
Optimizing the Performance of the Iptables
Stateful NAT44 Solution

INFOCOMMUNICATIONS JOURNAL

2023 • EARLY ACCESS 55

Paper ID: 250

1

Abstract—The stateful NAT44 performance of iptables is

an important issue when it is used as a stateful NAT44
gateway of a CGN (Carrier-Grade NAT) system. The
performance measurements of iptables published in
research papers do not comply with the requirements of
RFC 2544 and RFC 4814 and the usability of their results
has serious limitations. Our Internet Draft has proposed a
benchmarking methodology for stateful NATxy (x, y are in
{4, 6}) gateways and made it possible to perform the classic
RFC 2544 measurement procedures like throughput,
latency, frame loss rate, etc. with stateful NATxy gateways
using RFC 4814 pseudorandom port numbers. It has also
defined new performance metrics specific to stateful testing
to quantify the connection setup and connection tear down
performance of stateful NATxy gateways. In our current
paper, we examine how the performance of iptables
depends on various settings, and also if certain tradeoffs
exist. We measure the maximum connection establishment
rate, throughput and tear down rate of iptables as well as
its memory consumption as a function of hash table size
always using 40 million connections. We disclose all
measurement details and results. We recommend new
settings that enable network operators to achieve
significantly higher performance than using the traditional
ones.

Index Terms—benchmarking, iptables, netfilter, optimization,
performance, stateful NAT44.

I. INTRODUCTION
HE depletion of the public IPv4 address pool of IANA in
2011 has presented the ISPs (Internet Service Providers)

with a dilemma: either they deploy IPv6 as soon as possible or
they use CGN (Carrier-Grade NAT). We believe that the first
one is the only workable solution in the long run, but we also
experience that the transition to IPv6 is happening rather slowly
for various reasons [1], and we estimate that IPv4 will be with
us for decades. Therefore, stateful NAT44 (also called NAPT:
Network Address and Port Translation) gateways will also be

Submitted: December 14, 2022. This work was supported by the
International Exchange Program of the National Institute of Information and
Communications (NICT), Japan.

Gábor Lencse is with the Department of Telecommunications, Széchenyi
István University, Egyetem tér 1, Győr, H-9026, Hungary (e-mail:
lencse@sze.hu).

Keiichi Shima is with the SoftBank Corporation, 1-7-1 Kaigan, Minato-ku,
Tokyo 105-7529, Japan.

needed for a long time. The Netfilter Framework [2] of the
Linux kernel (usually called iptables after the name of its
command line management tool) is a widely used solution for
this purpose.

We are aware that in some areas of application, iptables is
gradually replaced by nftables. The latter has advantages, when
a high number of rules are used and they are often reconfigured,
but it did not became an industry standard yet [3]. When
implementing CGN, there is no need for a high number of rules
and they are very rarely reconfigured, thus iptables is still
appropriate for this purpose. What really matters for the ISPs, it
is the performance of the stateful NAT44 translation. To that
end, iptables is a good choice: the iptables stateful NAT44
solution outperformed the Jool NAT64 solution by an order of
magnitude in throughput and its performance also scaled up
much better with the number of active CPU cores and showed
much less degradation with the number of connections than
Jool according to our measurements [4]. However, we have
also experienced that the performance of iptables highly
depends on certain parameters.

The aim of our current paper is to investigate how the
performance of iptables depends on various settings, and also to
examine what kind of tradeoffs exist, and thus recommend
optimal settings depending on the actual performance needs
and hardware parameters of the ISPs.

The remainder of this paper is organized as follows. In
Section II, we make a survey how iptables is used in the current
research papers and how its performance is analyzed and/or
optimized. In Section III, we give a short summary of the state
of the art methods for measuring the performance of stateful
NAT44 gateways. In Section IV, we overview some relevant
details of iptables including its tunable parameters and their
recommended values as well as how they influence the memory
consumption of iptables. In Section V, we disclose our
measurements and their results. In Section VI, we discuss our
results and give our recommendations to optimize the
performance of iptables. Section VII is an additional case study
in which we examine the performance of nftables. Section VIII
concludes our paper.

II. RELATED WORK

A. Peer-reviewed Papers
We have surveyed, how iptables appears in research papers

from the latest years. We found that it is usually mentioned as a
firewall and not as a stateful NAT44 solution. And the methods
used for measuring its performance does not comply with the

Optimizing the Performance of the Iptables
Stateful NAT44 Solution

Gábor Lencse, Keiichi Shima

T

Optimizing the Performance of the Iptables
Stateful NAT44 Solution

Gábor Lencse, Keiichi Shima

Abstract—The stateful NAT44 performance of iptables is an
important issue when it is used as a stateful NAT44 gateway
of a CGN (Carrier-Grade NAT) system. The performance
measurements of iptables published in research papers do not
comply with the requirements of RFC 2544 and RFC 4814
and the usability of their results has serious limitations. Our
Internet Draft has proposed a benchmarking methodology for
stateful NATxy (x, y are in {4, 6}) gateways and made it possible
to perform the classic RFC 2544 measurement procedures like
throughput, latency, frame loss rate, etc. with stateful NATxy
gateways using RFC 4814 pseudorandom port numbers. It
has also defined new performance metrics specific to stateful
testing to quantify the connection setup and connection tear
down performance of stateful NATxy gateways. In our current
paper, we examine how the performance of iptables depends on
various settings, and also if certain tradeoffs exist. We measure
the maximum connection establishment rate, throughput and
tear down rate of iptables as well as its memory consumption as
a function of hash table size always using 40 million connections.
We disclose all measurement details and results. We recommend
new settings that enable network operators to achieve
significantly higher performance than using the traditional ones.

Index Terms—benchmarking, iptables, netfilter, optimization,
performance, stateful NAT44.

Submitted: December 14, 2022.
This work was supported by the International Exchange Program of the

National Institute of Information and Communications (NICT), Japan.
Gábor Lencse is with the Department of Telecommunications, Széchenyi

István University, Győr, Hungary (e-mail: lencse@sze.hu).
Keiichi Shima is with the SoftBank Corporation, Minato-ku, Tokyo, Japan.

Paper ID: 250

1

Abstract—The stateful NAT44 performance of iptables is

an important issue when it is used as a stateful NAT44
gateway of a CGN (Carrier-Grade NAT) system. The
performance measurements of iptables published in
research papers do not comply with the requirements of
RFC 2544 and RFC 4814 and the usability of their results
has serious limitations. Our Internet Draft has proposed a
benchmarking methodology for stateful NATxy (x, y are in
{4, 6}) gateways and made it possible to perform the classic
RFC 2544 measurement procedures like throughput,
latency, frame loss rate, etc. with stateful NATxy gateways
using RFC 4814 pseudorandom port numbers. It has also
defined new performance metrics specific to stateful testing
to quantify the connection setup and connection tear down
performance of stateful NATxy gateways. In our current
paper, we examine how the performance of iptables
depends on various settings, and also if certain tradeoffs
exist. We measure the maximum connection establishment
rate, throughput and tear down rate of iptables as well as
its memory consumption as a function of hash table size
always using 40 million connections. We disclose all
measurement details and results. We recommend new
settings that enable network operators to achieve
significantly higher performance than using the traditional
ones.

Index Terms—benchmarking, iptables, netfilter, optimization,
performance, stateful NAT44.

I. INTRODUCTION
HE depletion of the public IPv4 address pool of IANA in
2011 has presented the ISPs (Internet Service Providers)

with a dilemma: either they deploy IPv6 as soon as possible or
they use CGN (Carrier-Grade NAT). We believe that the first
one is the only workable solution in the long run, but we also
experience that the transition to IPv6 is happening rather slowly
for various reasons [1], and we estimate that IPv4 will be with
us for decades. Therefore, stateful NAT44 (also called NAPT:
Network Address and Port Translation) gateways will also be

Submitted: December 14, 2022. This work was supported by the
International Exchange Program of the National Institute of Information and
Communications (NICT), Japan.

Gábor Lencse is with the Department of Telecommunications, Széchenyi
István University, Egyetem tér 1, Győr, H-9026, Hungary (e-mail:
lencse@sze.hu).

Keiichi Shima is with the SoftBank Corporation, 1-7-1 Kaigan, Minato-ku,
Tokyo 105-7529, Japan.

needed for a long time. The Netfilter Framework [2] of the
Linux kernel (usually called iptables after the name of its
command line management tool) is a widely used solution for
this purpose.

We are aware that in some areas of application, iptables is
gradually replaced by nftables. The latter has advantages, when
a high number of rules are used and they are often reconfigured,
but it did not became an industry standard yet [3]. When
implementing CGN, there is no need for a high number of rules
and they are very rarely reconfigured, thus iptables is still
appropriate for this purpose. What really matters for the ISPs, it
is the performance of the stateful NAT44 translation. To that
end, iptables is a good choice: the iptables stateful NAT44
solution outperformed the Jool NAT64 solution by an order of
magnitude in throughput and its performance also scaled up
much better with the number of active CPU cores and showed
much less degradation with the number of connections than
Jool according to our measurements [4]. However, we have
also experienced that the performance of iptables highly
depends on certain parameters.

The aim of our current paper is to investigate how the
performance of iptables depends on various settings, and also to
examine what kind of tradeoffs exist, and thus recommend
optimal settings depending on the actual performance needs
and hardware parameters of the ISPs.

The remainder of this paper is organized as follows. In
Section II, we make a survey how iptables is used in the current
research papers and how its performance is analyzed and/or
optimized. In Section III, we give a short summary of the state
of the art methods for measuring the performance of stateful
NAT44 gateways. In Section IV, we overview some relevant
details of iptables including its tunable parameters and their
recommended values as well as how they influence the memory
consumption of iptables. In Section V, we disclose our
measurements and their results. In Section VI, we discuss our
results and give our recommendations to optimize the
performance of iptables. Section VII is an additional case study
in which we examine the performance of nftables. Section VIII
concludes our paper.

II. RELATED WORK

A. Peer-reviewed Papers
We have surveyed, how iptables appears in research papers

from the latest years. We found that it is usually mentioned as a
firewall and not as a stateful NAT44 solution. And the methods
used for measuring its performance does not comply with the

Optimizing the Performance of the Iptables
Stateful NAT44 Solution

Gábor Lencse, Keiichi Shima

T

Paper ID: 250

1

Abstract—The stateful NAT44 performance of iptables is

an important issue when it is used as a stateful NAT44
gateway of a CGN (Carrier-Grade NAT) system. The
performance measurements of iptables published in
research papers do not comply with the requirements of
RFC 2544 and RFC 4814 and the usability of their results
has serious limitations. Our Internet Draft has proposed a
benchmarking methodology for stateful NATxy (x, y are in
{4, 6}) gateways and made it possible to perform the classic
RFC 2544 measurement procedures like throughput,
latency, frame loss rate, etc. with stateful NATxy gateways
using RFC 4814 pseudorandom port numbers. It has also
defined new performance metrics specific to stateful testing
to quantify the connection setup and connection tear down
performance of stateful NATxy gateways. In our current
paper, we examine how the performance of iptables
depends on various settings, and also if certain tradeoffs
exist. We measure the maximum connection establishment
rate, throughput and tear down rate of iptables as well as
its memory consumption as a function of hash table size
always using 40 million connections. We disclose all
measurement details and results. We recommend new
settings that enable network operators to achieve
significantly higher performance than using the traditional
ones.

Index Terms—benchmarking, iptables, netfilter, optimization,
performance, stateful NAT44.

I. INTRODUCTION
HE depletion of the public IPv4 address pool of IANA in
2011 has presented the ISPs (Internet Service Providers)

with a dilemma: either they deploy IPv6 as soon as possible or
they use CGN (Carrier-Grade NAT). We believe that the first
one is the only workable solution in the long run, but we also
experience that the transition to IPv6 is happening rather slowly
for various reasons [1], and we estimate that IPv4 will be with
us for decades. Therefore, stateful NAT44 (also called NAPT:
Network Address and Port Translation) gateways will also be

Submitted: December 14, 2022. This work was supported by the
International Exchange Program of the National Institute of Information and
Communications (NICT), Japan.

Gábor Lencse is with the Department of Telecommunications, Széchenyi
István University, Egyetem tér 1, Győr, H-9026, Hungary (e-mail:
lencse@sze.hu).

Keiichi Shima is with the SoftBank Corporation, 1-7-1 Kaigan, Minato-ku,
Tokyo 105-7529, Japan.

needed for a long time. The Netfilter Framework [2] of the
Linux kernel (usually called iptables after the name of its
command line management tool) is a widely used solution for
this purpose.

We are aware that in some areas of application, iptables is
gradually replaced by nftables. The latter has advantages, when
a high number of rules are used and they are often reconfigured,
but it did not became an industry standard yet [3]. When
implementing CGN, there is no need for a high number of rules
and they are very rarely reconfigured, thus iptables is still
appropriate for this purpose. What really matters for the ISPs, it
is the performance of the stateful NAT44 translation. To that
end, iptables is a good choice: the iptables stateful NAT44
solution outperformed the Jool NAT64 solution by an order of
magnitude in throughput and its performance also scaled up
much better with the number of active CPU cores and showed
much less degradation with the number of connections than
Jool according to our measurements [4]. However, we have
also experienced that the performance of iptables highly
depends on certain parameters.

The aim of our current paper is to investigate how the
performance of iptables depends on various settings, and also to
examine what kind of tradeoffs exist, and thus recommend
optimal settings depending on the actual performance needs
and hardware parameters of the ISPs.

The remainder of this paper is organized as follows. In
Section II, we make a survey how iptables is used in the current
research papers and how its performance is analyzed and/or
optimized. In Section III, we give a short summary of the state
of the art methods for measuring the performance of stateful
NAT44 gateways. In Section IV, we overview some relevant
details of iptables including its tunable parameters and their
recommended values as well as how they influence the memory
consumption of iptables. In Section V, we disclose our
measurements and their results. In Section VI, we discuss our
results and give our recommendations to optimize the
performance of iptables. Section VII is an additional case study
in which we examine the performance of nftables. Section VIII
concludes our paper.

II. RELATED WORK

A. Peer-reviewed Papers
We have surveyed, how iptables appears in research papers

from the latest years. We found that it is usually mentioned as a
firewall and not as a stateful NAT44 solution. And the methods
used for measuring its performance does not comply with the

Optimizing the Performance of the Iptables
Stateful NAT44 Solution

Gábor Lencse, Keiichi Shima

T

Paper ID: 250

2

relevant IETF RFCs, please see their requirements in Section
III.A.

For example, Melkov et al [3] compared the performance of
iptables and nftables using very high number of rules (up to
several times 10,000). In contrast with the common view, they
have found that iptables significantly outperformed nftables.
Depending on the actually examined chain, the throughput of
nftables significantly deteriorated around 5,000 or 10,000 rules,
whereas iptables could sustain a good performance up to
20,000 or 40,000 rules. We note that they measured “TCP
throughput” using iperf, and displayed the results in Mbps.

Gandotra and Sharma [5] also measured the firewall
performance of iptables using 200, 500, 1000, 5,000, and
10,000 number of rules, TCP traffic with 1024 bytes packets
size, multiple packet rates starting from 1,000pps increased by
1,000pps steps to 8,000pps, and test durations of 30s and 120s.
As for measurement tool, they used D-ITG (Distributed
Internet Traffic Generator).

Taga at al. [6] used iptables for testing their firewall traversal
method. As for measurement method, they downloaded HTML
files with different sizes and measured the download time.

B. Other Sources
In order to find more closely related sources to our topic, we

have lowered the bar and did not require peer-reviewed papers.
Thus, we found a really closely related writing of Andree

Toonk [7]. One of his tests was a stateful NAT44 performance
measurement using a single iptables rule and 10,000 network
flows. For the measurements, he used a DPDK-based packet
generator, but the exact details of the measurements (how the
bidirectional traffic was generated) are not disclosed. Using
two 3.2GHz Intel Xeon Gold 5218 CPUs (in all 64 cores were
available using hyper-threading) he managed to achieve a total
of 5.9Mpps using bidirectional traffic. It does not turn out, if it
was a lossless rate or not.

Whereas the above result is not bad, it definitely shows that
there is room for performance optimization, as we achieved
5.3Mpps using only 16 cores of a 2.1GHz Intel Xeon E5-2683
v4 CPU even though we handled 1.56M connections (instead of
only 10k) [4]. We note that our result is RFC 2544 [9]
compliant throughput (non-drop rate). According to our
measurements, the performance of iptables scaled up quite well
with the number of CPU cores: when 4M connections were
used and the number of active CPU cores was increased from 1
to 16, its maximum connection establishment rate (please refer
to Section III.C) and throughput scaled up from 223.5kcps

(connections per second) and 414.9kfps (frames per second) to
2,383kcps and 4,557kfps, respectively, thus the increase was
more than tenfold [4]. We have also examined, how the
performance of iptables degrades with the number of
connections. In the range where we could increase the hash
table size (please refer to Section IV.A) proportionally with the
number of connections, the performance of iptables degraded
only slightly with the 64-fold increase of the number of
connection: when the number of connections were increased
from 1.56M to 100M, its maximum connection establishment
rate and throughput decreased from 2.406Mcps and 5.326Mfps
to 2.237Mcps and 4.516Mfps, respectively. However, the
degradation was more significant, when the built-in limitations
of iptables prevented us from increasing the hash table size
proportionally with the number of connections [4]. This is why
we believe that it is worth examining how to optimize the
parameters of iptables to provide ISPs with a high performance
stateful NAT44 solution.

Theoretically, the reimplementation of iptables in eBPF
could significantly outperform the native iptables. However,
the measurement results of Massimo Tumolo show that it
happens only if the number of the rules is above 100 [8]. It can
happen, if iptables is used as a firewall. However, in our case,
iptables is used as a stateful NAT44 gateway. Here the number
of rules is very low (one or a few).

III. BENCHMARKING METHODOLOGY FOR STATEFUL NAT44
GATEWAYS

A. Benchmarking Methodology for Network Interconnect
Devices

There is a long established benchmarking methodology for
network interconnect devices defined by a series of IETF
(Internet Engineering Task Force) RFCs. Commercial network
performance tester vendors follow the requirements of RFC
2544 [9] for more than two decades. Its aim is to facilitate the
measurement of the performance of network interconnect
devices in an objective way. To that end it defines the most
important conditions of the measurements to prevent gaming
(or tricking or more openly: cheating), including:

 Test setup
 DUT (Device Under Test) settings (it may not be

optimized for the given task)
 Test frame format and frame sizes (e.g. for Ethernet:

64, 128, 256, 512, 1024, 1280, 1518 bytes)
 Measurement procedures (throughput, latency, frame

loss rate, back-to-back frames, system recovery,
reset)

 Duration of the test (minimum 60s for throughput
test)

 Requirement of testing with bidirectional traffic
 Usage of UDP as transport layer protocol
 Testing with a single IP address pair and also with

256 destination networks when routers are
benchmarked.

As for test setup, the one shown in Fig. 1 should be used by
default. Although the arrows are unidirectional, bidirectional

 +------------+
 | |
 +------------| Tester |<----------+
 | | | |
 | +------------+ |
 | |
 | +------------+ |
 | | | |
 +----------->| DUT |-----------+
 | |
 +------------+

Fig. 1. Test setup for benchmarking network interconnect devices. [9]

mailto:lencse%40sze.hu?subject=

Optimizing the Performance of the Iptables
Stateful NAT44 Solution

EARLY ACCESS • 202356

INFOCOMMUNICATIONS JOURNAL
Paper ID: 250

2

relevant IETF RFCs, please see their requirements in Section
III.A.

For example, Melkov et al [3] compared the performance of
iptables and nftables using very high number of rules (up to
several times 10,000). In contrast with the common view, they
have found that iptables significantly outperformed nftables.
Depending on the actually examined chain, the throughput of
nftables significantly deteriorated around 5,000 or 10,000 rules,
whereas iptables could sustain a good performance up to
20,000 or 40,000 rules. We note that they measured “TCP
throughput” using iperf, and displayed the results in Mbps.

Gandotra and Sharma [5] also measured the firewall
performance of iptables using 200, 500, 1000, 5,000, and
10,000 number of rules, TCP traffic with 1024 bytes packets
size, multiple packet rates starting from 1,000pps increased by
1,000pps steps to 8,000pps, and test durations of 30s and 120s.
As for measurement tool, they used D-ITG (Distributed
Internet Traffic Generator).

Taga at al. [6] used iptables for testing their firewall traversal
method. As for measurement method, they downloaded HTML
files with different sizes and measured the download time.

B. Other Sources
In order to find more closely related sources to our topic, we

have lowered the bar and did not require peer-reviewed papers.
Thus, we found a really closely related writing of Andree

Toonk [7]. One of his tests was a stateful NAT44 performance
measurement using a single iptables rule and 10,000 network
flows. For the measurements, he used a DPDK-based packet
generator, but the exact details of the measurements (how the
bidirectional traffic was generated) are not disclosed. Using
two 3.2GHz Intel Xeon Gold 5218 CPUs (in all 64 cores were
available using hyper-threading) he managed to achieve a total
of 5.9Mpps using bidirectional traffic. It does not turn out, if it
was a lossless rate or not.

Whereas the above result is not bad, it definitely shows that
there is room for performance optimization, as we achieved
5.3Mpps using only 16 cores of a 2.1GHz Intel Xeon E5-2683
v4 CPU even though we handled 1.56M connections (instead of
only 10k) [4]. We note that our result is RFC 2544 [9]
compliant throughput (non-drop rate). According to our
measurements, the performance of iptables scaled up quite well
with the number of CPU cores: when 4M connections were
used and the number of active CPU cores was increased from 1
to 16, its maximum connection establishment rate (please refer
to Section III.C) and throughput scaled up from 223.5kcps

(connections per second) and 414.9kfps (frames per second) to
2,383kcps and 4,557kfps, respectively, thus the increase was
more than tenfold [4]. We have also examined, how the
performance of iptables degrades with the number of
connections. In the range where we could increase the hash
table size (please refer to Section IV.A) proportionally with the
number of connections, the performance of iptables degraded
only slightly with the 64-fold increase of the number of
connection: when the number of connections were increased
from 1.56M to 100M, its maximum connection establishment
rate and throughput decreased from 2.406Mcps and 5.326Mfps
to 2.237Mcps and 4.516Mfps, respectively. However, the
degradation was more significant, when the built-in limitations
of iptables prevented us from increasing the hash table size
proportionally with the number of connections [4]. This is why
we believe that it is worth examining how to optimize the
parameters of iptables to provide ISPs with a high performance
stateful NAT44 solution.

Theoretically, the reimplementation of iptables in eBPF
could significantly outperform the native iptables. However,
the measurement results of Massimo Tumolo show that it
happens only if the number of the rules is above 100 [8]. It can
happen, if iptables is used as a firewall. However, in our case,
iptables is used as a stateful NAT44 gateway. Here the number
of rules is very low (one or a few).

III. BENCHMARKING METHODOLOGY FOR STATEFUL NAT44
GATEWAYS

A. Benchmarking Methodology for Network Interconnect
Devices

There is a long established benchmarking methodology for
network interconnect devices defined by a series of IETF
(Internet Engineering Task Force) RFCs. Commercial network
performance tester vendors follow the requirements of RFC
2544 [9] for more than two decades. Its aim is to facilitate the
measurement of the performance of network interconnect
devices in an objective way. To that end it defines the most
important conditions of the measurements to prevent gaming
(or tricking or more openly: cheating), including:

 Test setup
 DUT (Device Under Test) settings (it may not be

optimized for the given task)
 Test frame format and frame sizes (e.g. for Ethernet:

64, 128, 256, 512, 1024, 1280, 1518 bytes)
 Measurement procedures (throughput, latency, frame

loss rate, back-to-back frames, system recovery,
reset)

 Duration of the test (minimum 60s for throughput
test)

 Requirement of testing with bidirectional traffic
 Usage of UDP as transport layer protocol
 Testing with a single IP address pair and also with

256 destination networks when routers are
benchmarked.

As for test setup, the one shown in Fig. 1 should be used by
default. Although the arrows are unidirectional, bidirectional

 +------------+
 | |
 +------------| Tester |<----------+
 | | | |
 | +------------+ |
 | |
 | +------------+ |
 | | | |
 +----------->| DUT |-----------+
 | |
 +------------+

Fig. 1. Test setup for benchmarking network interconnect devices. [9]

Paper ID: 250

2

relevant IETF RFCs, please see their requirements in Section
III.A.

For example, Melkov et al [3] compared the performance of
iptables and nftables using very high number of rules (up to
several times 10,000). In contrast with the common view, they
have found that iptables significantly outperformed nftables.
Depending on the actually examined chain, the throughput of
nftables significantly deteriorated around 5,000 or 10,000 rules,
whereas iptables could sustain a good performance up to
20,000 or 40,000 rules. We note that they measured “TCP
throughput” using iperf, and displayed the results in Mbps.

Gandotra and Sharma [5] also measured the firewall
performance of iptables using 200, 500, 1000, 5,000, and
10,000 number of rules, TCP traffic with 1024 bytes packets
size, multiple packet rates starting from 1,000pps increased by
1,000pps steps to 8,000pps, and test durations of 30s and 120s.
As for measurement tool, they used D-ITG (Distributed
Internet Traffic Generator).

Taga at al. [6] used iptables for testing their firewall traversal
method. As for measurement method, they downloaded HTML
files with different sizes and measured the download time.

B. Other Sources
In order to find more closely related sources to our topic, we

have lowered the bar and did not require peer-reviewed papers.
Thus, we found a really closely related writing of Andree

Toonk [7]. One of his tests was a stateful NAT44 performance
measurement using a single iptables rule and 10,000 network
flows. For the measurements, he used a DPDK-based packet
generator, but the exact details of the measurements (how the
bidirectional traffic was generated) are not disclosed. Using
two 3.2GHz Intel Xeon Gold 5218 CPUs (in all 64 cores were
available using hyper-threading) he managed to achieve a total
of 5.9Mpps using bidirectional traffic. It does not turn out, if it
was a lossless rate or not.

Whereas the above result is not bad, it definitely shows that
there is room for performance optimization, as we achieved
5.3Mpps using only 16 cores of a 2.1GHz Intel Xeon E5-2683
v4 CPU even though we handled 1.56M connections (instead of
only 10k) [4]. We note that our result is RFC 2544 [9]
compliant throughput (non-drop rate). According to our
measurements, the performance of iptables scaled up quite well
with the number of CPU cores: when 4M connections were
used and the number of active CPU cores was increased from 1
to 16, its maximum connection establishment rate (please refer
to Section III.C) and throughput scaled up from 223.5kcps

(connections per second) and 414.9kfps (frames per second) to
2,383kcps and 4,557kfps, respectively, thus the increase was
more than tenfold [4]. We have also examined, how the
performance of iptables degrades with the number of
connections. In the range where we could increase the hash
table size (please refer to Section IV.A) proportionally with the
number of connections, the performance of iptables degraded
only slightly with the 64-fold increase of the number of
connection: when the number of connections were increased
from 1.56M to 100M, its maximum connection establishment
rate and throughput decreased from 2.406Mcps and 5.326Mfps
to 2.237Mcps and 4.516Mfps, respectively. However, the
degradation was more significant, when the built-in limitations
of iptables prevented us from increasing the hash table size
proportionally with the number of connections [4]. This is why
we believe that it is worth examining how to optimize the
parameters of iptables to provide ISPs with a high performance
stateful NAT44 solution.

Theoretically, the reimplementation of iptables in eBPF
could significantly outperform the native iptables. However,
the measurement results of Massimo Tumolo show that it
happens only if the number of the rules is above 100 [8]. It can
happen, if iptables is used as a firewall. However, in our case,
iptables is used as a stateful NAT44 gateway. Here the number
of rules is very low (one or a few).

III. BENCHMARKING METHODOLOGY FOR STATEFUL NAT44
GATEWAYS

A. Benchmarking Methodology for Network Interconnect
Devices

There is a long established benchmarking methodology for
network interconnect devices defined by a series of IETF
(Internet Engineering Task Force) RFCs. Commercial network
performance tester vendors follow the requirements of RFC
2544 [9] for more than two decades. Its aim is to facilitate the
measurement of the performance of network interconnect
devices in an objective way. To that end it defines the most
important conditions of the measurements to prevent gaming
(or tricking or more openly: cheating), including:

 Test setup
 DUT (Device Under Test) settings (it may not be

optimized for the given task)
 Test frame format and frame sizes (e.g. for Ethernet:

64, 128, 256, 512, 1024, 1280, 1518 bytes)
 Measurement procedures (throughput, latency, frame

loss rate, back-to-back frames, system recovery,
reset)

 Duration of the test (minimum 60s for throughput
test)

 Requirement of testing with bidirectional traffic
 Usage of UDP as transport layer protocol
 Testing with a single IP address pair and also with

256 destination networks when routers are
benchmarked.

As for test setup, the one shown in Fig. 1 should be used by
default. Although the arrows are unidirectional, bidirectional

 +------------+
 | |
 +------------| Tester |<----------+
 | | | |
 | +------------+ |
 | |
 | +------------+ |
 | | | |
 +----------->| DUT |-----------+
 | |
 +------------+

Fig. 1. Test setup for benchmarking network interconnect devices. [9]

Paper ID: 250

2

relevant IETF RFCs, please see their requirements in Section
III.A.

For example, Melkov et al [3] compared the performance of
iptables and nftables using very high number of rules (up to
several times 10,000). In contrast with the common view, they
have found that iptables significantly outperformed nftables.
Depending on the actually examined chain, the throughput of
nftables significantly deteriorated around 5,000 or 10,000 rules,
whereas iptables could sustain a good performance up to
20,000 or 40,000 rules. We note that they measured “TCP
throughput” using iperf, and displayed the results in Mbps.

Gandotra and Sharma [5] also measured the firewall
performance of iptables using 200, 500, 1000, 5,000, and
10,000 number of rules, TCP traffic with 1024 bytes packets
size, multiple packet rates starting from 1,000pps increased by
1,000pps steps to 8,000pps, and test durations of 30s and 120s.
As for measurement tool, they used D-ITG (Distributed
Internet Traffic Generator).

Taga at al. [6] used iptables for testing their firewall traversal
method. As for measurement method, they downloaded HTML
files with different sizes and measured the download time.

B. Other Sources
In order to find more closely related sources to our topic, we

have lowered the bar and did not require peer-reviewed papers.
Thus, we found a really closely related writing of Andree

Toonk [7]. One of his tests was a stateful NAT44 performance
measurement using a single iptables rule and 10,000 network
flows. For the measurements, he used a DPDK-based packet
generator, but the exact details of the measurements (how the
bidirectional traffic was generated) are not disclosed. Using
two 3.2GHz Intel Xeon Gold 5218 CPUs (in all 64 cores were
available using hyper-threading) he managed to achieve a total
of 5.9Mpps using bidirectional traffic. It does not turn out, if it
was a lossless rate or not.

Whereas the above result is not bad, it definitely shows that
there is room for performance optimization, as we achieved
5.3Mpps using only 16 cores of a 2.1GHz Intel Xeon E5-2683
v4 CPU even though we handled 1.56M connections (instead of
only 10k) [4]. We note that our result is RFC 2544 [9]
compliant throughput (non-drop rate). According to our
measurements, the performance of iptables scaled up quite well
with the number of CPU cores: when 4M connections were
used and the number of active CPU cores was increased from 1
to 16, its maximum connection establishment rate (please refer
to Section III.C) and throughput scaled up from 223.5kcps

(connections per second) and 414.9kfps (frames per second) to
2,383kcps and 4,557kfps, respectively, thus the increase was
more than tenfold [4]. We have also examined, how the
performance of iptables degrades with the number of
connections. In the range where we could increase the hash
table size (please refer to Section IV.A) proportionally with the
number of connections, the performance of iptables degraded
only slightly with the 64-fold increase of the number of
connection: when the number of connections were increased
from 1.56M to 100M, its maximum connection establishment
rate and throughput decreased from 2.406Mcps and 5.326Mfps
to 2.237Mcps and 4.516Mfps, respectively. However, the
degradation was more significant, when the built-in limitations
of iptables prevented us from increasing the hash table size
proportionally with the number of connections [4]. This is why
we believe that it is worth examining how to optimize the
parameters of iptables to provide ISPs with a high performance
stateful NAT44 solution.

Theoretically, the reimplementation of iptables in eBPF
could significantly outperform the native iptables. However,
the measurement results of Massimo Tumolo show that it
happens only if the number of the rules is above 100 [8]. It can
happen, if iptables is used as a firewall. However, in our case,
iptables is used as a stateful NAT44 gateway. Here the number
of rules is very low (one or a few).

III. BENCHMARKING METHODOLOGY FOR STATEFUL NAT44
GATEWAYS

A. Benchmarking Methodology for Network Interconnect
Devices

There is a long established benchmarking methodology for
network interconnect devices defined by a series of IETF
(Internet Engineering Task Force) RFCs. Commercial network
performance tester vendors follow the requirements of RFC
2544 [9] for more than two decades. Its aim is to facilitate the
measurement of the performance of network interconnect
devices in an objective way. To that end it defines the most
important conditions of the measurements to prevent gaming
(or tricking or more openly: cheating), including:

 Test setup
 DUT (Device Under Test) settings (it may not be

optimized for the given task)
 Test frame format and frame sizes (e.g. for Ethernet:

64, 128, 256, 512, 1024, 1280, 1518 bytes)
 Measurement procedures (throughput, latency, frame

loss rate, back-to-back frames, system recovery,
reset)

 Duration of the test (minimum 60s for throughput
test)

 Requirement of testing with bidirectional traffic
 Usage of UDP as transport layer protocol
 Testing with a single IP address pair and also with

256 destination networks when routers are
benchmarked.

As for test setup, the one shown in Fig. 1 should be used by
default. Although the arrows are unidirectional, bidirectional

 +------------+
 | |
 +------------| Tester |<----------+
 | | | |
 | +------------+ |
 | |
 | +------------+ |
 | | | |
 +----------->| DUT |-----------+
 | |
 +------------+

Fig. 1. Test setup for benchmarking network interconnect devices. [9]

Paper ID: 250

2

relevant IETF RFCs, please see their requirements in Section
III.A.

For example, Melkov et al [3] compared the performance of
iptables and nftables using very high number of rules (up to
several times 10,000). In contrast with the common view, they
have found that iptables significantly outperformed nftables.
Depending on the actually examined chain, the throughput of
nftables significantly deteriorated around 5,000 or 10,000 rules,
whereas iptables could sustain a good performance up to
20,000 or 40,000 rules. We note that they measured “TCP
throughput” using iperf, and displayed the results in Mbps.

Gandotra and Sharma [5] also measured the firewall
performance of iptables using 200, 500, 1000, 5,000, and
10,000 number of rules, TCP traffic with 1024 bytes packets
size, multiple packet rates starting from 1,000pps increased by
1,000pps steps to 8,000pps, and test durations of 30s and 120s.
As for measurement tool, they used D-ITG (Distributed
Internet Traffic Generator).

Taga at al. [6] used iptables for testing their firewall traversal
method. As for measurement method, they downloaded HTML
files with different sizes and measured the download time.

B. Other Sources
In order to find more closely related sources to our topic, we

have lowered the bar and did not require peer-reviewed papers.
Thus, we found a really closely related writing of Andree

Toonk [7]. One of his tests was a stateful NAT44 performance
measurement using a single iptables rule and 10,000 network
flows. For the measurements, he used a DPDK-based packet
generator, but the exact details of the measurements (how the
bidirectional traffic was generated) are not disclosed. Using
two 3.2GHz Intel Xeon Gold 5218 CPUs (in all 64 cores were
available using hyper-threading) he managed to achieve a total
of 5.9Mpps using bidirectional traffic. It does not turn out, if it
was a lossless rate or not.

Whereas the above result is not bad, it definitely shows that
there is room for performance optimization, as we achieved
5.3Mpps using only 16 cores of a 2.1GHz Intel Xeon E5-2683
v4 CPU even though we handled 1.56M connections (instead of
only 10k) [4]. We note that our result is RFC 2544 [9]
compliant throughput (non-drop rate). According to our
measurements, the performance of iptables scaled up quite well
with the number of CPU cores: when 4M connections were
used and the number of active CPU cores was increased from 1
to 16, its maximum connection establishment rate (please refer
to Section III.C) and throughput scaled up from 223.5kcps

(connections per second) and 414.9kfps (frames per second) to
2,383kcps and 4,557kfps, respectively, thus the increase was
more than tenfold [4]. We have also examined, how the
performance of iptables degrades with the number of
connections. In the range where we could increase the hash
table size (please refer to Section IV.A) proportionally with the
number of connections, the performance of iptables degraded
only slightly with the 64-fold increase of the number of
connection: when the number of connections were increased
from 1.56M to 100M, its maximum connection establishment
rate and throughput decreased from 2.406Mcps and 5.326Mfps
to 2.237Mcps and 4.516Mfps, respectively. However, the
degradation was more significant, when the built-in limitations
of iptables prevented us from increasing the hash table size
proportionally with the number of connections [4]. This is why
we believe that it is worth examining how to optimize the
parameters of iptables to provide ISPs with a high performance
stateful NAT44 solution.

Theoretically, the reimplementation of iptables in eBPF
could significantly outperform the native iptables. However,
the measurement results of Massimo Tumolo show that it
happens only if the number of the rules is above 100 [8]. It can
happen, if iptables is used as a firewall. However, in our case,
iptables is used as a stateful NAT44 gateway. Here the number
of rules is very low (one or a few).

III. BENCHMARKING METHODOLOGY FOR STATEFUL NAT44
GATEWAYS

A. Benchmarking Methodology for Network Interconnect
Devices

There is a long established benchmarking methodology for
network interconnect devices defined by a series of IETF
(Internet Engineering Task Force) RFCs. Commercial network
performance tester vendors follow the requirements of RFC
2544 [9] for more than two decades. Its aim is to facilitate the
measurement of the performance of network interconnect
devices in an objective way. To that end it defines the most
important conditions of the measurements to prevent gaming
(or tricking or more openly: cheating), including:

 Test setup
 DUT (Device Under Test) settings (it may not be

optimized for the given task)
 Test frame format and frame sizes (e.g. for Ethernet:

64, 128, 256, 512, 1024, 1280, 1518 bytes)
 Measurement procedures (throughput, latency, frame

loss rate, back-to-back frames, system recovery,
reset)

 Duration of the test (minimum 60s for throughput
test)

 Requirement of testing with bidirectional traffic
 Usage of UDP as transport layer protocol
 Testing with a single IP address pair and also with

256 destination networks when routers are
benchmarked.

As for test setup, the one shown in Fig. 1 should be used by
default. Although the arrows are unidirectional, bidirectional

 +------------+
 | |
 +------------| Tester |<----------+
 | | | |
 | +------------+ |
 | |
 | +------------+ |
 | | | |
 +----------->| DUT |-----------+
 | |
 +------------+

Fig. 1. Test setup for benchmarking network interconnect devices. [9]

Paper ID: 250

3

traffic should be used as written above.
From among the performance metrics, throughput is the

most important one for us. It is defined as the highest constant
frame rate, at which all frames can be forwarded by the DUT.
Its measurement procedure requires that test frames are
transmitted by the Tester through the DUT in both directions at
least for 60 seconds at a constant frame rate, and the Tester
counts the number of received test frames:

 If the number of the received test frames equals the
number of the transmitted test frames then the frame
rate is increased, and the test is rerun.

 If the number of the received test frames is less than
the number of the transmitted test frames then the
frame rate is decreased, and the test is rerun.

Whereas this wording facilitates various search algorithms,
usually a binary search is executed using 0 and the maximum
frame rate for the media as the starting interval.

Theoretically, it can be said that RFC 2544 is IP version
independent, but in practice, it uses IPv4 addresses. The media
types for which it defined the maximum frame rates in its
appendix, also show its age.

As time passed by, the Benchmarking Working Group of
IETF has produced further important RFCs. One of them is
RFC 4814 [10]. It requires the usage of pseudorandom port
numbers with uniform distribution over the following ranges:

 Source port number range: 1,024–65,535
 Destination port number range: 1–49,151

Without that requirement, the very same test frames could be
sent, which was very convenient for the tester vendors, but it
did not reflect the nature of the Internet traffic. Moreover,
pseudorandom port numbers are necessary to support RSS
(Receive-Side Scaling, also called multi-queue receiving) [11],
because if the same source and destination IP addresses are
used for each packet, then only the port numbers can ensure
entropy for the hash function to distribute the interrupts of
packet arrivals among the several cores of a contemporary
CPU.

We note that there were two further important RFCs
published. RFC 5180 [12] is mainly an IPv6 update regarding
IPv6 specificities, but it also contains maximum frame rates for
some media types being contemporary at the time of its writing.
However, it excludes IPv6 transition technologies from its
scope. They are covered by RFC 8219 [13]. It has kept the
requirement of testing with bidirectional traffic, but it also
introduces testing with single directional traffic as an optional
measurement. We believe that the asymmetry of the amount of
Internet traffic in download and upload directions is a good

rational for testing also with unidirectional traffic, and it is
worth extending it to the benchmarking of stateful NAT44
gateways, too.

B. Problems with Benchmarking Stateful NAT44 Gateways
1) Problems with the Feasibility of RFC Compliant Tests

As for benchmarking stateful NAT44 gateways, we are faced
with multiple problems. RFC 2544 requires testing with
bidirectional traffic, whereas RFC 4814 requires the usage of
pseudorandom port numbers with uniform distribution from the
above mentioned ranges.

It can be easily calculated that the number of potential source
port number destination port number combinations is more than
three billion and it means so many network flows, thus potential
entries in the connection tracking table of the stateful NAT44
gateways. Therefore, literally following this requirement in the
private to public direction could exhaust the capacity of the
connection tracking table of the DUT.

As for sending traffic in the public to private direction using
pseudorandom port numbers, it would result in sending a lot of
frames that do not belong to any existing connection, thus the
stateful NAT44 gateway would simply discard them and the
throughput test would fail.
2) Problems with the Widely-used Measurements

Researchers were creative enough to accommodate to the
limitation of NAT44 that connections may be initiated only
from the private side. They put the iperf or D-ITG server on the
public side and thus the measurement was feasible. However,
this type of measurement has serious limitations. To examine
them, let us see, what happens (and what may happen) during
the execution of a test. At the beginning of the test, most of the
test frames sent form the private side result in new connections
in the stateful NAT44 gateway. As time elapses, its connection
tracking table has more and more connections and thus the
proportion of the test frames that belong to an existing
connection will increase. The proportion of the test frames
resulting in new connections will likely decrease significantly
and it may even become zero. The progress of this change
depends on several factors including:

1. how the client is programmed (how many different
network flows are used and what policy it follows to
send a test frame that belongs to an already used or a
new flow)

2. the connection timeout time of the stateful NAT44
gateway

3. the size and policy of the connection tracking table of
the stateful NAT44 gateway.

The main problem with this type of measurement is that the
test traffic is a kind of a mix, in which the proportion of the
ingredients (frames resulting in a new connection or not) varies
with the time. It results in several negative consequences,
including:

1. It is rather hard to tell, exactly what was measured:
e.g., the connection setup performance or the frame
forwarding performance of the DUT?

2. The results of measurements performed with different
tools are likely not comparable.

 +--------------------------------------+
 10.0.0.2 |Initiator Responder| 198.19.0.2
+-------------| Tester |<------------+
| private IPv4| [state table]| public IPv4 |
| +--------------------------------------+ |
| |
| +--------------------------------------+ |
| 10.0.0.1 | DUT: | 198.19.0.1 |
+------------>| Stateful NAT44 gateway |-------------+
 private IPv4| [connection tracking table] | public IPv4
 +--------------------------------------+

Fig. 2. Test setup for benchmarking stateful NAT44 gateways. [14]

Paper ID: 250

2

relevant IETF RFCs, please see their requirements in Section
III.A.

For example, Melkov et al [3] compared the performance of
iptables and nftables using very high number of rules (up to
several times 10,000). In contrast with the common view, they
have found that iptables significantly outperformed nftables.
Depending on the actually examined chain, the throughput of
nftables significantly deteriorated around 5,000 or 10,000 rules,
whereas iptables could sustain a good performance up to
20,000 or 40,000 rules. We note that they measured “TCP
throughput” using iperf, and displayed the results in Mbps.

Gandotra and Sharma [5] also measured the firewall
performance of iptables using 200, 500, 1000, 5,000, and
10,000 number of rules, TCP traffic with 1024 bytes packets
size, multiple packet rates starting from 1,000pps increased by
1,000pps steps to 8,000pps, and test durations of 30s and 120s.
As for measurement tool, they used D-ITG (Distributed
Internet Traffic Generator).

Taga at al. [6] used iptables for testing their firewall traversal
method. As for measurement method, they downloaded HTML
files with different sizes and measured the download time.

B. Other Sources
In order to find more closely related sources to our topic, we

have lowered the bar and did not require peer-reviewed papers.
Thus, we found a really closely related writing of Andree

Toonk [7]. One of his tests was a stateful NAT44 performance
measurement using a single iptables rule and 10,000 network
flows. For the measurements, he used a DPDK-based packet
generator, but the exact details of the measurements (how the
bidirectional traffic was generated) are not disclosed. Using
two 3.2GHz Intel Xeon Gold 5218 CPUs (in all 64 cores were
available using hyper-threading) he managed to achieve a total
of 5.9Mpps using bidirectional traffic. It does not turn out, if it
was a lossless rate or not.

Whereas the above result is not bad, it definitely shows that
there is room for performance optimization, as we achieved
5.3Mpps using only 16 cores of a 2.1GHz Intel Xeon E5-2683
v4 CPU even though we handled 1.56M connections (instead of
only 10k) [4]. We note that our result is RFC 2544 [9]
compliant throughput (non-drop rate). According to our
measurements, the performance of iptables scaled up quite well
with the number of CPU cores: when 4M connections were
used and the number of active CPU cores was increased from 1
to 16, its maximum connection establishment rate (please refer
to Section III.C) and throughput scaled up from 223.5kcps

(connections per second) and 414.9kfps (frames per second) to
2,383kcps and 4,557kfps, respectively, thus the increase was
more than tenfold [4]. We have also examined, how the
performance of iptables degrades with the number of
connections. In the range where we could increase the hash
table size (please refer to Section IV.A) proportionally with the
number of connections, the performance of iptables degraded
only slightly with the 64-fold increase of the number of
connection: when the number of connections were increased
from 1.56M to 100M, its maximum connection establishment
rate and throughput decreased from 2.406Mcps and 5.326Mfps
to 2.237Mcps and 4.516Mfps, respectively. However, the
degradation was more significant, when the built-in limitations
of iptables prevented us from increasing the hash table size
proportionally with the number of connections [4]. This is why
we believe that it is worth examining how to optimize the
parameters of iptables to provide ISPs with a high performance
stateful NAT44 solution.

Theoretically, the reimplementation of iptables in eBPF
could significantly outperform the native iptables. However,
the measurement results of Massimo Tumolo show that it
happens only if the number of the rules is above 100 [8]. It can
happen, if iptables is used as a firewall. However, in our case,
iptables is used as a stateful NAT44 gateway. Here the number
of rules is very low (one or a few).

III. BENCHMARKING METHODOLOGY FOR STATEFUL NAT44
GATEWAYS

A. Benchmarking Methodology for Network Interconnect
Devices

There is a long established benchmarking methodology for
network interconnect devices defined by a series of IETF
(Internet Engineering Task Force) RFCs. Commercial network
performance tester vendors follow the requirements of RFC
2544 [9] for more than two decades. Its aim is to facilitate the
measurement of the performance of network interconnect
devices in an objective way. To that end it defines the most
important conditions of the measurements to prevent gaming
(or tricking or more openly: cheating), including:

 Test setup
 DUT (Device Under Test) settings (it may not be

optimized for the given task)
 Test frame format and frame sizes (e.g. for Ethernet:

64, 128, 256, 512, 1024, 1280, 1518 bytes)
 Measurement procedures (throughput, latency, frame

loss rate, back-to-back frames, system recovery,
reset)

 Duration of the test (minimum 60s for throughput
test)

 Requirement of testing with bidirectional traffic
 Usage of UDP as transport layer protocol
 Testing with a single IP address pair and also with

256 destination networks when routers are
benchmarked.

As for test setup, the one shown in Fig. 1 should be used by
default. Although the arrows are unidirectional, bidirectional

 +------------+
 | |
 +------------| Tester |<----------+
 | | | |
 | +------------+ |
 | |
 | +------------+ |
 | | | |
 +----------->| DUT |-----------+
 | |
 +------------+

Fig. 1. Test setup for benchmarking network interconnect devices. [9]

Optimizing the Performance of the Iptables
Stateful NAT44 Solution

INFOCOMMUNICATIONS JOURNAL

2023 • EARLY ACCESS 57

Paper ID: 250

3

traffic should be used as written above.
From among the performance metrics, throughput is the

most important one for us. It is defined as the highest constant
frame rate, at which all frames can be forwarded by the DUT.
Its measurement procedure requires that test frames are
transmitted by the Tester through the DUT in both directions at
least for 60 seconds at a constant frame rate, and the Tester
counts the number of received test frames:

 If the number of the received test frames equals the
number of the transmitted test frames then the frame
rate is increased, and the test is rerun.

 If the number of the received test frames is less than
the number of the transmitted test frames then the
frame rate is decreased, and the test is rerun.

Whereas this wording facilitates various search algorithms,
usually a binary search is executed using 0 and the maximum
frame rate for the media as the starting interval.

Theoretically, it can be said that RFC 2544 is IP version
independent, but in practice, it uses IPv4 addresses. The media
types for which it defined the maximum frame rates in its
appendix, also show its age.

As time passed by, the Benchmarking Working Group of
IETF has produced further important RFCs. One of them is
RFC 4814 [10]. It requires the usage of pseudorandom port
numbers with uniform distribution over the following ranges:

 Source port number range: 1,024–65,535
 Destination port number range: 1–49,151

Without that requirement, the very same test frames could be
sent, which was very convenient for the tester vendors, but it
did not reflect the nature of the Internet traffic. Moreover,
pseudorandom port numbers are necessary to support RSS
(Receive-Side Scaling, also called multi-queue receiving) [11],
because if the same source and destination IP addresses are
used for each packet, then only the port numbers can ensure
entropy for the hash function to distribute the interrupts of
packet arrivals among the several cores of a contemporary
CPU.

We note that there were two further important RFCs
published. RFC 5180 [12] is mainly an IPv6 update regarding
IPv6 specificities, but it also contains maximum frame rates for
some media types being contemporary at the time of its writing.
However, it excludes IPv6 transition technologies from its
scope. They are covered by RFC 8219 [13]. It has kept the
requirement of testing with bidirectional traffic, but it also
introduces testing with single directional traffic as an optional
measurement. We believe that the asymmetry of the amount of
Internet traffic in download and upload directions is a good

rational for testing also with unidirectional traffic, and it is
worth extending it to the benchmarking of stateful NAT44
gateways, too.

B. Problems with Benchmarking Stateful NAT44 Gateways
1) Problems with the Feasibility of RFC Compliant Tests

As for benchmarking stateful NAT44 gateways, we are faced
with multiple problems. RFC 2544 requires testing with
bidirectional traffic, whereas RFC 4814 requires the usage of
pseudorandom port numbers with uniform distribution from the
above mentioned ranges.

It can be easily calculated that the number of potential source
port number destination port number combinations is more than
three billion and it means so many network flows, thus potential
entries in the connection tracking table of the stateful NAT44
gateways. Therefore, literally following this requirement in the
private to public direction could exhaust the capacity of the
connection tracking table of the DUT.

As for sending traffic in the public to private direction using
pseudorandom port numbers, it would result in sending a lot of
frames that do not belong to any existing connection, thus the
stateful NAT44 gateway would simply discard them and the
throughput test would fail.
2) Problems with the Widely-used Measurements

Researchers were creative enough to accommodate to the
limitation of NAT44 that connections may be initiated only
from the private side. They put the iperf or D-ITG server on the
public side and thus the measurement was feasible. However,
this type of measurement has serious limitations. To examine
them, let us see, what happens (and what may happen) during
the execution of a test. At the beginning of the test, most of the
test frames sent form the private side result in new connections
in the stateful NAT44 gateway. As time elapses, its connection
tracking table has more and more connections and thus the
proportion of the test frames that belong to an existing
connection will increase. The proportion of the test frames
resulting in new connections will likely decrease significantly
and it may even become zero. The progress of this change
depends on several factors including:

1. how the client is programmed (how many different
network flows are used and what policy it follows to
send a test frame that belongs to an already used or a
new flow)

2. the connection timeout time of the stateful NAT44
gateway

3. the size and policy of the connection tracking table of
the stateful NAT44 gateway.

The main problem with this type of measurement is that the
test traffic is a kind of a mix, in which the proportion of the
ingredients (frames resulting in a new connection or not) varies
with the time. It results in several negative consequences,
including:

1. It is rather hard to tell, exactly what was measured:
e.g., the connection setup performance or the frame
forwarding performance of the DUT?

2. The results of measurements performed with different
tools are likely not comparable.

 +--------------------------------------+
 10.0.0.2 |Initiator Responder| 198.19.0.2
+-------------| Tester |<------------+
| private IPv4| [state table]| public IPv4 |
| +--------------------------------------+ |
| |
| +--------------------------------------+ |
| 10.0.0.1 | DUT: | 198.19.0.1 |
+------------>| Stateful NAT44 gateway |-------------+
 private IPv4| [connection tracking table] | public IPv4
 +--------------------------------------+

Fig. 2. Test setup for benchmarking stateful NAT44 gateways. [14]

Paper ID: 250

3

traffic should be used as written above.
From among the performance metrics, throughput is the

most important one for us. It is defined as the highest constant
frame rate, at which all frames can be forwarded by the DUT.
Its measurement procedure requires that test frames are
transmitted by the Tester through the DUT in both directions at
least for 60 seconds at a constant frame rate, and the Tester
counts the number of received test frames:

 If the number of the received test frames equals the
number of the transmitted test frames then the frame
rate is increased, and the test is rerun.

 If the number of the received test frames is less than
the number of the transmitted test frames then the
frame rate is decreased, and the test is rerun.

Whereas this wording facilitates various search algorithms,
usually a binary search is executed using 0 and the maximum
frame rate for the media as the starting interval.

Theoretically, it can be said that RFC 2544 is IP version
independent, but in practice, it uses IPv4 addresses. The media
types for which it defined the maximum frame rates in its
appendix, also show its age.

As time passed by, the Benchmarking Working Group of
IETF has produced further important RFCs. One of them is
RFC 4814 [10]. It requires the usage of pseudorandom port
numbers with uniform distribution over the following ranges:

 Source port number range: 1,024–65,535
 Destination port number range: 1–49,151

Without that requirement, the very same test frames could be
sent, which was very convenient for the tester vendors, but it
did not reflect the nature of the Internet traffic. Moreover,
pseudorandom port numbers are necessary to support RSS
(Receive-Side Scaling, also called multi-queue receiving) [11],
because if the same source and destination IP addresses are
used for each packet, then only the port numbers can ensure
entropy for the hash function to distribute the interrupts of
packet arrivals among the several cores of a contemporary
CPU.

We note that there were two further important RFCs
published. RFC 5180 [12] is mainly an IPv6 update regarding
IPv6 specificities, but it also contains maximum frame rates for
some media types being contemporary at the time of its writing.
However, it excludes IPv6 transition technologies from its
scope. They are covered by RFC 8219 [13]. It has kept the
requirement of testing with bidirectional traffic, but it also
introduces testing with single directional traffic as an optional
measurement. We believe that the asymmetry of the amount of
Internet traffic in download and upload directions is a good

rational for testing also with unidirectional traffic, and it is
worth extending it to the benchmarking of stateful NAT44
gateways, too.

B. Problems with Benchmarking Stateful NAT44 Gateways
1) Problems with the Feasibility of RFC Compliant Tests

As for benchmarking stateful NAT44 gateways, we are faced
with multiple problems. RFC 2544 requires testing with
bidirectional traffic, whereas RFC 4814 requires the usage of
pseudorandom port numbers with uniform distribution from the
above mentioned ranges.

It can be easily calculated that the number of potential source
port number destination port number combinations is more than
three billion and it means so many network flows, thus potential
entries in the connection tracking table of the stateful NAT44
gateways. Therefore, literally following this requirement in the
private to public direction could exhaust the capacity of the
connection tracking table of the DUT.

As for sending traffic in the public to private direction using
pseudorandom port numbers, it would result in sending a lot of
frames that do not belong to any existing connection, thus the
stateful NAT44 gateway would simply discard them and the
throughput test would fail.
2) Problems with the Widely-used Measurements

Researchers were creative enough to accommodate to the
limitation of NAT44 that connections may be initiated only
from the private side. They put the iperf or D-ITG server on the
public side and thus the measurement was feasible. However,
this type of measurement has serious limitations. To examine
them, let us see, what happens (and what may happen) during
the execution of a test. At the beginning of the test, most of the
test frames sent form the private side result in new connections
in the stateful NAT44 gateway. As time elapses, its connection
tracking table has more and more connections and thus the
proportion of the test frames that belong to an existing
connection will increase. The proportion of the test frames
resulting in new connections will likely decrease significantly
and it may even become zero. The progress of this change
depends on several factors including:

1. how the client is programmed (how many different
network flows are used and what policy it follows to
send a test frame that belongs to an already used or a
new flow)

2. the connection timeout time of the stateful NAT44
gateway

3. the size and policy of the connection tracking table of
the stateful NAT44 gateway.

The main problem with this type of measurement is that the
test traffic is a kind of a mix, in which the proportion of the
ingredients (frames resulting in a new connection or not) varies
with the time. It results in several negative consequences,
including:

1. It is rather hard to tell, exactly what was measured:
e.g., the connection setup performance or the frame
forwarding performance of the DUT?

2. The results of measurements performed with different
tools are likely not comparable.

 +--------------------------------------+
 10.0.0.2 |Initiator Responder| 198.19.0.2
+-------------| Tester |<------------+
| private IPv4| [state table]| public IPv4 |
| +--------------------------------------+ |
| |
| +--------------------------------------+ |
| 10.0.0.1 | DUT: | 198.19.0.1 |
+------------>| Stateful NAT44 gateway |-------------+
 private IPv4| [connection tracking table] | public IPv4
 +--------------------------------------+

Fig. 2. Test setup for benchmarking stateful NAT44 gateways. [14]

Paper ID: 250

3

traffic should be used as written above.
From among the performance metrics, throughput is the

most important one for us. It is defined as the highest constant
frame rate, at which all frames can be forwarded by the DUT.
Its measurement procedure requires that test frames are
transmitted by the Tester through the DUT in both directions at
least for 60 seconds at a constant frame rate, and the Tester
counts the number of received test frames:

 If the number of the received test frames equals the
number of the transmitted test frames then the frame
rate is increased, and the test is rerun.

 If the number of the received test frames is less than
the number of the transmitted test frames then the
frame rate is decreased, and the test is rerun.

Whereas this wording facilitates various search algorithms,
usually a binary search is executed using 0 and the maximum
frame rate for the media as the starting interval.

Theoretically, it can be said that RFC 2544 is IP version
independent, but in practice, it uses IPv4 addresses. The media
types for which it defined the maximum frame rates in its
appendix, also show its age.

As time passed by, the Benchmarking Working Group of
IETF has produced further important RFCs. One of them is
RFC 4814 [10]. It requires the usage of pseudorandom port
numbers with uniform distribution over the following ranges:

 Source port number range: 1,024–65,535
 Destination port number range: 1–49,151

Without that requirement, the very same test frames could be
sent, which was very convenient for the tester vendors, but it
did not reflect the nature of the Internet traffic. Moreover,
pseudorandom port numbers are necessary to support RSS
(Receive-Side Scaling, also called multi-queue receiving) [11],
because if the same source and destination IP addresses are
used for each packet, then only the port numbers can ensure
entropy for the hash function to distribute the interrupts of
packet arrivals among the several cores of a contemporary
CPU.

We note that there were two further important RFCs
published. RFC 5180 [12] is mainly an IPv6 update regarding
IPv6 specificities, but it also contains maximum frame rates for
some media types being contemporary at the time of its writing.
However, it excludes IPv6 transition technologies from its
scope. They are covered by RFC 8219 [13]. It has kept the
requirement of testing with bidirectional traffic, but it also
introduces testing with single directional traffic as an optional
measurement. We believe that the asymmetry of the amount of
Internet traffic in download and upload directions is a good

rational for testing also with unidirectional traffic, and it is
worth extending it to the benchmarking of stateful NAT44
gateways, too.

B. Problems with Benchmarking Stateful NAT44 Gateways
1) Problems with the Feasibility of RFC Compliant Tests

As for benchmarking stateful NAT44 gateways, we are faced
with multiple problems. RFC 2544 requires testing with
bidirectional traffic, whereas RFC 4814 requires the usage of
pseudorandom port numbers with uniform distribution from the
above mentioned ranges.

It can be easily calculated that the number of potential source
port number destination port number combinations is more than
three billion and it means so many network flows, thus potential
entries in the connection tracking table of the stateful NAT44
gateways. Therefore, literally following this requirement in the
private to public direction could exhaust the capacity of the
connection tracking table of the DUT.

As for sending traffic in the public to private direction using
pseudorandom port numbers, it would result in sending a lot of
frames that do not belong to any existing connection, thus the
stateful NAT44 gateway would simply discard them and the
throughput test would fail.
2) Problems with the Widely-used Measurements

Researchers were creative enough to accommodate to the
limitation of NAT44 that connections may be initiated only
from the private side. They put the iperf or D-ITG server on the
public side and thus the measurement was feasible. However,
this type of measurement has serious limitations. To examine
them, let us see, what happens (and what may happen) during
the execution of a test. At the beginning of the test, most of the
test frames sent form the private side result in new connections
in the stateful NAT44 gateway. As time elapses, its connection
tracking table has more and more connections and thus the
proportion of the test frames that belong to an existing
connection will increase. The proportion of the test frames
resulting in new connections will likely decrease significantly
and it may even become zero. The progress of this change
depends on several factors including:

1. how the client is programmed (how many different
network flows are used and what policy it follows to
send a test frame that belongs to an already used or a
new flow)

2. the connection timeout time of the stateful NAT44
gateway

3. the size and policy of the connection tracking table of
the stateful NAT44 gateway.

The main problem with this type of measurement is that the
test traffic is a kind of a mix, in which the proportion of the
ingredients (frames resulting in a new connection or not) varies
with the time. It results in several negative consequences,
including:

1. It is rather hard to tell, exactly what was measured:
e.g., the connection setup performance or the frame
forwarding performance of the DUT?

2. The results of measurements performed with different
tools are likely not comparable.

 +--------------------------------------+
 10.0.0.2 |Initiator Responder| 198.19.0.2
+-------------| Tester |<------------+
| private IPv4| [state table]| public IPv4 |
| +--------------------------------------+ |
| |
| +--------------------------------------+ |
| 10.0.0.1 | DUT: | 198.19.0.1 |
+------------>| Stateful NAT44 gateway |-------------+
 private IPv4| [connection tracking table] | public IPv4
 +--------------------------------------+

Fig. 2. Test setup for benchmarking stateful NAT44 gateways. [14]

Optimizing the Performance of the Iptables
Stateful NAT44 Solution

EARLY ACCESS • 202358

INFOCOMMUNICATIONS JOURNAL

Paper ID: 250

4

3. It is hard to tell, what conditions are needed to achieve
reproducible measurements.

4. It is not possible to measure some clear and well
defined characteristics like bidirectional,
download-only, and upload-only throughput or
connection setup performance.

Our methodology offers remedy for all these problems.

C. Our Methodology
We have defined a general methodology [14] suitable for the

benchmarking of any stateful NATxy gateways using RFC
4814 pseudorandom port numbers, where x and y are in {4, 6}.

Now we give a brief introduction to the methodology using
the example of the stateful NAT44.

The test setup is shown in Fig. 2. The DUT is the stateful
NAT44 gateway, which has a connection tracking table. Its
content, size, and replacement policy is unknown for the Tester.
The Tester can influence or examine its content in indirect
ways:

 The Tester can add a new connection to the
connection tracking table by sending a test frame in
the private to public direction with a new source port
number destination port number combination.

 The Tester can check, if a given connection is present
in the connection tracking table by sending a test
frame belonging to the given connection in the public
to private direction and verifying if the test frame
arrives back.

There are two operations that can be performed by some out
of band methods:

1. The timeout time of the connections can be set to any
permitted value.

2. The entire content of the connection tracking table
can be deleted.

Please refer to Section V.A, how these operations can be
performed with iptables.

As the operation of the stateful NAT44 gateway is
asymmetric, the operation of the Tester is also asymmetric.

The Initiator can send a test frame using any desired source
port number destination port number combinations, but it uses
restricted ranges to avoid the exhaustion of the capacity of the
connection tracking table of the DUT. The size of the source
port number range is larger (e.g. a few times 10,000) and the
size of the destination port numbers is smaller (e.g. in the order
of 10, 100, or 1000), and it can be used as a parameter to
perform the measurements with different number of network
flows. Please refer to our Internet Draft [14] for the rationale of
the asymmetry of the sizes of the port number ranges. (The
source and destination IP addresses have constant values and
the protocol is always UDP.)

The Responder may not invent any flow identifiers, but it
extracts the four tuples (source IP address, source port number,
destination IP address, destination port number) from the
received test frames and stores them in its state table. When it
sends a test frame, it takes a four tuple from its state table
(swaps source and destination), and thus it creates a valid test
frame that belongs to an existing connection in the connection

tracking table of the DUT.
To make testing possible, we have introduced the

preliminary test phase. During this phase only the Initiator
sends test frames. The DUT registers the new connections into
its connection tracking table, translates the test frames and
forwards them to the Responder. Thus, the connection tracking
table of the DUT and the state table of the Responder are
initialized, and in the real test phase, the Responder is able to
send valid test frames.

To achieve clear and repeatable measurements, we use two
extreme situations that we can simply ensure:

1. All test frames create a new connection during the
preliminary test phase.

2. Test frames never create a new connection in the real
test phase.

We achieve them by using
 large enough and empty connection tracking table for

each test
 pseudorandom enumeration of all possible source

port number destination port number combinations in
the preliminary test phase

 a properly high timeout value in the DUT (higher than
the time duration from the beginning of the
preliminary test phase to the end of the real test phase
including timeout).

To quantify the connection setup performance of the DUT,
we have introduced the maximum connection establishment
rate as a new metric. It is the highest constant frame rate at
which the DUT is able to process all test frames in the
preliminary test phase. (Each test frame is successfully
translated and a new connection is created in the connection
tracking table.) Its measurement procedure is very simple to
that of the throughput, the details can be found in our Internet
Draft.

All “classic” measurements (throughput, latency, frame loss
rate, etc.) can be performed in the real test phase. To that end,
first, the preliminary test phase has to be executed using a frame
rate safely lower than the measured connection establishment
rate. Then comes the real test phase with the desired
measurement.

The other side of connection establishment is connection tear
down. We defined connection tear down rate to quantify the
connection tear down performance of the DUT. Is short, it is
measured as follows. First, N number of connections are loaded
into the connection tracking table of the DUT. Then the entire
content of the connection tracking table is deleted, and its T
deletion time is measured. The connection tear down rate is
calculated as: N/T. It is measured for different values of N.

We give more details in Section V.B.4, were we describe our
test to measure the connection tear down rate of iptables.

IV. IMPORTANT DETAILS OF IPTABLES
First of all, iptables does connection tracking not only for

stateful protocols (TCP), but also for stateless ones (UDP,
ICMP). The connection tracking system of iptables is
implemented using hashing to ensure efficient lookups. As for

Paper ID: 250

4

3. It is hard to tell, what conditions are needed to achieve
reproducible measurements.

4. It is not possible to measure some clear and well
defined characteristics like bidirectional,
download-only, and upload-only throughput or
connection setup performance.

Our methodology offers remedy for all these problems.

C. Our Methodology
We have defined a general methodology [14] suitable for the

benchmarking of any stateful NATxy gateways using RFC
4814 pseudorandom port numbers, where x and y are in {4, 6}.

Now we give a brief introduction to the methodology using
the example of the stateful NAT44.

The test setup is shown in Fig. 2. The DUT is the stateful
NAT44 gateway, which has a connection tracking table. Its
content, size, and replacement policy is unknown for the Tester.
The Tester can influence or examine its content in indirect
ways:

 The Tester can add a new connection to the
connection tracking table by sending a test frame in
the private to public direction with a new source port
number destination port number combination.

 The Tester can check, if a given connection is present
in the connection tracking table by sending a test
frame belonging to the given connection in the public
to private direction and verifying if the test frame
arrives back.

There are two operations that can be performed by some out
of band methods:

1. The timeout time of the connections can be set to any
permitted value.

2. The entire content of the connection tracking table
can be deleted.

Please refer to Section V.A, how these operations can be
performed with iptables.

As the operation of the stateful NAT44 gateway is
asymmetric, the operation of the Tester is also asymmetric.

The Initiator can send a test frame using any desired source
port number destination port number combinations, but it uses
restricted ranges to avoid the exhaustion of the capacity of the
connection tracking table of the DUT. The size of the source
port number range is larger (e.g. a few times 10,000) and the
size of the destination port numbers is smaller (e.g. in the order
of 10, 100, or 1000), and it can be used as a parameter to
perform the measurements with different number of network
flows. Please refer to our Internet Draft [14] for the rationale of
the asymmetry of the sizes of the port number ranges. (The
source and destination IP addresses have constant values and
the protocol is always UDP.)

The Responder may not invent any flow identifiers, but it
extracts the four tuples (source IP address, source port number,
destination IP address, destination port number) from the
received test frames and stores them in its state table. When it
sends a test frame, it takes a four tuple from its state table
(swaps source and destination), and thus it creates a valid test
frame that belongs to an existing connection in the connection

tracking table of the DUT.
To make testing possible, we have introduced the

preliminary test phase. During this phase only the Initiator
sends test frames. The DUT registers the new connections into
its connection tracking table, translates the test frames and
forwards them to the Responder. Thus, the connection tracking
table of the DUT and the state table of the Responder are
initialized, and in the real test phase, the Responder is able to
send valid test frames.

To achieve clear and repeatable measurements, we use two
extreme situations that we can simply ensure:

1. All test frames create a new connection during the
preliminary test phase.

2. Test frames never create a new connection in the real
test phase.

We achieve them by using
 large enough and empty connection tracking table for

each test
 pseudorandom enumeration of all possible source

port number destination port number combinations in
the preliminary test phase

 a properly high timeout value in the DUT (higher than
the time duration from the beginning of the
preliminary test phase to the end of the real test phase
including timeout).

To quantify the connection setup performance of the DUT,
we have introduced the maximum connection establishment
rate as a new metric. It is the highest constant frame rate at
which the DUT is able to process all test frames in the
preliminary test phase. (Each test frame is successfully
translated and a new connection is created in the connection
tracking table.) Its measurement procedure is very simple to
that of the throughput, the details can be found in our Internet
Draft.

All “classic” measurements (throughput, latency, frame loss
rate, etc.) can be performed in the real test phase. To that end,
first, the preliminary test phase has to be executed using a frame
rate safely lower than the measured connection establishment
rate. Then comes the real test phase with the desired
measurement.

The other side of connection establishment is connection tear
down. We defined connection tear down rate to quantify the
connection tear down performance of the DUT. Is short, it is
measured as follows. First, N number of connections are loaded
into the connection tracking table of the DUT. Then the entire
content of the connection tracking table is deleted, and its T
deletion time is measured. The connection tear down rate is
calculated as: N/T. It is measured for different values of N.

We give more details in Section V.B.4, were we describe our
test to measure the connection tear down rate of iptables.

IV. IMPORTANT DETAILS OF IPTABLES
First of all, iptables does connection tracking not only for

stateful protocols (TCP), but also for stateless ones (UDP,
ICMP). The connection tracking system of iptables is
implemented using hashing to ensure efficient lookups. As for

Paper ID: 250

4

3. It is hard to tell, what conditions are needed to achieve
reproducible measurements.

4. It is not possible to measure some clear and well
defined characteristics like bidirectional,
download-only, and upload-only throughput or
connection setup performance.

Our methodology offers remedy for all these problems.

C. Our Methodology
We have defined a general methodology [14] suitable for the

benchmarking of any stateful NATxy gateways using RFC
4814 pseudorandom port numbers, where x and y are in {4, 6}.

Now we give a brief introduction to the methodology using
the example of the stateful NAT44.

The test setup is shown in Fig. 2. The DUT is the stateful
NAT44 gateway, which has a connection tracking table. Its
content, size, and replacement policy is unknown for the Tester.
The Tester can influence or examine its content in indirect
ways:

 The Tester can add a new connection to the
connection tracking table by sending a test frame in
the private to public direction with a new source port
number destination port number combination.

 The Tester can check, if a given connection is present
in the connection tracking table by sending a test
frame belonging to the given connection in the public
to private direction and verifying if the test frame
arrives back.

There are two operations that can be performed by some out
of band methods:

1. The timeout time of the connections can be set to any
permitted value.

2. The entire content of the connection tracking table
can be deleted.

Please refer to Section V.A, how these operations can be
performed with iptables.

As the operation of the stateful NAT44 gateway is
asymmetric, the operation of the Tester is also asymmetric.

The Initiator can send a test frame using any desired source
port number destination port number combinations, but it uses
restricted ranges to avoid the exhaustion of the capacity of the
connection tracking table of the DUT. The size of the source
port number range is larger (e.g. a few times 10,000) and the
size of the destination port numbers is smaller (e.g. in the order
of 10, 100, or 1000), and it can be used as a parameter to
perform the measurements with different number of network
flows. Please refer to our Internet Draft [14] for the rationale of
the asymmetry of the sizes of the port number ranges. (The
source and destination IP addresses have constant values and
the protocol is always UDP.)

The Responder may not invent any flow identifiers, but it
extracts the four tuples (source IP address, source port number,
destination IP address, destination port number) from the
received test frames and stores them in its state table. When it
sends a test frame, it takes a four tuple from its state table
(swaps source and destination), and thus it creates a valid test
frame that belongs to an existing connection in the connection

tracking table of the DUT.
To make testing possible, we have introduced the

preliminary test phase. During this phase only the Initiator
sends test frames. The DUT registers the new connections into
its connection tracking table, translates the test frames and
forwards them to the Responder. Thus, the connection tracking
table of the DUT and the state table of the Responder are
initialized, and in the real test phase, the Responder is able to
send valid test frames.

To achieve clear and repeatable measurements, we use two
extreme situations that we can simply ensure:

1. All test frames create a new connection during the
preliminary test phase.

2. Test frames never create a new connection in the real
test phase.

We achieve them by using
 large enough and empty connection tracking table for

each test
 pseudorandom enumeration of all possible source

port number destination port number combinations in
the preliminary test phase

 a properly high timeout value in the DUT (higher than
the time duration from the beginning of the
preliminary test phase to the end of the real test phase
including timeout).

To quantify the connection setup performance of the DUT,
we have introduced the maximum connection establishment
rate as a new metric. It is the highest constant frame rate at
which the DUT is able to process all test frames in the
preliminary test phase. (Each test frame is successfully
translated and a new connection is created in the connection
tracking table.) Its measurement procedure is very simple to
that of the throughput, the details can be found in our Internet
Draft.

All “classic” measurements (throughput, latency, frame loss
rate, etc.) can be performed in the real test phase. To that end,
first, the preliminary test phase has to be executed using a frame
rate safely lower than the measured connection establishment
rate. Then comes the real test phase with the desired
measurement.

The other side of connection establishment is connection tear
down. We defined connection tear down rate to quantify the
connection tear down performance of the DUT. Is short, it is
measured as follows. First, N number of connections are loaded
into the connection tracking table of the DUT. Then the entire
content of the connection tracking table is deleted, and its T
deletion time is measured. The connection tear down rate is
calculated as: N/T. It is measured for different values of N.

We give more details in Section V.B.4, were we describe our
test to measure the connection tear down rate of iptables.

IV. IMPORTANT DETAILS OF IPTABLES
First of all, iptables does connection tracking not only for

stateful protocols (TCP), but also for stateless ones (UDP,
ICMP). The connection tracking system of iptables is
implemented using hashing to ensure efficient lookups. As for

Paper ID: 250

4

3. It is hard to tell, what conditions are needed to achieve
reproducible measurements.

4. It is not possible to measure some clear and well
defined characteristics like bidirectional,
download-only, and upload-only throughput or
connection setup performance.

Our methodology offers remedy for all these problems.

C. Our Methodology
We have defined a general methodology [14] suitable for the

benchmarking of any stateful NATxy gateways using RFC
4814 pseudorandom port numbers, where x and y are in {4, 6}.

Now we give a brief introduction to the methodology using
the example of the stateful NAT44.

The test setup is shown in Fig. 2. The DUT is the stateful
NAT44 gateway, which has a connection tracking table. Its
content, size, and replacement policy is unknown for the Tester.
The Tester can influence or examine its content in indirect
ways:

 The Tester can add a new connection to the
connection tracking table by sending a test frame in
the private to public direction with a new source port
number destination port number combination.

 The Tester can check, if a given connection is present
in the connection tracking table by sending a test
frame belonging to the given connection in the public
to private direction and verifying if the test frame
arrives back.

There are two operations that can be performed by some out
of band methods:

1. The timeout time of the connections can be set to any
permitted value.

2. The entire content of the connection tracking table
can be deleted.

Please refer to Section V.A, how these operations can be
performed with iptables.

As the operation of the stateful NAT44 gateway is
asymmetric, the operation of the Tester is also asymmetric.

The Initiator can send a test frame using any desired source
port number destination port number combinations, but it uses
restricted ranges to avoid the exhaustion of the capacity of the
connection tracking table of the DUT. The size of the source
port number range is larger (e.g. a few times 10,000) and the
size of the destination port numbers is smaller (e.g. in the order
of 10, 100, or 1000), and it can be used as a parameter to
perform the measurements with different number of network
flows. Please refer to our Internet Draft [14] for the rationale of
the asymmetry of the sizes of the port number ranges. (The
source and destination IP addresses have constant values and
the protocol is always UDP.)

The Responder may not invent any flow identifiers, but it
extracts the four tuples (source IP address, source port number,
destination IP address, destination port number) from the
received test frames and stores them in its state table. When it
sends a test frame, it takes a four tuple from its state table
(swaps source and destination), and thus it creates a valid test
frame that belongs to an existing connection in the connection

tracking table of the DUT.
To make testing possible, we have introduced the

preliminary test phase. During this phase only the Initiator
sends test frames. The DUT registers the new connections into
its connection tracking table, translates the test frames and
forwards them to the Responder. Thus, the connection tracking
table of the DUT and the state table of the Responder are
initialized, and in the real test phase, the Responder is able to
send valid test frames.

To achieve clear and repeatable measurements, we use two
extreme situations that we can simply ensure:

1. All test frames create a new connection during the
preliminary test phase.

2. Test frames never create a new connection in the real
test phase.

We achieve them by using
 large enough and empty connection tracking table for

each test
 pseudorandom enumeration of all possible source

port number destination port number combinations in
the preliminary test phase

 a properly high timeout value in the DUT (higher than
the time duration from the beginning of the
preliminary test phase to the end of the real test phase
including timeout).

To quantify the connection setup performance of the DUT,
we have introduced the maximum connection establishment
rate as a new metric. It is the highest constant frame rate at
which the DUT is able to process all test frames in the
preliminary test phase. (Each test frame is successfully
translated and a new connection is created in the connection
tracking table.) Its measurement procedure is very simple to
that of the throughput, the details can be found in our Internet
Draft.

All “classic” measurements (throughput, latency, frame loss
rate, etc.) can be performed in the real test phase. To that end,
first, the preliminary test phase has to be executed using a frame
rate safely lower than the measured connection establishment
rate. Then comes the real test phase with the desired
measurement.

The other side of connection establishment is connection tear
down. We defined connection tear down rate to quantify the
connection tear down performance of the DUT. Is short, it is
measured as follows. First, N number of connections are loaded
into the connection tracking table of the DUT. Then the entire
content of the connection tracking table is deleted, and its T
deletion time is measured. The connection tear down rate is
calculated as: N/T. It is measured for different values of N.

We give more details in Section V.B.4, were we describe our
test to measure the connection tear down rate of iptables.

IV. IMPORTANT DETAILS OF IPTABLES
First of all, iptables does connection tracking not only for

stateful protocols (TCP), but also for stateless ones (UDP,
ICMP). The connection tracking system of iptables is
implemented using hashing to ensure efficient lookups. As for

Paper ID: 250

4

3. It is hard to tell, what conditions are needed to achieve
reproducible measurements.

4. It is not possible to measure some clear and well
defined characteristics like bidirectional,
download-only, and upload-only throughput or
connection setup performance.

Our methodology offers remedy for all these problems.

C. Our Methodology
We have defined a general methodology [14] suitable for the

benchmarking of any stateful NATxy gateways using RFC
4814 pseudorandom port numbers, where x and y are in {4, 6}.

Now we give a brief introduction to the methodology using
the example of the stateful NAT44.

The test setup is shown in Fig. 2. The DUT is the stateful
NAT44 gateway, which has a connection tracking table. Its
content, size, and replacement policy is unknown for the Tester.
The Tester can influence or examine its content in indirect
ways:

 The Tester can add a new connection to the
connection tracking table by sending a test frame in
the private to public direction with a new source port
number destination port number combination.

 The Tester can check, if a given connection is present
in the connection tracking table by sending a test
frame belonging to the given connection in the public
to private direction and verifying if the test frame
arrives back.

There are two operations that can be performed by some out
of band methods:

1. The timeout time of the connections can be set to any
permitted value.

2. The entire content of the connection tracking table
can be deleted.

Please refer to Section V.A, how these operations can be
performed with iptables.

As the operation of the stateful NAT44 gateway is
asymmetric, the operation of the Tester is also asymmetric.

The Initiator can send a test frame using any desired source
port number destination port number combinations, but it uses
restricted ranges to avoid the exhaustion of the capacity of the
connection tracking table of the DUT. The size of the source
port number range is larger (e.g. a few times 10,000) and the
size of the destination port numbers is smaller (e.g. in the order
of 10, 100, or 1000), and it can be used as a parameter to
perform the measurements with different number of network
flows. Please refer to our Internet Draft [14] for the rationale of
the asymmetry of the sizes of the port number ranges. (The
source and destination IP addresses have constant values and
the protocol is always UDP.)

The Responder may not invent any flow identifiers, but it
extracts the four tuples (source IP address, source port number,
destination IP address, destination port number) from the
received test frames and stores them in its state table. When it
sends a test frame, it takes a four tuple from its state table
(swaps source and destination), and thus it creates a valid test
frame that belongs to an existing connection in the connection

tracking table of the DUT.
To make testing possible, we have introduced the

preliminary test phase. During this phase only the Initiator
sends test frames. The DUT registers the new connections into
its connection tracking table, translates the test frames and
forwards them to the Responder. Thus, the connection tracking
table of the DUT and the state table of the Responder are
initialized, and in the real test phase, the Responder is able to
send valid test frames.

To achieve clear and repeatable measurements, we use two
extreme situations that we can simply ensure:

1. All test frames create a new connection during the
preliminary test phase.

2. Test frames never create a new connection in the real
test phase.

We achieve them by using
 large enough and empty connection tracking table for

each test
 pseudorandom enumeration of all possible source

port number destination port number combinations in
the preliminary test phase

 a properly high timeout value in the DUT (higher than
the time duration from the beginning of the
preliminary test phase to the end of the real test phase
including timeout).

To quantify the connection setup performance of the DUT,
we have introduced the maximum connection establishment
rate as a new metric. It is the highest constant frame rate at
which the DUT is able to process all test frames in the
preliminary test phase. (Each test frame is successfully
translated and a new connection is created in the connection
tracking table.) Its measurement procedure is very simple to
that of the throughput, the details can be found in our Internet
Draft.

All “classic” measurements (throughput, latency, frame loss
rate, etc.) can be performed in the real test phase. To that end,
first, the preliminary test phase has to be executed using a frame
rate safely lower than the measured connection establishment
rate. Then comes the real test phase with the desired
measurement.

The other side of connection establishment is connection tear
down. We defined connection tear down rate to quantify the
connection tear down performance of the DUT. Is short, it is
measured as follows. First, N number of connections are loaded
into the connection tracking table of the DUT. Then the entire
content of the connection tracking table is deleted, and its T
deletion time is measured. The connection tear down rate is
calculated as: N/T. It is measured for different values of N.

We give more details in Section V.B.4, were we describe our
test to measure the connection tear down rate of iptables.

IV. IMPORTANT DETAILS OF IPTABLES
First of all, iptables does connection tracking not only for

stateful protocols (TCP), but also for stateless ones (UDP,
ICMP). The connection tracking system of iptables is
implemented using hashing to ensure efficient lookups. As for

Optimizing the Performance of the Iptables
Stateful NAT44 Solution

INFOCOMMUNICATIONS JOURNAL

2023 • EARLY ACCESS 59

Paper ID: 250

5

UDP, the source and destination IP addresses, as well as the
source and destination port numbers are parts of the hash tuple.
The size of the hash table is a power of 2. Hash collisions are
handled that the connection tracking entries are stored as the
elements of bidirectional linked lists starting from the hash
table entries, as shown in Fig. 3.

A. Parameters to Tune
The size of the hash table fundamentally influences the

efficiency of hashing and thus also the performance of iptables.
Its default size is automatically determined on the basis of the
memory size of the Linux system. It can be read or modified by
reading or writing the
/sys/module/nf_conntrack/parameters/hashsize
file.

The maximum number of the connection tracking entries is
another important parameter. It can be read or written using
sysctl as net.netfilter.nf_conntrack_max.

Traditionally, the values of the above two parameters are set
as: hashsize=nf_conntrack_max/8 [15], [16]. It means
that the average length of the linked list starting from the hash
table entries may be up to 8. However, this is just a convention,
and in our current paper, we examine what value is worth using.

We note that newer systems use 4 instead of 8 when they set
the default values, please refer to Table VI.

As for timeout, iptables handles several different timeouts
for the various states of TCP, two different ones for UDP and
one for ICMP. Now for us it is enough to handle (using
sysctl): net.netfilter.nf_conntrack_udp_timeout.

B. Memory Consumption
The memory consumption of the hash table is likely 8 bytes

per entry, as 64 bits are required to store a pointer pointing to
the first element of the linked list, and we also confirm it by
measurements in Section V.C.1.

As for the memory consumption of the connection tracking
entries, we have found several different values.

1. Section 3.7 of [17] (a document from 2007) states that
“each tracked connection eats about 350 bytes of
non-swappable kernel memory”.

2. Another source from 2009 stated that as each object
was 304 bytes in size and 13 of them fitted in a 4096
bytes page, thus 144 bytes was wasted and so the
effective memory consumption was about 316 bytes
per nf_conntrack object [18].

3. We found in a commit message from 2016 that
“increases struct size by 32 bytes (288 -> 320), but it
is the right thing, else any attempt to (re-)arrange
nf_conn members by cacheline won't work.” [19]

Therefore, we have determined the effective memory
consumption of the connection tracking entries by
measurement in Section V.C.2.

V. OUR BENCHMARKING MEASUREMENTS

A. Measurement System
The topology of the measurement system is shown in Fig. 4.

Both the Tester and the DUT were Dell PowerEdge 430
servers. Each one had two 2.1GHz Intel Xeon E5-2683 v4
CPUs, 384GB 2400MHz DDR4 RAM and an Intel 10GbE dual
port X540 network adapter. They were interconnected by direct
cables to avoid frame loss. Debian 9.13 Linux operating system
with 4.9.0-16-amd64 kernel was used on both servers. The
CPU clock frequencies of both servers were set to fixed 2.1GHz
using the tlp Debian package and hyper-threading was
switched off to ensure reliable results. Only CPU cores 0-15 of
the DUT were online. The version of iptables was 1.6.0. The
test system was the same as we used for our measurements in
Section 2 of [4], thus our results are directly comparable.

For performing measurements, we used the siitperf [20]
RFC 8219 compliant SIIT and stateful NAT64 / NAT44 tester
program documented in [21].

We note that siitperf was developed for research
purposes and it is a collection of binary programs (written in
C/C++ using DPDK) that perform elementary tests, and bash
shell scripts that have to be tailored to the measurement
environment. As for stateful tests, they use ssh to execute
some scripts on the DUT e.g., to empty the connection tracking
table of the DUT. For our current tests, we used two such
scripts on the p095 server. The set-iptables-hcpx
script was used to set the iptables rule, the size of the hash table,
the maximum number of connections, and the UDP timeout

Fig. 3. Implementation of the connection tracking table of iptables using a hash

table and bidirectional linked lists (based on [2]).

iptables

siitperf

Fig. 4. Topology of the stateful NAT44 test system.

Paper ID: 250

5

UDP, the source and destination IP addresses, as well as the
source and destination port numbers are parts of the hash tuple.
The size of the hash table is a power of 2. Hash collisions are
handled that the connection tracking entries are stored as the
elements of bidirectional linked lists starting from the hash
table entries, as shown in Fig. 3.

A. Parameters to Tune
The size of the hash table fundamentally influences the

efficiency of hashing and thus also the performance of iptables.
Its default size is automatically determined on the basis of the
memory size of the Linux system. It can be read or modified by
reading or writing the
/sys/module/nf_conntrack/parameters/hashsize
file.

The maximum number of the connection tracking entries is
another important parameter. It can be read or written using
sysctl as net.netfilter.nf_conntrack_max.

Traditionally, the values of the above two parameters are set
as: hashsize=nf_conntrack_max/8 [15], [16]. It means
that the average length of the linked list starting from the hash
table entries may be up to 8. However, this is just a convention,
and in our current paper, we examine what value is worth using.

We note that newer systems use 4 instead of 8 when they set
the default values, please refer to Table VI.

As for timeout, iptables handles several different timeouts
for the various states of TCP, two different ones for UDP and
one for ICMP. Now for us it is enough to handle (using
sysctl): net.netfilter.nf_conntrack_udp_timeout.

B. Memory Consumption
The memory consumption of the hash table is likely 8 bytes

per entry, as 64 bits are required to store a pointer pointing to
the first element of the linked list, and we also confirm it by
measurements in Section V.C.1.

As for the memory consumption of the connection tracking
entries, we have found several different values.

1. Section 3.7 of [17] (a document from 2007) states that
“each tracked connection eats about 350 bytes of
non-swappable kernel memory”.

2. Another source from 2009 stated that as each object
was 304 bytes in size and 13 of them fitted in a 4096
bytes page, thus 144 bytes was wasted and so the
effective memory consumption was about 316 bytes
per nf_conntrack object [18].

3. We found in a commit message from 2016 that
“increases struct size by 32 bytes (288 -> 320), but it
is the right thing, else any attempt to (re-)arrange
nf_conn members by cacheline won't work.” [19]

Therefore, we have determined the effective memory
consumption of the connection tracking entries by
measurement in Section V.C.2.

V. OUR BENCHMARKING MEASUREMENTS

A. Measurement System
The topology of the measurement system is shown in Fig. 4.

Both the Tester and the DUT were Dell PowerEdge 430
servers. Each one had two 2.1GHz Intel Xeon E5-2683 v4
CPUs, 384GB 2400MHz DDR4 RAM and an Intel 10GbE dual
port X540 network adapter. They were interconnected by direct
cables to avoid frame loss. Debian 9.13 Linux operating system
with 4.9.0-16-amd64 kernel was used on both servers. The
CPU clock frequencies of both servers were set to fixed 2.1GHz
using the tlp Debian package and hyper-threading was
switched off to ensure reliable results. Only CPU cores 0-15 of
the DUT were online. The version of iptables was 1.6.0. The
test system was the same as we used for our measurements in
Section 2 of [4], thus our results are directly comparable.

For performing measurements, we used the siitperf [20]
RFC 8219 compliant SIIT and stateful NAT64 / NAT44 tester
program documented in [21].

We note that siitperf was developed for research
purposes and it is a collection of binary programs (written in
C/C++ using DPDK) that perform elementary tests, and bash
shell scripts that have to be tailored to the measurement
environment. As for stateful tests, they use ssh to execute
some scripts on the DUT e.g., to empty the connection tracking
table of the DUT. For our current tests, we used two such
scripts on the p095 server. The set-iptables-hcpx
script was used to set the iptables rule, the size of the hash table,
the maximum number of connections, and the UDP timeout

Fig. 3. Implementation of the connection tracking table of iptables using a hash

table and bidirectional linked lists (based on [2]).

iptables

siitperf

Fig. 4. Topology of the stateful NAT44 test system.

Paper ID: 250

5

UDP, the source and destination IP addresses, as well as the
source and destination port numbers are parts of the hash tuple.
The size of the hash table is a power of 2. Hash collisions are
handled that the connection tracking entries are stored as the
elements of bidirectional linked lists starting from the hash
table entries, as shown in Fig. 3.

A. Parameters to Tune
The size of the hash table fundamentally influences the

efficiency of hashing and thus also the performance of iptables.
Its default size is automatically determined on the basis of the
memory size of the Linux system. It can be read or modified by
reading or writing the
/sys/module/nf_conntrack/parameters/hashsize
file.

The maximum number of the connection tracking entries is
another important parameter. It can be read or written using
sysctl as net.netfilter.nf_conntrack_max.

Traditionally, the values of the above two parameters are set
as: hashsize=nf_conntrack_max/8 [15], [16]. It means
that the average length of the linked list starting from the hash
table entries may be up to 8. However, this is just a convention,
and in our current paper, we examine what value is worth using.

We note that newer systems use 4 instead of 8 when they set
the default values, please refer to Table VI.

As for timeout, iptables handles several different timeouts
for the various states of TCP, two different ones for UDP and
one for ICMP. Now for us it is enough to handle (using
sysctl): net.netfilter.nf_conntrack_udp_timeout.

B. Memory Consumption
The memory consumption of the hash table is likely 8 bytes

per entry, as 64 bits are required to store a pointer pointing to
the first element of the linked list, and we also confirm it by
measurements in Section V.C.1.

As for the memory consumption of the connection tracking
entries, we have found several different values.

1. Section 3.7 of [17] (a document from 2007) states that
“each tracked connection eats about 350 bytes of
non-swappable kernel memory”.

2. Another source from 2009 stated that as each object
was 304 bytes in size and 13 of them fitted in a 4096
bytes page, thus 144 bytes was wasted and so the
effective memory consumption was about 316 bytes
per nf_conntrack object [18].

3. We found in a commit message from 2016 that
“increases struct size by 32 bytes (288 -> 320), but it
is the right thing, else any attempt to (re-)arrange
nf_conn members by cacheline won't work.” [19]

Therefore, we have determined the effective memory
consumption of the connection tracking entries by
measurement in Section V.C.2.

V. OUR BENCHMARKING MEASUREMENTS

A. Measurement System
The topology of the measurement system is shown in Fig. 4.

Both the Tester and the DUT were Dell PowerEdge 430
servers. Each one had two 2.1GHz Intel Xeon E5-2683 v4
CPUs, 384GB 2400MHz DDR4 RAM and an Intel 10GbE dual
port X540 network adapter. They were interconnected by direct
cables to avoid frame loss. Debian 9.13 Linux operating system
with 4.9.0-16-amd64 kernel was used on both servers. The
CPU clock frequencies of both servers were set to fixed 2.1GHz
using the tlp Debian package and hyper-threading was
switched off to ensure reliable results. Only CPU cores 0-15 of
the DUT were online. The version of iptables was 1.6.0. The
test system was the same as we used for our measurements in
Section 2 of [4], thus our results are directly comparable.

For performing measurements, we used the siitperf [20]
RFC 8219 compliant SIIT and stateful NAT64 / NAT44 tester
program documented in [21].

We note that siitperf was developed for research
purposes and it is a collection of binary programs (written in
C/C++ using DPDK) that perform elementary tests, and bash
shell scripts that have to be tailored to the measurement
environment. As for stateful tests, they use ssh to execute
some scripts on the DUT e.g., to empty the connection tracking
table of the DUT. For our current tests, we used two such
scripts on the p095 server. The set-iptables-hcpx
script was used to set the iptables rule, the size of the hash table,
the maximum number of connections, and the UDP timeout

Fig. 3. Implementation of the connection tracking table of iptables using a hash

table and bidirectional linked lists (based on [2]).

iptables

siitperf

Fig. 4. Topology of the stateful NAT44 test system.

Paper ID: 250

5

UDP, the source and destination IP addresses, as well as the
source and destination port numbers are parts of the hash tuple.
The size of the hash table is a power of 2. Hash collisions are
handled that the connection tracking entries are stored as the
elements of bidirectional linked lists starting from the hash
table entries, as shown in Fig. 3.

A. Parameters to Tune
The size of the hash table fundamentally influences the

efficiency of hashing and thus also the performance of iptables.
Its default size is automatically determined on the basis of the
memory size of the Linux system. It can be read or modified by
reading or writing the
/sys/module/nf_conntrack/parameters/hashsize
file.

The maximum number of the connection tracking entries is
another important parameter. It can be read or written using
sysctl as net.netfilter.nf_conntrack_max.

Traditionally, the values of the above two parameters are set
as: hashsize=nf_conntrack_max/8 [15], [16]. It means
that the average length of the linked list starting from the hash
table entries may be up to 8. However, this is just a convention,
and in our current paper, we examine what value is worth using.

We note that newer systems use 4 instead of 8 when they set
the default values, please refer to Table VI.

As for timeout, iptables handles several different timeouts
for the various states of TCP, two different ones for UDP and
one for ICMP. Now for us it is enough to handle (using
sysctl): net.netfilter.nf_conntrack_udp_timeout.

B. Memory Consumption
The memory consumption of the hash table is likely 8 bytes

per entry, as 64 bits are required to store a pointer pointing to
the first element of the linked list, and we also confirm it by
measurements in Section V.C.1.

As for the memory consumption of the connection tracking
entries, we have found several different values.

1. Section 3.7 of [17] (a document from 2007) states that
“each tracked connection eats about 350 bytes of
non-swappable kernel memory”.

2. Another source from 2009 stated that as each object
was 304 bytes in size and 13 of them fitted in a 4096
bytes page, thus 144 bytes was wasted and so the
effective memory consumption was about 316 bytes
per nf_conntrack object [18].

3. We found in a commit message from 2016 that
“increases struct size by 32 bytes (288 -> 320), but it
is the right thing, else any attempt to (re-)arrange
nf_conn members by cacheline won't work.” [19]

Therefore, we have determined the effective memory
consumption of the connection tracking entries by
measurement in Section V.C.2.

V. OUR BENCHMARKING MEASUREMENTS

A. Measurement System
The topology of the measurement system is shown in Fig. 4.

Both the Tester and the DUT were Dell PowerEdge 430
servers. Each one had two 2.1GHz Intel Xeon E5-2683 v4
CPUs, 384GB 2400MHz DDR4 RAM and an Intel 10GbE dual
port X540 network adapter. They were interconnected by direct
cables to avoid frame loss. Debian 9.13 Linux operating system
with 4.9.0-16-amd64 kernel was used on both servers. The
CPU clock frequencies of both servers were set to fixed 2.1GHz
using the tlp Debian package and hyper-threading was
switched off to ensure reliable results. Only CPU cores 0-15 of
the DUT were online. The version of iptables was 1.6.0. The
test system was the same as we used for our measurements in
Section 2 of [4], thus our results are directly comparable.

For performing measurements, we used the siitperf [20]
RFC 8219 compliant SIIT and stateful NAT64 / NAT44 tester
program documented in [21].

We note that siitperf was developed for research
purposes and it is a collection of binary programs (written in
C/C++ using DPDK) that perform elementary tests, and bash
shell scripts that have to be tailored to the measurement
environment. As for stateful tests, they use ssh to execute
some scripts on the DUT e.g., to empty the connection tracking
table of the DUT. For our current tests, we used two such
scripts on the p095 server. The set-iptables-hcpx
script was used to set the iptables rule, the size of the hash table,
the maximum number of connections, and the UDP timeout

Fig. 3. Implementation of the connection tracking table of iptables using a hash

table and bidirectional linked lists (based on [2]).

iptables

siitperf

Fig. 4. Topology of the stateful NAT44 test system.

Paper ID: 250

4

3. It is hard to tell, what conditions are needed to achieve
reproducible measurements.

4. It is not possible to measure some clear and well
defined characteristics like bidirectional,
download-only, and upload-only throughput or
connection setup performance.

Our methodology offers remedy for all these problems.

C. Our Methodology
We have defined a general methodology [14] suitable for the

benchmarking of any stateful NATxy gateways using RFC
4814 pseudorandom port numbers, where x and y are in {4, 6}.

Now we give a brief introduction to the methodology using
the example of the stateful NAT44.

The test setup is shown in Fig. 2. The DUT is the stateful
NAT44 gateway, which has a connection tracking table. Its
content, size, and replacement policy is unknown for the Tester.
The Tester can influence or examine its content in indirect
ways:

 The Tester can add a new connection to the
connection tracking table by sending a test frame in
the private to public direction with a new source port
number destination port number combination.

 The Tester can check, if a given connection is present
in the connection tracking table by sending a test
frame belonging to the given connection in the public
to private direction and verifying if the test frame
arrives back.

There are two operations that can be performed by some out
of band methods:

1. The timeout time of the connections can be set to any
permitted value.

2. The entire content of the connection tracking table
can be deleted.

Please refer to Section V.A, how these operations can be
performed with iptables.

As the operation of the stateful NAT44 gateway is
asymmetric, the operation of the Tester is also asymmetric.

The Initiator can send a test frame using any desired source
port number destination port number combinations, but it uses
restricted ranges to avoid the exhaustion of the capacity of the
connection tracking table of the DUT. The size of the source
port number range is larger (e.g. a few times 10,000) and the
size of the destination port numbers is smaller (e.g. in the order
of 10, 100, or 1000), and it can be used as a parameter to
perform the measurements with different number of network
flows. Please refer to our Internet Draft [14] for the rationale of
the asymmetry of the sizes of the port number ranges. (The
source and destination IP addresses have constant values and
the protocol is always UDP.)

The Responder may not invent any flow identifiers, but it
extracts the four tuples (source IP address, source port number,
destination IP address, destination port number) from the
received test frames and stores them in its state table. When it
sends a test frame, it takes a four tuple from its state table
(swaps source and destination), and thus it creates a valid test
frame that belongs to an existing connection in the connection

tracking table of the DUT.
To make testing possible, we have introduced the

preliminary test phase. During this phase only the Initiator
sends test frames. The DUT registers the new connections into
its connection tracking table, translates the test frames and
forwards them to the Responder. Thus, the connection tracking
table of the DUT and the state table of the Responder are
initialized, and in the real test phase, the Responder is able to
send valid test frames.

To achieve clear and repeatable measurements, we use two
extreme situations that we can simply ensure:

1. All test frames create a new connection during the
preliminary test phase.

2. Test frames never create a new connection in the real
test phase.

We achieve them by using
 large enough and empty connection tracking table for

each test
 pseudorandom enumeration of all possible source

port number destination port number combinations in
the preliminary test phase

 a properly high timeout value in the DUT (higher than
the time duration from the beginning of the
preliminary test phase to the end of the real test phase
including timeout).

To quantify the connection setup performance of the DUT,
we have introduced the maximum connection establishment
rate as a new metric. It is the highest constant frame rate at
which the DUT is able to process all test frames in the
preliminary test phase. (Each test frame is successfully
translated and a new connection is created in the connection
tracking table.) Its measurement procedure is very simple to
that of the throughput, the details can be found in our Internet
Draft.

All “classic” measurements (throughput, latency, frame loss
rate, etc.) can be performed in the real test phase. To that end,
first, the preliminary test phase has to be executed using a frame
rate safely lower than the measured connection establishment
rate. Then comes the real test phase with the desired
measurement.

The other side of connection establishment is connection tear
down. We defined connection tear down rate to quantify the
connection tear down performance of the DUT. Is short, it is
measured as follows. First, N number of connections are loaded
into the connection tracking table of the DUT. Then the entire
content of the connection tracking table is deleted, and its T
deletion time is measured. The connection tear down rate is
calculated as: N/T. It is measured for different values of N.

We give more details in Section V.B.4, were we describe our
test to measure the connection tear down rate of iptables.

IV. IMPORTANT DETAILS OF IPTABLES
First of all, iptables does connection tracking not only for

stateful protocols (TCP), but also for stateless ones (UDP,
ICMP). The connection tracking system of iptables is
implemented using hashing to ensure efficient lookups. As for

Optimizing the Performance of the Iptables
Stateful NAT44 Solution

EARLY ACCESS • 202360

INFOCOMMUNICATIONS JOURNAL

Paper ID: 250

7

of the deletion was measured. However, then the deletion time
contained the time necessary to delete an empty connection
tracking table, as well as the command execution and
communications latencies, too. To make our results more
accurate, we have also measured the duration of the deletion of
an empty table, which also contained the command execution
and communications latencies. Thus their difference contains
only the time spent by the deletion of the N number of
connections, which is called as net connection deletion time in
Table III. This value is nearly the same independently form the
hash table size. Thus, the connection tear down rate is also
independent from the size of the hash table.

C. Memory Consumption Measurements
1) Hash Table

To measure the memory consumption of the hash table, we
set various hash table sizes, and checked, how the memory
usage of the Linux systems changed. We considered the “used”
value in the output of the free Linux command. We could not
set arbitrarily small hash table size: if we tried setting it to a
smaller value than 512 entries, then it was set to 512.

As with the other measurements, we set each size 10 times
(including 512) and recorded the amount of the used memory of
the Linux system with a script. Then we subtracted the memory
usage measured with 512 entries from all the other memory
usage values. We calculated median, minimum and maximum
of the results, and finally, we computed the memory
consumption per hash table entry using the median values for
the calculation. The results are shown in Table IV. Of course,
the 512*8=4,096 bytes memory consumption of the hash table
causes some small error, but the results can still confirm that the
memory consumption of the hash table is 8 bytes per entry.
2) Connection Tracking Entries

To measure the memory consumption of the connection
tracking entries, we inserted 40M connections into the
connection tracking table using safely lower frame rates than
the maximum connection establishment rate for the given hash
table size. Then we recorded the memory usage of the Linux
system, next, deleted the content of the connection tracking
table, and finally, recorded the memory usage of the Linux
system again.

As with the other measurements, we performed the tests with
each connection tracking table size 10 times.

We calculated the difference of the memory usage of the
Linux system when the connection tracking table had 40M
entries and when it was empty. This difference is the memory
consumption of the 40M connection tracking entries. The
results are shown in Table V. The memory consumption of the
40M connection tracking entries is independent from the size of
the hash table, and on average, a single connection tracking
entry consumes 385.4 bytes. The results are very stable: the
difference of the maximum and minimum is always less than
0.1% of the median.

VI. DISCUSSION OF THE RESULTS AND OUR
RECOMMENDATION FOR SETTING HASH TABLE SIZE

Our performance measurements showed that value of the
number of connections per hash table size is a very important
parameter that highly influences the performance of iptables.
This parameter gives the average length of the linked lists
starting from the entries of the hash table. Both the maximum
connection establishment and the throughput of iptables
seriously deteriorates when this number becomes significantly
higher than 1. But the connection tear down rate does not
depend on it at all.

We have also checked the “price” of the performance and we
found that the memory consumption of the hash table is
proportional to its size: each entry requires 8 bytes. However,
the memory consumption of the connection tracking entries
does not depend on the size of the hash table, and each entry
occupies approximately 385.4 bytes. The orders of magnitude
of these two numbers suggest us that the memory consumption
of the hash table entries is practically negligible compared to
the memory consumption of the connection tracking entries.
With other words: the 40M connection tracking entries occupy
about 15GB RAM independently from the hash table size as
shown in Table V, whereas the memory consumption of the
hash table itself varies between 0.5GB and 16MB as shown in
Table IV, thus the latter is practically negligible.

Therefore, we definitely recommend to abandon using the
hashsize=nf_conntrack_max/8 convention and rather use
hashsize=nf_conntrack_max to increase the performance

TABLE IV
MEMORY CONSUMPTION OF THE HASH TABLE OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21
Median (kB) 523,560 261,514 130,238 64,964 32,444 16,248
Minimum (kB) 521,816 260,208 129,024 63,436 30,824 15,368
Maximum (kB) 527,092 263,284 132,108 66,108 33,132 16,896
Bytes per hash table entry 7.99 7.98 7.95 7.93 7.92 7.93

TABLE V
MEMORY CONSUMPTION OF IPTABLES WITH 40M CONNECTION TRACKING ENTRIES AS A FUNCTION OF THE HASH TABLE SIZE

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735
Median (kB) 15,056,120 15,056,038 15,056,018 15,055,478 15,053,256 15,054,764
Minimum (kB) 15,055,296 15,050,388 15,053,528 15,050,028 15,050,876 15,051,868
Maximum (kB) 15,058,672 15,057,412 15,060,400 15,057,376 15,057,096 15,057,196
Bytes per hash table entry 385.44 385.43 385.43 385.42 385.36 385.40

Paper ID: 250

6

value before each elementary test. The del-iptables script
deleted the iptables rule and the content of the connection
tracking table (by the removal of the kernel modules) after each
elementary test. They are available on GitHub [22].

B. Performance Measurements
1) Aim, Parameters, and Types of Tests

We aimed to examine, how the ratio of the number of
connections and the hash table size influences the performance
of iptables.

Gapon [16] recommended 4,194,304 as the upper limit for
number of connections for a highly loaded NAT server and
524,288 for hash table size. We decided to use rather 40M
connections, because we wanted to test iptables under really
demanding condition. We achieved this number of port number
combinations by using 40,000 source port numbers and 1,000
destination port numbers.

To be able to handle 40M connections, the first appropriate
power of 2 for the maximum number of connections is
226=67,108,864. As for hash table size, first, we used the same
value and then we halved it five times, thus the final tested
value was 221=2,097,152.

We set the UDP timeout to 10,000 seconds, to guarantee its
high enough value for all tests.

We measured the maximum connection establishment rate,
the throughput, and connection tear down rate with each hash
table size. All measurements were performed 10 times to get
reliable results.

2) Maximum Connection Establishment Rate
The maximum connection establishment rate of iptables as a

function of the hash table size is shown in Table I. (The “error
of binary search” value expresses the stopping criterion for the
binary search. It stops, when:

higher_limit – lower_limit <= error.)
Although the independent variable is the hash table size

(shown as a power of 2), what really helps to understand the
behavior of the system is the average number of connections
hashed to the same hash table entry, that is the average length
of the linked lists. It is computed as the number of connections
per hash table size. In the first step, it increases from about 0.6
to about 1.2, and the median of the maximum connection
establishment rate decreases only 8%. However, its further
doubling causes more and more radical decrease of the median.
3) Throughput

The throughput of iptables as a function of the hash table size
is shown in Table II. It behaves similarly to the maximum
connection establishment rate in the sense that the doubling of
the average length of the linked list causes more and more
radial decrease of the performance when it becomes
significantly higher than 1, but the measure of the deterioration
is lower.
4) Connection Tear Down Rate

Having no better way to measure the connection tear down
rate, we used an aggregate measurement that N number of
connections were loaded into the connection tracking table of
iptables and then the entire table was deleted and the T duration

TABLE I
MAXIMUM CONNECTION ESTABLISHMENT RATE OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE, 40M CONNECTIONS, 16 CPU CORES

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735
Error of binary search (cps) 100 100 100 100 100 100
Median (cps) 2,263,732 2,075,195 1,696,411 1,231,993 780,090 440,124
Minimum (cps) 2,203,063 2,044,493 1,624,938 1,216,734 764,098 421,813
Maximum (cps) 2,359,680 2,125,549 1,750,061 1,251,037 797,912 445,617
Median / previous median - 0.92 0.82 0.73 0.63 0.56

TABLE II
THROUGHPUT OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE, 40M CONNECTIONS, 16 CPU CORES, BIDIRECTIONAL TRAFFIC
Hash table size 2^26 2^25 2^24 2^23 2^22 2^21
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735
Error of binary search (fps) 200 200 200 200 200 200
Median (fps) 4,252,197 4,068,973 3,683,713 3,150,632 2,445,677 1,719,848
Minimum (fps) 4,174,436 3,899,872 3,624,876 2,999,876 2,428,586 1,716,672
Maximum (fps) 4,282,348 4,103,502 3,719,360 3,187,622 2,459,836 1,728,148
Median / previous median - 0.96 0.91 0.86 0.78 0.70

TABLE III
CONNECTION TEAR DOWN RATE OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE, 40M CONNECTIONS, 16 CPU CORES

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735
Filled table deletion time – Median (s) 158.51 154.07 153.52 150.61 150.12 149.76
Filled table deletion time – Minimum (s) 157.63 152.81 152.21 149.94 148.62 148.43
Filled table deletion time – Maximum (s) 158.89 154.72 153.69 151.50 150.41 150.13
Empty table deletion time – Median (s) 8.00 4.15 2.24 1.26 0.78 0.55
Empty table deletion time – Minimum (s) 7.99 4.14 2.22 1.25 0.77 0.54
Empty table deletion time – Maximum (s) 8.02 4.17 2.25 1.28 0.81 0.57
Net connection deletion time (s) 150.51 149.92 151.29 149.35 149.34 149.21
Connection tear down rate (cps) 265,763 266,809 264,402 267,827 267,845 268,079

Paper ID: 250

6

value before each elementary test. The del-iptables script
deleted the iptables rule and the content of the connection
tracking table (by the removal of the kernel modules) after each
elementary test. They are available on GitHub [22].

B. Performance Measurements
1) Aim, Parameters, and Types of Tests

We aimed to examine, how the ratio of the number of
connections and the hash table size influences the performance
of iptables.

Gapon [16] recommended 4,194,304 as the upper limit for
number of connections for a highly loaded NAT server and
524,288 for hash table size. We decided to use rather 40M
connections, because we wanted to test iptables under really
demanding condition. We achieved this number of port number
combinations by using 40,000 source port numbers and 1,000
destination port numbers.

To be able to handle 40M connections, the first appropriate
power of 2 for the maximum number of connections is
226=67,108,864. As for hash table size, first, we used the same
value and then we halved it five times, thus the final tested
value was 221=2,097,152.

We set the UDP timeout to 10,000 seconds, to guarantee its
high enough value for all tests.

We measured the maximum connection establishment rate,
the throughput, and connection tear down rate with each hash
table size. All measurements were performed 10 times to get
reliable results.

2) Maximum Connection Establishment Rate
The maximum connection establishment rate of iptables as a

function of the hash table size is shown in Table I. (The “error
of binary search” value expresses the stopping criterion for the
binary search. It stops, when:

higher_limit – lower_limit <= error.)
Although the independent variable is the hash table size

(shown as a power of 2), what really helps to understand the
behavior of the system is the average number of connections
hashed to the same hash table entry, that is the average length
of the linked lists. It is computed as the number of connections
per hash table size. In the first step, it increases from about 0.6
to about 1.2, and the median of the maximum connection
establishment rate decreases only 8%. However, its further
doubling causes more and more radical decrease of the median.
3) Throughput

The throughput of iptables as a function of the hash table size
is shown in Table II. It behaves similarly to the maximum
connection establishment rate in the sense that the doubling of
the average length of the linked list causes more and more
radial decrease of the performance when it becomes
significantly higher than 1, but the measure of the deterioration
is lower.
4) Connection Tear Down Rate

Having no better way to measure the connection tear down
rate, we used an aggregate measurement that N number of
connections were loaded into the connection tracking table of
iptables and then the entire table was deleted and the T duration

TABLE I
MAXIMUM CONNECTION ESTABLISHMENT RATE OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE, 40M CONNECTIONS, 16 CPU CORES

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735
Error of binary search (cps) 100 100 100 100 100 100
Median (cps) 2,263,732 2,075,195 1,696,411 1,231,993 780,090 440,124
Minimum (cps) 2,203,063 2,044,493 1,624,938 1,216,734 764,098 421,813
Maximum (cps) 2,359,680 2,125,549 1,750,061 1,251,037 797,912 445,617
Median / previous median - 0.92 0.82 0.73 0.63 0.56

TABLE II
THROUGHPUT OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE, 40M CONNECTIONS, 16 CPU CORES, BIDIRECTIONAL TRAFFIC
Hash table size 2^26 2^25 2^24 2^23 2^22 2^21
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735
Error of binary search (fps) 200 200 200 200 200 200
Median (fps) 4,252,197 4,068,973 3,683,713 3,150,632 2,445,677 1,719,848
Minimum (fps) 4,174,436 3,899,872 3,624,876 2,999,876 2,428,586 1,716,672
Maximum (fps) 4,282,348 4,103,502 3,719,360 3,187,622 2,459,836 1,728,148
Median / previous median - 0.96 0.91 0.86 0.78 0.70

TABLE III
CONNECTION TEAR DOWN RATE OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE, 40M CONNECTIONS, 16 CPU CORES

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735
Filled table deletion time – Median (s) 158.51 154.07 153.52 150.61 150.12 149.76
Filled table deletion time – Minimum (s) 157.63 152.81 152.21 149.94 148.62 148.43
Filled table deletion time – Maximum (s) 158.89 154.72 153.69 151.50 150.41 150.13
Empty table deletion time – Median (s) 8.00 4.15 2.24 1.26 0.78 0.55
Empty table deletion time – Minimum (s) 7.99 4.14 2.22 1.25 0.77 0.54
Empty table deletion time – Maximum (s) 8.02 4.17 2.25 1.28 0.81 0.57
Net connection deletion time (s) 150.51 149.92 151.29 149.35 149.34 149.21
Connection tear down rate (cps) 265,763 266,809 264,402 267,827 267,845 268,079

Paper ID: 250

6

value before each elementary test. The del-iptables script
deleted the iptables rule and the content of the connection
tracking table (by the removal of the kernel modules) after each
elementary test. They are available on GitHub [22].

B. Performance Measurements
1) Aim, Parameters, and Types of Tests

We aimed to examine, how the ratio of the number of
connections and the hash table size influences the performance
of iptables.

Gapon [16] recommended 4,194,304 as the upper limit for
number of connections for a highly loaded NAT server and
524,288 for hash table size. We decided to use rather 40M
connections, because we wanted to test iptables under really
demanding condition. We achieved this number of port number
combinations by using 40,000 source port numbers and 1,000
destination port numbers.

To be able to handle 40M connections, the first appropriate
power of 2 for the maximum number of connections is
226=67,108,864. As for hash table size, first, we used the same
value and then we halved it five times, thus the final tested
value was 221=2,097,152.

We set the UDP timeout to 10,000 seconds, to guarantee its
high enough value for all tests.

We measured the maximum connection establishment rate,
the throughput, and connection tear down rate with each hash
table size. All measurements were performed 10 times to get
reliable results.

2) Maximum Connection Establishment Rate
The maximum connection establishment rate of iptables as a

function of the hash table size is shown in Table I. (The “error
of binary search” value expresses the stopping criterion for the
binary search. It stops, when:

higher_limit – lower_limit <= error.)
Although the independent variable is the hash table size

(shown as a power of 2), what really helps to understand the
behavior of the system is the average number of connections
hashed to the same hash table entry, that is the average length
of the linked lists. It is computed as the number of connections
per hash table size. In the first step, it increases from about 0.6
to about 1.2, and the median of the maximum connection
establishment rate decreases only 8%. However, its further
doubling causes more and more radical decrease of the median.
3) Throughput

The throughput of iptables as a function of the hash table size
is shown in Table II. It behaves similarly to the maximum
connection establishment rate in the sense that the doubling of
the average length of the linked list causes more and more
radial decrease of the performance when it becomes
significantly higher than 1, but the measure of the deterioration
is lower.
4) Connection Tear Down Rate

Having no better way to measure the connection tear down
rate, we used an aggregate measurement that N number of
connections were loaded into the connection tracking table of
iptables and then the entire table was deleted and the T duration

TABLE I
MAXIMUM CONNECTION ESTABLISHMENT RATE OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE, 40M CONNECTIONS, 16 CPU CORES

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735
Error of binary search (cps) 100 100 100 100 100 100
Median (cps) 2,263,732 2,075,195 1,696,411 1,231,993 780,090 440,124
Minimum (cps) 2,203,063 2,044,493 1,624,938 1,216,734 764,098 421,813
Maximum (cps) 2,359,680 2,125,549 1,750,061 1,251,037 797,912 445,617
Median / previous median - 0.92 0.82 0.73 0.63 0.56

TABLE II
THROUGHPUT OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE, 40M CONNECTIONS, 16 CPU CORES, BIDIRECTIONAL TRAFFIC
Hash table size 2^26 2^25 2^24 2^23 2^22 2^21
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735
Error of binary search (fps) 200 200 200 200 200 200
Median (fps) 4,252,197 4,068,973 3,683,713 3,150,632 2,445,677 1,719,848
Minimum (fps) 4,174,436 3,899,872 3,624,876 2,999,876 2,428,586 1,716,672
Maximum (fps) 4,282,348 4,103,502 3,719,360 3,187,622 2,459,836 1,728,148
Median / previous median - 0.96 0.91 0.86 0.78 0.70

TABLE III
CONNECTION TEAR DOWN RATE OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE, 40M CONNECTIONS, 16 CPU CORES

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735
Filled table deletion time – Median (s) 158.51 154.07 153.52 150.61 150.12 149.76
Filled table deletion time – Minimum (s) 157.63 152.81 152.21 149.94 148.62 148.43
Filled table deletion time – Maximum (s) 158.89 154.72 153.69 151.50 150.41 150.13
Empty table deletion time – Median (s) 8.00 4.15 2.24 1.26 0.78 0.55
Empty table deletion time – Minimum (s) 7.99 4.14 2.22 1.25 0.77 0.54
Empty table deletion time – Maximum (s) 8.02 4.17 2.25 1.28 0.81 0.57
Net connection deletion time (s) 150.51 149.92 151.29 149.35 149.34 149.21
Connection tear down rate (cps) 265,763 266,809 264,402 267,827 267,845 268,079

Paper ID: 250

5

UDP, the source and destination IP addresses, as well as the
source and destination port numbers are parts of the hash tuple.
The size of the hash table is a power of 2. Hash collisions are
handled that the connection tracking entries are stored as the
elements of bidirectional linked lists starting from the hash
table entries, as shown in Fig. 3.

A. Parameters to Tune
The size of the hash table fundamentally influences the

efficiency of hashing and thus also the performance of iptables.
Its default size is automatically determined on the basis of the
memory size of the Linux system. It can be read or modified by
reading or writing the
/sys/module/nf_conntrack/parameters/hashsize
file.

The maximum number of the connection tracking entries is
another important parameter. It can be read or written using
sysctl as net.netfilter.nf_conntrack_max.

Traditionally, the values of the above two parameters are set
as: hashsize=nf_conntrack_max/8 [15], [16]. It means
that the average length of the linked list starting from the hash
table entries may be up to 8. However, this is just a convention,
and in our current paper, we examine what value is worth using.

We note that newer systems use 4 instead of 8 when they set
the default values, please refer to Table VI.

As for timeout, iptables handles several different timeouts
for the various states of TCP, two different ones for UDP and
one for ICMP. Now for us it is enough to handle (using
sysctl): net.netfilter.nf_conntrack_udp_timeout.

B. Memory Consumption
The memory consumption of the hash table is likely 8 bytes

per entry, as 64 bits are required to store a pointer pointing to
the first element of the linked list, and we also confirm it by
measurements in Section V.C.1.

As for the memory consumption of the connection tracking
entries, we have found several different values.

1. Section 3.7 of [17] (a document from 2007) states that
“each tracked connection eats about 350 bytes of
non-swappable kernel memory”.

2. Another source from 2009 stated that as each object
was 304 bytes in size and 13 of them fitted in a 4096
bytes page, thus 144 bytes was wasted and so the
effective memory consumption was about 316 bytes
per nf_conntrack object [18].

3. We found in a commit message from 2016 that
“increases struct size by 32 bytes (288 -> 320), but it
is the right thing, else any attempt to (re-)arrange
nf_conn members by cacheline won't work.” [19]

Therefore, we have determined the effective memory
consumption of the connection tracking entries by
measurement in Section V.C.2.

V. OUR BENCHMARKING MEASUREMENTS

A. Measurement System
The topology of the measurement system is shown in Fig. 4.

Both the Tester and the DUT were Dell PowerEdge 430
servers. Each one had two 2.1GHz Intel Xeon E5-2683 v4
CPUs, 384GB 2400MHz DDR4 RAM and an Intel 10GbE dual
port X540 network adapter. They were interconnected by direct
cables to avoid frame loss. Debian 9.13 Linux operating system
with 4.9.0-16-amd64 kernel was used on both servers. The
CPU clock frequencies of both servers were set to fixed 2.1GHz
using the tlp Debian package and hyper-threading was
switched off to ensure reliable results. Only CPU cores 0-15 of
the DUT were online. The version of iptables was 1.6.0. The
test system was the same as we used for our measurements in
Section 2 of [4], thus our results are directly comparable.

For performing measurements, we used the siitperf [20]
RFC 8219 compliant SIIT and stateful NAT64 / NAT44 tester
program documented in [21].

We note that siitperf was developed for research
purposes and it is a collection of binary programs (written in
C/C++ using DPDK) that perform elementary tests, and bash
shell scripts that have to be tailored to the measurement
environment. As for stateful tests, they use ssh to execute
some scripts on the DUT e.g., to empty the connection tracking
table of the DUT. For our current tests, we used two such
scripts on the p095 server. The set-iptables-hcpx
script was used to set the iptables rule, the size of the hash table,
the maximum number of connections, and the UDP timeout

Fig. 3. Implementation of the connection tracking table of iptables using a hash

table and bidirectional linked lists (based on [2]).

iptables

siitperf

Fig. 4. Topology of the stateful NAT44 test system.

Paper ID: 250

6

value before each elementary test. The del-iptables script
deleted the iptables rule and the content of the connection
tracking table (by the removal of the kernel modules) after each
elementary test. They are available on GitHub [22].

B. Performance Measurements
1) Aim, Parameters, and Types of Tests

We aimed to examine, how the ratio of the number of
connections and the hash table size influences the performance
of iptables.

Gapon [16] recommended 4,194,304 as the upper limit for
number of connections for a highly loaded NAT server and
524,288 for hash table size. We decided to use rather 40M
connections, because we wanted to test iptables under really
demanding condition. We achieved this number of port number
combinations by using 40,000 source port numbers and 1,000
destination port numbers.

To be able to handle 40M connections, the first appropriate
power of 2 for the maximum number of connections is
226=67,108,864. As for hash table size, first, we used the same
value and then we halved it five times, thus the final tested
value was 221=2,097,152.

We set the UDP timeout to 10,000 seconds, to guarantee its
high enough value for all tests.

We measured the maximum connection establishment rate,
the throughput, and connection tear down rate with each hash
table size. All measurements were performed 10 times to get
reliable results.

2) Maximum Connection Establishment Rate
The maximum connection establishment rate of iptables as a

function of the hash table size is shown in Table I. (The “error
of binary search” value expresses the stopping criterion for the
binary search. It stops, when:

higher_limit – lower_limit <= error.)
Although the independent variable is the hash table size

(shown as a power of 2), what really helps to understand the
behavior of the system is the average number of connections
hashed to the same hash table entry, that is the average length
of the linked lists. It is computed as the number of connections
per hash table size. In the first step, it increases from about 0.6
to about 1.2, and the median of the maximum connection
establishment rate decreases only 8%. However, its further
doubling causes more and more radical decrease of the median.
3) Throughput

The throughput of iptables as a function of the hash table size
is shown in Table II. It behaves similarly to the maximum
connection establishment rate in the sense that the doubling of
the average length of the linked list causes more and more
radial decrease of the performance when it becomes
significantly higher than 1, but the measure of the deterioration
is lower.
4) Connection Tear Down Rate

Having no better way to measure the connection tear down
rate, we used an aggregate measurement that N number of
connections were loaded into the connection tracking table of
iptables and then the entire table was deleted and the T duration

TABLE I
MAXIMUM CONNECTION ESTABLISHMENT RATE OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE, 40M CONNECTIONS, 16 CPU CORES

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735
Error of binary search (cps) 100 100 100 100 100 100
Median (cps) 2,263,732 2,075,195 1,696,411 1,231,993 780,090 440,124
Minimum (cps) 2,203,063 2,044,493 1,624,938 1,216,734 764,098 421,813
Maximum (cps) 2,359,680 2,125,549 1,750,061 1,251,037 797,912 445,617
Median / previous median - 0.92 0.82 0.73 0.63 0.56

TABLE II
THROUGHPUT OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE, 40M CONNECTIONS, 16 CPU CORES, BIDIRECTIONAL TRAFFIC
Hash table size 2^26 2^25 2^24 2^23 2^22 2^21
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735
Error of binary search (fps) 200 200 200 200 200 200
Median (fps) 4,252,197 4,068,973 3,683,713 3,150,632 2,445,677 1,719,848
Minimum (fps) 4,174,436 3,899,872 3,624,876 2,999,876 2,428,586 1,716,672
Maximum (fps) 4,282,348 4,103,502 3,719,360 3,187,622 2,459,836 1,728,148
Median / previous median - 0.96 0.91 0.86 0.78 0.70

TABLE III
CONNECTION TEAR DOWN RATE OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE, 40M CONNECTIONS, 16 CPU CORES

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735
Filled table deletion time – Median (s) 158.51 154.07 153.52 150.61 150.12 149.76
Filled table deletion time – Minimum (s) 157.63 152.81 152.21 149.94 148.62 148.43
Filled table deletion time – Maximum (s) 158.89 154.72 153.69 151.50 150.41 150.13
Empty table deletion time – Median (s) 8.00 4.15 2.24 1.26 0.78 0.55
Empty table deletion time – Minimum (s) 7.99 4.14 2.22 1.25 0.77 0.54
Empty table deletion time – Maximum (s) 8.02 4.17 2.25 1.28 0.81 0.57
Net connection deletion time (s) 150.51 149.92 151.29 149.35 149.34 149.21
Connection tear down rate (cps) 265,763 266,809 264,402 267,827 267,845 268,079

Paper ID: 250

6

value before each elementary test. The del-iptables script
deleted the iptables rule and the content of the connection
tracking table (by the removal of the kernel modules) after each
elementary test. They are available on GitHub [22].

B. Performance Measurements
1) Aim, Parameters, and Types of Tests

We aimed to examine, how the ratio of the number of
connections and the hash table size influences the performance
of iptables.

Gapon [16] recommended 4,194,304 as the upper limit for
number of connections for a highly loaded NAT server and
524,288 for hash table size. We decided to use rather 40M
connections, because we wanted to test iptables under really
demanding condition. We achieved this number of port number
combinations by using 40,000 source port numbers and 1,000
destination port numbers.

To be able to handle 40M connections, the first appropriate
power of 2 for the maximum number of connections is
226=67,108,864. As for hash table size, first, we used the same
value and then we halved it five times, thus the final tested
value was 221=2,097,152.

We set the UDP timeout to 10,000 seconds, to guarantee its
high enough value for all tests.

We measured the maximum connection establishment rate,
the throughput, and connection tear down rate with each hash
table size. All measurements were performed 10 times to get
reliable results.

2) Maximum Connection Establishment Rate
The maximum connection establishment rate of iptables as a

function of the hash table size is shown in Table I. (The “error
of binary search” value expresses the stopping criterion for the
binary search. It stops, when:

higher_limit – lower_limit <= error.)
Although the independent variable is the hash table size

(shown as a power of 2), what really helps to understand the
behavior of the system is the average number of connections
hashed to the same hash table entry, that is the average length
of the linked lists. It is computed as the number of connections
per hash table size. In the first step, it increases from about 0.6
to about 1.2, and the median of the maximum connection
establishment rate decreases only 8%. However, its further
doubling causes more and more radical decrease of the median.
3) Throughput

The throughput of iptables as a function of the hash table size
is shown in Table II. It behaves similarly to the maximum
connection establishment rate in the sense that the doubling of
the average length of the linked list causes more and more
radial decrease of the performance when it becomes
significantly higher than 1, but the measure of the deterioration
is lower.
4) Connection Tear Down Rate

Having no better way to measure the connection tear down
rate, we used an aggregate measurement that N number of
connections were loaded into the connection tracking table of
iptables and then the entire table was deleted and the T duration

TABLE I
MAXIMUM CONNECTION ESTABLISHMENT RATE OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE, 40M CONNECTIONS, 16 CPU CORES

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735
Error of binary search (cps) 100 100 100 100 100 100
Median (cps) 2,263,732 2,075,195 1,696,411 1,231,993 780,090 440,124
Minimum (cps) 2,203,063 2,044,493 1,624,938 1,216,734 764,098 421,813
Maximum (cps) 2,359,680 2,125,549 1,750,061 1,251,037 797,912 445,617
Median / previous median - 0.92 0.82 0.73 0.63 0.56

TABLE II
THROUGHPUT OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE, 40M CONNECTIONS, 16 CPU CORES, BIDIRECTIONAL TRAFFIC
Hash table size 2^26 2^25 2^24 2^23 2^22 2^21
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735
Error of binary search (fps) 200 200 200 200 200 200
Median (fps) 4,252,197 4,068,973 3,683,713 3,150,632 2,445,677 1,719,848
Minimum (fps) 4,174,436 3,899,872 3,624,876 2,999,876 2,428,586 1,716,672
Maximum (fps) 4,282,348 4,103,502 3,719,360 3,187,622 2,459,836 1,728,148
Median / previous median - 0.96 0.91 0.86 0.78 0.70

TABLE III
CONNECTION TEAR DOWN RATE OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE, 40M CONNECTIONS, 16 CPU CORES

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735
Filled table deletion time – Median (s) 158.51 154.07 153.52 150.61 150.12 149.76
Filled table deletion time – Minimum (s) 157.63 152.81 152.21 149.94 148.62 148.43
Filled table deletion time – Maximum (s) 158.89 154.72 153.69 151.50 150.41 150.13
Empty table deletion time – Median (s) 8.00 4.15 2.24 1.26 0.78 0.55
Empty table deletion time – Minimum (s) 7.99 4.14 2.22 1.25 0.77 0.54
Empty table deletion time – Maximum (s) 8.02 4.17 2.25 1.28 0.81 0.57
Net connection deletion time (s) 150.51 149.92 151.29 149.35 149.34 149.21
Connection tear down rate (cps) 265,763 266,809 264,402 267,827 267,845 268,079

Optimizing the Performance of the Iptables
Stateful NAT44 Solution

INFOCOMMUNICATIONS JOURNAL

2023 • EARLY ACCESS 61

Paper ID: 250

7

of the deletion was measured. However, then the deletion time
contained the time necessary to delete an empty connection
tracking table, as well as the command execution and
communications latencies, too. To make our results more
accurate, we have also measured the duration of the deletion of
an empty table, which also contained the command execution
and communications latencies. Thus their difference contains
only the time spent by the deletion of the N number of
connections, which is called as net connection deletion time in
Table III. This value is nearly the same independently form the
hash table size. Thus, the connection tear down rate is also
independent from the size of the hash table.

C. Memory Consumption Measurements
1) Hash Table

To measure the memory consumption of the hash table, we
set various hash table sizes, and checked, how the memory
usage of the Linux systems changed. We considered the “used”
value in the output of the free Linux command. We could not
set arbitrarily small hash table size: if we tried setting it to a
smaller value than 512 entries, then it was set to 512.

As with the other measurements, we set each size 10 times
(including 512) and recorded the amount of the used memory of
the Linux system with a script. Then we subtracted the memory
usage measured with 512 entries from all the other memory
usage values. We calculated median, minimum and maximum
of the results, and finally, we computed the memory
consumption per hash table entry using the median values for
the calculation. The results are shown in Table IV. Of course,
the 512*8=4,096 bytes memory consumption of the hash table
causes some small error, but the results can still confirm that the
memory consumption of the hash table is 8 bytes per entry.
2) Connection Tracking Entries

To measure the memory consumption of the connection
tracking entries, we inserted 40M connections into the
connection tracking table using safely lower frame rates than
the maximum connection establishment rate for the given hash
table size. Then we recorded the memory usage of the Linux
system, next, deleted the content of the connection tracking
table, and finally, recorded the memory usage of the Linux
system again.

As with the other measurements, we performed the tests with
each connection tracking table size 10 times.

We calculated the difference of the memory usage of the
Linux system when the connection tracking table had 40M
entries and when it was empty. This difference is the memory
consumption of the 40M connection tracking entries. The
results are shown in Table V. The memory consumption of the
40M connection tracking entries is independent from the size of
the hash table, and on average, a single connection tracking
entry consumes 385.4 bytes. The results are very stable: the
difference of the maximum and minimum is always less than
0.1% of the median.

VI. DISCUSSION OF THE RESULTS AND OUR
RECOMMENDATION FOR SETTING HASH TABLE SIZE

Our performance measurements showed that value of the
number of connections per hash table size is a very important
parameter that highly influences the performance of iptables.
This parameter gives the average length of the linked lists
starting from the entries of the hash table. Both the maximum
connection establishment and the throughput of iptables
seriously deteriorates when this number becomes significantly
higher than 1. But the connection tear down rate does not
depend on it at all.

We have also checked the “price” of the performance and we
found that the memory consumption of the hash table is
proportional to its size: each entry requires 8 bytes. However,
the memory consumption of the connection tracking entries
does not depend on the size of the hash table, and each entry
occupies approximately 385.4 bytes. The orders of magnitude
of these two numbers suggest us that the memory consumption
of the hash table entries is practically negligible compared to
the memory consumption of the connection tracking entries.
With other words: the 40M connection tracking entries occupy
about 15GB RAM independently from the hash table size as
shown in Table V, whereas the memory consumption of the
hash table itself varies between 0.5GB and 16MB as shown in
Table IV, thus the latter is practically negligible.

Therefore, we definitely recommend to abandon using the
hashsize=nf_conntrack_max/8 convention and rather use
hashsize=nf_conntrack_max to increase the performance

TABLE IV
MEMORY CONSUMPTION OF THE HASH TABLE OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21
Median (kB) 523,560 261,514 130,238 64,964 32,444 16,248
Minimum (kB) 521,816 260,208 129,024 63,436 30,824 15,368
Maximum (kB) 527,092 263,284 132,108 66,108 33,132 16,896
Bytes per hash table entry 7.99 7.98 7.95 7.93 7.92 7.93

TABLE V
MEMORY CONSUMPTION OF IPTABLES WITH 40M CONNECTION TRACKING ENTRIES AS A FUNCTION OF THE HASH TABLE SIZE

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735
Median (kB) 15,056,120 15,056,038 15,056,018 15,055,478 15,053,256 15,054,764
Minimum (kB) 15,055,296 15,050,388 15,053,528 15,050,028 15,050,876 15,051,868
Maximum (kB) 15,058,672 15,057,412 15,060,400 15,057,376 15,057,096 15,057,196
Bytes per hash table entry 385.44 385.43 385.43 385.42 385.36 385.40

Paper ID: 250

7

of the deletion was measured. However, then the deletion time
contained the time necessary to delete an empty connection
tracking table, as well as the command execution and
communications latencies, too. To make our results more
accurate, we have also measured the duration of the deletion of
an empty table, which also contained the command execution
and communications latencies. Thus their difference contains
only the time spent by the deletion of the N number of
connections, which is called as net connection deletion time in
Table III. This value is nearly the same independently form the
hash table size. Thus, the connection tear down rate is also
independent from the size of the hash table.

C. Memory Consumption Measurements
1) Hash Table

To measure the memory consumption of the hash table, we
set various hash table sizes, and checked, how the memory
usage of the Linux systems changed. We considered the “used”
value in the output of the free Linux command. We could not
set arbitrarily small hash table size: if we tried setting it to a
smaller value than 512 entries, then it was set to 512.

As with the other measurements, we set each size 10 times
(including 512) and recorded the amount of the used memory of
the Linux system with a script. Then we subtracted the memory
usage measured with 512 entries from all the other memory
usage values. We calculated median, minimum and maximum
of the results, and finally, we computed the memory
consumption per hash table entry using the median values for
the calculation. The results are shown in Table IV. Of course,
the 512*8=4,096 bytes memory consumption of the hash table
causes some small error, but the results can still confirm that the
memory consumption of the hash table is 8 bytes per entry.
2) Connection Tracking Entries

To measure the memory consumption of the connection
tracking entries, we inserted 40M connections into the
connection tracking table using safely lower frame rates than
the maximum connection establishment rate for the given hash
table size. Then we recorded the memory usage of the Linux
system, next, deleted the content of the connection tracking
table, and finally, recorded the memory usage of the Linux
system again.

As with the other measurements, we performed the tests with
each connection tracking table size 10 times.

We calculated the difference of the memory usage of the
Linux system when the connection tracking table had 40M
entries and when it was empty. This difference is the memory
consumption of the 40M connection tracking entries. The
results are shown in Table V. The memory consumption of the
40M connection tracking entries is independent from the size of
the hash table, and on average, a single connection tracking
entry consumes 385.4 bytes. The results are very stable: the
difference of the maximum and minimum is always less than
0.1% of the median.

VI. DISCUSSION OF THE RESULTS AND OUR
RECOMMENDATION FOR SETTING HASH TABLE SIZE

Our performance measurements showed that value of the
number of connections per hash table size is a very important
parameter that highly influences the performance of iptables.
This parameter gives the average length of the linked lists
starting from the entries of the hash table. Both the maximum
connection establishment and the throughput of iptables
seriously deteriorates when this number becomes significantly
higher than 1. But the connection tear down rate does not
depend on it at all.

We have also checked the “price” of the performance and we
found that the memory consumption of the hash table is
proportional to its size: each entry requires 8 bytes. However,
the memory consumption of the connection tracking entries
does not depend on the size of the hash table, and each entry
occupies approximately 385.4 bytes. The orders of magnitude
of these two numbers suggest us that the memory consumption
of the hash table entries is practically negligible compared to
the memory consumption of the connection tracking entries.
With other words: the 40M connection tracking entries occupy
about 15GB RAM independently from the hash table size as
shown in Table V, whereas the memory consumption of the
hash table itself varies between 0.5GB and 16MB as shown in
Table IV, thus the latter is practically negligible.

Therefore, we definitely recommend to abandon using the
hashsize=nf_conntrack_max/8 convention and rather use
hashsize=nf_conntrack_max to increase the performance

TABLE IV
MEMORY CONSUMPTION OF THE HASH TABLE OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21
Median (kB) 523,560 261,514 130,238 64,964 32,444 16,248
Minimum (kB) 521,816 260,208 129,024 63,436 30,824 15,368
Maximum (kB) 527,092 263,284 132,108 66,108 33,132 16,896
Bytes per hash table entry 7.99 7.98 7.95 7.93 7.92 7.93

TABLE V
MEMORY CONSUMPTION OF IPTABLES WITH 40M CONNECTION TRACKING ENTRIES AS A FUNCTION OF THE HASH TABLE SIZE

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735
Median (kB) 15,056,120 15,056,038 15,056,018 15,055,478 15,053,256 15,054,764
Minimum (kB) 15,055,296 15,050,388 15,053,528 15,050,028 15,050,876 15,051,868
Maximum (kB) 15,058,672 15,057,412 15,060,400 15,057,376 15,057,096 15,057,196
Bytes per hash table entry 385.44 385.43 385.43 385.42 385.36 385.40

Paper ID: 250

7

of the deletion was measured. However, then the deletion time
contained the time necessary to delete an empty connection
tracking table, as well as the command execution and
communications latencies, too. To make our results more
accurate, we have also measured the duration of the deletion of
an empty table, which also contained the command execution
and communications latencies. Thus their difference contains
only the time spent by the deletion of the N number of
connections, which is called as net connection deletion time in
Table III. This value is nearly the same independently form the
hash table size. Thus, the connection tear down rate is also
independent from the size of the hash table.

C. Memory Consumption Measurements
1) Hash Table

To measure the memory consumption of the hash table, we
set various hash table sizes, and checked, how the memory
usage of the Linux systems changed. We considered the “used”
value in the output of the free Linux command. We could not
set arbitrarily small hash table size: if we tried setting it to a
smaller value than 512 entries, then it was set to 512.

As with the other measurements, we set each size 10 times
(including 512) and recorded the amount of the used memory of
the Linux system with a script. Then we subtracted the memory
usage measured with 512 entries from all the other memory
usage values. We calculated median, minimum and maximum
of the results, and finally, we computed the memory
consumption per hash table entry using the median values for
the calculation. The results are shown in Table IV. Of course,
the 512*8=4,096 bytes memory consumption of the hash table
causes some small error, but the results can still confirm that the
memory consumption of the hash table is 8 bytes per entry.
2) Connection Tracking Entries

To measure the memory consumption of the connection
tracking entries, we inserted 40M connections into the
connection tracking table using safely lower frame rates than
the maximum connection establishment rate for the given hash
table size. Then we recorded the memory usage of the Linux
system, next, deleted the content of the connection tracking
table, and finally, recorded the memory usage of the Linux
system again.

As with the other measurements, we performed the tests with
each connection tracking table size 10 times.

We calculated the difference of the memory usage of the
Linux system when the connection tracking table had 40M
entries and when it was empty. This difference is the memory
consumption of the 40M connection tracking entries. The
results are shown in Table V. The memory consumption of the
40M connection tracking entries is independent from the size of
the hash table, and on average, a single connection tracking
entry consumes 385.4 bytes. The results are very stable: the
difference of the maximum and minimum is always less than
0.1% of the median.

VI. DISCUSSION OF THE RESULTS AND OUR
RECOMMENDATION FOR SETTING HASH TABLE SIZE

Our performance measurements showed that value of the
number of connections per hash table size is a very important
parameter that highly influences the performance of iptables.
This parameter gives the average length of the linked lists
starting from the entries of the hash table. Both the maximum
connection establishment and the throughput of iptables
seriously deteriorates when this number becomes significantly
higher than 1. But the connection tear down rate does not
depend on it at all.

We have also checked the “price” of the performance and we
found that the memory consumption of the hash table is
proportional to its size: each entry requires 8 bytes. However,
the memory consumption of the connection tracking entries
does not depend on the size of the hash table, and each entry
occupies approximately 385.4 bytes. The orders of magnitude
of these two numbers suggest us that the memory consumption
of the hash table entries is practically negligible compared to
the memory consumption of the connection tracking entries.
With other words: the 40M connection tracking entries occupy
about 15GB RAM independently from the hash table size as
shown in Table V, whereas the memory consumption of the
hash table itself varies between 0.5GB and 16MB as shown in
Table IV, thus the latter is practically negligible.

Therefore, we definitely recommend to abandon using the
hashsize=nf_conntrack_max/8 convention and rather use
hashsize=nf_conntrack_max to increase the performance

TABLE IV
MEMORY CONSUMPTION OF THE HASH TABLE OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21
Median (kB) 523,560 261,514 130,238 64,964 32,444 16,248
Minimum (kB) 521,816 260,208 129,024 63,436 30,824 15,368
Maximum (kB) 527,092 263,284 132,108 66,108 33,132 16,896
Bytes per hash table entry 7.99 7.98 7.95 7.93 7.92 7.93

TABLE V
MEMORY CONSUMPTION OF IPTABLES WITH 40M CONNECTION TRACKING ENTRIES AS A FUNCTION OF THE HASH TABLE SIZE

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735
Median (kB) 15,056,120 15,056,038 15,056,018 15,055,478 15,053,256 15,054,764
Minimum (kB) 15,055,296 15,050,388 15,053,528 15,050,028 15,050,876 15,051,868
Maximum (kB) 15,058,672 15,057,412 15,060,400 15,057,376 15,057,096 15,057,196
Bytes per hash table entry 385.44 385.43 385.43 385.42 385.36 385.40

Paper ID: 250

7

of the deletion was measured. However, then the deletion time
contained the time necessary to delete an empty connection
tracking table, as well as the command execution and
communications latencies, too. To make our results more
accurate, we have also measured the duration of the deletion of
an empty table, which also contained the command execution
and communications latencies. Thus their difference contains
only the time spent by the deletion of the N number of
connections, which is called as net connection deletion time in
Table III. This value is nearly the same independently form the
hash table size. Thus, the connection tear down rate is also
independent from the size of the hash table.

C. Memory Consumption Measurements
1) Hash Table

To measure the memory consumption of the hash table, we
set various hash table sizes, and checked, how the memory
usage of the Linux systems changed. We considered the “used”
value in the output of the free Linux command. We could not
set arbitrarily small hash table size: if we tried setting it to a
smaller value than 512 entries, then it was set to 512.

As with the other measurements, we set each size 10 times
(including 512) and recorded the amount of the used memory of
the Linux system with a script. Then we subtracted the memory
usage measured with 512 entries from all the other memory
usage values. We calculated median, minimum and maximum
of the results, and finally, we computed the memory
consumption per hash table entry using the median values for
the calculation. The results are shown in Table IV. Of course,
the 512*8=4,096 bytes memory consumption of the hash table
causes some small error, but the results can still confirm that the
memory consumption of the hash table is 8 bytes per entry.
2) Connection Tracking Entries

To measure the memory consumption of the connection
tracking entries, we inserted 40M connections into the
connection tracking table using safely lower frame rates than
the maximum connection establishment rate for the given hash
table size. Then we recorded the memory usage of the Linux
system, next, deleted the content of the connection tracking
table, and finally, recorded the memory usage of the Linux
system again.

As with the other measurements, we performed the tests with
each connection tracking table size 10 times.

We calculated the difference of the memory usage of the
Linux system when the connection tracking table had 40M
entries and when it was empty. This difference is the memory
consumption of the 40M connection tracking entries. The
results are shown in Table V. The memory consumption of the
40M connection tracking entries is independent from the size of
the hash table, and on average, a single connection tracking
entry consumes 385.4 bytes. The results are very stable: the
difference of the maximum and minimum is always less than
0.1% of the median.

VI. DISCUSSION OF THE RESULTS AND OUR
RECOMMENDATION FOR SETTING HASH TABLE SIZE

Our performance measurements showed that value of the
number of connections per hash table size is a very important
parameter that highly influences the performance of iptables.
This parameter gives the average length of the linked lists
starting from the entries of the hash table. Both the maximum
connection establishment and the throughput of iptables
seriously deteriorates when this number becomes significantly
higher than 1. But the connection tear down rate does not
depend on it at all.

We have also checked the “price” of the performance and we
found that the memory consumption of the hash table is
proportional to its size: each entry requires 8 bytes. However,
the memory consumption of the connection tracking entries
does not depend on the size of the hash table, and each entry
occupies approximately 385.4 bytes. The orders of magnitude
of these two numbers suggest us that the memory consumption
of the hash table entries is practically negligible compared to
the memory consumption of the connection tracking entries.
With other words: the 40M connection tracking entries occupy
about 15GB RAM independently from the hash table size as
shown in Table V, whereas the memory consumption of the
hash table itself varies between 0.5GB and 16MB as shown in
Table IV, thus the latter is practically negligible.

Therefore, we definitely recommend to abandon using the
hashsize=nf_conntrack_max/8 convention and rather use
hashsize=nf_conntrack_max to increase the performance

TABLE IV
MEMORY CONSUMPTION OF THE HASH TABLE OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21
Median (kB) 523,560 261,514 130,238 64,964 32,444 16,248
Minimum (kB) 521,816 260,208 129,024 63,436 30,824 15,368
Maximum (kB) 527,092 263,284 132,108 66,108 33,132 16,896
Bytes per hash table entry 7.99 7.98 7.95 7.93 7.92 7.93

TABLE V
MEMORY CONSUMPTION OF IPTABLES WITH 40M CONNECTION TRACKING ENTRIES AS A FUNCTION OF THE HASH TABLE SIZE

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735
Median (kB) 15,056,120 15,056,038 15,056,018 15,055,478 15,053,256 15,054,764
Minimum (kB) 15,055,296 15,050,388 15,053,528 15,050,028 15,050,876 15,051,868
Maximum (kB) 15,058,672 15,057,412 15,060,400 15,057,376 15,057,096 15,057,196
Bytes per hash table entry 385.44 385.43 385.43 385.42 385.36 385.40

Paper ID: 250

7

of the deletion was measured. However, then the deletion time
contained the time necessary to delete an empty connection
tracking table, as well as the command execution and
communications latencies, too. To make our results more
accurate, we have also measured the duration of the deletion of
an empty table, which also contained the command execution
and communications latencies. Thus their difference contains
only the time spent by the deletion of the N number of
connections, which is called as net connection deletion time in
Table III. This value is nearly the same independently form the
hash table size. Thus, the connection tear down rate is also
independent from the size of the hash table.

C. Memory Consumption Measurements
1) Hash Table

To measure the memory consumption of the hash table, we
set various hash table sizes, and checked, how the memory
usage of the Linux systems changed. We considered the “used”
value in the output of the free Linux command. We could not
set arbitrarily small hash table size: if we tried setting it to a
smaller value than 512 entries, then it was set to 512.

As with the other measurements, we set each size 10 times
(including 512) and recorded the amount of the used memory of
the Linux system with a script. Then we subtracted the memory
usage measured with 512 entries from all the other memory
usage values. We calculated median, minimum and maximum
of the results, and finally, we computed the memory
consumption per hash table entry using the median values for
the calculation. The results are shown in Table IV. Of course,
the 512*8=4,096 bytes memory consumption of the hash table
causes some small error, but the results can still confirm that the
memory consumption of the hash table is 8 bytes per entry.
2) Connection Tracking Entries

To measure the memory consumption of the connection
tracking entries, we inserted 40M connections into the
connection tracking table using safely lower frame rates than
the maximum connection establishment rate for the given hash
table size. Then we recorded the memory usage of the Linux
system, next, deleted the content of the connection tracking
table, and finally, recorded the memory usage of the Linux
system again.

As with the other measurements, we performed the tests with
each connection tracking table size 10 times.

We calculated the difference of the memory usage of the
Linux system when the connection tracking table had 40M
entries and when it was empty. This difference is the memory
consumption of the 40M connection tracking entries. The
results are shown in Table V. The memory consumption of the
40M connection tracking entries is independent from the size of
the hash table, and on average, a single connection tracking
entry consumes 385.4 bytes. The results are very stable: the
difference of the maximum and minimum is always less than
0.1% of the median.

VI. DISCUSSION OF THE RESULTS AND OUR
RECOMMENDATION FOR SETTING HASH TABLE SIZE

Our performance measurements showed that value of the
number of connections per hash table size is a very important
parameter that highly influences the performance of iptables.
This parameter gives the average length of the linked lists
starting from the entries of the hash table. Both the maximum
connection establishment and the throughput of iptables
seriously deteriorates when this number becomes significantly
higher than 1. But the connection tear down rate does not
depend on it at all.

We have also checked the “price” of the performance and we
found that the memory consumption of the hash table is
proportional to its size: each entry requires 8 bytes. However,
the memory consumption of the connection tracking entries
does not depend on the size of the hash table, and each entry
occupies approximately 385.4 bytes. The orders of magnitude
of these two numbers suggest us that the memory consumption
of the hash table entries is practically negligible compared to
the memory consumption of the connection tracking entries.
With other words: the 40M connection tracking entries occupy
about 15GB RAM independently from the hash table size as
shown in Table V, whereas the memory consumption of the
hash table itself varies between 0.5GB and 16MB as shown in
Table IV, thus the latter is practically negligible.

Therefore, we definitely recommend to abandon using the
hashsize=nf_conntrack_max/8 convention and rather use
hashsize=nf_conntrack_max to increase the performance

TABLE IV
MEMORY CONSUMPTION OF THE HASH TABLE OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21
Median (kB) 523,560 261,514 130,238 64,964 32,444 16,248
Minimum (kB) 521,816 260,208 129,024 63,436 30,824 15,368
Maximum (kB) 527,092 263,284 132,108 66,108 33,132 16,896
Bytes per hash table entry 7.99 7.98 7.95 7.93 7.92 7.93

TABLE V
MEMORY CONSUMPTION OF IPTABLES WITH 40M CONNECTION TRACKING ENTRIES AS A FUNCTION OF THE HASH TABLE SIZE

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735
Median (kB) 15,056,120 15,056,038 15,056,018 15,055,478 15,053,256 15,054,764
Minimum (kB) 15,055,296 15,050,388 15,053,528 15,050,028 15,050,876 15,051,868
Maximum (kB) 15,058,672 15,057,412 15,060,400 15,057,376 15,057,096 15,057,196
Bytes per hash table entry 385.44 385.43 385.43 385.42 385.36 385.40

Paper ID: 250

8

of iptables significantly. Of course, now arises the question of
using hashsize=nf_conntrack_max*n, where n > 1. We
did not do tests with n=2, 4, 8, etc. but our results show that the
expectable gain is much less. When using iptables as a stateful
NAT44 gateway to forward Internet traffic, there are a high
number of packets transferred per session. Thus, throughput is
the dominant one from among our three used performance
metrics. Examining Table II, we can see that there is only 4%
performance difference between the first two columns. And
considering the observable trends, it is likely to be even less, if
the size if the hash table is further increased. And the increase
of the hash table size has a built in limit. Theoretically, the
default and the allowed maximum values for hashsize and
nf_conntrack_max depend on the RAM size of the computer
[15]. Our measurements show that it is true for very small RAM
sizes (e.g. 1GB or 2GB), but the values do not change from
8GB and to 384GB RAM size. We used the mem=nGB kernel
command line parameter to limit the available memory for
testing. Our results in Table VI show that the default and
maximum values are the same for 8GB and 384GB.

VII. TESTING THE PERFORMANCE OF NFTABLES
We have also tested the maximum connection establishment

rate and throughput performance of nftables. We used the same
test system as shown in Fig. 4, but Debian 10.13 with
4.19.0-20-amd64 kernel was used on the DUT. The version of
nftables was: 0.9.0-2. We tested its performance only at the
“optimal” working point, that is, using our recommended
setting: hashsize=nf_conntrack_max.

The results are shown in Table VII. Comparing the results
with that of iptables (shown in Table I and Table II), we can see
that the median maximum connection establishment rate of
nftables (228,222cps) is about one tenth of the median
maximum connection establishment rate of iptables
(2,263,732cps), whereas the median throughput of nftables
(835,544fps) is about one fifth of the median throughput of
iptables (4,252,197fps) measured under the same conditions.
Therefore, we conclude that nftables may not replace iptables
in the application scenarios where a stateful NAT44 gateway of
a CGN system has to handle a high number of connections with

high performance.

VIII. CONCLUSION
We have measured the maximum connection establishment

rate, throughput and connection tear down rate as well as the
memory consumption of iptables as a function of the hash table
size using always 40 million connections to determine the
optimal value for the ratio of the number of connections and the
hash table size and/or any possible tradeoff.

We conclude that the long established convention of
hashsize=nf_conntrack_max/8 should be replaced by the
hashsize=nf_conntrack_max rule to increase the
performance of iptables to a high extent.

We have also shown that nftables may not replace iptables in
the application scenarios where a stateful NAT44 gateway of a
CGN system has to handle a high number of connections with
high performance, because iptables achieved about ten times
higher maximum connection establishment rate and about five
times higher throughput than nftables.

ACKNOWLEDGMENT
The experiments were carried out by remotely using the

resources of NICT StarBED, 2–12 Asahidai, Nomi-City,
Ishikawa 923–1211, Japan.

The authors would like to thank Shuuhei Takimoto for the
possibility to use StarBED, as well as to Tsukasa Nishita
Makoto Yoshida for their help and advice in StarBED usage
related issues.

Gábor Lencse thanks the National Institute of Information
and Communications (NICT), Japan for their support of his
stay at the Research Laboratory of Internet Initiative Japan,
where his research topic was the performance analysis of
stateful NAT64 / NAT44 implementations.

REFERENCES
[1] M. Nikkhah, R. Guérin, “Migrating the Internet to IPv6: An exploration

of the when and why”, IEEE/ACM Trans. Netw., vol. 24, no. 4, pp.
2291–2304, Apr. 2016, DOI: 10.1109/TNET.2015.2453338

[2] P. N. Ayuso, “Netfilter's connection tracking system”, Login: The
Usenix Magazine, vol. 31, no. 3, (2006) pp. 34-39. [Online]. Available:
https://www.usenix.org/system/files/login/articles/892-neira.pdf

[3] D. Melkov, A. Šaltis and Š. Paulikas, “Performance Testing of Linux
Firewalls”, 2020 IEEE Open Conference of Electrical, Electronic and
Information Sciences (eStream), 2020, pp. 1-4, DOI:
10.1109/eStream50540.2020.9108868.

[4] G. Lencse, “Scalability of IPv6 transition technologies for IPv4aaS”,
Internet Draft, Oct 23, 2022, draft-lencse-v6ops-transition-scalability-04
[online], available:
https://datatracker.ietf.org/doc/html/draft-lencse-v6ops-transition-scala
bility-04

[5] N.Gandotra, L.S. Sharma, “Performance evaluation and modelling of the
Linux firewall under stress test”, In: Singh, P., Kar, A., Singh, Y.,

TABLE VI
DEFAULT AND MAXIMUM ALLOWED VALUES FOR HASHSIZE AND NF_CONNTRACK_MAX AS A FUNCTION OF MEMORY SIZE, IPTABLES 1.6.0

Computer memory size (GB) 1 2 8 384
Default hashsize 7,680 16,384=2^14 65,536=2^16 65,536=2^16
Default nf_conntrack_max 30,720 65,536=2^16 262,144=2^18 262,144=2^18
Maximum possible hashsize 33,554,432=2^25 67,108,864=2^26 268,435,456=2^28 268,435,456=2^28
Maximum possible nf_conntrack_max 1,073,741,824=2^30 1,073,741,824=2^30 1,073,741,824=2^30 1,073,741,824=2^30

TABLE VII
PERFORMANCE OF NFTABLES 0.9.0-2, 2^26 HASH TABLE SIZE,

40M CONNECTIONS, 16 CPU CORES
Performance metric Max. conn. est. rate (cps) Throughput (fps)
Error of bin. search 100 200
Median 228,222 835,544
Minimum 225,683 824,804
Maximum 229,198 840,428

Paper ID: 250

7

of the deletion was measured. However, then the deletion time
contained the time necessary to delete an empty connection
tracking table, as well as the command execution and
communications latencies, too. To make our results more
accurate, we have also measured the duration of the deletion of
an empty table, which also contained the command execution
and communications latencies. Thus their difference contains
only the time spent by the deletion of the N number of
connections, which is called as net connection deletion time in
Table III. This value is nearly the same independently form the
hash table size. Thus, the connection tear down rate is also
independent from the size of the hash table.

C. Memory Consumption Measurements
1) Hash Table

To measure the memory consumption of the hash table, we
set various hash table sizes, and checked, how the memory
usage of the Linux systems changed. We considered the “used”
value in the output of the free Linux command. We could not
set arbitrarily small hash table size: if we tried setting it to a
smaller value than 512 entries, then it was set to 512.

As with the other measurements, we set each size 10 times
(including 512) and recorded the amount of the used memory of
the Linux system with a script. Then we subtracted the memory
usage measured with 512 entries from all the other memory
usage values. We calculated median, minimum and maximum
of the results, and finally, we computed the memory
consumption per hash table entry using the median values for
the calculation. The results are shown in Table IV. Of course,
the 512*8=4,096 bytes memory consumption of the hash table
causes some small error, but the results can still confirm that the
memory consumption of the hash table is 8 bytes per entry.
2) Connection Tracking Entries

To measure the memory consumption of the connection
tracking entries, we inserted 40M connections into the
connection tracking table using safely lower frame rates than
the maximum connection establishment rate for the given hash
table size. Then we recorded the memory usage of the Linux
system, next, deleted the content of the connection tracking
table, and finally, recorded the memory usage of the Linux
system again.

As with the other measurements, we performed the tests with
each connection tracking table size 10 times.

We calculated the difference of the memory usage of the
Linux system when the connection tracking table had 40M
entries and when it was empty. This difference is the memory
consumption of the 40M connection tracking entries. The
results are shown in Table V. The memory consumption of the
40M connection tracking entries is independent from the size of
the hash table, and on average, a single connection tracking
entry consumes 385.4 bytes. The results are very stable: the
difference of the maximum and minimum is always less than
0.1% of the median.

VI. DISCUSSION OF THE RESULTS AND OUR
RECOMMENDATION FOR SETTING HASH TABLE SIZE

Our performance measurements showed that value of the
number of connections per hash table size is a very important
parameter that highly influences the performance of iptables.
This parameter gives the average length of the linked lists
starting from the entries of the hash table. Both the maximum
connection establishment and the throughput of iptables
seriously deteriorates when this number becomes significantly
higher than 1. But the connection tear down rate does not
depend on it at all.

We have also checked the “price” of the performance and we
found that the memory consumption of the hash table is
proportional to its size: each entry requires 8 bytes. However,
the memory consumption of the connection tracking entries
does not depend on the size of the hash table, and each entry
occupies approximately 385.4 bytes. The orders of magnitude
of these two numbers suggest us that the memory consumption
of the hash table entries is practically negligible compared to
the memory consumption of the connection tracking entries.
With other words: the 40M connection tracking entries occupy
about 15GB RAM independently from the hash table size as
shown in Table V, whereas the memory consumption of the
hash table itself varies between 0.5GB and 16MB as shown in
Table IV, thus the latter is practically negligible.

Therefore, we definitely recommend to abandon using the
hashsize=nf_conntrack_max/8 convention and rather use
hashsize=nf_conntrack_max to increase the performance

TABLE IV
MEMORY CONSUMPTION OF THE HASH TABLE OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21
Median (kB) 523,560 261,514 130,238 64,964 32,444 16,248
Minimum (kB) 521,816 260,208 129,024 63,436 30,824 15,368
Maximum (kB) 527,092 263,284 132,108 66,108 33,132 16,896
Bytes per hash table entry 7.99 7.98 7.95 7.93 7.92 7.93

TABLE V
MEMORY CONSUMPTION OF IPTABLES WITH 40M CONNECTION TRACKING ENTRIES AS A FUNCTION OF THE HASH TABLE SIZE

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735
Median (kB) 15,056,120 15,056,038 15,056,018 15,055,478 15,053,256 15,054,764
Minimum (kB) 15,055,296 15,050,388 15,053,528 15,050,028 15,050,876 15,051,868
Maximum (kB) 15,058,672 15,057,412 15,060,400 15,057,376 15,057,096 15,057,196
Bytes per hash table entry 385.44 385.43 385.43 385.42 385.36 385.40

Optimizing the Performance of the Iptables
Stateful NAT44 Solution

EARLY ACCESS • 202362

INFOCOMMUNICATIONS JOURNAL

Paper ID: 250

8

of iptables significantly. Of course, now arises the question of
using hashsize=nf_conntrack_max*n, where n > 1. We
did not do tests with n=2, 4, 8, etc. but our results show that the
expectable gain is much less. When using iptables as a stateful
NAT44 gateway to forward Internet traffic, there are a high
number of packets transferred per session. Thus, throughput is
the dominant one from among our three used performance
metrics. Examining Table II, we can see that there is only 4%
performance difference between the first two columns. And
considering the observable trends, it is likely to be even less, if
the size if the hash table is further increased. And the increase
of the hash table size has a built in limit. Theoretically, the
default and the allowed maximum values for hashsize and
nf_conntrack_max depend on the RAM size of the computer
[15]. Our measurements show that it is true for very small RAM
sizes (e.g. 1GB or 2GB), but the values do not change from
8GB and to 384GB RAM size. We used the mem=nGB kernel
command line parameter to limit the available memory for
testing. Our results in Table VI show that the default and
maximum values are the same for 8GB and 384GB.

VII. TESTING THE PERFORMANCE OF NFTABLES
We have also tested the maximum connection establishment

rate and throughput performance of nftables. We used the same
test system as shown in Fig. 4, but Debian 10.13 with
4.19.0-20-amd64 kernel was used on the DUT. The version of
nftables was: 0.9.0-2. We tested its performance only at the
“optimal” working point, that is, using our recommended
setting: hashsize=nf_conntrack_max.

The results are shown in Table VII. Comparing the results
with that of iptables (shown in Table I and Table II), we can see
that the median maximum connection establishment rate of
nftables (228,222cps) is about one tenth of the median
maximum connection establishment rate of iptables
(2,263,732cps), whereas the median throughput of nftables
(835,544fps) is about one fifth of the median throughput of
iptables (4,252,197fps) measured under the same conditions.
Therefore, we conclude that nftables may not replace iptables
in the application scenarios where a stateful NAT44 gateway of
a CGN system has to handle a high number of connections with

high performance.

VIII. CONCLUSION
We have measured the maximum connection establishment

rate, throughput and connection tear down rate as well as the
memory consumption of iptables as a function of the hash table
size using always 40 million connections to determine the
optimal value for the ratio of the number of connections and the
hash table size and/or any possible tradeoff.

We conclude that the long established convention of
hashsize=nf_conntrack_max/8 should be replaced by the
hashsize=nf_conntrack_max rule to increase the
performance of iptables to a high extent.

We have also shown that nftables may not replace iptables in
the application scenarios where a stateful NAT44 gateway of a
CGN system has to handle a high number of connections with
high performance, because iptables achieved about ten times
higher maximum connection establishment rate and about five
times higher throughput than nftables.

ACKNOWLEDGMENT
The experiments were carried out by remotely using the

resources of NICT StarBED, 2–12 Asahidai, Nomi-City,
Ishikawa 923–1211, Japan.

The authors would like to thank Shuuhei Takimoto for the
possibility to use StarBED, as well as to Tsukasa Nishita
Makoto Yoshida for their help and advice in StarBED usage
related issues.

Gábor Lencse thanks the National Institute of Information
and Communications (NICT), Japan for their support of his
stay at the Research Laboratory of Internet Initiative Japan,
where his research topic was the performance analysis of
stateful NAT64 / NAT44 implementations.

REFERENCES
[1] M. Nikkhah, R. Guérin, “Migrating the Internet to IPv6: An exploration

of the when and why”, IEEE/ACM Trans. Netw., vol. 24, no. 4, pp.
2291–2304, Apr. 2016, DOI: 10.1109/TNET.2015.2453338

[2] P. N. Ayuso, “Netfilter's connection tracking system”, Login: The
Usenix Magazine, vol. 31, no. 3, (2006) pp. 34-39. [Online]. Available:
https://www.usenix.org/system/files/login/articles/892-neira.pdf

[3] D. Melkov, A. Šaltis and Š. Paulikas, “Performance Testing of Linux
Firewalls”, 2020 IEEE Open Conference of Electrical, Electronic and
Information Sciences (eStream), 2020, pp. 1-4, DOI:
10.1109/eStream50540.2020.9108868.

[4] G. Lencse, “Scalability of IPv6 transition technologies for IPv4aaS”,
Internet Draft, Oct 23, 2022, draft-lencse-v6ops-transition-scalability-04
[online], available:
https://datatracker.ietf.org/doc/html/draft-lencse-v6ops-transition-scala
bility-04

[5] N.Gandotra, L.S. Sharma, “Performance evaluation and modelling of the
Linux firewall under stress test”, In: Singh, P., Kar, A., Singh, Y.,

TABLE VI
DEFAULT AND MAXIMUM ALLOWED VALUES FOR HASHSIZE AND NF_CONNTRACK_MAX AS A FUNCTION OF MEMORY SIZE, IPTABLES 1.6.0

Computer memory size (GB) 1 2 8 384
Default hashsize 7,680 16,384=2^14 65,536=2^16 65,536=2^16
Default nf_conntrack_max 30,720 65,536=2^16 262,144=2^18 262,144=2^18
Maximum possible hashsize 33,554,432=2^25 67,108,864=2^26 268,435,456=2^28 268,435,456=2^28
Maximum possible nf_conntrack_max 1,073,741,824=2^30 1,073,741,824=2^30 1,073,741,824=2^30 1,073,741,824=2^30

TABLE VII
PERFORMANCE OF NFTABLES 0.9.0-2, 2^26 HASH TABLE SIZE,

40M CONNECTIONS, 16 CPU CORES
Performance metric Max. conn. est. rate (cps) Throughput (fps)
Error of bin. search 100 200
Median 228,222 835,544
Minimum 225,683 824,804
Maximum 229,198 840,428

Paper ID: 250

8

of iptables significantly. Of course, now arises the question of
using hashsize=nf_conntrack_max*n, where n > 1. We
did not do tests with n=2, 4, 8, etc. but our results show that the
expectable gain is much less. When using iptables as a stateful
NAT44 gateway to forward Internet traffic, there are a high
number of packets transferred per session. Thus, throughput is
the dominant one from among our three used performance
metrics. Examining Table II, we can see that there is only 4%
performance difference between the first two columns. And
considering the observable trends, it is likely to be even less, if
the size if the hash table is further increased. And the increase
of the hash table size has a built in limit. Theoretically, the
default and the allowed maximum values for hashsize and
nf_conntrack_max depend on the RAM size of the computer
[15]. Our measurements show that it is true for very small RAM
sizes (e.g. 1GB or 2GB), but the values do not change from
8GB and to 384GB RAM size. We used the mem=nGB kernel
command line parameter to limit the available memory for
testing. Our results in Table VI show that the default and
maximum values are the same for 8GB and 384GB.

VII. TESTING THE PERFORMANCE OF NFTABLES
We have also tested the maximum connection establishment

rate and throughput performance of nftables. We used the same
test system as shown in Fig. 4, but Debian 10.13 with
4.19.0-20-amd64 kernel was used on the DUT. The version of
nftables was: 0.9.0-2. We tested its performance only at the
“optimal” working point, that is, using our recommended
setting: hashsize=nf_conntrack_max.

The results are shown in Table VII. Comparing the results
with that of iptables (shown in Table I and Table II), we can see
that the median maximum connection establishment rate of
nftables (228,222cps) is about one tenth of the median
maximum connection establishment rate of iptables
(2,263,732cps), whereas the median throughput of nftables
(835,544fps) is about one fifth of the median throughput of
iptables (4,252,197fps) measured under the same conditions.
Therefore, we conclude that nftables may not replace iptables
in the application scenarios where a stateful NAT44 gateway of
a CGN system has to handle a high number of connections with

high performance.

VIII. CONCLUSION
We have measured the maximum connection establishment

rate, throughput and connection tear down rate as well as the
memory consumption of iptables as a function of the hash table
size using always 40 million connections to determine the
optimal value for the ratio of the number of connections and the
hash table size and/or any possible tradeoff.

We conclude that the long established convention of
hashsize=nf_conntrack_max/8 should be replaced by the
hashsize=nf_conntrack_max rule to increase the
performance of iptables to a high extent.

We have also shown that nftables may not replace iptables in
the application scenarios where a stateful NAT44 gateway of a
CGN system has to handle a high number of connections with
high performance, because iptables achieved about ten times
higher maximum connection establishment rate and about five
times higher throughput than nftables.

ACKNOWLEDGMENT
The experiments were carried out by remotely using the

resources of NICT StarBED, 2–12 Asahidai, Nomi-City,
Ishikawa 923–1211, Japan.

The authors would like to thank Shuuhei Takimoto for the
possibility to use StarBED, as well as to Tsukasa Nishita
Makoto Yoshida for their help and advice in StarBED usage
related issues.

Gábor Lencse thanks the National Institute of Information
and Communications (NICT), Japan for their support of his
stay at the Research Laboratory of Internet Initiative Japan,
where his research topic was the performance analysis of
stateful NAT64 / NAT44 implementations.

REFERENCES
[1] M. Nikkhah, R. Guérin, “Migrating the Internet to IPv6: An exploration

of the when and why”, IEEE/ACM Trans. Netw., vol. 24, no. 4, pp.
2291–2304, Apr. 2016, DOI: 10.1109/TNET.2015.2453338

[2] P. N. Ayuso, “Netfilter's connection tracking system”, Login: The
Usenix Magazine, vol. 31, no. 3, (2006) pp. 34-39. [Online]. Available:
https://www.usenix.org/system/files/login/articles/892-neira.pdf

[3] D. Melkov, A. Šaltis and Š. Paulikas, “Performance Testing of Linux
Firewalls”, 2020 IEEE Open Conference of Electrical, Electronic and
Information Sciences (eStream), 2020, pp. 1-4, DOI:
10.1109/eStream50540.2020.9108868.

[4] G. Lencse, “Scalability of IPv6 transition technologies for IPv4aaS”,
Internet Draft, Oct 23, 2022, draft-lencse-v6ops-transition-scalability-04
[online], available:
https://datatracker.ietf.org/doc/html/draft-lencse-v6ops-transition-scala
bility-04

[5] N.Gandotra, L.S. Sharma, “Performance evaluation and modelling of the
Linux firewall under stress test”, In: Singh, P., Kar, A., Singh, Y.,

TABLE VI
DEFAULT AND MAXIMUM ALLOWED VALUES FOR HASHSIZE AND NF_CONNTRACK_MAX AS A FUNCTION OF MEMORY SIZE, IPTABLES 1.6.0

Computer memory size (GB) 1 2 8 384
Default hashsize 7,680 16,384=2^14 65,536=2^16 65,536=2^16
Default nf_conntrack_max 30,720 65,536=2^16 262,144=2^18 262,144=2^18
Maximum possible hashsize 33,554,432=2^25 67,108,864=2^26 268,435,456=2^28 268,435,456=2^28
Maximum possible nf_conntrack_max 1,073,741,824=2^30 1,073,741,824=2^30 1,073,741,824=2^30 1,073,741,824=2^30

TABLE VII
PERFORMANCE OF NFTABLES 0.9.0-2, 2^26 HASH TABLE SIZE,

40M CONNECTIONS, 16 CPU CORES
Performance metric Max. conn. est. rate (cps) Throughput (fps)
Error of bin. search 100 200
Median 228,222 835,544
Minimum 225,683 824,804
Maximum 229,198 840,428

Paper ID: 250

8

of iptables significantly. Of course, now arises the question of
using hashsize=nf_conntrack_max*n, where n > 1. We
did not do tests with n=2, 4, 8, etc. but our results show that the
expectable gain is much less. When using iptables as a stateful
NAT44 gateway to forward Internet traffic, there are a high
number of packets transferred per session. Thus, throughput is
the dominant one from among our three used performance
metrics. Examining Table II, we can see that there is only 4%
performance difference between the first two columns. And
considering the observable trends, it is likely to be even less, if
the size if the hash table is further increased. And the increase
of the hash table size has a built in limit. Theoretically, the
default and the allowed maximum values for hashsize and
nf_conntrack_max depend on the RAM size of the computer
[15]. Our measurements show that it is true for very small RAM
sizes (e.g. 1GB or 2GB), but the values do not change from
8GB and to 384GB RAM size. We used the mem=nGB kernel
command line parameter to limit the available memory for
testing. Our results in Table VI show that the default and
maximum values are the same for 8GB and 384GB.

VII. TESTING THE PERFORMANCE OF NFTABLES
We have also tested the maximum connection establishment

rate and throughput performance of nftables. We used the same
test system as shown in Fig. 4, but Debian 10.13 with
4.19.0-20-amd64 kernel was used on the DUT. The version of
nftables was: 0.9.0-2. We tested its performance only at the
“optimal” working point, that is, using our recommended
setting: hashsize=nf_conntrack_max.

The results are shown in Table VII. Comparing the results
with that of iptables (shown in Table I and Table II), we can see
that the median maximum connection establishment rate of
nftables (228,222cps) is about one tenth of the median
maximum connection establishment rate of iptables
(2,263,732cps), whereas the median throughput of nftables
(835,544fps) is about one fifth of the median throughput of
iptables (4,252,197fps) measured under the same conditions.
Therefore, we conclude that nftables may not replace iptables
in the application scenarios where a stateful NAT44 gateway of
a CGN system has to handle a high number of connections with

high performance.

VIII. CONCLUSION
We have measured the maximum connection establishment

rate, throughput and connection tear down rate as well as the
memory consumption of iptables as a function of the hash table
size using always 40 million connections to determine the
optimal value for the ratio of the number of connections and the
hash table size and/or any possible tradeoff.

We conclude that the long established convention of
hashsize=nf_conntrack_max/8 should be replaced by the
hashsize=nf_conntrack_max rule to increase the
performance of iptables to a high extent.

We have also shown that nftables may not replace iptables in
the application scenarios where a stateful NAT44 gateway of a
CGN system has to handle a high number of connections with
high performance, because iptables achieved about ten times
higher maximum connection establishment rate and about five
times higher throughput than nftables.

ACKNOWLEDGMENT
The experiments were carried out by remotely using the

resources of NICT StarBED, 2–12 Asahidai, Nomi-City,
Ishikawa 923–1211, Japan.

The authors would like to thank Shuuhei Takimoto for the
possibility to use StarBED, as well as to Tsukasa Nishita
Makoto Yoshida for their help and advice in StarBED usage
related issues.

Gábor Lencse thanks the National Institute of Information
and Communications (NICT), Japan for their support of his
stay at the Research Laboratory of Internet Initiative Japan,
where his research topic was the performance analysis of
stateful NAT64 / NAT44 implementations.

REFERENCES
[1] M. Nikkhah, R. Guérin, “Migrating the Internet to IPv6: An exploration

of the when and why”, IEEE/ACM Trans. Netw., vol. 24, no. 4, pp.
2291–2304, Apr. 2016, DOI: 10.1109/TNET.2015.2453338

[2] P. N. Ayuso, “Netfilter's connection tracking system”, Login: The
Usenix Magazine, vol. 31, no. 3, (2006) pp. 34-39. [Online]. Available:
https://www.usenix.org/system/files/login/articles/892-neira.pdf

[3] D. Melkov, A. Šaltis and Š. Paulikas, “Performance Testing of Linux
Firewalls”, 2020 IEEE Open Conference of Electrical, Electronic and
Information Sciences (eStream), 2020, pp. 1-4, DOI:
10.1109/eStream50540.2020.9108868.

[4] G. Lencse, “Scalability of IPv6 transition technologies for IPv4aaS”,
Internet Draft, Oct 23, 2022, draft-lencse-v6ops-transition-scalability-04
[online], available:
https://datatracker.ietf.org/doc/html/draft-lencse-v6ops-transition-scala
bility-04

[5] N.Gandotra, L.S. Sharma, “Performance evaluation and modelling of the
Linux firewall under stress test”, In: Singh, P., Kar, A., Singh, Y.,

TABLE VI
DEFAULT AND MAXIMUM ALLOWED VALUES FOR HASHSIZE AND NF_CONNTRACK_MAX AS A FUNCTION OF MEMORY SIZE, IPTABLES 1.6.0

Computer memory size (GB) 1 2 8 384
Default hashsize 7,680 16,384=2^14 65,536=2^16 65,536=2^16
Default nf_conntrack_max 30,720 65,536=2^16 262,144=2^18 262,144=2^18
Maximum possible hashsize 33,554,432=2^25 67,108,864=2^26 268,435,456=2^28 268,435,456=2^28
Maximum possible nf_conntrack_max 1,073,741,824=2^30 1,073,741,824=2^30 1,073,741,824=2^30 1,073,741,824=2^30

TABLE VII
PERFORMANCE OF NFTABLES 0.9.0-2, 2^26 HASH TABLE SIZE,

40M CONNECTIONS, 16 CPU CORES
Performance metric Max. conn. est. rate (cps) Throughput (fps)
Error of bin. search 100 200
Median 228,222 835,544
Minimum 225,683 824,804
Maximum 229,198 840,428

Paper ID: 250

8

of iptables significantly. Of course, now arises the question of
using hashsize=nf_conntrack_max*n, where n > 1. We
did not do tests with n=2, 4, 8, etc. but our results show that the
expectable gain is much less. When using iptables as a stateful
NAT44 gateway to forward Internet traffic, there are a high
number of packets transferred per session. Thus, throughput is
the dominant one from among our three used performance
metrics. Examining Table II, we can see that there is only 4%
performance difference between the first two columns. And
considering the observable trends, it is likely to be even less, if
the size if the hash table is further increased. And the increase
of the hash table size has a built in limit. Theoretically, the
default and the allowed maximum values for hashsize and
nf_conntrack_max depend on the RAM size of the computer
[15]. Our measurements show that it is true for very small RAM
sizes (e.g. 1GB or 2GB), but the values do not change from
8GB and to 384GB RAM size. We used the mem=nGB kernel
command line parameter to limit the available memory for
testing. Our results in Table VI show that the default and
maximum values are the same for 8GB and 384GB.

VII. TESTING THE PERFORMANCE OF NFTABLES
We have also tested the maximum connection establishment

rate and throughput performance of nftables. We used the same
test system as shown in Fig. 4, but Debian 10.13 with
4.19.0-20-amd64 kernel was used on the DUT. The version of
nftables was: 0.9.0-2. We tested its performance only at the
“optimal” working point, that is, using our recommended
setting: hashsize=nf_conntrack_max.

The results are shown in Table VII. Comparing the results
with that of iptables (shown in Table I and Table II), we can see
that the median maximum connection establishment rate of
nftables (228,222cps) is about one tenth of the median
maximum connection establishment rate of iptables
(2,263,732cps), whereas the median throughput of nftables
(835,544fps) is about one fifth of the median throughput of
iptables (4,252,197fps) measured under the same conditions.
Therefore, we conclude that nftables may not replace iptables
in the application scenarios where a stateful NAT44 gateway of
a CGN system has to handle a high number of connections with

high performance.

VIII. CONCLUSION
We have measured the maximum connection establishment

rate, throughput and connection tear down rate as well as the
memory consumption of iptables as a function of the hash table
size using always 40 million connections to determine the
optimal value for the ratio of the number of connections and the
hash table size and/or any possible tradeoff.

We conclude that the long established convention of
hashsize=nf_conntrack_max/8 should be replaced by the
hashsize=nf_conntrack_max rule to increase the
performance of iptables to a high extent.

We have also shown that nftables may not replace iptables in
the application scenarios where a stateful NAT44 gateway of a
CGN system has to handle a high number of connections with
high performance, because iptables achieved about ten times
higher maximum connection establishment rate and about five
times higher throughput than nftables.

ACKNOWLEDGMENT
The experiments were carried out by remotely using the

resources of NICT StarBED, 2–12 Asahidai, Nomi-City,
Ishikawa 923–1211, Japan.

The authors would like to thank Shuuhei Takimoto for the
possibility to use StarBED, as well as to Tsukasa Nishita
Makoto Yoshida for their help and advice in StarBED usage
related issues.

Gábor Lencse thanks the National Institute of Information
and Communications (NICT), Japan for their support of his
stay at the Research Laboratory of Internet Initiative Japan,
where his research topic was the performance analysis of
stateful NAT64 / NAT44 implementations.

REFERENCES
[1] M. Nikkhah, R. Guérin, “Migrating the Internet to IPv6: An exploration

of the when and why”, IEEE/ACM Trans. Netw., vol. 24, no. 4, pp.
2291–2304, Apr. 2016, DOI: 10.1109/TNET.2015.2453338

[2] P. N. Ayuso, “Netfilter's connection tracking system”, Login: The
Usenix Magazine, vol. 31, no. 3, (2006) pp. 34-39. [Online]. Available:
https://www.usenix.org/system/files/login/articles/892-neira.pdf

[3] D. Melkov, A. Šaltis and Š. Paulikas, “Performance Testing of Linux
Firewalls”, 2020 IEEE Open Conference of Electrical, Electronic and
Information Sciences (eStream), 2020, pp. 1-4, DOI:
10.1109/eStream50540.2020.9108868.

[4] G. Lencse, “Scalability of IPv6 transition technologies for IPv4aaS”,
Internet Draft, Oct 23, 2022, draft-lencse-v6ops-transition-scalability-04
[online], available:
https://datatracker.ietf.org/doc/html/draft-lencse-v6ops-transition-scala
bility-04

[5] N.Gandotra, L.S. Sharma, “Performance evaluation and modelling of the
Linux firewall under stress test”, In: Singh, P., Kar, A., Singh, Y.,

TABLE VI
DEFAULT AND MAXIMUM ALLOWED VALUES FOR HASHSIZE AND NF_CONNTRACK_MAX AS A FUNCTION OF MEMORY SIZE, IPTABLES 1.6.0

Computer memory size (GB) 1 2 8 384
Default hashsize 7,680 16,384=2^14 65,536=2^16 65,536=2^16
Default nf_conntrack_max 30,720 65,536=2^16 262,144=2^18 262,144=2^18
Maximum possible hashsize 33,554,432=2^25 67,108,864=2^26 268,435,456=2^28 268,435,456=2^28
Maximum possible nf_conntrack_max 1,073,741,824=2^30 1,073,741,824=2^30 1,073,741,824=2^30 1,073,741,824=2^30

TABLE VII
PERFORMANCE OF NFTABLES 0.9.0-2, 2^26 HASH TABLE SIZE,

40M CONNECTIONS, 16 CPU CORES
Performance metric Max. conn. est. rate (cps) Throughput (fps)
Error of bin. search 100 200
Median 228,222 835,544
Minimum 225,683 824,804
Maximum 229,198 840,428

Paper ID: 250

8

of iptables significantly. Of course, now arises the question of
using hashsize=nf_conntrack_max*n, where n > 1. We
did not do tests with n=2, 4, 8, etc. but our results show that the
expectable gain is much less. When using iptables as a stateful
NAT44 gateway to forward Internet traffic, there are a high
number of packets transferred per session. Thus, throughput is
the dominant one from among our three used performance
metrics. Examining Table II, we can see that there is only 4%
performance difference between the first two columns. And
considering the observable trends, it is likely to be even less, if
the size if the hash table is further increased. And the increase
of the hash table size has a built in limit. Theoretically, the
default and the allowed maximum values for hashsize and
nf_conntrack_max depend on the RAM size of the computer
[15]. Our measurements show that it is true for very small RAM
sizes (e.g. 1GB or 2GB), but the values do not change from
8GB and to 384GB RAM size. We used the mem=nGB kernel
command line parameter to limit the available memory for
testing. Our results in Table VI show that the default and
maximum values are the same for 8GB and 384GB.

VII. TESTING THE PERFORMANCE OF NFTABLES
We have also tested the maximum connection establishment

rate and throughput performance of nftables. We used the same
test system as shown in Fig. 4, but Debian 10.13 with
4.19.0-20-amd64 kernel was used on the DUT. The version of
nftables was: 0.9.0-2. We tested its performance only at the
“optimal” working point, that is, using our recommended
setting: hashsize=nf_conntrack_max.

The results are shown in Table VII. Comparing the results
with that of iptables (shown in Table I and Table II), we can see
that the median maximum connection establishment rate of
nftables (228,222cps) is about one tenth of the median
maximum connection establishment rate of iptables
(2,263,732cps), whereas the median throughput of nftables
(835,544fps) is about one fifth of the median throughput of
iptables (4,252,197fps) measured under the same conditions.
Therefore, we conclude that nftables may not replace iptables
in the application scenarios where a stateful NAT44 gateway of
a CGN system has to handle a high number of connections with

high performance.

VIII. CONCLUSION
We have measured the maximum connection establishment

rate, throughput and connection tear down rate as well as the
memory consumption of iptables as a function of the hash table
size using always 40 million connections to determine the
optimal value for the ratio of the number of connections and the
hash table size and/or any possible tradeoff.

We conclude that the long established convention of
hashsize=nf_conntrack_max/8 should be replaced by the
hashsize=nf_conntrack_max rule to increase the
performance of iptables to a high extent.

We have also shown that nftables may not replace iptables in
the application scenarios where a stateful NAT44 gateway of a
CGN system has to handle a high number of connections with
high performance, because iptables achieved about ten times
higher maximum connection establishment rate and about five
times higher throughput than nftables.

ACKNOWLEDGMENT
The experiments were carried out by remotely using the

resources of NICT StarBED, 2–12 Asahidai, Nomi-City,
Ishikawa 923–1211, Japan.

The authors would like to thank Shuuhei Takimoto for the
possibility to use StarBED, as well as to Tsukasa Nishita
Makoto Yoshida for their help and advice in StarBED usage
related issues.

Gábor Lencse thanks the National Institute of Information
and Communications (NICT), Japan for their support of his
stay at the Research Laboratory of Internet Initiative Japan,
where his research topic was the performance analysis of
stateful NAT64 / NAT44 implementations.

REFERENCES
[1] M. Nikkhah, R. Guérin, “Migrating the Internet to IPv6: An exploration

of the when and why”, IEEE/ACM Trans. Netw., vol. 24, no. 4, pp.
2291–2304, Apr. 2016, DOI: 10.1109/TNET.2015.2453338

[2] P. N. Ayuso, “Netfilter's connection tracking system”, Login: The
Usenix Magazine, vol. 31, no. 3, (2006) pp. 34-39. [Online]. Available:
https://www.usenix.org/system/files/login/articles/892-neira.pdf

[3] D. Melkov, A. Šaltis and Š. Paulikas, “Performance Testing of Linux
Firewalls”, 2020 IEEE Open Conference of Electrical, Electronic and
Information Sciences (eStream), 2020, pp. 1-4, DOI:
10.1109/eStream50540.2020.9108868.

[4] G. Lencse, “Scalability of IPv6 transition technologies for IPv4aaS”,
Internet Draft, Oct 23, 2022, draft-lencse-v6ops-transition-scalability-04
[online], available:
https://datatracker.ietf.org/doc/html/draft-lencse-v6ops-transition-scala
bility-04

[5] N.Gandotra, L.S. Sharma, “Performance evaluation and modelling of the
Linux firewall under stress test”, In: Singh, P., Kar, A., Singh, Y.,

TABLE VI
DEFAULT AND MAXIMUM ALLOWED VALUES FOR HASHSIZE AND NF_CONNTRACK_MAX AS A FUNCTION OF MEMORY SIZE, IPTABLES 1.6.0

Computer memory size (GB) 1 2 8 384
Default hashsize 7,680 16,384=2^14 65,536=2^16 65,536=2^16
Default nf_conntrack_max 30,720 65,536=2^16 262,144=2^18 262,144=2^18
Maximum possible hashsize 33,554,432=2^25 67,108,864=2^26 268,435,456=2^28 268,435,456=2^28
Maximum possible nf_conntrack_max 1,073,741,824=2^30 1,073,741,824=2^30 1,073,741,824=2^30 1,073,741,824=2^30

TABLE VII
PERFORMANCE OF NFTABLES 0.9.0-2, 2^26 HASH TABLE SIZE,

40M CONNECTIONS, 16 CPU CORES
Performance metric Max. conn. est. rate (cps) Throughput (fps)
Error of bin. search 100 200
Median 228,222 835,544
Minimum 225,683 824,804
Maximum 229,198 840,428

Paper ID: 250

8

of iptables significantly. Of course, now arises the question of
using hashsize=nf_conntrack_max*n, where n > 1. We
did not do tests with n=2, 4, 8, etc. but our results show that the
expectable gain is much less. When using iptables as a stateful
NAT44 gateway to forward Internet traffic, there are a high
number of packets transferred per session. Thus, throughput is
the dominant one from among our three used performance
metrics. Examining Table II, we can see that there is only 4%
performance difference between the first two columns. And
considering the observable trends, it is likely to be even less, if
the size if the hash table is further increased. And the increase
of the hash table size has a built in limit. Theoretically, the
default and the allowed maximum values for hashsize and
nf_conntrack_max depend on the RAM size of the computer
[15]. Our measurements show that it is true for very small RAM
sizes (e.g. 1GB or 2GB), but the values do not change from
8GB and to 384GB RAM size. We used the mem=nGB kernel
command line parameter to limit the available memory for
testing. Our results in Table VI show that the default and
maximum values are the same for 8GB and 384GB.

VII. TESTING THE PERFORMANCE OF NFTABLES
We have also tested the maximum connection establishment

rate and throughput performance of nftables. We used the same
test system as shown in Fig. 4, but Debian 10.13 with
4.19.0-20-amd64 kernel was used on the DUT. The version of
nftables was: 0.9.0-2. We tested its performance only at the
“optimal” working point, that is, using our recommended
setting: hashsize=nf_conntrack_max.

The results are shown in Table VII. Comparing the results
with that of iptables (shown in Table I and Table II), we can see
that the median maximum connection establishment rate of
nftables (228,222cps) is about one tenth of the median
maximum connection establishment rate of iptables
(2,263,732cps), whereas the median throughput of nftables
(835,544fps) is about one fifth of the median throughput of
iptables (4,252,197fps) measured under the same conditions.
Therefore, we conclude that nftables may not replace iptables
in the application scenarios where a stateful NAT44 gateway of
a CGN system has to handle a high number of connections with

high performance.

VIII. CONCLUSION
We have measured the maximum connection establishment

rate, throughput and connection tear down rate as well as the
memory consumption of iptables as a function of the hash table
size using always 40 million connections to determine the
optimal value for the ratio of the number of connections and the
hash table size and/or any possible tradeoff.

We conclude that the long established convention of
hashsize=nf_conntrack_max/8 should be replaced by the
hashsize=nf_conntrack_max rule to increase the
performance of iptables to a high extent.

We have also shown that nftables may not replace iptables in
the application scenarios where a stateful NAT44 gateway of a
CGN system has to handle a high number of connections with
high performance, because iptables achieved about ten times
higher maximum connection establishment rate and about five
times higher throughput than nftables.

ACKNOWLEDGMENT
The experiments were carried out by remotely using the

resources of NICT StarBED, 2–12 Asahidai, Nomi-City,
Ishikawa 923–1211, Japan.

The authors would like to thank Shuuhei Takimoto for the
possibility to use StarBED, as well as to Tsukasa Nishita
Makoto Yoshida for their help and advice in StarBED usage
related issues.

Gábor Lencse thanks the National Institute of Information
and Communications (NICT), Japan for their support of his
stay at the Research Laboratory of Internet Initiative Japan,
where his research topic was the performance analysis of
stateful NAT64 / NAT44 implementations.

REFERENCES
[1] M. Nikkhah, R. Guérin, “Migrating the Internet to IPv6: An exploration

of the when and why”, IEEE/ACM Trans. Netw., vol. 24, no. 4, pp.
2291–2304, Apr. 2016, DOI: 10.1109/TNET.2015.2453338

[2] P. N. Ayuso, “Netfilter's connection tracking system”, Login: The
Usenix Magazine, vol. 31, no. 3, (2006) pp. 34-39. [Online]. Available:
https://www.usenix.org/system/files/login/articles/892-neira.pdf

[3] D. Melkov, A. Šaltis and Š. Paulikas, “Performance Testing of Linux
Firewalls”, 2020 IEEE Open Conference of Electrical, Electronic and
Information Sciences (eStream), 2020, pp. 1-4, DOI:
10.1109/eStream50540.2020.9108868.

[4] G. Lencse, “Scalability of IPv6 transition technologies for IPv4aaS”,
Internet Draft, Oct 23, 2022, draft-lencse-v6ops-transition-scalability-04
[online], available:
https://datatracker.ietf.org/doc/html/draft-lencse-v6ops-transition-scala
bility-04

[5] N.Gandotra, L.S. Sharma, “Performance evaluation and modelling of the
Linux firewall under stress test”, In: Singh, P., Kar, A., Singh, Y.,

TABLE VI
DEFAULT AND MAXIMUM ALLOWED VALUES FOR HASHSIZE AND NF_CONNTRACK_MAX AS A FUNCTION OF MEMORY SIZE, IPTABLES 1.6.0

Computer memory size (GB) 1 2 8 384
Default hashsize 7,680 16,384=2^14 65,536=2^16 65,536=2^16
Default nf_conntrack_max 30,720 65,536=2^16 262,144=2^18 262,144=2^18
Maximum possible hashsize 33,554,432=2^25 67,108,864=2^26 268,435,456=2^28 268,435,456=2^28
Maximum possible nf_conntrack_max 1,073,741,824=2^30 1,073,741,824=2^30 1,073,741,824=2^30 1,073,741,824=2^30

TABLE VII
PERFORMANCE OF NFTABLES 0.9.0-2, 2^26 HASH TABLE SIZE,

40M CONNECTIONS, 16 CPU CORES
Performance metric Max. conn. est. rate (cps) Throughput (fps)
Error of bin. search 100 200
Median 228,222 835,544
Minimum 225,683 824,804
Maximum 229,198 840,428

Paper ID: 250

8

of iptables significantly. Of course, now arises the question of
using hashsize=nf_conntrack_max*n, where n > 1. We
did not do tests with n=2, 4, 8, etc. but our results show that the
expectable gain is much less. When using iptables as a stateful
NAT44 gateway to forward Internet traffic, there are a high
number of packets transferred per session. Thus, throughput is
the dominant one from among our three used performance
metrics. Examining Table II, we can see that there is only 4%
performance difference between the first two columns. And
considering the observable trends, it is likely to be even less, if
the size if the hash table is further increased. And the increase
of the hash table size has a built in limit. Theoretically, the
default and the allowed maximum values for hashsize and
nf_conntrack_max depend on the RAM size of the computer
[15]. Our measurements show that it is true for very small RAM
sizes (e.g. 1GB or 2GB), but the values do not change from
8GB and to 384GB RAM size. We used the mem=nGB kernel
command line parameter to limit the available memory for
testing. Our results in Table VI show that the default and
maximum values are the same for 8GB and 384GB.

VII. TESTING THE PERFORMANCE OF NFTABLES
We have also tested the maximum connection establishment

rate and throughput performance of nftables. We used the same
test system as shown in Fig. 4, but Debian 10.13 with
4.19.0-20-amd64 kernel was used on the DUT. The version of
nftables was: 0.9.0-2. We tested its performance only at the
“optimal” working point, that is, using our recommended
setting: hashsize=nf_conntrack_max.

The results are shown in Table VII. Comparing the results
with that of iptables (shown in Table I and Table II), we can see
that the median maximum connection establishment rate of
nftables (228,222cps) is about one tenth of the median
maximum connection establishment rate of iptables
(2,263,732cps), whereas the median throughput of nftables
(835,544fps) is about one fifth of the median throughput of
iptables (4,252,197fps) measured under the same conditions.
Therefore, we conclude that nftables may not replace iptables
in the application scenarios where a stateful NAT44 gateway of
a CGN system has to handle a high number of connections with

high performance.

VIII. CONCLUSION
We have measured the maximum connection establishment

rate, throughput and connection tear down rate as well as the
memory consumption of iptables as a function of the hash table
size using always 40 million connections to determine the
optimal value for the ratio of the number of connections and the
hash table size and/or any possible tradeoff.

We conclude that the long established convention of
hashsize=nf_conntrack_max/8 should be replaced by the
hashsize=nf_conntrack_max rule to increase the
performance of iptables to a high extent.

We have also shown that nftables may not replace iptables in
the application scenarios where a stateful NAT44 gateway of a
CGN system has to handle a high number of connections with
high performance, because iptables achieved about ten times
higher maximum connection establishment rate and about five
times higher throughput than nftables.

ACKNOWLEDGMENT
The experiments were carried out by remotely using the

resources of NICT StarBED, 2–12 Asahidai, Nomi-City,
Ishikawa 923–1211, Japan.

The authors would like to thank Shuuhei Takimoto for the
possibility to use StarBED, as well as to Tsukasa Nishita
Makoto Yoshida for their help and advice in StarBED usage
related issues.

Gábor Lencse thanks the National Institute of Information
and Communications (NICT), Japan for their support of his
stay at the Research Laboratory of Internet Initiative Japan,
where his research topic was the performance analysis of
stateful NAT64 / NAT44 implementations.

REFERENCES
[1] M. Nikkhah, R. Guérin, “Migrating the Internet to IPv6: An exploration

of the when and why”, IEEE/ACM Trans. Netw., vol. 24, no. 4, pp.
2291–2304, Apr. 2016, DOI: 10.1109/TNET.2015.2453338

[2] P. N. Ayuso, “Netfilter's connection tracking system”, Login: The
Usenix Magazine, vol. 31, no. 3, (2006) pp. 34-39. [Online]. Available:
https://www.usenix.org/system/files/login/articles/892-neira.pdf

[3] D. Melkov, A. Šaltis and Š. Paulikas, “Performance Testing of Linux
Firewalls”, 2020 IEEE Open Conference of Electrical, Electronic and
Information Sciences (eStream), 2020, pp. 1-4, DOI:
10.1109/eStream50540.2020.9108868.

[4] G. Lencse, “Scalability of IPv6 transition technologies for IPv4aaS”,
Internet Draft, Oct 23, 2022, draft-lencse-v6ops-transition-scalability-04
[online], available:
https://datatracker.ietf.org/doc/html/draft-lencse-v6ops-transition-scala
bility-04

[5] N.Gandotra, L.S. Sharma, “Performance evaluation and modelling of the
Linux firewall under stress test”, In: Singh, P., Kar, A., Singh, Y.,

TABLE VI
DEFAULT AND MAXIMUM ALLOWED VALUES FOR HASHSIZE AND NF_CONNTRACK_MAX AS A FUNCTION OF MEMORY SIZE, IPTABLES 1.6.0

Computer memory size (GB) 1 2 8 384
Default hashsize 7,680 16,384=2^14 65,536=2^16 65,536=2^16
Default nf_conntrack_max 30,720 65,536=2^16 262,144=2^18 262,144=2^18
Maximum possible hashsize 33,554,432=2^25 67,108,864=2^26 268,435,456=2^28 268,435,456=2^28
Maximum possible nf_conntrack_max 1,073,741,824=2^30 1,073,741,824=2^30 1,073,741,824=2^30 1,073,741,824=2^30

TABLE VII
PERFORMANCE OF NFTABLES 0.9.0-2, 2^26 HASH TABLE SIZE,

40M CONNECTIONS, 16 CPU CORES
Performance metric Max. conn. est. rate (cps) Throughput (fps)
Error of bin. search 100 200
Median 228,222 835,544
Minimum 225,683 824,804
Maximum 229,198 840,428

Paper ID: 250

8

of iptables significantly. Of course, now arises the question of
using hashsize=nf_conntrack_max*n, where n > 1. We
did not do tests with n=2, 4, 8, etc. but our results show that the
expectable gain is much less. When using iptables as a stateful
NAT44 gateway to forward Internet traffic, there are a high
number of packets transferred per session. Thus, throughput is
the dominant one from among our three used performance
metrics. Examining Table II, we can see that there is only 4%
performance difference between the first two columns. And
considering the observable trends, it is likely to be even less, if
the size if the hash table is further increased. And the increase
of the hash table size has a built in limit. Theoretically, the
default and the allowed maximum values for hashsize and
nf_conntrack_max depend on the RAM size of the computer
[15]. Our measurements show that it is true for very small RAM
sizes (e.g. 1GB or 2GB), but the values do not change from
8GB and to 384GB RAM size. We used the mem=nGB kernel
command line parameter to limit the available memory for
testing. Our results in Table VI show that the default and
maximum values are the same for 8GB and 384GB.

VII. TESTING THE PERFORMANCE OF NFTABLES
We have also tested the maximum connection establishment

rate and throughput performance of nftables. We used the same
test system as shown in Fig. 4, but Debian 10.13 with
4.19.0-20-amd64 kernel was used on the DUT. The version of
nftables was: 0.9.0-2. We tested its performance only at the
“optimal” working point, that is, using our recommended
setting: hashsize=nf_conntrack_max.

The results are shown in Table VII. Comparing the results
with that of iptables (shown in Table I and Table II), we can see
that the median maximum connection establishment rate of
nftables (228,222cps) is about one tenth of the median
maximum connection establishment rate of iptables
(2,263,732cps), whereas the median throughput of nftables
(835,544fps) is about one fifth of the median throughput of
iptables (4,252,197fps) measured under the same conditions.
Therefore, we conclude that nftables may not replace iptables
in the application scenarios where a stateful NAT44 gateway of
a CGN system has to handle a high number of connections with

high performance.

VIII. CONCLUSION
We have measured the maximum connection establishment

rate, throughput and connection tear down rate as well as the
memory consumption of iptables as a function of the hash table
size using always 40 million connections to determine the
optimal value for the ratio of the number of connections and the
hash table size and/or any possible tradeoff.

We conclude that the long established convention of
hashsize=nf_conntrack_max/8 should be replaced by the
hashsize=nf_conntrack_max rule to increase the
performance of iptables to a high extent.

We have also shown that nftables may not replace iptables in
the application scenarios where a stateful NAT44 gateway of a
CGN system has to handle a high number of connections with
high performance, because iptables achieved about ten times
higher maximum connection establishment rate and about five
times higher throughput than nftables.

ACKNOWLEDGMENT
The experiments were carried out by remotely using the

resources of NICT StarBED, 2–12 Asahidai, Nomi-City,
Ishikawa 923–1211, Japan.

The authors would like to thank Shuuhei Takimoto for the
possibility to use StarBED, as well as to Tsukasa Nishita
Makoto Yoshida for their help and advice in StarBED usage
related issues.

Gábor Lencse thanks the National Institute of Information
and Communications (NICT), Japan for their support of his
stay at the Research Laboratory of Internet Initiative Japan,
where his research topic was the performance analysis of
stateful NAT64 / NAT44 implementations.

REFERENCES
[1] M. Nikkhah, R. Guérin, “Migrating the Internet to IPv6: An exploration

of the when and why”, IEEE/ACM Trans. Netw., vol. 24, no. 4, pp.
2291–2304, Apr. 2016, DOI: 10.1109/TNET.2015.2453338

[2] P. N. Ayuso, “Netfilter's connection tracking system”, Login: The
Usenix Magazine, vol. 31, no. 3, (2006) pp. 34-39. [Online]. Available:
https://www.usenix.org/system/files/login/articles/892-neira.pdf

[3] D. Melkov, A. Šaltis and Š. Paulikas, “Performance Testing of Linux
Firewalls”, 2020 IEEE Open Conference of Electrical, Electronic and
Information Sciences (eStream), 2020, pp. 1-4, DOI:
10.1109/eStream50540.2020.9108868.

[4] G. Lencse, “Scalability of IPv6 transition technologies for IPv4aaS”,
Internet Draft, Oct 23, 2022, draft-lencse-v6ops-transition-scalability-04
[online], available:
https://datatracker.ietf.org/doc/html/draft-lencse-v6ops-transition-scala
bility-04

[5] N.Gandotra, L.S. Sharma, “Performance evaluation and modelling of the
Linux firewall under stress test”, In: Singh, P., Kar, A., Singh, Y.,

TABLE VI
DEFAULT AND MAXIMUM ALLOWED VALUES FOR HASHSIZE AND NF_CONNTRACK_MAX AS A FUNCTION OF MEMORY SIZE, IPTABLES 1.6.0

Computer memory size (GB) 1 2 8 384
Default hashsize 7,680 16,384=2^14 65,536=2^16 65,536=2^16
Default nf_conntrack_max 30,720 65,536=2^16 262,144=2^18 262,144=2^18
Maximum possible hashsize 33,554,432=2^25 67,108,864=2^26 268,435,456=2^28 268,435,456=2^28
Maximum possible nf_conntrack_max 1,073,741,824=2^30 1,073,741,824=2^30 1,073,741,824=2^30 1,073,741,824=2^30

TABLE VII
PERFORMANCE OF NFTABLES 0.9.0-2, 2^26 HASH TABLE SIZE,

40M CONNECTIONS, 16 CPU CORES
Performance metric Max. conn. est. rate (cps) Throughput (fps)
Error of bin. search 100 200
Median 228,222 835,544
Minimum 225,683 824,804
Maximum 229,198 840,428

References
 [1] M. Nikkhah, R. Guérin, “Migrating the Internet to IPv6: An

exploration of the when and why”, IEEE/ACM Trans. Netw., vol. 24,
no. 4, pp. 2291–2304, Apr. 2016, doi: 10.1109/TNET.2015.2453338

 [2] P. N. Ayuso, “Netfilter's connection tracking system”, Login:
The Usenix Magazine, vol. 31, no. 3, (2006) pp. 34–39. [Online].
Available: https://www.usenix.org/system/files/login/articles/892-
neira.pdf

 [3] D. Melkov, A. Šaltis and Š. Paulikas, “Performance Testing of Linux
Firewalls”, 2020 IEEE Open Conference of Electrical, Electronic and
Information Sciences (eStream), 2020, pp. 1–4,

 doi: 10.1109/eStream50540.2020.9108868.
 [4] G. Lencse, “Scalability of IPv6 transition technologies for IPv4aaS”,

Internet Draft, Oct 23, 2022, draft-lencse-v6ops-transition-
scalability-04 [online], available: https://datatracker.ietf.org/doc/
html/draft-lencse-v6ops-transition-scalability-04

https://doi.org/10.1109/TNET.2015.2453338
https://www.usenix.org/system/files/login/articles/892-neira.pdf
https://www.usenix.org/system/files/login/articles/892-neira.pdf
https://doi.org/10.1109/eStream50540.2020.9108868
https://datatracker.ietf.org/doc/html/draft-lencse-v6ops-transition-scalability-04
https://datatracker.ietf.org/doc/html/draft-lencse-v6ops-transition-scalability-04

Optimizing the Performance of the Iptables
Stateful NAT44 Solution

INFOCOMMUNICATIONS JOURNAL

2023 • EARLY ACCESS 63

Gábor Lencse received his M.Sc. and Ph.D. degrees
in computer science from the Budapest University of
Technology and Economics, Budapest, Hungary in
1994 and 2001, respectively.
He works for the Department of Telecommunications,
Széchenyi István University, Győr, Hungary since
1997. Now, he is a Professor. He is also a part
time Senior Research Fellow at the Department of
Networked Systems and Services, Budapest University
of Technology and Economics since 2005. His research

interests include the performance and security analysis of IPv6 transition
technologies. He is a co-author of RFC 8219 and RFC 9313.

Keiichi Shima is a deputy director at the Research
Institute of Advanced Technology of SoftBank Corp.
His research field is the Internet and mobile network,
including designing and implementing communication
protocols, operation technologies, network security,
and so forth. He also works as a board member of the
WIDE project operating a nation wide research network
in Japan.

 [5] N.Gandotra, L.S. Sharma, “Performance evaluation and modelling of
the Linux firewall under stress test”, In: Singh, P., Kar, A., Singh, Y.,
Kolekar, M., Tanwar, S. (eds) Proceedings of ICRIC 2019, Lecture
Notes in Electrical Engineering, vol 597. Springer,

 doi: 10.1007/978-3-030-29407-6_54
 [6] K. Taga, J. Zheng, K. Mouri, S. Saito, E. Takimoto, “Firewall traversal

method by pseudo-TCP encapsulation”, IEICE Transactions on
Information and Systems, 2022, vol. E105.D, no. 1, pp. 105–115,
2022, doi: 10.1587/transinf.2021EDP7050

 [7] A. Toonk, “Linux kernel and measuring network throughput”,
personal blog, [Online], available: https://toonk.io/linux-kernel-and-
measuring-network-throughput/index.html

 [8] M. Tumolo, “Towards a faster Iptables in eBPF”, MSc thesis,
Politechnico di Torino, 2017-2018, [online], available:

 https://webthesis.biblio.polito.it/secure/8475/1/tesi.pdf
 [9] S. Bradner, and J. McQuaid, “Benchmarking methodology for

network interconnect devices”, IETF RFC 2544, 1999.
 doi: 10.17487/RFC2544.
 [10] D. Newman, T. Player, “Hash and stuffing: Overlooked factors in

network device benchmarking”, IETF RFC 4814, 2008.
 doi: 10.17487/RFC4814
 [11] T. Herbert, W. de Bruijn, “Scaling in the Linux networking stack”,

[Online]. Available: https://www.kernel.org/doc/Documentation/
networking/scaling.txt

 [12] C. Popoviciu, A. Hamza, G. V. de Velde, and D. Dugatkin, “IPv6
benchmarking methodology for network interconnect devices”, IETF
RFC 5180, 2008, doi: 10.17487/RFC5180.

 [13] M. Georgescu, L. Pislaru, and G. Lencse, “Benchmarking
methodology for IPv6 transition technologies”, IETF RFC 8219, Aug.
2017, doi: 10.17487/RFC8219

 [14] G. Lencse, K. Shima, "Benchmarking methodology for stateful
NATxy gateways using RFC 4814 pseudorandom port numbers",
Internet Draft, Sep 24, 2022, draft-ietf-bmwg-benchmarking-
stateful-00 [Online], available: https://datatracker.ietf.org/doc/html/
draft-ietf-bmwg-benchmarking-stateful-00

 [15] H. Eychenne, “Conntrack tuning: Netfilter conntrack performance
tweaking, v0.8”, 2008, [Online], available: https://wiki.khnet.info/
index.php/Conntrack_tuning

 [16] V. Gapon, “Tuning nf_conntrack”, personal blog, [Online], available:
https://ixnfo.com/en/tuning-nf_conntrack.html

 [17] H. Welte, “Netfilter/iptables FAQ” 2007, [Online], available: https://
www.netfilter.org/documentation/FAQ/netfilter-faq.html

 [18] J. Leach, “Netfilter conntrack memory usage”, [Online], available:
https://johnleach.co.uk/posts/2009/06/17/netfilter-conntrack-
memory-usage/

 [19] P. N. Ayuso, “[06/26] netfilter: conntrack: align nf_conn on cacheline
boundary”, commit message, 2016, [Online], available: https://
patchwork.ozlabs.org/project/netdev/patch/1467815048-2240-7-git-
send-email-pablo@netfilter.org/

 [20] G. Lencse, “Siitperf: an RFC 8219 compliant SIIT and stateful
NAT64/NAT44 tester”, free software under GPLv3 license, source
code, [Online], available: https://github.com/lencsegabor/siitperf

 [21] G. Lencse, “Design and implementation of a software tester for
benchmarking stateful NATxy gateways: theory and practice of
extending siitperf for stateful tests”, Computer Communications, vol.
172, no. 1, pp. 75-88, Aug. 1, 2022,

 doi: 10.1016/j.comcom.2022.05.028
[22] G. Lencse, “DUT settings for benchmarking iptables and nftables”

[Online], available: https://github.com/lencsegabor/DUT-settings-
iptables-nftables

https://doi.org/10.1007/978-3-030-29407-6_54
https://doi.org/10.1587/transinf.2021EDP7050
https://toonk.io/linux-kernel-and-measuring-network-throughput/index.html
https://toonk.io/linux-kernel-and-measuring-network-throughput/index.html
https://webthesis.biblio.polito.it/secure/8475/1/tesi.pdf
https://doi.org/10.17487/RFC2544
https://doi.org/10.17487/RFC4814
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://www.kernel.org/doc/Documentation/networking/scaling.txt
https://doi.org/10.17487/RFC5180
https://doi.org/10.17487/RFC8219
https://datatracker.ietf.org/doc/html/draft-ietf-bmwg-benchmarking-stateful-00
https://datatracker.ietf.org/doc/html/draft-ietf-bmwg-benchmarking-stateful-00
https://wiki.khnet.info/index.php/Conntrack_tuning
https://wiki.khnet.info/index.php/Conntrack_tuning
https://ixnfo.com/en/tuning-nf_conntrack.html
https://www.netfilter.org/documentation/FAQ/netfilter-faq.html
https://www.netfilter.org/documentation/FAQ/netfilter-faq.html
https://johnleach.co.uk/posts/2009/06/17/netfilter-conntrack-memory-usage/
https://johnleach.co.uk/posts/2009/06/17/netfilter-conntrack-memory-usage/
https://patchwork.ozlabs.org/project/netdev/patch/1467815048-2240-7-git-send-email-pablo@netfilter.org/
https://patchwork.ozlabs.org/project/netdev/patch/1467815048-2240-7-git-send-email-pablo@netfilter.org/
https://patchwork.ozlabs.org/project/netdev/patch/1467815048-2240-7-git-send-email-pablo@netfilter.org/
https://github.com/lencsegabor/siitperf
https://doi.org/10.1016/j.comcom.2022.05.028
https://github.com/lencsegabor/DUT-settings-iptables-nftables
https://github.com/lencsegabor/DUT-settings-iptables-nftables

