
Saving Bit-flips through Smart Overwrites in
NVRAM

DECEMBER 2022 • VOLUME XIV • NUMBER 434

INFOCOMMUNICATIONS JOURNAL

Saving Bit-flips through Smart Overwrites in
NVRAM

Arockia David Roy Kulandai, Student Member, IEEE, Thomas Schwarz, Senior Member, IEEE

Abstract—New generations of non-volatile random access
memories will combine the best features of memory (access
times, byte addressability) with the best features of storage (non-
volatility, low costs per byte). Some, like PCM, have a limited en-
durance. All will only consume energy when accessed, but writes
will use much more energy than reads. These characteristics put
a cost on flipping bits in memory. Bit-flip aware data structures
lower the number of bits flipped by not resetting fields to zero to
indicate a deleted record but by using bit-maps. If given a choice
of where to over-write data, they will select the location which
results in a lower number of bit-flips. We calculate the expected
bit-flip savings of this strategy and derive a rule to determine
the number of the possible candidate locations.

Index Terms—PCM endurance, NVRAM, Smart writes for
PCM.

I. INTRODUCTION

Processed information continues to grow exponentially [16].
The emergence of Non-Volatile RAM (NVRAM) technolo-
gies that combine the advantages of storage (non-volatility,
low-costs, large size) and of memory (fast access times,
byte-addressability) allow systems to combine the functions
of memory and storage in a single layer. These types of
NVRAMs do not use energy when their data is at rest. Writes
typically use much more energy than reads. Some, like Phase
Change Memory (PCM) have limited endurance for over-
writes. (Their endurance is more than sufficient for use as main
memory as long as the over-write load is decently distributed
over a large memory. As memories in the Terabyte range
are affordable, this is not a problem.) These behaviors put
a premium on bit-flip avoiding behavior.

A large number of schemes to save bit-flips in hardware
exists. Fundamental is Data Comparison Write (DCW) that
eliminates redundant bit writes by first reading the word before
writing it and only setting and resetting bits that need to
be changed [18], [19]. On the software side, Bittman and
colleagues [3], [4] observe that data structures can save con-
siderably on the number of bit-flip operations. One ingredient
of these bit-flip aware data structures is to try to overwrite new
data with stale data of roughly the same type. Slight encoding
can increase the effect for web-content [10] and for pointers
[11]. Besides observing that storing pointers as the result of an
exclusive-or with another pointer, Bittman et al. found that bit-
flips can be saved if a data structure does not invalidate keys
by zeroing them out but by using a bit to indicate whether a

D. Roy and T. Schwarz are with the computer science department at
Marquette University, Milwaukee, Wisconsin, USA.
Emails: david.roy@sxca.edu.in and thomas.schwarz@marquette.edu.

key entry exists or not. Unfortunately, they did not elaborate
on this observation.

In this article, we investigate the amount of savings to be had
by using an “is-valid” bit-array instead of using overwrites. We
also follow up on another suggestion by Bittman, namely that
selecting a candidate stale key among a set of keys can lead
to additional savings. We therefore determine experimentally
the number of bit-flips if we choose the best key among � to
overwrite, with � varying from 2 to 10. We can then use these
numbers to determine the best strategy for saving bit-flips.
Because processors communicate with memory through sev-
eral levels of cache, we investigate whether loading additional
cache lines in order to find better candidates for overwrites is
advantageous.

Our goal is to understand how the internal character of
data interacts with bit-flip pressure, not to build a new data
structure. The latter is the ultimate goal. We contribute to it
by trying to understand the fundamental building blocks. As
a consequence, our setup is not a complete data structure, but
a test bed to answer the question how much better it is to
keep stale data (marked as such by a valid-bit) as opposed to
zeroing it out. For starters, zeroing out deleted keys has the
advantage of preventing reading deleted keys so that we are
protected against software faults.

In the following, we first describe our data structure. We
then discuss the case of uniformly distributed random bit-
strings. To start our experimental work, we first discuss the
impact of encoding of non-Latin alphabets. We then present
our results using a number of data sets, using different natural
languages, and also a floating point key. We did not try out
integer keys such as social security numbers or telephone
numbers, as they were not available for privacy reasons. We
then verify our data by a closer simulation using data from
Amazon product reviews. We then calculate the optimal energy
saving strategies.

II. SETUP

There are many data structures that implement a key-value
store, with key-based operations of insert, delete, look-up, and
update. The various types of B-trees also implement a range
query (for a range of keys). The importance of B-tree can
hardly be exaggerated.

In contrast to the B-tree in general, B-tree node imple-
mentation has received less interest [8]. Early on, the prefix
B-tree used prefix and suffix compression to place more
keys in a node and therefore achieve better performance [2],
[14]. B-tree nodes that do not use key compression often

Saving Bit-flips through Smart Overwrites in
NVRAM

Arockia David Roy Kulandai, Student Member, IEEE, Thomas Schwarz, Senior Member, IEEE

Abstract—New generations of non-volatile random access
memories will combine the best features of memory (access
times, byte addressability) with the best features of storage (non-
volatility, low costs per byte). Some, like PCM, have a limited en-
durance. All will only consume energy when accessed, but writes
will use much more energy than reads. These characteristics put
a cost on flipping bits in memory. Bit-flip aware data structures
lower the number of bits flipped by not resetting fields to zero to
indicate a deleted record but by using bit-maps. If given a choice
of where to over-write data, they will select the location which
results in a lower number of bit-flips. We calculate the expected
bit-flip savings of this strategy and derive a rule to determine the
number of the possible candidate locations.

Index Terms—PCM endurance, NVRAM, Smart writes for
PCM.

D. Roy and T. Schwarz are with the computer science department at
Marquette University, Milwaukee, Wisconsin, USA.

E-mails: david.roy@sxca.edu.in and thomas.schwarz@marquette.edu.

DOI: 10.36244/ICJ.2022.4.5

Saving Bit-flips through Smart Overwrites in
NVRAM

Arockia David Roy Kulandai, Student Member, IEEE, Thomas Schwarz, Senior Member, IEEE

Abstract—New generations of non-volatile random access
memories will combine the best features of memory (access
times, byte addressability) with the best features of storage (non-
volatility, low costs per byte). Some, like PCM, have a limited en-
durance. All will only consume energy when accessed, but writes
will use much more energy than reads. These characteristics put
a cost on flipping bits in memory. Bit-flip aware data structures
lower the number of bits flipped by not resetting fields to zero to
indicate a deleted record but by using bit-maps. If given a choice
of where to over-write data, they will select the location which
results in a lower number of bit-flips. We calculate the expected
bit-flip savings of this strategy and derive a rule to determine
the number of the possible candidate locations.

Index Terms—PCM endurance, NVRAM, Smart writes for
PCM.

I. INTRODUCTION

Processed information continues to grow exponentially [16].
The emergence of Non-Volatile RAM (NVRAM) technolo-
gies that combine the advantages of storage (non-volatility,
low-costs, large size) and of memory (fast access times,
byte-addressability) allow systems to combine the functions
of memory and storage in a single layer. These types of
NVRAMs do not use energy when their data is at rest. Writes
typically use much more energy than reads. Some, like Phase
Change Memory (PCM) have limited endurance for over-
writes. (Their endurance is more than sufficient for use as main
memory as long as the over-write load is decently distributed
over a large memory. As memories in the Terabyte range
are affordable, this is not a problem.) These behaviors put
a premium on bit-flip avoiding behavior.

A large number of schemes to save bit-flips in hardware
exists. Fundamental is Data Comparison Write (DCW) that
eliminates redundant bit writes by first reading the word before
writing it and only setting and resetting bits that need to
be changed [18], [19]. On the software side, Bittman and
colleagues [3], [4] observe that data structures can save con-
siderably on the number of bit-flip operations. One ingredient
of these bit-flip aware data structures is to try to overwrite new
data with stale data of roughly the same type. Slight encoding
can increase the effect for web-content [10] and for pointers
[11]. Besides observing that storing pointers as the result of an
exclusive-or with another pointer, Bittman et al. found that bit-
flips can be saved if a data structure does not invalidate keys
by zeroing them out but by using a bit to indicate whether a

D. Roy and T. Schwarz are with the computer science department at
Marquette University, Milwaukee, Wisconsin, USA.
Emails: david.roy@sxca.edu.in and thomas.schwarz@marquette.edu.

key entry exists or not. Unfortunately, they did not elaborate
on this observation.

In this article, we investigate the amount of savings to be had
by using an “is-valid” bit-array instead of using overwrites. We
also follow up on another suggestion by Bittman, namely that
selecting a candidate stale key among a set of keys can lead
to additional savings. We therefore determine experimentally
the number of bit-flips if we choose the best key among � to
overwrite, with � varying from 2 to 10. We can then use these
numbers to determine the best strategy for saving bit-flips.
Because processors communicate with memory through sev-
eral levels of cache, we investigate whether loading additional
cache lines in order to find better candidates for overwrites is
advantageous.

Our goal is to understand how the internal character of
data interacts with bit-flip pressure, not to build a new data
structure. The latter is the ultimate goal. We contribute to it
by trying to understand the fundamental building blocks. As
a consequence, our setup is not a complete data structure, but
a test bed to answer the question how much better it is to
keep stale data (marked as such by a valid-bit) as opposed to
zeroing it out. For starters, zeroing out deleted keys has the
advantage of preventing reading deleted keys so that we are
protected against software faults.

In the following, we first describe our data structure. We
then discuss the case of uniformly distributed random bit-
strings. To start our experimental work, we first discuss the
impact of encoding of non-Latin alphabets. We then present
our results using a number of data sets, using different natural
languages, and also a floating point key. We did not try out
integer keys such as social security numbers or telephone
numbers, as they were not available for privacy reasons. We
then verify our data by a closer simulation using data from
Amazon product reviews. We then calculate the optimal energy
saving strategies.

II. SETUP

There are many data structures that implement a key-value
store, with key-based operations of insert, delete, look-up, and
update. The various types of B-trees also implement a range
query (for a range of keys). The importance of B-tree can
hardly be exaggerated.

In contrast to the B-tree in general, B-tree node imple-
mentation has received less interest [8]. Early on, the prefix
B-tree used prefix and suffix compression to place more
keys in a node and therefore achieve better performance [2],
[14]. B-tree nodes that do not use key compression often

mailto:david.roy%40sxca.edu.in?subject=
mailto:thomas.schwarz%40marquette.edu?subject=
https://doi.org/10.36244/ICJ.2022.4.5

Saving Bit-flips through Smart Overwrites in
NVRAM

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2022 • VOLUME XIV • NUMBER 4 35

Fig. 1: Average number of bit-flips when overwriting a uni-
formly distributed, random 6B key. We select the key among
� keys, � = 1, 2, . . . , 10.

place fixed-length keys in a contiguous array. Our results in
what follows show that marking a key as invalid, and then
overwriting it with a new key, results in bit-flip savings. Some
node implementations will keep keys in order, which almost
eliminates the chance to be able to select between two stale
keys for overwrite. Other implementations already facilitate
key insertions by using an auxiliary data structure to preserve
the order. In this case, all of our experimental results tell us
what bit-flip savings can be achieved. A thorough investigation
of B-tree node structures, their interaction with caches, and
their relations to bit-flip savings is left to the future. The clfB-
tree [9] for example packs B-tree nodes into a cache line but
does not consider bit-flips.

Key-value stores are of course not limited to B-trees and
their derivatives. They can be based on hashing or other types
of trees. In the context of NVRAM, we might store many sets
of pairs of keys and pointers to records. Incidentally, the bit-
flip aware manipulation of pointers is a different issue [11].
We now study in more detail the bit-flip behavior of the key
portion of such a data structure. First, we consider the case of
random keys, not because this is a frequent use case, but to
set a base line.

III. THE RANDOM CASE

We now study the expected number of bit-flips overwriting
a fixed length key or overwriting the best of � candidate keys.
This is a value that depends on the population of possible keys.

The simplest model for the keys is a string of random bits,
where each bit is set with probability 50%. The Hamming
distance between two such keys is binomially distributed with
parameters �, the length of the key, and probability � = 0.5.
The minimum Hamming distance between one such key and �

other keys is the first order statistics of binomial distributions.
If B(�; �, �) is the Cumulative Distribution Function (CDF)
of the Binomial distribution with � and �, i.e.

B(�; �, �) = Prob(� ≤ �) =
�∑
�=0

(�
�

)
�� (1 − �)�−�

TABLE I: Expected minimum of � normally distributed
random values with mean � = 24 and standard deviation
� =

√
48/4 and exact numbers for a Binomial distribution

with parameters � = 48 and � = 0.5.

k Expected Value Normal Appr. Expected Value Exact
1 24.0000 24.0000
2 22.0456 22.0507
3 21.0684 21.0760
4 20.4341 20.4442
5 19.9714 19.9838
6 19.6103 19.6250
7 19.3159 19.3328
8 19.0685 19.0875
9 18.8558 18.8767

10 18.6696 18.6925

then the CDF Φ(�) of the minimum out of � is given by

1 −Φ(�) = Prob(min(�1, �2, . . . ��) > �)

=
�∏
�=1

Prob(�� > �)

= (1 − B(�; �, �))� .

For reasonably small values, the exact formula can be evalu-
ated. The binomial distribution can be approximated well with
a normal distribution, but the order statistics for independently
and identically distributed normal distribution only has a
closed form even for the expectation for very small values
of � [1].

We give the values of the expectation of the minimum
of � normally distributed independent random variables with
parameters � = 0.5 × 48 and � =

√
48 × 0.52, i.e. where

� = 48, which is the approximation for our experimental data
in Table I.

Even in the random case, we save bit-flips by not zeroing
out deleted keys. If we delete a key and then insert another
one and if we use the valid-bit array, the valid-bit array itself
has one bit set and reset (2 flips) and the expected costs of
overwriting the key (of length 6B) is 24 flips. Zeroing out
costs 24 bit-flips and overwriting costs also 24 bit-flips for a
total of 48 bit-flips.

IV. EXPERIMENTAL DATA

The efficiency of overwriting stale keys instead of zeroing
out depends on the nature of the keys. We now gather
experimental data on various data-sets. The most important
class of keys that do not behave like random numbers are
strings of characters. To avoid an anglo-centric view, we
first discuss non-Latin alphabets. Unfortunately, our lack of
knowledge of Chinese does not allow us to test for keys taken
from this important language. We then use several data-sets
with different types of keys in different languages to determine
their bit-flip propensity. Finally, we use a different dataset to
confirm the predictions based on our measurements for a closer
simulation of a hypothetical data structure made up of key –
pointer to record entries.

Fig. 1: Average number of bit-flips when overwriting a uni-
formly distributed, random 6B key. We select the key among
� keys, � = 1, 2, . . . , 10.

place fixed-length keys in a contiguous array. Our results in
what follows show that marking a key as invalid, and then
overwriting it with a new key, results in bit-flip savings. Some
node implementations will keep keys in order, which almost
eliminates the chance to be able to select between two stale
keys for overwrite. Other implementations already facilitate
key insertions by using an auxiliary data structure to preserve
the order. In this case, all of our experimental results tell us
what bit-flip savings can be achieved. A thorough investigation
of B-tree node structures, their interaction with caches, and
their relations to bit-flip savings is left to the future. The clfB-
tree [9] for example packs B-tree nodes into a cache line but
does not consider bit-flips.

Key-value stores are of course not limited to B-trees and
their derivatives. They can be based on hashing or other types
of trees. In the context of NVRAM, we might store many sets
of pairs of keys and pointers to records. Incidentally, the bit-
flip aware manipulation of pointers is a different issue [11].
We now study in more detail the bit-flip behavior of the key
portion of such a data structure. First, we consider the case of
random keys, not because this is a frequent use case, but to
set a base line.

III. THE RANDOM CASE

We now study the expected number of bit-flips overwriting
a fixed length key or overwriting the best of � candidate keys.
This is a value that depends on the population of possible keys.

The simplest model for the keys is a string of random bits,
where each bit is set with probability 50%. The Hamming
distance between two such keys is binomially distributed with
parameters �, the length of the key, and probability � = 0.5.
The minimum Hamming distance between one such key and �

other keys is the first order statistics of binomial distributions.
If B(�; �, �) is the Cumulative Distribution Function (CDF)
of the Binomial distribution with � and �, i.e.

B(�; �, �) = Prob(� ≤ �) =
�∑
�=0

(�
�

)
�� (1 − �)�−�

TABLE I: Expected minimum of � normally distributed
random values with mean � = 24 and standard deviation
� =

√
48/4 and exact numbers for a Binomial distribution

with parameters � = 48 and � = 0.5.

k Expected Value Normal Appr. Expected Value Exact
1 24.0000 24.0000
2 22.0456 22.0507
3 21.0684 21.0760
4 20.4341 20.4442
5 19.9714 19.9838
6 19.6103 19.6250
7 19.3159 19.3328
8 19.0685 19.0875
9 18.8558 18.8767

10 18.6696 18.6925

then the CDF Φ(�) of the minimum out of � is given by

1 −Φ(�) = Prob(min(�1, �2, . . . ��) > �)

=
�∏
�=1

Prob(�� > �)

= (1 − B(�; �, �))� .

For reasonably small values, the exact formula can be evalu-
ated. The binomial distribution can be approximated well with
a normal distribution, but the order statistics for independently
and identically distributed normal distribution only has a
closed form even for the expectation for very small values
of � [1].

We give the values of the expectation of the minimum
of � normally distributed independent random variables with
parameters � = 0.5 × 48 and � =

√
48 × 0.52, i.e. where

� = 48, which is the approximation for our experimental data
in Table I.

Even in the random case, we save bit-flips by not zeroing
out deleted keys. If we delete a key and then insert another
one and if we use the valid-bit array, the valid-bit array itself
has one bit set and reset (2 flips) and the expected costs of
overwriting the key (of length 6B) is 24 flips. Zeroing out
costs 24 bit-flips and overwriting costs also 24 bit-flips for a
total of 48 bit-flips.

IV. EXPERIMENTAL DATA

The efficiency of overwriting stale keys instead of zeroing
out depends on the nature of the keys. We now gather
experimental data on various data-sets. The most important
class of keys that do not behave like random numbers are
strings of characters. To avoid an anglo-centric view, we
first discuss non-Latin alphabets. Unfortunately, our lack of
knowledge of Chinese does not allow us to test for keys taken
from this important language. We then use several data-sets
with different types of keys in different languages to determine
their bit-flip propensity. Finally, we use a different dataset to
confirm the predictions based on our measurements for a closer
simulation of a hypothetical data structure made up of key –
pointer to record entries.

Fig. 1: Average number of bit-flips when overwriting a uni-
formly distributed, random 6B key. We select the key among
� keys, � = 1, 2, . . . , 10.

place fixed-length keys in a contiguous array. Our results in
what follows show that marking a key as invalid, and then
overwriting it with a new key, results in bit-flip savings. Some
node implementations will keep keys in order, which almost
eliminates the chance to be able to select between two stale
keys for overwrite. Other implementations already facilitate
key insertions by using an auxiliary data structure to preserve
the order. In this case, all of our experimental results tell us
what bit-flip savings can be achieved. A thorough investigation
of B-tree node structures, their interaction with caches, and
their relations to bit-flip savings is left to the future. The clfB-
tree [9] for example packs B-tree nodes into a cache line but
does not consider bit-flips.

Key-value stores are of course not limited to B-trees and
their derivatives. They can be based on hashing or other types
of trees. In the context of NVRAM, we might store many sets
of pairs of keys and pointers to records. Incidentally, the bit-
flip aware manipulation of pointers is a different issue [11].
We now study in more detail the bit-flip behavior of the key
portion of such a data structure. First, we consider the case of
random keys, not because this is a frequent use case, but to
set a base line.

III. THE RANDOM CASE

We now study the expected number of bit-flips overwriting
a fixed length key or overwriting the best of � candidate keys.
This is a value that depends on the population of possible keys.

The simplest model for the keys is a string of random bits,
where each bit is set with probability 50%. The Hamming
distance between two such keys is binomially distributed with
parameters �, the length of the key, and probability � = 0.5.
The minimum Hamming distance between one such key and �

other keys is the first order statistics of binomial distributions.
If B(�; �, �) is the Cumulative Distribution Function (CDF)
of the Binomial distribution with � and �, i.e.

B(�; �, �) = Prob(� ≤ �) =
�∑
�=0

(�
�

)
�� (1 − �)�−�

TABLE I: Expected minimum of � normally distributed
random values with mean � = 24 and standard deviation
� =

√
48/4 and exact numbers for a Binomial distribution

with parameters � = 48 and � = 0.5.

k Expected Value Normal Appr. Expected Value Exact
1 24.0000 24.0000
2 22.0456 22.0507
3 21.0684 21.0760
4 20.4341 20.4442
5 19.9714 19.9838
6 19.6103 19.6250
7 19.3159 19.3328
8 19.0685 19.0875
9 18.8558 18.8767

10 18.6696 18.6925

then the CDF Φ(�) of the minimum out of � is given by

1 −Φ(�) = Prob(min(�1, �2, . . . ��) > �)

=
�∏
�=1

Prob(�� > �)

= (1 − B(�; �, �))� .

For reasonably small values, the exact formula can be evalu-
ated. The binomial distribution can be approximated well with
a normal distribution, but the order statistics for independently
and identically distributed normal distribution only has a
closed form even for the expectation for very small values
of � [1].

We give the values of the expectation of the minimum
of � normally distributed independent random variables with
parameters � = 0.5 × 48 and � =

√
48 × 0.52, i.e. where

� = 48, which is the approximation for our experimental data
in Table I.

Even in the random case, we save bit-flips by not zeroing
out deleted keys. If we delete a key and then insert another
one and if we use the valid-bit array, the valid-bit array itself
has one bit set and reset (2 flips) and the expected costs of
overwriting the key (of length 6B) is 24 flips. Zeroing out
costs 24 bit-flips and overwriting costs also 24 bit-flips for a
total of 48 bit-flips.

IV. EXPERIMENTAL DATA

The efficiency of overwriting stale keys instead of zeroing
out depends on the nature of the keys. We now gather
experimental data on various data-sets. The most important
class of keys that do not behave like random numbers are
strings of characters. To avoid an anglo-centric view, we
first discuss non-Latin alphabets. Unfortunately, our lack of
knowledge of Chinese does not allow us to test for keys taken
from this important language. We then use several data-sets
with different types of keys in different languages to determine
their bit-flip propensity. Finally, we use a different dataset to
confirm the predictions based on our measurements for a closer
simulation of a hypothetical data structure made up of key –
pointer to record entries.

Fig. 1: Average number of bit-flips when overwriting a uniformly
distributed, random 6B key. We select the key among k keys, k = 1,2,...,10.
Fig. 1: Average number of bit-flips when overwriting a uni-
formly distributed, random 6B key. We select the key among
� keys, � = 1, 2, . . . , 10.

place fixed-length keys in a contiguous array. Our results in
what follows show that marking a key as invalid, and then
overwriting it with a new key, results in bit-flip savings. Some
node implementations will keep keys in order, which almost
eliminates the chance to be able to select between two stale
keys for overwrite. Other implementations already facilitate
key insertions by using an auxiliary data structure to preserve
the order. In this case, all of our experimental results tell us
what bit-flip savings can be achieved. A thorough investigation
of B-tree node structures, their interaction with caches, and
their relations to bit-flip savings is left to the future. The clfB-
tree [9] for example packs B-tree nodes into a cache line but
does not consider bit-flips.

Key-value stores are of course not limited to B-trees and
their derivatives. They can be based on hashing or other types
of trees. In the context of NVRAM, we might store many sets
of pairs of keys and pointers to records. Incidentally, the bit-
flip aware manipulation of pointers is a different issue [11].
We now study in more detail the bit-flip behavior of the key
portion of such a data structure. First, we consider the case of
random keys, not because this is a frequent use case, but to
set a base line.

III. THE RANDOM CASE

We now study the expected number of bit-flips overwriting
a fixed length key or overwriting the best of � candidate keys.
This is a value that depends on the population of possible keys.

The simplest model for the keys is a string of random bits,
where each bit is set with probability 50%. The Hamming
distance between two such keys is binomially distributed with
parameters �, the length of the key, and probability � = 0.5.
The minimum Hamming distance between one such key and �

other keys is the first order statistics of binomial distributions.
If B(�; �, �) is the Cumulative Distribution Function (CDF)
of the Binomial distribution with � and �, i.e.

B(�; �, �) = Prob(� ≤ �) =
�∑
�=0

(�
�

)
�� (1 − �)�−�

TABLE I: Expected minimum of � normally distributed
random values with mean � = 24 and standard deviation
� =

√
48/4 and exact numbers for a Binomial distribution

with parameters � = 48 and � = 0.5.

k Expected Value Normal Appr. Expected Value Exact
1 24.0000 24.0000
2 22.0456 22.0507
3 21.0684 21.0760
4 20.4341 20.4442
5 19.9714 19.9838
6 19.6103 19.6250
7 19.3159 19.3328
8 19.0685 19.0875
9 18.8558 18.8767

10 18.6696 18.6925

then the CDF Φ(�) of the minimum out of � is given by

1 −Φ(�) = Prob(min(�1, �2, . . . ��) > �)

=
�∏
�=1

Prob(�� > �)

= (1 − B(�; �, �))� .

For reasonably small values, the exact formula can be evalu-
ated. The binomial distribution can be approximated well with
a normal distribution, but the order statistics for independently
and identically distributed normal distribution only has a
closed form even for the expectation for very small values
of � [1].

We give the values of the expectation of the minimum
of � normally distributed independent random variables with
parameters � = 0.5 × 48 and � =

√
48 × 0.52, i.e. where

� = 48, which is the approximation for our experimental data
in Table I.

Even in the random case, we save bit-flips by not zeroing
out deleted keys. If we delete a key and then insert another
one and if we use the valid-bit array, the valid-bit array itself
has one bit set and reset (2 flips) and the expected costs of
overwriting the key (of length 6B) is 24 flips. Zeroing out
costs 24 bit-flips and overwriting costs also 24 bit-flips for a
total of 48 bit-flips.

IV. EXPERIMENTAL DATA

The efficiency of overwriting stale keys instead of zeroing
out depends on the nature of the keys. We now gather
experimental data on various data-sets. The most important
class of keys that do not behave like random numbers are
strings of characters. To avoid an anglo-centric view, we
first discuss non-Latin alphabets. Unfortunately, our lack of
knowledge of Chinese does not allow us to test for keys taken
from this important language. We then use several data-sets
with different types of keys in different languages to determine
their bit-flip propensity. Finally, we use a different dataset to
confirm the predictions based on our measurements for a closer
simulation of a hypothetical data structure made up of key –
pointer to record entries.

TABLE I
Expected minimum of k normally distributed random values with mean

μ = 24 and standard deviation σ = and exact numbers for a Binomial
distribution with parameters n = 48 and p = 0.5.

Fig. 1: Average number of bit-flips when overwriting a uni-
formly distributed, random 6B key. We select the key among
� keys, � = 1, 2, . . . , 10.

place fixed-length keys in a contiguous array. Our results in
what follows show that marking a key as invalid, and then
overwriting it with a new key, results in bit-flip savings. Some
node implementations will keep keys in order, which almost
eliminates the chance to be able to select between two stale
keys for overwrite. Other implementations already facilitate
key insertions by using an auxiliary data structure to preserve
the order. In this case, all of our experimental results tell us
what bit-flip savings can be achieved. A thorough investigation
of B-tree node structures, their interaction with caches, and
their relations to bit-flip savings is left to the future. The clfB-
tree [9] for example packs B-tree nodes into a cache line but
does not consider bit-flips.

Key-value stores are of course not limited to B-trees and
their derivatives. They can be based on hashing or other types
of trees. In the context of NVRAM, we might store many sets
of pairs of keys and pointers to records. Incidentally, the bit-
flip aware manipulation of pointers is a different issue [11].
We now study in more detail the bit-flip behavior of the key
portion of such a data structure. First, we consider the case of
random keys, not because this is a frequent use case, but to
set a base line.

III. THE RANDOM CASE

We now study the expected number of bit-flips overwriting
a fixed length key or overwriting the best of � candidate keys.
This is a value that depends on the population of possible keys.

The simplest model for the keys is a string of random bits,
where each bit is set with probability 50%. The Hamming
distance between two such keys is binomially distributed with
parameters �, the length of the key, and probability � = 0.5.
The minimum Hamming distance between one such key and �

other keys is the first order statistics of binomial distributions.
If B(�; �, �) is the Cumulative Distribution Function (CDF)
of the Binomial distribution with � and �, i.e.

B(�; �, �) = Prob(� ≤ �) =
�∑
�=0

(�
�

)
�� (1 − �)�−�

TABLE I: Expected minimum of � normally distributed
random values with mean � = 24 and standard deviation
� =

√
48/4 and exact numbers for a Binomial distribution

with parameters � = 48 and � = 0.5.

k Expected Value Normal Appr. Expected Value Exact
1 24.0000 24.0000
2 22.0456 22.0507
3 21.0684 21.0760
4 20.4341 20.4442
5 19.9714 19.9838
6 19.6103 19.6250
7 19.3159 19.3328
8 19.0685 19.0875
9 18.8558 18.8767

10 18.6696 18.6925

then the CDF Φ(�) of the minimum out of � is given by

1 −Φ(�) = Prob(min(�1, �2, . . . ��) > �)

=
�∏
�=1

Prob(�� > �)

= (1 − B(�; �, �))� .

For reasonably small values, the exact formula can be evalu-
ated. The binomial distribution can be approximated well with
a normal distribution, but the order statistics for independently
and identically distributed normal distribution only has a
closed form even for the expectation for very small values
of � [1].

We give the values of the expectation of the minimum
of � normally distributed independent random variables with
parameters � = 0.5 × 48 and � =

√
48 × 0.52, i.e. where

� = 48, which is the approximation for our experimental data
in Table I.

Even in the random case, we save bit-flips by not zeroing
out deleted keys. If we delete a key and then insert another
one and if we use the valid-bit array, the valid-bit array itself
has one bit set and reset (2 flips) and the expected costs of
overwriting the key (of length 6B) is 24 flips. Zeroing out
costs 24 bit-flips and overwriting costs also 24 bit-flips for a
total of 48 bit-flips.

IV. EXPERIMENTAL DATA

The efficiency of overwriting stale keys instead of zeroing
out depends on the nature of the keys. We now gather
experimental data on various data-sets. The most important
class of keys that do not behave like random numbers are
strings of characters. To avoid an anglo-centric view, we
first discuss non-Latin alphabets. Unfortunately, our lack of
knowledge of Chinese does not allow us to test for keys taken
from this important language. We then use several data-sets
with different types of keys in different languages to determine
their bit-flip propensity. Finally, we use a different dataset to
confirm the predictions based on our measurements for a closer
simulation of a hypothetical data structure made up of key –
pointer to record entries.

Saving Bit-flips through Smart Overwrites in
NVRAM

DECEMBER 2022 • VOLUME XIV • NUMBER 436

INFOCOMMUNICATIONS JOURNAL

Fig. 2: Average number of bit-flips when overwriting a 4B zip
code from the credit industry complaint data set.

A. Non-Latin Alphabets

At the byte level, encodings matter. Given its importance,
we concentrate on keys encoded with utf-8, a version of
Unicode very popular for web-documents. The utf-8 encoding
is very efficient for English text, as the English character set
is encoded just as the lower half of ASCII. For German,
French, Spanish, or other languages using a Latin character
set, the relatively infrequent letters with accents and Umlauts
are stored in two bytes.

For non-Latin alphabets such as Tamil’s Dravidian and
Hindi’s Devanagari script, utf-8 is not space efficient. Both
scripts vary 7 bits encoded within three bytes for each char-
acter. In contrast, the less common utf-16 only uses two bytes
for each Dravidian or Devanagari character. The Standard
Compression Scheme for Unicode (SCSU) defined in the
Unicode Technical Standard Nr. 6 uses dynamically positioned
windows so that characters belonging to small scripts such
as Devanagari can be encoded in a single byte [6], [7]. As
an alternative to SCSU, Vijayalakshmi and Sasirekha propose
to map the Tamil characters to the upper half of the ASCII
encoding, i.e. between 0x80 and 0xff, characterized by the
first bit being set [17]. While such a compression scheme
uses space more efficiently, the costs of compression and
decompression might mitigate against their use. If such a
compression scheme is used, keys in Tamil or Hindi behave
like keys in English or German. If instead utf-8 is used,
the larger number of bytes to be read increases the read
energy consumption, but in general, overwrites are close in
efficiency to that of English text. Only the interference of
punctuation marks, white spaces, or ASCII numerals cause
alignment issues and generate more bit-flips and hence higher
write energy use.

B. Results

We used the following corpora for our experiments:
(1) The zip codes from a Kaggle dataset collected by A.
Kumar on consumer complaints of financial products from the
Consumer Financial Protection Bureau (CFPB) Open Tech site
[12]. There are 26800 unique zip-codes, stored as integers in

Fig. 3: Average number of bit-flips when overwriting a key
in the Lawler corpus with another one and comparisonwith
the normal distribution with the same mean and standard
deviation.

Fig. 4: Average number of bit-flips when overwriting a 100B
slice with the best of a set of � , � = 1, 2, . . . , 10 randomly
selected slices not containing the original slice.

Fig. 5: Average number of bit-flips when overwriting a 6B key
taken from the first 6 bytes of the words in Lawler’s vocabulary
list with the closest of � keys from the same source, where �

varies � = 1, 2, . . . , 10.

Fig. 2: Average number of bit-flips when overwriting a 4B zip code from
the credit industry complaint data set.

Fig. 4: Average number of bit-flips when overwriting a 100B slice
with the best of a set of k, k = 1,2,...,10 randomly selected slices not

containing the original slice.

Fig. 5: Average number of bit-flips when overwriting a 6B key taken from
the first 6 bytes of the words in Lawler’s vocabulary list with the closest of

k keys from the same source, where k varies k = 1,2,...,10.

Fig. 3: Average number of bit-flips when overwriting a key in the Lawler
corpus with another one and comparisonwith the normal distribution with

the same mean and standard deviation.

Fig. 2: Average number of bit-flips when overwriting a 4B zip
code from the credit industry complaint data set.

A. Non-Latin Alphabets

At the byte level, encodings matter. Given its importance,
we concentrate on keys encoded with utf-8, a version of
Unicode very popular for web-documents. The utf-8 encoding
is very efficient for English text, as the English character set
is encoded just as the lower half of ASCII. For German,
French, Spanish, or other languages using a Latin character
set, the relatively infrequent letters with accents and Umlauts
are stored in two bytes.

For non-Latin alphabets such as Tamil’s Dravidian and
Hindi’s Devanagari script, utf-8 is not space efficient. Both
scripts vary 7 bits encoded within three bytes for each char-
acter. In contrast, the less common utf-16 only uses two bytes
for each Dravidian or Devanagari character. The Standard
Compression Scheme for Unicode (SCSU) defined in the
Unicode Technical Standard Nr. 6 uses dynamically positioned
windows so that characters belonging to small scripts such
as Devanagari can be encoded in a single byte [6], [7]. As
an alternative to SCSU, Vijayalakshmi and Sasirekha propose
to map the Tamil characters to the upper half of the ASCII
encoding, i.e. between 0x80 and 0xff, characterized by the
first bit being set [17]. While such a compression scheme
uses space more efficiently, the costs of compression and
decompression might mitigate against their use. If such a
compression scheme is used, keys in Tamil or Hindi behave
like keys in English or German. If instead utf-8 is used,
the larger number of bytes to be read increases the read
energy consumption, but in general, overwrites are close in
efficiency to that of English text. Only the interference of
punctuation marks, white spaces, or ASCII numerals cause
alignment issues and generate more bit-flips and hence higher
write energy use.

B. Results

We used the following corpora for our experiments:
(1) The zip codes from a Kaggle dataset collected by A.
Kumar on consumer complaints of financial products from the
Consumer Financial Protection Bureau (CFPB) Open Tech site
[12]. There are 26800 unique zip-codes, stored as integers in

Fig. 3: Average number of bit-flips when overwriting a key
in the Lawler corpus with another one and comparisonwith
the normal distribution with the same mean and standard
deviation.

Fig. 4: Average number of bit-flips when overwriting a 100B
slice with the best of a set of � , � = 1, 2, . . . , 10 randomly
selected slices not containing the original slice.

Fig. 5: Average number of bit-flips when overwriting a 6B key
taken from the first 6 bytes of the words in Lawler’s vocabulary
list with the closest of � keys from the same source, where �

varies � = 1, 2, . . . , 10.

Fig. 2: Average number of bit-flips when overwriting a 4B zip
code from the credit industry complaint data set.

A. Non-Latin Alphabets

At the byte level, encodings matter. Given its importance,
we concentrate on keys encoded with utf-8, a version of
Unicode very popular for web-documents. The utf-8 encoding
is very efficient for English text, as the English character set
is encoded just as the lower half of ASCII. For German,
French, Spanish, or other languages using a Latin character
set, the relatively infrequent letters with accents and Umlauts
are stored in two bytes.

For non-Latin alphabets such as Tamil’s Dravidian and
Hindi’s Devanagari script, utf-8 is not space efficient. Both
scripts vary 7 bits encoded within three bytes for each char-
acter. In contrast, the less common utf-16 only uses two bytes
for each Dravidian or Devanagari character. The Standard
Compression Scheme for Unicode (SCSU) defined in the
Unicode Technical Standard Nr. 6 uses dynamically positioned
windows so that characters belonging to small scripts such
as Devanagari can be encoded in a single byte [6], [7]. As
an alternative to SCSU, Vijayalakshmi and Sasirekha propose
to map the Tamil characters to the upper half of the ASCII
encoding, i.e. between 0x80 and 0xff, characterized by the
first bit being set [17]. While such a compression scheme
uses space more efficiently, the costs of compression and
decompression might mitigate against their use. If such a
compression scheme is used, keys in Tamil or Hindi behave
like keys in English or German. If instead utf-8 is used,
the larger number of bytes to be read increases the read
energy consumption, but in general, overwrites are close in
efficiency to that of English text. Only the interference of
punctuation marks, white spaces, or ASCII numerals cause
alignment issues and generate more bit-flips and hence higher
write energy use.

B. Results

We used the following corpora for our experiments:
(1) The zip codes from a Kaggle dataset collected by A.
Kumar on consumer complaints of financial products from the
Consumer Financial Protection Bureau (CFPB) Open Tech site
[12]. There are 26800 unique zip-codes, stored as integers in

Fig. 3: Average number of bit-flips when overwriting a key
in the Lawler corpus with another one and comparisonwith
the normal distribution with the same mean and standard
deviation.

Fig. 4: Average number of bit-flips when overwriting a 100B
slice with the best of a set of � , � = 1, 2, . . . , 10 randomly
selected slices not containing the original slice.

Fig. 5: Average number of bit-flips when overwriting a 6B key
taken from the first 6 bytes of the words in Lawler’s vocabulary
list with the closest of � keys from the same source, where �

varies � = 1, 2, . . . , 10.

Fig. 2: Average number of bit-flips when overwriting a 4B zip
code from the credit industry complaint data set.

A. Non-Latin Alphabets

At the byte level, encodings matter. Given its importance,
we concentrate on keys encoded with utf-8, a version of
Unicode very popular for web-documents. The utf-8 encoding
is very efficient for English text, as the English character set
is encoded just as the lower half of ASCII. For German,
French, Spanish, or other languages using a Latin character
set, the relatively infrequent letters with accents and Umlauts
are stored in two bytes.

For non-Latin alphabets such as Tamil’s Dravidian and
Hindi’s Devanagari script, utf-8 is not space efficient. Both
scripts vary 7 bits encoded within three bytes for each char-
acter. In contrast, the less common utf-16 only uses two bytes
for each Dravidian or Devanagari character. The Standard
Compression Scheme for Unicode (SCSU) defined in the
Unicode Technical Standard Nr. 6 uses dynamically positioned
windows so that characters belonging to small scripts such
as Devanagari can be encoded in a single byte [6], [7]. As
an alternative to SCSU, Vijayalakshmi and Sasirekha propose
to map the Tamil characters to the upper half of the ASCII
encoding, i.e. between 0x80 and 0xff, characterized by the
first bit being set [17]. While such a compression scheme
uses space more efficiently, the costs of compression and
decompression might mitigate against their use. If such a
compression scheme is used, keys in Tamil or Hindi behave
like keys in English or German. If instead utf-8 is used,
the larger number of bytes to be read increases the read
energy consumption, but in general, overwrites are close in
efficiency to that of English text. Only the interference of
punctuation marks, white spaces, or ASCII numerals cause
alignment issues and generate more bit-flips and hence higher
write energy use.

B. Results

We used the following corpora for our experiments:
(1) The zip codes from a Kaggle dataset collected by A.
Kumar on consumer complaints of financial products from the
Consumer Financial Protection Bureau (CFPB) Open Tech site
[12]. There are 26800 unique zip-codes, stored as integers in

Fig. 3: Average number of bit-flips when overwriting a key
in the Lawler corpus with another one and comparisonwith
the normal distribution with the same mean and standard
deviation.

Fig. 4: Average number of bit-flips when overwriting a 100B
slice with the best of a set of � , � = 1, 2, . . . , 10 randomly
selected slices not containing the original slice.

Fig. 5: Average number of bit-flips when overwriting a 6B key
taken from the first 6 bytes of the words in Lawler’s vocabulary
list with the closest of � keys from the same source, where �

varies � = 1, 2, . . . , 10.

Fig. 2: Average number of bit-flips when overwriting a 4B zip
code from the credit industry complaint data set.

A. Non-Latin Alphabets

At the byte level, encodings matter. Given its importance,
we concentrate on keys encoded with utf-8, a version of
Unicode very popular for web-documents. The utf-8 encoding
is very efficient for English text, as the English character set
is encoded just as the lower half of ASCII. For German,
French, Spanish, or other languages using a Latin character
set, the relatively infrequent letters with accents and Umlauts
are stored in two bytes.

For non-Latin alphabets such as Tamil’s Dravidian and
Hindi’s Devanagari script, utf-8 is not space efficient. Both
scripts vary 7 bits encoded within three bytes for each char-
acter. In contrast, the less common utf-16 only uses two bytes
for each Dravidian or Devanagari character. The Standard
Compression Scheme for Unicode (SCSU) defined in the
Unicode Technical Standard Nr. 6 uses dynamically positioned
windows so that characters belonging to small scripts such
as Devanagari can be encoded in a single byte [6], [7]. As
an alternative to SCSU, Vijayalakshmi and Sasirekha propose
to map the Tamil characters to the upper half of the ASCII
encoding, i.e. between 0x80 and 0xff, characterized by the
first bit being set [17]. While such a compression scheme
uses space more efficiently, the costs of compression and
decompression might mitigate against their use. If such a
compression scheme is used, keys in Tamil or Hindi behave
like keys in English or German. If instead utf-8 is used,
the larger number of bytes to be read increases the read
energy consumption, but in general, overwrites are close in
efficiency to that of English text. Only the interference of
punctuation marks, white spaces, or ASCII numerals cause
alignment issues and generate more bit-flips and hence higher
write energy use.

B. Results

We used the following corpora for our experiments:
(1) The zip codes from a Kaggle dataset collected by A.
Kumar on consumer complaints of financial products from the
Consumer Financial Protection Bureau (CFPB) Open Tech site
[12]. There are 26800 unique zip-codes, stored as integers in

Fig. 3: Average number of bit-flips when overwriting a key
in the Lawler corpus with another one and comparisonwith
the normal distribution with the same mean and standard
deviation.

Fig. 4: Average number of bit-flips when overwriting a 100B
slice with the best of a set of � , � = 1, 2, . . . , 10 randomly
selected slices not containing the original slice.

Fig. 5: Average number of bit-flips when overwriting a 6B key
taken from the first 6 bytes of the words in Lawler’s vocabulary
list with the closest of � keys from the same source, where �

varies � = 1, 2, . . . , 10.

TABLE II: Frequency of bits set in a byte

Bits 0 1 2 3 4 5 6 7 Total Bits Set �

Zip codes 0.44 0.33 0.33 0.34 0.34 0.34 0.32 0.28 2.12 2.12
Zip codes (last 16 b) 0.50 0.50 0.50 0.50 0.51 0.51 0.49 0.43 3.93 3.90
German 0.56 0.49 0.53 0.33 0.33 0.85 0.98 0.04 4.08 2.24
German (miniscules) 0.56 0.46 0.53 0.33 0.33 0.98 0.98 0.04 4.20 2.11
English (Moby Dick) 0.45 0.34 0.48 0.34 0.25 0.96 0.78 0.00 3.60 2.34
English (Lawler) 0.59 0.40 0.54 0.40 0.31 1.00 0.99 0.00 4.22 2.00
Tamil (Tirukkural) 0.28 0.48 0.52 0.51 0.14 0.85 0.33 1.00 4.12 2.37
Tamil (Agananuru) 0.28 0.47 0.52 0.51 0.14 0.85 0.33 1.00 4.10 2.45
Hindi (Bible) 0.22 0.14 0.48 0.18 0.12 0.91 0.33 0.90 3.28 1.65
Hindi (Ambedkar) 0.21 0.16 0.53 0.18 0.15 0.87 0.33 0.99 3.49 1.76
Earthquakes 0.41 0.42 0.41 0.38 0.40 0.42 0.60 0.39 3.44 3.25

Fig. 6: Average number of bit-flips when overwriting a 6B key taken from the first 6 bytes of the words in Davidak’s list with
the closest of � keys from the same source, where the number � of candidates varies between 1 and 10. The graph on the left
shows the results with upper case letters, the one in the middle with upper case letters converted to minuscules, and the one
on the right from the Tirukkural.

Fig. 7: Average number of bit-flips when overwriting a 6B key taken from the first 6 symbols (or 18B) from long words in
Agananuru (left), a Hindi translation of the Old Testament (middle) and a volume of Dalit-leader B.R. Ambedkar (right).

four bytes. Since the largest zip-code is 99999, which is in
hexadecimal 0x1869f, only 17 bits are ever set.
(2) The novel ”Moby Dick” from Project Gutenberg, down-
loaded as utf-8. We divided the novel into slices of 100 bytes
each.
(3) A list of English words by Lawler [13]. We used the first
6 bytes of each word at least this long.
(4) A word list Wortliste of German words collected by the
pseudonymous Davidak [5]. We used the first 6 bytes of each
word at least this long.
(5) The same list moving all capital letters to miniscules.
(6) A list of beginnings of words in Tamil. We used Tirukkural,
the classic collection of poems from the 1st century by Thiru-
valluvar in utf-8 format. We extracted the first six characters,
i.e. first 18B, but ensured uniqueness.
(7) A similar list of beginning of words in Tamil from

Agananuru, another poetry collection.
(8) A list of beginnings of words in Hindi. We used a
translation of part of the Old Testament in the Bible.
(9) A similar list in Hindi taken from Volume 15 of Ambed-
kar’s writings.
(10) Longitude and latitudes stored as floating point numbers
from a list of major earth-quakes from 1974 to 2001. We mixed
longitudes and latitudes and removed duplicate values from the
list.

We use the zip codes as keys as an example where a ”real-
life” data-set has keys that are essentially random, where each
bit is distributed with a Bernoulli distribution with parameter
� = 0.5. A zip code stored as an integer uses two bytes
and additionally the least significant bit of a third byte.
As we can see from Figure 2, the frequency distributions
closely resemble the one from Figure 1. Indeed, the means

Saving Bit-flips through Smart Overwrites in
NVRAM

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2022 • VOLUME XIV • NUMBER 4 37

TABLE II: Frequency of bits set in a byte

Bits 0 1 2 3 4 5 6 7 Total Bits Set �

Zip codes 0.44 0.33 0.33 0.34 0.34 0.34 0.32 0.28 2.12 2.12
Zip codes (last 16 b) 0.50 0.50 0.50 0.50 0.51 0.51 0.49 0.43 3.93 3.90
German 0.56 0.49 0.53 0.33 0.33 0.85 0.98 0.04 4.08 2.24
German (miniscules) 0.56 0.46 0.53 0.33 0.33 0.98 0.98 0.04 4.20 2.11
English (Moby Dick) 0.45 0.34 0.48 0.34 0.25 0.96 0.78 0.00 3.60 2.34
English (Lawler) 0.59 0.40 0.54 0.40 0.31 1.00 0.99 0.00 4.22 2.00
Tamil (Tirukkural) 0.28 0.48 0.52 0.51 0.14 0.85 0.33 1.00 4.12 2.37
Tamil (Agananuru) 0.28 0.47 0.52 0.51 0.14 0.85 0.33 1.00 4.10 2.45
Hindi (Bible) 0.22 0.14 0.48 0.18 0.12 0.91 0.33 0.90 3.28 1.65
Hindi (Ambedkar) 0.21 0.16 0.53 0.18 0.15 0.87 0.33 0.99 3.49 1.76
Earthquakes 0.41 0.42 0.41 0.38 0.40 0.42 0.60 0.39 3.44 3.25

Fig. 6: Average number of bit-flips when overwriting a 6B key taken from the first 6 bytes of the words in Davidak’s list with
the closest of � keys from the same source, where the number � of candidates varies between 1 and 10. The graph on the left
shows the results with upper case letters, the one in the middle with upper case letters converted to minuscules, and the one
on the right from the Tirukkural.

Fig. 7: Average number of bit-flips when overwriting a 6B key taken from the first 6 symbols (or 18B) from long words in
Agananuru (left), a Hindi translation of the Old Testament (middle) and a volume of Dalit-leader B.R. Ambedkar (right).

four bytes. Since the largest zip-code is 99999, which is in
hexadecimal 0x1869f, only 17 bits are ever set.
(2) The novel ”Moby Dick” from Project Gutenberg, down-
loaded as utf-8. We divided the novel into slices of 100 bytes
each.
(3) A list of English words by Lawler [13]. We used the first
6 bytes of each word at least this long.
(4) A word list Wortliste of German words collected by the
pseudonymous Davidak [5]. We used the first 6 bytes of each
word at least this long.
(5) The same list moving all capital letters to miniscules.
(6) A list of beginnings of words in Tamil. We used Tirukkural,
the classic collection of poems from the 1st century by Thiru-
valluvar in utf-8 format. We extracted the first six characters,
i.e. first 18B, but ensured uniqueness.
(7) A similar list of beginning of words in Tamil from

Agananuru, another poetry collection.
(8) A list of beginnings of words in Hindi. We used a
translation of part of the Old Testament in the Bible.
(9) A similar list in Hindi taken from Volume 15 of Ambed-
kar’s writings.
(10) Longitude and latitudes stored as floating point numbers
from a list of major earth-quakes from 1974 to 2001. We mixed
longitudes and latitudes and removed duplicate values from the
list.

We use the zip codes as keys as an example where a ”real-
life” data-set has keys that are essentially random, where each
bit is distributed with a Bernoulli distribution with parameter
� = 0.5. A zip code stored as an integer uses two bytes
and additionally the least significant bit of a third byte.
As we can see from Figure 2, the frequency distributions
closely resemble the one from Figure 1. Indeed, the means

TABLE II
Frequency of bits set in a byte

Fig. 6: Average number of bit-flips when overwriting a 6B key taken from the first 6 bytes of the words in Davidak’s list with the closest of k keys from
the same source, where the number k of candidates varies between 1 and 10. The graph on the left shows the results with upper case letters, the one in

the middle with upper case letters converted to minuscules, and the one on the right from the Tirukkural.

Fig. 7: Average number of bit-flips when overwriting a 6B key taken from the first 6 symbols (or 18B) from long words in Agananuru (left),
a Hindi translation of the Old Testament (middle) and a volume of Dalit-leader B.R. Ambedkar (right).

TABLE II: Frequency of bits set in a byte

Bits 0 1 2 3 4 5 6 7 Total Bits Set �

Zip codes 0.44 0.33 0.33 0.34 0.34 0.34 0.32 0.28 2.12 2.12
Zip codes (last 16 b) 0.50 0.50 0.50 0.50 0.51 0.51 0.49 0.43 3.93 3.90
German 0.56 0.49 0.53 0.33 0.33 0.85 0.98 0.04 4.08 2.24
German (miniscules) 0.56 0.46 0.53 0.33 0.33 0.98 0.98 0.04 4.20 2.11
English (Moby Dick) 0.45 0.34 0.48 0.34 0.25 0.96 0.78 0.00 3.60 2.34
English (Lawler) 0.59 0.40 0.54 0.40 0.31 1.00 0.99 0.00 4.22 2.00
Tamil (Tirukkural) 0.28 0.48 0.52 0.51 0.14 0.85 0.33 1.00 4.12 2.37
Tamil (Agananuru) 0.28 0.47 0.52 0.51 0.14 0.85 0.33 1.00 4.10 2.45
Hindi (Bible) 0.22 0.14 0.48 0.18 0.12 0.91 0.33 0.90 3.28 1.65
Hindi (Ambedkar) 0.21 0.16 0.53 0.18 0.15 0.87 0.33 0.99 3.49 1.76
Earthquakes 0.41 0.42 0.41 0.38 0.40 0.42 0.60 0.39 3.44 3.25

Fig. 6: Average number of bit-flips when overwriting a 6B key taken from the first 6 bytes of the words in Davidak’s list with
the closest of � keys from the same source, where the number � of candidates varies between 1 and 10. The graph on the left
shows the results with upper case letters, the one in the middle with upper case letters converted to minuscules, and the one
on the right from the Tirukkural.

Fig. 7: Average number of bit-flips when overwriting a 6B key taken from the first 6 symbols (or 18B) from long words in
Agananuru (left), a Hindi translation of the Old Testament (middle) and a volume of Dalit-leader B.R. Ambedkar (right).

four bytes. Since the largest zip-code is 99999, which is in
hexadecimal 0x1869f, only 17 bits are ever set.
(2) The novel ”Moby Dick” from Project Gutenberg, down-
loaded as utf-8. We divided the novel into slices of 100 bytes
each.
(3) A list of English words by Lawler [13]. We used the first
6 bytes of each word at least this long.
(4) A word list Wortliste of German words collected by the
pseudonymous Davidak [5]. We used the first 6 bytes of each
word at least this long.
(5) The same list moving all capital letters to miniscules.
(6) A list of beginnings of words in Tamil. We used Tirukkural,
the classic collection of poems from the 1st century by Thiru-
valluvar in utf-8 format. We extracted the first six characters,
i.e. first 18B, but ensured uniqueness.
(7) A similar list of beginning of words in Tamil from

Agananuru, another poetry collection.
(8) A list of beginnings of words in Hindi. We used a
translation of part of the Old Testament in the Bible.
(9) A similar list in Hindi taken from Volume 15 of Ambed-
kar’s writings.
(10) Longitude and latitudes stored as floating point numbers
from a list of major earth-quakes from 1974 to 2001. We mixed
longitudes and latitudes and removed duplicate values from the
list.

We use the zip codes as keys as an example where a ”real-
life” data-set has keys that are essentially random, where each
bit is distributed with a Bernoulli distribution with parameter
� = 0.5. A zip code stored as an integer uses two bytes
and additionally the least significant bit of a third byte.
As we can see from Figure 2, the frequency distributions
closely resemble the one from Figure 1. Indeed, the means

TABLE II: Frequency of bits set in a byte

Bits 0 1 2 3 4 5 6 7 Total Bits Set �

Zip codes 0.44 0.33 0.33 0.34 0.34 0.34 0.32 0.28 2.12 2.12
Zip codes (last 16 b) 0.50 0.50 0.50 0.50 0.51 0.51 0.49 0.43 3.93 3.90
German 0.56 0.49 0.53 0.33 0.33 0.85 0.98 0.04 4.08 2.24
German (miniscules) 0.56 0.46 0.53 0.33 0.33 0.98 0.98 0.04 4.20 2.11
English (Moby Dick) 0.45 0.34 0.48 0.34 0.25 0.96 0.78 0.00 3.60 2.34
English (Lawler) 0.59 0.40 0.54 0.40 0.31 1.00 0.99 0.00 4.22 2.00
Tamil (Tirukkural) 0.28 0.48 0.52 0.51 0.14 0.85 0.33 1.00 4.12 2.37
Tamil (Agananuru) 0.28 0.47 0.52 0.51 0.14 0.85 0.33 1.00 4.10 2.45
Hindi (Bible) 0.22 0.14 0.48 0.18 0.12 0.91 0.33 0.90 3.28 1.65
Hindi (Ambedkar) 0.21 0.16 0.53 0.18 0.15 0.87 0.33 0.99 3.49 1.76
Earthquakes 0.41 0.42 0.41 0.38 0.40 0.42 0.60 0.39 3.44 3.25

Fig. 6: Average number of bit-flips when overwriting a 6B key taken from the first 6 bytes of the words in Davidak’s list with
the closest of � keys from the same source, where the number � of candidates varies between 1 and 10. The graph on the left
shows the results with upper case letters, the one in the middle with upper case letters converted to minuscules, and the one
on the right from the Tirukkural.

Fig. 7: Average number of bit-flips when overwriting a 6B key taken from the first 6 symbols (or 18B) from long words in
Agananuru (left), a Hindi translation of the Old Testament (middle) and a volume of Dalit-leader B.R. Ambedkar (right).

four bytes. Since the largest zip-code is 99999, which is in
hexadecimal 0x1869f, only 17 bits are ever set.
(2) The novel ”Moby Dick” from Project Gutenberg, down-
loaded as utf-8. We divided the novel into slices of 100 bytes
each.
(3) A list of English words by Lawler [13]. We used the first
6 bytes of each word at least this long.
(4) A word list Wortliste of German words collected by the
pseudonymous Davidak [5]. We used the first 6 bytes of each
word at least this long.
(5) The same list moving all capital letters to miniscules.
(6) A list of beginnings of words in Tamil. We used Tirukkural,
the classic collection of poems from the 1st century by Thiru-
valluvar in utf-8 format. We extracted the first six characters,
i.e. first 18B, but ensured uniqueness.
(7) A similar list of beginning of words in Tamil from

Agananuru, another poetry collection.
(8) A list of beginnings of words in Hindi. We used a
translation of part of the Old Testament in the Bible.
(9) A similar list in Hindi taken from Volume 15 of Ambed-
kar’s writings.
(10) Longitude and latitudes stored as floating point numbers
from a list of major earth-quakes from 1974 to 2001. We mixed
longitudes and latitudes and removed duplicate values from the
list.

We use the zip codes as keys as an example where a ”real-
life” data-set has keys that are essentially random, where each
bit is distributed with a Bernoulli distribution with parameter
� = 0.5. A zip code stored as an integer uses two bytes
and additionally the least significant bit of a third byte.
As we can see from Figure 2, the frequency distributions
closely resemble the one from Figure 1. Indeed, the means

TABLE II: Frequency of bits set in a byte

Bits 0 1 2 3 4 5 6 7 Total Bits Set �

Zip codes 0.44 0.33 0.33 0.34 0.34 0.34 0.32 0.28 2.12 2.12
Zip codes (last 16 b) 0.50 0.50 0.50 0.50 0.51 0.51 0.49 0.43 3.93 3.90
German 0.56 0.49 0.53 0.33 0.33 0.85 0.98 0.04 4.08 2.24
German (miniscules) 0.56 0.46 0.53 0.33 0.33 0.98 0.98 0.04 4.20 2.11
English (Moby Dick) 0.45 0.34 0.48 0.34 0.25 0.96 0.78 0.00 3.60 2.34
English (Lawler) 0.59 0.40 0.54 0.40 0.31 1.00 0.99 0.00 4.22 2.00
Tamil (Tirukkural) 0.28 0.48 0.52 0.51 0.14 0.85 0.33 1.00 4.12 2.37
Tamil (Agananuru) 0.28 0.47 0.52 0.51 0.14 0.85 0.33 1.00 4.10 2.45
Hindi (Bible) 0.22 0.14 0.48 0.18 0.12 0.91 0.33 0.90 3.28 1.65
Hindi (Ambedkar) 0.21 0.16 0.53 0.18 0.15 0.87 0.33 0.99 3.49 1.76
Earthquakes 0.41 0.42 0.41 0.38 0.40 0.42 0.60 0.39 3.44 3.25

Fig. 6: Average number of bit-flips when overwriting a 6B key taken from the first 6 bytes of the words in Davidak’s list with
the closest of � keys from the same source, where the number � of candidates varies between 1 and 10. The graph on the left
shows the results with upper case letters, the one in the middle with upper case letters converted to minuscules, and the one
on the right from the Tirukkural.

Fig. 7: Average number of bit-flips when overwriting a 6B key taken from the first 6 symbols (or 18B) from long words in
Agananuru (left), a Hindi translation of the Old Testament (middle) and a volume of Dalit-leader B.R. Ambedkar (right).

four bytes. Since the largest zip-code is 99999, which is in
hexadecimal 0x1869f, only 17 bits are ever set.
(2) The novel ”Moby Dick” from Project Gutenberg, down-
loaded as utf-8. We divided the novel into slices of 100 bytes
each.
(3) A list of English words by Lawler [13]. We used the first
6 bytes of each word at least this long.
(4) A word list Wortliste of German words collected by the
pseudonymous Davidak [5]. We used the first 6 bytes of each
word at least this long.
(5) The same list moving all capital letters to miniscules.
(6) A list of beginnings of words in Tamil. We used Tirukkural,
the classic collection of poems from the 1st century by Thiru-
valluvar in utf-8 format. We extracted the first six characters,
i.e. first 18B, but ensured uniqueness.
(7) A similar list of beginning of words in Tamil from

Agananuru, another poetry collection.
(8) A list of beginnings of words in Hindi. We used a
translation of part of the Old Testament in the Bible.
(9) A similar list in Hindi taken from Volume 15 of Ambed-
kar’s writings.
(10) Longitude and latitudes stored as floating point numbers
from a list of major earth-quakes from 1974 to 2001. We mixed
longitudes and latitudes and removed duplicate values from the
list.

We use the zip codes as keys as an example where a ”real-
life” data-set has keys that are essentially random, where each
bit is distributed with a Bernoulli distribution with parameter
� = 0.5. A zip code stored as an integer uses two bytes
and additionally the least significant bit of a third byte.
As we can see from Figure 2, the frequency distributions
closely resemble the one from Figure 1. Indeed, the means

TABLE II: Frequency of bits set in a byte

Bits 0 1 2 3 4 5 6 7 Total Bits Set �

Zip codes 0.44 0.33 0.33 0.34 0.34 0.34 0.32 0.28 2.12 2.12
Zip codes (last 16 b) 0.50 0.50 0.50 0.50 0.51 0.51 0.49 0.43 3.93 3.90
German 0.56 0.49 0.53 0.33 0.33 0.85 0.98 0.04 4.08 2.24
German (miniscules) 0.56 0.46 0.53 0.33 0.33 0.98 0.98 0.04 4.20 2.11
English (Moby Dick) 0.45 0.34 0.48 0.34 0.25 0.96 0.78 0.00 3.60 2.34
English (Lawler) 0.59 0.40 0.54 0.40 0.31 1.00 0.99 0.00 4.22 2.00
Tamil (Tirukkural) 0.28 0.48 0.52 0.51 0.14 0.85 0.33 1.00 4.12 2.37
Tamil (Agananuru) 0.28 0.47 0.52 0.51 0.14 0.85 0.33 1.00 4.10 2.45
Hindi (Bible) 0.22 0.14 0.48 0.18 0.12 0.91 0.33 0.90 3.28 1.65
Hindi (Ambedkar) 0.21 0.16 0.53 0.18 0.15 0.87 0.33 0.99 3.49 1.76
Earthquakes 0.41 0.42 0.41 0.38 0.40 0.42 0.60 0.39 3.44 3.25

Fig. 6: Average number of bit-flips when overwriting a 6B key taken from the first 6 bytes of the words in Davidak’s list with
the closest of � keys from the same source, where the number � of candidates varies between 1 and 10. The graph on the left
shows the results with upper case letters, the one in the middle with upper case letters converted to minuscules, and the one
on the right from the Tirukkural.

Fig. 7: Average number of bit-flips when overwriting a 6B key taken from the first 6 symbols (or 18B) from long words in
Agananuru (left), a Hindi translation of the Old Testament (middle) and a volume of Dalit-leader B.R. Ambedkar (right).

four bytes. Since the largest zip-code is 99999, which is in
hexadecimal 0x1869f, only 17 bits are ever set.
(2) The novel ”Moby Dick” from Project Gutenberg, down-
loaded as utf-8. We divided the novel into slices of 100 bytes
each.
(3) A list of English words by Lawler [13]. We used the first
6 bytes of each word at least this long.
(4) A word list Wortliste of German words collected by the
pseudonymous Davidak [5]. We used the first 6 bytes of each
word at least this long.
(5) The same list moving all capital letters to miniscules.
(6) A list of beginnings of words in Tamil. We used Tirukkural,
the classic collection of poems from the 1st century by Thiru-
valluvar in utf-8 format. We extracted the first six characters,
i.e. first 18B, but ensured uniqueness.
(7) A similar list of beginning of words in Tamil from

Agananuru, another poetry collection.
(8) A list of beginnings of words in Hindi. We used a
translation of part of the Old Testament in the Bible.
(9) A similar list in Hindi taken from Volume 15 of Ambed-
kar’s writings.
(10) Longitude and latitudes stored as floating point numbers
from a list of major earth-quakes from 1974 to 2001. We mixed
longitudes and latitudes and removed duplicate values from the
list.

We use the zip codes as keys as an example where a ”real-
life” data-set has keys that are essentially random, where each
bit is distributed with a Bernoulli distribution with parameter
� = 0.5. A zip code stored as an integer uses two bytes
and additionally the least significant bit of a third byte.
As we can see from Figure 2, the frequency distributions
closely resemble the one from Figure 1. Indeed, the means

TABLE II: Frequency of bits set in a byte

Bits 0 1 2 3 4 5 6 7 Total Bits Set �

Zip codes 0.44 0.33 0.33 0.34 0.34 0.34 0.32 0.28 2.12 2.12
Zip codes (last 16 b) 0.50 0.50 0.50 0.50 0.51 0.51 0.49 0.43 3.93 3.90
German 0.56 0.49 0.53 0.33 0.33 0.85 0.98 0.04 4.08 2.24
German (miniscules) 0.56 0.46 0.53 0.33 0.33 0.98 0.98 0.04 4.20 2.11
English (Moby Dick) 0.45 0.34 0.48 0.34 0.25 0.96 0.78 0.00 3.60 2.34
English (Lawler) 0.59 0.40 0.54 0.40 0.31 1.00 0.99 0.00 4.22 2.00
Tamil (Tirukkural) 0.28 0.48 0.52 0.51 0.14 0.85 0.33 1.00 4.12 2.37
Tamil (Agananuru) 0.28 0.47 0.52 0.51 0.14 0.85 0.33 1.00 4.10 2.45
Hindi (Bible) 0.22 0.14 0.48 0.18 0.12 0.91 0.33 0.90 3.28 1.65
Hindi (Ambedkar) 0.21 0.16 0.53 0.18 0.15 0.87 0.33 0.99 3.49 1.76
Earthquakes 0.41 0.42 0.41 0.38 0.40 0.42 0.60 0.39 3.44 3.25

Fig. 6: Average number of bit-flips when overwriting a 6B key taken from the first 6 bytes of the words in Davidak’s list with
the closest of � keys from the same source, where the number � of candidates varies between 1 and 10. The graph on the left
shows the results with upper case letters, the one in the middle with upper case letters converted to minuscules, and the one
on the right from the Tirukkural.

Fig. 7: Average number of bit-flips when overwriting a 6B key taken from the first 6 symbols (or 18B) from long words in
Agananuru (left), a Hindi translation of the Old Testament (middle) and a volume of Dalit-leader B.R. Ambedkar (right).

four bytes. Since the largest zip-code is 99999, which is in
hexadecimal 0x1869f, only 17 bits are ever set.
(2) The novel ”Moby Dick” from Project Gutenberg, down-
loaded as utf-8. We divided the novel into slices of 100 bytes
each.
(3) A list of English words by Lawler [13]. We used the first
6 bytes of each word at least this long.
(4) A word list Wortliste of German words collected by the
pseudonymous Davidak [5]. We used the first 6 bytes of each
word at least this long.
(5) The same list moving all capital letters to miniscules.
(6) A list of beginnings of words in Tamil. We used Tirukkural,
the classic collection of poems from the 1st century by Thiru-
valluvar in utf-8 format. We extracted the first six characters,
i.e. first 18B, but ensured uniqueness.
(7) A similar list of beginning of words in Tamil from

Agananuru, another poetry collection.
(8) A list of beginnings of words in Hindi. We used a
translation of part of the Old Testament in the Bible.
(9) A similar list in Hindi taken from Volume 15 of Ambed-
kar’s writings.
(10) Longitude and latitudes stored as floating point numbers
from a list of major earth-quakes from 1974 to 2001. We mixed
longitudes and latitudes and removed duplicate values from the
list.

We use the zip codes as keys as an example where a ”real-
life” data-set has keys that are essentially random, where each
bit is distributed with a Bernoulli distribution with parameter
� = 0.5. A zip code stored as an integer uses two bytes
and additionally the least significant bit of a third byte.
As we can see from Figure 2, the frequency distributions
closely resemble the one from Figure 1. Indeed, the means

of the minima of � Binomial distributions with parameters
� = 17 (corresponding to the 17 bits used for a zip code) and
� = 0.5 are 8.5, 7.34541, 6.76812, 6.39478, 6.12341, 5.91242,
5.74099, 5.59733, 5.47414, and 5.36662 for � = 1, . . . , 10.
Another example for this behavior would be keys derived from
a good hash function such as MD5 or the SHA series.

We first calculated the bits set in each text corpus, Table II.
The number for Latin alphabets is quite close, but still reflects
differences. The numbers for the non-Latin alphabets are quite
different. From these numbers alone, we can understand why
overwriting text from one corpus with text from another corpus
does not flip on average four bits per byte. Depending on
the corpus, we can also define a most likely byte. Instead
of replacing a deleted key with zero bytes, we could replace
it with this most-likely byte. Unfortunately, this is somewhat
dangerous, as the most likely byte is a normal letter, the
character ’a’ for German and English, and not special, like
the zero byte. The last column of Table II gives the average
distance � of a byte in the corpus to the most-likely byte.
Overwriting stale keys with a sequence of this most-likely
byte costs 2� bit-flips, resulting in strong savings compared
to a policy of zeroing out stale keys. In the case of keys in
a non-Latin alphabet, stored as a combination of bytes, we
still advocate the use of a single most likely byte in order to
avoid alignment problems such as those resulting from using
(ASCII) digits or punctuations within the key, as the latter are
encoded as a single byte.

Next, we calculate the expected number of bit-flips of
overwriting with a new key, either a single, stale key or
the closest (according to the Hamming distance) key of �

candidate stale keys. We determined the Hamming distance
between each key and the best of a sample of � candidate
keys for a total of 300 samples per key. The results are given
in Figures 5, 4, 6, and 7. The results look remarkably similar.
Especially for � = 1, where we just overwrite a single key, the
distribution looks remarkably similar. Figure 3 compares the
value for the Lawler corpus with a normal approximation. (The
Lawler distribution is discrete, and the normal approximation
uses the difference between the CDF of the normal distribution
at � + 0.5 and � − 0.5 as the discrete PDF, as is usual.)
While optically, the approximation is very good, but skew and
kurtosis are significantly different and as the �2 value is over
20, 000, the frequency distribution is definitely not normally
distributed. When we look at the mean of order statistics (e.g.
the minimum of � independently and identically distributed
random variables,) then the difference also becomes obvious.

The numbers for the earthquake data set have peculiarities
that we can ascribe to the nature of representations of floating
point number. The curve for � = 1 is tri-modal and all
other ones are bi-modal. Also, the decrease in the expected
value �� of the bit-flips when selecting from � candidates is
less pronounced. Despite these differences, the overall picture
remains roughly the same.

The savings obtained by using more candidate keys for
overwriting are remarkably similar. If the number of bit-flips
has mean � and a standard deviation of �, then selecting the
best of four candidate key fields (with previously deleted keys)
lowers the expected number of bit-flips to � − �. Moving to

Fig. 8: Average number of bit-flips when overwriting a 8B key
formed by a floating point number representing the longitude
and latitude of epicenters of major earthquakes from 1970 to
2014. We select the best of � candidate keys, where � varies
from 1 to 10.

the best of ten candidate fields does not lower the expected
number of bit-flips to � − 2�.

C. Confirmation

In our fixed sized bucket of key – pointer to record data
structure keys marked as deleted stay until they are over-
written. Therefore, an outlier from the population might stay
much longer than expected. We call this the persistent outlier
phenomenon. Basically, the set of candidate deleted keys is no
longer random in such a bucket.

To test this, we use a data set downloaded from Kaggle [15]
that contains product reviews. We used the 14B long Amazon
user identifiers as our key stand-ins. When we simulated
a single slot by overwriting the current user ID with the
following user ID, we notice that there is a visible deviation
from the normal bell-shaped frequency curve.

We then simulated the behavior of a small bucket with �

keys. After filling up the bucket, all keys are deleted. A record
with a certain key is inserted and in a short time deleted.
When the key is inserted, we look for the nearest deleted key
according to the Hamming distance. We calculated the number
of bit-flips for this scenario going through all the user IDs. As
we can see behavior does not quite match the previous data
sets. The decrease in the mean of number of bit-flips is less
pronounced.

A comparison with the minimum number of bit-flips when
overwriting one of the candidates in a �-element set, Figure 9,
bottom, does show some deviations. The calculated standard
deviation of the bit-flip numbers � is considerably and consis-
tently smaller. On the other hand, the means are almost equal.
Thus, the persistent outlier is not a problem, at least not for
this data set.

V. RECOMMENDATIONS

We now combine our results to evaluate performance. We
measure the expected costs for each strategy in multiples of

Saving Bit-flips through Smart Overwrites in
NVRAM

DECEMBER 2022 • VOLUME XIV • NUMBER 438

INFOCOMMUNICATIONS JOURNAL

of the minima of � Binomial distributions with parameters
� = 17 (corresponding to the 17 bits used for a zip code) and
� = 0.5 are 8.5, 7.34541, 6.76812, 6.39478, 6.12341, 5.91242,
5.74099, 5.59733, 5.47414, and 5.36662 for � = 1, . . . , 10.
Another example for this behavior would be keys derived from
a good hash function such as MD5 or the SHA series.

We first calculated the bits set in each text corpus, Table II.
The number for Latin alphabets is quite close, but still reflects
differences. The numbers for the non-Latin alphabets are quite
different. From these numbers alone, we can understand why
overwriting text from one corpus with text from another corpus
does not flip on average four bits per byte. Depending on
the corpus, we can also define a most likely byte. Instead
of replacing a deleted key with zero bytes, we could replace
it with this most-likely byte. Unfortunately, this is somewhat
dangerous, as the most likely byte is a normal letter, the
character ’a’ for German and English, and not special, like
the zero byte. The last column of Table II gives the average
distance � of a byte in the corpus to the most-likely byte.
Overwriting stale keys with a sequence of this most-likely
byte costs 2� bit-flips, resulting in strong savings compared
to a policy of zeroing out stale keys. In the case of keys in
a non-Latin alphabet, stored as a combination of bytes, we
still advocate the use of a single most likely byte in order to
avoid alignment problems such as those resulting from using
(ASCII) digits or punctuations within the key, as the latter are
encoded as a single byte.

Next, we calculate the expected number of bit-flips of
overwriting with a new key, either a single, stale key or
the closest (according to the Hamming distance) key of �

candidate stale keys. We determined the Hamming distance
between each key and the best of a sample of � candidate
keys for a total of 300 samples per key. The results are given
in Figures 5, 4, 6, and 7. The results look remarkably similar.
Especially for � = 1, where we just overwrite a single key, the
distribution looks remarkably similar. Figure 3 compares the
value for the Lawler corpus with a normal approximation. (The
Lawler distribution is discrete, and the normal approximation
uses the difference between the CDF of the normal distribution
at � + 0.5 and � − 0.5 as the discrete PDF, as is usual.)
While optically, the approximation is very good, but skew and
kurtosis are significantly different and as the �2 value is over
20, 000, the frequency distribution is definitely not normally
distributed. When we look at the mean of order statistics (e.g.
the minimum of � independently and identically distributed
random variables,) then the difference also becomes obvious.

The numbers for the earthquake data set have peculiarities
that we can ascribe to the nature of representations of floating
point number. The curve for � = 1 is tri-modal and all
other ones are bi-modal. Also, the decrease in the expected
value �� of the bit-flips when selecting from � candidates is
less pronounced. Despite these differences, the overall picture
remains roughly the same.

The savings obtained by using more candidate keys for
overwriting are remarkably similar. If the number of bit-flips
has mean � and a standard deviation of �, then selecting the
best of four candidate key fields (with previously deleted keys)
lowers the expected number of bit-flips to � − �. Moving to

Fig. 8: Average number of bit-flips when overwriting a 8B key
formed by a floating point number representing the longitude
and latitude of epicenters of major earthquakes from 1970 to
2014. We select the best of � candidate keys, where � varies
from 1 to 10.

the best of ten candidate fields does not lower the expected
number of bit-flips to � − 2�.

C. Confirmation

In our fixed sized bucket of key – pointer to record data
structure keys marked as deleted stay until they are over-
written. Therefore, an outlier from the population might stay
much longer than expected. We call this the persistent outlier
phenomenon. Basically, the set of candidate deleted keys is no
longer random in such a bucket.

To test this, we use a data set downloaded from Kaggle [15]
that contains product reviews. We used the 14B long Amazon
user identifiers as our key stand-ins. When we simulated
a single slot by overwriting the current user ID with the
following user ID, we notice that there is a visible deviation
from the normal bell-shaped frequency curve.

We then simulated the behavior of a small bucket with �

keys. After filling up the bucket, all keys are deleted. A record
with a certain key is inserted and in a short time deleted.
When the key is inserted, we look for the nearest deleted key
according to the Hamming distance. We calculated the number
of bit-flips for this scenario going through all the user IDs. As
we can see behavior does not quite match the previous data
sets. The decrease in the mean of number of bit-flips is less
pronounced.

A comparison with the minimum number of bit-flips when
overwriting one of the candidates in a �-element set, Figure 9,
bottom, does show some deviations. The calculated standard
deviation of the bit-flip numbers � is considerably and consis-
tently smaller. On the other hand, the means are almost equal.
Thus, the persistent outlier is not a problem, at least not for
this data set.

V. RECOMMENDATIONS

We now combine our results to evaluate performance. We
measure the expected costs for each strategy in multiples of

of the minima of � Binomial distributions with parameters
� = 17 (corresponding to the 17 bits used for a zip code) and
� = 0.5 are 8.5, 7.34541, 6.76812, 6.39478, 6.12341, 5.91242,
5.74099, 5.59733, 5.47414, and 5.36662 for � = 1, . . . , 10.
Another example for this behavior would be keys derived from
a good hash function such as MD5 or the SHA series.

We first calculated the bits set in each text corpus, Table II.
The number for Latin alphabets is quite close, but still reflects
differences. The numbers for the non-Latin alphabets are quite
different. From these numbers alone, we can understand why
overwriting text from one corpus with text from another corpus
does not flip on average four bits per byte. Depending on
the corpus, we can also define a most likely byte. Instead
of replacing a deleted key with zero bytes, we could replace
it with this most-likely byte. Unfortunately, this is somewhat
dangerous, as the most likely byte is a normal letter, the
character ’a’ for German and English, and not special, like
the zero byte. The last column of Table II gives the average
distance � of a byte in the corpus to the most-likely byte.
Overwriting stale keys with a sequence of this most-likely
byte costs 2� bit-flips, resulting in strong savings compared
to a policy of zeroing out stale keys. In the case of keys in
a non-Latin alphabet, stored as a combination of bytes, we
still advocate the use of a single most likely byte in order to
avoid alignment problems such as those resulting from using
(ASCII) digits or punctuations within the key, as the latter are
encoded as a single byte.

Next, we calculate the expected number of bit-flips of
overwriting with a new key, either a single, stale key or
the closest (according to the Hamming distance) key of �

candidate stale keys. We determined the Hamming distance
between each key and the best of a sample of � candidate
keys for a total of 300 samples per key. The results are given
in Figures 5, 4, 6, and 7. The results look remarkably similar.
Especially for � = 1, where we just overwrite a single key, the
distribution looks remarkably similar. Figure 3 compares the
value for the Lawler corpus with a normal approximation. (The
Lawler distribution is discrete, and the normal approximation
uses the difference between the CDF of the normal distribution
at � + 0.5 and � − 0.5 as the discrete PDF, as is usual.)
While optically, the approximation is very good, but skew and
kurtosis are significantly different and as the �2 value is over
20, 000, the frequency distribution is definitely not normally
distributed. When we look at the mean of order statistics (e.g.
the minimum of � independently and identically distributed
random variables,) then the difference also becomes obvious.

The numbers for the earthquake data set have peculiarities
that we can ascribe to the nature of representations of floating
point number. The curve for � = 1 is tri-modal and all
other ones are bi-modal. Also, the decrease in the expected
value �� of the bit-flips when selecting from � candidates is
less pronounced. Despite these differences, the overall picture
remains roughly the same.

The savings obtained by using more candidate keys for
overwriting are remarkably similar. If the number of bit-flips
has mean � and a standard deviation of �, then selecting the
best of four candidate key fields (with previously deleted keys)
lowers the expected number of bit-flips to � − �. Moving to

Fig. 8: Average number of bit-flips when overwriting a 8B key
formed by a floating point number representing the longitude
and latitude of epicenters of major earthquakes from 1970 to
2014. We select the best of � candidate keys, where � varies
from 1 to 10.

the best of ten candidate fields does not lower the expected
number of bit-flips to � − 2�.

C. Confirmation

In our fixed sized bucket of key – pointer to record data
structure keys marked as deleted stay until they are over-
written. Therefore, an outlier from the population might stay
much longer than expected. We call this the persistent outlier
phenomenon. Basically, the set of candidate deleted keys is no
longer random in such a bucket.

To test this, we use a data set downloaded from Kaggle [15]
that contains product reviews. We used the 14B long Amazon
user identifiers as our key stand-ins. When we simulated
a single slot by overwriting the current user ID with the
following user ID, we notice that there is a visible deviation
from the normal bell-shaped frequency curve.

We then simulated the behavior of a small bucket with �

keys. After filling up the bucket, all keys are deleted. A record
with a certain key is inserted and in a short time deleted.
When the key is inserted, we look for the nearest deleted key
according to the Hamming distance. We calculated the number
of bit-flips for this scenario going through all the user IDs. As
we can see behavior does not quite match the previous data
sets. The decrease in the mean of number of bit-flips is less
pronounced.

A comparison with the minimum number of bit-flips when
overwriting one of the candidates in a �-element set, Figure 9,
bottom, does show some deviations. The calculated standard
deviation of the bit-flip numbers � is considerably and consis-
tently smaller. On the other hand, the means are almost equal.
Thus, the persistent outlier is not a problem, at least not for
this data set.

V. RECOMMENDATIONS

We now combine our results to evaluate performance. We
measure the expected costs for each strategy in multiples of

of the minima of � Binomial distributions with parameters
� = 17 (corresponding to the 17 bits used for a zip code) and
� = 0.5 are 8.5, 7.34541, 6.76812, 6.39478, 6.12341, 5.91242,
5.74099, 5.59733, 5.47414, and 5.36662 for � = 1, . . . , 10.
Another example for this behavior would be keys derived from
a good hash function such as MD5 or the SHA series.

We first calculated the bits set in each text corpus, Table II.
The number for Latin alphabets is quite close, but still reflects
differences. The numbers for the non-Latin alphabets are quite
different. From these numbers alone, we can understand why
overwriting text from one corpus with text from another corpus
does not flip on average four bits per byte. Depending on
the corpus, we can also define a most likely byte. Instead
of replacing a deleted key with zero bytes, we could replace
it with this most-likely byte. Unfortunately, this is somewhat
dangerous, as the most likely byte is a normal letter, the
character ’a’ for German and English, and not special, like
the zero byte. The last column of Table II gives the average
distance � of a byte in the corpus to the most-likely byte.
Overwriting stale keys with a sequence of this most-likely
byte costs 2� bit-flips, resulting in strong savings compared
to a policy of zeroing out stale keys. In the case of keys in
a non-Latin alphabet, stored as a combination of bytes, we
still advocate the use of a single most likely byte in order to
avoid alignment problems such as those resulting from using
(ASCII) digits or punctuations within the key, as the latter are
encoded as a single byte.

Next, we calculate the expected number of bit-flips of
overwriting with a new key, either a single, stale key or
the closest (according to the Hamming distance) key of �

candidate stale keys. We determined the Hamming distance
between each key and the best of a sample of � candidate
keys for a total of 300 samples per key. The results are given
in Figures 5, 4, 6, and 7. The results look remarkably similar.
Especially for � = 1, where we just overwrite a single key, the
distribution looks remarkably similar. Figure 3 compares the
value for the Lawler corpus with a normal approximation. (The
Lawler distribution is discrete, and the normal approximation
uses the difference between the CDF of the normal distribution
at � + 0.5 and � − 0.5 as the discrete PDF, as is usual.)
While optically, the approximation is very good, but skew and
kurtosis are significantly different and as the �2 value is over
20, 000, the frequency distribution is definitely not normally
distributed. When we look at the mean of order statistics (e.g.
the minimum of � independently and identically distributed
random variables,) then the difference also becomes obvious.

The numbers for the earthquake data set have peculiarities
that we can ascribe to the nature of representations of floating
point number. The curve for � = 1 is tri-modal and all
other ones are bi-modal. Also, the decrease in the expected
value �� of the bit-flips when selecting from � candidates is
less pronounced. Despite these differences, the overall picture
remains roughly the same.

The savings obtained by using more candidate keys for
overwriting are remarkably similar. If the number of bit-flips
has mean � and a standard deviation of �, then selecting the
best of four candidate key fields (with previously deleted keys)
lowers the expected number of bit-flips to � − �. Moving to

Fig. 8: Average number of bit-flips when overwriting a 8B key
formed by a floating point number representing the longitude
and latitude of epicenters of major earthquakes from 1970 to
2014. We select the best of � candidate keys, where � varies
from 1 to 10.

the best of ten candidate fields does not lower the expected
number of bit-flips to � − 2�.

C. Confirmation

In our fixed sized bucket of key – pointer to record data
structure keys marked as deleted stay until they are over-
written. Therefore, an outlier from the population might stay
much longer than expected. We call this the persistent outlier
phenomenon. Basically, the set of candidate deleted keys is no
longer random in such a bucket.

To test this, we use a data set downloaded from Kaggle [15]
that contains product reviews. We used the 14B long Amazon
user identifiers as our key stand-ins. When we simulated
a single slot by overwriting the current user ID with the
following user ID, we notice that there is a visible deviation
from the normal bell-shaped frequency curve.

We then simulated the behavior of a small bucket with �

keys. After filling up the bucket, all keys are deleted. A record
with a certain key is inserted and in a short time deleted.
When the key is inserted, we look for the nearest deleted key
according to the Hamming distance. We calculated the number
of bit-flips for this scenario going through all the user IDs. As
we can see behavior does not quite match the previous data
sets. The decrease in the mean of number of bit-flips is less
pronounced.

A comparison with the minimum number of bit-flips when
overwriting one of the candidates in a �-element set, Figure 9,
bottom, does show some deviations. The calculated standard
deviation of the bit-flip numbers � is considerably and consis-
tently smaller. On the other hand, the means are almost equal.
Thus, the persistent outlier is not a problem, at least not for
this data set.

V. RECOMMENDATIONS

We now combine our results to evaluate performance. We
measure the expected costs for each strategy in multiples of

of the minima of � Binomial distributions with parameters
� = 17 (corresponding to the 17 bits used for a zip code) and
� = 0.5 are 8.5, 7.34541, 6.76812, 6.39478, 6.12341, 5.91242,
5.74099, 5.59733, 5.47414, and 5.36662 for � = 1, . . . , 10.
Another example for this behavior would be keys derived from
a good hash function such as MD5 or the SHA series.

We first calculated the bits set in each text corpus, Table II.
The number for Latin alphabets is quite close, but still reflects
differences. The numbers for the non-Latin alphabets are quite
different. From these numbers alone, we can understand why
overwriting text from one corpus with text from another corpus
does not flip on average four bits per byte. Depending on
the corpus, we can also define a most likely byte. Instead
of replacing a deleted key with zero bytes, we could replace
it with this most-likely byte. Unfortunately, this is somewhat
dangerous, as the most likely byte is a normal letter, the
character ’a’ for German and English, and not special, like
the zero byte. The last column of Table II gives the average
distance � of a byte in the corpus to the most-likely byte.
Overwriting stale keys with a sequence of this most-likely
byte costs 2� bit-flips, resulting in strong savings compared
to a policy of zeroing out stale keys. In the case of keys in
a non-Latin alphabet, stored as a combination of bytes, we
still advocate the use of a single most likely byte in order to
avoid alignment problems such as those resulting from using
(ASCII) digits or punctuations within the key, as the latter are
encoded as a single byte.

Next, we calculate the expected number of bit-flips of
overwriting with a new key, either a single, stale key or
the closest (according to the Hamming distance) key of �

candidate stale keys. We determined the Hamming distance
between each key and the best of a sample of � candidate
keys for a total of 300 samples per key. The results are given
in Figures 5, 4, 6, and 7. The results look remarkably similar.
Especially for � = 1, where we just overwrite a single key, the
distribution looks remarkably similar. Figure 3 compares the
value for the Lawler corpus with a normal approximation. (The
Lawler distribution is discrete, and the normal approximation
uses the difference between the CDF of the normal distribution
at � + 0.5 and � − 0.5 as the discrete PDF, as is usual.)
While optically, the approximation is very good, but skew and
kurtosis are significantly different and as the �2 value is over
20, 000, the frequency distribution is definitely not normally
distributed. When we look at the mean of order statistics (e.g.
the minimum of � independently and identically distributed
random variables,) then the difference also becomes obvious.

The numbers for the earthquake data set have peculiarities
that we can ascribe to the nature of representations of floating
point number. The curve for � = 1 is tri-modal and all
other ones are bi-modal. Also, the decrease in the expected
value �� of the bit-flips when selecting from � candidates is
less pronounced. Despite these differences, the overall picture
remains roughly the same.

The savings obtained by using more candidate keys for
overwriting are remarkably similar. If the number of bit-flips
has mean � and a standard deviation of �, then selecting the
best of four candidate key fields (with previously deleted keys)
lowers the expected number of bit-flips to � − �. Moving to

Fig. 8: Average number of bit-flips when overwriting a 8B key
formed by a floating point number representing the longitude
and latitude of epicenters of major earthquakes from 1970 to
2014. We select the best of � candidate keys, where � varies
from 1 to 10.

the best of ten candidate fields does not lower the expected
number of bit-flips to � − 2�.

C. Confirmation

In our fixed sized bucket of key – pointer to record data
structure keys marked as deleted stay until they are over-
written. Therefore, an outlier from the population might stay
much longer than expected. We call this the persistent outlier
phenomenon. Basically, the set of candidate deleted keys is no
longer random in such a bucket.

To test this, we use a data set downloaded from Kaggle [15]
that contains product reviews. We used the 14B long Amazon
user identifiers as our key stand-ins. When we simulated
a single slot by overwriting the current user ID with the
following user ID, we notice that there is a visible deviation
from the normal bell-shaped frequency curve.

We then simulated the behavior of a small bucket with �

keys. After filling up the bucket, all keys are deleted. A record
with a certain key is inserted and in a short time deleted.
When the key is inserted, we look for the nearest deleted key
according to the Hamming distance. We calculated the number
of bit-flips for this scenario going through all the user IDs. As
we can see behavior does not quite match the previous data
sets. The decrease in the mean of number of bit-flips is less
pronounced.

A comparison with the minimum number of bit-flips when
overwriting one of the candidates in a �-element set, Figure 9,
bottom, does show some deviations. The calculated standard
deviation of the bit-flip numbers � is considerably and consis-
tently smaller. On the other hand, the means are almost equal.
Thus, the persistent outlier is not a problem, at least not for
this data set.

V. RECOMMENDATIONS

We now combine our results to evaluate performance. We
measure the expected costs for each strategy in multiples of

Fig. 8: Average number of bit-flips when overwriting a 8B key formed
by a floating point number representing the longitude and latitude of

epicenters of major earthquakes from 1970 to 2014. We select the best of
k candidate keys, where k varies from 1 to 10.

Fig. 9: Observed number of bit-flips for Amazon User IDs. The left shows the numbers when actually using the scheme, the
right shows the numbers when using random elements.

the energy of one bit being written. For example, if the read
energy is one tenth of the energy of a write, then writing 15
bits and reading 20 bits costs the energy spent to write to 17
bits.

We first consider the case where data on the NVRAM is
accessed directly, without a cache. This might be the case for
an embedded device. The costs for the zeroing strategy are
simply twice the average number of bits set per byte times
the size of the key. The costs for checking � candidate state
keys to find the write victim to overwrite are 2 bits in the
valid-bit field. The number of bits written is determined by
the corresponding experimental value. We need to add to this
the costs of reading � − 1 candidates. The cost of reading the
first is already included in the write costs as we are using read
before write. If � is the ratio of read over write energies, then
this adds � × (� − 1) times the size of the key to our energy
bill.

Figure 10 shows the energy costs for uniformly distributed
random keys of length 4B. The zeroing strategy loses against
the simple overwrite strategy. If reads take much less energy
than writes, comparing a key to be inserted with up to
five stale keys makes sense. As the read energy increases
slightly, the number of comparisons goes down. Figure 11
gives the numbers for 6B keys derived from Lawler’s word
list, representing keys that are English strings. Here, zeroing
is even less attractive. Depending on the costs of reads over
writes, it makes sense to read up to four stale keys. Note in
both cases that a more typical value for � is 0.15, so that the
recommendation in both cases is to only select one stale key
and over-write it.

Our argumentation breaks down, of course, if caching is
used. Whenever we access a byte, we will cause a cache line’s
worth of data to be read. When the cache line is written back to
NVRAM, only the bits that have changed are actually written,
leading to the use of energy. To exploit the use of caching,
our data structure needs to be cache-line aware. Presumably,
the valid-bit array is part of the header of the bucket data
structure, which will need to be read for every access. We can
also assume that bucket data structures are cache-line aligned.

Thus, each bucket will consist of a number of sub-buckets,
each contained in a single cache-line.

If we want to insert a key, and there is at least one slot in
the first sub-bucket, we have to decide whether we want to
read more sub-buckets with open slots. When we do so, each
sub-bucket accessed costs us read energy. As before, let us
denote by �ℎ� the ratio of the energy costs of reading a bit
over the energy costs of writing a bit. A typical cache-line has
64B or 512b. If we decide to load a sub-bucket of this size
into cache, we have 512� costs. Denote the expected number
of bits written after finding the best of � candidates, 1 ≤ �,

with �� . Then on the other side of the ledger, if we have
already located � stale data items and now decide on whether
to read a sub-bucket with � stale data items, then reading the
sub-bucket will save �� − ��+ � writes, but costs the equivalent
of 512� bits written. Thus, we should read a sub-bucket if

�� − ��+ � > 512�.

Since a typical value for � is 1/5 or more for PCM, the costs
savings have to be at least 100 bits written. A review of our
experimental results suggests that savings of more than 1b per
byte key length is unrealistic. In Figure 12, we illustrate this
decision procedure. If � candidate keys are already read, we
select the unread sub-bucket with the most number of keys.
Assume that there are � keys in it. We then calculate the
minimum number of the ratio of write energy per bit over
read energy per bit (that is 1/�) to save bitflips by reading the
yet unread sub-bucket. Of course, if we read the beginning of
the bucket and do not find a candidate for overwriting there,
we will have to read a sub-bucket with a candidate. If there is
no such sub-bucket, we will have to create an overflow page.
The values for 1/� are almost exclusively quite high and all
are higher than for currently proposed NVRAM technologies.

We give six examples in Figure 12, namely keys from
Lawler’s corpus, keys of 18B that behave like the keys in
Lawler’s corpus, keys of 18B that behave like the German
word list, keys of 6B that taken from the capitalized version of
the German word list, keys of 18B from the Hindi Ambedkar
collection, and 18B keys from our first Tamil corpus. The

Saving Bit-flips through Smart Overwrites in
NVRAM

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2022 • VOLUME XIV • NUMBER 4 39

Fig. 9: Observed number of bit-flips for Amazon User IDs. The left shows the numbers when actually using the scheme, the
right shows the numbers when using random elements.

the energy of one bit being written. For example, if the read
energy is one tenth of the energy of a write, then writing 15
bits and reading 20 bits costs the energy spent to write to 17
bits.

We first consider the case where data on the NVRAM is
accessed directly, without a cache. This might be the case for
an embedded device. The costs for the zeroing strategy are
simply twice the average number of bits set per byte times
the size of the key. The costs for checking � candidate state
keys to find the write victim to overwrite are 2 bits in the
valid-bit field. The number of bits written is determined by
the corresponding experimental value. We need to add to this
the costs of reading � − 1 candidates. The cost of reading the
first is already included in the write costs as we are using read
before write. If � is the ratio of read over write energies, then
this adds � × (� − 1) times the size of the key to our energy
bill.

Figure 10 shows the energy costs for uniformly distributed
random keys of length 4B. The zeroing strategy loses against
the simple overwrite strategy. If reads take much less energy
than writes, comparing a key to be inserted with up to
five stale keys makes sense. As the read energy increases
slightly, the number of comparisons goes down. Figure 11
gives the numbers for 6B keys derived from Lawler’s word
list, representing keys that are English strings. Here, zeroing
is even less attractive. Depending on the costs of reads over
writes, it makes sense to read up to four stale keys. Note in
both cases that a more typical value for � is 0.15, so that the
recommendation in both cases is to only select one stale key
and over-write it.

Our argumentation breaks down, of course, if caching is
used. Whenever we access a byte, we will cause a cache line’s
worth of data to be read. When the cache line is written back to
NVRAM, only the bits that have changed are actually written,
leading to the use of energy. To exploit the use of caching,
our data structure needs to be cache-line aware. Presumably,
the valid-bit array is part of the header of the bucket data
structure, which will need to be read for every access. We can
also assume that bucket data structures are cache-line aligned.

Thus, each bucket will consist of a number of sub-buckets,
each contained in a single cache-line.

If we want to insert a key, and there is at least one slot in
the first sub-bucket, we have to decide whether we want to
read more sub-buckets with open slots. When we do so, each
sub-bucket accessed costs us read energy. As before, let us
denote by �ℎ� the ratio of the energy costs of reading a bit
over the energy costs of writing a bit. A typical cache-line has
64B or 512b. If we decide to load a sub-bucket of this size
into cache, we have 512� costs. Denote the expected number
of bits written after finding the best of � candidates, 1 ≤ �,

with �� . Then on the other side of the ledger, if we have
already located � stale data items and now decide on whether
to read a sub-bucket with � stale data items, then reading the
sub-bucket will save �� − ��+ � writes, but costs the equivalent
of 512� bits written. Thus, we should read a sub-bucket if

�� − ��+ � > 512�.

Since a typical value for � is 1/5 or more for PCM, the costs
savings have to be at least 100 bits written. A review of our
experimental results suggests that savings of more than 1b per
byte key length is unrealistic. In Figure 12, we illustrate this
decision procedure. If � candidate keys are already read, we
select the unread sub-bucket with the most number of keys.
Assume that there are � keys in it. We then calculate the
minimum number of the ratio of write energy per bit over
read energy per bit (that is 1/�) to save bitflips by reading the
yet unread sub-bucket. Of course, if we read the beginning of
the bucket and do not find a candidate for overwriting there,
we will have to read a sub-bucket with a candidate. If there is
no such sub-bucket, we will have to create an overflow page.
The values for 1/� are almost exclusively quite high and all
are higher than for currently proposed NVRAM technologies.

We give six examples in Figure 12, namely keys from
Lawler’s corpus, keys of 18B that behave like the keys in
Lawler’s corpus, keys of 18B that behave like the German
word list, keys of 6B that taken from the capitalized version of
the German word list, keys of 18B from the Hindi Ambedkar
collection, and 18B keys from our first Tamil corpus. The

Fig. 9: Observed number of bit-flips for Amazon User IDs. The left shows the numbers when actually using the scheme, the right shows the numbers
when using random elements.

Fig. 9: Observed number of bit-flips for Amazon User IDs. The left shows the numbers when actually using the scheme, the
right shows the numbers when using random elements.

the energy of one bit being written. For example, if the read
energy is one tenth of the energy of a write, then writing 15
bits and reading 20 bits costs the energy spent to write to 17
bits.

We first consider the case where data on the NVRAM is
accessed directly, without a cache. This might be the case for
an embedded device. The costs for the zeroing strategy are
simply twice the average number of bits set per byte times
the size of the key. The costs for checking � candidate state
keys to find the write victim to overwrite are 2 bits in the
valid-bit field. The number of bits written is determined by
the corresponding experimental value. We need to add to this
the costs of reading � − 1 candidates. The cost of reading the
first is already included in the write costs as we are using read
before write. If � is the ratio of read over write energies, then
this adds � × (� − 1) times the size of the key to our energy
bill.

Figure 10 shows the energy costs for uniformly distributed
random keys of length 4B. The zeroing strategy loses against
the simple overwrite strategy. If reads take much less energy
than writes, comparing a key to be inserted with up to
five stale keys makes sense. As the read energy increases
slightly, the number of comparisons goes down. Figure 11
gives the numbers for 6B keys derived from Lawler’s word
list, representing keys that are English strings. Here, zeroing
is even less attractive. Depending on the costs of reads over
writes, it makes sense to read up to four stale keys. Note in
both cases that a more typical value for � is 0.15, so that the
recommendation in both cases is to only select one stale key
and over-write it.

Our argumentation breaks down, of course, if caching is
used. Whenever we access a byte, we will cause a cache line’s
worth of data to be read. When the cache line is written back to
NVRAM, only the bits that have changed are actually written,
leading to the use of energy. To exploit the use of caching,
our data structure needs to be cache-line aware. Presumably,
the valid-bit array is part of the header of the bucket data
structure, which will need to be read for every access. We can
also assume that bucket data structures are cache-line aligned.

Thus, each bucket will consist of a number of sub-buckets,
each contained in a single cache-line.

If we want to insert a key, and there is at least one slot in
the first sub-bucket, we have to decide whether we want to
read more sub-buckets with open slots. When we do so, each
sub-bucket accessed costs us read energy. As before, let us
denote by �ℎ� the ratio of the energy costs of reading a bit
over the energy costs of writing a bit. A typical cache-line has
64B or 512b. If we decide to load a sub-bucket of this size
into cache, we have 512� costs. Denote the expected number
of bits written after finding the best of � candidates, 1 ≤ �,

with �� . Then on the other side of the ledger, if we have
already located � stale data items and now decide on whether
to read a sub-bucket with � stale data items, then reading the
sub-bucket will save �� − ��+ � writes, but costs the equivalent
of 512� bits written. Thus, we should read a sub-bucket if

�� − ��+ � > 512�.

Since a typical value for � is 1/5 or more for PCM, the costs
savings have to be at least 100 bits written. A review of our
experimental results suggests that savings of more than 1b per
byte key length is unrealistic. In Figure 12, we illustrate this
decision procedure. If � candidate keys are already read, we
select the unread sub-bucket with the most number of keys.
Assume that there are � keys in it. We then calculate the
minimum number of the ratio of write energy per bit over
read energy per bit (that is 1/�) to save bitflips by reading the
yet unread sub-bucket. Of course, if we read the beginning of
the bucket and do not find a candidate for overwriting there,
we will have to read a sub-bucket with a candidate. If there is
no such sub-bucket, we will have to create an overflow page.
The values for 1/� are almost exclusively quite high and all
are higher than for currently proposed NVRAM technologies.

We give six examples in Figure 12, namely keys from
Lawler’s corpus, keys of 18B that behave like the keys in
Lawler’s corpus, keys of 18B that behave like the German
word list, keys of 6B that taken from the capitalized version of
the German word list, keys of 18B from the Hindi Ambedkar
collection, and 18B keys from our first Tamil corpus. The

Fig. 9: Observed number of bit-flips for Amazon User IDs. The left shows the numbers when actually using the scheme, the
right shows the numbers when using random elements.

the energy of one bit being written. For example, if the read
energy is one tenth of the energy of a write, then writing 15
bits and reading 20 bits costs the energy spent to write to 17
bits.

We first consider the case where data on the NVRAM is
accessed directly, without a cache. This might be the case for
an embedded device. The costs for the zeroing strategy are
simply twice the average number of bits set per byte times
the size of the key. The costs for checking � candidate state
keys to find the write victim to overwrite are 2 bits in the
valid-bit field. The number of bits written is determined by
the corresponding experimental value. We need to add to this
the costs of reading � − 1 candidates. The cost of reading the
first is already included in the write costs as we are using read
before write. If � is the ratio of read over write energies, then
this adds � × (� − 1) times the size of the key to our energy
bill.

Figure 10 shows the energy costs for uniformly distributed
random keys of length 4B. The zeroing strategy loses against
the simple overwrite strategy. If reads take much less energy
than writes, comparing a key to be inserted with up to
five stale keys makes sense. As the read energy increases
slightly, the number of comparisons goes down. Figure 11
gives the numbers for 6B keys derived from Lawler’s word
list, representing keys that are English strings. Here, zeroing
is even less attractive. Depending on the costs of reads over
writes, it makes sense to read up to four stale keys. Note in
both cases that a more typical value for � is 0.15, so that the
recommendation in both cases is to only select one stale key
and over-write it.

Our argumentation breaks down, of course, if caching is
used. Whenever we access a byte, we will cause a cache line’s
worth of data to be read. When the cache line is written back to
NVRAM, only the bits that have changed are actually written,
leading to the use of energy. To exploit the use of caching,
our data structure needs to be cache-line aware. Presumably,
the valid-bit array is part of the header of the bucket data
structure, which will need to be read for every access. We can
also assume that bucket data structures are cache-line aligned.

Thus, each bucket will consist of a number of sub-buckets,
each contained in a single cache-line.

If we want to insert a key, and there is at least one slot in
the first sub-bucket, we have to decide whether we want to
read more sub-buckets with open slots. When we do so, each
sub-bucket accessed costs us read energy. As before, let us
denote by �ℎ� the ratio of the energy costs of reading a bit
over the energy costs of writing a bit. A typical cache-line has
64B or 512b. If we decide to load a sub-bucket of this size
into cache, we have 512� costs. Denote the expected number
of bits written after finding the best of � candidates, 1 ≤ �,

with �� . Then on the other side of the ledger, if we have
already located � stale data items and now decide on whether
to read a sub-bucket with � stale data items, then reading the
sub-bucket will save �� − ��+ � writes, but costs the equivalent
of 512� bits written. Thus, we should read a sub-bucket if

�� − ��+ � > 512�.

Since a typical value for � is 1/5 or more for PCM, the costs
savings have to be at least 100 bits written. A review of our
experimental results suggests that savings of more than 1b per
byte key length is unrealistic. In Figure 12, we illustrate this
decision procedure. If � candidate keys are already read, we
select the unread sub-bucket with the most number of keys.
Assume that there are � keys in it. We then calculate the
minimum number of the ratio of write energy per bit over
read energy per bit (that is 1/�) to save bitflips by reading the
yet unread sub-bucket. Of course, if we read the beginning of
the bucket and do not find a candidate for overwriting there,
we will have to read a sub-bucket with a candidate. If there is
no such sub-bucket, we will have to create an overflow page.
The values for 1/� are almost exclusively quite high and all
are higher than for currently proposed NVRAM technologies.

We give six examples in Figure 12, namely keys from
Lawler’s corpus, keys of 18B that behave like the keys in
Lawler’s corpus, keys of 18B that behave like the German
word list, keys of 6B that taken from the capitalized version of
the German word list, keys of 18B from the Hindi Ambedkar
collection, and 18B keys from our first Tamil corpus. The

Fig. 9: Observed number of bit-flips for Amazon User IDs. The left shows the numbers when actually using the scheme, the
right shows the numbers when using random elements.

the energy of one bit being written. For example, if the read
energy is one tenth of the energy of a write, then writing 15
bits and reading 20 bits costs the energy spent to write to 17
bits.

We first consider the case where data on the NVRAM is
accessed directly, without a cache. This might be the case for
an embedded device. The costs for the zeroing strategy are
simply twice the average number of bits set per byte times
the size of the key. The costs for checking � candidate state
keys to find the write victim to overwrite are 2 bits in the
valid-bit field. The number of bits written is determined by
the corresponding experimental value. We need to add to this
the costs of reading � − 1 candidates. The cost of reading the
first is already included in the write costs as we are using read
before write. If � is the ratio of read over write energies, then
this adds � × (� − 1) times the size of the key to our energy
bill.

Figure 10 shows the energy costs for uniformly distributed
random keys of length 4B. The zeroing strategy loses against
the simple overwrite strategy. If reads take much less energy
than writes, comparing a key to be inserted with up to
five stale keys makes sense. As the read energy increases
slightly, the number of comparisons goes down. Figure 11
gives the numbers for 6B keys derived from Lawler’s word
list, representing keys that are English strings. Here, zeroing
is even less attractive. Depending on the costs of reads over
writes, it makes sense to read up to four stale keys. Note in
both cases that a more typical value for � is 0.15, so that the
recommendation in both cases is to only select one stale key
and over-write it.

Our argumentation breaks down, of course, if caching is
used. Whenever we access a byte, we will cause a cache line’s
worth of data to be read. When the cache line is written back to
NVRAM, only the bits that have changed are actually written,
leading to the use of energy. To exploit the use of caching,
our data structure needs to be cache-line aware. Presumably,
the valid-bit array is part of the header of the bucket data
structure, which will need to be read for every access. We can
also assume that bucket data structures are cache-line aligned.

Thus, each bucket will consist of a number of sub-buckets,
each contained in a single cache-line.

If we want to insert a key, and there is at least one slot in
the first sub-bucket, we have to decide whether we want to
read more sub-buckets with open slots. When we do so, each
sub-bucket accessed costs us read energy. As before, let us
denote by �ℎ� the ratio of the energy costs of reading a bit
over the energy costs of writing a bit. A typical cache-line has
64B or 512b. If we decide to load a sub-bucket of this size
into cache, we have 512� costs. Denote the expected number
of bits written after finding the best of � candidates, 1 ≤ �,

with �� . Then on the other side of the ledger, if we have
already located � stale data items and now decide on whether
to read a sub-bucket with � stale data items, then reading the
sub-bucket will save �� − ��+ � writes, but costs the equivalent
of 512� bits written. Thus, we should read a sub-bucket if

�� − ��+ � > 512�.

Since a typical value for � is 1/5 or more for PCM, the costs
savings have to be at least 100 bits written. A review of our
experimental results suggests that savings of more than 1b per
byte key length is unrealistic. In Figure 12, we illustrate this
decision procedure. If � candidate keys are already read, we
select the unread sub-bucket with the most number of keys.
Assume that there are � keys in it. We then calculate the
minimum number of the ratio of write energy per bit over
read energy per bit (that is 1/�) to save bitflips by reading the
yet unread sub-bucket. Of course, if we read the beginning of
the bucket and do not find a candidate for overwriting there,
we will have to read a sub-bucket with a candidate. If there is
no such sub-bucket, we will have to create an overflow page.
The values for 1/� are almost exclusively quite high and all
are higher than for currently proposed NVRAM technologies.

We give six examples in Figure 12, namely keys from
Lawler’s corpus, keys of 18B that behave like the keys in
Lawler’s corpus, keys of 18B that behave like the German
word list, keys of 6B that taken from the capitalized version of
the German word list, keys of 18B from the Hindi Ambedkar
collection, and 18B keys from our first Tamil corpus. The

Saving Bit-flips through Smart Overwrites in
NVRAM

DECEMBER 2022 • VOLUME XIV • NUMBER 440

INFOCOMMUNICATIONS JOURNAL

	 [1]	 M. Ahsanullah, V. B. Nevzorov, and M. Shakil, An introduction to
order statistics. Atlantis Press, 2013, doi: 10.2991/978-94-91216-83-1.

	 [2]	 R. Bayer and K. Unterauer, “Prefix B-trees,” ACM Transactions
on Database Systems (TODS), vol. 2, no. 1, pp. 11–26, 1977,
doi: 10.1145/320521.320530.

	 [3]	 D. Bittman, M. Gray, J. Raizes, S. Mukhopadhyay, M. Bryson, P.
Alvaro, D. D. Long, and E. L. Miller, “Designing data structures to
minimize bit flips on NVM,” in 2018 IEEE 7th Non-Volatile Memory
Systems and Applications Symposium (NVMSA). IEEE, 2018, pp.
85–90, doi: 10.1109/NVMSA.2018.00022.

References

Fig. 10: Energy costs (in multiples of the energy of one bit written) using the Zeroing strategy and the best out of � overwrite
strategy for random keys of length 4 bytes. The right is a blowup of the left figure.

Fig. 11: Energy costs (in multiples of the energy of one bit written) using the Zeroing strategy and the best out of � overwrite
strategy for 6B keys derived from Lawler’s word list. The right is a blowup of the left figure.

minimum write energy needed to justify looking at another
sub-bucket when one has already been located is at least 46.
This happens for the German-like data set when we have
one candidate and find a sub-bucket containing 4 stale keys.
Even this amount is larger than for current and projected PCM
memories. In all other cases, the discrepancy is much larger.
We conclude from our experimental data that a cache aware
algorithm trying to overwrite a stale key with a fresh, valid
one should not access keys currently not in cache. Of course,
this limits the bit-flip savings of such an algorithm.

VI. CONCLUSIONS

In this study, we investigated the bit-flip behavior of over-
writes for typical keys. Our first take-away is instead of
zeroing stale keys (or data in general), stale data should be
marked and overwritten by new data. This confirms similar ob-
servations for pointers [11]. Alternatively, any key populations
(such as words or names) have sufficient internal structure
that zeroing out stale keys can be replaced by overwriting
with the ”most likely byte”. Keys derived from texts in non-
latin languages should be compressed. A cache length aware
algorithm that is trying to overwrite a stale key should not load

additional data into cache in order to find a better replacement.
Overall, Bittman’s observation and proposal have shown to be
sound for a large variety of experimental data.

In general, the behavior of keys in our context is remarkably
similar across different data sets. The observed distributions
are very similar to a normal distribution and so are the order
statistics. This gives us confidence in believing that the design
of a bit-flip aware data structure will be valid across a wide
range of key (and presumably data) populations.

We have not integrated these observations into the design
of a bit-flip aware dictionary data structure. Neither did we
investigate a bit-flip aware node structure for B-trees. This is
left to future work.

REFERENCES

[1] M. Ahsanullah, V. B. Nevzorov, and M. Shakil, An introduction to order
statistics. Atlantis Press, 2013, doi: 10.2991/978-94-91216-83-1.

[2] R. Bayer and K. Unterauer, “Prefix B-trees,” ACM Transactions on
Database Systems (TODS), vol. 2, no. 1, pp. 11–26, 1977, doi:
10.1145/320521.320530.

[3] D. Bittman, M. Gray, J. Raizes, S. Mukhopadhyay, M. Bryson, P. Alvaro,
D. D. Long, and E. L. Miller, “Designing data structures to minimize
bit flips on NVM,” in 2018 IEEE 7th Non-Volatile Memory Systems
and Applications Symposium (NVMSA). IEEE, 2018, pp. 85–90, doi:
10.1109/NVMSA.2018.00022.

Fig. 10: Energy costs (in multiples of the energy of one bit written) using the Zeroing strategy and the best out of � overwrite
strategy for random keys of length 4 bytes. The right is a blowup of the left figure.

Fig. 11: Energy costs (in multiples of the energy of one bit written) using the Zeroing strategy and the best out of � overwrite
strategy for 6B keys derived from Lawler’s word list. The right is a blowup of the left figure.

minimum write energy needed to justify looking at another
sub-bucket when one has already been located is at least 46.
This happens for the German-like data set when we have
one candidate and find a sub-bucket containing 4 stale keys.
Even this amount is larger than for current and projected PCM
memories. In all other cases, the discrepancy is much larger.
We conclude from our experimental data that a cache aware
algorithm trying to overwrite a stale key with a fresh, valid
one should not access keys currently not in cache. Of course,
this limits the bit-flip savings of such an algorithm.

VI. CONCLUSIONS

In this study, we investigated the bit-flip behavior of over-
writes for typical keys. Our first take-away is instead of
zeroing stale keys (or data in general), stale data should be
marked and overwritten by new data. This confirms similar ob-
servations for pointers [11]. Alternatively, any key populations
(such as words or names) have sufficient internal structure
that zeroing out stale keys can be replaced by overwriting
with the ”most likely byte”. Keys derived from texts in non-
latin languages should be compressed. A cache length aware
algorithm that is trying to overwrite a stale key should not load

additional data into cache in order to find a better replacement.
Overall, Bittman’s observation and proposal have shown to be
sound for a large variety of experimental data.

In general, the behavior of keys in our context is remarkably
similar across different data sets. The observed distributions
are very similar to a normal distribution and so are the order
statistics. This gives us confidence in believing that the design
of a bit-flip aware data structure will be valid across a wide
range of key (and presumably data) populations.

We have not integrated these observations into the design
of a bit-flip aware dictionary data structure. Neither did we
investigate a bit-flip aware node structure for B-trees. This is
left to future work.

REFERENCES

[1] M. Ahsanullah, V. B. Nevzorov, and M. Shakil, An introduction to order
statistics. Atlantis Press, 2013, doi: 10.2991/978-94-91216-83-1.

[2] R. Bayer and K. Unterauer, “Prefix B-trees,” ACM Transactions on
Database Systems (TODS), vol. 2, no. 1, pp. 11–26, 1977, doi:
10.1145/320521.320530.

[3] D. Bittman, M. Gray, J. Raizes, S. Mukhopadhyay, M. Bryson, P. Alvaro,
D. D. Long, and E. L. Miller, “Designing data structures to minimize
bit flips on NVM,” in 2018 IEEE 7th Non-Volatile Memory Systems
and Applications Symposium (NVMSA). IEEE, 2018, pp. 85–90, doi:
10.1109/NVMSA.2018.00022.

Fig. 10: Energy costs (in multiples of the energy of one bit written) using the Zeroing strategy and the best out of � overwrite
strategy for random keys of length 4 bytes. The right is a blowup of the left figure.

Fig. 11: Energy costs (in multiples of the energy of one bit written) using the Zeroing strategy and the best out of � overwrite
strategy for 6B keys derived from Lawler’s word list. The right is a blowup of the left figure.

minimum write energy needed to justify looking at another
sub-bucket when one has already been located is at least 46.
This happens for the German-like data set when we have
one candidate and find a sub-bucket containing 4 stale keys.
Even this amount is larger than for current and projected PCM
memories. In all other cases, the discrepancy is much larger.
We conclude from our experimental data that a cache aware
algorithm trying to overwrite a stale key with a fresh, valid
one should not access keys currently not in cache. Of course,
this limits the bit-flip savings of such an algorithm.

VI. CONCLUSIONS

In this study, we investigated the bit-flip behavior of over-
writes for typical keys. Our first take-away is instead of
zeroing stale keys (or data in general), stale data should be
marked and overwritten by new data. This confirms similar ob-
servations for pointers [11]. Alternatively, any key populations
(such as words or names) have sufficient internal structure
that zeroing out stale keys can be replaced by overwriting
with the ”most likely byte”. Keys derived from texts in non-
latin languages should be compressed. A cache length aware
algorithm that is trying to overwrite a stale key should not load

additional data into cache in order to find a better replacement.
Overall, Bittman’s observation and proposal have shown to be
sound for a large variety of experimental data.

In general, the behavior of keys in our context is remarkably
similar across different data sets. The observed distributions
are very similar to a normal distribution and so are the order
statistics. This gives us confidence in believing that the design
of a bit-flip aware data structure will be valid across a wide
range of key (and presumably data) populations.

We have not integrated these observations into the design
of a bit-flip aware dictionary data structure. Neither did we
investigate a bit-flip aware node structure for B-trees. This is
left to future work.

REFERENCES

[1] M. Ahsanullah, V. B. Nevzorov, and M. Shakil, An introduction to order
statistics. Atlantis Press, 2013, doi: 10.2991/978-94-91216-83-1.

[2] R. Bayer and K. Unterauer, “Prefix B-trees,” ACM Transactions on
Database Systems (TODS), vol. 2, no. 1, pp. 11–26, 1977, doi:
10.1145/320521.320530.

[3] D. Bittman, M. Gray, J. Raizes, S. Mukhopadhyay, M. Bryson, P. Alvaro,
D. D. Long, and E. L. Miller, “Designing data structures to minimize
bit flips on NVM,” in 2018 IEEE 7th Non-Volatile Memory Systems
and Applications Symposium (NVMSA). IEEE, 2018, pp. 85–90, doi:
10.1109/NVMSA.2018.00022.

Fig. 10: Energy costs (in multiples of the energy of one bit written) using the Zeroing strategy and the best out of � overwrite
strategy for random keys of length 4 bytes. The right is a blowup of the left figure.

Fig. 11: Energy costs (in multiples of the energy of one bit written) using the Zeroing strategy and the best out of � overwrite
strategy for 6B keys derived from Lawler’s word list. The right is a blowup of the left figure.

minimum write energy needed to justify looking at another
sub-bucket when one has already been located is at least 46.
This happens for the German-like data set when we have
one candidate and find a sub-bucket containing 4 stale keys.
Even this amount is larger than for current and projected PCM
memories. In all other cases, the discrepancy is much larger.
We conclude from our experimental data that a cache aware
algorithm trying to overwrite a stale key with a fresh, valid
one should not access keys currently not in cache. Of course,
this limits the bit-flip savings of such an algorithm.

VI. CONCLUSIONS

In this study, we investigated the bit-flip behavior of over-
writes for typical keys. Our first take-away is instead of
zeroing stale keys (or data in general), stale data should be
marked and overwritten by new data. This confirms similar ob-
servations for pointers [11]. Alternatively, any key populations
(such as words or names) have sufficient internal structure
that zeroing out stale keys can be replaced by overwriting
with the ”most likely byte”. Keys derived from texts in non-
latin languages should be compressed. A cache length aware
algorithm that is trying to overwrite a stale key should not load

additional data into cache in order to find a better replacement.
Overall, Bittman’s observation and proposal have shown to be
sound for a large variety of experimental data.

In general, the behavior of keys in our context is remarkably
similar across different data sets. The observed distributions
are very similar to a normal distribution and so are the order
statistics. This gives us confidence in believing that the design
of a bit-flip aware data structure will be valid across a wide
range of key (and presumably data) populations.

We have not integrated these observations into the design
of a bit-flip aware dictionary data structure. Neither did we
investigate a bit-flip aware node structure for B-trees. This is
left to future work.

REFERENCES

[1] M. Ahsanullah, V. B. Nevzorov, and M. Shakil, An introduction to order
statistics. Atlantis Press, 2013, doi: 10.2991/978-94-91216-83-1.

[2] R. Bayer and K. Unterauer, “Prefix B-trees,” ACM Transactions on
Database Systems (TODS), vol. 2, no. 1, pp. 11–26, 1977, doi:
10.1145/320521.320530.

[3] D. Bittman, M. Gray, J. Raizes, S. Mukhopadhyay, M. Bryson, P. Alvaro,
D. D. Long, and E. L. Miller, “Designing data structures to minimize
bit flips on NVM,” in 2018 IEEE 7th Non-Volatile Memory Systems
and Applications Symposium (NVMSA). IEEE, 2018, pp. 85–90, doi:
10.1109/NVMSA.2018.00022.

Fig. 10: Energy costs (in multiples of the energy of one bit written) using the Zeroing strategy and the best out of � overwrite
strategy for random keys of length 4 bytes. The right is a blowup of the left figure.

Fig. 11: Energy costs (in multiples of the energy of one bit written) using the Zeroing strategy and the best out of � overwrite
strategy for 6B keys derived from Lawler’s word list. The right is a blowup of the left figure.

minimum write energy needed to justify looking at another
sub-bucket when one has already been located is at least 46.
This happens for the German-like data set when we have
one candidate and find a sub-bucket containing 4 stale keys.
Even this amount is larger than for current and projected PCM
memories. In all other cases, the discrepancy is much larger.
We conclude from our experimental data that a cache aware
algorithm trying to overwrite a stale key with a fresh, valid
one should not access keys currently not in cache. Of course,
this limits the bit-flip savings of such an algorithm.

VI. CONCLUSIONS

In this study, we investigated the bit-flip behavior of over-
writes for typical keys. Our first take-away is instead of
zeroing stale keys (or data in general), stale data should be
marked and overwritten by new data. This confirms similar ob-
servations for pointers [11]. Alternatively, any key populations
(such as words or names) have sufficient internal structure
that zeroing out stale keys can be replaced by overwriting
with the ”most likely byte”. Keys derived from texts in non-
latin languages should be compressed. A cache length aware
algorithm that is trying to overwrite a stale key should not load

additional data into cache in order to find a better replacement.
Overall, Bittman’s observation and proposal have shown to be
sound for a large variety of experimental data.

In general, the behavior of keys in our context is remarkably
similar across different data sets. The observed distributions
are very similar to a normal distribution and so are the order
statistics. This gives us confidence in believing that the design
of a bit-flip aware data structure will be valid across a wide
range of key (and presumably data) populations.

We have not integrated these observations into the design
of a bit-flip aware dictionary data structure. Neither did we
investigate a bit-flip aware node structure for B-trees. This is
left to future work.

REFERENCES

[1] M. Ahsanullah, V. B. Nevzorov, and M. Shakil, An introduction to order
statistics. Atlantis Press, 2013, doi: 10.2991/978-94-91216-83-1.

[2] R. Bayer and K. Unterauer, “Prefix B-trees,” ACM Transactions on
Database Systems (TODS), vol. 2, no. 1, pp. 11–26, 1977, doi:
10.1145/320521.320530.

[3] D. Bittman, M. Gray, J. Raizes, S. Mukhopadhyay, M. Bryson, P. Alvaro,
D. D. Long, and E. L. Miller, “Designing data structures to minimize
bit flips on NVM,” in 2018 IEEE 7th Non-Volatile Memory Systems
and Applications Symposium (NVMSA). IEEE, 2018, pp. 85–90, doi:
10.1109/NVMSA.2018.00022.

Fig. 10: Energy costs (in multiples of the energy of one bit written) using the Zeroing strategy and the best out of � overwrite
strategy for random keys of length 4 bytes. The right is a blowup of the left figure.

Fig. 11: Energy costs (in multiples of the energy of one bit written) using the Zeroing strategy and the best out of � overwrite
strategy for 6B keys derived from Lawler’s word list. The right is a blowup of the left figure.

minimum write energy needed to justify looking at another
sub-bucket when one has already been located is at least 46.
This happens for the German-like data set when we have
one candidate and find a sub-bucket containing 4 stale keys.
Even this amount is larger than for current and projected PCM
memories. In all other cases, the discrepancy is much larger.
We conclude from our experimental data that a cache aware
algorithm trying to overwrite a stale key with a fresh, valid
one should not access keys currently not in cache. Of course,
this limits the bit-flip savings of such an algorithm.

VI. CONCLUSIONS

In this study, we investigated the bit-flip behavior of over-
writes for typical keys. Our first take-away is instead of
zeroing stale keys (or data in general), stale data should be
marked and overwritten by new data. This confirms similar ob-
servations for pointers [11]. Alternatively, any key populations
(such as words or names) have sufficient internal structure
that zeroing out stale keys can be replaced by overwriting
with the ”most likely byte”. Keys derived from texts in non-
latin languages should be compressed. A cache length aware
algorithm that is trying to overwrite a stale key should not load

additional data into cache in order to find a better replacement.
Overall, Bittman’s observation and proposal have shown to be
sound for a large variety of experimental data.

In general, the behavior of keys in our context is remarkably
similar across different data sets. The observed distributions
are very similar to a normal distribution and so are the order
statistics. This gives us confidence in believing that the design
of a bit-flip aware data structure will be valid across a wide
range of key (and presumably data) populations.

We have not integrated these observations into the design
of a bit-flip aware dictionary data structure. Neither did we
investigate a bit-flip aware node structure for B-trees. This is
left to future work.

REFERENCES

[1] M. Ahsanullah, V. B. Nevzorov, and M. Shakil, An introduction to order
statistics. Atlantis Press, 2013, doi: 10.2991/978-94-91216-83-1.

[2] R. Bayer and K. Unterauer, “Prefix B-trees,” ACM Transactions on
Database Systems (TODS), vol. 2, no. 1, pp. 11–26, 1977, doi:
10.1145/320521.320530.

[3] D. Bittman, M. Gray, J. Raizes, S. Mukhopadhyay, M. Bryson, P. Alvaro,
D. D. Long, and E. L. Miller, “Designing data structures to minimize
bit flips on NVM,” in 2018 IEEE 7th Non-Volatile Memory Systems
and Applications Symposium (NVMSA). IEEE, 2018, pp. 85–90, doi:
10.1109/NVMSA.2018.00022.

Fig. 10: Energy costs (in multiples of the energy of one bit written) using the Zeroing strategy and the best out of k overwrite strategy for random keys
of length 4 bytes. The right is a blowup of the left figure.

Fig. 11: Energy costs (in multiples of the energy of one bit written) using the Zeroing strategy and the best out of k overwrite strategy for 6B keys
derived from Lawler’s word list. The right is a blowup of the left figure.

https://doi.org/10.2991/978-94-91216-83-1
https://doi.org/10.1145/320521.320530
https://doi.org/10.1109/NVMSA.2018.00022

Saving Bit-flips through Smart Overwrites in
NVRAM

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2022 • VOLUME XIV • NUMBER 4 41

Arockia David Roy Kulandai SJ David Roy is a Doc-
toral student of Computer Science at Marquette Univer-
sity, Milwaukee, WI, USA. Dr. Thomas Schwarz is his
advisor. He has graduate degrees in Computer Appli-
cations and Philosophy. He was the Director of Xavier
Institution of Computer Appli- cations (XICA) and Vice
Principal of Department of Computer Sciences at St.
Xavier’s College (Autonomous), Ahmedabad, Gujarat,
India from 2013 - 2018.

Thomas Schwarz SJ Dr. Thomas Schwarz has
PhDs in Mathematics from Fern-Universität Hagen,
Germany and Computer Science from University of
California, San Diego. He is an associate professor
in the department of computer science at Marquette
University, Milwaukee, WI, USA and at Xavier Insti-
tute of Engineering, Mumbai, India. He is an adjunct
professor at Santa Clara university, CA. He has taught
at the Universidad Católica del Uruguay and at the
Universidad Centro-Americana in El Salvador. He has

over 125 publications to his credit and his research interest include Scalable
Distributed Data Structures, Large Scale Storage Systems, High Availability,
Erasure Correcting codes, security and Non-Volatile Memories.

Fig. 12: Recommendations for reading a sub-bucket. The
heatmap gives the minimum energy costs of writes over reads
(1/�) making one read a sub-bucket. The x-axis gives the
number of candidates in the new sub-bucket and the y-axis
gives the number of candidates already available.

[4] D. Bittman, D. D. Long, P. Alvaro, and E. L. Miller, “Optimizing
systems for byte-addressable NVRAM by reducing bit flipping,” in 17th
USENIX Conference on File and Storage Technologies, 2019, pp. 17–30,
doi: db/conf/fast/fast2019.html#BittmanLAM19.

[5] Davidak, “Wortliste,” 2016, accessed May 2022. [Online]. Available:
github.com/davidak/wortliste

[6] D. Ewell, “A survey of unicode compression,” 2004,
doi: www.unicode.org/notes/tn14/UnicodeCompression.pdf. [Online].
Available: https://www.unicode.org/notes/tn14/UnicodeCompression.pdf

[7] A. Gleave and C. Steinruecken, “Making compression algorithms for
unicode text,” 2017, arXiv:1701.04047.

[8] G. Graefe and H. Kuno, “Modern B-tree techniques,” in 2011 IEEE
27th International Conference on Data Engineering. IEEE, 2011, pp.
1370–1373, doi: 10.1561/1900000028.

[9] W.-H. Kim, J. Seo, J. Kim, and B. Nam, “clfB-tree: Cache line friendly
persistent B-tree for NVRAM,” ACM Transactions on Storage (TOS),
vol. 14, no. 1, pp. 1–17, 2018, doi: 10.1145/3129263.

[10] A. D. R. Kulandai and T. Schwarz, “Content-aware reduction of bit flips
in phase change memory,” IEEE Letters of the Computer Society, vol. 3,
no. 2, pp. 58–61, 2020, doi: 10.1109/LOCS.2020.3018401.

[11] ——, “Does XORing pointers save bitflips for NVRAM?” in 2021
29th International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS). IEEE, 2021,
pp. 1–6, doi: 10.1109/MASCOTS53633.2021.9614290.

[12] A. Kumar, “Dataset: Consumer complaints: financial products, from the
consumer complaint database maintained,” 2020, accessed May 2022.
[Online]. Available: www.kaggle.com/datasets/ashwinik/consumer-
complaints-financial-products

[13] J. Lawler, “An English Word List,” 1999, accessed May 2022. [Online].
Available: www-personal.umich.edu/ jlawler/wordlist.html

[14] D. Lomet, “The evolution of effective B-tree: Page organization and

techniques: A personal account,” ACM SIGMOD Record, vol. 30, no. 3,
pp. 64–69, 2001, doi: 10.1145/603867.603878.

[15] M. G. Jillani Soft Tech, “Amazon product reviews,” 2022,
Kaggle dataset, accessed May 2022. [Online]. Available:
www.kaggle.com/datasets/jillanisofttech/amazon-product-reviews

[16] M. Nagy, J. Tapolcai, and G. Rétvári, “R3d3: A doubly opportunistic
data structure for compressing and indexing massive data,” Infocommu-
nications Journal, vol. 11, no. 2, June 2019, doi: 10.36244/ICJ.2019.2.7.

[17] B. Vijayalakshmi and N. Sasirekha, “Lossless text compression for
Unicode Tamil documents,” ICTACT Journal on Soft Computing, vol. 8,
no. 2, pp. 1635–1640, 2018, doi: 10.21917/ijsc.2017.0227.

[18] B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee, and B.-G. Yu,
“A low power phase-change random access memory using a data-
comparison write scheme,” in 2007 IEEE International Symposium on
Circuits and Systems. IEEE, 2007, pp. 3014–3017, doi: 10.1109/IS-
CAS.2007.377981.

[19] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient
main memory using phase change memory technology,” in Proceed-
ings of the 36th International Symposium on Computer Architecture
(ISCA’09), 2009, doi: 10.1145/1555815.1555759.

Arockia David Roy Kulandai SJ David Roy is
a Doctoral student of Computer Science at Mar-
quette University, Milwaukee, WI, USA. Dr. Thomas
Schwarz is his advisor. He has graduate degrees in
Computer Applications and Philosophy. He was the
Director of Xavier Institution of Computer Appli-
cations (XICA) and Vice Principal of Department
of Computer Sciences at St. Xavier’s College (Au-
tonomous), Ahmedabad, Gujarat, India from 2013 -
2018.

Thomas Schwarz SJ Dr. Thomas Schwarz has
PhDs in Mathematics from Fern-Universität Hagen,
Germany and Computer Science from University of
California, San Diego. He is an associate professor
in the department of computer science at Marquette
University, Milwaukee, WI, USA and at Xavier Insti-
tute of Engineering, Mumbai, India. He is an adjunct
professor at Santa Clara university, CA. He has
taught at the Universidad Católica del Uruguay and
at the Universidad Centro-Americana in El Salvador.
He has over 125 publications to his credit and his

research interest include Scalable Distributed Data Structures, Large Scale
Storage Systems, High Availability, Erasure Correcting codes, security and
Non-Volatile Memories.

	 [4]	 D. Bittman, D. D. Long, P. Alvaro, and E. L. Miller, “Optimizing
systems for byte-addressable NVRAM by reducing bit flipping,” in
17th USENIX Conference on File and Storage Technologies, 2019, pp.
17–30, https://dblp.org/db/conf/fast/fast2019.html#BittmanLAM19.

	 [5]	 Davidak, “Wortliste,” 2016, accessed May 2022. [Online]. Available:
github.com/davidak/wortliste

	 [6]	 D. Ewell, “A survey of unicode compression,” 2004, www.unicode.
org/notes/tn14/UnicodeCompression.pdf. [Online]. Available: https://
www.unicode.org/notes/tn14/UnicodeCompression.pdf

	 [7]	 A. Gleave and C. Steinruecken, “Making compression algorithms for
unicode text,” 2017, arXiv:1701.04047.

	 [8]	 G. Graefe and H. Kuno, “Modern B-tree techniques,” in 2011 IEEE
27th International Conference on Data Engineering. IEEE, 2011, pp.
1370–1373, doi: 10.1561/1900000028.

	 [9]	 W.-H. Kim, J. Seo, J. Kim, and B. Nam, “clfB-tree: Cache line friendly
persistent B-tree for NVRAM,” ACM Transactions on Storage (TOS),
vol. 14, no. 1, pp. 1–17, 2018, doi: 10.1145/3129263.

	[10]	 A. D. R. Kulandai and T. Schwarz, “Content-aware reduction of bitflips
in phase change memory,” IEEE Letters of the Computer Society, vol.
3, no. 2, pp. 58–61, 2020, doi: 10.1109/LOCS.2020.3018401.

	[11]	 ——, “Does XORing pointers save bitflips for NVRAM?” in 2021
29th International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS). IEEE,
2021, pp. 1–6, doi: 10.1109/MASCOTS53633.2021.9614290.

	[12]	 A. Kumar, “Dataset: Consumer complaints: financial products, from
the consumer complaint database maintained,” 2020, accessed May
2022. [Online]. Available: www.kaggle.com/datasets/ashwinik/
consumer-complaints-financial-products

[13]	 J. Lawler, “An English Word List,” 1999, accessed May 2022.
[Online]. Available: http://www-personal.umich.edu/~jlawler/
wordlist.html

[14]	 D. Lomet, “The evolution of effective B-tree: Page organization and
techniques: A personal account,” ACM SIGMOD Record, vol. 30, no.
3, pp. 64–69, 2001, doi: 10.1145/603867.603878.

[15]	 M. G. Jillani Soft Tech, “Amazon product reviews,” 2022, Kaggle
dataset, accessed May 2022. [Online]. Available: www.kaggle.com/
datasets/jillanisofttech/amazon-product-reviews

[16]	 M. Nagy, J. Tapolcai, and G. Rétvári, “R3d3: A doubly opportunistic
data structure for compressing and indexing massive data,”
Infocommunications Journal, vol. 11, no. 2, June 2019,

		 doi: 10.36244/ICJ.2019.2.7.
	[17]	 B. Vijayalakshmi and N. Sasirekha, “Lossless text compression for

Unicode Tamil documents,” ICTACT Journal on Soft Computing, vol. 8,
no. 2, pp. 1635–1640, 2018, doi: 10.21917/ijsc.2017.0227.

	[18]	 B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee, and B.-G. Yu,
“A low power phase-change random access memory using a data-
comparison write scheme,” in 2007 IEEE International Symposium on
Circuits and Systems. IEEE, 2007, pp. 3014–3017,

		 doi: 10.1109/ISCAS.2007.377981.
	[19]	 P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “Adurable and energy efficient

main memory using phase change memory technology,” in Proceedings of
the 36th International Symposium on Computer Architecture (ISCA’09),
2009, doi: 10.1145/1555815.1555759.

Fig. 12: Recommendations for reading a sub-bucket. The heatmap gives
the minimum energy costs of writes over reads (1=Ú) making one read a
sub-bucket. The x-axis gives the number of candidates in the new sub-
bucket and the y-axis gives the number of candidates already available.

https://dblp.org/db/conf/fast/fast2019.html#BittmanLAM19
https://github.com/davidak/wortliste
https://www.unicode.org/notes/tn14/UnicodeCompression.pdf
https://www.unicode.org/notes/tn14/UnicodeCompression.pdf
https://arxiv.org/pdf/1701.04047.pdf
https://doi.org/10.1561/1900000028
https://doi.org/10.1145/3129263
https://doi.org/10.1109/LOCS.2020.3018401
https://doi.org/10.1109/MASCOTS53633.2021.9614290
https://www.kaggle.com/datasets/ashwinik/consumer-complaints-financial-products
https://www.kaggle.com/datasets/ashwinik/consumer-complaints-financial-products
http://www-personal.umich.edu/~jlawler/wordlist.html
http://www-personal.umich.edu/~jlawler/wordlist.html
https://doi.org/10.1145/603867.603878
https://www.kaggle.com/datasets/jillanisofttech/amazon-product-reviews
https://www.kaggle.com/datasets/jillanisofttech/amazon-product-reviews
https://doi.org/10.36244/ICJ.2019.2.7
https://doi.org/10.21917/ijsc.2017.0227
https://doi.org/10.1109/ISCAS.2007.377981
https://doi.org/10.1145/1555815.1555759

