemma 4 The problem (P2) is a convex problem.

Proof Refer to Appendix C for the proof of Lemma 4.
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We denote the maximum average load power for prob-
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L,avg, and the underlying optimal solution

as Γ∗ =
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∗
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constraint C6 is satisfied at equality, which implies λ1 is
always positive. It is noticed that λ2 and λ3 simultaneously
greater than zero only when mth =
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, which

will obtain the same Γ∗ at λ2 ̸= 0. Therefore, the optimal
solution is given by either or both λ2 and λ3 are zero, while
λ1 > 0.

Using Lemma 5, we proposed an algorithm to solve prob-
lem (P2) and determine Γ∗ and P ∗

L,avg. We first consider
case (a) and obtain the optimal solution by assuming it
satisfied the boundary condition, denoted as Γ

(a)
a,i . Since λ2

is associated with constraint C7, and Γa,1 ≥ Γa,2, the
upper boundary condition will always satisfied when we
set λ2 > 0. Similarly, the lower boundary condition will
always be satisfied when we set λ3 > 0. Therefore, the
global optimal solution is obtained from case (b) when Γ
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is greater than the upper bound, and case (c) when Γ
(a)
a,2 is

smaller than the lower bound. We summarize the problem
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backscattered power, and BER. This paper considers the
tag power sensitivity and the BER minimum requirement
as the operation constraints to determine the optimal load
impedances and the maximum average load power.

A. Tag Power Sensitivity

In the BackCom system, the tag remains in sleep mode
and is only activated when enough power and a minimum
threshold voltage are provided. Therefore, PL,i must be
greater than the minimum load power threshold PL,min,
which is the sustainability requirement of the BackCom
system. When PL,i < PL,min, the tag is not activated, and
no information will be generated.

B. Bit Error Rate

The second factor that limits the tag performance is the
BER, which is defined as the number of bits misidentified
by the reader over the total number of transmitted bits at
a given time interval [21]. The probability Pe is the ratio
of bits in error to the total number of bits, which can be
determined by the following equation [22]:

Pe =
1

2
erfc

(
|V1 − V2|
4
√
2 · σ

)

=
1

2
erfc

(
|V0| ·m
2
√
2 · σ

)
, (5)

where Vi is the voltage applied to the reader’s output load
when the tag is connected to ZL,i, and Vi = V0 is when the
tag is operated in perfectly matched condition

(
ZL,i = Z̄A

)
.

The inevitable additive white Gaussian noise nr is assumed
to have zero mean with E{|nr|2} ≜ σ2.The modulation in-
dex m (0 ≤ m ≤ 1) is the characteristic difference between
the backscattered signal bits ‘0’ and ‘1’, and is defined as
below [22]:

m ≜
|Γ1 − Γ2|

2

=

√
(Γa,1 − Γa,2)

2
+ (Γb,1 − Γb,2)

2

2
, (6)

We set ν ≜ |V0|·m
2
√
2·σ , and the complementary error function

erfc (ν) = 1−erf (ν). Given that erf (ν) is the error function,
this implies the higher the m, the lower the BER.

IV. PROBLEM DEFINITION

A. Optimization Formulation

When the tag is activated, it generates signal information
with bits ‘0’ and ‘1’. We denote p1 and p2 (0 ≤ p1, p2 ≤ 1)
as the occurrence probability of bits ‘0’ and ‘1’, respectively,
with p1+p2 = 1. In general, it is not necessary that the bits
‘0’ and ‘1’ have the same occurrence probability. Therefore,
we consider p1 and p2 as application dependent constants,
and the average load power PL,avg is given by:

PL,avg ≜ p1PL,1 + (1− p1)PL,2, (7)

Given the average load power PL,avg as a function of
Γi, we are interested in determining the optimal reflection
coefficient to maximize PL,avg, subjecting to the following

constraints. Constraint C1 defines the domain of the power
reflection coefficient |Γi| ≤ 1, whereas C2 and C3 include
the boundary conditions for Γa,i and Γb,i, respectively. To
meet the minimum BER requirement, the passive tag must
operate with a threshold mth for the modulation index m
as in constraint C4. Furthermore, constraint C5 refers to
the minimum load power threshold PL,min that must be
achieved at each state. Incorporating these constraints, we
maximize the average load power PL,avg, and the corre-
sponding optimization problem (P1) can be defined as:

(P1) :max
Γ

PL,avg

subject to C1 :Γ2
a,i + Γ2

b,i ≤ 1, ∀i = {1, 2},
C2 :Γa,i ∈ [−1, 1] , ∀i = {1, 2},
C3 :Γb,i ∈ [−1, 1] , ∀i = {1, 2},

C4 :

√
(Γa,1 − Γa,2)

2
+ (Γb,1 − Γb,2)

2

2
≥ mth,

C5 :Pa

(
1− Γ2

a,i − Γ2
b,i

)
≥ PL,min, ∀i = {1, 2}.

where Γ ≜ [Γa,1,Γa,2,Γb,1,Γb,2].

Remark 1 The IC chip will consume the power PL,min

to generate the information signal, whereas the remaining
power is delivered to a storage system. The total stored
energy Est = (PL,avg − PL,min)T over the operation
period T is then used for the on-board task during the
non-interrogating period. Therefore, the allowable on-board
tasks depend on PL,avg.

The problem (P1) is a 4-variable optimization problem,
which is then reduced to a 2-variable problem with the
following Lemmas.

Lemma 1 The average load power is maximized when
either Γa,i = 0 or Γb,i = 0.

Proof First, we set Γb,i as a constant and we found that
∂2PL,i

∂Γ2
a,i

= −2Pa, which implies PL,i is a concave function in
Γa,i. Therefore, for a given Γb,i, the maximum load power as
obtained by solving ∂PL,i

∂Γa,i
= 0 is Γa,i = 0. Likewise, we set

Γa,i as a constant and we found that ∂2PL,i

∂Γ2
b,i

= −2Pa, which
implies PL,i is also a concave function in Γb,i. Similarly,
for a given Γa,i, the maximum load power as obtained by
solving ∂PL,i

∂Γb,i
= 0 is Γb,i = 0. Hence, we proved Lemma 1.

Lemma 2 To ensure better receiver sensitivity at the reader
while maximizing the average load power, we have to set
Γb,i = 0 as compared to Γa,i = 0.

Proof Refer to Appendix A for the proof of Lemma 2.

The following remark explains the practical use of Lemma
2 in the tag design.

Remark 2 Since our BackCom system considers ASK mod-
ulation, the backscattered signal of the passive tag is de-
signed to satisfy the phase-equality condition. Accordance
to Lemma 2, we set Xn,i = 0, and Rn,i =

1+Γa,i

1−Γa,i
. The

normalized load impedance plays a key parameter in the
backscatter tag design [20].
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Using Lemma 2, and assuming Γa,1 ≥ Γa,2 without
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√
1− PL,min

Pa

is always true.

Proof Refer to Appendix B for the proof of Lemma 3.

Next, we discuss the convexity of problem (P2) with
Lemma 4.

Lemma 4 The problem (P2) is a convex problem.

Proof Refer to Appendix C for the proof of Lemma 4.
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We denote the maximum average load power for prob-
lem (P2) as P ∗

L,avg, and the underlying optimal solution

as Γ∗ =
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∗
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]
. Since (P2) is
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quently, we discuss the method to determine the KKT point
in Lemma 5.
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Using Lemma 5, we proposed an algorithm to solve prob-
lem (P2) and determine Γ∗ and P ∗

L,avg. We first consider
case (a) and obtain the optimal solution by assuming it
satisfied the boundary condition, denoted as Γ
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a,i . Since λ2
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where λ1 represents the Lagrange multipliers associated with
C6, and λ2, λ3 correspond to C7 for i ∈ {1, 2}, respectively.
The KKT point can be found by solving the following
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where (9) and (10) are the sub-gradient conditions, and
(11),(12),(13) are the complementary slackness conditions.

While solving (9) − (13), we obtain Γ∗ in terms of the
constant parameters, and thereby determine P ∗

L,avg. Subse-
quently, we discuss the method to determine the KKT point
in Lemma 5.
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considering 3 cases, which are case (a) : λ1 ̸= 0, λ2 =
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solution is given by either or both λ2 and λ3 are zero, while
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Using Lemma 5, we proposed an algorithm to solve prob-
lem (P2) and determine Γ∗ and P ∗

L,avg. We first consider
case (a) and obtain the optimal solution by assuming it
satisfied the boundary condition, denoted as Γ

(a)
a,i . Since λ2

is associated with constraint C7, and Γa,1 ≥ Γa,2, the
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a,1

is greater than the upper bound, and case (c) when Γ
(a)
a,2 is

smaller than the lower bound. We summarize the problem
(P2) solving steps in Algorithm 1.
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Fig. 2: Maximum average load power P ∗
L,avg for different probability p1

with mth = 0.5.

Fig. 3: Optimal normalized load resistance R∗
n,i versus probability p1 for

mth = 0.2, 0.5.

Lemma 5. Consequently, we obtain Γ∗ along with the
P ∗
L,avg.

VI. RESULTS AND DISCUSSION

We numerically demonstrate the performance of the opti-
mal results obtained from problem (P2). Unless otherwise
stated, we set Pt = 1W with RF f = 900MHz, λ = 1

3m,
Gt = Gr = 1, PL,min = 10−4.9W, and mth = 0.5.
We consider the tag design in [11]–[13] as the benchmark
to highlight the merits of our optimal design. Hence, we
denote P̄L,avg as the average load power of the benchmark
result, with the underlying load impedances Z̄n,1 = 1 and
Z̄n,2 = 1+2mth

1−2mth
correspond to bits ‘0’ and ‘1’.

A. Impact of Probability p1 on the Optimal Average Load
Power P ∗

L,avg

Here, we investigate the relationship between probability
p1 and P ∗

L,avg with mth = 0.5. Specifically, we plot the
maximum average load power P ∗

L,avg for different values
of p1 and transmission distance d.

In Fig. 2, we notice that the P ∗
L,avg is greater than P̄L,avg

for d = 0.5, 1.0, 1.5, 2.0 m. The proposed optimal maximum
load power achieves an average gain of 22.6% over the
benchmark. However, the gain decreases with p1 because
the benchmark result has the highest allowable average load
power when p1 = 1, and the increases in p1 will approach
this outcome. Hence, as p1 increases, the optimal load
impedances Z∗

n,1 and Z∗
n,2 will approach the benchmark

load selection (see Fig. 3), resulting in P ∗
L,avg approaching

P̄L,avg. Besides, we observe that P ∗
L,avg is increased with

Fig. 4: Maximum average load power P ∗
L,avg for different mth.

Fig. 5: Optimal normalized load resistance R∗
n,i versus mth.

p1. This is because P ∗
L,1 increases, whereas P ∗

L,2 decreases
with p1, resulting in greater P ∗

L,avg. It is also noticed
that P ∗

L,avg increases at a shorter transmission distance d
because the output load power is inversely proportional to d.

Fig.3 gives insight into the optimal load impedance
Z∗
n,i = R∗

n,i + jX∗
n,i for different p1. As the output power

is maximum when Rn,i = 1, we observed that R∗
n,1

approaches 1 as p1 increases, whereas R∗
n,2 approaches 0

to meet the BER requirement. Furthermore, as proved in
Lemma 2, X∗

n,1 = X∗
n,2 = 0. We also noticed that Z∗

n,i

does not vary with d because the transmission range is not
the optimal reflection coefficient variable.

B. Impact of mth on Optimal Average Load Power P ∗
L,avg

The value of mth varies in different applications, which
depends on the BER requirement. Therefore, we study the
maximum average load power P ∗

L,avg for different modula-
tion index thresholds mth at d = 2m. Fig.4 shows P ∗

L,avg

versus mth for p1 = 0.5, 0.6, 0.7 and 0.8, where the optimal
normalized load impedance Z∗

n,i is depicted in Fig.5. Like-
wise, we observed that P ∗

L,avg > P̄L,avg. The average gain
achieved by the proposed optimal result over the benchmark
is 9.9%. It is also noticed that P ∗
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Using Lemma 2, and assuming Γa,1 ≥ Γa,2 without
any loss of generality, we can reformulate the optimization
problem (P1) into (P2) as defined below:

(P2) : max
Γa,1,Γa,2

PL,avg

subject to C2,

C6 :
Γa,1 − Γa,2

2
≥ mth,

C7 : Pa

(
1− Γ2

a,i

)
≥ PL,min, ∀i = 1, 2.

V. PROPOSED SOLUTION METHODOLOGY

A. Problem Feasibility and Convexity

Before solving problem (P2), we discuss its feasibility
condition with Lemma 3.

Lemma 3 If problem (P2) is feasible, mth ≤
√
1− PL,min

Pa

is always true.

Proof Refer to Appendix B for the proof of Lemma 3.

Next, we discuss the convexity of problem (P2) with
Lemma 4.

Lemma 4 The problem (P2) is a convex problem.

Proof Refer to Appendix C for the proof of Lemma 4.

B. Implementation Detail

We denote the maximum average load power for prob-
lem (P2) as P ∗

L,avg, and the underlying optimal solution

as Γ∗ =
[
Γ∗
a,1,Γ

∗
a,2,Γ

∗
b,1 = 0,Γ∗

b,2 = 0
]
. Since (P2) is

a convex problem, we can claim that the Karush-Kuhn-
Tucker (KKT) point gives the global optimal solution. The
Lagrangian of (P2) is:

L = −p1Pa

(
1− Γ2

a,1

)
− (1− p1)Pa

(
1− Γ2

a,2

)

+ λ1

(
mth − Γa,1 − Γa,2

2

)
+ λ2

(
Γ2
a,1 − 1 +

PL,min

Pa

)

+ λ3

(
Γ2
a,2 − 1 +

PL,min

Pa

)
, (8)

where λ1 represents the Lagrange multipliers associated with
C6, and λ2, λ3 correspond to C7 for i ∈ {1, 2}, respectively.
The KKT point can be found by solving the following
equations.

∂L
∂Γa,1

= 2p1PaΓa,1 −
1

2
λ1 + 2λ2Γa,1 = 0, (9)

∂L
∂Γa,2

= 2 (1− p1)PaΓa,2 +
1

2
λ1 + 2λ3Γa,2 = 0, (10)

λ1

(
mth − Γa,1 − Γa,2

2

)
= 0, (11)

λ2

(
Γ2
a,1 − 1 +

PL,min

Pa

)
= 0, (12)

λ3

(
Γ2
a,2 − 1 +

PL,min

Pa

)
= 0. (13)

where (9) and (10) are the sub-gradient conditions, and
(11),(12),(13) are the complementary slackness conditions.

While solving (9) − (13), we obtain Γ∗ in terms of the
constant parameters, and thereby determine P ∗

L,avg. Subse-
quently, we discuss the method to determine the KKT point
in Lemma 5.

Lemma 5 We can obtain the global optimal solution Γ∗ by
considering 3 cases, which are case (a) : λ1 ̸= 0, λ2 =
λ3 = 0, case (b) : λ1, λ2 ̸= 0, λ3 = 0, and case (c) :
λ1, λ3 ̸= 0, λ2 = 0.

Proof Since the objective function is decreasing with Γa,1

and Γa,2, the optimal solution without the constraints will
have Γa,1 = Γa,2 = 0. However, constraint C6 requires
a minimum separation between Γa,1 and Γa,2. Therefore
constraint C6 is satisfied at equality, which implies λ1 is
always positive. It is noticed that λ2 and λ3 simultaneously
greater than zero only when mth =

√
1− PL,min

Pa
, which

will obtain the same Γ∗ at λ2 ̸= 0. Therefore, the optimal
solution is given by either or both λ2 and λ3 are zero, while
λ1 > 0.

Using Lemma 5, we proposed an algorithm to solve prob-
lem (P2) and determine Γ∗ and P ∗

L,avg. We first consider
case (a) and obtain the optimal solution by assuming it
satisfied the boundary condition, denoted as Γ

(a)
a,i . Since λ2

is associated with constraint C7, and Γa,1 ≥ Γa,2, the
upper boundary condition will always satisfied when we
set λ2 > 0. Similarly, the lower boundary condition will
always be satisfied when we set λ3 > 0. Therefore, the
global optimal solution is obtained from case (b) when Γ

(a)
a,1

is greater than the upper bound, and case (c) when Γ
(a)
a,2 is

smaller than the lower bound. We summarize the problem
(P2) solving steps in Algorithm 1.

Algorithm 1 Optimal reflection coefficient design to maxi-
mize PL,avg.
Input: p1, mth, PL,min and Pa

Output: Γ∗
a,1, Γ∗

a,2, P
∗
L,avg

Set λ1 ̸= 0, λ2 = λ3 = 0,

Γ
(a)
a,1 = 2 (1− p1)mth, Γ(a)

a,2 = −2p1mth

if Γ(a)
a,1 >

√
1− PL,min

Pa
then

Set λ1, λ2 ̸= 0, λ3 = 0,

Γ∗
a,1 =

√
1− PL,min

Pa
, Γ∗

a,2 =
√
1− PL,min

Pa
− 2mth

else if Γ(a)
a,2 < −

√
1− PL,min

Pa
then

Set λ1, λ3 ̸= 0, λ2 = 0,

Γ∗
a,1 = −

√
1− PL,min

Pa
+ 2mth, Γ∗

a,2 = −
√
1− PL,min

Pa

else
Γ∗
a,1 = Γ

(a)
a,1,Γ

∗
a,2 = Γ

(a)
a,2

end

P ∗
L,avg = p1Pa

(
1−

(
Γ∗
a,1

)2)
+(1− p1)Pa

(
1−

(
Γ∗
a,2

)2)

Algorithm 1 requires the system parameters p1, mth,
PL,min and Pa as the input. After that, it generates decision
making process subjected to the conditions derived from
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L,2 decreases
with p1, resulting in greater P ∗

L,avg. It is also noticed
that P ∗

L,avg increases at a shorter transmission distance d
because the output load power is inversely proportional to d.

Fig.3 gives insight into the optimal load impedance
Z∗
n,i = R∗

n,i + jX∗
n,i for different p1. As the output power

is maximum when Rn,i = 1, we observed that R∗
n,1

approaches 1 as p1 increases, whereas R∗
n,2 approaches 0

to meet the BER requirement. Furthermore, as proved in
Lemma 2, X∗

n,1 = X∗
n,2 = 0. We also noticed that Z∗

n,i

does not vary with d because the transmission range is not
the optimal reflection coefficient variable.

B. Impact of mth on Optimal Average Load Power P ∗
L,avg

The value of mth varies in different applications, which
depends on the BER requirement. Therefore, we study the
maximum average load power P ∗

L,avg for different modula-
tion index thresholds mth at d = 2m. Fig.4 shows P ∗

L,avg

versus mth for p1 = 0.5, 0.6, 0.7 and 0.8, where the optimal
normalized load impedance Z∗

n,i is depicted in Fig.5. Like-
wise, we observed that P ∗

L,avg > P̄L,avg. The average gain
achieved by the proposed optimal result over the benchmark
is 9.9%. It is also noticed that P ∗

L,avg decreases with mth

due to a greater mismatch degree between the backscattered
signals, as shown in Fig.5.
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Using Lemma 2, and assuming Γa,1 ≥ Γa,2 without
any loss of generality, we can reformulate the optimization
problem (P1) into (P2) as defined below:

(P2) : max
Γa,1,Γa,2

PL,avg

subject to C2,

C6 :
Γa,1 − Γa,2

2
≥ mth,

C7 : Pa

(
1− Γ2

a,i

)
≥ PL,min, ∀i = 1, 2.

V. PROPOSED SOLUTION METHODOLOGY

A. Problem Feasibility and Convexity

Before solving problem (P2), we discuss its feasibility
condition with Lemma 3.

Lemma 3 If problem (P2) is feasible, mth ≤
√
1− PL,min

Pa

is always true.

Proof Refer to Appendix B for the proof of Lemma 3.

Next, we discuss the convexity of problem (P2) with
Lemma 4.

Lemma 4 The problem (P2) is a convex problem.

Proof Refer to Appendix C for the proof of Lemma 4.

B. Implementation Detail

We denote the maximum average load power for prob-
lem (P2) as P ∗

L,avg, and the underlying optimal solution

as Γ∗ =
[
Γ∗
a,1,Γ

∗
a,2,Γ

∗
b,1 = 0,Γ∗

b,2 = 0
]
. Since (P2) is

a convex problem, we can claim that the Karush-Kuhn-
Tucker (KKT) point gives the global optimal solution. The
Lagrangian of (P2) is:

L = −p1Pa

(
1− Γ2

a,1

)
− (1− p1)Pa

(
1− Γ2

a,2

)
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(
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a,1 − 1 +
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)
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(
Γ2
a,2 − 1 +
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)
, (8)

where λ1 represents the Lagrange multipliers associated with
C6, and λ2, λ3 correspond to C7 for i ∈ {1, 2}, respectively.
The KKT point can be found by solving the following
equations.

∂L
∂Γa,1

= 2p1PaΓa,1 −
1

2
λ1 + 2λ2Γa,1 = 0, (9)

∂L
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= 2 (1− p1)PaΓa,2 +
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2
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= 0, (12)

λ3

(
Γ2
a,2 − 1 +
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Pa

)
= 0. (13)

where (9) and (10) are the sub-gradient conditions, and
(11),(12),(13) are the complementary slackness conditions.

While solving (9) − (13), we obtain Γ∗ in terms of the
constant parameters, and thereby determine P ∗

L,avg. Subse-
quently, we discuss the method to determine the KKT point
in Lemma 5.

Lemma 5 We can obtain the global optimal solution Γ∗ by
considering 3 cases, which are case (a) : λ1 ̸= 0, λ2 =
λ3 = 0, case (b) : λ1, λ2 ̸= 0, λ3 = 0, and case (c) :
λ1, λ3 ̸= 0, λ2 = 0.

Proof Since the objective function is decreasing with Γa,1

and Γa,2, the optimal solution without the constraints will
have Γa,1 = Γa,2 = 0. However, constraint C6 requires
a minimum separation between Γa,1 and Γa,2. Therefore
constraint C6 is satisfied at equality, which implies λ1 is
always positive. It is noticed that λ2 and λ3 simultaneously
greater than zero only when mth =

√
1− PL,min

Pa
, which

will obtain the same Γ∗ at λ2 ̸= 0. Therefore, the optimal
solution is given by either or both λ2 and λ3 are zero, while
λ1 > 0.

Using Lemma 5, we proposed an algorithm to solve prob-
lem (P2) and determine Γ∗ and P ∗

L,avg. We first consider
case (a) and obtain the optimal solution by assuming it
satisfied the boundary condition, denoted as Γ

(a)
a,i . Since λ2

is associated with constraint C7, and Γa,1 ≥ Γa,2, the
upper boundary condition will always satisfied when we
set λ2 > 0. Similarly, the lower boundary condition will
always be satisfied when we set λ3 > 0. Therefore, the
global optimal solution is obtained from case (b) when Γ

(a)
a,1

is greater than the upper bound, and case (c) when Γ
(a)
a,2 is

smaller than the lower bound. We summarize the problem
(P2) solving steps in Algorithm 1.

Algorithm 1 Optimal reflection coefficient design to maxi-
mize PL,avg.
Input: p1, mth, PL,min and Pa

Output: Γ∗
a,1, Γ∗

a,2, P
∗
L,avg

Set λ1 ̸= 0, λ2 = λ3 = 0,
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a,2 = −2p1mth

if Γ(a)
a,1 >

√
1− PL,min

Pa
then

Set λ1, λ2 ̸= 0, λ3 = 0,

Γ∗
a,1 =

√
1− PL,min

Pa
, Γ∗

a,2 =
√
1− PL,min

Pa
− 2mth

else if Γ(a)
a,2 < −

√
1− PL,min

Pa
then

Set λ1, λ3 ̸= 0, λ2 = 0,

Γ∗
a,1 = −

√
1− PL,min

Pa
+ 2mth, Γ∗

a,2 = −
√
1− PL,min

Pa

else
Γ∗
a,1 = Γ

(a)
a,1,Γ

∗
a,2 = Γ

(a)
a,2

end

P ∗
L,avg = p1Pa

(
1−

(
Γ∗
a,1

)2)
+(1− p1)Pa

(
1−

(
Γ∗
a,2

)2)

Algorithm 1 requires the system parameters p1, mth,
PL,min and Pa as the input. After that, it generates decision
making process subjected to the conditions derived from

5

Fig. 2: Maximum average load power P ∗
L,avg for different probability p1

with mth = 0.5.

Fig. 3: Optimal normalized load resistance R∗
n,i versus probability p1 for

mth = 0.2, 0.5.

Lemma 5. Consequently, we obtain Γ∗ along with the
P ∗
L,avg.

VI. RESULTS AND DISCUSSION

We numerically demonstrate the performance of the opti-
mal results obtained from problem (P2). Unless otherwise
stated, we set Pt = 1W with RF f = 900MHz, λ = 1

3m,
Gt = Gr = 1, PL,min = 10−4.9W, and mth = 0.5.
We consider the tag design in [11]–[13] as the benchmark
to highlight the merits of our optimal design. Hence, we
denote P̄L,avg as the average load power of the benchmark
result, with the underlying load impedances Z̄n,1 = 1 and
Z̄n,2 = 1+2mth

1−2mth
correspond to bits ‘0’ and ‘1’.

A. Impact of Probability p1 on the Optimal Average Load
Power P ∗

L,avg

Here, we investigate the relationship between probability
p1 and P ∗

L,avg with mth = 0.5. Specifically, we plot the
maximum average load power P ∗

L,avg for different values
of p1 and transmission distance d.

In Fig. 2, we notice that the P ∗
L,avg is greater than P̄L,avg

for d = 0.5, 1.0, 1.5, 2.0 m. The proposed optimal maximum
load power achieves an average gain of 22.6% over the
benchmark. However, the gain decreases with p1 because
the benchmark result has the highest allowable average load
power when p1 = 1, and the increases in p1 will approach
this outcome. Hence, as p1 increases, the optimal load
impedances Z∗

n,1 and Z∗
n,2 will approach the benchmark

load selection (see Fig. 3), resulting in P ∗
L,avg approaching

P̄L,avg. Besides, we observe that P ∗
L,avg is increased with

Fig. 4: Maximum average load power P ∗
L,avg for different mth.

Fig. 5: Optimal normalized load resistance R∗
n,i versus mth.

p1. This is because P ∗
L,1 increases, whereas P ∗

L,2 decreases
with p1, resulting in greater P ∗

L,avg. It is also noticed
that P ∗

L,avg increases at a shorter transmission distance d
because the output load power is inversely proportional to d.

Fig.3 gives insight into the optimal load impedance
Z∗
n,i = R∗

n,i + jX∗
n,i for different p1. As the output power

is maximum when Rn,i = 1, we observed that R∗
n,1

approaches 1 as p1 increases, whereas R∗
n,2 approaches 0

to meet the BER requirement. Furthermore, as proved in
Lemma 2, X∗

n,1 = X∗
n,2 = 0. We also noticed that Z∗

n,i

does not vary with d because the transmission range is not
the optimal reflection coefficient variable.

B. Impact of mth on Optimal Average Load Power P ∗
L,avg

The value of mth varies in different applications, which
depends on the BER requirement. Therefore, we study the
maximum average load power P ∗

L,avg for different modula-
tion index thresholds mth at d = 2m. Fig.4 shows P ∗

L,avg

versus mth for p1 = 0.5, 0.6, 0.7 and 0.8, where the optimal
normalized load impedance Z∗

n,i is depicted in Fig.5. Like-
wise, we observed that P ∗

L,avg > P̄L,avg. The average gain
achieved by the proposed optimal result over the benchmark
is 9.9%. It is also noticed that P ∗

L,avg decreases with mth

due to a greater mismatch degree between the backscattered
signals, as shown in Fig.5.

VII. CONCLUSION

This paper aimed to maximize the average load power of
the RFID passive tag with the optimal reflection coefficients
while meeting the tag sensitivity and BER constraints. We
transformed the original 4 variables problem into 2 variables
convex optimization problem, and obtained the closed-form

5

Fig. 2: Maximum average load power P ∗
L,avg for different probability p1

with mth = 0.5.

Fig. 3: Optimal normalized load resistance R∗
n,i versus probability p1 for

mth = 0.2, 0.5.

Lemma 5. Consequently, we obtain Γ∗ along with the
P ∗
L,avg.

VI. RESULTS AND DISCUSSION

We numerically demonstrate the performance of the opti-
mal results obtained from problem (P2). Unless otherwise
stated, we set Pt = 1W with RF f = 900MHz, λ = 1

3m,
Gt = Gr = 1, PL,min = 10−4.9W, and mth = 0.5.
We consider the tag design in [11]–[13] as the benchmark
to highlight the merits of our optimal design. Hence, we
denote P̄L,avg as the average load power of the benchmark
result, with the underlying load impedances Z̄n,1 = 1 and
Z̄n,2 = 1+2mth

1−2mth
correspond to bits ‘0’ and ‘1’.

A. Impact of Probability p1 on the Optimal Average Load
Power P ∗

L,avg

Here, we investigate the relationship between probability
p1 and P ∗

L,avg with mth = 0.5. Specifically, we plot the
maximum average load power P ∗

L,avg for different values
of p1 and transmission distance d.

In Fig. 2, we notice that the P ∗
L,avg is greater than P̄L,avg

for d = 0.5, 1.0, 1.5, 2.0 m. The proposed optimal maximum
load power achieves an average gain of 22.6% over the
benchmark. However, the gain decreases with p1 because
the benchmark result has the highest allowable average load
power when p1 = 1, and the increases in p1 will approach
this outcome. Hence, as p1 increases, the optimal load
impedances Z∗

n,1 and Z∗
n,2 will approach the benchmark

load selection (see Fig. 3), resulting in P ∗
L,avg approaching

P̄L,avg. Besides, we observe that P ∗
L,avg is increased with

Fig. 4: Maximum average load power P ∗
L,avg for different mth.

Fig. 5: Optimal normalized load resistance R∗
n,i versus mth.

p1. This is because P ∗
L,1 increases, whereas P ∗

L,2 decreases
with p1, resulting in greater P ∗

L,avg. It is also noticed
that P ∗

L,avg increases at a shorter transmission distance d
because the output load power is inversely proportional to d.

Fig.3 gives insight into the optimal load impedance
Z∗
n,i = R∗

n,i + jX∗
n,i for different p1. As the output power

is maximum when Rn,i = 1, we observed that R∗
n,1

approaches 1 as p1 increases, whereas R∗
n,2 approaches 0

to meet the BER requirement. Furthermore, as proved in
Lemma 2, X∗

n,1 = X∗
n,2 = 0. We also noticed that Z∗

n,i

does not vary with d because the transmission range is not
the optimal reflection coefficient variable.

B. Impact of mth on Optimal Average Load Power P ∗
L,avg

The value of mth varies in different applications, which
depends on the BER requirement. Therefore, we study the
maximum average load power P ∗

L,avg for different modula-
tion index thresholds mth at d = 2m. Fig.4 shows P ∗

L,avg

versus mth for p1 = 0.5, 0.6, 0.7 and 0.8, where the optimal
normalized load impedance Z∗

n,i is depicted in Fig.5. Like-
wise, we observed that P ∗

L,avg > P̄L,avg. The average gain
achieved by the proposed optimal result over the benchmark
is 9.9%. It is also noticed that P ∗

L,avg decreases with mth

due to a greater mismatch degree between the backscattered
signals, as shown in Fig.5.

VII. CONCLUSION

This paper aimed to maximize the average load power of
the RFID passive tag with the optimal reflection coefficients
while meeting the tag sensitivity and BER constraints. We
transformed the original 4 variables problem into 2 variables
convex optimization problem, and obtained the closed-form

5

Fig. 2: Maximum average load power P ∗
L,avg for different probability p1

with mth = 0.5.

Fig. 3: Optimal normalized load resistance R∗
n,i versus probability p1 for

mth = 0.2, 0.5.

Lemma 5. Consequently, we obtain Γ∗ along with the
P ∗
L,avg.

VI. RESULTS AND DISCUSSION

We numerically demonstrate the performance of the opti-
mal results obtained from problem (P2). Unless otherwise
stated, we set Pt = 1W with RF f = 900MHz, λ = 1

3m,
Gt = Gr = 1, PL,min = 10−4.9W, and mth = 0.5.
We consider the tag design in [11]–[13] as the benchmark
to highlight the merits of our optimal design. Hence, we
denote P̄L,avg as the average load power of the benchmark
result, with the underlying load impedances Z̄n,1 = 1 and
Z̄n,2 = 1+2mth

1−2mth
correspond to bits ‘0’ and ‘1’.

A. Impact of Probability p1 on the Optimal Average Load
Power P ∗

L,avg

Here, we investigate the relationship between probability
p1 and P ∗

L,avg with mth = 0.5. Specifically, we plot the
maximum average load power P ∗

L,avg for different values
of p1 and transmission distance d.

In Fig. 2, we notice that the P ∗
L,avg is greater than P̄L,avg

for d = 0.5, 1.0, 1.5, 2.0 m. The proposed optimal maximum
load power achieves an average gain of 22.6% over the
benchmark. However, the gain decreases with p1 because
the benchmark result has the highest allowable average load
power when p1 = 1, and the increases in p1 will approach
this outcome. Hence, as p1 increases, the optimal load
impedances Z∗

n,1 and Z∗
n,2 will approach the benchmark

load selection (see Fig. 3), resulting in P ∗
L,avg approaching

P̄L,avg. Besides, we observe that P ∗
L,avg is increased with

Fig. 4: Maximum average load power P ∗
L,avg for different mth.

Fig. 5: Optimal normalized load resistance R∗
n,i versus mth.

p1. This is because P ∗
L,1 increases, whereas P ∗

L,2 decreases
with p1, resulting in greater P ∗

L,avg. It is also noticed
that P ∗

L,avg increases at a shorter transmission distance d
because the output load power is inversely proportional to d.

Fig.3 gives insight into the optimal load impedance
Z∗
n,i = R∗

n,i + jX∗
n,i for different p1. As the output power

is maximum when Rn,i = 1, we observed that R∗
n,1

approaches 1 as p1 increases, whereas R∗
n,2 approaches 0

to meet the BER requirement. Furthermore, as proved in
Lemma 2, X∗

n,1 = X∗
n,2 = 0. We also noticed that Z∗

n,i

does not vary with d because the transmission range is not
the optimal reflection coefficient variable.

B. Impact of mth on Optimal Average Load Power P ∗
L,avg

The value of mth varies in different applications, which
depends on the BER requirement. Therefore, we study the
maximum average load power P ∗

L,avg for different modula-
tion index thresholds mth at d = 2m. Fig.4 shows P ∗

L,avg

versus mth for p1 = 0.5, 0.6, 0.7 and 0.8, where the optimal
normalized load impedance Z∗

n,i is depicted in Fig.5. Like-
wise, we observed that P ∗

L,avg > P̄L,avg. The average gain
achieved by the proposed optimal result over the benchmark
is 9.9%. It is also noticed that P ∗

L,avg decreases with mth

due to a greater mismatch degree between the backscattered
signals, as shown in Fig.5.

VII. CONCLUSION

This paper aimed to maximize the average load power of
the RFID passive tag with the optimal reflection coefficients
while meeting the tag sensitivity and BER constraints. We
transformed the original 4 variables problem into 2 variables
convex optimization problem, and obtained the closed-form

5

Fig. 2: Maximum average load power P ∗
L,avg for different probability p1

with mth = 0.5.

Fig. 3: Optimal normalized load resistance R∗
n,i versus probability p1 for

mth = 0.2, 0.5.

Lemma 5. Consequently, we obtain Γ∗ along with the
P ∗
L,avg.

VI. RESULTS AND DISCUSSION

We numerically demonstrate the performance of the opti-
mal results obtained from problem (P2). Unless otherwise
stated, we set Pt = 1W with RF f = 900MHz, λ = 1

3m,
Gt = Gr = 1, PL,min = 10−4.9W, and mth = 0.5.
We consider the tag design in [11]–[13] as the benchmark
to highlight the merits of our optimal design. Hence, we
denote P̄L,avg as the average load power of the benchmark
result, with the underlying load impedances Z̄n,1 = 1 and
Z̄n,2 = 1+2mth

1−2mth
correspond to bits ‘0’ and ‘1’.

A. Impact of Probability p1 on the Optimal Average Load
Power P ∗

L,avg

Here, we investigate the relationship between probability
p1 and P ∗

L,avg with mth = 0.5. Specifically, we plot the
maximum average load power P ∗

L,avg for different values
of p1 and transmission distance d.

In Fig. 2, we notice that the P ∗
L,avg is greater than P̄L,avg

for d = 0.5, 1.0, 1.5, 2.0 m. The proposed optimal maximum
load power achieves an average gain of 22.6% over the
benchmark. However, the gain decreases with p1 because
the benchmark result has the highest allowable average load
power when p1 = 1, and the increases in p1 will approach
this outcome. Hence, as p1 increases, the optimal load
impedances Z∗

n,1 and Z∗
n,2 will approach the benchmark

load selection (see Fig. 3), resulting in P ∗
L,avg approaching

P̄L,avg. Besides, we observe that P ∗
L,avg is increased with

Fig. 4: Maximum average load power P ∗
L,avg for different mth.

Fig. 5: Optimal normalized load resistance R∗
n,i versus mth.

p1. This is because P ∗
L,1 increases, whereas P ∗

L,2 decreases
with p1, resulting in greater P ∗

L,avg. It is also noticed
that P ∗

L,avg increases at a shorter transmission distance d
because the output load power is inversely proportional to d.

Fig.3 gives insight into the optimal load impedance
Z∗
n,i = R∗

n,i + jX∗
n,i for different p1. As the output power

is maximum when Rn,i = 1, we observed that R∗
n,1

approaches 1 as p1 increases, whereas R∗
n,2 approaches 0

to meet the BER requirement. Furthermore, as proved in
Lemma 2, X∗

n,1 = X∗
n,2 = 0. We also noticed that Z∗

n,i

does not vary with d because the transmission range is not
the optimal reflection coefficient variable.

B. Impact of mth on Optimal Average Load Power P ∗
L,avg

The value of mth varies in different applications, which
depends on the BER requirement. Therefore, we study the
maximum average load power P ∗

L,avg for different modula-
tion index thresholds mth at d = 2m. Fig.4 shows P ∗

L,avg

versus mth for p1 = 0.5, 0.6, 0.7 and 0.8, where the optimal
normalized load impedance Z∗

n,i is depicted in Fig.5. Like-
wise, we observed that P ∗

L,avg > P̄L,avg. The average gain
achieved by the proposed optimal result over the benchmark
is 9.9%. It is also noticed that P ∗

L,avg decreases with mth

due to a greater mismatch degree between the backscattered
signals, as shown in Fig.5.

VII. CONCLUSION

This paper aimed to maximize the average load power of
the RFID passive tag with the optimal reflection coefficients
while meeting the tag sensitivity and BER constraints. We
transformed the original 4 variables problem into 2 variables
convex optimization problem, and obtained the closed-form

Fig. 2: Maximum average load power P *L;avg for different probability p1  
with mth = 0.5.

Fig. 3: Optimal normalized load resistance R*n;i versus probability p1  
for mth = 0.2, 0.5.

Fig. 5: Optimal normalized load resistance R*n;i versus mth.

Fig. 4: Maximum average load power P *L;avg for different mth.

5

Fig. 2: Maximum average load power P ∗
L,avg for different probability p1

with mth = 0.5.

Fig. 3: Optimal normalized load resistance R∗
n,i versus probability p1 for

mth = 0.2, 0.5.

Lemma 5. Consequently, we obtain Γ∗ along with the
P ∗
L,avg.

VI. RESULTS AND DISCUSSION

We numerically demonstrate the performance of the opti-
mal results obtained from problem (P2). Unless otherwise
stated, we set Pt = 1W with RF f = 900MHz, λ = 1

3m,
Gt = Gr = 1, PL,min = 10−4.9W, and mth = 0.5.
We consider the tag design in [11]–[13] as the benchmark
to highlight the merits of our optimal design. Hence, we
denote P̄L,avg as the average load power of the benchmark
result, with the underlying load impedances Z̄n,1 = 1 and
Z̄n,2 = 1+2mth

1−2mth
correspond to bits ‘0’ and ‘1’.

A. Impact of Probability p1 on the Optimal Average Load
Power P ∗

L,avg

Here, we investigate the relationship between probability
p1 and P ∗

L,avg with mth = 0.5. Specifically, we plot the
maximum average load power P ∗

L,avg for different values
of p1 and transmission distance d.

In Fig. 2, we notice that the P ∗
L,avg is greater than P̄L,avg

for d = 0.5, 1.0, 1.5, 2.0 m. The proposed optimal maximum
load power achieves an average gain of 22.6% over the
benchmark. However, the gain decreases with p1 because
the benchmark result has the highest allowable average load
power when p1 = 1, and the increases in p1 will approach
this outcome. Hence, as p1 increases, the optimal load
impedances Z∗

n,1 and Z∗
n,2 will approach the benchmark

load selection (see Fig. 3), resulting in P ∗
L,avg approaching

P̄L,avg. Besides, we observe that P ∗
L,avg is increased with

Fig. 4: Maximum average load power P ∗
L,avg for different mth.

Fig. 5: Optimal normalized load resistance R∗
n,i versus mth.

p1. This is because P ∗
L,1 increases, whereas P ∗

L,2 decreases
with p1, resulting in greater P ∗

L,avg. It is also noticed
that P ∗

L,avg increases at a shorter transmission distance d
because the output load power is inversely proportional to d.

Fig.3 gives insight into the optimal load impedance
Z∗
n,i = R∗

n,i + jX∗
n,i for different p1. As the output power

is maximum when Rn,i = 1, we observed that R∗
n,1

approaches 1 as p1 increases, whereas R∗
n,2 approaches 0

to meet the BER requirement. Furthermore, as proved in
Lemma 2, X∗

n,1 = X∗
n,2 = 0. We also noticed that Z∗

n,i

does not vary with d because the transmission range is not
the optimal reflection coefficient variable.

B. Impact of mth on Optimal Average Load Power P ∗
L,avg

The value of mth varies in different applications, which
depends on the BER requirement. Therefore, we study the
maximum average load power P ∗

L,avg for different modula-
tion index thresholds mth at d = 2m. Fig.4 shows P ∗

L,avg

versus mth for p1 = 0.5, 0.6, 0.7 and 0.8, where the optimal
normalized load impedance Z∗

n,i is depicted in Fig.5. Like-
wise, we observed that P ∗

L,avg > P̄L,avg. The average gain
achieved by the proposed optimal result over the benchmark
is 9.9%. It is also noticed that P ∗

L,avg decreases with mth

due to a greater mismatch degree between the backscattered
signals, as shown in Fig.5.

VII. CONCLUSION

This paper aimed to maximize the average load power of
the RFID passive tag with the optimal reflection coefficients
while meeting the tag sensitivity and BER constraints. We
transformed the original 4 variables problem into 2 variables
convex optimization problem, and obtained the closed-form

5

Fig. 2: Maximum average load power P ∗
L,avg for different probability p1

with mth = 0.5.

Fig. 3: Optimal normalized load resistance R∗
n,i versus probability p1 for

mth = 0.2, 0.5.

Lemma 5. Consequently, we obtain Γ∗ along with the
P ∗
L,avg.

VI. RESULTS AND DISCUSSION

We numerically demonstrate the performance of the opti-
mal results obtained from problem (P2). Unless otherwise
stated, we set Pt = 1W with RF f = 900MHz, λ = 1

3m,
Gt = Gr = 1, PL,min = 10−4.9W, and mth = 0.5.
We consider the tag design in [11]–[13] as the benchmark
to highlight the merits of our optimal design. Hence, we
denote P̄L,avg as the average load power of the benchmark
result, with the underlying load impedances Z̄n,1 = 1 and
Z̄n,2 = 1+2mth

1−2mth
correspond to bits ‘0’ and ‘1’.

A. Impact of Probability p1 on the Optimal Average Load
Power P ∗

L,avg

Here, we investigate the relationship between probability
p1 and P ∗

L,avg with mth = 0.5. Specifically, we plot the
maximum average load power P ∗

L,avg for different values
of p1 and transmission distance d.

In Fig. 2, we notice that the P ∗
L,avg is greater than P̄L,avg

for d = 0.5, 1.0, 1.5, 2.0 m. The proposed optimal maximum
load power achieves an average gain of 22.6% over the
benchmark. However, the gain decreases with p1 because
the benchmark result has the highest allowable average load
power when p1 = 1, and the increases in p1 will approach
this outcome. Hence, as p1 increases, the optimal load
impedances Z∗

n,1 and Z∗
n,2 will approach the benchmark

load selection (see Fig. 3), resulting in P ∗
L,avg approaching

P̄L,avg. Besides, we observe that P ∗
L,avg is increased with

Fig. 4: Maximum average load power P ∗
L,avg for different mth.

Fig. 5: Optimal normalized load resistance R∗
n,i versus mth.

p1. This is because P ∗
L,1 increases, whereas P ∗

L,2 decreases
with p1, resulting in greater P ∗

L,avg. It is also noticed
that P ∗

L,avg increases at a shorter transmission distance d
because the output load power is inversely proportional to d.

Fig.3 gives insight into the optimal load impedance
Z∗
n,i = R∗

n,i + jX∗
n,i for different p1. As the output power

is maximum when Rn,i = 1, we observed that R∗
n,1

approaches 1 as p1 increases, whereas R∗
n,2 approaches 0

to meet the BER requirement. Furthermore, as proved in
Lemma 2, X∗

n,1 = X∗
n,2 = 0. We also noticed that Z∗

n,i

does not vary with d because the transmission range is not
the optimal reflection coefficient variable.

B. Impact of mth on Optimal Average Load Power P ∗
L,avg

The value of mth varies in different applications, which
depends on the BER requirement. Therefore, we study the
maximum average load power P ∗

L,avg for different modula-
tion index thresholds mth at d = 2m. Fig.4 shows P ∗

L,avg

versus mth for p1 = 0.5, 0.6, 0.7 and 0.8, where the optimal
normalized load impedance Z∗

n,i is depicted in Fig.5. Like-
wise, we observed that P ∗

L,avg > P̄L,avg. The average gain
achieved by the proposed optimal result over the benchmark
is 9.9%. It is also noticed that P ∗

L,avg decreases with mth

due to a greater mismatch degree between the backscattered
signals, as shown in Fig.5.

VII. CONCLUSION

This paper aimed to maximize the average load power of
the RFID passive tag with the optimal reflection coefficients
while meeting the tag sensitivity and BER constraints. We
transformed the original 4 variables problem into 2 variables
convex optimization problem, and obtained the closed-form

4

Using Lemma 2, and assuming Γa,1 ≥ Γa,2 without
any loss of generality, we can reformulate the optimization
problem (P1) into (P2) as defined below:

(P2) : max
Γa,1,Γa,2

PL,avg

subject to C2,

C6 :
Γa,1 − Γa,2

2
≥ mth,

C7 : Pa

(
1− Γ2

a,i

)
≥ PL,min, ∀i = 1, 2.

V. PROPOSED SOLUTION METHODOLOGY

A. Problem Feasibility and Convexity

Before solving problem (P2), we discuss its feasibility
condition with Lemma 3.

Lemma 3 If problem (P2) is feasible, mth ≤
√
1− PL,min

Pa

is always true.

Proof Refer to Appendix B for the proof of Lemma 3.

Next, we discuss the convexity of problem (P2) with
Lemma 4.

Lemma 4 The problem (P2) is a convex problem.

Proof Refer to Appendix C for the proof of Lemma 4.

B. Implementation Detail

We denote the maximum average load power for prob-
lem (P2) as P ∗

L,avg, and the underlying optimal solution

as Γ∗ =
[
Γ∗
a,1,Γ

∗
a,2,Γ

∗
b,1 = 0,Γ∗

b,2 = 0
]
. Since (P2) is

a convex problem, we can claim that the Karush-Kuhn-
Tucker (KKT) point gives the global optimal solution. The
Lagrangian of (P2) is:

L = −p1Pa

(
1− Γ2

a,1

)
− (1− p1)Pa

(
1− Γ2

a,2

)

+ λ1

(
mth − Γa,1 − Γa,2

2

)
+ λ2

(
Γ2
a,1 − 1 +

PL,min

Pa

)

+ λ3

(
Γ2
a,2 − 1 +

PL,min

Pa

)
, (8)

where λ1 represents the Lagrange multipliers associated with
C6, and λ2, λ3 correspond to C7 for i ∈ {1, 2}, respectively.
The KKT point can be found by solving the following
equations.

∂L
∂Γa,1

= 2p1PaΓa,1 −
1

2
λ1 + 2λ2Γa,1 = 0, (9)

∂L
∂Γa,2

= 2 (1− p1)PaΓa,2 +
1

2
λ1 + 2λ3Γa,2 = 0, (10)

λ1

(
mth − Γa,1 − Γa,2

2

)
= 0, (11)

λ2

(
Γ2
a,1 − 1 +

PL,min

Pa

)
= 0, (12)

λ3

(
Γ2
a,2 − 1 +

PL,min

Pa

)
= 0. (13)

where (9) and (10) are the sub-gradient conditions, and
(11),(12),(13) are the complementary slackness conditions.

While solving (9) − (13), we obtain Γ∗ in terms of the
constant parameters, and thereby determine P ∗

L,avg. Subse-
quently, we discuss the method to determine the KKT point
in Lemma 5.

Lemma 5 We can obtain the global optimal solution Γ∗ by
considering 3 cases, which are case (a) : λ1 ̸= 0, λ2 =
λ3 = 0, case (b) : λ1, λ2 ̸= 0, λ3 = 0, and case (c) :
λ1, λ3 ̸= 0, λ2 = 0.

Proof Since the objective function is decreasing with Γa,1

and Γa,2, the optimal solution without the constraints will
have Γa,1 = Γa,2 = 0. However, constraint C6 requires
a minimum separation between Γa,1 and Γa,2. Therefore
constraint C6 is satisfied at equality, which implies λ1 is
always positive. It is noticed that λ2 and λ3 simultaneously
greater than zero only when mth =

√
1− PL,min

Pa
, which

will obtain the same Γ∗ at λ2 ̸= 0. Therefore, the optimal
solution is given by either or both λ2 and λ3 are zero, while
λ1 > 0.

Using Lemma 5, we proposed an algorithm to solve prob-
lem (P2) and determine Γ∗ and P ∗

L,avg. We first consider
case (a) and obtain the optimal solution by assuming it
satisfied the boundary condition, denoted as Γ

(a)
a,i . Since λ2

is associated with constraint C7, and Γa,1 ≥ Γa,2, the
upper boundary condition will always satisfied when we
set λ2 > 0. Similarly, the lower boundary condition will
always be satisfied when we set λ3 > 0. Therefore, the
global optimal solution is obtained from case (b) when Γ

(a)
a,1

is greater than the upper bound, and case (c) when Γ
(a)
a,2 is

smaller than the lower bound. We summarize the problem
(P2) solving steps in Algorithm 1.

Algorithm 1 Optimal reflection coefficient design to maxi-
mize PL,avg.
Input: p1, mth, PL,min and Pa

Output: Γ∗
a,1, Γ∗

a,2, P
∗
L,avg

Set λ1 ̸= 0, λ2 = λ3 = 0,

Γ
(a)
a,1 = 2 (1− p1)mth, Γ(a)

a,2 = −2p1mth

if Γ(a)
a,1 >

√
1− PL,min

Pa
then

Set λ1, λ2 ̸= 0, λ3 = 0,

Γ∗
a,1 =

√
1− PL,min

Pa
, Γ∗

a,2 =
√
1− PL,min

Pa
− 2mth

else if Γ(a)
a,2 < −

√
1− PL,min

Pa
then

Set λ1, λ3 ̸= 0, λ2 = 0,

Γ∗
a,1 = −

√
1− PL,min

Pa
+ 2mth, Γ∗

a,2 = −
√
1− PL,min

Pa

else
Γ∗
a,1 = Γ

(a)
a,1,Γ

∗
a,2 = Γ

(a)
a,2

end

P ∗
L,avg = p1Pa

(
1−

(
Γ∗
a,1

)2)
+(1− p1)Pa

(
1−

(
Γ∗
a,2

)2)

Algorithm 1 requires the system parameters p1, mth,
PL,min and Pa as the input. After that, it generates decision
making process subjected to the conditions derived from
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(P2) : max
Γa,1,Γa,2

PL,avg

subject to C2,

C6 :
Γa,1 − Γa,2

2
≥ mth,

C7 : Pa

(
1− Γ2

a,i

)
≥ PL,min, ∀i = 1, 2.

V. PROPOSED SOLUTION METHODOLOGY

A. Problem Feasibility and Convexity

Before solving problem (P2), we discuss its feasibility
condition with Lemma 3.

Lemma 3 If problem (P2) is feasible, mth ≤
√
1− PL,min

Pa

is always true.

Proof Refer to Appendix B for the proof of Lemma 3.

Next, we discuss the convexity of problem (P2) with
Lemma 4.

Lemma 4 The problem (P2) is a convex problem.

Proof Refer to Appendix C for the proof of Lemma 4.

B. Implementation Detail

We denote the maximum average load power for prob-
lem (P2) as P ∗

L,avg, and the underlying optimal solution

as Γ∗ =
[
Γ∗
a,1,Γ

∗
a,2,Γ

∗
b,1 = 0,Γ∗

b,2 = 0
]
. Since (P2) is

a convex problem, we can claim that the Karush-Kuhn-
Tucker (KKT) point gives the global optimal solution. The
Lagrangian of (P2) is:

L = −p1Pa

(
1− Γ2

a,1

)
− (1− p1)Pa

(
1− Γ2

a,2

)

+ λ1

(
mth − Γa,1 − Γa,2

2

)
+ λ2

(
Γ2
a,1 − 1 +

PL,min

Pa

)

+ λ3

(
Γ2
a,2 − 1 +

PL,min

Pa

)
, (8)

where λ1 represents the Lagrange multipliers associated with
C6, and λ2, λ3 correspond to C7 for i ∈ {1, 2}, respectively.
The KKT point can be found by solving the following
equations.

∂L
∂Γa,1

= 2p1PaΓa,1 −
1

2
λ1 + 2λ2Γa,1 = 0, (9)

∂L
∂Γa,2

= 2 (1− p1)PaΓa,2 +
1

2
λ1 + 2λ3Γa,2 = 0, (10)

λ1

(
mth − Γa,1 − Γa,2

2

)
= 0, (11)

λ2

(
Γ2
a,1 − 1 +

PL,min

Pa

)
= 0, (12)

λ3

(
Γ2
a,2 − 1 +

PL,min

Pa

)
= 0. (13)

where (9) and (10) are the sub-gradient conditions, and
(11),(12),(13) are the complementary slackness conditions.

While solving (9) − (13), we obtain Γ∗ in terms of the
constant parameters, and thereby determine P ∗

L,avg. Subse-
quently, we discuss the method to determine the KKT point
in Lemma 5.

Lemma 5 We can obtain the global optimal solution Γ∗ by
considering 3 cases, which are case (a) : λ1 ̸= 0, λ2 =
λ3 = 0, case (b) : λ1, λ2 ̸= 0, λ3 = 0, and case (c) :
λ1, λ3 ̸= 0, λ2 = 0.

Proof Since the objective function is decreasing with Γa,1

and Γa,2, the optimal solution without the constraints will
have Γa,1 = Γa,2 = 0. However, constraint C6 requires
a minimum separation between Γa,1 and Γa,2. Therefore
constraint C6 is satisfied at equality, which implies λ1 is
always positive. It is noticed that λ2 and λ3 simultaneously
greater than zero only when mth =

√
1− PL,min

Pa
, which

will obtain the same Γ∗ at λ2 ̸= 0. Therefore, the optimal
solution is given by either or both λ2 and λ3 are zero, while
λ1 > 0.

Using Lemma 5, we proposed an algorithm to solve prob-
lem (P2) and determine Γ∗ and P ∗

L,avg. We first consider
case (a) and obtain the optimal solution by assuming it
satisfied the boundary condition, denoted as Γ

(a)
a,i . Since λ2

is associated with constraint C7, and Γa,1 ≥ Γa,2, the
upper boundary condition will always satisfied when we
set λ2 > 0. Similarly, the lower boundary condition will
always be satisfied when we set λ3 > 0. Therefore, the
global optimal solution is obtained from case (b) when Γ

(a)
a,1

is greater than the upper bound, and case (c) when Γ
(a)
a,2 is

smaller than the lower bound. We summarize the problem
(P2) solving steps in Algorithm 1.

Algorithm 1 Optimal reflection coefficient design to maxi-
mize PL,avg.
Input: p1, mth, PL,min and Pa

Output: Γ∗
a,1, Γ∗

a,2, P
∗
L,avg

Set λ1 ̸= 0, λ2 = λ3 = 0,

Γ
(a)
a,1 = 2 (1− p1)mth, Γ(a)

a,2 = −2p1mth

if Γ(a)
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√
1− PL,min

Pa
then
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1− PL,min

Pa
, Γ∗

a,2 =
√
1− PL,min

Pa
− 2mth

else if Γ(a)
a,2 < −

√
1− PL,min

Pa
then

Set λ1, λ3 ̸= 0, λ2 = 0,

Γ∗
a,1 = −

√
1− PL,min

Pa
+ 2mth, Γ∗

a,2 = −
√
1− PL,min

Pa

else
Γ∗
a,1 = Γ

(a)
a,1,Γ

∗
a,2 = Γ

(a)
a,2

end

P ∗
L,avg = p1Pa

(
1−

(
Γ∗
a,1

)2)
+(1− p1)Pa

(
1−

(
Γ∗
a,2

)2)
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Fig. 2: Maximum average load power P ∗
L,avg for different probability p1

with mth = 0.5.

Fig. 3: Optimal normalized load resistance R∗
n,i versus probability p1 for

mth = 0.2, 0.5.

Lemma 5. Consequently, we obtain Γ∗ along with the
P ∗
L,avg.

VI. RESULTS AND DISCUSSION

We numerically demonstrate the performance of the opti-
mal results obtained from problem (P2). Unless otherwise
stated, we set Pt = 1W with RF f = 900MHz, λ = 1

3m,
Gt = Gr = 1, PL,min = 10−4.9W, and mth = 0.5.
We consider the tag design in [11]–[13] as the benchmark
to highlight the merits of our optimal design. Hence, we
denote P̄L,avg as the average load power of the benchmark
result, with the underlying load impedances Z̄n,1 = 1 and
Z̄n,2 = 1+2mth

1−2mth
correspond to bits ‘0’ and ‘1’.

A. Impact of Probability p1 on the Optimal Average Load
Power P ∗

L,avg

Here, we investigate the relationship between probability
p1 and P ∗

L,avg with mth = 0.5. Specifically, we plot the
maximum average load power P ∗

L,avg for different values
of p1 and transmission distance d.

In Fig. 2, we notice that the P ∗
L,avg is greater than P̄L,avg

for d = 0.5, 1.0, 1.5, 2.0 m. The proposed optimal maximum
load power achieves an average gain of 22.6% over the
benchmark. However, the gain decreases with p1 because
the benchmark result has the highest allowable average load
power when p1 = 1, and the increases in p1 will approach
this outcome. Hence, as p1 increases, the optimal load
impedances Z∗

n,1 and Z∗
n,2 will approach the benchmark

load selection (see Fig. 3), resulting in P ∗
L,avg approaching

P̄L,avg. Besides, we observe that P ∗
L,avg is increased with

Fig. 4: Maximum average load power P ∗
L,avg for different mth.

Fig. 5: Optimal normalized load resistance R∗
n,i versus mth.

p1. This is because P ∗
L,1 increases, whereas P ∗

L,2 decreases
with p1, resulting in greater P ∗

L,avg. It is also noticed
that P ∗

L,avg increases at a shorter transmission distance d
because the output load power is inversely proportional to d.

Fig.3 gives insight into the optimal load impedance
Z∗
n,i = R∗

n,i + jX∗
n,i for different p1. As the output power

is maximum when Rn,i = 1, we observed that R∗
n,1

approaches 1 as p1 increases, whereas R∗
n,2 approaches 0

to meet the BER requirement. Furthermore, as proved in
Lemma 2, X∗

n,1 = X∗
n,2 = 0. We also noticed that Z∗

n,i

does not vary with d because the transmission range is not
the optimal reflection coefficient variable.

B. Impact of mth on Optimal Average Load Power P ∗
L,avg

The value of mth varies in different applications, which
depends on the BER requirement. Therefore, we study the
maximum average load power P ∗

L,avg for different modula-
tion index thresholds mth at d = 2m. Fig.4 shows P ∗

L,avg

versus mth for p1 = 0.5, 0.6, 0.7 and 0.8, where the optimal
normalized load impedance Z∗

n,i is depicted in Fig.5. Like-
wise, we observed that P ∗

L,avg > P̄L,avg. The average gain
achieved by the proposed optimal result over the benchmark
is 9.9%. It is also noticed that P ∗

L,avg decreases with mth

due to a greater mismatch degree between the backscattered
signals, as shown in Fig.5.

VII. CONCLUSION

This paper aimed to maximize the average load power of
the RFID passive tag with the optimal reflection coefficients
while meeting the tag sensitivity and BER constraints. We
transformed the original 4 variables problem into 2 variables
convex optimization problem, and obtained the closed-form
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expression for the global optimal reflection coefficients.
The simulation results have shown that the information bits
probability and modulation index can significantly impact
the maximum average load power. Besides, we found that
the average load power with the optimal load impedances
provided an average gain of 16.3% over the benchmark.

APPENDIX A
PROOF OF LEMMA 2

In the BackCom system, there is a minimum power
requirement for the backscattered signal to ensure the reader
can successfully identify the signal. The backscattered power
Ps,i when the tag connected to ZL,i is given by [23]:

Ps,i ≜ PaGr|1− Γi|2

= PaGr


(1− Γa,i)

2
+ Γ2

b,i


, ∀i = {1, 2}, (14)

Now, we compare the 2 considered cases, where the first
case assumed the reflection coefficient Γ

(1)
a,i ̸= 0,Γ

(1)
b,i =

0, with the load power and backscattered power denoted
as P

(1)
L,i and P

(1)
s,i , respectively. The second case assumed

the reflection coefficient Γ(2)
a,i = 0,Γ

(2)
b,i ̸= 0, with the load

power and backscattered power denoted as P
(2)
L,i and P

(2)
s,i ,

respectively. Then, we express the backscattered power in
terms of load power as below:

P
(1)
s,i = PaGr


2−

P
(1)
L,i

Pa
+ 2


1−

P
(1)
L,i

Pa


 , ∀i = {1, 2},

(15)

P
(2)
s,i = PaGr


2−

P
(2)
L,i

Pa


, ∀i = {1, 2}. (16)

If we select the load impedance that gives P
(1)
L,i = P

(2)
L,i , we

can clearly observed that P (1)
s,i is always greater than P

(2)
s,i .

Hence, we proved Lemma 2.

APPENDIX B
PROOF OF LEMMA 3

Since PL,min ≤ Pa, constraint C2 will always satisfy
when constraint C7 is satisfied in problem (P2). Hence,
from C7, we obtain the boundary condition for Γa,i as
below:

−

1− PL,min

Pa
≤ Γa,i ≤


1− PL,min

Pa
(17)

As we consider Γa,1 ≥ Γa,2, the range of (Γa,1 − Γa,2)
from (17) is given by:

0 ≤ (Γa,1 − Γa,2) ≤ 2


1− PL,min

Pa
(18)

Then, we rearrange constraint C6 of problem (P2), and
obtain the boundary condition for (Γa,1 − Γa,2) as below:

Γa,1 − Γa,2 ≥ 2mth (19)

While combining (18) and (19), we obtain:

mth ≤ Γa,1 − Γa,2

2
≤


1− PL,min

Pa
(20)

Subsequently, we observe mth ≤

1− PL,min

Pa
as the

feasible condition to obtain a possible optimal solution when
solving problem (P2). Hence, we proved Lemma 3.

APPENDIX C
PROOF OF LEMMA 4

We determine the Hessian matrix of problem (P2) objec-
tive function, which is given as [24]:

H =




∂2PL,avg

∂Γ2
a,1

∂2PL,avg

∂Γa,1∂Γa,2

∂2PL,avg

∂Γa,2∂Γa,1

∂2PL,avg

∂Γ2
a,2




=


−2p1Pa 0

0 −2 (1− p1)Pa



We observed that the diagonal entries of H are ≤ 0,
and the determinant of H being non-negative, |H| ≥ 0 .
Hence, we proved that the objective function of the problem
(P2) is a concave function. Besides, it is clearly noticed
that constraints C2 and C6 are linear, which are also convex.

Next, we set fi ≜ PL,min−Pa

�
1− Γ2

a,i


corresponds to

constraint C7. The second derivative of fi with respect to
Γa,i is ∂2fi

∂Γ2
a,i

= 2Pa ≥ 0, which implies constraint C7 is
convex. Since the objective function is a concave function,
and the constraints C2, C6 and C7 are all convex, problem
(P2) is a convex optimization problem. Hence, we proved
Lemma 4.
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Fig. 2: Maximum average load power P ∗
L,avg for different probability p1

with mth = 0.5.

Fig. 3: Optimal normalized load resistance R∗
n,i versus probability p1 for

mth = 0.2, 0.5.

Lemma 5. Consequently, we obtain Γ∗ along with the
P ∗
L,avg.

VI. RESULTS AND DISCUSSION
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3m,
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Power P ∗

L,avg
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L,avg is greater than P̄L,avg
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P̄L,avg. Besides, we observe that P ∗
L,avg is increased with

Fig. 4: Maximum average load power P ∗
L,avg for different mth.

Fig. 5: Optimal normalized load resistance R∗
n,i versus mth.

p1. This is because P ∗
L,1 increases, whereas P ∗

L,2 decreases
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VII. CONCLUSION
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while meeting the tag sensitivity and BER constraints. We
transformed the original 4 variables problem into 2 variables
convex optimization problem, and obtained the closed-form
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expression for the global optimal reflection coefficients.
The simulation results have shown that the information bits
probability and modulation index can significantly impact
the maximum average load power. Besides, we found that
the average load power with the optimal load impedances
provided an average gain of 16.3% over the benchmark.

APPENDIX A
PROOF OF LEMMA 2

In the BackCom system, there is a minimum power
requirement for the backscattered signal to ensure the reader
can successfully identify the signal. The backscattered power
Ps,i when the tag connected to ZL,i is given by [23]:

Ps,i ≜ PaGr|1− Γi|2

= PaGr


(1− Γa,i)

2
+ Γ2

b,i


, ∀i = {1, 2}, (14)

Now, we compare the 2 considered cases, where the first
case assumed the reflection coefficient Γ

(1)
a,i ̸= 0,Γ

(1)
b,i =

0, with the load power and backscattered power denoted
as P

(1)
L,i and P

(1)
s,i , respectively. The second case assumed

the reflection coefficient Γ(2)
a,i = 0,Γ

(2)
b,i ̸= 0, with the load

power and backscattered power denoted as P
(2)
L,i and P

(2)
s,i ,

respectively. Then, we express the backscattered power in
terms of load power as below:
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If we select the load impedance that gives P
(1)
L,i = P

(2)
L,i , we

can clearly observed that P (1)
s,i is always greater than P

(2)
s,i .

Hence, we proved Lemma 2.
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PROOF OF LEMMA 3

Since PL,min ≤ Pa, constraint C2 will always satisfy
when constraint C7 is satisfied in problem (P2). Hence,
from C7, we obtain the boundary condition for Γa,i as
below:

−

1− PL,min

Pa
≤ Γa,i ≤


1− PL,min

Pa
(17)

As we consider Γa,1 ≥ Γa,2, the range of (Γa,1 − Γa,2)
from (17) is given by:

0 ≤ (Γa,1 − Γa,2) ≤ 2


1− PL,min

Pa
(18)

Then, we rearrange constraint C6 of problem (P2), and
obtain the boundary condition for (Γa,1 − Γa,2) as below:

Γa,1 − Γa,2 ≥ 2mth (19)

While combining (18) and (19), we obtain:

mth ≤ Γa,1 − Γa,2

2
≤


1− PL,min

Pa
(20)

Subsequently, we observe mth ≤

1− PL,min

Pa
as the

feasible condition to obtain a possible optimal solution when
solving problem (P2). Hence, we proved Lemma 3.
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We determine the Hessian matrix of problem (P2) objec-
tive function, which is given as [24]:
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We observed that the diagonal entries of H are ≤ 0,
and the determinant of H being non-negative, |H| ≥ 0 .
Hence, we proved that the objective function of the problem
(P2) is a concave function. Besides, it is clearly noticed
that constraints C2 and C6 are linear, which are also convex.

Next, we set fi ≜ PL,min−Pa

�
1− Γ2

a,i


corresponds to

constraint C7. The second derivative of fi with respect to
Γa,i is ∂2fi

∂Γ2
a,i

= 2Pa ≥ 0, which implies constraint C7 is
convex. Since the objective function is a concave function,
and the constraints C2, C6 and C7 are all convex, problem
(P2) is a convex optimization problem. Hence, we proved
Lemma 4.
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