
FiLiP: A File Lifecycle-based Profiler for
hierarchical storage

DECEMBER 2022 • VOLUME XIV • NUMBER 426

INFOCOMMUNICATIONS JOURNAL

foreign network. Packets originated at CN and targeted to the
MN go through HA. HA tunnels the packets to FA. Finally,
FA processes the encapsulated packets and forwards those to
the MN. Figure 1 describes the Control flow of MIPv4. Figure
2 depicts the basic architecture of MIPv4.

Figure 1 – The standard MIPv4 message flow[8]

The drawbacks of MIPv4 are the triangular routing which
adds more latency, single point of failure (SPOF), and
consumes bandwidth. In contrast, the traffic does not move
directly between the sender and the receiver (CN and MN).
Instead, traffic goes through the HA in the middle.

Figure 2 – The basic architecture of MIPv4 [8]

MIPv6 is similar to MIPv4, with enhancements and
additional features. MIPv6 uses the Neighbor Discovery
Protocol (NDP) of IPv6 [10]. NDP uses Router Solicitation
(RS) and Router Advertisement (RA) messages to detect IP
network prefix changes. Furthermore, NDP also deals with
neighbor reachability. An IPv6 capable access router has
replaced the functions of a Foreign Agent in MIPv4. This
means FAs are eliminated in the context of MIPv6.

The mobility procedure in MIPv6 works as follows. The
communication between MN and CN is addressed by
native/ordinary IPv6 routing when MN stays on its Home
Link. If the MN moves to Foreign Network, it has a new IP
address called the CoA. After that, the MN sends a registration
request to the HA (Binding Update) and receives the
registration reply (Binding Acknowledgment). Traffic is
encapsulated between HA and MN. MN may send a BU to CN
to avoid triangle routing in route optimization mode (RO). The
detailed message flow of MIPv6 is illustrated in Figure 3 .

Figure 3 – The standard MIPv6 message flow [9]

Home Test Init (HoTI) and Care-of Test Init (CoTI)
messages are part of the return routeability procedure. It is an
authorization procedure to enable registration by a
cryptographic token exchange. This procedure helps to give
some assurance to CN if MN is reachable on that particular
CoA. CN can securely accept BU from MN at the end of this
procedure and circumvent HA (route optimization).

B. Proxy Mobile IPv6

Proxy Mobile IPv6 (PMIPv6) [3] is a network-based
mobility management protocol working at the network layer.
The network-based mobility management extends the network
side and lets the network handle the mobility management
instead of modifying the host part. Thus, MNs may not even
know they are under any mobility process.

In PMIPv6 (Figure 4), the MN considers the whole
PMIPv6 domain as a home network, so the MN uses just a
unique HoA and different care-of addresses used by the
MAGs. Mobile Access Gateway (MAG) and Local Mobility
Anchor (LMA) are introduced in PMIPv6. MAG works as the
access router; it detects the MN's movements and does the
signaling and tunneling with the LMA, while the LMA works
similarly to the HA in MIPv6 but with some additional
potentials. LMA preserves accessibility to the MN's address
as it travels through PMIPv6 domains. Binding Cache exists
in the LMA, which is particularly a database that keeps track
of the movement of MNs.

Figure 4 – The basic architecture of PMIPv6 [3]

PMIPv6 operates as follows. The MN attaches to MAG and
sends Router Solicitation (RS) messages. Then MAG
transmits a Proxy Binding Update (PBU) to the LMA,
informing the attachment. LMA replies to the MAG via Proxy

1

FiLiP: A File Lifecycle-based Profiler for
hierarchical storage

Adrian KHELILI Atos BDS R&D Data Management
Li-PaRAD, UPSaclay-UVSQ, France

adrian.khelili@atos.net
Sophie ROBERT Atos BDS R&D Data Management

Echirolles, France
sophie.robert@atos.net

Soraya ZERTAL Li-PaRAD, UPSaclay-UVSQ
Guyancourt, France

soraya.zertal@uvsq.fr

Abstract—The increasing gap between computing speed and
storage latency leads to possible I/O bottlenecks on massively
parallel computers. To mitigate this issue, hierarchical storage
provides multi-tiered configurations where each tier has its own
physical characteristics and associated performance. Selecting
the most appropriate file placement policy on this multi-tiered
storage is difficult and there is to our knowledge no tool that
systematically provides statistics and metrics for optimal file
policy selection. In this paper, we present FiLiP (File Lifecycle
Profiler), a software which provides statistics and metrics for
a better understanding of file access by applications and the
consequences on file movements across hierarchical storage. After
the description of FiLiP’s main features and architecture, we
highlight the usefulness of our tool using three I/O intensive
simulation HPC applications: NEMO, S3DIO and NAMD and a
three-tiered burst buffer.

Index Terms—I/O, File lifecycle, Profiling, Burst Buffer, Hier-
archical storage, HPC

I. INTRODUCTION

On modern High Performance Computing (HPC) systems,
important efforts are put in improving massively parallel
computations and communication between compute nodes in
order to deliver a higher performance. However, the huge
gap between the computing capacity and the storage system
latency leads to I/O bottlenecks, and a similar effort has to
be made on the I/O and storage systems as a response to
the large amount of data generated, manipulated, shared and
transferred by modern applications. Recent computer archi-
tectures provide hierarchical storage systems with different
tiers [28], each with its own physical characteristics based on
the device technology and its associated performance metrics,
such as latency or throughput [8]. Because of the performance
disparity between these tiers, a good file placement is required
in order to make the most out of the performance of each
one and improve applications performance. Understanding
the storage hierarchy behavior, along with the file access
performed by the application, is thus key to adapt the data
placement to the application’s access profile.

Such a file data placement policy can be considered effective
when it increases the performance of the system by placing
hot files in the best performing tiers and cold files in the worst

performing tiers, so that the files with the highest probability
of being read are quickly available to the application [8]. To
distinguish between these two access and achieve an efficient
data placement, the first step is to perform a thorough profiling
of the application and its files manipulation, to characterize file
re-use throughout the application’s lifetime. From these obser-
vations, an optimal file placement policy can then be designed
and selected. However, selecting the best policy is often a
complicated task, as the literature is rich of different strategies:
Random, LRU and LFU in their basic versions [13] [16] or
optimized ones [10] [24], methods using tuning as ARC [21],
methods introducing additional history information as LIRS
[15] or methods combining tiering and caching [30]. Novel
approaches attempting cache management using statistics of
past requests [12] or through machine learning techniques as
in [14] [31] [11] [4] have proven successful, by focusing on
I/O patterns detection to predict which block should be loaded
into the different cache tiers at a given time.

Among all these different approaches, the selection of
the optimal placement should rely on objective criteria and
metrics describing the placement, such as the cache hits and
cache miss rates, file re-use rate, file lifecycles. . . To our
knowledge, none of these metrics have been systematically
included into an I/O profiler and correlated with the behavior
of the application at the file level for selecting an optimal file
placement, as the literature mainly focuses on the application
level. We believe that combining the profiling at the file level
with the description of file movements through hierarchical
and heterogeneous storage tiers fills this literature gaps, and
we suggest in this paper a new tool called FiLiP (File Lifeycle
Profiler) to provide data analysis at the file level, by allowing
the visualization of operations performed on the file by the
application, and systematically including statistics quantifying
the quality of file placement policies in the hierarchical stor-
age.

This paper is structured as follow. We present in section II
the related works and point out the novelty of FiLiP compared
to existing profiling software. In section III, we describe
FiLiP’s main features. Section IV presents its utilisation within
three different HPC applications running on hierarchical stor-

FiLiP: A File Lifecycle-based Profiler for
hierarchical storage

Adrian Khelili, Sophie Robert and Soraya Zertal

Abstract—The increasing gap between computing speed and
storage latency leads to possible I/O bottlenecks on massively
parallel computers. To mitigate this issue, hierarchical storage
provides multi-tiered configurations where each tier has its own
physical characteristics and associated performance. Selecting
the most appropriate file placement policy on this multi-tiered
storage is difficult and there is to our knowledge no tool that
systematically provides statistics and metrics for optimal file
policy selection. In this paper, we present FiLiP (File Lifecycle
Profiler), a software which provides statistics and metrics for
a better understanding of file access by applications and the
consequences on file movements across hierarchical storage.
After the description of FiLiP’s main features and architecture,
we highlight the usefulness of our tool using three I/O intensive
simulation HPC applications: NEMO, S3DIO and NAMD and a
three-tiered burst buffer.

Index Terms—I/O, File lifecycle, Profiling, Burst Buffer, Hier-
archical storage, HPC

Adrian Khelili: Atos BDS R&D Data Management Li-PaRAD, UPSaclay-
UVSQ, France. (E-mail: adrian.khelili@atos.net)

Sophie Robert: Atos BDS R&D Data Management Echirolles, France.
(E-mail: sophie.robert@atos.net)

Soraya Zertal: Li-PaRAD, UPSaclay-UVSQ Guyancourt, France. (E-mail:
soraya.zertal@uvsq.fr)

1

FiLiP: A File Lifecycle-based Profiler for
hierarchical storage

Adrian KHELILI Atos BDS R&D Data Management
Li-PaRAD, UPSaclay-UVSQ, France

adrian.khelili@atos.net
Sophie ROBERT Atos BDS R&D Data Management

Echirolles, France
sophie.robert@atos.net

Soraya ZERTAL Li-PaRAD, UPSaclay-UVSQ
Guyancourt, France

soraya.zertal@uvsq.fr

Abstract—The increasing gap between computing speed and
storage latency leads to possible I/O bottlenecks on massively
parallel computers. To mitigate this issue, hierarchical storage
provides multi-tiered configurations where each tier has its own
physical characteristics and associated performance. Selecting
the most appropriate file placement policy on this multi-tiered
storage is difficult and there is to our knowledge no tool that
systematically provides statistics and metrics for optimal file
policy selection. In this paper, we present FiLiP (File Lifecycle
Profiler), a software which provides statistics and metrics for
a better understanding of file access by applications and the
consequences on file movements across hierarchical storage. After
the description of FiLiP’s main features and architecture, we
highlight the usefulness of our tool using three I/O intensive
simulation HPC applications: NEMO, S3DIO and NAMD and a
three-tiered burst buffer.

Index Terms—I/O, File lifecycle, Profiling, Burst Buffer, Hier-
archical storage, HPC

I. INTRODUCTION

On modern High Performance Computing (HPC) systems,
important efforts are put in improving massively parallel
computations and communication between compute nodes in
order to deliver a higher performance. However, the huge
gap between the computing capacity and the storage system
latency leads to I/O bottlenecks, and a similar effort has to
be made on the I/O and storage systems as a response to
the large amount of data generated, manipulated, shared and
transferred by modern applications. Recent computer archi-
tectures provide hierarchical storage systems with different
tiers [28], each with its own physical characteristics based on
the device technology and its associated performance metrics,
such as latency or throughput [8]. Because of the performance
disparity between these tiers, a good file placement is required
in order to make the most out of the performance of each
one and improve applications performance. Understanding
the storage hierarchy behavior, along with the file access
performed by the application, is thus key to adapt the data
placement to the application’s access profile.

Such a file data placement policy can be considered effective
when it increases the performance of the system by placing
hot files in the best performing tiers and cold files in the worst

performing tiers, so that the files with the highest probability
of being read are quickly available to the application [8]. To
distinguish between these two access and achieve an efficient
data placement, the first step is to perform a thorough profiling
of the application and its files manipulation, to characterize file
re-use throughout the application’s lifetime. From these obser-
vations, an optimal file placement policy can then be designed
and selected. However, selecting the best policy is often a
complicated task, as the literature is rich of different strategies:
Random, LRU and LFU in their basic versions [13] [16] or
optimized ones [10] [24], methods using tuning as ARC [21],
methods introducing additional history information as LIRS
[15] or methods combining tiering and caching [30]. Novel
approaches attempting cache management using statistics of
past requests [12] or through machine learning techniques as
in [14] [31] [11] [4] have proven successful, by focusing on
I/O patterns detection to predict which block should be loaded
into the different cache tiers at a given time.

Among all these different approaches, the selection of
the optimal placement should rely on objective criteria and
metrics describing the placement, such as the cache hits and
cache miss rates, file re-use rate, file lifecycles. . . To our
knowledge, none of these metrics have been systematically
included into an I/O profiler and correlated with the behavior
of the application at the file level for selecting an optimal file
placement, as the literature mainly focuses on the application
level. We believe that combining the profiling at the file level
with the description of file movements through hierarchical
and heterogeneous storage tiers fills this literature gaps, and
we suggest in this paper a new tool called FiLiP (File Lifeycle
Profiler) to provide data analysis at the file level, by allowing
the visualization of operations performed on the file by the
application, and systematically including statistics quantifying
the quality of file placement policies in the hierarchical stor-
age.

This paper is structured as follow. We present in section II
the related works and point out the novelty of FiLiP compared
to existing profiling software. In section III, we describe
FiLiP’s main features. Section IV presents its utilisation within
three different HPC applications running on hierarchical stor-

2

age, and present an analysis of their file-level manipulation
that can only be done using our new suggested software. In
section V, we conclude the paper by providing some insight
on some works we are currently inquiring.

II. RELATED WORKS

Profiling has been used in different areas and at different
levels from the top of the software stack to the hardware
level. This technique has proven its efficiency and accuracy to
investigate any component and understand its behavior when
submitted to various execution conditions. The literature
is rich of many profiling tools dedicated to power and
energy, computing, memory and storage hierarchies. For
example, in the energy and power domain to understand
energy consumption by providing a suite of statistics [17]
[26] and experimental methodology [29]. When it comes
to tasks placement, synchronization and communication,
monitoring and profiling tools such as [9] [25] for MPI and
MapReduce allow to understand applications running on
massively parallel architectures. At the memory hierarchy
level, profiling guides heap management [22] and improve
the suitability of mapping parallel applications [7].

At the storage hierarchy level, several I/O profilers exist
and aim to understand applications I/Os such as IOPIN [18]
and IOPRO [19]. Their principal utility is to identify I/O
bottlenecks and thus better exploit the system potential. One of
the most popular I/O profiler is Darshan [5] : a characterization
tool developed at Argonne National Lab and designed to cap-
ture an accurate picture of the I/O behavior of an application to
help developers tune their application parameters by measuring
the effect of a parameter set on execution time. Rather than
capturing a complete trace of each I/O, Darshan characterizes
the job by recording global statistics, such as counters for
POSIX operations and their timestamps, cumulative bytes read
and written, for a compact representation in memory. A similar
profiling tool is Atos IO Instrumention tool (IOI) [2] with a
web interface delivering a maximum of information to users
by providing statistics as time series describing a wide range
of I/O related statistics.

All these profilers are application-oriented and thus have
only one perspective when profiling and analyzing the system.
We propose through FiLiP the possibility to investigate and
analyze the system from the file perspective, by providing the
novel features that:

• Enables profiling at the file-level: FiLiP provides the
possibility to characterize the I/O behavior of an appli-
cation at the file level for a thorough understanding of
file lifecycles and data movements through hierarchical
storage. It displays metrics at the application level as well,
such as hit/miss rates, total reads, writes, to provide a
higher level description of the application’s I/O behavior.

• Provides a standardized interface: FiLiP relies on
a suggested standardized format for description of file
movement between the storage hierarchy tiers that can
be implemented with any monitoring system.

• Evaluates the quality of a destaging policy: Given a
destaging policy described through this standardized for-
mat, FiLiP evaluates its quality through relevant statistics.
It acts then as a performance evaluation tool for new tiers-
management strategies.

III. FEATURES AND ARCHITECTURE

A. Definitions and notations

We define the following terms that will be referred to
throughout the rest of the paper:

• Storage tiers: n storage tiers, ordered hierarchically
depending on their access latency (for example, tier1 =
RAM, tier2 = NVMe, tier3 = HDD). We will denote
tiern the tier at level n.

• File lifecycles: a temporal series of operation performed
on the file (ot)1≤t≤T , with ot an operation in the POSIX
set {READ, WRITE, OPEN, CLOSE}.

• File placement policy: a temporal series describing the
data movement from and to a storage tier (mij) with i
the source tier and j the target one.

B. Main features

FiLiP gives the user an easy to access Web interface,
providing:

• A general understanding of the file manipulation
behavior of the application: Visualization of general
statistics on the file behavior during the application’s
execution, as can be seen in figure 4.

• The visualization of file lifecycles: Visualization of file
lifecycles to observe how the application manipulates
its different files during their lifespans through POSIX
operations, as can be seen in figure 4.

• The visualization of file placement policies: Files move-
ments are correlated with the file lifecycles to assess the
impact of file accesses on moves across the hierarchical
storage. File placement policies can also be character-
ized through generic statistics for proper evaluation as
depicted in figure 1 and described in section III-C.

• The visualization of operations per file: These statistics
are displayed as a table that contains for each accessed
file the number of read, write, open, and close operations,
as well as the volume of data manipulated per file for each
of read and write operations in Gb.

• Visualisation of tiers usage: FiLiP’s provide the usage
percentage for each tier, at each moment of the applica-
tion execution. The fill rate of the tiers are displayed as
a time series, that offers a global view about fluctuations
in tiers usage during the execution.

C. Evaluation metrics

As displayed in figure 1, FiLiP’s main menu provides the
following metrics to evaluate the quality of file placement
policies:

• Cache hits from tiers: For every tier available in the
storage hierarchy, the software provides the number of

DOI: 10.36244/ICJ.2022.4.4

mailto:adrian.khelili%40atos.net?subject=
mailto:sophie.robert%40atos.net?subject=
mailto:soraya.zertal%40uvsq.fr?subject=
https://doi.org/10.36244/ICJ.2022.4.4

FiLiP: A File Lifecycle-based Profiler for
hierarchical storage

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2022 • VOLUME XIV • NUMBER 4 27

2

age, and present an analysis of their file-level manipulation
that can only be done using our new suggested software. In
section V, we conclude the paper by providing some insight
on some works we are currently inquiring.

II. RELATED WORKS

Profiling has been used in different areas and at different
levels from the top of the software stack to the hardware
level. This technique has proven its efficiency and accuracy to
investigate any component and understand its behavior when
submitted to various execution conditions. The literature
is rich of many profiling tools dedicated to power and
energy, computing, memory and storage hierarchies. For
example, in the energy and power domain to understand
energy consumption by providing a suite of statistics [17]
[26] and experimental methodology [29]. When it comes
to tasks placement, synchronization and communication,
monitoring and profiling tools such as [9] [25] for MPI and
MapReduce allow to understand applications running on
massively parallel architectures. At the memory hierarchy
level, profiling guides heap management [22] and improve
the suitability of mapping parallel applications [7].

At the storage hierarchy level, several I/O profilers exist
and aim to understand applications I/Os such as IOPIN [18]
and IOPRO [19]. Their principal utility is to identify I/O
bottlenecks and thus better exploit the system potential. One of
the most popular I/O profiler is Darshan [5] : a characterization
tool developed at Argonne National Lab and designed to cap-
ture an accurate picture of the I/O behavior of an application to
help developers tune their application parameters by measuring
the effect of a parameter set on execution time. Rather than
capturing a complete trace of each I/O, Darshan characterizes
the job by recording global statistics, such as counters for
POSIX operations and their timestamps, cumulative bytes read
and written, for a compact representation in memory. A similar
profiling tool is Atos IO Instrumention tool (IOI) [2] with a
web interface delivering a maximum of information to users
by providing statistics as time series describing a wide range
of I/O related statistics.

All these profilers are application-oriented and thus have
only one perspective when profiling and analyzing the system.
We propose through FiLiP the possibility to investigate and
analyze the system from the file perspective, by providing the
novel features that:

• Enables profiling at the file-level: FiLiP provides the
possibility to characterize the I/O behavior of an appli-
cation at the file level for a thorough understanding of
file lifecycles and data movements through hierarchical
storage. It displays metrics at the application level as well,
such as hit/miss rates, total reads, writes, to provide a
higher level description of the application’s I/O behavior.

• Provides a standardized interface: FiLiP relies on
a suggested standardized format for description of file
movement between the storage hierarchy tiers that can
be implemented with any monitoring system.

• Evaluates the quality of a destaging policy: Given a
destaging policy described through this standardized for-
mat, FiLiP evaluates its quality through relevant statistics.
It acts then as a performance evaluation tool for new tiers-
management strategies.

III. FEATURES AND ARCHITECTURE

A. Definitions and notations

We define the following terms that will be referred to
throughout the rest of the paper:

• Storage tiers: n storage tiers, ordered hierarchically
depending on their access latency (for example, tier1 =
RAM, tier2 = NVMe, tier3 = HDD). We will denote
tiern the tier at level n.

• File lifecycles: a temporal series of operation performed
on the file (ot)1≤t≤T , with ot an operation in the POSIX
set {READ, WRITE, OPEN, CLOSE}.

• File placement policy: a temporal series describing the
data movement from and to a storage tier (mij) with i
the source tier and j the target one.

B. Main features

FiLiP gives the user an easy to access Web interface,
providing:

• A general understanding of the file manipulation
behavior of the application: Visualization of general
statistics on the file behavior during the application’s
execution, as can be seen in figure 4.

• The visualization of file lifecycles: Visualization of file
lifecycles to observe how the application manipulates
its different files during their lifespans through POSIX
operations, as can be seen in figure 4.

• The visualization of file placement policies: Files move-
ments are correlated with the file lifecycles to assess the
impact of file accesses on moves across the hierarchical
storage. File placement policies can also be character-
ized through generic statistics for proper evaluation as
depicted in figure 1 and described in section III-C.

• The visualization of operations per file: These statistics
are displayed as a table that contains for each accessed
file the number of read, write, open, and close operations,
as well as the volume of data manipulated per file for each
of read and write operations in Gb.

• Visualisation of tiers usage: FiLiP’s provide the usage
percentage for each tier, at each moment of the applica-
tion execution. The fill rate of the tiers are displayed as
a time series, that offers a global view about fluctuations
in tiers usage during the execution.

C. Evaluation metrics

As displayed in figure 1, FiLiP’s main menu provides the
following metrics to evaluate the quality of file placement
policies:

• Cache hits from tiers: For every tier available in the
storage hierarchy, the software provides the number of

FiLiP: A File Lifecycle-based Profiler for
hierarchical storage

DECEMBER 2022 • VOLUME XIV • NUMBER 428

INFOCOMMUNICATIONS JOURNAL

3

Listing 1: Example of file lifecycle declaration
” f i l e n a m e ” : [

{
” t imes t amp ” : ” xxx ” ,
” t y p e ” : ”OPEN”
}

]

Listing 2: Example of file policy
” f i l e n a m e ” : [

{
” t imes t amp ” : ” xxx ” ,
” from ” : ” t i e r 1 ”
” t o ” : ” t i e r 2 ”
}

]

Fig. 1: Example of main menu general statistics for S3DIO application.

hits. This metric allows us to assess a policy’s ability to
place hot files in the most suitable tier (the one delivering
the best performance) and place files less likely to be
accessed often in slower tiers.

• Total fetches: This is an additional information on total
fetches to put the previous metrics in context. It corre-
sponds to the sum of the fetches from each tier.

• File re-use: This metric allows us to determine the
relevance of a file-level policy for a given application.
For example, an application which does not re-use many
files will not benefit from a file-level policy and vice-
versa for applications with high file re-use.

D. Expected input format

To provide a generic API and to accommodate a wide
variety of monitoring systems, we define a standard interface
of files to use for our tool. Three different files are required
as input for such a visualization :

• File lifecycles: File that contains all the operations for
each file used by the application. The expected format is
presented in listings 1.

• Data movements: File that describes data movements be-
tween the different tiers. The expected format is presented
in listings 2.

• Storage tiers metadata: Metadata file that contains the
size of the tiers and the maximum memory size allowed
for the application use. Optionally, the threshold used for
triggering the cache eviction can be specified.

Any file respecting this standard can be imported and
visualized through the Web interface.

E. Architecture and implementation choices

The architecture of FiLiP is available in figure 2. The
first step is the extraction of the raw data describing the
file lifecycles, the memory movements and the storage tiers
metadata. This data is then given to the file-extractor module
that produces JSON files with the format described in listings
1 and 2. Once these files are created, they are given to the
front-end interface that renders the profiling information for
the application. This front-end interface communicates through
a REST HTTP API that returns for each visualization the
required data.

The Web front-end is developed using the reactive javascript
framework Vue.js [3] and the visualization components devel-
oped using the D3.js library. All computations rely on a REST
API, developed using the Python framework FastAPI [1].

Fig. 1: Example of main menu general statistics for S3DIO application.

3

Listing 1: Example of file lifecycle declaration
” f i l e n a m e ” : [

{
” t imes t amp ” : ” xxx ” ,
” t y p e ” : ”OPEN”
}

]

Listing 2: Example of file policy
” f i l e n a m e ” : [

{
” t imes t amp ” : ” xxx ” ,
” from ” : ” t i e r 1 ”
” t o ” : ” t i e r 2 ”
}

]

Fig. 1: Example of main menu general statistics for S3DIO application.

hits. This metric allows us to assess a policy’s ability to
place hot files in the most suitable tier (the one delivering
the best performance) and place files less likely to be
accessed often in slower tiers.

• Total fetches: This is an additional information on total
fetches to put the previous metrics in context. It corre-
sponds to the sum of the fetches from each tier.

• File re-use: This metric allows us to determine the
relevance of a file-level policy for a given application.
For example, an application which does not re-use many
files will not benefit from a file-level policy and vice-
versa for applications with high file re-use.

D. Expected input format

To provide a generic API and to accommodate a wide
variety of monitoring systems, we define a standard interface
of files to use for our tool. Three different files are required
as input for such a visualization :

• File lifecycles: File that contains all the operations for
each file used by the application. The expected format is
presented in listings 1.

• Data movements: File that describes data movements be-
tween the different tiers. The expected format is presented
in listings 2.

• Storage tiers metadata: Metadata file that contains the
size of the tiers and the maximum memory size allowed
for the application use. Optionally, the threshold used for
triggering the cache eviction can be specified.

Any file respecting this standard can be imported and
visualized through the Web interface.

E. Architecture and implementation choices

The architecture of FiLiP is available in figure 2. The
first step is the extraction of the raw data describing the
file lifecycles, the memory movements and the storage tiers
metadata. This data is then given to the file-extractor module
that produces JSON files with the format described in listings
1 and 2. Once these files are created, they are given to the
front-end interface that renders the profiling information for
the application. This front-end interface communicates through
a REST HTTP API that returns for each visualization the
required data.

The Web front-end is developed using the reactive javascript
framework Vue.js [3] and the visualization components devel-
oped using the D3.js library. All computations rely on a REST
API, developed using the Python framework FastAPI [1].

FiLiP: A File Lifecycle-based Profiler for
hierarchical storage

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2022 • VOLUME XIV • NUMBER 4 29

4

TABLE I: File manipulation behavior for the three case studies

Application Total files File re-used Number of read Number of write Number of open Number of close
NEMO 56 22 1600 9904 106 106
S3DIO 6 6 6274 31365 38 38
NAMD 14 10 1346 3959 244 244

Fig. 2: FiLiP’s architecture

Fig. 3: Schematic representation of the burst buffer

IV. CASE STUDIES

To highlight the usefulness of FiLiP, we test it on a three
levels hierarchical storage (RAM, NVMe, HDD). The RAM
and NVMe are deployed as a data node, also called burst
buffer [20] [27] [6], a fast intermediate layer located between
the compute nodes and the end storage. A monitoring system is
deployed on the burst buffer to capture file transfers through
the storage hierarchy and observe the I/O flow between the
different layers, as displayed in figure 3. When data comes to a
cache level, the data has not yet been flushed to the underlying
tier and is labeled as dirty. As soon as it is flushed, it is flagged
as clean and can be evicted from the cache level.

To show the usefulness of FiLiP on production use-cases,
we select two scientific applications and a popular I/O bench-
mark: NEMO [?], NAMD [23] and S3DIO [?] which imple-
ments the I/O kernel of the S3D HPC application. Because
of their many parallel accesses and their high file re-use
rate, these applications are relevant to show the usefulness
of FiLiP and representative of the behavior of I/O intensive
HPC applications. All of these applications are run on the
burt buffer using different tiers size, to display the impact of
the tier size on file movements and consequently application’s
performance, that can only be detected through FiLiP.

A. Experimentation scenarios and hardware

Each applications has been selected for its specific and
representative behavior of sub-classes of HPC applications.
Indeed, NEMO generates a large number of files and exhibits
a high degree of file manipulation and re-use, S3DIO is an
I/O intensive application generating a low number of files, and
NAMD is very sensitive to hardware variation due to large I/O
bursts. Table I summarizes the file manipulation characteristics
of these three applications.

Each application is run using FiLiP according to three
scenarios with a fixed combination of the available space on
tiers 1 (RAM) and 2 (NVMe), and an infinite size for tier
3 (HDD) as detailed on table II. The variation in size of
the different tiers shows how FiLiP can help to understand
the reasons behind file movements and policy efficiency when
hardware parameters or cache policy are subject to change.

TABLE II: Tier size for each scenario

Scenario RAM Size NVME Size
1 1 GiB 5GiB
2 32GiB 500 GiB
3 100 GiB 1024 GiB

Table III gathers the hit rates for the two first tiers and the
miss rate when data is neither in the first tier nor in the second.
We have chosen scenarios that show the difference of hit rates
for the applications when we change the size of the fastest
tier. So we can study the evolution of the hit rate when we
present new cache movement policies in further works.

The eviction policy used in the three scenarios is Least
Recently Used (LRU) cache management policy [16], parame-
terized to be triggered when a threshold of 90% of the physical
capacity is reached. When this limit is reached, the dirty data
is evicted from the filled cache level.

Every applications are run on a single node, with 134GiB
memory, an AMD EPYC 7H12 processor with 64 cores. The
data node RAM is a DDR4 and the SSD is an NVMe. The
HDD storage bay relies on the Lustre filesystem.

TABLE II
File manipulation behavior for the three case studies

TABLE II
Tier size for each scenario

4

TABLE I: File manipulation behavior for the three case studies

Application Total files File re-used Number of read Number of write Number of open Number of close
NEMO 56 22 1600 9904 106 106
S3DIO 6 6 6274 31365 38 38
NAMD 14 10 1346 3959 244 244

Fig. 2: FiLiP’s architecture

Fig. 3: Schematic representation of the burst buffer

IV. CASE STUDIES

To highlight the usefulness of FiLiP, we test it on a three
levels hierarchical storage (RAM, NVMe, HDD). The RAM
and NVMe are deployed as a data node, also called burst
buffer [20] [27] [6], a fast intermediate layer located between
the compute nodes and the end storage. A monitoring system is
deployed on the burst buffer to capture file transfers through
the storage hierarchy and observe the I/O flow between the
different layers, as displayed in figure 3. When data comes to a
cache level, the data has not yet been flushed to the underlying
tier and is labeled as dirty. As soon as it is flushed, it is flagged
as clean and can be evicted from the cache level.

To show the usefulness of FiLiP on production use-cases,
we select two scientific applications and a popular I/O bench-
mark: NEMO [?], NAMD [23] and S3DIO [?] which imple-
ments the I/O kernel of the S3D HPC application. Because
of their many parallel accesses and their high file re-use
rate, these applications are relevant to show the usefulness
of FiLiP and representative of the behavior of I/O intensive
HPC applications. All of these applications are run on the
burt buffer using different tiers size, to display the impact of
the tier size on file movements and consequently application’s
performance, that can only be detected through FiLiP.

A. Experimentation scenarios and hardware

Each applications has been selected for its specific and
representative behavior of sub-classes of HPC applications.
Indeed, NEMO generates a large number of files and exhibits
a high degree of file manipulation and re-use, S3DIO is an
I/O intensive application generating a low number of files, and
NAMD is very sensitive to hardware variation due to large I/O
bursts. Table I summarizes the file manipulation characteristics
of these three applications.

Each application is run using FiLiP according to three
scenarios with a fixed combination of the available space on
tiers 1 (RAM) and 2 (NVMe), and an infinite size for tier
3 (HDD) as detailed on table II. The variation in size of
the different tiers shows how FiLiP can help to understand
the reasons behind file movements and policy efficiency when
hardware parameters or cache policy are subject to change.

TABLE II: Tier size for each scenario

Scenario RAM Size NVME Size
1 1 GiB 5GiB
2 32GiB 500 GiB
3 100 GiB 1024 GiB

Table III gathers the hit rates for the two first tiers and the
miss rate when data is neither in the first tier nor in the second.
We have chosen scenarios that show the difference of hit rates
for the applications when we change the size of the fastest
tier. So we can study the evolution of the hit rate when we
present new cache movement policies in further works.

The eviction policy used in the three scenarios is Least
Recently Used (LRU) cache management policy [16], parame-
terized to be triggered when a threshold of 90% of the physical
capacity is reached. When this limit is reached, the dirty data
is evicted from the filled cache level.

Every applications are run on a single node, with 134GiB
memory, an AMD EPYC 7H12 processor with 64 cores. The
data node RAM is a DDR4 and the SSD is an NVMe. The
HDD storage bay relies on the Lustre filesystem.

4

TABLE I: File manipulation behavior for the three case studies

Application Total files File re-used Number of read Number of write Number of open Number of close
NEMO 56 22 1600 9904 106 106
S3DIO 6 6 6274 31365 38 38
NAMD 14 10 1346 3959 244 244

Fig. 2: FiLiP’s architecture

Fig. 3: Schematic representation of the burst buffer

IV. CASE STUDIES

To highlight the usefulness of FiLiP, we test it on a three
levels hierarchical storage (RAM, NVMe, HDD). The RAM
and NVMe are deployed as a data node, also called burst
buffer [20] [27] [6], a fast intermediate layer located between
the compute nodes and the end storage. A monitoring system is
deployed on the burst buffer to capture file transfers through
the storage hierarchy and observe the I/O flow between the
different layers, as displayed in figure 3. When data comes to a
cache level, the data has not yet been flushed to the underlying
tier and is labeled as dirty. As soon as it is flushed, it is flagged
as clean and can be evicted from the cache level.

To show the usefulness of FiLiP on production use-cases,
we select two scientific applications and a popular I/O bench-
mark: NEMO [?], NAMD [23] and S3DIO [?] which imple-
ments the I/O kernel of the S3D HPC application. Because
of their many parallel accesses and their high file re-use
rate, these applications are relevant to show the usefulness
of FiLiP and representative of the behavior of I/O intensive
HPC applications. All of these applications are run on the
burt buffer using different tiers size, to display the impact of
the tier size on file movements and consequently application’s
performance, that can only be detected through FiLiP.

A. Experimentation scenarios and hardware

Each applications has been selected for its specific and
representative behavior of sub-classes of HPC applications.
Indeed, NEMO generates a large number of files and exhibits
a high degree of file manipulation and re-use, S3DIO is an
I/O intensive application generating a low number of files, and
NAMD is very sensitive to hardware variation due to large I/O
bursts. Table I summarizes the file manipulation characteristics
of these three applications.

Each application is run using FiLiP according to three
scenarios with a fixed combination of the available space on
tiers 1 (RAM) and 2 (NVMe), and an infinite size for tier
3 (HDD) as detailed on table II. The variation in size of
the different tiers shows how FiLiP can help to understand
the reasons behind file movements and policy efficiency when
hardware parameters or cache policy are subject to change.

TABLE II: Tier size for each scenario

Scenario RAM Size NVME Size
1 1 GiB 5GiB
2 32GiB 500 GiB
3 100 GiB 1024 GiB

Table III gathers the hit rates for the two first tiers and the
miss rate when data is neither in the first tier nor in the second.
We have chosen scenarios that show the difference of hit rates
for the applications when we change the size of the fastest
tier. So we can study the evolution of the hit rate when we
present new cache movement policies in further works.

The eviction policy used in the three scenarios is Least
Recently Used (LRU) cache management policy [16], parame-
terized to be triggered when a threshold of 90% of the physical
capacity is reached. When this limit is reached, the dirty data
is evicted from the filled cache level.

Every applications are run on a single node, with 134GiB
memory, an AMD EPYC 7H12 processor with 64 cores. The
data node RAM is a DDR4 and the SSD is an NVMe. The
HDD storage bay relies on the Lustre filesystem.

4

TABLE I: File manipulation behavior for the three case studies

Application Total files File re-used Number of read Number of write Number of open Number of close
NEMO 56 22 1600 9904 106 106
S3DIO 6 6 6274 31365 38 38
NAMD 14 10 1346 3959 244 244

Fig. 2: FiLiP’s architecture

Fig. 3: Schematic representation of the burst buffer

IV. CASE STUDIES

To highlight the usefulness of FiLiP, we test it on a three
levels hierarchical storage (RAM, NVMe, HDD). The RAM
and NVMe are deployed as a data node, also called burst
buffer [20] [27] [6], a fast intermediate layer located between
the compute nodes and the end storage. A monitoring system is
deployed on the burst buffer to capture file transfers through
the storage hierarchy and observe the I/O flow between the
different layers, as displayed in figure 3. When data comes to a
cache level, the data has not yet been flushed to the underlying
tier and is labeled as dirty. As soon as it is flushed, it is flagged
as clean and can be evicted from the cache level.

To show the usefulness of FiLiP on production use-cases,
we select two scientific applications and a popular I/O bench-
mark: NEMO [?], NAMD [23] and S3DIO [?] which imple-
ments the I/O kernel of the S3D HPC application. Because
of their many parallel accesses and their high file re-use
rate, these applications are relevant to show the usefulness
of FiLiP and representative of the behavior of I/O intensive
HPC applications. All of these applications are run on the
burt buffer using different tiers size, to display the impact of
the tier size on file movements and consequently application’s
performance, that can only be detected through FiLiP.

A. Experimentation scenarios and hardware

Each applications has been selected for its specific and
representative behavior of sub-classes of HPC applications.
Indeed, NEMO generates a large number of files and exhibits
a high degree of file manipulation and re-use, S3DIO is an
I/O intensive application generating a low number of files, and
NAMD is very sensitive to hardware variation due to large I/O
bursts. Table I summarizes the file manipulation characteristics
of these three applications.

Each application is run using FiLiP according to three
scenarios with a fixed combination of the available space on
tiers 1 (RAM) and 2 (NVMe), and an infinite size for tier
3 (HDD) as detailed on table II. The variation in size of
the different tiers shows how FiLiP can help to understand
the reasons behind file movements and policy efficiency when
hardware parameters or cache policy are subject to change.

TABLE II: Tier size for each scenario

Scenario RAM Size NVME Size
1 1 GiB 5GiB
2 32GiB 500 GiB
3 100 GiB 1024 GiB

Table III gathers the hit rates for the two first tiers and the
miss rate when data is neither in the first tier nor in the second.
We have chosen scenarios that show the difference of hit rates
for the applications when we change the size of the fastest
tier. So we can study the evolution of the hit rate when we
present new cache movement policies in further works.

The eviction policy used in the three scenarios is Least
Recently Used (LRU) cache management policy [16], parame-
terized to be triggered when a threshold of 90% of the physical
capacity is reached. When this limit is reached, the dirty data
is evicted from the filled cache level.

Every applications are run on a single node, with 134GiB
memory, an AMD EPYC 7H12 processor with 64 cores. The
data node RAM is a DDR4 and the SSD is an NVMe. The
HDD storage bay relies on the Lustre filesystem.

4

TABLE I: File manipulation behavior for the three case studies

Application Total files File re-used Number of read Number of write Number of open Number of close
NEMO 56 22 1600 9904 106 106
S3DIO 6 6 6274 31365 38 38
NAMD 14 10 1346 3959 244 244

Fig. 2: FiLiP’s architecture

Fig. 3: Schematic representation of the burst buffer

IV. CASE STUDIES

To highlight the usefulness of FiLiP, we test it on a three
levels hierarchical storage (RAM, NVMe, HDD). The RAM
and NVMe are deployed as a data node, also called burst
buffer [20] [27] [6], a fast intermediate layer located between
the compute nodes and the end storage. A monitoring system is
deployed on the burst buffer to capture file transfers through
the storage hierarchy and observe the I/O flow between the
different layers, as displayed in figure 3. When data comes to a
cache level, the data has not yet been flushed to the underlying
tier and is labeled as dirty. As soon as it is flushed, it is flagged
as clean and can be evicted from the cache level.

To show the usefulness of FiLiP on production use-cases,
we select two scientific applications and a popular I/O bench-
mark: NEMO [?], NAMD [23] and S3DIO [?] which imple-
ments the I/O kernel of the S3D HPC application. Because
of their many parallel accesses and their high file re-use
rate, these applications are relevant to show the usefulness
of FiLiP and representative of the behavior of I/O intensive
HPC applications. All of these applications are run on the
burt buffer using different tiers size, to display the impact of
the tier size on file movements and consequently application’s
performance, that can only be detected through FiLiP.

A. Experimentation scenarios and hardware

Each applications has been selected for its specific and
representative behavior of sub-classes of HPC applications.
Indeed, NEMO generates a large number of files and exhibits
a high degree of file manipulation and re-use, S3DIO is an
I/O intensive application generating a low number of files, and
NAMD is very sensitive to hardware variation due to large I/O
bursts. Table I summarizes the file manipulation characteristics
of these three applications.

Each application is run using FiLiP according to three
scenarios with a fixed combination of the available space on
tiers 1 (RAM) and 2 (NVMe), and an infinite size for tier
3 (HDD) as detailed on table II. The variation in size of
the different tiers shows how FiLiP can help to understand
the reasons behind file movements and policy efficiency when
hardware parameters or cache policy are subject to change.

TABLE II: Tier size for each scenario

Scenario RAM Size NVME Size
1 1 GiB 5GiB
2 32GiB 500 GiB
3 100 GiB 1024 GiB

Table III gathers the hit rates for the two first tiers and the
miss rate when data is neither in the first tier nor in the second.
We have chosen scenarios that show the difference of hit rates
for the applications when we change the size of the fastest
tier. So we can study the evolution of the hit rate when we
present new cache movement policies in further works.

The eviction policy used in the three scenarios is Least
Recently Used (LRU) cache management policy [16], parame-
terized to be triggered when a threshold of 90% of the physical
capacity is reached. When this limit is reached, the dirty data
is evicted from the filled cache level.

Every applications are run on a single node, with 134GiB
memory, an AMD EPYC 7H12 processor with 64 cores. The
data node RAM is a DDR4 and the SSD is an NVMe. The
HDD storage bay relies on the Lustre filesystem.

4

TABLE I: File manipulation behavior for the three case studies

Application Total files File re-used Number of read Number of write Number of open Number of close
NEMO 56 22 1600 9904 106 106
S3DIO 6 6 6274 31365 38 38
NAMD 14 10 1346 3959 244 244

Fig. 2: FiLiP’s architecture

Fig. 3: Schematic representation of the burst buffer

IV. CASE STUDIES

To highlight the usefulness of FiLiP, we test it on a three
levels hierarchical storage (RAM, NVMe, HDD). The RAM
and NVMe are deployed as a data node, also called burst
buffer [20] [27] [6], a fast intermediate layer located between
the compute nodes and the end storage. A monitoring system is
deployed on the burst buffer to capture file transfers through
the storage hierarchy and observe the I/O flow between the
different layers, as displayed in figure 3. When data comes to a
cache level, the data has not yet been flushed to the underlying
tier and is labeled as dirty. As soon as it is flushed, it is flagged
as clean and can be evicted from the cache level.

To show the usefulness of FiLiP on production use-cases,
we select two scientific applications and a popular I/O bench-
mark: NEMO [?], NAMD [23] and S3DIO [?] which imple-
ments the I/O kernel of the S3D HPC application. Because
of their many parallel accesses and their high file re-use
rate, these applications are relevant to show the usefulness
of FiLiP and representative of the behavior of I/O intensive
HPC applications. All of these applications are run on the
burt buffer using different tiers size, to display the impact of
the tier size on file movements and consequently application’s
performance, that can only be detected through FiLiP.

A. Experimentation scenarios and hardware

Each applications has been selected for its specific and
representative behavior of sub-classes of HPC applications.
Indeed, NEMO generates a large number of files and exhibits
a high degree of file manipulation and re-use, S3DIO is an
I/O intensive application generating a low number of files, and
NAMD is very sensitive to hardware variation due to large I/O
bursts. Table I summarizes the file manipulation characteristics
of these three applications.

Each application is run using FiLiP according to three
scenarios with a fixed combination of the available space on
tiers 1 (RAM) and 2 (NVMe), and an infinite size for tier
3 (HDD) as detailed on table II. The variation in size of
the different tiers shows how FiLiP can help to understand
the reasons behind file movements and policy efficiency when
hardware parameters or cache policy are subject to change.

TABLE II: Tier size for each scenario

Scenario RAM Size NVME Size
1 1 GiB 5GiB
2 32GiB 500 GiB
3 100 GiB 1024 GiB

Table III gathers the hit rates for the two first tiers and the
miss rate when data is neither in the first tier nor in the second.
We have chosen scenarios that show the difference of hit rates
for the applications when we change the size of the fastest
tier. So we can study the evolution of the hit rate when we
present new cache movement policies in further works.

The eviction policy used in the three scenarios is Least
Recently Used (LRU) cache management policy [16], parame-
terized to be triggered when a threshold of 90% of the physical
capacity is reached. When this limit is reached, the dirty data
is evicted from the filled cache level.

Every applications are run on a single node, with 134GiB
memory, an AMD EPYC 7H12 processor with 64 cores. The
data node RAM is a DDR4 and the SSD is an NVMe. The
HDD storage bay relies on the Lustre filesystem.

Fig. 2: FiLiP’s architecture

Fig. 3: Schematic representation of the burst buffer

FiLiP: A File Lifecycle-based Profiler for
hierarchical storage

DECEMBER 2022 • VOLUME XIV • NUMBER 430

INFOCOMMUNICATIONS JOURNAL

5

TABLE III: Comparison of file movements statistics per ap-
plication and scenarios

RAM hit rate Flash hit rate Miss

Sc
1

NAMD 13.39 % 10 % 76%
NEMO 99% 0% 1%
S3DIO 0.1% 0% 99.9%

Sc
2

NAMD 27% 0% 73%
NEMO 99% 0% 1%
S3DIO 0.1% 0 % 99.9%

Sc
3

NAMD 27% 0% 73%
NEMO 99% 0% 1%
S3DIO 0.1% 0% 99.9%

B. NEMO

NEMO [?] (Nucleus for European Modeling of the Ocean)
is a state-of-the-art modeling framework for research activities
in ocean and climate sciences. It is characterized by a signif-
icant file re-use, highlighting the importance of a custom file
placement policy in the hierarchical storage to keep the most
accessed files in the most efficient tier.

a) Application configuration: For our experiment, we use
the GYRE configuration, which simulates the seasonal cycle
of a double-gyre box model, and which is often used for I/O
benchmarking purpose as it is very simple to increase grid
resolution and does not require any input file. In our case, the
grid resolution is set to 5 and the number of MPI processes
to 32 to increase the I/O activity.

b) Characterization of file lifecycle behavior: For this
configuration, the application generates a total of 56 files,
that are opened and closed 106 times, to realize 9904 writes,
and 1600 reads. Over the 32 manipulated files, 10 are re-used
which represent a ratio of 32%. Regardless of the used
scenario, we observe in table III a hit rate of 99% for the
first tier, as the whole dataset fits in tier 1. The misses are
due to the cold accesses performed at the beginning of the
application’s execution, corresponding to the first access
of these files on the filesystem before moving them to the
highest performing tier.
The lifecycle behavior of NEMO, displayed in figure 4a,
shows that the application concentrates its writes
mainly on output files, such as ocean.output and
output.namelist.dyn, performing several checkpoints
within the application’s lifetime. The configuration file
namelist_cfg is often re-used as well, this time through
read-only accesses, accessed at different moments during
the application execution. Files corresponding to the
checkpointing of the simulation grid (such as GYRE_*
files) or describing the state of the mesh grid (such as
mesh_mask_* files) are accessed more sporadically for
computation purposes, and always within a short timespan.

c) Consequences on file placement policy: Despite its
very high hit rate in this configuration, this application illus-
trates the need for a file lifecycle-based policy to manage
file placement, especially if considered in a setting gener-
ating a higher volume of data. As we can see from fig-
ure 4a, results files, recognizable by the *output* regexp
in their filenames, such as output.namlist.dyn and

ocean.output, are moved frequently between the tiers,
while a policy based on access frequency could have kept
these files in the highest performing tiers until the end of the
application execution.
On the other hand, checkpointing files (such as GYRE_* files)
are only accessed for the duration of the checkpoint, and
should be evicted directly as soon as written in the last tier
to free some memory. As we can see from this example,
this priority-based cache eviction policy, selected from the
re-use rate, is not taken into account by the LRU policy
available within the tested burst buffer setting and used for
our experimentation. This leads to the eviction of data from
the higher tier that can be re-used in the future, causing an
increase of data access latency. This analysis on a file per file
basis can only be done through tools like FiLiP.

C. S3DIO
S3DIO is an I/O benchmarking application corresponding

to the I/O kernel of the S3D application, a continuum scale
first principles direct numerical chemical 3D-simulation code.
It is an I/Os intensive application with the highest number of
operations (6274 reads and 31365 writes) performed on only
6 files (against 56 for NEMO and 14 for NAMD), as can
be read from table I. All its files are re-used which shows
the interest of keeping them in the higher tiers for as long
as possible, and will be a good case study for a further fine
anticipated placement strategy of these files according to the
time sequence of their re-use.

a) Application configuration: Each axis of the three di-
mensions were set to 800 in order to perform the computations
on a large cube and increase the I/O activity of the application.
For each of these dimensions, we use four MPI processes.
We used a PnetCDF blocking API that allows users to first
post multiple requests and later flush them altogether in order
to achieve a better performance instead of a Nonblocking
API. The restart parameter is set to true in order to reuse a
previously written file and obtain more reads operations. The
number of checkpoints, which corresponds to the number of
output files as well, is set to 5 to obtain large I/Os bursts.

b) Characterization of file lifecycle behavior: The life-
cycle behavior of the S3DIO application is representative of an
I/O intensive application which puts each of its manipulated
files under pressure during all the execution time. In the first
scenario, we observe a negligible hit rate close to 0, despite
high file re-use, because the accessed blocks of the files are
changing all the time. We also observe that when the RAM
fills up the data starts to be evicted to flash and the same
phenomenon is observed from the flash to the disk. In the
second scenario, the hit rate is still very low, even if the higher
tiers size has have been increased due to a low blocks re-use.
The third scenario leads to a slightly different behavior: the
RAM (tier 1) size is large enough to contain all data, but the
hit rate is still the same. As can be seen from figure 4b, we
can observe that files corresponding to the grid description,
characterized by their *nc* extension, are accessed succes-
sively in long sequences of writes, except for the first file
pressure_wave_test.0.000E+00.field.nc corre-
sponding to the re-use of the previously written result file.

TABLE III
Comparison of file movements statistics per ap- plication and

scenarios

5

TABLE III: Comparison of file movements statistics per ap-
plication and scenarios

RAM hit rate Flash hit rate Miss

Sc
1

NAMD 13.39 % 10 % 76%
NEMO 99% 0% 1%
S3DIO 0.1% 0% 99.9%

Sc
2

NAMD 27% 0% 73%
NEMO 99% 0% 1%
S3DIO 0.1% 0 % 99.9%

Sc
3

NAMD 27% 0% 73%
NEMO 99% 0% 1%
S3DIO 0.1% 0% 99.9%

B. NEMO

NEMO [?] (Nucleus for European Modeling of the Ocean)
is a state-of-the-art modeling framework for research activities
in ocean and climate sciences. It is characterized by a signif-
icant file re-use, highlighting the importance of a custom file
placement policy in the hierarchical storage to keep the most
accessed files in the most efficient tier.

a) Application configuration: For our experiment, we use
the GYRE configuration, which simulates the seasonal cycle
of a double-gyre box model, and which is often used for I/O
benchmarking purpose as it is very simple to increase grid
resolution and does not require any input file. In our case, the
grid resolution is set to 5 and the number of MPI processes
to 32 to increase the I/O activity.

b) Characterization of file lifecycle behavior: For this
configuration, the application generates a total of 56 files,
that are opened and closed 106 times, to realize 9904 writes,
and 1600 reads. Over the 32 manipulated files, 10 are re-used
which represent a ratio of 32%. Regardless of the used
scenario, we observe in table III a hit rate of 99% for the
first tier, as the whole dataset fits in tier 1. The misses are
due to the cold accesses performed at the beginning of the
application’s execution, corresponding to the first access
of these files on the filesystem before moving them to the
highest performing tier.
The lifecycle behavior of NEMO, displayed in figure 4a,
shows that the application concentrates its writes
mainly on output files, such as ocean.output and
output.namelist.dyn, performing several checkpoints
within the application’s lifetime. The configuration file
namelist_cfg is often re-used as well, this time through
read-only accesses, accessed at different moments during
the application execution. Files corresponding to the
checkpointing of the simulation grid (such as GYRE_*
files) or describing the state of the mesh grid (such as
mesh_mask_* files) are accessed more sporadically for
computation purposes, and always within a short timespan.

c) Consequences on file placement policy: Despite its
very high hit rate in this configuration, this application illus-
trates the need for a file lifecycle-based policy to manage
file placement, especially if considered in a setting gener-
ating a higher volume of data. As we can see from fig-
ure 4a, results files, recognizable by the *output* regexp
in their filenames, such as output.namlist.dyn and

ocean.output, are moved frequently between the tiers,
while a policy based on access frequency could have kept
these files in the highest performing tiers until the end of the
application execution.
On the other hand, checkpointing files (such as GYRE_* files)
are only accessed for the duration of the checkpoint, and
should be evicted directly as soon as written in the last tier
to free some memory. As we can see from this example,
this priority-based cache eviction policy, selected from the
re-use rate, is not taken into account by the LRU policy
available within the tested burst buffer setting and used for
our experimentation. This leads to the eviction of data from
the higher tier that can be re-used in the future, causing an
increase of data access latency. This analysis on a file per file
basis can only be done through tools like FiLiP.

C. S3DIO
S3DIO is an I/O benchmarking application corresponding

to the I/O kernel of the S3D application, a continuum scale
first principles direct numerical chemical 3D-simulation code.
It is an I/Os intensive application with the highest number of
operations (6274 reads and 31365 writes) performed on only
6 files (against 56 for NEMO and 14 for NAMD), as can
be read from table I. All its files are re-used which shows
the interest of keeping them in the higher tiers for as long
as possible, and will be a good case study for a further fine
anticipated placement strategy of these files according to the
time sequence of their re-use.

a) Application configuration: Each axis of the three di-
mensions were set to 800 in order to perform the computations
on a large cube and increase the I/O activity of the application.
For each of these dimensions, we use four MPI processes.
We used a PnetCDF blocking API that allows users to first
post multiple requests and later flush them altogether in order
to achieve a better performance instead of a Nonblocking
API. The restart parameter is set to true in order to reuse a
previously written file and obtain more reads operations. The
number of checkpoints, which corresponds to the number of
output files as well, is set to 5 to obtain large I/Os bursts.

b) Characterization of file lifecycle behavior: The life-
cycle behavior of the S3DIO application is representative of an
I/O intensive application which puts each of its manipulated
files under pressure during all the execution time. In the first
scenario, we observe a negligible hit rate close to 0, despite
high file re-use, because the accessed blocks of the files are
changing all the time. We also observe that when the RAM
fills up the data starts to be evicted to flash and the same
phenomenon is observed from the flash to the disk. In the
second scenario, the hit rate is still very low, even if the higher
tiers size has have been increased due to a low blocks re-use.
The third scenario leads to a slightly different behavior: the
RAM (tier 1) size is large enough to contain all data, but the
hit rate is still the same. As can be seen from figure 4b, we
can observe that files corresponding to the grid description,
characterized by their *nc* extension, are accessed succes-
sively in long sequences of writes, except for the first file
pressure_wave_test.0.000E+00.field.nc corre-
sponding to the re-use of the previously written result file.

5

TABLE III: Comparison of file movements statistics per ap-
plication and scenarios

RAM hit rate Flash hit rate Miss

Sc
1

NAMD 13.39 % 10 % 76%
NEMO 99% 0% 1%
S3DIO 0.1% 0% 99.9%

Sc
2

NAMD 27% 0% 73%
NEMO 99% 0% 1%
S3DIO 0.1% 0 % 99.9%

Sc
3

NAMD 27% 0% 73%
NEMO 99% 0% 1%
S3DIO 0.1% 0% 99.9%

B. NEMO

NEMO [?] (Nucleus for European Modeling of the Ocean)
is a state-of-the-art modeling framework for research activities
in ocean and climate sciences. It is characterized by a signif-
icant file re-use, highlighting the importance of a custom file
placement policy in the hierarchical storage to keep the most
accessed files in the most efficient tier.

a) Application configuration: For our experiment, we use
the GYRE configuration, which simulates the seasonal cycle
of a double-gyre box model, and which is often used for I/O
benchmarking purpose as it is very simple to increase grid
resolution and does not require any input file. In our case, the
grid resolution is set to 5 and the number of MPI processes
to 32 to increase the I/O activity.

b) Characterization of file lifecycle behavior: For this
configuration, the application generates a total of 56 files,
that are opened and closed 106 times, to realize 9904 writes,
and 1600 reads. Over the 32 manipulated files, 10 are re-used
which represent a ratio of 32%. Regardless of the used
scenario, we observe in table III a hit rate of 99% for the
first tier, as the whole dataset fits in tier 1. The misses are
due to the cold accesses performed at the beginning of the
application’s execution, corresponding to the first access
of these files on the filesystem before moving them to the
highest performing tier.
The lifecycle behavior of NEMO, displayed in figure 4a,
shows that the application concentrates its writes
mainly on output files, such as ocean.output and
output.namelist.dyn, performing several checkpoints
within the application’s lifetime. The configuration file
namelist_cfg is often re-used as well, this time through
read-only accesses, accessed at different moments during
the application execution. Files corresponding to the
checkpointing of the simulation grid (such as GYRE_*
files) or describing the state of the mesh grid (such as
mesh_mask_* files) are accessed more sporadically for
computation purposes, and always within a short timespan.

c) Consequences on file placement policy: Despite its
very high hit rate in this configuration, this application illus-
trates the need for a file lifecycle-based policy to manage
file placement, especially if considered in a setting gener-
ating a higher volume of data. As we can see from fig-
ure 4a, results files, recognizable by the *output* regexp
in their filenames, such as output.namlist.dyn and

ocean.output, are moved frequently between the tiers,
while a policy based on access frequency could have kept
these files in the highest performing tiers until the end of the
application execution.
On the other hand, checkpointing files (such as GYRE_* files)
are only accessed for the duration of the checkpoint, and
should be evicted directly as soon as written in the last tier
to free some memory. As we can see from this example,
this priority-based cache eviction policy, selected from the
re-use rate, is not taken into account by the LRU policy
available within the tested burst buffer setting and used for
our experimentation. This leads to the eviction of data from
the higher tier that can be re-used in the future, causing an
increase of data access latency. This analysis on a file per file
basis can only be done through tools like FiLiP.

C. S3DIO
S3DIO is an I/O benchmarking application corresponding

to the I/O kernel of the S3D application, a continuum scale
first principles direct numerical chemical 3D-simulation code.
It is an I/Os intensive application with the highest number of
operations (6274 reads and 31365 writes) performed on only
6 files (against 56 for NEMO and 14 for NAMD), as can
be read from table I. All its files are re-used which shows
the interest of keeping them in the higher tiers for as long
as possible, and will be a good case study for a further fine
anticipated placement strategy of these files according to the
time sequence of their re-use.

a) Application configuration: Each axis of the three di-
mensions were set to 800 in order to perform the computations
on a large cube and increase the I/O activity of the application.
For each of these dimensions, we use four MPI processes.
We used a PnetCDF blocking API that allows users to first
post multiple requests and later flush them altogether in order
to achieve a better performance instead of a Nonblocking
API. The restart parameter is set to true in order to reuse a
previously written file and obtain more reads operations. The
number of checkpoints, which corresponds to the number of
output files as well, is set to 5 to obtain large I/Os bursts.

b) Characterization of file lifecycle behavior: The life-
cycle behavior of the S3DIO application is representative of an
I/O intensive application which puts each of its manipulated
files under pressure during all the execution time. In the first
scenario, we observe a negligible hit rate close to 0, despite
high file re-use, because the accessed blocks of the files are
changing all the time. We also observe that when the RAM
fills up the data starts to be evicted to flash and the same
phenomenon is observed from the flash to the disk. In the
second scenario, the hit rate is still very low, even if the higher
tiers size has have been increased due to a low blocks re-use.
The third scenario leads to a slightly different behavior: the
RAM (tier 1) size is large enough to contain all data, but the
hit rate is still the same. As can be seen from figure 4b, we
can observe that files corresponding to the grid description,
characterized by their *nc* extension, are accessed succes-
sively in long sequences of writes, except for the first file
pressure_wave_test.0.000E+00.field.nc corre-
sponding to the re-use of the previously written result file.

FiLiP: A File Lifecycle-based Profiler for
hierarchical storage

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2022 • VOLUME XIV • NUMBER 4 31

6

Fig. 4: Lifecycles of the tested case studies

(a) Nemo File lifecycles in the context of scenario 1

(b) S3DIO lifecycles in the context of scenario 1

(c) NAMD File lifecycles in the context of scenario 1

c) Consequences on file placement policy: We can ob-
serve that the hit rate is very low because the cold access are
the majority. Thus, although the data already read once are
entirely in memory, the absence of a prefetch mechanism in
the current implementation of the burst buffer causes the hit
rate to remain very low. This could be improved by a lifecycle
based policy that prefetches data from disk when the file is
heavily re-used to predict future accesses.

D. NAMD
NAMD [23] is a parallel molecular dynamics code designed

for high-performance simulation of large bio-molecular sys-
tems. It has the particularity of being very dependent on the
storage hardware, due to its large I/O bursts, and is thus a
good use-case for FiLiP.

a) Application configuration: For our experiment, we use
the Satellite Tobacco Mosaic Virus (STMV-28M) configura-

tion. This is a 3x3x3 replication of the original STMV dataset
from the official NAMD site, containing roughly 28 million
atoms. NAMD execution goes through 50 steps corresponding
to the number of simulation time steps to achieve. Another
parameter defines the number of steps after which a checkpoint
is performed that is set to 5 to obtain ten checkpoints per run
for a significant I/O activity.

b) Characterization of lifecycle behavior: This appli-
cation has the highest number of file activation, with 244
open and close, and a partial but high file re-use rate, as
10 files are re-used out of the 14. The lifecycle behavior of
this application provides several interesting file manipulation
cases. We observe that NAMD makes I/Os on many files,
each with a constant re-use rate. This results for each file in
small sequences of (open-read/write-close) as we can see in
figure 4c. We can observe also that the re-use rate is high due
to a systematic succession of operations on each file since its

Fig. 4: Lifecycles of the tested case studies

6

Fig. 4: Lifecycles of the tested case studies

(a) Nemo File lifecycles in the context of scenario 1

(b) S3DIO lifecycles in the context of scenario 1

(c) NAMD File lifecycles in the context of scenario 1

c) Consequences on file placement policy: We can ob-
serve that the hit rate is very low because the cold access are
the majority. Thus, although the data already read once are
entirely in memory, the absence of a prefetch mechanism in
the current implementation of the burst buffer causes the hit
rate to remain very low. This could be improved by a lifecycle
based policy that prefetches data from disk when the file is
heavily re-used to predict future accesses.

D. NAMD
NAMD [23] is a parallel molecular dynamics code designed

for high-performance simulation of large bio-molecular sys-
tems. It has the particularity of being very dependent on the
storage hardware, due to its large I/O bursts, and is thus a
good use-case for FiLiP.

a) Application configuration: For our experiment, we use
the Satellite Tobacco Mosaic Virus (STMV-28M) configura-

tion. This is a 3x3x3 replication of the original STMV dataset
from the official NAMD site, containing roughly 28 million
atoms. NAMD execution goes through 50 steps corresponding
to the number of simulation time steps to achieve. Another
parameter defines the number of steps after which a checkpoint
is performed that is set to 5 to obtain ten checkpoints per run
for a significant I/O activity.

b) Characterization of lifecycle behavior: This appli-
cation has the highest number of file activation, with 244
open and close, and a partial but high file re-use rate, as
10 files are re-used out of the 14. The lifecycle behavior of
this application provides several interesting file manipulation
cases. We observe that NAMD makes I/Os on many files,
each with a constant re-use rate. This results for each file in
small sequences of (open-read/write-close) as we can see in
figure 4c. We can observe also that the re-use rate is high due
to a systematic succession of operations on each file since its

6

Fig. 4: Lifecycles of the tested case studies

(a) Nemo File lifecycles in the context of scenario 1

(b) S3DIO lifecycles in the context of scenario 1

(c) NAMD File lifecycles in the context of scenario 1

c) Consequences on file placement policy: We can ob-
serve that the hit rate is very low because the cold access are
the majority. Thus, although the data already read once are
entirely in memory, the absence of a prefetch mechanism in
the current implementation of the burst buffer causes the hit
rate to remain very low. This could be improved by a lifecycle
based policy that prefetches data from disk when the file is
heavily re-used to predict future accesses.

D. NAMD
NAMD [23] is a parallel molecular dynamics code designed

for high-performance simulation of large bio-molecular sys-
tems. It has the particularity of being very dependent on the
storage hardware, due to its large I/O bursts, and is thus a
good use-case for FiLiP.

a) Application configuration: For our experiment, we use
the Satellite Tobacco Mosaic Virus (STMV-28M) configura-

tion. This is a 3x3x3 replication of the original STMV dataset
from the official NAMD site, containing roughly 28 million
atoms. NAMD execution goes through 50 steps corresponding
to the number of simulation time steps to achieve. Another
parameter defines the number of steps after which a checkpoint
is performed that is set to 5 to obtain ten checkpoints per run
for a significant I/O activity.

b) Characterization of lifecycle behavior: This appli-
cation has the highest number of file activation, with 244
open and close, and a partial but high file re-use rate, as
10 files are re-used out of the 14. The lifecycle behavior of
this application provides several interesting file manipulation
cases. We observe that NAMD makes I/Os on many files,
each with a constant re-use rate. This results for each file in
small sequences of (open-read/write-close) as we can see in
figure 4c. We can observe also that the re-use rate is high due
to a systematic succession of operations on each file since its

FiLiP: A File Lifecycle-based Profiler for
hierarchical storage

DECEMBER 2022 • VOLUME XIV • NUMBER 432

INFOCOMMUNICATIONS JOURNAL
7

Fig. 5: Evolution of tiers fill for NAMD application

(a) Scenario 1 (b) Scenario 3

opening. NAMD handles a total of 14 files with a re-use ratio
of 71%, that are opened and closed 46 times, for a total 1346
writes and 3959 reads. The application reads a total amount
of 2.041 GB of data and gives different hit rates according to
the different scenarios and the size of the hierarchical storage.

In the first scenario, we observe a hit rate of 13% because
the RAM size is not big enough to contain all the data
previously read. The 76% of miss rate corresponds to the first
load of data from disk when it is read for the first time. An
identical behavior is observed for the second and the third
scenarios when all data fetched from disk fits in RAM and
the miss rate is only due to first time cold accesses. All the
data accessed a second time are already in the most performant
tier.

Adding to that, we can observe that the
input data, such as stmv.28M.psf.inter and
par_all27_prot_na.inp, are accessed once at the
start of the application and never re-used. Other files,
such as checkpointing files like stmv_sbb.xst and
stmv_sbb.dcd are heavely re-used.

c) Consequences on file placement policy: In the case
of NAMD application, the hit rate can be increased by a data
movement policy centered on the file lifecycles: a detection
of the heavily re-used files would have outperformed the
LRU. Similarly to S3DIO, the hit rate is low because of
cold access and the absence of a prefetching mechanism. By
using a predicting model that classifies input/output files we
could evict this type of input files directly after their use. The
checkpoint files are re-used and should be kept in RAM in
priority while input ones should be evicted.

d) Impact of file placement on tiers usage: FiLiP also
gives the possibility to visualize tiers filling over time. This
feature helps us to understand when and why the tier eviction
policy is triggered. In the case of our particular implementation
of a burst buffer, the file movement policy fills in priority
the fastest tier: tier 1, and tier2 is synchronized to the tier1
immediately such that it contains the same data.

Once they are removed from the most performant tier, they
are still present in the second one and can only be evicted
through a threshold based policy. As we can see from figure 5,
every time the 90% threshold is reached, the data is evicted
from the tier. This visualization allows us to determine how

an application reaches the limits of the most efficient tiers.
In figure 5a, we can see that tiers 1 and 2 are very critical

resources for the NAMD application. Indeed, when the tier
usage threshold of 90% is reached, the data is evicted until
another low threshold of 80% is reached. This data is evicted
only when it is not dirty anymore, and an inefficient cache
movement policy could stall the application while the data is
awaiting eviction. In figure 5b, we present the evolution within
scenario 3, where the higher tiers are large enough to contain
the whole data, and therefore the eviction policy is never
triggered. This confirms that an efficient file placement policy
for hierarchical storage should necessarily take into account
the size of the available storage, and especially for restricted
resources. For NAMD application, the RAM hit rate goes from
27% in the case of a large RAM (scenario 3), as displayed in
table III, to 13% in the case of smaller one (scenario 1).

V. CONCLUSION AND FURTHER WORKS

In this work, we have presented a file-based profiling tool
called FiLiP to consider I/O from another perspective in
the case of hierarchical storage, by giving the possibility to
investigate file re-use properties present in HPC and scientific
computing. This tool allows the understanding of how these
files are used by the applications during their entire life cycle
and the consequences of these re-use on the file movements
through the hierarchical storage. Using FiLiP, we analyze and
describe the file behavior of 3 different HPC applications:
NEMO, S3DIO and NAMD, and give some interesting insights
to better understand file manipulations and allow in the future
a smarter file placement policies with reduced miss rates.

REFERENCES

[1] Fastapi. https://fastapi.tiangolo.com/.
[2] IOInstrumentation. https://atos.net/wp-content/uploads/2018/07.
[3] Vue.js. https://vuejs.org/.
[4] A. ben Ameur, A. Araldo, and T. Chahed. Cache allocation in multi-

tenant edge computing via on-line reinforcement learning. In IEEE ICC,
2022. DOI: arXiv:2201.09833.

[5] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and
R. Ross. Understanding and improving computational science storage
access through continuous characterization. ACM Transactions on
Storage, 7:1–26, 2011. DOI : 10.1145/2027066.2027068.

Fig. 5: Evolution of tiers fill for NAMD application

References
 [1] Fastapi. https://fastapi.tiangolo.com/.
 [2] IO Instrumentation. https://atos.net/wp-content/uploads/2018/07.
 [3] Vue.js. https://vuejs.org/.
 [4] A. ben Ameur, A. Araldo, and T. Chahed. Cache allocation in multi-

tenant edge computing via on-line reinforcement learning. In IEEE
ICC, 2022. doi: 10.48550/arXiv.2201.09833. arXiv:2201.09833.

 [5] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and
R. Ross. Understanding and improving computational science storage
access through continuous characterization. ACM Transactions on
Storage, 7:1–26, 2011. doi: 10.1145/2027066.2027068.

 [6] R. F. da Silva, S. Callaghan, and E. Deelman. On the use of burst buffers
for accelerating data-intensive scientific workflows. In Proceedings of
the 12th Workshop on Workflows in Support of Large-Scale Science -
WORKS ’17, pages 1–9. ACM Press, 2017.

 doi: 10.1145/3150994.3151000.

7

Fig. 5: Evolution of tiers fill for NAMD application

(a) Scenario 1 (b) Scenario 3

opening. NAMD handles a total of 14 files with a re-use ratio
of 71%, that are opened and closed 46 times, for a total 1346
writes and 3959 reads. The application reads a total amount
of 2.041 GB of data and gives different hit rates according to
the different scenarios and the size of the hierarchical storage.

In the first scenario, we observe a hit rate of 13% because
the RAM size is not big enough to contain all the data
previously read. The 76% of miss rate corresponds to the first
load of data from disk when it is read for the first time. An
identical behavior is observed for the second and the third
scenarios when all data fetched from disk fits in RAM and
the miss rate is only due to first time cold accesses. All the
data accessed a second time are already in the most performant
tier.

Adding to that, we can observe that the
input data, such as stmv.28M.psf.inter and
par_all27_prot_na.inp, are accessed once at the
start of the application and never re-used. Other files,
such as checkpointing files like stmv_sbb.xst and
stmv_sbb.dcd are heavely re-used.

c) Consequences on file placement policy: In the case
of NAMD application, the hit rate can be increased by a data
movement policy centered on the file lifecycles: a detection
of the heavily re-used files would have outperformed the
LRU. Similarly to S3DIO, the hit rate is low because of
cold access and the absence of a prefetching mechanism. By
using a predicting model that classifies input/output files we
could evict this type of input files directly after their use. The
checkpoint files are re-used and should be kept in RAM in
priority while input ones should be evicted.

d) Impact of file placement on tiers usage: FiLiP also
gives the possibility to visualize tiers filling over time. This
feature helps us to understand when and why the tier eviction
policy is triggered. In the case of our particular implementation
of a burst buffer, the file movement policy fills in priority
the fastest tier: tier 1, and tier2 is synchronized to the tier1
immediately such that it contains the same data.

Once they are removed from the most performant tier, they
are still present in the second one and can only be evicted
through a threshold based policy. As we can see from figure 5,
every time the 90% threshold is reached, the data is evicted
from the tier. This visualization allows us to determine how

an application reaches the limits of the most efficient tiers.
In figure 5a, we can see that tiers 1 and 2 are very critical

resources for the NAMD application. Indeed, when the tier
usage threshold of 90% is reached, the data is evicted until
another low threshold of 80% is reached. This data is evicted
only when it is not dirty anymore, and an inefficient cache
movement policy could stall the application while the data is
awaiting eviction. In figure 5b, we present the evolution within
scenario 3, where the higher tiers are large enough to contain
the whole data, and therefore the eviction policy is never
triggered. This confirms that an efficient file placement policy
for hierarchical storage should necessarily take into account
the size of the available storage, and especially for restricted
resources. For NAMD application, the RAM hit rate goes from
27% in the case of a large RAM (scenario 3), as displayed in
table III, to 13% in the case of smaller one (scenario 1).

V. CONCLUSION AND FURTHER WORKS

In this work, we have presented a file-based profiling tool
called FiLiP to consider I/O from another perspective in
the case of hierarchical storage, by giving the possibility to
investigate file re-use properties present in HPC and scientific
computing. This tool allows the understanding of how these
files are used by the applications during their entire life cycle
and the consequences of these re-use on the file movements
through the hierarchical storage. Using FiLiP, we analyze and
describe the file behavior of 3 different HPC applications:
NEMO, S3DIO and NAMD, and give some interesting insights
to better understand file manipulations and allow in the future
a smarter file placement policies with reduced miss rates.

REFERENCES

[1] Fastapi. https://fastapi.tiangolo.com/.
[2] IOInstrumentation. https://atos.net/wp-content/uploads/2018/07.
[3] Vue.js. https://vuejs.org/.
[4] A. ben Ameur, A. Araldo, and T. Chahed. Cache allocation in multi-

tenant edge computing via on-line reinforcement learning. In IEEE ICC,
2022. DOI: arXiv:2201.09833.

[5] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and
R. Ross. Understanding and improving computational science storage
access through continuous characterization. ACM Transactions on
Storage, 7:1–26, 2011. DOI : 10.1145/2027066.2027068.

7

Fig. 5: Evolution of tiers fill for NAMD application

(a) Scenario 1 (b) Scenario 3

opening. NAMD handles a total of 14 files with a re-use ratio
of 71%, that are opened and closed 46 times, for a total 1346
writes and 3959 reads. The application reads a total amount
of 2.041 GB of data and gives different hit rates according to
the different scenarios and the size of the hierarchical storage.

In the first scenario, we observe a hit rate of 13% because
the RAM size is not big enough to contain all the data
previously read. The 76% of miss rate corresponds to the first
load of data from disk when it is read for the first time. An
identical behavior is observed for the second and the third
scenarios when all data fetched from disk fits in RAM and
the miss rate is only due to first time cold accesses. All the
data accessed a second time are already in the most performant
tier.

Adding to that, we can observe that the
input data, such as stmv.28M.psf.inter and
par_all27_prot_na.inp, are accessed once at the
start of the application and never re-used. Other files,
such as checkpointing files like stmv_sbb.xst and
stmv_sbb.dcd are heavely re-used.

c) Consequences on file placement policy: In the case
of NAMD application, the hit rate can be increased by a data
movement policy centered on the file lifecycles: a detection
of the heavily re-used files would have outperformed the
LRU. Similarly to S3DIO, the hit rate is low because of
cold access and the absence of a prefetching mechanism. By
using a predicting model that classifies input/output files we
could evict this type of input files directly after their use. The
checkpoint files are re-used and should be kept in RAM in
priority while input ones should be evicted.

d) Impact of file placement on tiers usage: FiLiP also
gives the possibility to visualize tiers filling over time. This
feature helps us to understand when and why the tier eviction
policy is triggered. In the case of our particular implementation
of a burst buffer, the file movement policy fills in priority
the fastest tier: tier 1, and tier2 is synchronized to the tier1
immediately such that it contains the same data.

Once they are removed from the most performant tier, they
are still present in the second one and can only be evicted
through a threshold based policy. As we can see from figure 5,
every time the 90% threshold is reached, the data is evicted
from the tier. This visualization allows us to determine how

an application reaches the limits of the most efficient tiers.
In figure 5a, we can see that tiers 1 and 2 are very critical

resources for the NAMD application. Indeed, when the tier
usage threshold of 90% is reached, the data is evicted until
another low threshold of 80% is reached. This data is evicted
only when it is not dirty anymore, and an inefficient cache
movement policy could stall the application while the data is
awaiting eviction. In figure 5b, we present the evolution within
scenario 3, where the higher tiers are large enough to contain
the whole data, and therefore the eviction policy is never
triggered. This confirms that an efficient file placement policy
for hierarchical storage should necessarily take into account
the size of the available storage, and especially for restricted
resources. For NAMD application, the RAM hit rate goes from
27% in the case of a large RAM (scenario 3), as displayed in
table III, to 13% in the case of smaller one (scenario 1).

V. CONCLUSION AND FURTHER WORKS

In this work, we have presented a file-based profiling tool
called FiLiP to consider I/O from another perspective in
the case of hierarchical storage, by giving the possibility to
investigate file re-use properties present in HPC and scientific
computing. This tool allows the understanding of how these
files are used by the applications during their entire life cycle
and the consequences of these re-use on the file movements
through the hierarchical storage. Using FiLiP, we analyze and
describe the file behavior of 3 different HPC applications:
NEMO, S3DIO and NAMD, and give some interesting insights
to better understand file manipulations and allow in the future
a smarter file placement policies with reduced miss rates.

REFERENCES

[1] Fastapi. https://fastapi.tiangolo.com/.
[2] IOInstrumentation. https://atos.net/wp-content/uploads/2018/07.
[3] Vue.js. https://vuejs.org/.
[4] A. ben Ameur, A. Araldo, and T. Chahed. Cache allocation in multi-

tenant edge computing via on-line reinforcement learning. In IEEE ICC,
2022. DOI: arXiv:2201.09833.

[5] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and
R. Ross. Understanding and improving computational science storage
access through continuous characterization. ACM Transactions on
Storage, 7:1–26, 2011. DOI : 10.1145/2027066.2027068.

7

Fig. 5: Evolution of tiers fill for NAMD application

(a) Scenario 1 (b) Scenario 3

opening. NAMD handles a total of 14 files with a re-use ratio
of 71%, that are opened and closed 46 times, for a total 1346
writes and 3959 reads. The application reads a total amount
of 2.041 GB of data and gives different hit rates according to
the different scenarios and the size of the hierarchical storage.

In the first scenario, we observe a hit rate of 13% because
the RAM size is not big enough to contain all the data
previously read. The 76% of miss rate corresponds to the first
load of data from disk when it is read for the first time. An
identical behavior is observed for the second and the third
scenarios when all data fetched from disk fits in RAM and
the miss rate is only due to first time cold accesses. All the
data accessed a second time are already in the most performant
tier.

Adding to that, we can observe that the
input data, such as stmv.28M.psf.inter and
par_all27_prot_na.inp, are accessed once at the
start of the application and never re-used. Other files,
such as checkpointing files like stmv_sbb.xst and
stmv_sbb.dcd are heavely re-used.

c) Consequences on file placement policy: In the case
of NAMD application, the hit rate can be increased by a data
movement policy centered on the file lifecycles: a detection
of the heavily re-used files would have outperformed the
LRU. Similarly to S3DIO, the hit rate is low because of
cold access and the absence of a prefetching mechanism. By
using a predicting model that classifies input/output files we
could evict this type of input files directly after their use. The
checkpoint files are re-used and should be kept in RAM in
priority while input ones should be evicted.

d) Impact of file placement on tiers usage: FiLiP also
gives the possibility to visualize tiers filling over time. This
feature helps us to understand when and why the tier eviction
policy is triggered. In the case of our particular implementation
of a burst buffer, the file movement policy fills in priority
the fastest tier: tier 1, and tier2 is synchronized to the tier1
immediately such that it contains the same data.

Once they are removed from the most performant tier, they
are still present in the second one and can only be evicted
through a threshold based policy. As we can see from figure 5,
every time the 90% threshold is reached, the data is evicted
from the tier. This visualization allows us to determine how

an application reaches the limits of the most efficient tiers.
In figure 5a, we can see that tiers 1 and 2 are very critical

resources for the NAMD application. Indeed, when the tier
usage threshold of 90% is reached, the data is evicted until
another low threshold of 80% is reached. This data is evicted
only when it is not dirty anymore, and an inefficient cache
movement policy could stall the application while the data is
awaiting eviction. In figure 5b, we present the evolution within
scenario 3, where the higher tiers are large enough to contain
the whole data, and therefore the eviction policy is never
triggered. This confirms that an efficient file placement policy
for hierarchical storage should necessarily take into account
the size of the available storage, and especially for restricted
resources. For NAMD application, the RAM hit rate goes from
27% in the case of a large RAM (scenario 3), as displayed in
table III, to 13% in the case of smaller one (scenario 1).

V. CONCLUSION AND FURTHER WORKS

In this work, we have presented a file-based profiling tool
called FiLiP to consider I/O from another perspective in
the case of hierarchical storage, by giving the possibility to
investigate file re-use properties present in HPC and scientific
computing. This tool allows the understanding of how these
files are used by the applications during their entire life cycle
and the consequences of these re-use on the file movements
through the hierarchical storage. Using FiLiP, we analyze and
describe the file behavior of 3 different HPC applications:
NEMO, S3DIO and NAMD, and give some interesting insights
to better understand file manipulations and allow in the future
a smarter file placement policies with reduced miss rates.

REFERENCES

[1] Fastapi. https://fastapi.tiangolo.com/.
[2] IOInstrumentation. https://atos.net/wp-content/uploads/2018/07.
[3] Vue.js. https://vuejs.org/.
[4] A. ben Ameur, A. Araldo, and T. Chahed. Cache allocation in multi-

tenant edge computing via on-line reinforcement learning. In IEEE ICC,
2022. DOI: arXiv:2201.09833.

[5] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and
R. Ross. Understanding and improving computational science storage
access through continuous characterization. ACM Transactions on
Storage, 7:1–26, 2011. DOI : 10.1145/2027066.2027068.

7

Fig. 5: Evolution of tiers fill for NAMD application

(a) Scenario 1 (b) Scenario 3

opening. NAMD handles a total of 14 files with a re-use ratio
of 71%, that are opened and closed 46 times, for a total 1346
writes and 3959 reads. The application reads a total amount
of 2.041 GB of data and gives different hit rates according to
the different scenarios and the size of the hierarchical storage.

In the first scenario, we observe a hit rate of 13% because
the RAM size is not big enough to contain all the data
previously read. The 76% of miss rate corresponds to the first
load of data from disk when it is read for the first time. An
identical behavior is observed for the second and the third
scenarios when all data fetched from disk fits in RAM and
the miss rate is only due to first time cold accesses. All the
data accessed a second time are already in the most performant
tier.

Adding to that, we can observe that the
input data, such as stmv.28M.psf.inter and
par_all27_prot_na.inp, are accessed once at the
start of the application and never re-used. Other files,
such as checkpointing files like stmv_sbb.xst and
stmv_sbb.dcd are heavely re-used.

c) Consequences on file placement policy: In the case
of NAMD application, the hit rate can be increased by a data
movement policy centered on the file lifecycles: a detection
of the heavily re-used files would have outperformed the
LRU. Similarly to S3DIO, the hit rate is low because of
cold access and the absence of a prefetching mechanism. By
using a predicting model that classifies input/output files we
could evict this type of input files directly after their use. The
checkpoint files are re-used and should be kept in RAM in
priority while input ones should be evicted.

d) Impact of file placement on tiers usage: FiLiP also
gives the possibility to visualize tiers filling over time. This
feature helps us to understand when and why the tier eviction
policy is triggered. In the case of our particular implementation
of a burst buffer, the file movement policy fills in priority
the fastest tier: tier 1, and tier2 is synchronized to the tier1
immediately such that it contains the same data.

Once they are removed from the most performant tier, they
are still present in the second one and can only be evicted
through a threshold based policy. As we can see from figure 5,
every time the 90% threshold is reached, the data is evicted
from the tier. This visualization allows us to determine how

an application reaches the limits of the most efficient tiers.
In figure 5a, we can see that tiers 1 and 2 are very critical

resources for the NAMD application. Indeed, when the tier
usage threshold of 90% is reached, the data is evicted until
another low threshold of 80% is reached. This data is evicted
only when it is not dirty anymore, and an inefficient cache
movement policy could stall the application while the data is
awaiting eviction. In figure 5b, we present the evolution within
scenario 3, where the higher tiers are large enough to contain
the whole data, and therefore the eviction policy is never
triggered. This confirms that an efficient file placement policy
for hierarchical storage should necessarily take into account
the size of the available storage, and especially for restricted
resources. For NAMD application, the RAM hit rate goes from
27% in the case of a large RAM (scenario 3), as displayed in
table III, to 13% in the case of smaller one (scenario 1).

V. CONCLUSION AND FURTHER WORKS

In this work, we have presented a file-based profiling tool
called FiLiP to consider I/O from another perspective in
the case of hierarchical storage, by giving the possibility to
investigate file re-use properties present in HPC and scientific
computing. This tool allows the understanding of how these
files are used by the applications during their entire life cycle
and the consequences of these re-use on the file movements
through the hierarchical storage. Using FiLiP, we analyze and
describe the file behavior of 3 different HPC applications:
NEMO, S3DIO and NAMD, and give some interesting insights
to better understand file manipulations and allow in the future
a smarter file placement policies with reduced miss rates.

REFERENCES

[1] Fastapi. https://fastapi.tiangolo.com/.
[2] IOInstrumentation. https://atos.net/wp-content/uploads/2018/07.
[3] Vue.js. https://vuejs.org/.
[4] A. ben Ameur, A. Araldo, and T. Chahed. Cache allocation in multi-

tenant edge computing via on-line reinforcement learning. In IEEE ICC,
2022. DOI: arXiv:2201.09833.

[5] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and
R. Ross. Understanding and improving computational science storage
access through continuous characterization. ACM Transactions on
Storage, 7:1–26, 2011. DOI : 10.1145/2027066.2027068.

7

Fig. 5: Evolution of tiers fill for NAMD application

(a) Scenario 1 (b) Scenario 3

opening. NAMD handles a total of 14 files with a re-use ratio
of 71%, that are opened and closed 46 times, for a total 1346
writes and 3959 reads. The application reads a total amount
of 2.041 GB of data and gives different hit rates according to
the different scenarios and the size of the hierarchical storage.

In the first scenario, we observe a hit rate of 13% because
the RAM size is not big enough to contain all the data
previously read. The 76% of miss rate corresponds to the first
load of data from disk when it is read for the first time. An
identical behavior is observed for the second and the third
scenarios when all data fetched from disk fits in RAM and
the miss rate is only due to first time cold accesses. All the
data accessed a second time are already in the most performant
tier.

Adding to that, we can observe that the
input data, such as stmv.28M.psf.inter and
par_all27_prot_na.inp, are accessed once at the
start of the application and never re-used. Other files,
such as checkpointing files like stmv_sbb.xst and
stmv_sbb.dcd are heavely re-used.

c) Consequences on file placement policy: In the case
of NAMD application, the hit rate can be increased by a data
movement policy centered on the file lifecycles: a detection
of the heavily re-used files would have outperformed the
LRU. Similarly to S3DIO, the hit rate is low because of
cold access and the absence of a prefetching mechanism. By
using a predicting model that classifies input/output files we
could evict this type of input files directly after their use. The
checkpoint files are re-used and should be kept in RAM in
priority while input ones should be evicted.

d) Impact of file placement on tiers usage: FiLiP also
gives the possibility to visualize tiers filling over time. This
feature helps us to understand when and why the tier eviction
policy is triggered. In the case of our particular implementation
of a burst buffer, the file movement policy fills in priority
the fastest tier: tier 1, and tier2 is synchronized to the tier1
immediately such that it contains the same data.

Once they are removed from the most performant tier, they
are still present in the second one and can only be evicted
through a threshold based policy. As we can see from figure 5,
every time the 90% threshold is reached, the data is evicted
from the tier. This visualization allows us to determine how

an application reaches the limits of the most efficient tiers.
In figure 5a, we can see that tiers 1 and 2 are very critical

resources for the NAMD application. Indeed, when the tier
usage threshold of 90% is reached, the data is evicted until
another low threshold of 80% is reached. This data is evicted
only when it is not dirty anymore, and an inefficient cache
movement policy could stall the application while the data is
awaiting eviction. In figure 5b, we present the evolution within
scenario 3, where the higher tiers are large enough to contain
the whole data, and therefore the eviction policy is never
triggered. This confirms that an efficient file placement policy
for hierarchical storage should necessarily take into account
the size of the available storage, and especially for restricted
resources. For NAMD application, the RAM hit rate goes from
27% in the case of a large RAM (scenario 3), as displayed in
table III, to 13% in the case of smaller one (scenario 1).

V. CONCLUSION AND FURTHER WORKS

In this work, we have presented a file-based profiling tool
called FiLiP to consider I/O from another perspective in
the case of hierarchical storage, by giving the possibility to
investigate file re-use properties present in HPC and scientific
computing. This tool allows the understanding of how these
files are used by the applications during their entire life cycle
and the consequences of these re-use on the file movements
through the hierarchical storage. Using FiLiP, we analyze and
describe the file behavior of 3 different HPC applications:
NEMO, S3DIO and NAMD, and give some interesting insights
to better understand file manipulations and allow in the future
a smarter file placement policies with reduced miss rates.

REFERENCES

[1] Fastapi. https://fastapi.tiangolo.com/.
[2] IOInstrumentation. https://atos.net/wp-content/uploads/2018/07.
[3] Vue.js. https://vuejs.org/.
[4] A. ben Ameur, A. Araldo, and T. Chahed. Cache allocation in multi-

tenant edge computing via on-line reinforcement learning. In IEEE ICC,
2022. DOI: arXiv:2201.09833.

[5] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and
R. Ross. Understanding and improving computational science storage
access through continuous characterization. ACM Transactions on
Storage, 7:1–26, 2011. DOI : 10.1145/2027066.2027068.

https://fastapi.tiangolo.com/
https://atos.net/wp-content/uploads/2018/07
https://vuejs.org/
 https://doi.org/10.48550/arXiv.2201.09833
https://arxiv.org/abs/2201.09833
https://doi.org/10.1145/3150994.3151000

FiLiP: A File Lifecycle-based Profiler for
hierarchical storage

INFOCOMMUNICATIONS JOURNAL

DECEMBER 2022 • VOLUME XIV • NUMBER 4 33

Adrian Khelili is a PhD Student at University of Paris
Saclay and Atos R&D working on “Intelligent data
placement on tiered storage. He has a mSc in computer
science and is particularly interested in Data Science
and its applications to complex systems.

Sophie Robert has a PhD in Computer Science on the
application of black-box optimization method for the
optimization of complex systems. She is a researcher
at Atos R&D and her main research interest is the intel-
ligent placement of files across hierarchical storage, and
especially in the case of burst buffers.

Soraya Zertal is professor in computing science at uni-
versity Paris Saclay and a member of the Architecture
and Parallelism research group at Li-PaRAD lab. Her
main research interests include parallel architectures
and storage systems especially in HPC context, ana-
lytical modeling, simulation and adaptive/optimization
strategies for data placement. She published several
research articles, held a series of research grants and
supervised Masters and PhDs students in the area.

 [7] M. Diener, E. H.M. Cruz, L. L. Pilla, F. Dupros, and P. O. A.
Navaux. Characterizing communication and page usage of parallel
applications for thread and data mapping. Performance Evaluation,
pages 18–36, 2015. doi: 10.1016/j.peva.2015.03.001.

 [8] F. R. Duro, J. G. Blas, and J. Carretero. A hierarchical parallel storage
system based on distributed memory for large scale systems. In
Proceedings of the 20th European MPI Users’ Group Meeting on -
EuroMPI ’13, pages 139–140. ACM Press, 2013.

 doi: 10.1145/2488551.2488598.
 [9] B. Elis, D. Yang, O. Pearce, K. Mohror, and M. Schulz. QMPI: A next

generation MPI profiling interface for modern HPC platforms. Parallel
Computing Journal, 96, 2020. doi: 10.1016/j.parco.2020.102635.

 [10] Y. Han, R. Wang, and J. Wu. Random caching optimization in large-
scale cache-enabled internet of things networks. IEEE Transactions
on Network Science and Engineering, 7(1):385–397, 2020.

 doi: 0.1109/TNSE.2019.2894033.
 [11] M. Hashemi, K. Swersky, J. A. Smith, G. Ayers, H. Litz, J. Chang, C.

Kozyrakis, and P. Ranganathan. Learning Memory Access Patterns.
Technical Report arXiv:1803.02329, Cornell University, 2018.

 doi: 10.48550/arXiv.1803.02329.
[12] G. Hasslinger and K. Ntougias. Evaluation of caching strategies based

on access statistics of past requests. In International Confernece on
Measurement, Modelling and Evaluation of Computing Systems and
Dependability and Fault tolerence, 2014.

 doi: 10.1007/978-3-319-05359-29.
[13] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quan-

titative Approach. Morgan Kaufmann, Amsterdam, 5th edition, 2012.
ISBN: 978-0-12-383872-8.

[14] H. Herodotou and E. Kakoulli. Automating distributed tiered
storage management in cluster computing. Proceedings of the VLDB
Endowment, 13(1):43–56, 2019. doi: 10.14778/3357377.3357381.

[15] S. Jiangand X. Zhang. LIRS: An Efficient Low Inter-reference
Recency Set Replacement Policy to Improve Buffer Cache
Performance. ACM SIGMETRICS Performance Evaluation,
30(1):31–42, 2002. doi: 10.1145/511399.511340.

[16] R. Karedla, J. S. Love, and B. G. Wherry. Caching strategies to
improve disk system performance. Computer Journal, 27(3):38–46,
1994. doi: 10.1109/2.268884.

[17] G. Kestor, R. Gioiasa, D.J. Kerbyson, and A. Hoisie. Enabling
accurate power profiling of HPC applications on exascale systems.
In proceedings of the 3rd International Workshop on Runtime and
Operating Systems for Supercomputers, number 4, pages 1–8, 2013.
doi: 10.1145/2491661.2481429.

[18] J. S. Kim. Parallel I/O Profiling and Optimization in HPC Systems.
PhD thesis, Pennsylvania State University, 2014.

[19] J. S. Kim, Y. Zhang, S. W. Son, M. Kandemir, W k. Liao, R. Thakur,
and A. Choudhary. IOPro: a parallel I/O profiling and visualization
framework for high-performance storage systems. supercomputing,
pages 840–870, 2015. doi: 10.1007/s11227-014-1329-0.

[20] N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume,
and C. Maltzahn. On the role of burst buffers in leadership-class
storage systems. In IEEE 28th Symposium on Mass Storage Systems
and Technologies (MSST), pages 1–11. IEEE, 2012.

 doi: 10.1109/MSST.2012.6232369.
[21] N. Megiddo and D. S. Modha. ARC: A self-tuning, low over- head

replacement cache. In 2nd USENIX Conference on File and Storage
Technologies (FAST 03), pages 115–130, 2003.

 doi: 10.5555/1090694.1090708.
[22] D-J Oh, Y. Moon, D. K. Ham, T. J. Ham, Y. Park, J. W. Lee, J. H.

Ahn, and E. Lee. Maphea: A framework for lightweight memory
hierarchy-aware profile-guided heap allocation. ACM Transactions
On Embedded Computing Systems, 2022. doi: 10.1145/3527853.

[23] J. C. Phillips, D. J. Hardy, J. D. C. Maia, J. E. Stone, J. V. Ribeiro, R.
C. Bernardi, R. Buch, G. Fiorin, J. Henin, W. Jiang, R. McGreevy,
M. C. R. Melo, B. K. Radak, R. D. Skeel, A. Singharoy, Y. Wang, B.
Roux, A. Aksimentiev, Z. Luthey-Schulten, L. V. Kale, K. Schulten,
C. Chipot, and E. Tajkhorshid. Scalable molecular dynamics on CPU
and GPU architectures with NAMD. Journal of Chemical Physics,
2020. doi: 10.1063/5.0014475.

[24] G. Quan, J. Tan, A. Eryilmaz, and N. B. shroff. A new flexible multi-
flow LRU cache management paradigm for minimizing misses. In
proceedings of the ACM on Measurement and analysis of computing
systems, volume 3, pages 1–30, 2019. doi: 10.1145/3341617.3326154.

[25] Md. W. Rahman, N. S. Islam, X. Lu, D. Shankar, and D. K. Panda.
MR-Advisor: A comprehensive tuning, profiling, and prediction tool
for mapreduce execution frameworks on hpc clusters. Journal of
Parallel and Distributed Computing, 120:237–250, 2018.

 doi: 10.1016/j.jpdc.2017.11.004.
[26] M. Rashti, G. Sabin, D. Vansickle, and B. Norris. WattProf: A flexible

platform for fine-grained HPC power profiling. In IEEE International
Conference on Cluster Computing, pages 698–705, 2015.

 doi: 10.1109/CLUSTER.2015.121.
[27] M. Romanus, R. B. Ross, Robert, and M. Parashar. Challenges and

Considerations for Utilizing Burst Buffers in High-Performance
Computing. Technical Report arXiv:1509.05492, Cornell University,
2015. doi: 10.48550/arXiv.1509.05492.

[28] W. Teng, B. Surendra, D. Bin, and T. Houjun. Univistor: Integrated
hierarchical and distributed storage for hpc. IEEE International Con-
ference on Cluster Computing (CLUSTER), pages 134–144, 2018.
doi: 10.1109/CLUSTER.2018.00025.

[29] K. R. Vaddina, L. Lefevre, and A. C. Orgerie. Experimental workflow
for energy and temperature profiling on hpc systems. In IEEE Sym-
posium on Computers and Communications, pages 1–7, 2021.

 doi: 10.1109/ISCC53001.2021.9631413.
[30] K. Wu, Z. Guo, G. Hu, K. Tu, R. Alagappan, R. Sen, K. Park, A.

Arpaci-Dusseau, and R. Arpaci-Dusseau. The Storage Hierarchy is
Not a Hierarchy: Optimizing Caching on Modern Storage Devices
with Orthus. In Usenix Conference on File ans Storage Technologies,
2021.

[31] C. Zhong, M. C. Gursoy, and S. Velipasalar. A deep reinforcement
learning-based framework for content caching. In 52nd Annual Con-
ference on Information Sciences and Systems (CISS), pages 1–6,
2018. doi: 10.1109/CISS.2018.8362276.

https://doi.org/10.1016/j.peva.2015.03.001
https://doi.org/10.1145/2488551.2488598
https://doi.org/10.1016/j.parco.2020.102635
https://doi.org/10.1109/TNSE.2019.2894033
https://doi.org/10.48550/arXiv.1803.02329
https://doi.org/10.1007/978-3-319-05359-29
https://doi.org/10.14778/3357377.3357381
https://doi.org/10.1145/511399.511340
https://doi.org/10.1109/2.268884
https://doi.org/10.1145/2491661.2481429
https://doi.org/10.1007/s11227-014-1329-0
https://doi.org/10.1109/MSST.2012.6232369
https://doi.org/10.5555/1090694.1090708
https://doi.org/10.1145/3527853
https://doi.org/10.1063/5.0014475
https://doi.org/10.1145/3341617.3326154
https://doi.org/10.1016/j.jpdc.2017.11.004
https://doi.org/10.1109/CLUSTER.2015.121
https://doi.org/10.48550/arXiv.1509.05492
https://doi.org/10.1109/CLUSTER.2018.00025
https://doi.org/10.1109/ISCC53001.2021.9631413
https://doi.org/10.1109/CISS.2018.8362276

