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 
Abstract— There are many factors that affect the performance 

of the evolutionary and memetic algorithms. One of these factors 
is the proper selection of the initial population, as it represents a 
very important criterion contributing to the convergence speed. 
Selecting a conveniently preprocessed initial population definitely 
increases the convergence speed and thus accelerates the 
probability of steering the search towards better regions in the 
search space, hence, avoiding premature convergence towards a 
local optimum. In this paper, we propose a new method for 
generating the initial individual candidate solution called Circle 
Group Heuristic (CGH) for Discrete Bacterial Memetic 
Evolutionary Algorithm (DBMEA), which is built with aid of a 
simple Genetic Algorithm (GA). CGH has been tested for several 
benchmark reference data of the Travelling Salesman Problem 
(TSP). The practical results show that CGH gives better tours 
compared with other well-known heuristic tour construction 
methods. 
 

Index Terms— Traveling Salesman Problem, Discrete 
Bacterial Memetic Evolutionary Algorithm, Genetic Algorithm, 
Nearest Neighbor heuristic, Second Nearest Neighbor heuristic, 
Alternating Nearest Neighbor heuristic, Circle Group Heuristic. 

I. INTRODUCTION 
HE Traveling Salesman Problem (TSP) is one of the most 
prominent members of the rich set of well-known 

combinatorial optimization problems with real life application 
potential. It is a Nondeterministic Polynomial hard (NP-hard) 
problem [1]. Given a set of cities (graph nodes) along with the 
costs of travel between each pair of them (the costs or lengths 
assigned to the edges), the TSP goal is to find the cheapest 
(shortest) way of visiting all the cities exactly once, and then 
returning to the starting point [1][2]. 

It must be realized that NP-hard problems are intractable 
(see e.g. [3]) and thus, there is no algorithm that gives 
guaranteed exact solution for them within a predictable time, 
nevertheless, there may be partially successful and guaranteed, 
but approximate solution methods constructed. Over the 
decades, there have been numerous approaches proposed in 
order to find the optimum (shortest, least cost) route. They 
may be classified to three classes: exact solution methods, 
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algorithms for approximate solution and heuristic approaches 
[4][5]. The Christofides algorithm is the most well-known 
approximation algorithm [6], which may be however, rather 
imprecise as the guaranteed solution may be maximally 50% 
greater than the global optimum. The most efficient heuristic 
solver so far is Helsgaun’s implementation of the classic Lin-
Kernighan heuristic [7]. Many meta-heuristic researches have 
been published to find optimal or near-optimal solutions for 
the TSP; such as the Genetic Algorithm [8], the Ant Colony 
Optimization Algorithm [9], the Bacterial Evolutionary 
Algorithm (BEA) [10], the Particle Swarm Algorithm [11], 
Artificial Bee Colony [12], and their respective memetic 
versions [13]. In the next, we will only deal with a chosen, 
very efficient heuristic algorithm, the discrete memetic version 
of the Bacterial Evolutionary Algorithm (DBMEA) [14]. 

Returning to the matter of initial population selection, let us 
summarize that each initial population represents a feasible 
solution which is then subsequently improved over the course 
of several iterations through a heuristic (e.g., evolutionary) 
process [15]. The quality of the initial population of an 
evolutionary algorithm is rather important as it affects the 
search for the next (often numerous) generations, and has a 
significant influence on the quality of the final solution 
[16][17]. Improvement efforts on the initial population have 
shown to be effective in reducing the number of generations 
utilized while also improving the quality of the solution [18-
23]. 

II. THE TRAVELING SALESMAN PROBLEM 
The task of the TSP is to find a route through a given set of 

cities with the shortest possible length (cost). Mathematically, 
it means to find the shortest Hamiltonian tour in a graph [1]. 
GTSP = (Vcities, Econnections)  
Vcities = {v1 , v2 , . . . , vn } , E conn ⊆ {(vi , vj ) | i ≠  j  } 
C: Vcities ×Vcities → R, C = (cij) n ×n         (1) 

Where: C is called the cost matrix, cij represents the cost of 
going from city i to city j. 

The goal is to find an optimal permutation of vertices (p1, 
p2, p3, . . ., pn) that gives the minimum total cost [24]. 
Minimize ((∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛−1

𝑖𝑖=1 , 𝑝𝑝𝑝𝑝 − 1) + 𝐶𝐶𝐶𝐶𝐶𝐶, 𝑝𝑝1 )    (2) 
In general, the TSP can be classified into two different 

kinds, the Symmetric Travelling Salesman Problem (STSP) 
and the Asymmetric Travelling Salesman Problem (ATSP). 
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The distance between cities A and B is identical to the 
distance between cities B and A in the STSP. However, with 
the ATSP, it is possible to have two different costs or 
distances between two cities, depending on the direction. This 
may be realistic if, e.g., the altitude of the two places is 
different, and thus climbing would take more costs (time, fuel, 
etc.) than descending on the same route. Hence, the number of 
tours in the ATSP and STSP on n vertices is (n-1)! and (n-1)! 
/2, respectively [25]. 

As mentioned above, due to the combinatorial complexity 
of the TSP, in practice, for larger instances (graphs), only 
approximate and/or heuristic procedures are applied in 
searching for the solution [26]. 

The TSP can be applied to a wide range of real life discrete 
optimization problems, especially in logistics, planning, and 
microchip manufacturing [24]. 

III. THE DISCRETE BACTERIAL MEMETIC EVOLUTIONARY 
ALGORITHM 

In this section, a heuristic optimization approach will be 
briefly introduced which has proven rather efficient for a wide 
family of TSP related problems (mostly, extensions of the 
original TSP towards more realistic – and more complex – 
cases), while having two additional advantageous properties: 
the algorithm is generally applicable with high efficiency, and 
the runtime is rather predictable in terms of the size of the 
problem (number of nodes in the graph) [27]. Thus, even 
though for the basic TSP there is a better heuristic known, but 
it is very tailor made and not applicable for any other related 
optimization, and so we intend to investigate a complex 
approach which will be later extendable for other similar NP-
hard problems. 

 Memetic algorithms extended the idea of using 
evolutionary algorithms for global search with nested local 
search methods, originally coming from more traditional 
mathematics. In each iteration for the individuals a local 
search step is applied [13]. DBMEA is a memetic algorithm 
that combines the very efficient Bacterial Evolutionary 
Algorithm as a global optimization with a simple 
combinatorial local search technique [25]. The drawbacks of 
both techniques, namely, the tendency to get stuck in a local 
optimum typical for the traditional (local) search techniques; 
and the very slow convergence speed of the outer (global) 
search cycle, are eliminated with this combined method. The 
evolutionary algorithms examine the global search space, and 
thus they only give a quasi-optimal solution because of their 
relatively slow convergence speed. Local search methods 
search only a certain neighborhood of the current candidate for 
solution, so they always converge to the closest local 
optimum; while their convergence speed is much faster. 
DBMEA was found to be rather efficient in solving a series of 
discrete nondeterministic polynomial-time hard optimization 
problems [25][26]. The DBMEA has four stages: initial 
population creation, bacterial mutation (coherent segment 
mutation and loose segment mutation), local search (2-OPT 
and 3-OPT), and gene transfer which is cyclically repeated. 

1) Initial population creation step 
Efficiency of an optimization algorithm is judged by its 

accuracy and speed. So, it is important to reach the (quasi-
optimum) as fast as possible. The creation of the initial 
population can be crucial in reaching acceptably accurate 
solutions faster. In the literature, the initial population is often 
created randomly, but there are some deterministic approaches 
as well. Random creation guarantees the uniform distribution 
of the population in the search space. In the work of our 
group, several deterministic approaches were investigated 
[28]. The following heuristic construction algorithms are 
worth mentioning: 

A. Nearest Neighbor (NN) heuristic 
It constructs a tour in which, in the next step, the nearest 

unvisited city will always be visited. NN is easy to implement 
and fast to execute. 

B. Secondary Nearest Neighbor (SNN) heuristic 
It always visits the second nearest unvisited city in the next 

step of the tour. 

C. Alternating Nearest Neighbor (ANN) heuristic 
It combines the NN and SNN methods, here, the nearest and 

the second nearest unvisited cities are visited next in an 
alternating manner. 

Among these three, the best convergence speed in most 
cases was achieved by the NN approach. 

2) Bacterial Mutation Step 
During this stage, each bacterium in the population is 

treated separately. A certain number of (identical) clones are 
made from the original bacterium (Nclones). Then, the 
bacterium and its clones are subdivided into chromosomes 
with a fixed length (Iseg). There are two semantic types of 
chromosomes (segments): coherent segments and loose 
segments. One from the segments of the bacterium is selected 
randomly and is modified in a clone, while the same gene in 
the original bacterium remains unaltered. So, it goes on with 
all the other clones as well. There is a particular clone in 
DBMEA; it contains the reverse order of the selected segment. 
Figure 1 shows the process of the clone creation. 

The next step is the evaluation of the fitness values. As in 
the case of the TSP, traditional mathematics offers a 
possibility to determine the lower bound of the route length, 
based on the spanning tree of the whole graph, in this case the 
fitness function is obtained from the difference of the 
candidate solution individual from the theoretical lower 
bound, thus, the accuracy of all this way obtained clone 
bacteria (including the original). If one of the clones is better 
than the original bacterium, the mutated segment of the better 
clone is copied back to the original bacterium and to all the 
other clones. This process is consecutively applied until all the 
genes of the original bacterium have been mutated. 

3) Local Search Step 
During this step, individual improvement is carried out. The 

approach uses the exhaustive investigation of rearranging 
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Fig. 1.  Clones creation in mutation stage 

DBMEA, 2-opt and 3-opt could improve the individual with 
bounded size sub-graphs, optimizing them locally. Our group 
has investigated 2-opt and 3-opt local search for reasonable 
time, and we found that subsequently carried out 2-opt and 3-
opt local search cycles are useful, and so, they are applied 
[28]. 

A. 2-opt local search 
To shorten the TSP tour, in this simple method, two edge 

pairs in the original graph are exchanged. Assume we have 
two edge pairs, AB and CD; then these two will be replaced 
with AC and BD edges, resulting in a new potential tour. The 
truth of the following inequality is examined in the case of the 
new tour: 
|AB| + |CD| > |AC| + |BD|            (3) 

If the inequality is true, the edge pairs are swapped; the AB 
and CD edges are removed from the graph and replaced with 
AC and BD, as illustrated in Figure 2. The 2-opt move requires 
reversing one of the sub-tours between the initial edges. This 
iterative process is terminated if no further improvement can 
be made. 

 
Fig. 2.  Example for 2-opt local search 

B. 3-opt local search 
In this method, three edges are replaced with three others, 

producing eight alternative ways to reconnect the TSP tour, 
however, four of them have already been checked as they 
distort into 2-opt steps, therefore they are not considered here. 
The possible new replacements in the 3-opt local search are 
shown in Figure 3. 

 
Fig. 3.  Possible replacement of 3-opt local search 

4) Gene transfer 
In this stage, the population is initially sorted in decreasing 

order according to their fitness values, which are then sorted 
and separated into two (a superior and an inferior half). The 
operator repeats the following Ninf times: it picks one random 
bacterium (source bacterium) from the superior half and 
another random bacterium (destination bacterium) from the 
inferior part. Then it transfers some randomly picked segments 
with a pre-defined length (Itransfer) from the source bacterium to 
the destination bacterium. The bacterium length will not alter 
since the duplicate occurrences will be removed. Figure 4 
shows the segment transfer in the gene transfer stage. 

 
Fig. 4.  Gene transfer 

IV. THE GENETIC ALGORITHM 
Genetic Algorithm (GA) is the most prototypical 

evolutionary algorithm, which is very widely used in the 
solution of simpler heuristic optimization problems, and which 
has many standardized toolbox type implementations. It uses a 
stochastic search algorithm imitating in a simplified way the 
natural selection process of living organisms and copying 
natural genetics. The original Bacterial Evolutionary 
Algorithm was created by enhancing and modifying some 
ideas within the GA [29], this way essentially speeding up the 
convergence. Its continuous memetic extension and its 
discrete versions were proposed by our group and were 
applied for a variety of optimization problems rather 
successfully. The original GA has five steps: Initial population 
creation, Candidate selection, Crossover, Mutation, and 
Fitness function evaluation [30-33]. 

1) Initial population creation 
The size of the population varies depending on the problem, 

but it usually encompasses several hundred or thousands of 
potential solutions. The starting population is frequently 
created at random, providing for a wide variety of possible 
solutions (however, lacking the opportunity of a deterministic 
improvement approach already applied in this step). 

2) Candidate selection 
The best offspring solutions must be chosen to be parents in 

the new parental population in order to facilitate convergence 
towards optimum solutions. Because of this, an excess of 
offspring solutions is developed, and the best are chosen in 
order to make progress toward the optimum. This selection 
method is based on the fitness values in the population. 

3) Crossover 
Crossover is a function that permits the genetic material of 
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two or more solutions to be combined. The reason for such an 
operator is that both strings might represent successful 
components of solutions that, when combined, outperform 
their parents. This operator may easily be expanded to more 
points, where the solutions are alternately separated and 
rebuilt. This is not unlike the Gene transfer step in the 
DBMEA. 

4) Mutation 
Mutation is the second main character in Genetic 

Algorithms. Mutation operators change a solution by 
disturbing them. Random alterations are the foundation of 
mutation. Mutation is the part of the GA which is related to 
the “exploration” of the search space. It has been discovered 
that mutation is required for GA convergence. There are 
different operators for mutation such as: bit flip mutation, 
random resetting, swap mutation, scramble mutation, and 
inversion mutation. Again, here, the Mutation step of the 
DBMEA has its “ancestor”. 

5) Fitness function evaluation 
In this step, the phenotype of a solution is evaluated. The 

fitness function measures the quality of the solutions that is 
generated by the GA. The proper design of the fitness function 
is part of the overall modeling process of the overall 
optimization approach. The practitioner may have an influence 
Genetic Algorithms by designing choices of the fitness 
function and thus guiding the search. 

V. THE PROPOSED TOUR CONSTRUCTION HEURISTIC  
We proposed a novel approach that quasi-optimizes, but 

definitely improves, the initial population for the TSP, from 
the point of view of applying the DBMEA on this quasi-
optimized initial population; by introducing the novel idea of 
applying the concept of "neighborhood circle" (NC).  The NC 
has a pre-specified radius which will limit and speed up the 
search for the best possible initial population candidate. The 
new heuristic method is called Circle Group Heuristic (CGH). 
CGH is built into the Discrete Bacterial Memetic Evolutionary 
Algorithm (DBMEA), as its first step, this way increasing the 
efficiency of this memetic meta-heuristic algorithm that has 
already proven rather efficient in handling the optimization of 
TSP type tasks. Next, the CGH method will be explained in 
detail. 

1) The CGH construction step 
Starting at the initial node, City 0, which represents the 

center of the first circle, a circle is drawn with a given radius 
R. In the first step, the closest unvisited city within the circle 
will be marked for visit. The tour continues at the next 
unvisited city within the circle, until all nodes within the circle 
have been included in the tour. In the subsequent step, the 
node/city outside the circle, which is the closest to the last 
visited node/city, is marked as the next city in the tour. This 
new city on the outside of the circle will become the center of 
a new circle, and the algorithm starts again as in the case of 

the first circle. So, on it goes until all the cities have been 
visited exactly once. A simple tour created by the CGH is 
shown in Figure 5. 

 

 
Fig. 5.  Example for a simple CGH tour 

A. Brute force optimization of the radius 
We tested the new method on benchmarks of national TSP 

instances up to 10639 nodes [34]. In every case, an exhaustive 
search for the optimal radius was done in discrete steps by 
testing range of integer numbers [1-100] with brute force 
method. With these series of tests we have established that the 
most effective radius of the circle in the CGH generating the 
best initial population in the sense that the subsequent steps of 
the DBMEA result in the best approximation in the shortest 
runtime, is different from graph to graph. Examining the road 
network graphs of number of countries in this benchmark, 
with the respective city and road networks assigned with costs 
obtained from the road section lengths of the respective 
benchmark data, we found that these graphs differ from each 
other essentially in the behavior, because of different 
topologies and sizes of these road networks. 

B. GA optimization of the radius 
Later, we attempted to find the optimal radius for the CGH 

by applying genetic algorithm, thus allowing a continuous 
range for the radius. The GA is a standard toolbox, which is 
used one independent variables for the fitness function to 
return the optimal radius, and the test the range of rational 
numbers [1 – 100]. All the other parameters are defaults of the 
toolbox [35].  

In the next Section, the results obtained by GA optimization 
of the radius method is presented and evaluated. 

VI. RESULTS 
The novel CGH tour construction was tested on more than 

25 national TSP instance benchmarks up to 10639 nodes. In 
all cases, the initial population individuals obtained by the 
above mentioned three heuristics in the previous 
investigations, NN, SNN, and ANN, were compared with the 
ones got by the new CGH approach, the radius of CGH is 
calculated in both methods: simple exhaustive search and GA. 
In the case of all thus optimized initial individuals, the 
DBMEA method was applied for solving the respective TSP 
optimization task. Table 1 shows the tour costs of the optimal 
tours in the case of the initial populations generated by the 
previous three older approaches and both sub-versions of the 
CGH. 
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a new circle, and the algorithm starts again as in the case of 

the first circle. So, on it goes until all the cities have been 
visited exactly once. A simple tour created by the CGH is 
shown in Figure 5. 
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runtime, is different from graph to graph. Examining the road 
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obtained from the road section lengths of the respective 
benchmark data, we found that these graphs differ from each 
other essentially in the behavior, because of different 
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Later, we attempted to find the optimal radius for the CGH 

by applying genetic algorithm, thus allowing a continuous 
range for the radius. The GA is a standard toolbox, which is 
used one independent variables for the fitness function to 
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TABLE I: THE LENGTH OF THE DETERMINISTIC INITIAL INDIVIDUAL

 

Country Number 
of cities NN SNN ANN 

Exhaustive search Genetic Algorithm 
R CGH R CGH 

Djibouti 38 9748.946 13509.088 10474.948 78-100 8306.575 79.834 8306.575 
China 70 2570.329 4148.675 3565.305 18 2267.889 21.137 2263.575 
Burma 80 5477.026 8674.245 6079.910 98-100 4526.302 98.272 4526.302 
Qatar 194 11892.888 18980.443 17199.801 9 11649.869 56.280 11255.296 

Uruguay 734 102594.358 165796.643 130793.380 57-59 95536.209 54.832 95461.998 
Zimbabwe 929 117733.696 200063.995 160430.512 10 114813.039 48.955 114484.256 

Luxembourg 980 14212.721 26240.107 20397.885 8 13995.032 16.254 13958.023 
Rwanda 1621 32276.665 68487.437 45630.149 10 31596.476 9.768 31596.476 
Oman 1979 120542.129 204249.064 152503.643 13 110747.729 12.688 110029.190 

Nicaragua 3496 122412.147 229749.240 179481.992 16 118141.497 15.935 118141.497 
Canada 4663 1668707.230 2852242.400 2320011.780 71-74 1603709.500 73.834 1603709.500 

Tanzania 6117 501427.829 852834.843 696141.743 16 499513.302 16.567 499513.302 
Egypt 7146 222335.231 391416.939 306664.393 4 217487.431 3.981 217487.431 

Yemen 7663 298953.459 523144.599 417814.532 5 298150.565 5.185 297972.031 
Panama 8079 146660.520 277856.032 210793.510 16 142277.699 15.984 141949.651 
Ireland 8246 259165.057 421610.120 350446.111 12 255167.585 11.971 255167.585 

Argentina 9152 1034964.600 1951034.190 1527346.320 16 1034084.030 15.635 1034084.030 
Japan 9847 625031.710 1104954.110 909941.924 2 624849.337 2.215 624849.337 
Greece 9882 391415.926 637638.279 523514.157 14 384948.298 13.158 384900.881 

Kazakhstan 9976 1346903.560 2320848.050 1863893.670 13 1325094.710 13.058 1325094.710 
Finland 10639 657774.773 1081658.770 889702.220 20 649477.672 20.158 649477.672 

 
In the initial population level, the CGH produced on 

average 4%, 44%, and 30% shorter tours than NN heuristic, 
SNN heuristic, and ANN heuristic respectively. While the best 
tour for CGH was 17% shorter than NN heuristic in Burma 
(80 cities), 54% shorter than SNN heuristic in Rwanda (1621 
cities), and 37% shorter than ANN heuristic in China (70 
cities). 

We made comparisons for the deterministic initial 
population individuals with the known absolute optimum after 
each stage of the DBMEA on the China (70 cities) and Oman 
(1979 cities) instances. The optimal tour for China70 is 2023, 
while the one for Oman1979 is 86891. The CGH generated for 
the initial population roughly 20% longer tours than the 
optimum solutions, making it a useful starting point for a 
memetic evolutionary algorithm. 

The goal of this investigation was to show that introducing 
a few promising deterministic individuals would improve the 
efficiency of the evolutionary/memetic algorithm. The 
convergence speed would be unambiguously faster when 
using better deterministic initial individuals.  

Table 2 illustrates the tour construction heuristics run times 
for China70 and Oman1979. It shows that the CGH not only 
provides better tours, but also does it faster than the NN, SNN, 
and ANN heuristics previously utilized. Tour costs of initial 
individuals following each stage of DBMEA are illustrated in 
Table 3. 

TABLE II: THE TOUR CONSTRUCTION HEURISTICS RUN TIMES 
Instance China(70) Oman(1979) 

NN 0.002 sec 1.38 sec 
SNN 0.002 sec 2.32 sec 
ANN 0.002 sec 1.563 sec 
CGH 0.001 sec 0.839 sec 

TABLE III: TOUR COSTS OF INITIAL INDIVIDUALS FOLLOWING EACH STAGE OF 
DBMEA 

DBMEA 
stage 

Instanc
e NN SNN ANN CGH Time 

(Sec) 

Mutation 
stage 

China 2471.1
391 

4021.1
8307 

3052.
31702 

2221.0
5428 0.008 

Oman 120207
.162 

195634
.363 

14987
1.306 

108658
.897 3.873 

Local 
search 

China 2038.3
6554 

2081.7
0514 

2059.
382 

2024.7
4914 0.106 

Oman 91178.
9462 

93608.
4377 

91659
.2708 

90324.
38 

5018.
752 

Improved 
version of 

local 
search 

China 2118.8
5481 

2126.6
373 

2125.
59152 

2085.9
1453 0.357 

Oman 93182.
4458 

102739
.247 

10051
2.507 

94981.
3311 

197.5
64 

 
Figures 6, 7, and 8 show the graphs of the deterministic 

individuals after the initial populations stage, bacterial 
mutation stage, and local search stage respectively for 
China70. 

 

 
Fig. 6.  Initial individual tours of China70 
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TABLE II: THE TOUR CONSTRUCTION HEURISTICS RUN TIMES 
Instance China(70) Oman(1979) 

NN 0.002 sec 1.38 sec 
SNN 0.002 sec 2.32 sec 
ANN 0.002 sec 1.563 sec 
CGH 0.001 sec 0.839 sec 

TABLE III: TOUR COSTS OF INITIAL INDIVIDUALS FOLLOWING EACH STAGE OF 
DBMEA 

DBMEA 
stage 

Instanc
e NN SNN ANN CGH Time 

(Sec) 

Mutation 
stage 

China 2471.1
391 

4021.1
8307 

3052.
31702 

2221.0
5428 0.008 

Oman 120207
.162 

195634
.363 

14987
1.306 

108658
.897 3.873 

Local 
search 

China 2038.3
6554 

2081.7
0514 

2059.
382 

2024.7
4914 0.106 

Oman 91178.
9462 

93608.
4377 

91659
.2708 

90324.
38 

5018.
752 

Improved 
version of 

local 
search 

China 2118.8
5481 

2126.6
373 

2125.
59152 

2085.9
1453 0.357 

Oman 93182.
4458 

102739
.247 

10051
2.507 

94981.
3311 

197.5
64 

 
Figures 6, 7, and 8 show the graphs of the deterministic 

individuals after the initial populations stage, bacterial 
mutation stage, and local search stage respectively for 
China70. 
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TABLE I: THE LENGTH OF THE DETERMINISTIC INITIAL INDIVIDUAL
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Rwanda 1621 32276.665 68487.437 45630.149 10 31596.476 9.768 31596.476 
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the initial population roughly 20% longer tours than the 
optimum solutions, making it a useful starting point for a 
memetic evolutionary algorithm. 
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efficiency of the evolutionary/memetic algorithm. The 
convergence speed would be unambiguously faster when 
using better deterministic initial individuals.  

Table 2 illustrates the tour construction heuristics run times 
for China70 and Oman1979. It shows that the CGH not only 
provides better tours, but also does it faster than the NN, SNN, 
and ANN heuristics previously utilized. Tour costs of initial 
individuals following each stage of DBMEA are illustrated in 
Table 3. 
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individuals after the initial populations stage, bacterial 
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China70. 
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Fig. 7.  Tours of the predefined individuals for China70 after bacterial 

mutation stage 
 

 
Fig. 8.  Tours of the deterministic individuals for China70 after local search 

stage 

VII. CONCLUSION 
In this paper, we proposed a new and efficient initial tour 

construction method for DBMEA to solve TSP. We had 
studied and compared the other three known deterministic tour 
construction heuristics of DBMEA with the here proposed 
CGH algorithm, and we found that CGH gives better results in 
all DBMEA stages. During the investigations of the 
population’s behaviors in bacterial mutation and the local 
search stages, we conclude that in almost all cases, better 
initial population individuals will lead to faster convergence 
speed and better approximation of the optimal tour length. 
Based on our experiments, we suggest the use of our novel 
proposed CGH in the initial population creation stage of the 
DBMEA and very likely, other heuristic optimization 
algorithms for solving the TSP. 
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