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Abstract—The stateful NAT44 performance of iptables is 

an important issue when it is used as a stateful NAT44 
gateway of a CGN (Carrier-Grade NAT) system. The 
performance measurements of iptables published in 
research papers do not comply with the requirements of 
RFC 2544 and RFC 4814 and the usability of their results 
has serious limitations. Our Internet Draft has proposed a 
benchmarking methodology for stateful NATxy (x, y are in 
{4, 6}) gateways and made it possible to perform the classic 
RFC 2544 measurement procedures like throughput, 
latency, frame loss rate, etc. with stateful NATxy gateways 
using RFC 4814 pseudorandom port numbers. It has also 
defined new performance metrics specific to stateful testing 
to quantify the connection setup and connection tear down 
performance of stateful NATxy gateways. In our current 
paper, we examine how the performance of iptables 
depends on various settings, and also if certain tradeoffs 
exist. We measure the maximum connection establishment 
rate, throughput and tear down rate of iptables as well as 
its memory consumption as a function of hash table size 
always using 40 million connections. We disclose all 
measurement details and results. We recommend new 
settings that enable network operators to achieve 
significantly higher performance than using the traditional 
ones. 
 

Index Terms—benchmarking, iptables, netfilter, optimization, 
performance, stateful NAT44. 
 

I. INTRODUCTION 
HE depletion of the public IPv4 address pool of IANA in 
2011 has presented the ISPs (Internet Service Providers) 

with a dilemma: either they deploy IPv6 as soon as possible or 
they use CGN (Carrier-Grade NAT). We believe that the first 
one is the only workable solution in the long run, but we also 
experience that the transition to IPv6 is happening rather slowly 
for various reasons [1], and we estimate that IPv4 will be with 
us for decades. Therefore, stateful NAT44 (also called NAPT: 
Network Address and Port Translation) gateways will also be 
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needed for a long time. The Netfilter Framework [2] of the 
Linux kernel (usually called iptables after the name of its 
command line management tool) is a widely used solution for 
this purpose.  

We are aware that in some areas of application, iptables is 
gradually replaced by nftables. The latter has advantages, when 
a high number of rules are used and they are often reconfigured, 
but it did not became an industry standard yet [3]. When 
implementing CGN, there is no need for a high number of rules 
and they are very rarely reconfigured, thus iptables is still 
appropriate for this purpose. What really matters for the ISPs, it 
is the performance of the stateful NAT44 translation. To that 
end, iptables is a good choice: the iptables stateful NAT44 
solution outperformed the Jool NAT64 solution by an order of 
magnitude in throughput and its performance also scaled up 
much better with the number of active CPU cores and showed 
much less degradation with the number of connections than 
Jool according to our measurements [4]. However, we have 
also experienced that the performance of iptables highly 
depends on certain parameters.  

The aim of our current paper is to investigate how the 
performance of iptables depends on various settings, and also to 
examine what kind of tradeoffs exist, and thus recommend 
optimal settings depending on the actual performance needs 
and hardware parameters of the ISPs. 

The remainder of this paper is organized as follows. In 
Section II, we make a survey how iptables is used in the current 
research papers and how its performance is analyzed and/or 
optimized. In Section III, we give a short summary of the state 
of the art methods for measuring the performance of stateful 
NAT44 gateways. In Section IV, we overview some relevant 
details of iptables including its tunable parameters and their 
recommended values as well as how they influence the memory 
consumption of iptables. In Section V, we disclose our 
measurements and their results. In Section VI, we discuss our 
results and give our recommendations to optimize the 
performance of iptables. Section VII is an additional case study 
in which we examine the performance of nftables. Section VIII 
concludes our paper. 

II. RELATED WORK 

A. Peer-reviewed Papers 
We have surveyed, how iptables appears in research papers 

from the latest years. We found that it is usually mentioned as a 
firewall and not as a stateful NAT44 solution. And the methods 
used for measuring its performance does not comply with the 
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relevant IETF RFCs, please see their requirements in Section 
III.A. 

For example, Melkov et al [3] compared the performance of 
iptables and nftables using very high number of rules (up to 
several times 10,000). In contrast with the common view, they 
have found that iptables significantly outperformed nftables. 
Depending on the actually examined chain, the throughput of 
nftables significantly deteriorated around 5,000 or 10,000 rules, 
whereas iptables could sustain a good performance up to 
20,000 or 40,000 rules. We note that they measured “TCP 
throughput” using iperf, and displayed the results in Mbps.  

Gandotra and Sharma [5] also measured the firewall 
performance of iptables using 200, 500, 1000, 5,000, and 
10,000 number of rules, TCP traffic with 1024 bytes packets 
size, multiple packet rates starting from 1,000pps increased by 
1,000pps steps to 8,000pps, and test durations of 30s and 120s. 
As for measurement tool, they used D-ITG (Distributed 
Internet Traffic Generator). 

Taga at al. [6] used iptables for testing their firewall traversal 
method. As for measurement method, they downloaded HTML 
files with different sizes and measured the download time. 

B. Other Sources 
In order to find more closely related sources to our topic, we 

have lowered the bar and did not require peer-reviewed papers. 
Thus, we found a really closely related writing of Andree 

Toonk [7]. One of his tests was a stateful NAT44 performance 
measurement using a single iptables rule and 10,000 network 
flows. For the measurements, he used a DPDK-based packet 
generator, but the exact details of the measurements (how the 
bidirectional traffic was generated) are not disclosed. Using 
two 3.2GHz Intel Xeon Gold 5218 CPUs (in all 64 cores were 
available using hyper-threading) he managed to achieve a total 
of 5.9Mpps using bidirectional traffic. It does not turn out, if it 
was a lossless rate or not.  

Whereas the above result is not bad, it definitely shows that 
there is room for performance optimization, as we achieved 
5.3Mpps using only 16 cores of a 2.1GHz Intel Xeon E5-2683 
v4 CPU even though we handled 1.56M connections (instead of 
only 10k) [4]. We note that our result is RFC 2544 [9] 
compliant throughput (non-drop rate). According to our 
measurements, the performance of iptables scaled up quite well 
with the number of CPU cores: when 4M connections were 
used and the number of active CPU cores was increased from 1 
to 16, its maximum connection establishment rate (please refer 
to Section III.C) and throughput scaled up from 223.5kcps 

(connections per second) and 414.9kfps (frames per second) to 
2,383kcps and 4,557kfps, respectively, thus the increase was 
more than tenfold [4]. We have also examined, how the 
performance of iptables degrades with the number of 
connections. In the range where we could increase the hash 
table size (please refer to Section IV.A) proportionally with the 
number of connections, the performance of iptables degraded 
only slightly with the 64-fold increase of the number of 
connection: when the number of connections were increased 
from 1.56M to 100M, its maximum connection establishment 
rate and throughput decreased from 2.406Mcps and 5.326Mfps 
to 2.237Mcps and 4.516Mfps, respectively. However, the 
degradation was more significant, when the built-in limitations 
of iptables prevented us from increasing the hash table size 
proportionally with the number of connections [4]. This is why 
we believe that it is worth examining how to optimize the 
parameters of iptables to provide ISPs with a high performance 
stateful NAT44 solution. 

Theoretically, the reimplementation of iptables in eBPF 
could significantly outperform the native iptables. However, 
the measurement results of Massimo Tumolo show that it 
happens only if the number of the rules is above 100 [8]. It can 
happen, if iptables is used as a firewall. However, in our case, 
iptables is used as a stateful NAT44 gateway. Here the number 
of rules is very low (one or a few). 

III. BENCHMARKING METHODOLOGY FOR STATEFUL NAT44 
GATEWAYS 

A. Benchmarking Methodology for Network Interconnect 
Devices 

There is a long established benchmarking methodology for 
network interconnect devices defined by a series of IETF 
(Internet Engineering Task Force) RFCs. Commercial network 
performance tester vendors follow the requirements of RFC 
2544 [9] for more than two decades. Its aim is to facilitate the 
measurement of the performance of network interconnect 
devices in an objective way. To that end it defines the most 
important conditions of the measurements to prevent gaming 
(or tricking or more openly: cheating), including: 

 Test setup 
 DUT (Device Under Test) settings (it may not be 

optimized for the given task) 
 Test frame format and frame sizes (e.g. for Ethernet: 

64, 128, 256, 512, 1024, 1280, 1518 bytes) 
 Measurement procedures (throughput, latency, frame 

loss rate, back-to-back frames, system recovery, 
reset) 

 Duration of the test (minimum 60s for throughput 
test) 

 Requirement of testing with bidirectional traffic 
 Usage of UDP as transport layer protocol 
 Testing with a single IP address pair and also with 

256 destination networks when routers are 
benchmarked. 

As for test setup, the one shown in Fig. 1 should be used by 
default. Although the arrows are unidirectional, bidirectional 

                   +------------+ 
                   |            | 
      +------------|   Tester   |<----------+ 
      |            |            |           | 
      |            +------------+           | 
      |                                     | 
      |            +------------+           | 
      |            |            |           | 
      +----------->|    DUT     |-----------+ 
                   |            | 
                   +------------+ 
 

Fig. 1.  Test setup for benchmarking network interconnect devices. [9] 
 
 

mailto:lencse%40sze.hu?subject=


Optimizing the Performance of the Iptables  
Stateful NAT44 Solution

EARLY ACCESS • 202356

INFOCOMMUNICATIONS JOURNAL
Paper ID: 250 
 

2 

relevant IETF RFCs, please see their requirements in Section 
III.A. 

For example, Melkov et al [3] compared the performance of 
iptables and nftables using very high number of rules (up to 
several times 10,000). In contrast with the common view, they 
have found that iptables significantly outperformed nftables. 
Depending on the actually examined chain, the throughput of 
nftables significantly deteriorated around 5,000 or 10,000 rules, 
whereas iptables could sustain a good performance up to 
20,000 or 40,000 rules. We note that they measured “TCP 
throughput” using iperf, and displayed the results in Mbps.  

Gandotra and Sharma [5] also measured the firewall 
performance of iptables using 200, 500, 1000, 5,000, and 
10,000 number of rules, TCP traffic with 1024 bytes packets 
size, multiple packet rates starting from 1,000pps increased by 
1,000pps steps to 8,000pps, and test durations of 30s and 120s. 
As for measurement tool, they used D-ITG (Distributed 
Internet Traffic Generator). 

Taga at al. [6] used iptables for testing their firewall traversal 
method. As for measurement method, they downloaded HTML 
files with different sizes and measured the download time. 

B. Other Sources 
In order to find more closely related sources to our topic, we 

have lowered the bar and did not require peer-reviewed papers. 
Thus, we found a really closely related writing of Andree 

Toonk [7]. One of his tests was a stateful NAT44 performance 
measurement using a single iptables rule and 10,000 network 
flows. For the measurements, he used a DPDK-based packet 
generator, but the exact details of the measurements (how the 
bidirectional traffic was generated) are not disclosed. Using 
two 3.2GHz Intel Xeon Gold 5218 CPUs (in all 64 cores were 
available using hyper-threading) he managed to achieve a total 
of 5.9Mpps using bidirectional traffic. It does not turn out, if it 
was a lossless rate or not.  

Whereas the above result is not bad, it definitely shows that 
there is room for performance optimization, as we achieved 
5.3Mpps using only 16 cores of a 2.1GHz Intel Xeon E5-2683 
v4 CPU even though we handled 1.56M connections (instead of 
only 10k) [4]. We note that our result is RFC 2544 [9] 
compliant throughput (non-drop rate). According to our 
measurements, the performance of iptables scaled up quite well 
with the number of CPU cores: when 4M connections were 
used and the number of active CPU cores was increased from 1 
to 16, its maximum connection establishment rate (please refer 
to Section III.C) and throughput scaled up from 223.5kcps 

(connections per second) and 414.9kfps (frames per second) to 
2,383kcps and 4,557kfps, respectively, thus the increase was 
more than tenfold [4]. We have also examined, how the 
performance of iptables degrades with the number of 
connections. In the range where we could increase the hash 
table size (please refer to Section IV.A) proportionally with the 
number of connections, the performance of iptables degraded 
only slightly with the 64-fold increase of the number of 
connection: when the number of connections were increased 
from 1.56M to 100M, its maximum connection establishment 
rate and throughput decreased from 2.406Mcps and 5.326Mfps 
to 2.237Mcps and 4.516Mfps, respectively. However, the 
degradation was more significant, when the built-in limitations 
of iptables prevented us from increasing the hash table size 
proportionally with the number of connections [4]. This is why 
we believe that it is worth examining how to optimize the 
parameters of iptables to provide ISPs with a high performance 
stateful NAT44 solution. 

Theoretically, the reimplementation of iptables in eBPF 
could significantly outperform the native iptables. However, 
the measurement results of Massimo Tumolo show that it 
happens only if the number of the rules is above 100 [8]. It can 
happen, if iptables is used as a firewall. However, in our case, 
iptables is used as a stateful NAT44 gateway. Here the number 
of rules is very low (one or a few). 

III. BENCHMARKING METHODOLOGY FOR STATEFUL NAT44 
GATEWAYS 

A. Benchmarking Methodology for Network Interconnect 
Devices 

There is a long established benchmarking methodology for 
network interconnect devices defined by a series of IETF 
(Internet Engineering Task Force) RFCs. Commercial network 
performance tester vendors follow the requirements of RFC 
2544 [9] for more than two decades. Its aim is to facilitate the 
measurement of the performance of network interconnect 
devices in an objective way. To that end it defines the most 
important conditions of the measurements to prevent gaming 
(or tricking or more openly: cheating), including: 

 Test setup 
 DUT (Device Under Test) settings (it may not be 

optimized for the given task) 
 Test frame format and frame sizes (e.g. for Ethernet: 

64, 128, 256, 512, 1024, 1280, 1518 bytes) 
 Measurement procedures (throughput, latency, frame 

loss rate, back-to-back frames, system recovery, 
reset) 

 Duration of the test (minimum 60s for throughput 
test) 

 Requirement of testing with bidirectional traffic 
 Usage of UDP as transport layer protocol 
 Testing with a single IP address pair and also with 

256 destination networks when routers are 
benchmarked. 

As for test setup, the one shown in Fig. 1 should be used by 
default. Although the arrows are unidirectional, bidirectional 

                   +------------+ 
                   |            | 
      +------------|   Tester   |<----------+ 
      |            |            |           | 
      |            +------------+           | 
      |                                     | 
      |            +------------+           | 
      |            |            |           | 
      +----------->|    DUT     |-----------+ 
                   |            | 
                   +------------+ 
 

Fig. 1.  Test setup for benchmarking network interconnect devices. [9] 
 
 

Paper ID: 250 
 

2 

relevant IETF RFCs, please see their requirements in Section 
III.A. 

For example, Melkov et al [3] compared the performance of 
iptables and nftables using very high number of rules (up to 
several times 10,000). In contrast with the common view, they 
have found that iptables significantly outperformed nftables. 
Depending on the actually examined chain, the throughput of 
nftables significantly deteriorated around 5,000 or 10,000 rules, 
whereas iptables could sustain a good performance up to 
20,000 or 40,000 rules. We note that they measured “TCP 
throughput” using iperf, and displayed the results in Mbps.  

Gandotra and Sharma [5] also measured the firewall 
performance of iptables using 200, 500, 1000, 5,000, and 
10,000 number of rules, TCP traffic with 1024 bytes packets 
size, multiple packet rates starting from 1,000pps increased by 
1,000pps steps to 8,000pps, and test durations of 30s and 120s. 
As for measurement tool, they used D-ITG (Distributed 
Internet Traffic Generator). 

Taga at al. [6] used iptables for testing their firewall traversal 
method. As for measurement method, they downloaded HTML 
files with different sizes and measured the download time. 

B. Other Sources 
In order to find more closely related sources to our topic, we 

have lowered the bar and did not require peer-reviewed papers. 
Thus, we found a really closely related writing of Andree 

Toonk [7]. One of his tests was a stateful NAT44 performance 
measurement using a single iptables rule and 10,000 network 
flows. For the measurements, he used a DPDK-based packet 
generator, but the exact details of the measurements (how the 
bidirectional traffic was generated) are not disclosed. Using 
two 3.2GHz Intel Xeon Gold 5218 CPUs (in all 64 cores were 
available using hyper-threading) he managed to achieve a total 
of 5.9Mpps using bidirectional traffic. It does not turn out, if it 
was a lossless rate or not.  

Whereas the above result is not bad, it definitely shows that 
there is room for performance optimization, as we achieved 
5.3Mpps using only 16 cores of a 2.1GHz Intel Xeon E5-2683 
v4 CPU even though we handled 1.56M connections (instead of 
only 10k) [4]. We note that our result is RFC 2544 [9] 
compliant throughput (non-drop rate). According to our 
measurements, the performance of iptables scaled up quite well 
with the number of CPU cores: when 4M connections were 
used and the number of active CPU cores was increased from 1 
to 16, its maximum connection establishment rate (please refer 
to Section III.C) and throughput scaled up from 223.5kcps 

(connections per second) and 414.9kfps (frames per second) to 
2,383kcps and 4,557kfps, respectively, thus the increase was 
more than tenfold [4]. We have also examined, how the 
performance of iptables degrades with the number of 
connections. In the range where we could increase the hash 
table size (please refer to Section IV.A) proportionally with the 
number of connections, the performance of iptables degraded 
only slightly with the 64-fold increase of the number of 
connection: when the number of connections were increased 
from 1.56M to 100M, its maximum connection establishment 
rate and throughput decreased from 2.406Mcps and 5.326Mfps 
to 2.237Mcps and 4.516Mfps, respectively. However, the 
degradation was more significant, when the built-in limitations 
of iptables prevented us from increasing the hash table size 
proportionally with the number of connections [4]. This is why 
we believe that it is worth examining how to optimize the 
parameters of iptables to provide ISPs with a high performance 
stateful NAT44 solution. 

Theoretically, the reimplementation of iptables in eBPF 
could significantly outperform the native iptables. However, 
the measurement results of Massimo Tumolo show that it 
happens only if the number of the rules is above 100 [8]. It can 
happen, if iptables is used as a firewall. However, in our case, 
iptables is used as a stateful NAT44 gateway. Here the number 
of rules is very low (one or a few). 

III. BENCHMARKING METHODOLOGY FOR STATEFUL NAT44 
GATEWAYS 

A. Benchmarking Methodology for Network Interconnect 
Devices 

There is a long established benchmarking methodology for 
network interconnect devices defined by a series of IETF 
(Internet Engineering Task Force) RFCs. Commercial network 
performance tester vendors follow the requirements of RFC 
2544 [9] for more than two decades. Its aim is to facilitate the 
measurement of the performance of network interconnect 
devices in an objective way. To that end it defines the most 
important conditions of the measurements to prevent gaming 
(or tricking or more openly: cheating), including: 

 Test setup 
 DUT (Device Under Test) settings (it may not be 

optimized for the given task) 
 Test frame format and frame sizes (e.g. for Ethernet: 

64, 128, 256, 512, 1024, 1280, 1518 bytes) 
 Measurement procedures (throughput, latency, frame 

loss rate, back-to-back frames, system recovery, 
reset) 

 Duration of the test (minimum 60s for throughput 
test) 

 Requirement of testing with bidirectional traffic 
 Usage of UDP as transport layer protocol 
 Testing with a single IP address pair and also with 

256 destination networks when routers are 
benchmarked. 

As for test setup, the one shown in Fig. 1 should be used by 
default. Although the arrows are unidirectional, bidirectional 

                   +------------+ 
                   |            | 
      +------------|   Tester   |<----------+ 
      |            |            |           | 
      |            +------------+           | 
      |                                     | 
      |            +------------+           | 
      |            |            |           | 
      +----------->|    DUT     |-----------+ 
                   |            | 
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relevant IETF RFCs, please see their requirements in Section 
III.A. 

For example, Melkov et al [3] compared the performance of 
iptables and nftables using very high number of rules (up to 
several times 10,000). In contrast with the common view, they 
have found that iptables significantly outperformed nftables. 
Depending on the actually examined chain, the throughput of 
nftables significantly deteriorated around 5,000 or 10,000 rules, 
whereas iptables could sustain a good performance up to 
20,000 or 40,000 rules. We note that they measured “TCP 
throughput” using iperf, and displayed the results in Mbps.  

Gandotra and Sharma [5] also measured the firewall 
performance of iptables using 200, 500, 1000, 5,000, and 
10,000 number of rules, TCP traffic with 1024 bytes packets 
size, multiple packet rates starting from 1,000pps increased by 
1,000pps steps to 8,000pps, and test durations of 30s and 120s. 
As for measurement tool, they used D-ITG (Distributed 
Internet Traffic Generator). 

Taga at al. [6] used iptables for testing their firewall traversal 
method. As for measurement method, they downloaded HTML 
files with different sizes and measured the download time. 

B. Other Sources 
In order to find more closely related sources to our topic, we 

have lowered the bar and did not require peer-reviewed papers. 
Thus, we found a really closely related writing of Andree 

Toonk [7]. One of his tests was a stateful NAT44 performance 
measurement using a single iptables rule and 10,000 network 
flows. For the measurements, he used a DPDK-based packet 
generator, but the exact details of the measurements (how the 
bidirectional traffic was generated) are not disclosed. Using 
two 3.2GHz Intel Xeon Gold 5218 CPUs (in all 64 cores were 
available using hyper-threading) he managed to achieve a total 
of 5.9Mpps using bidirectional traffic. It does not turn out, if it 
was a lossless rate or not.  

Whereas the above result is not bad, it definitely shows that 
there is room for performance optimization, as we achieved 
5.3Mpps using only 16 cores of a 2.1GHz Intel Xeon E5-2683 
v4 CPU even though we handled 1.56M connections (instead of 
only 10k) [4]. We note that our result is RFC 2544 [9] 
compliant throughput (non-drop rate). According to our 
measurements, the performance of iptables scaled up quite well 
with the number of CPU cores: when 4M connections were 
used and the number of active CPU cores was increased from 1 
to 16, its maximum connection establishment rate (please refer 
to Section III.C) and throughput scaled up from 223.5kcps 

(connections per second) and 414.9kfps (frames per second) to 
2,383kcps and 4,557kfps, respectively, thus the increase was 
more than tenfold [4]. We have also examined, how the 
performance of iptables degrades with the number of 
connections. In the range where we could increase the hash 
table size (please refer to Section IV.A) proportionally with the 
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only slightly with the 64-fold increase of the number of 
connection: when the number of connections were increased 
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to 2.237Mcps and 4.516Mfps, respectively. However, the 
degradation was more significant, when the built-in limitations 
of iptables prevented us from increasing the hash table size 
proportionally with the number of connections [4]. This is why 
we believe that it is worth examining how to optimize the 
parameters of iptables to provide ISPs with a high performance 
stateful NAT44 solution. 

Theoretically, the reimplementation of iptables in eBPF 
could significantly outperform the native iptables. However, 
the measurement results of Massimo Tumolo show that it 
happens only if the number of the rules is above 100 [8]. It can 
happen, if iptables is used as a firewall. However, in our case, 
iptables is used as a stateful NAT44 gateway. Here the number 
of rules is very low (one or a few). 

III. BENCHMARKING METHODOLOGY FOR STATEFUL NAT44 
GATEWAYS 

A. Benchmarking Methodology for Network Interconnect 
Devices 

There is a long established benchmarking methodology for 
network interconnect devices defined by a series of IETF 
(Internet Engineering Task Force) RFCs. Commercial network 
performance tester vendors follow the requirements of RFC 
2544 [9] for more than two decades. Its aim is to facilitate the 
measurement of the performance of network interconnect 
devices in an objective way. To that end it defines the most 
important conditions of the measurements to prevent gaming 
(or tricking or more openly: cheating), including: 

 Test setup 
 DUT (Device Under Test) settings (it may not be 

optimized for the given task) 
 Test frame format and frame sizes (e.g. for Ethernet: 

64, 128, 256, 512, 1024, 1280, 1518 bytes) 
 Measurement procedures (throughput, latency, frame 

loss rate, back-to-back frames, system recovery, 
reset) 

 Duration of the test (minimum 60s for throughput 
test) 

 Requirement of testing with bidirectional traffic 
 Usage of UDP as transport layer protocol 
 Testing with a single IP address pair and also with 

256 destination networks when routers are 
benchmarked. 

As for test setup, the one shown in Fig. 1 should be used by 
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relevant IETF RFCs, please see their requirements in Section 
III.A. 

For example, Melkov et al [3] compared the performance of 
iptables and nftables using very high number of rules (up to 
several times 10,000). In contrast with the common view, they 
have found that iptables significantly outperformed nftables. 
Depending on the actually examined chain, the throughput of 
nftables significantly deteriorated around 5,000 or 10,000 rules, 
whereas iptables could sustain a good performance up to 
20,000 or 40,000 rules. We note that they measured “TCP 
throughput” using iperf, and displayed the results in Mbps.  

Gandotra and Sharma [5] also measured the firewall 
performance of iptables using 200, 500, 1000, 5,000, and 
10,000 number of rules, TCP traffic with 1024 bytes packets 
size, multiple packet rates starting from 1,000pps increased by 
1,000pps steps to 8,000pps, and test durations of 30s and 120s. 
As for measurement tool, they used D-ITG (Distributed 
Internet Traffic Generator). 

Taga at al. [6] used iptables for testing their firewall traversal 
method. As for measurement method, they downloaded HTML 
files with different sizes and measured the download time. 

B. Other Sources 
In order to find more closely related sources to our topic, we 

have lowered the bar and did not require peer-reviewed papers. 
Thus, we found a really closely related writing of Andree 

Toonk [7]. One of his tests was a stateful NAT44 performance 
measurement using a single iptables rule and 10,000 network 
flows. For the measurements, he used a DPDK-based packet 
generator, but the exact details of the measurements (how the 
bidirectional traffic was generated) are not disclosed. Using 
two 3.2GHz Intel Xeon Gold 5218 CPUs (in all 64 cores were 
available using hyper-threading) he managed to achieve a total 
of 5.9Mpps using bidirectional traffic. It does not turn out, if it 
was a lossless rate or not.  

Whereas the above result is not bad, it definitely shows that 
there is room for performance optimization, as we achieved 
5.3Mpps using only 16 cores of a 2.1GHz Intel Xeon E5-2683 
v4 CPU even though we handled 1.56M connections (instead of 
only 10k) [4]. We note that our result is RFC 2544 [9] 
compliant throughput (non-drop rate). According to our 
measurements, the performance of iptables scaled up quite well 
with the number of CPU cores: when 4M connections were 
used and the number of active CPU cores was increased from 1 
to 16, its maximum connection establishment rate (please refer 
to Section III.C) and throughput scaled up from 223.5kcps 

(connections per second) and 414.9kfps (frames per second) to 
2,383kcps and 4,557kfps, respectively, thus the increase was 
more than tenfold [4]. We have also examined, how the 
performance of iptables degrades with the number of 
connections. In the range where we could increase the hash 
table size (please refer to Section IV.A) proportionally with the 
number of connections, the performance of iptables degraded 
only slightly with the 64-fold increase of the number of 
connection: when the number of connections were increased 
from 1.56M to 100M, its maximum connection establishment 
rate and throughput decreased from 2.406Mcps and 5.326Mfps 
to 2.237Mcps and 4.516Mfps, respectively. However, the 
degradation was more significant, when the built-in limitations 
of iptables prevented us from increasing the hash table size 
proportionally with the number of connections [4]. This is why 
we believe that it is worth examining how to optimize the 
parameters of iptables to provide ISPs with a high performance 
stateful NAT44 solution. 

Theoretically, the reimplementation of iptables in eBPF 
could significantly outperform the native iptables. However, 
the measurement results of Massimo Tumolo show that it 
happens only if the number of the rules is above 100 [8]. It can 
happen, if iptables is used as a firewall. However, in our case, 
iptables is used as a stateful NAT44 gateway. Here the number 
of rules is very low (one or a few). 

III. BENCHMARKING METHODOLOGY FOR STATEFUL NAT44 
GATEWAYS 

A. Benchmarking Methodology for Network Interconnect 
Devices 

There is a long established benchmarking methodology for 
network interconnect devices defined by a series of IETF 
(Internet Engineering Task Force) RFCs. Commercial network 
performance tester vendors follow the requirements of RFC 
2544 [9] for more than two decades. Its aim is to facilitate the 
measurement of the performance of network interconnect 
devices in an objective way. To that end it defines the most 
important conditions of the measurements to prevent gaming 
(or tricking or more openly: cheating), including: 

 Test setup 
 DUT (Device Under Test) settings (it may not be 

optimized for the given task) 
 Test frame format and frame sizes (e.g. for Ethernet: 

64, 128, 256, 512, 1024, 1280, 1518 bytes) 
 Measurement procedures (throughput, latency, frame 

loss rate, back-to-back frames, system recovery, 
reset) 

 Duration of the test (minimum 60s for throughput 
test) 

 Requirement of testing with bidirectional traffic 
 Usage of UDP as transport layer protocol 
 Testing with a single IP address pair and also with 

256 destination networks when routers are 
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As for test setup, the one shown in Fig. 1 should be used by 
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traffic should be used as written above.  
From among the performance metrics, throughput is the 

most important one for us. It is defined as the highest constant 
frame rate, at which all frames can be forwarded by the DUT. 
Its measurement procedure requires that test frames are 
transmitted by the Tester through the DUT in both directions at 
least for 60 seconds at a constant frame rate, and the Tester 
counts the number of received test frames:  

 If the number of the received test frames equals the 
number of the transmitted test frames then the frame 
rate is increased, and the test is rerun. 

 If the number of the received test frames is less than 
the number of the transmitted test frames then the 
frame rate is decreased, and the test is rerun. 

Whereas this wording facilitates various search algorithms, 
usually a binary search is executed using 0 and the maximum 
frame rate for the media as the starting interval. 

Theoretically, it can be said that RFC 2544 is IP version 
independent, but in practice, it uses IPv4 addresses. The media 
types for which it defined the maximum frame rates in its 
appendix, also show its age. 

As time passed by, the Benchmarking Working Group of 
IETF has produced further important RFCs. One of them is 
RFC 4814 [10]. It requires the usage of pseudorandom port 
numbers with uniform distribution over the following ranges: 

 Source port number range: 1,024–65,535 
 Destination port number range: 1–49,151 

Without that requirement, the very same test frames could be 
sent, which was very convenient for the tester vendors, but it 
did not reflect the nature of the Internet traffic. Moreover, 
pseudorandom port numbers are necessary to support RSS 
(Receive-Side Scaling, also called multi-queue receiving) [11], 
because if the same source and destination IP addresses are 
used for each packet, then only the port numbers can ensure 
entropy for the hash function to distribute the interrupts of 
packet arrivals among the several cores of a contemporary 
CPU. 

We note that there were two further important RFCs 
published. RFC 5180 [12] is mainly an IPv6 update regarding 
IPv6 specificities, but it also contains maximum frame rates for 
some media types being contemporary at the time of its writing. 
However, it excludes IPv6 transition technologies from its 
scope. They are covered by RFC 8219 [13]. It has kept the 
requirement of testing with bidirectional traffic, but it also 
introduces testing with single directional traffic as an optional 
measurement. We believe that the asymmetry of the amount of 
Internet traffic in download and upload directions is a good 

rational for testing also with unidirectional traffic, and it is 
worth extending it to the benchmarking of stateful NAT44 
gateways, too. 

B. Problems with Benchmarking Stateful NAT44 Gateways 
1) Problems with the Feasibility of RFC Compliant Tests 

As for benchmarking stateful NAT44 gateways, we are faced 
with multiple problems. RFC 2544 requires testing with 
bidirectional traffic, whereas RFC 4814 requires the usage of 
pseudorandom port numbers with uniform distribution from the 
above mentioned ranges. 

It can be easily calculated that the number of potential source 
port number destination port number combinations is more than 
three billion and it means so many network flows, thus potential 
entries in the connection tracking table of the stateful NAT44 
gateways. Therefore, literally following this requirement in the 
private to public direction could exhaust the capacity of the 
connection tracking table of the DUT. 

As for sending traffic in the public to private direction using 
pseudorandom port numbers, it would result in sending a lot of 
frames that do not belong to any existing connection, thus the 
stateful NAT44 gateway would simply discard them and the 
throughput test would fail. 
2) Problems with the Widely-used Measurements 

Researchers were creative enough to accommodate to the 
limitation of NAT44 that connections may be initiated only 
from the private side. They put the iperf or D-ITG server on the 
public side and thus the measurement was feasible. However, 
this type of measurement has serious limitations. To examine 
them, let us see, what happens (and what may happen) during 
the execution of a test. At the beginning of the test, most of the 
test frames sent form the private side result in new connections 
in the stateful NAT44 gateway. As time elapses, its connection 
tracking table has more and more connections and thus the 
proportion of the test frames that belong to an existing 
connection will increase. The proportion of the test frames 
resulting in new connections will likely decrease significantly 
and it may even become zero. The progress of this change 
depends on several factors including: 

1. how the client is programmed (how many different 
network flows are used and what policy it follows to 
send a test frame that belongs to an already used or a 
new flow) 

2. the connection timeout time of the stateful NAT44 
gateway 

3. the size and policy of the connection tracking table of 
the stateful NAT44 gateway. 

The main problem with this type of measurement is that the 
test traffic is a kind of a mix, in which the proportion of the 
ingredients (frames resulting in a new connection or not) varies 
with the time. It results in several negative consequences, 
including: 

1. It is rather hard to tell, exactly what was measured: 
e.g., the connection setup performance or the frame 
forwarding performance of the DUT? 

2. The results of measurements performed with different 
tools are likely not comparable. 

              +--------------------------------------+ 
     10.0.0.2 |Initiator                    Responder| 198.19.0.2 
+-------------|                Tester                |<------------+ 
| private IPv4|                         [state table]| public IPv4 | 
|             +--------------------------------------+             | 
|                                                                  | 
|             +--------------------------------------+             | 
|    10.0.0.1 |                 DUT:                 | 198.19.0.1  | 
+------------>|        Stateful NAT44 gateway        |-------------+ 
  private IPv4|     [connection tracking table]      | public IPv4 
              +--------------------------------------+ 
 

Fig. 2.  Test setup for benchmarking stateful NAT44 gateways. [14] 
 
 

Paper ID: 250 
 

2 

relevant IETF RFCs, please see their requirements in Section 
III.A. 

For example, Melkov et al [3] compared the performance of 
iptables and nftables using very high number of rules (up to 
several times 10,000). In contrast with the common view, they 
have found that iptables significantly outperformed nftables. 
Depending on the actually examined chain, the throughput of 
nftables significantly deteriorated around 5,000 or 10,000 rules, 
whereas iptables could sustain a good performance up to 
20,000 or 40,000 rules. We note that they measured “TCP 
throughput” using iperf, and displayed the results in Mbps.  

Gandotra and Sharma [5] also measured the firewall 
performance of iptables using 200, 500, 1000, 5,000, and 
10,000 number of rules, TCP traffic with 1024 bytes packets 
size, multiple packet rates starting from 1,000pps increased by 
1,000pps steps to 8,000pps, and test durations of 30s and 120s. 
As for measurement tool, they used D-ITG (Distributed 
Internet Traffic Generator). 

Taga at al. [6] used iptables for testing their firewall traversal 
method. As for measurement method, they downloaded HTML 
files with different sizes and measured the download time. 

B. Other Sources 
In order to find more closely related sources to our topic, we 

have lowered the bar and did not require peer-reviewed papers. 
Thus, we found a really closely related writing of Andree 

Toonk [7]. One of his tests was a stateful NAT44 performance 
measurement using a single iptables rule and 10,000 network 
flows. For the measurements, he used a DPDK-based packet 
generator, but the exact details of the measurements (how the 
bidirectional traffic was generated) are not disclosed. Using 
two 3.2GHz Intel Xeon Gold 5218 CPUs (in all 64 cores were 
available using hyper-threading) he managed to achieve a total 
of 5.9Mpps using bidirectional traffic. It does not turn out, if it 
was a lossless rate or not.  

Whereas the above result is not bad, it definitely shows that 
there is room for performance optimization, as we achieved 
5.3Mpps using only 16 cores of a 2.1GHz Intel Xeon E5-2683 
v4 CPU even though we handled 1.56M connections (instead of 
only 10k) [4]. We note that our result is RFC 2544 [9] 
compliant throughput (non-drop rate). According to our 
measurements, the performance of iptables scaled up quite well 
with the number of CPU cores: when 4M connections were 
used and the number of active CPU cores was increased from 1 
to 16, its maximum connection establishment rate (please refer 
to Section III.C) and throughput scaled up from 223.5kcps 

(connections per second) and 414.9kfps (frames per second) to 
2,383kcps and 4,557kfps, respectively, thus the increase was 
more than tenfold [4]. We have also examined, how the 
performance of iptables degrades with the number of 
connections. In the range where we could increase the hash 
table size (please refer to Section IV.A) proportionally with the 
number of connections, the performance of iptables degraded 
only slightly with the 64-fold increase of the number of 
connection: when the number of connections were increased 
from 1.56M to 100M, its maximum connection establishment 
rate and throughput decreased from 2.406Mcps and 5.326Mfps 
to 2.237Mcps and 4.516Mfps, respectively. However, the 
degradation was more significant, when the built-in limitations 
of iptables prevented us from increasing the hash table size 
proportionally with the number of connections [4]. This is why 
we believe that it is worth examining how to optimize the 
parameters of iptables to provide ISPs with a high performance 
stateful NAT44 solution. 

Theoretically, the reimplementation of iptables in eBPF 
could significantly outperform the native iptables. However, 
the measurement results of Massimo Tumolo show that it 
happens only if the number of the rules is above 100 [8]. It can 
happen, if iptables is used as a firewall. However, in our case, 
iptables is used as a stateful NAT44 gateway. Here the number 
of rules is very low (one or a few). 

III. BENCHMARKING METHODOLOGY FOR STATEFUL NAT44 
GATEWAYS 

A. Benchmarking Methodology for Network Interconnect 
Devices 

There is a long established benchmarking methodology for 
network interconnect devices defined by a series of IETF 
(Internet Engineering Task Force) RFCs. Commercial network 
performance tester vendors follow the requirements of RFC 
2544 [9] for more than two decades. Its aim is to facilitate the 
measurement of the performance of network interconnect 
devices in an objective way. To that end it defines the most 
important conditions of the measurements to prevent gaming 
(or tricking or more openly: cheating), including: 

 Test setup 
 DUT (Device Under Test) settings (it may not be 

optimized for the given task) 
 Test frame format and frame sizes (e.g. for Ethernet: 

64, 128, 256, 512, 1024, 1280, 1518 bytes) 
 Measurement procedures (throughput, latency, frame 

loss rate, back-to-back frames, system recovery, 
reset) 

 Duration of the test (minimum 60s for throughput 
test) 

 Requirement of testing with bidirectional traffic 
 Usage of UDP as transport layer protocol 
 Testing with a single IP address pair and also with 

256 destination networks when routers are 
benchmarked. 

As for test setup, the one shown in Fig. 1 should be used by 
default. Although the arrows are unidirectional, bidirectional 
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traffic should be used as written above.  
From among the performance metrics, throughput is the 

most important one for us. It is defined as the highest constant 
frame rate, at which all frames can be forwarded by the DUT. 
Its measurement procedure requires that test frames are 
transmitted by the Tester through the DUT in both directions at 
least for 60 seconds at a constant frame rate, and the Tester 
counts the number of received test frames:  

 If the number of the received test frames equals the 
number of the transmitted test frames then the frame 
rate is increased, and the test is rerun. 

 If the number of the received test frames is less than 
the number of the transmitted test frames then the 
frame rate is decreased, and the test is rerun. 

Whereas this wording facilitates various search algorithms, 
usually a binary search is executed using 0 and the maximum 
frame rate for the media as the starting interval. 

Theoretically, it can be said that RFC 2544 is IP version 
independent, but in practice, it uses IPv4 addresses. The media 
types for which it defined the maximum frame rates in its 
appendix, also show its age. 

As time passed by, the Benchmarking Working Group of 
IETF has produced further important RFCs. One of them is 
RFC 4814 [10]. It requires the usage of pseudorandom port 
numbers with uniform distribution over the following ranges: 

 Source port number range: 1,024–65,535 
 Destination port number range: 1–49,151 

Without that requirement, the very same test frames could be 
sent, which was very convenient for the tester vendors, but it 
did not reflect the nature of the Internet traffic. Moreover, 
pseudorandom port numbers are necessary to support RSS 
(Receive-Side Scaling, also called multi-queue receiving) [11], 
because if the same source and destination IP addresses are 
used for each packet, then only the port numbers can ensure 
entropy for the hash function to distribute the interrupts of 
packet arrivals among the several cores of a contemporary 
CPU. 

We note that there were two further important RFCs 
published. RFC 5180 [12] is mainly an IPv6 update regarding 
IPv6 specificities, but it also contains maximum frame rates for 
some media types being contemporary at the time of its writing. 
However, it excludes IPv6 transition technologies from its 
scope. They are covered by RFC 8219 [13]. It has kept the 
requirement of testing with bidirectional traffic, but it also 
introduces testing with single directional traffic as an optional 
measurement. We believe that the asymmetry of the amount of 
Internet traffic in download and upload directions is a good 

rational for testing also with unidirectional traffic, and it is 
worth extending it to the benchmarking of stateful NAT44 
gateways, too. 

B. Problems with Benchmarking Stateful NAT44 Gateways 
1) Problems with the Feasibility of RFC Compliant Tests 

As for benchmarking stateful NAT44 gateways, we are faced 
with multiple problems. RFC 2544 requires testing with 
bidirectional traffic, whereas RFC 4814 requires the usage of 
pseudorandom port numbers with uniform distribution from the 
above mentioned ranges. 

It can be easily calculated that the number of potential source 
port number destination port number combinations is more than 
three billion and it means so many network flows, thus potential 
entries in the connection tracking table of the stateful NAT44 
gateways. Therefore, literally following this requirement in the 
private to public direction could exhaust the capacity of the 
connection tracking table of the DUT. 

As for sending traffic in the public to private direction using 
pseudorandom port numbers, it would result in sending a lot of 
frames that do not belong to any existing connection, thus the 
stateful NAT44 gateway would simply discard them and the 
throughput test would fail. 
2) Problems with the Widely-used Measurements 

Researchers were creative enough to accommodate to the 
limitation of NAT44 that connections may be initiated only 
from the private side. They put the iperf or D-ITG server on the 
public side and thus the measurement was feasible. However, 
this type of measurement has serious limitations. To examine 
them, let us see, what happens (and what may happen) during 
the execution of a test. At the beginning of the test, most of the 
test frames sent form the private side result in new connections 
in the stateful NAT44 gateway. As time elapses, its connection 
tracking table has more and more connections and thus the 
proportion of the test frames that belong to an existing 
connection will increase. The proportion of the test frames 
resulting in new connections will likely decrease significantly 
and it may even become zero. The progress of this change 
depends on several factors including: 

1. how the client is programmed (how many different 
network flows are used and what policy it follows to 
send a test frame that belongs to an already used or a 
new flow) 

2. the connection timeout time of the stateful NAT44 
gateway 

3. the size and policy of the connection tracking table of 
the stateful NAT44 gateway. 

The main problem with this type of measurement is that the 
test traffic is a kind of a mix, in which the proportion of the 
ingredients (frames resulting in a new connection or not) varies 
with the time. It results in several negative consequences, 
including: 

1. It is rather hard to tell, exactly what was measured: 
e.g., the connection setup performance or the frame 
forwarding performance of the DUT? 

2. The results of measurements performed with different 
tools are likely not comparable. 

              +--------------------------------------+ 
     10.0.0.2 |Initiator                    Responder| 198.19.0.2 
+-------------|                Tester                |<------------+ 
| private IPv4|                         [state table]| public IPv4 | 
|             +--------------------------------------+             | 
|                                                                  | 
|             +--------------------------------------+             | 
|    10.0.0.1 |                 DUT:                 | 198.19.0.1  | 
+------------>|        Stateful NAT44 gateway        |-------------+ 
  private IPv4|     [connection tracking table]      | public IPv4 
              +--------------------------------------+ 
 

Fig. 2.  Test setup for benchmarking stateful NAT44 gateways. [14] 
 
 

Paper ID: 250 
 

3 

traffic should be used as written above.  
From among the performance metrics, throughput is the 

most important one for us. It is defined as the highest constant 
frame rate, at which all frames can be forwarded by the DUT. 
Its measurement procedure requires that test frames are 
transmitted by the Tester through the DUT in both directions at 
least for 60 seconds at a constant frame rate, and the Tester 
counts the number of received test frames:  

 If the number of the received test frames equals the 
number of the transmitted test frames then the frame 
rate is increased, and the test is rerun. 

 If the number of the received test frames is less than 
the number of the transmitted test frames then the 
frame rate is decreased, and the test is rerun. 

Whereas this wording facilitates various search algorithms, 
usually a binary search is executed using 0 and the maximum 
frame rate for the media as the starting interval. 

Theoretically, it can be said that RFC 2544 is IP version 
independent, but in practice, it uses IPv4 addresses. The media 
types for which it defined the maximum frame rates in its 
appendix, also show its age. 

As time passed by, the Benchmarking Working Group of 
IETF has produced further important RFCs. One of them is 
RFC 4814 [10]. It requires the usage of pseudorandom port 
numbers with uniform distribution over the following ranges: 
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 Destination port number range: 1–49,151 
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pseudorandom port numbers are necessary to support RSS 
(Receive-Side Scaling, also called multi-queue receiving) [11], 
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used for each packet, then only the port numbers can ensure 
entropy for the hash function to distribute the interrupts of 
packet arrivals among the several cores of a contemporary 
CPU. 

We note that there were two further important RFCs 
published. RFC 5180 [12] is mainly an IPv6 update regarding 
IPv6 specificities, but it also contains maximum frame rates for 
some media types being contemporary at the time of its writing. 
However, it excludes IPv6 transition technologies from its 
scope. They are covered by RFC 8219 [13]. It has kept the 
requirement of testing with bidirectional traffic, but it also 
introduces testing with single directional traffic as an optional 
measurement. We believe that the asymmetry of the amount of 
Internet traffic in download and upload directions is a good 

rational for testing also with unidirectional traffic, and it is 
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3. It is hard to tell, what conditions are needed to achieve 
reproducible measurements. 

4. It is not possible to measure some clear and well 
defined characteristics like bidirectional, 
download-only, and upload-only throughput or 
connection setup performance. 

Our methodology offers remedy for all these problems. 

C. Our Methodology 
We have defined a general methodology [14] suitable for the 

benchmarking of any stateful NATxy gateways using RFC 
4814 pseudorandom port numbers, where x and y are in {4, 6}. 

Now we give a brief introduction to the methodology using 
the example of the stateful NAT44. 

The test setup is shown in Fig. 2. The DUT is the stateful 
NAT44 gateway, which has a connection tracking table. Its 
content, size, and replacement policy is unknown for the Tester. 
The Tester can influence or examine its content in indirect 
ways: 

 The Tester can add a new connection to the 
connection tracking table by sending a test frame in 
the private to public direction with a new source port 
number destination port number combination. 

 The Tester can check, if a given connection is present 
in the connection tracking table by sending a test 
frame belonging to the given connection in the public 
to private direction and verifying if the test frame 
arrives back. 

There are two operations that can be performed by some out 
of band methods: 

1. The timeout time of the connections can be set to any 
permitted value. 

2. The entire content of the connection tracking table 
can be deleted. 

Please refer to Section V.A, how these operations can be 
performed with iptables. 

As the operation of the stateful NAT44 gateway is 
asymmetric, the operation of the Tester is also asymmetric. 

The Initiator can send a test frame using any desired source 
port number destination port number combinations, but it uses 
restricted ranges to avoid the exhaustion of the capacity of the 
connection tracking table of the DUT. The size of the source 
port number range is larger (e.g. a few times 10,000) and the 
size of the destination port numbers is smaller (e.g. in the order 
of 10, 100, or 1000), and it can be used as a parameter to 
perform the measurements with different number of network 
flows. Please refer to our Internet Draft [14] for the rationale of 
the asymmetry of the sizes of the port number ranges. (The 
source and destination IP addresses have constant values and 
the protocol is always UDP.)  

The Responder may not invent any flow identifiers, but it 
extracts the four tuples (source IP address, source port number, 
destination IP address, destination port number) from the 
received test frames and stores them in its state table. When it 
sends a test frame, it takes a four tuple from its state table 
(swaps source and destination), and thus it creates a valid test 
frame that belongs to an existing connection in the connection 

tracking table of the DUT. 
To make testing possible, we have introduced the 

preliminary test phase. During this phase only the Initiator 
sends test frames. The DUT registers the new connections into 
its connection tracking table, translates the test frames and 
forwards them to the Responder. Thus, the connection tracking 
table of the DUT and the state table of the Responder are 
initialized, and in the real test phase, the Responder is able to 
send valid test frames. 

To achieve clear and repeatable measurements, we use two 
extreme situations that we can simply ensure: 

1. All test frames create a new connection during the 
preliminary test phase. 

2. Test frames never create a new connection in the real 
test phase. 

We achieve them by using 
 large enough and empty connection tracking table for 

each test 
 pseudorandom enumeration of all possible source 

port number destination port number combinations in 
the preliminary test phase 

 a properly high timeout value in the DUT (higher than 
the time duration from the beginning of the 
preliminary test phase to the end of the real test phase 
including timeout). 

To quantify the connection setup performance of the DUT, 
we have introduced the maximum connection establishment 
rate as a new metric. It is the highest constant frame rate at 
which the DUT is able to process all test frames in the 
preliminary test phase. (Each test frame is successfully 
translated and a new connection is created in the connection 
tracking table.) Its measurement procedure is very simple to 
that of the throughput, the details can be found in our Internet 
Draft. 

All “classic” measurements (throughput, latency, frame loss 
rate, etc.) can be performed in the real test phase. To that end, 
first, the preliminary test phase has to be executed using a frame 
rate safely lower than the measured connection establishment 
rate. Then comes the real test phase with the desired 
measurement. 

The other side of connection establishment is connection tear 
down. We defined connection tear down rate to quantify the 
connection tear down performance of the DUT. Is short, it is 
measured as follows. First, N number of connections are loaded 
into the connection tracking table of the DUT. Then the entire 
content of the connection tracking table is deleted, and its T 
deletion time is measured. The connection tear down rate is 
calculated as: N/T. It is measured for different values of N. 

We give more details in Section V.B.4, were we describe our 
test to measure the connection tear down rate of iptables. 

IV. IMPORTANT DETAILS OF IPTABLES 
First of all, iptables does connection tracking not only for 

stateful protocols (TCP), but also for stateless ones (UDP, 
ICMP). The connection tracking system of iptables is 
implemented using hashing to ensure efficient lookups. As for 
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3. It is hard to tell, what conditions are needed to achieve 
reproducible measurements. 

4. It is not possible to measure some clear and well 
defined characteristics like bidirectional, 
download-only, and upload-only throughput or 
connection setup performance. 

Our methodology offers remedy for all these problems. 

C. Our Methodology 
We have defined a general methodology [14] suitable for the 

benchmarking of any stateful NATxy gateways using RFC 
4814 pseudorandom port numbers, where x and y are in {4, 6}. 

Now we give a brief introduction to the methodology using 
the example of the stateful NAT44. 

The test setup is shown in Fig. 2. The DUT is the stateful 
NAT44 gateway, which has a connection tracking table. Its 
content, size, and replacement policy is unknown for the Tester. 
The Tester can influence or examine its content in indirect 
ways: 

 The Tester can add a new connection to the 
connection tracking table by sending a test frame in 
the private to public direction with a new source port 
number destination port number combination. 

 The Tester can check, if a given connection is present 
in the connection tracking table by sending a test 
frame belonging to the given connection in the public 
to private direction and verifying if the test frame 
arrives back. 

There are two operations that can be performed by some out 
of band methods: 

1. The timeout time of the connections can be set to any 
permitted value. 

2. The entire content of the connection tracking table 
can be deleted. 

Please refer to Section V.A, how these operations can be 
performed with iptables. 

As the operation of the stateful NAT44 gateway is 
asymmetric, the operation of the Tester is also asymmetric. 

The Initiator can send a test frame using any desired source 
port number destination port number combinations, but it uses 
restricted ranges to avoid the exhaustion of the capacity of the 
connection tracking table of the DUT. The size of the source 
port number range is larger (e.g. a few times 10,000) and the 
size of the destination port numbers is smaller (e.g. in the order 
of 10, 100, or 1000), and it can be used as a parameter to 
perform the measurements with different number of network 
flows. Please refer to our Internet Draft [14] for the rationale of 
the asymmetry of the sizes of the port number ranges. (The 
source and destination IP addresses have constant values and 
the protocol is always UDP.)  

The Responder may not invent any flow identifiers, but it 
extracts the four tuples (source IP address, source port number, 
destination IP address, destination port number) from the 
received test frames and stores them in its state table. When it 
sends a test frame, it takes a four tuple from its state table 
(swaps source and destination), and thus it creates a valid test 
frame that belongs to an existing connection in the connection 

tracking table of the DUT. 
To make testing possible, we have introduced the 

preliminary test phase. During this phase only the Initiator 
sends test frames. The DUT registers the new connections into 
its connection tracking table, translates the test frames and 
forwards them to the Responder. Thus, the connection tracking 
table of the DUT and the state table of the Responder are 
initialized, and in the real test phase, the Responder is able to 
send valid test frames. 

To achieve clear and repeatable measurements, we use two 
extreme situations that we can simply ensure: 

1. All test frames create a new connection during the 
preliminary test phase. 

2. Test frames never create a new connection in the real 
test phase. 

We achieve them by using 
 large enough and empty connection tracking table for 

each test 
 pseudorandom enumeration of all possible source 

port number destination port number combinations in 
the preliminary test phase 

 a properly high timeout value in the DUT (higher than 
the time duration from the beginning of the 
preliminary test phase to the end of the real test phase 
including timeout). 

To quantify the connection setup performance of the DUT, 
we have introduced the maximum connection establishment 
rate as a new metric. It is the highest constant frame rate at 
which the DUT is able to process all test frames in the 
preliminary test phase. (Each test frame is successfully 
translated and a new connection is created in the connection 
tracking table.) Its measurement procedure is very simple to 
that of the throughput, the details can be found in our Internet 
Draft. 

All “classic” measurements (throughput, latency, frame loss 
rate, etc.) can be performed in the real test phase. To that end, 
first, the preliminary test phase has to be executed using a frame 
rate safely lower than the measured connection establishment 
rate. Then comes the real test phase with the desired 
measurement. 

The other side of connection establishment is connection tear 
down. We defined connection tear down rate to quantify the 
connection tear down performance of the DUT. Is short, it is 
measured as follows. First, N number of connections are loaded 
into the connection tracking table of the DUT. Then the entire 
content of the connection tracking table is deleted, and its T 
deletion time is measured. The connection tear down rate is 
calculated as: N/T. It is measured for different values of N. 

We give more details in Section V.B.4, were we describe our 
test to measure the connection tear down rate of iptables. 

IV. IMPORTANT DETAILS OF IPTABLES 
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UDP, the source and destination IP addresses, as well as the 
source and destination port numbers are parts of the hash tuple. 
The size of the hash table is a power of 2. Hash collisions are 
handled that the connection tracking entries are stored as the 
elements of bidirectional linked lists starting from the hash 
table entries, as shown in Fig. 3. 

A. Parameters to Tune 
The size of the hash table fundamentally influences the 

efficiency of hashing and thus also the performance of iptables. 
Its default size is automatically determined on the basis of the 
memory size of the Linux system. It can be read or modified by 
reading or writing the 
/sys/module/nf_conntrack/parameters/hashsize 
file.  

The maximum number of the connection tracking entries is 
another important parameter. It can be read or written using 
sysctl as net.netfilter.nf_conntrack_max.  

Traditionally, the values of the above two parameters are set 
as: hashsize=nf_conntrack_max/8 [15], [16]. It means 
that the average length of the linked list starting from the hash 
table entries may be up to 8. However, this is just a convention, 
and in our current paper, we examine what value is worth using. 

We note that newer systems use 4 instead of 8 when they set 
the default values, please refer to Table VI. 

As for timeout, iptables handles several different timeouts 
for the various states of TCP, two different ones for UDP and 
one for ICMP. Now for us it is enough to handle (using 
sysctl): net.netfilter.nf_conntrack_udp_timeout.  

B. Memory Consumption 
The memory consumption of the hash table is likely 8 bytes 

per entry, as 64 bits are required to store a pointer pointing to 
the first element of the linked list, and we also confirm it by 
measurements in Section V.C.1. 

As for the memory consumption of the connection tracking 
entries, we have found several different values. 

1. Section 3.7 of [17] (a document from 2007) states that 
“each tracked connection eats about 350 bytes of 
non-swappable kernel memory”.  

2. Another source from 2009 stated that as each object 
was 304 bytes in size and 13 of them fitted in a 4096 
bytes page, thus 144 bytes was wasted and so the 
effective memory consumption was about 316 bytes 
per nf_conntrack object [18]. 

3. We found in a commit message from 2016 that 
“increases struct size by 32 bytes (288 -> 320), but it 
is the right thing, else any attempt to (re-)arrange 
nf_conn members by cacheline won't work.” [19] 

Therefore, we have determined the effective memory 
consumption of the connection tracking entries by 
measurement in Section V.C.2. 

V. OUR BENCHMARKING MEASUREMENTS 

A. Measurement System 
The topology of the measurement system is shown in Fig. 4. 

Both the Tester and the DUT were Dell PowerEdge 430 
servers. Each one had two 2.1GHz Intel Xeon E5-2683 v4 
CPUs, 384GB 2400MHz DDR4 RAM and an Intel 10GbE dual 
port X540 network adapter. They were interconnected by direct 
cables to avoid frame loss. Debian 9.13 Linux operating system 
with 4.9.0-16-amd64 kernel was used on both servers. The 
CPU clock frequencies of both servers were set to fixed 2.1GHz 
using the tlp Debian package and hyper-threading was 
switched off to ensure reliable results. Only CPU cores 0-15 of 
the DUT were online. The version of iptables was 1.6.0. The 
test system was the same as we used for our measurements in 
Section 2 of [4], thus our results are directly comparable. 

For performing measurements, we used the siitperf [20] 
RFC 8219 compliant SIIT and stateful NAT64 / NAT44 tester 
program documented in [21].  

We note that siitperf was developed for research 
purposes and it is a collection of binary programs (written in 
C/C++ using DPDK) that perform elementary tests, and bash 
shell scripts that have to be tailored to the measurement 
environment. As for stateful tests, they use ssh to execute 
some scripts on the DUT e.g., to empty the connection tracking 
table of the DUT. For our current tests, we used two such 
scripts on the p095 server. The set-iptables-hcpx 
script was used to set the iptables rule, the size of the hash table, 
the maximum number of connections, and the UDP timeout 

 
Fig. 3.  Implementation of the connection tracking table of iptables using a hash 

table and bidirectional linked lists (based on [2]). 
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3. It is hard to tell, what conditions are needed to achieve 
reproducible measurements. 

4. It is not possible to measure some clear and well 
defined characteristics like bidirectional, 
download-only, and upload-only throughput or 
connection setup performance. 

Our methodology offers remedy for all these problems. 

C. Our Methodology 
We have defined a general methodology [14] suitable for the 

benchmarking of any stateful NATxy gateways using RFC 
4814 pseudorandom port numbers, where x and y are in {4, 6}. 

Now we give a brief introduction to the methodology using 
the example of the stateful NAT44. 

The test setup is shown in Fig. 2. The DUT is the stateful 
NAT44 gateway, which has a connection tracking table. Its 
content, size, and replacement policy is unknown for the Tester. 
The Tester can influence or examine its content in indirect 
ways: 

 The Tester can add a new connection to the 
connection tracking table by sending a test frame in 
the private to public direction with a new source port 
number destination port number combination. 

 The Tester can check, if a given connection is present 
in the connection tracking table by sending a test 
frame belonging to the given connection in the public 
to private direction and verifying if the test frame 
arrives back. 

There are two operations that can be performed by some out 
of band methods: 

1. The timeout time of the connections can be set to any 
permitted value. 

2. The entire content of the connection tracking table 
can be deleted. 

Please refer to Section V.A, how these operations can be 
performed with iptables. 

As the operation of the stateful NAT44 gateway is 
asymmetric, the operation of the Tester is also asymmetric. 

The Initiator can send a test frame using any desired source 
port number destination port number combinations, but it uses 
restricted ranges to avoid the exhaustion of the capacity of the 
connection tracking table of the DUT. The size of the source 
port number range is larger (e.g. a few times 10,000) and the 
size of the destination port numbers is smaller (e.g. in the order 
of 10, 100, or 1000), and it can be used as a parameter to 
perform the measurements with different number of network 
flows. Please refer to our Internet Draft [14] for the rationale of 
the asymmetry of the sizes of the port number ranges. (The 
source and destination IP addresses have constant values and 
the protocol is always UDP.)  

The Responder may not invent any flow identifiers, but it 
extracts the four tuples (source IP address, source port number, 
destination IP address, destination port number) from the 
received test frames and stores them in its state table. When it 
sends a test frame, it takes a four tuple from its state table 
(swaps source and destination), and thus it creates a valid test 
frame that belongs to an existing connection in the connection 

tracking table of the DUT. 
To make testing possible, we have introduced the 

preliminary test phase. During this phase only the Initiator 
sends test frames. The DUT registers the new connections into 
its connection tracking table, translates the test frames and 
forwards them to the Responder. Thus, the connection tracking 
table of the DUT and the state table of the Responder are 
initialized, and in the real test phase, the Responder is able to 
send valid test frames. 

To achieve clear and repeatable measurements, we use two 
extreme situations that we can simply ensure: 

1. All test frames create a new connection during the 
preliminary test phase. 

2. Test frames never create a new connection in the real 
test phase. 

We achieve them by using 
 large enough and empty connection tracking table for 

each test 
 pseudorandom enumeration of all possible source 

port number destination port number combinations in 
the preliminary test phase 

 a properly high timeout value in the DUT (higher than 
the time duration from the beginning of the 
preliminary test phase to the end of the real test phase 
including timeout). 

To quantify the connection setup performance of the DUT, 
we have introduced the maximum connection establishment 
rate as a new metric. It is the highest constant frame rate at 
which the DUT is able to process all test frames in the 
preliminary test phase. (Each test frame is successfully 
translated and a new connection is created in the connection 
tracking table.) Its measurement procedure is very simple to 
that of the throughput, the details can be found in our Internet 
Draft. 

All “classic” measurements (throughput, latency, frame loss 
rate, etc.) can be performed in the real test phase. To that end, 
first, the preliminary test phase has to be executed using a frame 
rate safely lower than the measured connection establishment 
rate. Then comes the real test phase with the desired 
measurement. 

The other side of connection establishment is connection tear 
down. We defined connection tear down rate to quantify the 
connection tear down performance of the DUT. Is short, it is 
measured as follows. First, N number of connections are loaded 
into the connection tracking table of the DUT. Then the entire 
content of the connection tracking table is deleted, and its T 
deletion time is measured. The connection tear down rate is 
calculated as: N/T. It is measured for different values of N. 

We give more details in Section V.B.4, were we describe our 
test to measure the connection tear down rate of iptables. 

IV. IMPORTANT DETAILS OF IPTABLES 
First of all, iptables does connection tracking not only for 

stateful protocols (TCP), but also for stateless ones (UDP, 
ICMP). The connection tracking system of iptables is 
implemented using hashing to ensure efficient lookups. As for 
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of the deletion was measured. However, then the deletion time 
contained the time necessary to delete an empty connection 
tracking table, as well as the command execution and 
communications latencies, too. To make our results more 
accurate, we have also measured the duration of the deletion of 
an empty table, which also contained the command execution 
and communications latencies. Thus their difference contains 
only the time spent by the deletion of the N number of 
connections, which is called as net connection deletion time in 
Table III. This value is nearly the same independently form the 
hash table size. Thus, the connection tear down rate is also 
independent from the size of the hash table. 

C. Memory Consumption Measurements 
1) Hash Table 

To measure the memory consumption of the hash table, we 
set various hash table sizes, and checked, how the memory 
usage of the Linux systems changed. We considered the “used” 
value in the output of the free Linux command. We could not 
set arbitrarily small hash table size: if we tried setting it to a 
smaller value than 512 entries, then it was set to 512. 

As with the other measurements, we set each size 10 times 
(including 512) and recorded the amount of the used memory of 
the Linux system with a script. Then we subtracted the memory 
usage measured with 512 entries from all the other memory 
usage values. We calculated median, minimum and maximum 
of the results, and finally, we computed the memory 
consumption per hash table entry using the median values for 
the calculation. The results are shown in Table IV. Of course, 
the 512*8=4,096 bytes memory consumption of the hash table 
causes some small error, but the results can still confirm that the 
memory consumption of the hash table is 8 bytes per entry. 
2) Connection Tracking Entries 

To measure the memory consumption of the connection 
tracking entries, we inserted 40M connections into the 
connection tracking table using safely lower frame rates than 
the maximum connection establishment rate for the given hash 
table size. Then we recorded the memory usage of the Linux 
system, next, deleted the content of the connection tracking 
table, and finally, recorded the memory usage of the Linux 
system again. 

As with the other measurements, we performed the tests with 
each connection tracking table size 10 times. 

We calculated the difference of the memory usage of the 
Linux system when the connection tracking table had 40M 
entries and when it was empty. This difference is the memory 
consumption of the 40M connection tracking entries. The 
results are shown in Table V. The memory consumption of the 
40M connection tracking entries is independent from the size of 
the hash table, and on average, a single connection tracking 
entry consumes 385.4 bytes. The results are very stable: the 
difference of the maximum and minimum is always less than 
0.1% of the median. 

VI. DISCUSSION OF THE RESULTS AND OUR 
RECOMMENDATION FOR SETTING HASH TABLE SIZE 

Our performance measurements showed that value of the 
number of connections per hash table size is a very important 
parameter that highly influences the performance of iptables. 
This parameter gives the average length of the linked lists 
starting from the entries of the hash table. Both the maximum 
connection establishment and the throughput of iptables 
seriously deteriorates when this number becomes significantly 
higher than 1. But the connection tear down rate does not 
depend on it at all. 

We have also checked the “price” of the performance and we 
found that the memory consumption of the hash table is 
proportional to its size: each entry requires 8 bytes. However, 
the memory consumption of the connection tracking entries 
does not depend on the size of the hash table, and each entry 
occupies approximately 385.4 bytes. The orders of magnitude 
of these two numbers suggest us that the memory consumption 
of the hash table entries is practically negligible compared to 
the memory consumption of the connection tracking entries. 
With other words: the 40M connection tracking entries occupy 
about 15GB RAM independently from the hash table size as 
shown in Table V, whereas the memory consumption of the 
hash table itself varies between 0.5GB and 16MB as shown in 
Table IV, thus the latter is practically negligible. 

Therefore, we definitely recommend to abandon using the 
hashsize=nf_conntrack_max/8 convention and rather use 
hashsize=nf_conntrack_max to increase the performance 

TABLE IV 
MEMORY CONSUMPTION OF THE HASH TABLE OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE 

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21 
Median (kB) 523,560 261,514 130,238 64,964 32,444 16,248 
Minimum (kB) 521,816 260,208 129,024 63,436 30,824 15,368 
Maximum (kB) 527,092 263,284 132,108 66,108 33,132 16,896 
Bytes per hash table entry 7.99 7.98 7.95 7.93 7.92 7.93 

 
 

TABLE V 
MEMORY CONSUMPTION OF IPTABLES WITH 40M CONNECTION TRACKING ENTRIES AS A FUNCTION OF THE HASH TABLE SIZE 

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21 
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735 
Median (kB) 15,056,120 15,056,038 15,056,018 15,055,478 15,053,256 15,054,764 
Minimum (kB) 15,055,296 15,050,388 15,053,528 15,050,028 15,050,876 15,051,868 
Maximum (kB) 15,058,672 15,057,412 15,060,400 15,057,376 15,057,096 15,057,196 
Bytes per hash table entry 385.44 385.43 385.43 385.42 385.36 385.40 
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value before each elementary test. The del-iptables script 
deleted the iptables rule and the content of the connection 
tracking table (by the removal of the kernel modules) after each 
elementary test. They are available on GitHub [22]. 

B. Performance Measurements 
1) Aim, Parameters, and Types of Tests 

We aimed to examine, how the ratio of the number of 
connections and the hash table size influences the performance 
of iptables. 

Gapon [16] recommended 4,194,304 as the upper limit for 
number of connections for a highly loaded NAT server and 
524,288 for hash table size. We decided to use rather 40M 
connections, because we wanted to test iptables under really 
demanding condition. We achieved this number of port number 
combinations by using 40,000 source port numbers and 1,000 
destination port numbers. 

To be able to handle 40M connections, the first appropriate 
power of 2 for the maximum number of connections is 
226=67,108,864. As for hash table size, first, we used the same 
value and then we halved it five times, thus the final tested 
value was 221=2,097,152. 

We set the UDP timeout to 10,000 seconds, to guarantee its 
high enough value for all tests. 

We measured the maximum connection establishment rate, 
the throughput, and connection tear down rate with each hash 
table size. All measurements were performed 10 times to get 
reliable results. 

2) Maximum Connection Establishment Rate 
The maximum connection establishment rate of iptables as a 

function of the hash table size is shown in Table I. (The “error 
of binary search” value expresses the stopping criterion for the 
binary search. It stops, when: 

higher_limit – lower_limit <= error.) 
Although the independent variable is the hash table size 

(shown as a power of 2), what really helps to understand the 
behavior of the system is the average number of connections 
hashed to the same hash table entry, that is the average length 
of the linked lists. It is computed as the number of connections 
per hash table size. In the first step, it increases from about 0.6 
to about 1.2, and the median of the maximum connection 
establishment rate decreases only 8%. However, its further 
doubling causes more and more radical decrease of the median. 
3) Throughput 

The throughput of iptables as a function of the hash table size 
is shown in Table II. It behaves similarly to the maximum 
connection establishment rate in the sense that the doubling of 
the average length of the linked list causes more and more 
radial decrease of the performance when it becomes 
significantly higher than 1, but the measure of the deterioration 
is lower. 
4) Connection Tear Down Rate 

Having no better way to measure the connection tear down 
rate, we used an aggregate measurement that N number of 
connections were loaded into the connection tracking table of 
iptables and then the entire table was deleted and the T duration 

TABLE I 
MAXIMUM CONNECTION ESTABLISHMENT RATE OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE, 40M CONNECTIONS, 16 CPU CORES 

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21 
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735 
Error of binary search (cps) 100 100 100 100 100 100 
Median (cps) 2,263,732 2,075,195 1,696,411 1,231,993 780,090 440,124 
Minimum (cps) 2,203,063 2,044,493 1,624,938 1,216,734 764,098 421,813 
Maximum (cps) 2,359,680 2,125,549 1,750,061 1,251,037 797,912 445,617 
Median / previous median - 0.92 0.82 0.73 0.63 0.56 

 
 

TABLE II 
THROUGHPUT OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE, 40M CONNECTIONS, 16 CPU CORES, BIDIRECTIONAL TRAFFIC 
Hash table size 2^26 2^25 2^24 2^23 2^22 2^21 
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735 
Error of binary search (fps) 200 200 200 200 200 200 
Median (fps) 4,252,197 4,068,973 3,683,713 3,150,632 2,445,677 1,719,848 
Minimum (fps) 4,174,436 3,899,872 3,624,876 2,999,876 2,428,586 1,716,672 
Maximum (fps) 4,282,348 4,103,502 3,719,360 3,187,622 2,459,836 1,728,148 
Median / previous median - 0.96 0.91 0.86 0.78 0.70 

 
 

TABLE III 
CONNECTION TEAR DOWN RATE OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE, 40M CONNECTIONS, 16 CPU CORES 

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21 
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735 
Filled table deletion time – Median (s) 158.51 154.07 153.52 150.61 150.12 149.76 
Filled table deletion time – Minimum (s) 157.63 152.81 152.21 149.94 148.62 148.43 
Filled table deletion time – Maximum (s) 158.89 154.72 153.69 151.50 150.41 150.13 
Empty table deletion time – Median (s) 8.00 4.15 2.24 1.26 0.78 0.55 
Empty table deletion time – Minimum (s) 7.99 4.14 2.22 1.25 0.77 0.54 
Empty table deletion time – Maximum (s) 8.02 4.17 2.25 1.28 0.81 0.57 
Net connection deletion time (s) 150.51 149.92 151.29 149.35 149.34 149.21 
Connection tear down rate (cps) 265,763 266,809 264,402 267,827 267,845 268,079 
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value before each elementary test. The del-iptables script 
deleted the iptables rule and the content of the connection 
tracking table (by the removal of the kernel modules) after each 
elementary test. They are available on GitHub [22]. 

B. Performance Measurements 
1) Aim, Parameters, and Types of Tests 

We aimed to examine, how the ratio of the number of 
connections and the hash table size influences the performance 
of iptables. 

Gapon [16] recommended 4,194,304 as the upper limit for 
number of connections for a highly loaded NAT server and 
524,288 for hash table size. We decided to use rather 40M 
connections, because we wanted to test iptables under really 
demanding condition. We achieved this number of port number 
combinations by using 40,000 source port numbers and 1,000 
destination port numbers. 

To be able to handle 40M connections, the first appropriate 
power of 2 for the maximum number of connections is 
226=67,108,864. As for hash table size, first, we used the same 
value and then we halved it five times, thus the final tested 
value was 221=2,097,152. 

We set the UDP timeout to 10,000 seconds, to guarantee its 
high enough value for all tests. 

We measured the maximum connection establishment rate, 
the throughput, and connection tear down rate with each hash 
table size. All measurements were performed 10 times to get 
reliable results. 

2) Maximum Connection Establishment Rate 
The maximum connection establishment rate of iptables as a 

function of the hash table size is shown in Table I. (The “error 
of binary search” value expresses the stopping criterion for the 
binary search. It stops, when: 

higher_limit – lower_limit <= error.) 
Although the independent variable is the hash table size 

(shown as a power of 2), what really helps to understand the 
behavior of the system is the average number of connections 
hashed to the same hash table entry, that is the average length 
of the linked lists. It is computed as the number of connections 
per hash table size. In the first step, it increases from about 0.6 
to about 1.2, and the median of the maximum connection 
establishment rate decreases only 8%. However, its further 
doubling causes more and more radical decrease of the median. 
3) Throughput 

The throughput of iptables as a function of the hash table size 
is shown in Table II. It behaves similarly to the maximum 
connection establishment rate in the sense that the doubling of 
the average length of the linked list causes more and more 
radial decrease of the performance when it becomes 
significantly higher than 1, but the measure of the deterioration 
is lower. 
4) Connection Tear Down Rate 

Having no better way to measure the connection tear down 
rate, we used an aggregate measurement that N number of 
connections were loaded into the connection tracking table of 
iptables and then the entire table was deleted and the T duration 

TABLE I 
MAXIMUM CONNECTION ESTABLISHMENT RATE OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE, 40M CONNECTIONS, 16 CPU CORES 

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21 
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735 
Error of binary search (cps) 100 100 100 100 100 100 
Median (cps) 2,263,732 2,075,195 1,696,411 1,231,993 780,090 440,124 
Minimum (cps) 2,203,063 2,044,493 1,624,938 1,216,734 764,098 421,813 
Maximum (cps) 2,359,680 2,125,549 1,750,061 1,251,037 797,912 445,617 
Median / previous median - 0.92 0.82 0.73 0.63 0.56 

 
 

TABLE II 
THROUGHPUT OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE, 40M CONNECTIONS, 16 CPU CORES, BIDIRECTIONAL TRAFFIC 
Hash table size 2^26 2^25 2^24 2^23 2^22 2^21 
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735 
Error of binary search (fps) 200 200 200 200 200 200 
Median (fps) 4,252,197 4,068,973 3,683,713 3,150,632 2,445,677 1,719,848 
Minimum (fps) 4,174,436 3,899,872 3,624,876 2,999,876 2,428,586 1,716,672 
Maximum (fps) 4,282,348 4,103,502 3,719,360 3,187,622 2,459,836 1,728,148 
Median / previous median - 0.96 0.91 0.86 0.78 0.70 

 
 

TABLE III 
CONNECTION TEAR DOWN RATE OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE, 40M CONNECTIONS, 16 CPU CORES 

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21 
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735 
Filled table deletion time – Median (s) 158.51 154.07 153.52 150.61 150.12 149.76 
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value before each elementary test. The del-iptables script 
deleted the iptables rule and the content of the connection 
tracking table (by the removal of the kernel modules) after each 
elementary test. They are available on GitHub [22]. 

B. Performance Measurements 
1) Aim, Parameters, and Types of Tests 

We aimed to examine, how the ratio of the number of 
connections and the hash table size influences the performance 
of iptables. 

Gapon [16] recommended 4,194,304 as the upper limit for 
number of connections for a highly loaded NAT server and 
524,288 for hash table size. We decided to use rather 40M 
connections, because we wanted to test iptables under really 
demanding condition. We achieved this number of port number 
combinations by using 40,000 source port numbers and 1,000 
destination port numbers. 

To be able to handle 40M connections, the first appropriate 
power of 2 for the maximum number of connections is 
226=67,108,864. As for hash table size, first, we used the same 
value and then we halved it five times, thus the final tested 
value was 221=2,097,152. 

We set the UDP timeout to 10,000 seconds, to guarantee its 
high enough value for all tests. 

We measured the maximum connection establishment rate, 
the throughput, and connection tear down rate with each hash 
table size. All measurements were performed 10 times to get 
reliable results. 

2) Maximum Connection Establishment Rate 
The maximum connection establishment rate of iptables as a 

function of the hash table size is shown in Table I. (The “error 
of binary search” value expresses the stopping criterion for the 
binary search. It stops, when: 

higher_limit – lower_limit <= error.) 
Although the independent variable is the hash table size 

(shown as a power of 2), what really helps to understand the 
behavior of the system is the average number of connections 
hashed to the same hash table entry, that is the average length 
of the linked lists. It is computed as the number of connections 
per hash table size. In the first step, it increases from about 0.6 
to about 1.2, and the median of the maximum connection 
establishment rate decreases only 8%. However, its further 
doubling causes more and more radical decrease of the median. 
3) Throughput 

The throughput of iptables as a function of the hash table size 
is shown in Table II. It behaves similarly to the maximum 
connection establishment rate in the sense that the doubling of 
the average length of the linked list causes more and more 
radial decrease of the performance when it becomes 
significantly higher than 1, but the measure of the deterioration 
is lower. 
4) Connection Tear Down Rate 

Having no better way to measure the connection tear down 
rate, we used an aggregate measurement that N number of 
connections were loaded into the connection tracking table of 
iptables and then the entire table was deleted and the T duration 

TABLE I 
MAXIMUM CONNECTION ESTABLISHMENT RATE OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE, 40M CONNECTIONS, 16 CPU CORES 

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21 
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735 
Error of binary search (cps) 100 100 100 100 100 100 
Median (cps) 2,263,732 2,075,195 1,696,411 1,231,993 780,090 440,124 
Minimum (cps) 2,203,063 2,044,493 1,624,938 1,216,734 764,098 421,813 
Maximum (cps) 2,359,680 2,125,549 1,750,061 1,251,037 797,912 445,617 
Median / previous median - 0.92 0.82 0.73 0.63 0.56 
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UDP, the source and destination IP addresses, as well as the 
source and destination port numbers are parts of the hash tuple. 
The size of the hash table is a power of 2. Hash collisions are 
handled that the connection tracking entries are stored as the 
elements of bidirectional linked lists starting from the hash 
table entries, as shown in Fig. 3. 

A. Parameters to Tune 
The size of the hash table fundamentally influences the 

efficiency of hashing and thus also the performance of iptables. 
Its default size is automatically determined on the basis of the 
memory size of the Linux system. It can be read or modified by 
reading or writing the 
/sys/module/nf_conntrack/parameters/hashsize 
file.  

The maximum number of the connection tracking entries is 
another important parameter. It can be read or written using 
sysctl as net.netfilter.nf_conntrack_max.  

Traditionally, the values of the above two parameters are set 
as: hashsize=nf_conntrack_max/8 [15], [16]. It means 
that the average length of the linked list starting from the hash 
table entries may be up to 8. However, this is just a convention, 
and in our current paper, we examine what value is worth using. 

We note that newer systems use 4 instead of 8 when they set 
the default values, please refer to Table VI. 

As for timeout, iptables handles several different timeouts 
for the various states of TCP, two different ones for UDP and 
one for ICMP. Now for us it is enough to handle (using 
sysctl): net.netfilter.nf_conntrack_udp_timeout.  

B. Memory Consumption 
The memory consumption of the hash table is likely 8 bytes 

per entry, as 64 bits are required to store a pointer pointing to 
the first element of the linked list, and we also confirm it by 
measurements in Section V.C.1. 

As for the memory consumption of the connection tracking 
entries, we have found several different values. 

1. Section 3.7 of [17] (a document from 2007) states that 
“each tracked connection eats about 350 bytes of 
non-swappable kernel memory”.  

2. Another source from 2009 stated that as each object 
was 304 bytes in size and 13 of them fitted in a 4096 
bytes page, thus 144 bytes was wasted and so the 
effective memory consumption was about 316 bytes 
per nf_conntrack object [18]. 

3. We found in a commit message from 2016 that 
“increases struct size by 32 bytes (288 -> 320), but it 
is the right thing, else any attempt to (re-)arrange 
nf_conn members by cacheline won't work.” [19] 

Therefore, we have determined the effective memory 
consumption of the connection tracking entries by 
measurement in Section V.C.2. 

V. OUR BENCHMARKING MEASUREMENTS 

A. Measurement System 
The topology of the measurement system is shown in Fig. 4. 
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cables to avoid frame loss. Debian 9.13 Linux operating system 
with 4.9.0-16-amd64 kernel was used on both servers. The 
CPU clock frequencies of both servers were set to fixed 2.1GHz 
using the tlp Debian package and hyper-threading was 
switched off to ensure reliable results. Only CPU cores 0-15 of 
the DUT were online. The version of iptables was 1.6.0. The 
test system was the same as we used for our measurements in 
Section 2 of [4], thus our results are directly comparable. 

For performing measurements, we used the siitperf [20] 
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program documented in [21].  
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some scripts on the DUT e.g., to empty the connection tracking 
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script was used to set the iptables rule, the size of the hash table, 
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Fig. 3.  Implementation of the connection tracking table of iptables using a hash 

table and bidirectional linked lists (based on [2]). 
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Fig. 4.  Topology of the stateful NAT44 test system. 
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value before each elementary test. The del-iptables script 
deleted the iptables rule and the content of the connection 
tracking table (by the removal of the kernel modules) after each 
elementary test. They are available on GitHub [22]. 

B. Performance Measurements 
1) Aim, Parameters, and Types of Tests 

We aimed to examine, how the ratio of the number of 
connections and the hash table size influences the performance 
of iptables. 

Gapon [16] recommended 4,194,304 as the upper limit for 
number of connections for a highly loaded NAT server and 
524,288 for hash table size. We decided to use rather 40M 
connections, because we wanted to test iptables under really 
demanding condition. We achieved this number of port number 
combinations by using 40,000 source port numbers and 1,000 
destination port numbers. 

To be able to handle 40M connections, the first appropriate 
power of 2 for the maximum number of connections is 
226=67,108,864. As for hash table size, first, we used the same 
value and then we halved it five times, thus the final tested 
value was 221=2,097,152. 

We set the UDP timeout to 10,000 seconds, to guarantee its 
high enough value for all tests. 

We measured the maximum connection establishment rate, 
the throughput, and connection tear down rate with each hash 
table size. All measurements were performed 10 times to get 
reliable results. 

2) Maximum Connection Establishment Rate 
The maximum connection establishment rate of iptables as a 

function of the hash table size is shown in Table I. (The “error 
of binary search” value expresses the stopping criterion for the 
binary search. It stops, when: 

higher_limit – lower_limit <= error.) 
Although the independent variable is the hash table size 

(shown as a power of 2), what really helps to understand the 
behavior of the system is the average number of connections 
hashed to the same hash table entry, that is the average length 
of the linked lists. It is computed as the number of connections 
per hash table size. In the first step, it increases from about 0.6 
to about 1.2, and the median of the maximum connection 
establishment rate decreases only 8%. However, its further 
doubling causes more and more radical decrease of the median. 
3) Throughput 

The throughput of iptables as a function of the hash table size 
is shown in Table II. It behaves similarly to the maximum 
connection establishment rate in the sense that the doubling of 
the average length of the linked list causes more and more 
radial decrease of the performance when it becomes 
significantly higher than 1, but the measure of the deterioration 
is lower. 
4) Connection Tear Down Rate 

Having no better way to measure the connection tear down 
rate, we used an aggregate measurement that N number of 
connections were loaded into the connection tracking table of 
iptables and then the entire table was deleted and the T duration 

TABLE I 
MAXIMUM CONNECTION ESTABLISHMENT RATE OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE, 40M CONNECTIONS, 16 CPU CORES 

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21 
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735 
Error of binary search (cps) 100 100 100 100 100 100 
Median (cps) 2,263,732 2,075,195 1,696,411 1,231,993 780,090 440,124 
Minimum (cps) 2,203,063 2,044,493 1,624,938 1,216,734 764,098 421,813 
Maximum (cps) 2,359,680 2,125,549 1,750,061 1,251,037 797,912 445,617 
Median / previous median - 0.92 0.82 0.73 0.63 0.56 

 
 

TABLE II 
THROUGHPUT OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE, 40M CONNECTIONS, 16 CPU CORES, BIDIRECTIONAL TRAFFIC 
Hash table size 2^26 2^25 2^24 2^23 2^22 2^21 
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735 
Error of binary search (fps) 200 200 200 200 200 200 
Median (fps) 4,252,197 4,068,973 3,683,713 3,150,632 2,445,677 1,719,848 
Minimum (fps) 4,174,436 3,899,872 3,624,876 2,999,876 2,428,586 1,716,672 
Maximum (fps) 4,282,348 4,103,502 3,719,360 3,187,622 2,459,836 1,728,148 
Median / previous median - 0.96 0.91 0.86 0.78 0.70 

 
 

TABLE III 
CONNECTION TEAR DOWN RATE OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE, 40M CONNECTIONS, 16 CPU CORES 

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21 
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735 
Filled table deletion time – Median (s) 158.51 154.07 153.52 150.61 150.12 149.76 
Filled table deletion time – Minimum (s) 157.63 152.81 152.21 149.94 148.62 148.43 
Filled table deletion time – Maximum (s) 158.89 154.72 153.69 151.50 150.41 150.13 
Empty table deletion time – Median (s) 8.00 4.15 2.24 1.26 0.78 0.55 
Empty table deletion time – Minimum (s) 7.99 4.14 2.22 1.25 0.77 0.54 
Empty table deletion time – Maximum (s) 8.02 4.17 2.25 1.28 0.81 0.57 
Net connection deletion time (s) 150.51 149.92 151.29 149.35 149.34 149.21 
Connection tear down rate (cps) 265,763 266,809 264,402 267,827 267,845 268,079 
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value before each elementary test. The del-iptables script 
deleted the iptables rule and the content of the connection 
tracking table (by the removal of the kernel modules) after each 
elementary test. They are available on GitHub [22]. 
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We aimed to examine, how the ratio of the number of 
connections and the hash table size influences the performance 
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Gapon [16] recommended 4,194,304 as the upper limit for 
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524,288 for hash table size. We decided to use rather 40M 
connections, because we wanted to test iptables under really 
demanding condition. We achieved this number of port number 
combinations by using 40,000 source port numbers and 1,000 
destination port numbers. 

To be able to handle 40M connections, the first appropriate 
power of 2 for the maximum number of connections is 
226=67,108,864. As for hash table size, first, we used the same 
value and then we halved it five times, thus the final tested 
value was 221=2,097,152. 

We set the UDP timeout to 10,000 seconds, to guarantee its 
high enough value for all tests. 

We measured the maximum connection establishment rate, 
the throughput, and connection tear down rate with each hash 
table size. All measurements were performed 10 times to get 
reliable results. 

2) Maximum Connection Establishment Rate 
The maximum connection establishment rate of iptables as a 

function of the hash table size is shown in Table I. (The “error 
of binary search” value expresses the stopping criterion for the 
binary search. It stops, when: 

higher_limit – lower_limit <= error.) 
Although the independent variable is the hash table size 

(shown as a power of 2), what really helps to understand the 
behavior of the system is the average number of connections 
hashed to the same hash table entry, that is the average length 
of the linked lists. It is computed as the number of connections 
per hash table size. In the first step, it increases from about 0.6 
to about 1.2, and the median of the maximum connection 
establishment rate decreases only 8%. However, its further 
doubling causes more and more radical decrease of the median. 
3) Throughput 

The throughput of iptables as a function of the hash table size 
is shown in Table II. It behaves similarly to the maximum 
connection establishment rate in the sense that the doubling of 
the average length of the linked list causes more and more 
radial decrease of the performance when it becomes 
significantly higher than 1, but the measure of the deterioration 
is lower. 
4) Connection Tear Down Rate 

Having no better way to measure the connection tear down 
rate, we used an aggregate measurement that N number of 
connections were loaded into the connection tracking table of 
iptables and then the entire table was deleted and the T duration 
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of the deletion was measured. However, then the deletion time 
contained the time necessary to delete an empty connection 
tracking table, as well as the command execution and 
communications latencies, too. To make our results more 
accurate, we have also measured the duration of the deletion of 
an empty table, which also contained the command execution 
and communications latencies. Thus their difference contains 
only the time spent by the deletion of the N number of 
connections, which is called as net connection deletion time in 
Table III. This value is nearly the same independently form the 
hash table size. Thus, the connection tear down rate is also 
independent from the size of the hash table. 

C. Memory Consumption Measurements 
1) Hash Table 

To measure the memory consumption of the hash table, we 
set various hash table sizes, and checked, how the memory 
usage of the Linux systems changed. We considered the “used” 
value in the output of the free Linux command. We could not 
set arbitrarily small hash table size: if we tried setting it to a 
smaller value than 512 entries, then it was set to 512. 

As with the other measurements, we set each size 10 times 
(including 512) and recorded the amount of the used memory of 
the Linux system with a script. Then we subtracted the memory 
usage measured with 512 entries from all the other memory 
usage values. We calculated median, minimum and maximum 
of the results, and finally, we computed the memory 
consumption per hash table entry using the median values for 
the calculation. The results are shown in Table IV. Of course, 
the 512*8=4,096 bytes memory consumption of the hash table 
causes some small error, but the results can still confirm that the 
memory consumption of the hash table is 8 bytes per entry. 
2) Connection Tracking Entries 

To measure the memory consumption of the connection 
tracking entries, we inserted 40M connections into the 
connection tracking table using safely lower frame rates than 
the maximum connection establishment rate for the given hash 
table size. Then we recorded the memory usage of the Linux 
system, next, deleted the content of the connection tracking 
table, and finally, recorded the memory usage of the Linux 
system again. 

As with the other measurements, we performed the tests with 
each connection tracking table size 10 times. 

We calculated the difference of the memory usage of the 
Linux system when the connection tracking table had 40M 
entries and when it was empty. This difference is the memory 
consumption of the 40M connection tracking entries. The 
results are shown in Table V. The memory consumption of the 
40M connection tracking entries is independent from the size of 
the hash table, and on average, a single connection tracking 
entry consumes 385.4 bytes. The results are very stable: the 
difference of the maximum and minimum is always less than 
0.1% of the median. 

VI. DISCUSSION OF THE RESULTS AND OUR 
RECOMMENDATION FOR SETTING HASH TABLE SIZE 

Our performance measurements showed that value of the 
number of connections per hash table size is a very important 
parameter that highly influences the performance of iptables. 
This parameter gives the average length of the linked lists 
starting from the entries of the hash table. Both the maximum 
connection establishment and the throughput of iptables 
seriously deteriorates when this number becomes significantly 
higher than 1. But the connection tear down rate does not 
depend on it at all. 

We have also checked the “price” of the performance and we 
found that the memory consumption of the hash table is 
proportional to its size: each entry requires 8 bytes. However, 
the memory consumption of the connection tracking entries 
does not depend on the size of the hash table, and each entry 
occupies approximately 385.4 bytes. The orders of magnitude 
of these two numbers suggest us that the memory consumption 
of the hash table entries is practically negligible compared to 
the memory consumption of the connection tracking entries. 
With other words: the 40M connection tracking entries occupy 
about 15GB RAM independently from the hash table size as 
shown in Table V, whereas the memory consumption of the 
hash table itself varies between 0.5GB and 16MB as shown in 
Table IV, thus the latter is practically negligible. 

Therefore, we definitely recommend to abandon using the 
hashsize=nf_conntrack_max/8 convention and rather use 
hashsize=nf_conntrack_max to increase the performance 

TABLE IV 
MEMORY CONSUMPTION OF THE HASH TABLE OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE 

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21 
Median (kB) 523,560 261,514 130,238 64,964 32,444 16,248 
Minimum (kB) 521,816 260,208 129,024 63,436 30,824 15,368 
Maximum (kB) 527,092 263,284 132,108 66,108 33,132 16,896 
Bytes per hash table entry 7.99 7.98 7.95 7.93 7.92 7.93 

 
 

TABLE V 
MEMORY CONSUMPTION OF IPTABLES WITH 40M CONNECTION TRACKING ENTRIES AS A FUNCTION OF THE HASH TABLE SIZE 

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21 
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735 
Median (kB) 15,056,120 15,056,038 15,056,018 15,055,478 15,053,256 15,054,764 
Minimum (kB) 15,055,296 15,050,388 15,053,528 15,050,028 15,050,876 15,051,868 
Maximum (kB) 15,058,672 15,057,412 15,060,400 15,057,376 15,057,096 15,057,196 
Bytes per hash table entry 385.44 385.43 385.43 385.42 385.36 385.40 
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of the deletion was measured. However, then the deletion time 
contained the time necessary to delete an empty connection 
tracking table, as well as the command execution and 
communications latencies, too. To make our results more 
accurate, we have also measured the duration of the deletion of 
an empty table, which also contained the command execution 
and communications latencies. Thus their difference contains 
only the time spent by the deletion of the N number of 
connections, which is called as net connection deletion time in 
Table III. This value is nearly the same independently form the 
hash table size. Thus, the connection tear down rate is also 
independent from the size of the hash table. 

C. Memory Consumption Measurements 
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set various hash table sizes, and checked, how the memory 
usage of the Linux systems changed. We considered the “used” 
value in the output of the free Linux command. We could not 
set arbitrarily small hash table size: if we tried setting it to a 
smaller value than 512 entries, then it was set to 512. 

As with the other measurements, we set each size 10 times 
(including 512) and recorded the amount of the used memory of 
the Linux system with a script. Then we subtracted the memory 
usage measured with 512 entries from all the other memory 
usage values. We calculated median, minimum and maximum 
of the results, and finally, we computed the memory 
consumption per hash table entry using the median values for 
the calculation. The results are shown in Table IV. Of course, 
the 512*8=4,096 bytes memory consumption of the hash table 
causes some small error, but the results can still confirm that the 
memory consumption of the hash table is 8 bytes per entry. 
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system again. 

As with the other measurements, we performed the tests with 
each connection tracking table size 10 times. 

We calculated the difference of the memory usage of the 
Linux system when the connection tracking table had 40M 
entries and when it was empty. This difference is the memory 
consumption of the 40M connection tracking entries. The 
results are shown in Table V. The memory consumption of the 
40M connection tracking entries is independent from the size of 
the hash table, and on average, a single connection tracking 
entry consumes 385.4 bytes. The results are very stable: the 
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occupies approximately 385.4 bytes. The orders of magnitude 
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With other words: the 40M connection tracking entries occupy 
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of the deletion was measured. However, then the deletion time 
contained the time necessary to delete an empty connection 
tracking table, as well as the command execution and 
communications latencies, too. To make our results more 
accurate, we have also measured the duration of the deletion of 
an empty table, which also contained the command execution 
and communications latencies. Thus their difference contains 
only the time spent by the deletion of the N number of 
connections, which is called as net connection deletion time in 
Table III. This value is nearly the same independently form the 
hash table size. Thus, the connection tear down rate is also 
independent from the size of the hash table. 
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1) Hash Table 
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set various hash table sizes, and checked, how the memory 
usage of the Linux systems changed. We considered the “used” 
value in the output of the free Linux command. We could not 
set arbitrarily small hash table size: if we tried setting it to a 
smaller value than 512 entries, then it was set to 512. 

As with the other measurements, we set each size 10 times 
(including 512) and recorded the amount of the used memory of 
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of the results, and finally, we computed the memory 
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the calculation. The results are shown in Table IV. Of course, 
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causes some small error, but the results can still confirm that the 
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of the deletion was measured. However, then the deletion time 
contained the time necessary to delete an empty connection 
tracking table, as well as the command execution and 
communications latencies, too. To make our results more 
accurate, we have also measured the duration of the deletion of 
an empty table, which also contained the command execution 
and communications latencies. Thus their difference contains 
only the time spent by the deletion of the N number of 
connections, which is called as net connection deletion time in 
Table III. This value is nearly the same independently form the 
hash table size. Thus, the connection tear down rate is also 
independent from the size of the hash table. 

C. Memory Consumption Measurements 
1) Hash Table 

To measure the memory consumption of the hash table, we 
set various hash table sizes, and checked, how the memory 
usage of the Linux systems changed. We considered the “used” 
value in the output of the free Linux command. We could not 
set arbitrarily small hash table size: if we tried setting it to a 
smaller value than 512 entries, then it was set to 512. 

As with the other measurements, we set each size 10 times 
(including 512) and recorded the amount of the used memory of 
the Linux system with a script. Then we subtracted the memory 
usage measured with 512 entries from all the other memory 
usage values. We calculated median, minimum and maximum 
of the results, and finally, we computed the memory 
consumption per hash table entry using the median values for 
the calculation. The results are shown in Table IV. Of course, 
the 512*8=4,096 bytes memory consumption of the hash table 
causes some small error, but the results can still confirm that the 
memory consumption of the hash table is 8 bytes per entry. 
2) Connection Tracking Entries 

To measure the memory consumption of the connection 
tracking entries, we inserted 40M connections into the 
connection tracking table using safely lower frame rates than 
the maximum connection establishment rate for the given hash 
table size. Then we recorded the memory usage of the Linux 
system, next, deleted the content of the connection tracking 
table, and finally, recorded the memory usage of the Linux 
system again. 

As with the other measurements, we performed the tests with 
each connection tracking table size 10 times. 

We calculated the difference of the memory usage of the 
Linux system when the connection tracking table had 40M 
entries and when it was empty. This difference is the memory 
consumption of the 40M connection tracking entries. The 
results are shown in Table V. The memory consumption of the 
40M connection tracking entries is independent from the size of 
the hash table, and on average, a single connection tracking 
entry consumes 385.4 bytes. The results are very stable: the 
difference of the maximum and minimum is always less than 
0.1% of the median. 

VI. DISCUSSION OF THE RESULTS AND OUR 
RECOMMENDATION FOR SETTING HASH TABLE SIZE 

Our performance measurements showed that value of the 
number of connections per hash table size is a very important 
parameter that highly influences the performance of iptables. 
This parameter gives the average length of the linked lists 
starting from the entries of the hash table. Both the maximum 
connection establishment and the throughput of iptables 
seriously deteriorates when this number becomes significantly 
higher than 1. But the connection tear down rate does not 
depend on it at all. 

We have also checked the “price” of the performance and we 
found that the memory consumption of the hash table is 
proportional to its size: each entry requires 8 bytes. However, 
the memory consumption of the connection tracking entries 
does not depend on the size of the hash table, and each entry 
occupies approximately 385.4 bytes. The orders of magnitude 
of these two numbers suggest us that the memory consumption 
of the hash table entries is practically negligible compared to 
the memory consumption of the connection tracking entries. 
With other words: the 40M connection tracking entries occupy 
about 15GB RAM independently from the hash table size as 
shown in Table V, whereas the memory consumption of the 
hash table itself varies between 0.5GB and 16MB as shown in 
Table IV, thus the latter is practically negligible. 

Therefore, we definitely recommend to abandon using the 
hashsize=nf_conntrack_max/8 convention and rather use 
hashsize=nf_conntrack_max to increase the performance 

TABLE IV 
MEMORY CONSUMPTION OF THE HASH TABLE OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE 

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21 
Median (kB) 523,560 261,514 130,238 64,964 32,444 16,248 
Minimum (kB) 521,816 260,208 129,024 63,436 30,824 15,368 
Maximum (kB) 527,092 263,284 132,108 66,108 33,132 16,896 
Bytes per hash table entry 7.99 7.98 7.95 7.93 7.92 7.93 

 
 

TABLE V 
MEMORY CONSUMPTION OF IPTABLES WITH 40M CONNECTION TRACKING ENTRIES AS A FUNCTION OF THE HASH TABLE SIZE 

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21 
Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735 
Median (kB) 15,056,120 15,056,038 15,056,018 15,055,478 15,053,256 15,054,764 
Minimum (kB) 15,055,296 15,050,388 15,053,528 15,050,028 15,050,876 15,051,868 
Maximum (kB) 15,058,672 15,057,412 15,060,400 15,057,376 15,057,096 15,057,196 
Bytes per hash table entry 385.44 385.43 385.43 385.42 385.36 385.40 
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of the deletion was measured. However, then the deletion time 
contained the time necessary to delete an empty connection 
tracking table, as well as the command execution and 
communications latencies, too. To make our results more 
accurate, we have also measured the duration of the deletion of 
an empty table, which also contained the command execution 
and communications latencies. Thus their difference contains 
only the time spent by the deletion of the N number of 
connections, which is called as net connection deletion time in 
Table III. This value is nearly the same independently form the 
hash table size. Thus, the connection tear down rate is also 
independent from the size of the hash table. 

C. Memory Consumption Measurements 
1) Hash Table 

To measure the memory consumption of the hash table, we 
set various hash table sizes, and checked, how the memory 
usage of the Linux systems changed. We considered the “used” 
value in the output of the free Linux command. We could not 
set arbitrarily small hash table size: if we tried setting it to a 
smaller value than 512 entries, then it was set to 512. 

As with the other measurements, we set each size 10 times 
(including 512) and recorded the amount of the used memory of 
the Linux system with a script. Then we subtracted the memory 
usage measured with 512 entries from all the other memory 
usage values. We calculated median, minimum and maximum 
of the results, and finally, we computed the memory 
consumption per hash table entry using the median values for 
the calculation. The results are shown in Table IV. Of course, 
the 512*8=4,096 bytes memory consumption of the hash table 
causes some small error, but the results can still confirm that the 
memory consumption of the hash table is 8 bytes per entry. 
2) Connection Tracking Entries 

To measure the memory consumption of the connection 
tracking entries, we inserted 40M connections into the 
connection tracking table using safely lower frame rates than 
the maximum connection establishment rate for the given hash 
table size. Then we recorded the memory usage of the Linux 
system, next, deleted the content of the connection tracking 
table, and finally, recorded the memory usage of the Linux 
system again. 

As with the other measurements, we performed the tests with 
each connection tracking table size 10 times. 

We calculated the difference of the memory usage of the 
Linux system when the connection tracking table had 40M 
entries and when it was empty. This difference is the memory 
consumption of the 40M connection tracking entries. The 
results are shown in Table V. The memory consumption of the 
40M connection tracking entries is independent from the size of 
the hash table, and on average, a single connection tracking 
entry consumes 385.4 bytes. The results are very stable: the 
difference of the maximum and minimum is always less than 
0.1% of the median. 

VI. DISCUSSION OF THE RESULTS AND OUR 
RECOMMENDATION FOR SETTING HASH TABLE SIZE 

Our performance measurements showed that value of the 
number of connections per hash table size is a very important 
parameter that highly influences the performance of iptables. 
This parameter gives the average length of the linked lists 
starting from the entries of the hash table. Both the maximum 
connection establishment and the throughput of iptables 
seriously deteriorates when this number becomes significantly 
higher than 1. But the connection tear down rate does not 
depend on it at all. 

We have also checked the “price” of the performance and we 
found that the memory consumption of the hash table is 
proportional to its size: each entry requires 8 bytes. However, 
the memory consumption of the connection tracking entries 
does not depend on the size of the hash table, and each entry 
occupies approximately 385.4 bytes. The orders of magnitude 
of these two numbers suggest us that the memory consumption 
of the hash table entries is practically negligible compared to 
the memory consumption of the connection tracking entries. 
With other words: the 40M connection tracking entries occupy 
about 15GB RAM independently from the hash table size as 
shown in Table V, whereas the memory consumption of the 
hash table itself varies between 0.5GB and 16MB as shown in 
Table IV, thus the latter is practically negligible. 

Therefore, we definitely recommend to abandon using the 
hashsize=nf_conntrack_max/8 convention and rather use 
hashsize=nf_conntrack_max to increase the performance 

TABLE IV 
MEMORY CONSUMPTION OF THE HASH TABLE OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE 

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21 
Median (kB) 523,560 261,514 130,238 64,964 32,444 16,248 
Minimum (kB) 521,816 260,208 129,024 63,436 30,824 15,368 
Maximum (kB) 527,092 263,284 132,108 66,108 33,132 16,896 
Bytes per hash table entry 7.99 7.98 7.95 7.93 7.92 7.93 
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of iptables significantly. Of course, now arises the question of 
using hashsize=nf_conntrack_max*n, where n > 1. We 
did not do tests with n=2, 4, 8, etc. but our results show that the 
expectable gain is much less. When using iptables as a stateful 
NAT44 gateway to forward Internet traffic, there are a high 
number of packets transferred per session. Thus, throughput is 
the dominant one from among our three used performance 
metrics. Examining Table II, we can see that there is only 4% 
performance difference between the first two columns. And 
considering the observable trends, it is likely to be even less, if 
the size if the hash table is further increased. And the increase 
of the hash table size has a built in limit. Theoretically, the 
default and the allowed maximum values for hashsize and 
nf_conntrack_max depend on the RAM size of the computer 
[15]. Our measurements show that it is true for very small RAM 
sizes (e.g. 1GB or 2GB), but the values do not change from 
8GB and to 384GB RAM size. We used the mem=nGB kernel 
command line parameter to limit the available memory for 
testing. Our results in Table VI show that the default and 
maximum values are the same for 8GB and 384GB. 

VII. TESTING THE PERFORMANCE OF NFTABLES 
We have also tested the maximum connection establishment 

rate and throughput performance of nftables. We used the same 
test system as shown in Fig. 4, but Debian 10.13 with 
4.19.0-20-amd64 kernel was used on the DUT. The version of 
nftables was: 0.9.0-2. We tested its performance only at the 
“optimal” working point, that is, using our recommended 
setting: hashsize=nf_conntrack_max.  

The results are shown in Table VII. Comparing the results 
with that of iptables (shown in Table I and Table II), we can see 
that the median maximum connection establishment rate of 
nftables (228,222cps) is about one tenth of the median 
maximum connection establishment rate of iptables 
(2,263,732cps), whereas the median throughput of nftables 
(835,544fps) is about one fifth of the median throughput of 
iptables (4,252,197fps) measured under the same conditions. 
Therefore, we conclude that nftables may not replace iptables 
in the application scenarios where a stateful NAT44 gateway of 
a CGN system has to handle a high number of connections with 

high performance. 

VIII. CONCLUSION 
We have measured the maximum connection establishment 

rate, throughput and connection tear down rate as well as the 
memory consumption of iptables as a function of the hash table 
size using always 40 million connections to determine the 
optimal value for the ratio of the number of connections and the 
hash table size and/or any possible tradeoff. 

We conclude that the long established convention of 
hashsize=nf_conntrack_max/8 should be replaced by the 
hashsize=nf_conntrack_max rule to increase the 
performance of iptables to a high extent. 

We have also shown that nftables may not replace iptables in 
the application scenarios where a stateful NAT44 gateway of a 
CGN system has to handle a high number of connections with 
high performance, because iptables achieved about ten times 
higher maximum connection establishment rate and about five 
times higher throughput than nftables. 
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of the deletion was measured. However, then the deletion time 
contained the time necessary to delete an empty connection 
tracking table, as well as the command execution and 
communications latencies, too. To make our results more 
accurate, we have also measured the duration of the deletion of 
an empty table, which also contained the command execution 
and communications latencies. Thus their difference contains 
only the time spent by the deletion of the N number of 
connections, which is called as net connection deletion time in 
Table III. This value is nearly the same independently form the 
hash table size. Thus, the connection tear down rate is also 
independent from the size of the hash table. 

C. Memory Consumption Measurements 
1) Hash Table 

To measure the memory consumption of the hash table, we 
set various hash table sizes, and checked, how the memory 
usage of the Linux systems changed. We considered the “used” 
value in the output of the free Linux command. We could not 
set arbitrarily small hash table size: if we tried setting it to a 
smaller value than 512 entries, then it was set to 512. 

As with the other measurements, we set each size 10 times 
(including 512) and recorded the amount of the used memory of 
the Linux system with a script. Then we subtracted the memory 
usage measured with 512 entries from all the other memory 
usage values. We calculated median, minimum and maximum 
of the results, and finally, we computed the memory 
consumption per hash table entry using the median values for 
the calculation. The results are shown in Table IV. Of course, 
the 512*8=4,096 bytes memory consumption of the hash table 
causes some small error, but the results can still confirm that the 
memory consumption of the hash table is 8 bytes per entry. 
2) Connection Tracking Entries 

To measure the memory consumption of the connection 
tracking entries, we inserted 40M connections into the 
connection tracking table using safely lower frame rates than 
the maximum connection establishment rate for the given hash 
table size. Then we recorded the memory usage of the Linux 
system, next, deleted the content of the connection tracking 
table, and finally, recorded the memory usage of the Linux 
system again. 

As with the other measurements, we performed the tests with 
each connection tracking table size 10 times. 

We calculated the difference of the memory usage of the 
Linux system when the connection tracking table had 40M 
entries and when it was empty. This difference is the memory 
consumption of the 40M connection tracking entries. The 
results are shown in Table V. The memory consumption of the 
40M connection tracking entries is independent from the size of 
the hash table, and on average, a single connection tracking 
entry consumes 385.4 bytes. The results are very stable: the 
difference of the maximum and minimum is always less than 
0.1% of the median. 

VI. DISCUSSION OF THE RESULTS AND OUR 
RECOMMENDATION FOR SETTING HASH TABLE SIZE 

Our performance measurements showed that value of the 
number of connections per hash table size is a very important 
parameter that highly influences the performance of iptables. 
This parameter gives the average length of the linked lists 
starting from the entries of the hash table. Both the maximum 
connection establishment and the throughput of iptables 
seriously deteriorates when this number becomes significantly 
higher than 1. But the connection tear down rate does not 
depend on it at all. 

We have also checked the “price” of the performance and we 
found that the memory consumption of the hash table is 
proportional to its size: each entry requires 8 bytes. However, 
the memory consumption of the connection tracking entries 
does not depend on the size of the hash table, and each entry 
occupies approximately 385.4 bytes. The orders of magnitude 
of these two numbers suggest us that the memory consumption 
of the hash table entries is practically negligible compared to 
the memory consumption of the connection tracking entries. 
With other words: the 40M connection tracking entries occupy 
about 15GB RAM independently from the hash table size as 
shown in Table V, whereas the memory consumption of the 
hash table itself varies between 0.5GB and 16MB as shown in 
Table IV, thus the latter is practically negligible. 

Therefore, we definitely recommend to abandon using the 
hashsize=nf_conntrack_max/8 convention and rather use 
hashsize=nf_conntrack_max to increase the performance 

TABLE IV 
MEMORY CONSUMPTION OF THE HASH TABLE OF IPTABLES AS A FUNCTION OF THE HASH TABLE SIZE 

Hash table size 2^26 2^25 2^24 2^23 2^22 2^21 
Median (kB) 523,560 261,514 130,238 64,964 32,444 16,248 
Minimum (kB) 521,816 260,208 129,024 63,436 30,824 15,368 
Maximum (kB) 527,092 263,284 132,108 66,108 33,132 16,896 
Bytes per hash table entry 7.99 7.98 7.95 7.93 7.92 7.93 
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Number of connections / hash table size 0.5960 1.1921 2.3842 4.7684 9.5367 19.0735 
Median (kB) 15,056,120 15,056,038 15,056,018 15,055,478 15,053,256 15,054,764 
Minimum (kB) 15,055,296 15,050,388 15,053,528 15,050,028 15,050,876 15,051,868 
Maximum (kB) 15,058,672 15,057,412 15,060,400 15,057,376 15,057,096 15,057,196 
Bytes per hash table entry 385.44 385.43 385.43 385.42 385.36 385.40 
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of iptables significantly. Of course, now arises the question of 
using hashsize=nf_conntrack_max*n, where n > 1. We 
did not do tests with n=2, 4, 8, etc. but our results show that the 
expectable gain is much less. When using iptables as a stateful 
NAT44 gateway to forward Internet traffic, there are a high 
number of packets transferred per session. Thus, throughput is 
the dominant one from among our three used performance 
metrics. Examining Table II, we can see that there is only 4% 
performance difference between the first two columns. And 
considering the observable trends, it is likely to be even less, if 
the size if the hash table is further increased. And the increase 
of the hash table size has a built in limit. Theoretically, the 
default and the allowed maximum values for hashsize and 
nf_conntrack_max depend on the RAM size of the computer 
[15]. Our measurements show that it is true for very small RAM 
sizes (e.g. 1GB or 2GB), but the values do not change from 
8GB and to 384GB RAM size. We used the mem=nGB kernel 
command line parameter to limit the available memory for 
testing. Our results in Table VI show that the default and 
maximum values are the same for 8GB and 384GB. 

VII. TESTING THE PERFORMANCE OF NFTABLES 
We have also tested the maximum connection establishment 

rate and throughput performance of nftables. We used the same 
test system as shown in Fig. 4, but Debian 10.13 with 
4.19.0-20-amd64 kernel was used on the DUT. The version of 
nftables was: 0.9.0-2. We tested its performance only at the 
“optimal” working point, that is, using our recommended 
setting: hashsize=nf_conntrack_max.  

The results are shown in Table VII. Comparing the results 
with that of iptables (shown in Table I and Table II), we can see 
that the median maximum connection establishment rate of 
nftables (228,222cps) is about one tenth of the median 
maximum connection establishment rate of iptables 
(2,263,732cps), whereas the median throughput of nftables 
(835,544fps) is about one fifth of the median throughput of 
iptables (4,252,197fps) measured under the same conditions. 
Therefore, we conclude that nftables may not replace iptables 
in the application scenarios where a stateful NAT44 gateway of 
a CGN system has to handle a high number of connections with 

high performance. 

VIII. CONCLUSION 
We have measured the maximum connection establishment 

rate, throughput and connection tear down rate as well as the 
memory consumption of iptables as a function of the hash table 
size using always 40 million connections to determine the 
optimal value for the ratio of the number of connections and the 
hash table size and/or any possible tradeoff. 

We conclude that the long established convention of 
hashsize=nf_conntrack_max/8 should be replaced by the 
hashsize=nf_conntrack_max rule to increase the 
performance of iptables to a high extent. 

We have also shown that nftables may not replace iptables in 
the application scenarios where a stateful NAT44 gateway of a 
CGN system has to handle a high number of connections with 
high performance, because iptables achieved about ten times 
higher maximum connection establishment rate and about five 
times higher throughput than nftables. 

ACKNOWLEDGMENT 
The experiments were carried out by remotely using the 

resources of NICT StarBED, 2–12 Asahidai, Nomi-City, 
Ishikawa 923–1211, Japan. 

The authors would like to thank Shuuhei Takimoto for the 
possibility to use StarBED, as well as to Tsukasa Nishita 
Makoto Yoshida for their help and advice in StarBED usage 
related issues. 

Gábor Lencse thanks the National Institute of Information 
and Communications (NICT), Japan for their support of his 
stay at the Research Laboratory of Internet Initiative Japan, 
where his research topic was the performance analysis of 
stateful NAT64 / NAT44 implementations. 

REFERENCES 
[1] M. Nikkhah, R. Guérin, “Migrating the Internet to IPv6: An exploration 

of the when and why”, IEEE/ACM Trans. Netw., vol. 24, no. 4, pp. 
2291–2304, Apr. 2016, DOI: 10.1109/TNET.2015.2453338 

[2] P. N. Ayuso, “Netfilter's connection tracking system”, Login: The 
Usenix Magazine, vol. 31, no. 3, (2006) pp. 34-39. [Online]. Available: 
https://www.usenix.org/system/files/login/articles/892-neira.pdf 

[3] D. Melkov, A. Šaltis and Š. Paulikas, “Performance Testing of Linux 
Firewalls”, 2020 IEEE Open Conference of Electrical, Electronic and 
Information Sciences (eStream), 2020, pp. 1-4, DOI: 
10.1109/eStream50540.2020.9108868. 

[4] G. Lencse, “Scalability of IPv6 transition technologies for IPv4aaS”, 
Internet Draft, Oct 23, 2022, draft-lencse-v6ops-transition-scalability-04 
[online], available: 
https://datatracker.ietf.org/doc/html/draft-lencse-v6ops-transition-scala
bility-04 

[5] N.Gandotra, L.S. Sharma, “Performance evaluation and modelling of the 
Linux firewall under stress test”, In: Singh, P., Kar, A., Singh, Y., 

TABLE VI 
DEFAULT AND MAXIMUM ALLOWED VALUES FOR HASHSIZE AND NF_CONNTRACK_MAX AS A FUNCTION OF MEMORY SIZE, IPTABLES 1.6.0 

Computer memory size (GB) 1 2 8 384 
Default hashsize 7,680 16,384=2^14 65,536=2^16 65,536=2^16 
Default nf_conntrack_max 30,720 65,536=2^16 262,144=2^18 262,144=2^18 
Maximum possible hashsize 33,554,432=2^25 67,108,864=2^26 268,435,456=2^28 268,435,456=2^28 
Maximum possible nf_conntrack_max 1,073,741,824=2^30 1,073,741,824=2^30 1,073,741,824=2^30 1,073,741,824=2^30 

 
 

TABLE VII 
PERFORMANCE OF NFTABLES 0.9.0-2, 2^26 HASH TABLE SIZE,  

40M CONNECTIONS, 16 CPU CORES 
Performance metric Max. conn. est. rate (cps) Throughput (fps) 
Error of bin. search 100 200 
Median 228,222 835,544 
Minimum  225,683 824,804 
Maximum 229,198 840,428 

 
 

Paper ID: 250 
 

8 

of iptables significantly. Of course, now arises the question of 
using hashsize=nf_conntrack_max*n, where n > 1. We 
did not do tests with n=2, 4, 8, etc. but our results show that the 
expectable gain is much less. When using iptables as a stateful 
NAT44 gateway to forward Internet traffic, there are a high 
number of packets transferred per session. Thus, throughput is 
the dominant one from among our three used performance 
metrics. Examining Table II, we can see that there is only 4% 
performance difference between the first two columns. And 
considering the observable trends, it is likely to be even less, if 
the size if the hash table is further increased. And the increase 
of the hash table size has a built in limit. Theoretically, the 
default and the allowed maximum values for hashsize and 
nf_conntrack_max depend on the RAM size of the computer 
[15]. Our measurements show that it is true for very small RAM 
sizes (e.g. 1GB or 2GB), but the values do not change from 
8GB and to 384GB RAM size. We used the mem=nGB kernel 
command line parameter to limit the available memory for 
testing. Our results in Table VI show that the default and 
maximum values are the same for 8GB and 384GB. 

VII. TESTING THE PERFORMANCE OF NFTABLES 
We have also tested the maximum connection establishment 

rate and throughput performance of nftables. We used the same 
test system as shown in Fig. 4, but Debian 10.13 with 
4.19.0-20-amd64 kernel was used on the DUT. The version of 
nftables was: 0.9.0-2. We tested its performance only at the 
“optimal” working point, that is, using our recommended 
setting: hashsize=nf_conntrack_max.  

The results are shown in Table VII. Comparing the results 
with that of iptables (shown in Table I and Table II), we can see 
that the median maximum connection establishment rate of 
nftables (228,222cps) is about one tenth of the median 
maximum connection establishment rate of iptables 
(2,263,732cps), whereas the median throughput of nftables 
(835,544fps) is about one fifth of the median throughput of 
iptables (4,252,197fps) measured under the same conditions. 
Therefore, we conclude that nftables may not replace iptables 
in the application scenarios where a stateful NAT44 gateway of 
a CGN system has to handle a high number of connections with 

high performance. 
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memory consumption of iptables as a function of the hash table 
size using always 40 million connections to determine the 
optimal value for the ratio of the number of connections and the 
hash table size and/or any possible tradeoff. 

We conclude that the long established convention of 
hashsize=nf_conntrack_max/8 should be replaced by the 
hashsize=nf_conntrack_max rule to increase the 
performance of iptables to a high extent. 

We have also shown that nftables may not replace iptables in 
the application scenarios where a stateful NAT44 gateway of a 
CGN system has to handle a high number of connections with 
high performance, because iptables achieved about ten times 
higher maximum connection establishment rate and about five 
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of iptables significantly. Of course, now arises the question of 
using hashsize=nf_conntrack_max*n, where n > 1. We 
did not do tests with n=2, 4, 8, etc. but our results show that the 
expectable gain is much less. When using iptables as a stateful 
NAT44 gateway to forward Internet traffic, there are a high 
number of packets transferred per session. Thus, throughput is 
the dominant one from among our three used performance 
metrics. Examining Table II, we can see that there is only 4% 
performance difference between the first two columns. And 
considering the observable trends, it is likely to be even less, if 
the size if the hash table is further increased. And the increase 
of the hash table size has a built in limit. Theoretically, the 
default and the allowed maximum values for hashsize and 
nf_conntrack_max depend on the RAM size of the computer 
[15]. Our measurements show that it is true for very small RAM 
sizes (e.g. 1GB or 2GB), but the values do not change from 
8GB and to 384GB RAM size. We used the mem=nGB kernel 
command line parameter to limit the available memory for 
testing. Our results in Table VI show that the default and 
maximum values are the same for 8GB and 384GB. 

VII. TESTING THE PERFORMANCE OF NFTABLES 
We have also tested the maximum connection establishment 

rate and throughput performance of nftables. We used the same 
test system as shown in Fig. 4, but Debian 10.13 with 
4.19.0-20-amd64 kernel was used on the DUT. The version of 
nftables was: 0.9.0-2. We tested its performance only at the 
“optimal” working point, that is, using our recommended 
setting: hashsize=nf_conntrack_max.  

The results are shown in Table VII. Comparing the results 
with that of iptables (shown in Table I and Table II), we can see 
that the median maximum connection establishment rate of 
nftables (228,222cps) is about one tenth of the median 
maximum connection establishment rate of iptables 
(2,263,732cps), whereas the median throughput of nftables 
(835,544fps) is about one fifth of the median throughput of 
iptables (4,252,197fps) measured under the same conditions. 
Therefore, we conclude that nftables may not replace iptables 
in the application scenarios where a stateful NAT44 gateway of 
a CGN system has to handle a high number of connections with 

high performance. 

VIII. CONCLUSION 
We have measured the maximum connection establishment 

rate, throughput and connection tear down rate as well as the 
memory consumption of iptables as a function of the hash table 
size using always 40 million connections to determine the 
optimal value for the ratio of the number of connections and the 
hash table size and/or any possible tradeoff. 

We conclude that the long established convention of 
hashsize=nf_conntrack_max/8 should be replaced by the 
hashsize=nf_conntrack_max rule to increase the 
performance of iptables to a high extent. 

We have also shown that nftables may not replace iptables in 
the application scenarios where a stateful NAT44 gateway of a 
CGN system has to handle a high number of connections with 
high performance, because iptables achieved about ten times 
higher maximum connection establishment rate and about five 
times higher throughput than nftables. 
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of iptables significantly. Of course, now arises the question of 
using hashsize=nf_conntrack_max*n, where n > 1. We 
did not do tests with n=2, 4, 8, etc. but our results show that the 
expectable gain is much less. When using iptables as a stateful 
NAT44 gateway to forward Internet traffic, there are a high 
number of packets transferred per session. Thus, throughput is 
the dominant one from among our three used performance 
metrics. Examining Table II, we can see that there is only 4% 
performance difference between the first two columns. And 
considering the observable trends, it is likely to be even less, if 
the size if the hash table is further increased. And the increase 
of the hash table size has a built in limit. Theoretically, the 
default and the allowed maximum values for hashsize and 
nf_conntrack_max depend on the RAM size of the computer 
[15]. Our measurements show that it is true for very small RAM 
sizes (e.g. 1GB or 2GB), but the values do not change from 
8GB and to 384GB RAM size. We used the mem=nGB kernel 
command line parameter to limit the available memory for 
testing. Our results in Table VI show that the default and 
maximum values are the same for 8GB and 384GB. 

VII. TESTING THE PERFORMANCE OF NFTABLES 
We have also tested the maximum connection establishment 

rate and throughput performance of nftables. We used the same 
test system as shown in Fig. 4, but Debian 10.13 with 
4.19.0-20-amd64 kernel was used on the DUT. The version of 
nftables was: 0.9.0-2. We tested its performance only at the 
“optimal” working point, that is, using our recommended 
setting: hashsize=nf_conntrack_max.  

The results are shown in Table VII. Comparing the results 
with that of iptables (shown in Table I and Table II), we can see 
that the median maximum connection establishment rate of 
nftables (228,222cps) is about one tenth of the median 
maximum connection establishment rate of iptables 
(2,263,732cps), whereas the median throughput of nftables 
(835,544fps) is about one fifth of the median throughput of 
iptables (4,252,197fps) measured under the same conditions. 
Therefore, we conclude that nftables may not replace iptables 
in the application scenarios where a stateful NAT44 gateway of 
a CGN system has to handle a high number of connections with 

high performance. 

VIII. CONCLUSION 
We have measured the maximum connection establishment 

rate, throughput and connection tear down rate as well as the 
memory consumption of iptables as a function of the hash table 
size using always 40 million connections to determine the 
optimal value for the ratio of the number of connections and the 
hash table size and/or any possible tradeoff. 

We conclude that the long established convention of 
hashsize=nf_conntrack_max/8 should be replaced by the 
hashsize=nf_conntrack_max rule to increase the 
performance of iptables to a high extent. 

We have also shown that nftables may not replace iptables in 
the application scenarios where a stateful NAT44 gateway of a 
CGN system has to handle a high number of connections with 
high performance, because iptables achieved about ten times 
higher maximum connection establishment rate and about five 
times higher throughput than nftables. 
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of iptables significantly. Of course, now arises the question of 
using hashsize=nf_conntrack_max*n, where n > 1. We 
did not do tests with n=2, 4, 8, etc. but our results show that the 
expectable gain is much less. When using iptables as a stateful 
NAT44 gateway to forward Internet traffic, there are a high 
number of packets transferred per session. Thus, throughput is 
the dominant one from among our three used performance 
metrics. Examining Table II, we can see that there is only 4% 
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the size if the hash table is further increased. And the increase 
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(835,544fps) is about one fifth of the median throughput of 
iptables (4,252,197fps) measured under the same conditions. 
Therefore, we conclude that nftables may not replace iptables 
in the application scenarios where a stateful NAT44 gateway of 
a CGN system has to handle a high number of connections with 
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of iptables significantly. Of course, now arises the question of 
using hashsize=nf_conntrack_max*n, where n > 1. We 
did not do tests with n=2, 4, 8, etc. but our results show that the 
expectable gain is much less. When using iptables as a stateful 
NAT44 gateway to forward Internet traffic, there are a high 
number of packets transferred per session. Thus, throughput is 
the dominant one from among our three used performance 
metrics. Examining Table II, we can see that there is only 4% 
performance difference between the first two columns. And 
considering the observable trends, it is likely to be even less, if 
the size if the hash table is further increased. And the increase 
of the hash table size has a built in limit. Theoretically, the 
default and the allowed maximum values for hashsize and 
nf_conntrack_max depend on the RAM size of the computer 
[15]. Our measurements show that it is true for very small RAM 
sizes (e.g. 1GB or 2GB), but the values do not change from 
8GB and to 384GB RAM size. We used the mem=nGB kernel 
command line parameter to limit the available memory for 
testing. Our results in Table VI show that the default and 
maximum values are the same for 8GB and 384GB. 

VII. TESTING THE PERFORMANCE OF NFTABLES 
We have also tested the maximum connection establishment 

rate and throughput performance of nftables. We used the same 
test system as shown in Fig. 4, but Debian 10.13 with 
4.19.0-20-amd64 kernel was used on the DUT. The version of 
nftables was: 0.9.0-2. We tested its performance only at the 
“optimal” working point, that is, using our recommended 
setting: hashsize=nf_conntrack_max.  

The results are shown in Table VII. Comparing the results 
with that of iptables (shown in Table I and Table II), we can see 
that the median maximum connection establishment rate of 
nftables (228,222cps) is about one tenth of the median 
maximum connection establishment rate of iptables 
(2,263,732cps), whereas the median throughput of nftables 
(835,544fps) is about one fifth of the median throughput of 
iptables (4,252,197fps) measured under the same conditions. 
Therefore, we conclude that nftables may not replace iptables 
in the application scenarios where a stateful NAT44 gateway of 
a CGN system has to handle a high number of connections with 

high performance. 

VIII. CONCLUSION 
We have measured the maximum connection establishment 

rate, throughput and connection tear down rate as well as the 
memory consumption of iptables as a function of the hash table 
size using always 40 million connections to determine the 
optimal value for the ratio of the number of connections and the 
hash table size and/or any possible tradeoff. 

We conclude that the long established convention of 
hashsize=nf_conntrack_max/8 should be replaced by the 
hashsize=nf_conntrack_max rule to increase the 
performance of iptables to a high extent. 

We have also shown that nftables may not replace iptables in 
the application scenarios where a stateful NAT44 gateway of a 
CGN system has to handle a high number of connections with 
high performance, because iptables achieved about ten times 
higher maximum connection establishment rate and about five 
times higher throughput than nftables. 
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