
Evaluation of different extractors of features at
the level of sentiment analysis

INFOCOMMUNICATIONS JOURNAL

JUNE 2022 • VOLUME XIV • NUMBER 2 85

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

 
Abstract—Sentiment analysis is the process of recognizing and

categorizing the emotions being expressed in a textual source.
Tweets are commonly used to generate a large amount of
sentiment data after they are analyzed. These feelings data help to
learn about people's thoughts on a various range of topics. People
are typically attracted for researching positive and negative
reviews, which contain dislikes and likes, shared by the consumers
concerning the features of a certain service or product. Therefore,
the aspects or features of the product/service play an important
role in opinion mining. Furthermore to enough work being carried
out in text mining, feature extraction in opinion mining is
presently becoming a hot research field. In this paper, we focus on
the study of feature extractors because of their importance in
classification performance. The feature extraction is the most
critical aspect of opinion classification since classification
efficiency can be degraded if features are not properly chosen. A
few scientific researchers have addressed the issue of feature
extraction. And we found in the literature that almost every article
deals with one or two feature extractors. For that, we decided in
this paper to cover all the most popular feature extractors which
are BOW, N-grams, TF-IDF, Word2vec, GloVe and FastText. In
general, this paper will discuss the existing feature extractors in
the opinion mining domain. Also, it will present the advantages
and the inconveniences of each extractor. Moreover, a
comparative study is performed for determining the most efficient
combination CNN/extractor in terms of accuracy, precision, recall,
and F1 measure.

Index Terms—Opinion mining, Extractors of features,
BigData, Sentiment analysis, text analysis.

I. INTRODUCTION
ith the emergence of the internet and the social
networking revolution, a large number of individuals can

express freely their views and feelings about entities, products,
people, etc. [1, 2]. This growth is accompanied by a huge
volume of opinion data available on the web. Indeed, 2.5 billion
bytes of data are created every day. In recent years, 90% of the
world's data has been generated.

 Opinion analysis, in the computer domain, is concerned with
the automatic processing of opinions, feelings, and subjectivity
expressed or conveyed in textual and audiovisual statements
[3]. Opinions concern entities that can be products, services,
themes, public persons, organizations, etc. Textual statements

 1Department of Computer Science, Faculty of Sciences and Technology,
Sultan Moulay Slimane University, Beni Mellal 23000, Morocco (e-
mail:{fatima.essabery,khadija.essabery,garmani.hamid}@gmail.com;
abd_hair@yahoo.com

can be presented in different formats/types: article in a
newspaper, comment/critique in a website post/comment in
social networks (Facebook, Twitter, etc.). Oral statements,
presented in audiovisual documents, are also presented in
different formats: news, radio programs, YouTube videos, etc.
This paper focuses on textual statements on Twitter [4].

Twitter is a microblogging service that allows its users to
send and read short messages of up to 140 characters [5]. These
messages, called "tweets" can be received and sent from your
computer or mobile phone. Twitter has only been in existence
for five years but has already become a major actor in the social
media industry. It is a way of expression of internauts because
it permits to exchange in real-time, on all subjects, points of
view or needs. These tweets are well suited to the dissemination
and propagation of information because they can be republished
and also contain hash-tags, that is, tags assigned by the authors
of the tweets to briefly characterize the subject of the tweet [6,
7]. Tweets are provided with meta-data as well as information
about their location, language, keyword, sentiments expressed,
etc.

 Several works have been carried out in order to solve the
problem of opinion analysis with different methods (linguistic
and/or numerical). These works can therefore be classified
according to three approaches. The first is symbolic, using
lexicons and linguistic rules [8]. The second is a numerical
approach based on machine learning methods. Finally, there is
a hybrid approach that is a combination of the two previous
ones: it uses both lexicons and machine learning algorithms. All
these approaches consist in training a classifier based on
descriptors, also called features, specific to the opinion analysis
task. These features allow us to infer the polarity of a new tweet.
Thus, the good performances of the classifiers are conditioned
on the one hand by the quantity of training data and on the other
hand by the quality of the features. Indeed, the size of the
training corpus must be sufficient for training the classifier, and
the features must be specific to the task [9, 10].

In general, the opinion process consists of several phases which
are the pre-processing stage, the feature extraction stage, the
feature selection stage and the classification stage. Feature
extraction is considered the most critical step because the
performance of the classification depends on the set of extracted
features. The choice of features is very important in the

2Department of Electronics, Quaid-i-Azam University, Islamabad 45320,
Pakistan (e-mail: junaidqadirqau@gmail.com).

EVALUATION OF DIFFERENT EXTRACTORS OF FEATURES AT
THE LEVEL OF SENTIMENT ANALYSIS

Fatima Es-sabery1, Khadija Es-sabery1, Hamid Garmani1, Junaid Qadir2, and Abdellatif Hair1

W

1Department of Computer Science, Faculty of Sciences and Technology,
Sultan Moulay Slimane University, Beni Mellal 23000, Morocco

(e-mail: {fatima.essabery, khadija.essabery, garmani.hamid}@gmail.com;
abd_hair@yahoo.com

2Department of Electronics, Quaid-i-Azam University, Islamabad 45320,
Pakistan (e-mail: junaidqadirqau@gmail.com).

Evaluation of different extractors of features at
the level of sentiment analysis

Fatima Es-sabery1, Khadija Es-sabery1, Hamid Garmani1, Junaid Qadir2, and Abdellatif Hair1

Abstract—Sentiment analysis is the process of recognizing
and categorizing the emotions being expressed in a textual
source. Tweets are commonly used to generate a large amount
of sentiment data after they are analyzed. These feelings data
help to learn about people's thoughts on a various range of
topics. People are typically attracted for researching positive
and negative reviews, which contain dislikes and likes, shared
by the consumers concerning the features of a certain service
or product. Therefore, the aspects or features of the product/
service play an important role in opinion mining. Furthermore to
enough work being carried out in text mining, feature extraction
in opinion mining is presently becoming a hot research field. In
this paper, we focus on the study of feature extractors because
of their importance in classification performance. The feature
extraction is the most critical aspect of opinion classification
since classification efficiency can be degraded if features are not
properly chosen. A few scientific researchers have addressed the
issue of feature extraction. And we found in the literature that
almost every article deals with one or two feature extractors.
For that, we decided in this paper to cover all the most popular
feature extractors which are BOW, N-grams, TF-IDF, Word2vec,
GloVe and FastText. In general, this paper will discuss the
existing feature extractors in the opinion mining domain. Also,
it will present the advantages and the inconveniences of each
extractor. Moreover, a comparative study is performed for
determining the most efficient combination CNN/extractor in
terms of accuracy, precision, recall, and F1 measure.

Index Terms—Opinion mining, Extractors of features, Big-
Data, Sentiment analysis, text analysis.

DOI: 10.36244/ICJ.2022.2.9

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

 
Abstract—Sentiment analysis is the process of recognizing and

categorizing the emotions being expressed in a textual source.
Tweets are commonly used to generate a large amount of
sentiment data after they are analyzed. These feelings data help to
learn about people's thoughts on a various range of topics. People
are typically attracted for researching positive and negative
reviews, which contain dislikes and likes, shared by the consumers
concerning the features of a certain service or product. Therefore,
the aspects or features of the product/service play an important
role in opinion mining. Furthermore to enough work being carried
out in text mining, feature extraction in opinion mining is
presently becoming a hot research field. In this paper, we focus on
the study of feature extractors because of their importance in
classification performance. The feature extraction is the most
critical aspect of opinion classification since classification
efficiency can be degraded if features are not properly chosen. A
few scientific researchers have addressed the issue of feature
extraction. And we found in the literature that almost every article
deals with one or two feature extractors. For that, we decided in
this paper to cover all the most popular feature extractors which
are BOW, N-grams, TF-IDF, Word2vec, GloVe and FastText. In
general, this paper will discuss the existing feature extractors in
the opinion mining domain. Also, it will present the advantages
and the inconveniences of each extractor. Moreover, a
comparative study is performed for determining the most efficient
combination CNN/extractor in terms of accuracy, precision, recall,
and F1 measure.

Index Terms—Opinion mining, Extractors of features,
BigData, Sentiment analysis, text analysis.

I. INTRODUCTION
ith the emergence of the internet and the social
networking revolution, a large number of individuals can

express freely their views and feelings about entities, products,
people, etc. [1, 2]. This growth is accompanied by a huge
volume of opinion data available on the web. Indeed, 2.5 billion
bytes of data are created every day. In recent years, 90% of the
world's data has been generated.

 Opinion analysis, in the computer domain, is concerned with
the automatic processing of opinions, feelings, and subjectivity
expressed or conveyed in textual and audiovisual statements
[3]. Opinions concern entities that can be products, services,
themes, public persons, organizations, etc. Textual statements

 1Department of Computer Science, Faculty of Sciences and Technology,
Sultan Moulay Slimane University, Beni Mellal 23000, Morocco (e-
mail:{fatima.essabery,khadija.essabery,garmani.hamid}@gmail.com;
abd_hair@yahoo.com

can be presented in different formats/types: article in a
newspaper, comment/critique in a website post/comment in
social networks (Facebook, Twitter, etc.). Oral statements,
presented in audiovisual documents, are also presented in
different formats: news, radio programs, YouTube videos, etc.
This paper focuses on textual statements on Twitter [4].

Twitter is a microblogging service that allows its users to
send and read short messages of up to 140 characters [5]. These
messages, called "tweets" can be received and sent from your
computer or mobile phone. Twitter has only been in existence
for five years but has already become a major actor in the social
media industry. It is a way of expression of internauts because
it permits to exchange in real-time, on all subjects, points of
view or needs. These tweets are well suited to the dissemination
and propagation of information because they can be republished
and also contain hash-tags, that is, tags assigned by the authors
of the tweets to briefly characterize the subject of the tweet [6,
7]. Tweets are provided with meta-data as well as information
about their location, language, keyword, sentiments expressed,
etc.

 Several works have been carried out in order to solve the
problem of opinion analysis with different methods (linguistic
and/or numerical). These works can therefore be classified
according to three approaches. The first is symbolic, using
lexicons and linguistic rules [8]. The second is a numerical
approach based on machine learning methods. Finally, there is
a hybrid approach that is a combination of the two previous
ones: it uses both lexicons and machine learning algorithms. All
these approaches consist in training a classifier based on
descriptors, also called features, specific to the opinion analysis
task. These features allow us to infer the polarity of a new tweet.
Thus, the good performances of the classifiers are conditioned
on the one hand by the quantity of training data and on the other
hand by the quality of the features. Indeed, the size of the
training corpus must be sufficient for training the classifier, and
the features must be specific to the task [9, 10].

In general, the opinion process consists of several phases which
are the pre-processing stage, the feature extraction stage, the
feature selection stage and the classification stage. Feature
extraction is considered the most critical step because the
performance of the classification depends on the set of extracted
features. The choice of features is very important in the

2Department of Electronics, Quaid-i-Azam University, Islamabad 45320,
Pakistan (e-mail: junaidqadirqau@gmail.com).

EVALUATION OF DIFFERENT EXTRACTORS OF FEATURES AT
THE LEVEL OF SENTIMENT ANALYSIS

Fatima Es-sabery1, Khadija Es-sabery1, Hamid Garmani1, Junaid Qadir2, and Abdellatif Hair1

W

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

performance of the learning model. Generally, the identification
of relevant features is done by feature extraction and selection
algorithms. Classifier performance varies from one set of
features to another. These features require good conception and
real thinking to define or guess the right features for the
classification task.

Therefore, feature extraction addresses the issue of identifying
the most distinguishing, informational, and minimized set of
features to enhance the effectiveness of the data treatment.
Relevant feature vectors are still the most popular and suitable
way of representing the sample for classification issues. Many
scientists from various fields, who are focused on data analysis
and classification, are working together to address feature
extraction challenges. Today's developments in both sentiment
analysis and feature extraction algorithms have allowed us to
design the identification tools that can accomplish tasks that
were previously impossible to do. Feature extraction is at the
core of these advancements with applications in sentiment
analysis, as well as numerous other developing applications.

For an efficient classification, it is essential to employ an
accurate feature extraction approach to retrieve a set of
distinguishing and informational features from the input data.
In essence, if the retrieved features do not accurately identify
the employed signals and are not meaningful, a classification
technique employing such set of features may have issues in
finding the feature classes labels. Therefore, the classification
accuracy may be reduced. Due to the importance of feature
extractors, in this paper, we will detail the principle of the most
commonly used extractors. The main points of this paper can
be summarized as follows:

 The discussion of the existing feature extractors in the
opinion mining domain.

 The description of the advantages and the
inconveniences of each extractor

 The used dataset is the Sentiment140 dataset contains
approximately 1.6 million tweets that were
automatically retrieved with the Twitter API.

 Application of multiple feature extractors and
determination of the most effective extractor in the
case of Sentiment140.

 Implementation of the convolutional neural network,
NB, SVM, ID3 and C4.5 as a classifier.

 Setting up the Hadoop framework for the parallel
implementation of our proposal

II. RELATED WORKS
 Most conventional research papers on sentiment analysis has
employed supervised machine learning approaches as the
primary module for classification or clustering [11]. These
approaches typically exploit the Bag-Of-Words, Word2vec,
GloVe, FastText, N-Gram and TF-IDF models to extract the
essential features of the text containing user-generated
sentiments [12].

A. Baseline feature extraction methods

 The authors of the paper [13] evaluated the performance of
the feature extractor N-gram in opinion mining field. They
proposed to combine the approach based lexicon with the N-
gram method for performing the sentiment classification. And
their proposed Senti-N-Gram lexicon based approach
outperforms well-known unigram-lexicon based method
employing the VADER lexicon and an n-gram opinion mining
method SO-CAL.

 The paper [14] provides an introduction to BoW, its
importance, how it operates, its implementations, and the
challenges of utilizing it. This review is helpful in terms of
introducing the BoW methodology to new researchers and
providing a good context with related work to researchers
working on this model.

 In [15], the authors have analyzed the effect of TF-IDF
feature level on the SS-Tweet dataset for opinion extraction.
They found that by employing the TF-IDF feature extractor, the
sentiment analysis performance is 3-4% higher than by
employing the N-gram feature.

 The authors of the paper [16], introduce a Word2vec pattern
that provides additional linguistic features to accommodate
short Chinese dataset. It is compared with the Internet content-
based pattern for long dataset. The empirical findings
demonstrate that our pattern can effectively improve the
performance of opinion classification using six different classes
on Weibo.

 In the work [17] a hybrid pattern of embedding glove
words, contextual and string similarity measures are applied on
the large dataset for key sentence retrieval and classification.
The empirical findings demonstrate that the GloVe extraction
pattern is better than existing metrics for key sentence and
string similarity in large datasets.

 In [18], the authors have studied the fastText feature
extractor and the experimental results show that the FastText
achieves 0.97 area under the ROC curve, 94.2% F-measure, and
74.8 ms inference times for CPU.

B. The state-of-the-art feature extractors

The authors of the paper [19] proposed an attention-
bidirectional algorithm based on the both deep neural networks
CNN and RNN as feature extractor for opinion mining. Their
approaches extracted past and future features by taking in
consideration the temporal data stream in both senses. In
addition, the attention layer mechanism is implemented on the
outputs of the bidirectional LSTM layers to emphasize different
extracted features to a greater or lesser extent. They also applied
the convolution and pooling layers of the CNN in order to
reduce the dimensionality of the extracted features. The results
of the comparison of their approach and six more recently
suggested DNNs for opinion mining indicate that their

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

 
Abstract—Sentiment analysis is the process of recognizing and

categorizing the emotions being expressed in a textual source.
Tweets are commonly used to generate a large amount of
sentiment data after they are analyzed. These feelings data help to
learn about people's thoughts on a various range of topics. People
are typically attracted for researching positive and negative
reviews, which contain dislikes and likes, shared by the consumers
concerning the features of a certain service or product. Therefore,
the aspects or features of the product/service play an important
role in opinion mining. Furthermore to enough work being carried
out in text mining, feature extraction in opinion mining is
presently becoming a hot research field. In this paper, we focus on
the study of feature extractors because of their importance in
classification performance. The feature extraction is the most
critical aspect of opinion classification since classification
efficiency can be degraded if features are not properly chosen. A
few scientific researchers have addressed the issue of feature
extraction. And we found in the literature that almost every article
deals with one or two feature extractors. For that, we decided in
this paper to cover all the most popular feature extractors which
are BOW, N-grams, TF-IDF, Word2vec, GloVe and FastText. In
general, this paper will discuss the existing feature extractors in
the opinion mining domain. Also, it will present the advantages
and the inconveniences of each extractor. Moreover, a
comparative study is performed for determining the most efficient
combination CNN/extractor in terms of accuracy, precision, recall,
and F1 measure.

Index Terms—Opinion mining, Extractors of features,
BigData, Sentiment analysis, text analysis.

I. INTRODUCTION
ith the emergence of the internet and the social
networking revolution, a large number of individuals can

express freely their views and feelings about entities, products,
people, etc. [1, 2]. This growth is accompanied by a huge
volume of opinion data available on the web. Indeed, 2.5 billion
bytes of data are created every day. In recent years, 90% of the
world's data has been generated.

 Opinion analysis, in the computer domain, is concerned with
the automatic processing of opinions, feelings, and subjectivity
expressed or conveyed in textual and audiovisual statements
[3]. Opinions concern entities that can be products, services,
themes, public persons, organizations, etc. Textual statements

 1Department of Computer Science, Faculty of Sciences and Technology,
Sultan Moulay Slimane University, Beni Mellal 23000, Morocco (e-
mail:{fatima.essabery,khadija.essabery,garmani.hamid}@gmail.com;
abd_hair@yahoo.com

can be presented in different formats/types: article in a
newspaper, comment/critique in a website post/comment in
social networks (Facebook, Twitter, etc.). Oral statements,
presented in audiovisual documents, are also presented in
different formats: news, radio programs, YouTube videos, etc.
This paper focuses on textual statements on Twitter [4].

Twitter is a microblogging service that allows its users to
send and read short messages of up to 140 characters [5]. These
messages, called "tweets" can be received and sent from your
computer or mobile phone. Twitter has only been in existence
for five years but has already become a major actor in the social
media industry. It is a way of expression of internauts because
it permits to exchange in real-time, on all subjects, points of
view or needs. These tweets are well suited to the dissemination
and propagation of information because they can be republished
and also contain hash-tags, that is, tags assigned by the authors
of the tweets to briefly characterize the subject of the tweet [6,
7]. Tweets are provided with meta-data as well as information
about their location, language, keyword, sentiments expressed,
etc.

 Several works have been carried out in order to solve the
problem of opinion analysis with different methods (linguistic
and/or numerical). These works can therefore be classified
according to three approaches. The first is symbolic, using
lexicons and linguistic rules [8]. The second is a numerical
approach based on machine learning methods. Finally, there is
a hybrid approach that is a combination of the two previous
ones: it uses both lexicons and machine learning algorithms. All
these approaches consist in training a classifier based on
descriptors, also called features, specific to the opinion analysis
task. These features allow us to infer the polarity of a new tweet.
Thus, the good performances of the classifiers are conditioned
on the one hand by the quantity of training data and on the other
hand by the quality of the features. Indeed, the size of the
training corpus must be sufficient for training the classifier, and
the features must be specific to the task [9, 10].

In general, the opinion process consists of several phases which
are the pre-processing stage, the feature extraction stage, the
feature selection stage and the classification stage. Feature
extraction is considered the most critical step because the
performance of the classification depends on the set of extracted
features. The choice of features is very important in the

2Department of Electronics, Quaid-i-Azam University, Islamabad 45320,
Pakistan (e-mail: junaidqadirqau@gmail.com).

EVALUATION OF DIFFERENT EXTRACTORS OF FEATURES AT
THE LEVEL OF SENTIMENT ANALYSIS

Fatima Es-sabery1, Khadija Es-sabery1, Hamid Garmani1, Junaid Qadir2, and Abdellatif Hair1

W

mailto:fatima.essabery%40gmail.com?subject=
mailto:khadija.essabery%40gmail.com?subject=
mailto:garmani.hamid%40gmail.com?subject=
mailto:abd_hair%40yahoo.com?subject=
mailto:junaidqadirqau%40gmail.com?subject=
https://doi.org/10.36244/ICJ.2022.2.9

Evaluation of different extractors of features at
the level of sentiment analysis

JUNE 2022 • VOLUME XIV • NUMBER 286

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

performance of the learning model. Generally, the identification
of relevant features is done by feature extraction and selection
algorithms. Classifier performance varies from one set of
features to another. These features require good conception and
real thinking to define or guess the right features for the
classification task.

Therefore, feature extraction addresses the issue of identifying
the most distinguishing, informational, and minimized set of
features to enhance the effectiveness of the data treatment.
Relevant feature vectors are still the most popular and suitable
way of representing the sample for classification issues. Many
scientists from various fields, who are focused on data analysis
and classification, are working together to address feature
extraction challenges. Today's developments in both sentiment
analysis and feature extraction algorithms have allowed us to
design the identification tools that can accomplish tasks that
were previously impossible to do. Feature extraction is at the
core of these advancements with applications in sentiment
analysis, as well as numerous other developing applications.

For an efficient classification, it is essential to employ an
accurate feature extraction approach to retrieve a set of
distinguishing and informational features from the input data.
In essence, if the retrieved features do not accurately identify
the employed signals and are not meaningful, a classification
technique employing such set of features may have issues in
finding the feature classes labels. Therefore, the classification
accuracy may be reduced. Due to the importance of feature
extractors, in this paper, we will detail the principle of the most
commonly used extractors. The main points of this paper can
be summarized as follows:

 The discussion of the existing feature extractors in the
opinion mining domain.

 The description of the advantages and the
inconveniences of each extractor

 The used dataset is the Sentiment140 dataset contains
approximately 1.6 million tweets that were
automatically retrieved with the Twitter API.

 Application of multiple feature extractors and
determination of the most effective extractor in the
case of Sentiment140.

 Implementation of the convolutional neural network,
NB, SVM, ID3 and C4.5 as a classifier.

 Setting up the Hadoop framework for the parallel
implementation of our proposal

II. RELATED WORKS
 Most conventional research papers on sentiment analysis has
employed supervised machine learning approaches as the
primary module for classification or clustering [11]. These
approaches typically exploit the Bag-Of-Words, Word2vec,
GloVe, FastText, N-Gram and TF-IDF models to extract the
essential features of the text containing user-generated
sentiments [12].

A. Baseline feature extraction methods

 The authors of the paper [13] evaluated the performance of
the feature extractor N-gram in opinion mining field. They
proposed to combine the approach based lexicon with the N-
gram method for performing the sentiment classification. And
their proposed Senti-N-Gram lexicon based approach
outperforms well-known unigram-lexicon based method
employing the VADER lexicon and an n-gram opinion mining
method SO-CAL.

 The paper [14] provides an introduction to BoW, its
importance, how it operates, its implementations, and the
challenges of utilizing it. This review is helpful in terms of
introducing the BoW methodology to new researchers and
providing a good context with related work to researchers
working on this model.

 In [15], the authors have analyzed the effect of TF-IDF
feature level on the SS-Tweet dataset for opinion extraction.
They found that by employing the TF-IDF feature extractor, the
sentiment analysis performance is 3-4% higher than by
employing the N-gram feature.

 The authors of the paper [16], introduce a Word2vec pattern
that provides additional linguistic features to accommodate
short Chinese dataset. It is compared with the Internet content-
based pattern for long dataset. The empirical findings
demonstrate that our pattern can effectively improve the
performance of opinion classification using six different classes
on Weibo.

 In the work [17] a hybrid pattern of embedding glove
words, contextual and string similarity measures are applied on
the large dataset for key sentence retrieval and classification.
The empirical findings demonstrate that the GloVe extraction
pattern is better than existing metrics for key sentence and
string similarity in large datasets.

 In [18], the authors have studied the fastText feature
extractor and the experimental results show that the FastText
achieves 0.97 area under the ROC curve, 94.2% F-measure, and
74.8 ms inference times for CPU.

B. The state-of-the-art feature extractors

The authors of the paper [19] proposed an attention-
bidirectional algorithm based on the both deep neural networks
CNN and RNN as feature extractor for opinion mining. Their
approaches extracted past and future features by taking in
consideration the temporal data stream in both senses. In
addition, the attention layer mechanism is implemented on the
outputs of the bidirectional LSTM layers to emphasize different
extracted features to a greater or lesser extent. They also applied
the convolution and pooling layers of the CNN in order to
reduce the dimensionality of the extracted features. The results
of the comparison of their approach and six more recently
suggested DNNs for opinion mining indicate that their

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

approach accomplishes the best performance on both short
tweet and long review polarities detection.

In the paper [20] a novel efficient method for sentiment

classification employing machine learning techniques is
suggested. The process of this novel approach is carried out in
three phases. In the first phase, the dataset is gathered and
pretreated, in the second phase the dataset is tuned by extracting
the relevant characteristics, and in the third phase the trained
dataset is classified into three classes (negative, neutral, and
positive) by implementing several machine learning
techniques. Every machine learning algorithms yield distinct
results. It is observed that the suggested approach i.e., selective
algorithm combined with decision tree provides a high accuracy
of 89.47% in comparison to other machine learning techniques

The authors of the paper [21] evaluate different combinations

of features in Twitter opinion mining. In addition, they assess
and study the effect of combining these separate kinds of
characteristics to detect of which aggregation yield crucial
insights in the polarity classification task in Twitter opinion
mining.

In the paper [22], a comparative study of two extractors (TF-
IDF, and Doc2vec) is carried out. The authors of this paper
implement these two extractors on three datasets such as
Stanford movie review, UCI sentiment, and Cornell movie
review datasets. Also, they applied several preprocessing tasks
such as removing stop words, eliminating the special
characters, stemming and tokenization which increases the
accuracy of sentiment classification and reduce the execution
of time of used classifier. The pertinent features extracted after
the extraction step are tested and trained using various machine
learning algorithms like support vector machine, Bernoulli
naïve bayes, k-nearest neighbors, decision tree, and logistic
regression.

The authors of the paper [23], carried out an experimental
analyze of different techniques of feature extraction in Twitter
sentiments analysis. Their comparative study is performed in
four steps, the first one is the data gathering task which has been
carried out from readily available sources. The second phase is
the application of several preprocessing tasks utilizing the tool
POS. In the third step, various feature selector and extractor are
implemented over the collected tweets. Finally, the
experimental study is performed for detecting the opinion
polarity with different extractors.

Zainuddin et al. [24] proposed a hybrid model for classifying
the tweets aspect-based opinion mining. They carried out a
comparative analyze in terms of classification rate of three
features selectors such as latent semantic analysis, principal
component analysis, and random projection. In addition the
hybrid model was evaluated employing Twitter datasets to
represent various areas, and the evaluation with several
machine learning algorithms also proved that the novel hybrid
model achieved goods results. Their experimental results
showed that the proposed hybrid opinion classification model
was capable to increase the classification rate from the existing
conventional opinion mining approaches by 76.55%, 71.62%

and 74.24 %, respectively.
Pandian suggested in its paper [25], a comparative study of

sentiment classification by employing various deep learning
models. Its proposed paper has incorporated a feature-
extraction with a deep learning model. Furthermore, its research
work has three major phases: The first phase is the design of
opinion classifiers based on deep learning models. This step is
succeeded by the utilization of ensemble techniques and
merging of information to get the final ensemble of data
sources. As the third phase, an aggregation of ensembles the
information is proposed to classify several algorithms along
with the suggested algorithm.

III. EXTRACTORS OF FEATURES
Concerning machine learning approaches, many efforts have

been performed in the literature on Twitter opinion mining to
obtain an efficient vectorization of tweets. In this context,
various kinds of features extractors have been suggested
already, ranging from simple n-gram based vectorization to
meta-level features to word embeddings.

A. N-gram extractor
 The N-gram feature extractor is commonly being employed
in text based-classification [26]. After applied this extractor, the
sentence can be broken down into features of character n-grams
and word n-grams. So, an N-gram is a series of “characters or
words " picked up, in order, from a body of sentence. N-gram
may be unigram (n-gram = 1), bigram (n-gram = 2), trigram (n-
gram = 3), and so on.

 Usually we pick every word in a sentence to compute the
sentiment of the sentence, but there can be a case in which the
word is formerly employed in a positive sense, but now it is
employed in a negative sense; for example, “what an awesome
product, totally waste of money,” if we take only the word
“awesome” the sentence will be positive but if we take in
consideration the whole sentence, it is indicating the negative.
It is because of these types of problems that the N-gram is being
developed.

B. TF_IDF extractor
 TF_IDF means term frequency - inverse document
frequency, which is widely recognized and it is utilized as a
weighting procedure and its performance is also still very
comparable with new approaches [27]. It is a statistical value
that is meant to reflect how much weight a given word has to a
certain document in a corpus or a collection. The TF-IDF rate
boosts proportionally to the number of occurrences of each term
in the document, but is compensated by the occurrence of the
term in the corpus, which aids to adapt for the fact that a certain
terms occur more frequently in overall. The standardization TF-
IDF rates for any document in the corpus via the Euclidean
measure are used. The calculations of TF-IDF are presented in
the following equation:

 (TF_IDF) 𝑖𝑖𝑖𝑖 = (TF)𝑖𝑖𝑖𝑖 ∗ log (IDF)𝑖𝑖 (1)

Where TF = 𝑘𝑘𝑖𝑖𝑖𝑖
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 with k is the

number of times the word i appears in the sentence j.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

performance of the learning model. Generally, the identification
of relevant features is done by feature extraction and selection
algorithms. Classifier performance varies from one set of
features to another. These features require good conception and
real thinking to define or guess the right features for the
classification task.

Therefore, feature extraction addresses the issue of identifying
the most distinguishing, informational, and minimized set of
features to enhance the effectiveness of the data treatment.
Relevant feature vectors are still the most popular and suitable
way of representing the sample for classification issues. Many
scientists from various fields, who are focused on data analysis
and classification, are working together to address feature
extraction challenges. Today's developments in both sentiment
analysis and feature extraction algorithms have allowed us to
design the identification tools that can accomplish tasks that
were previously impossible to do. Feature extraction is at the
core of these advancements with applications in sentiment
analysis, as well as numerous other developing applications.

For an efficient classification, it is essential to employ an
accurate feature extraction approach to retrieve a set of
distinguishing and informational features from the input data.
In essence, if the retrieved features do not accurately identify
the employed signals and are not meaningful, a classification
technique employing such set of features may have issues in
finding the feature classes labels. Therefore, the classification
accuracy may be reduced. Due to the importance of feature
extractors, in this paper, we will detail the principle of the most
commonly used extractors. The main points of this paper can
be summarized as follows:

 The discussion of the existing feature extractors in the
opinion mining domain.

 The description of the advantages and the
inconveniences of each extractor

 The used dataset is the Sentiment140 dataset contains
approximately 1.6 million tweets that were
automatically retrieved with the Twitter API.

 Application of multiple feature extractors and
determination of the most effective extractor in the
case of Sentiment140.

 Implementation of the convolutional neural network,
NB, SVM, ID3 and C4.5 as a classifier.

 Setting up the Hadoop framework for the parallel
implementation of our proposal

II. RELATED WORKS
 Most conventional research papers on sentiment analysis has
employed supervised machine learning approaches as the
primary module for classification or clustering [11]. These
approaches typically exploit the Bag-Of-Words, Word2vec,
GloVe, FastText, N-Gram and TF-IDF models to extract the
essential features of the text containing user-generated
sentiments [12].

A. Baseline feature extraction methods

 The authors of the paper [13] evaluated the performance of
the feature extractor N-gram in opinion mining field. They
proposed to combine the approach based lexicon with the N-
gram method for performing the sentiment classification. And
their proposed Senti-N-Gram lexicon based approach
outperforms well-known unigram-lexicon based method
employing the VADER lexicon and an n-gram opinion mining
method SO-CAL.

 The paper [14] provides an introduction to BoW, its
importance, how it operates, its implementations, and the
challenges of utilizing it. This review is helpful in terms of
introducing the BoW methodology to new researchers and
providing a good context with related work to researchers
working on this model.

 In [15], the authors have analyzed the effect of TF-IDF
feature level on the SS-Tweet dataset for opinion extraction.
They found that by employing the TF-IDF feature extractor, the
sentiment analysis performance is 3-4% higher than by
employing the N-gram feature.

 The authors of the paper [16], introduce a Word2vec pattern
that provides additional linguistic features to accommodate
short Chinese dataset. It is compared with the Internet content-
based pattern for long dataset. The empirical findings
demonstrate that our pattern can effectively improve the
performance of opinion classification using six different classes
on Weibo.

 In the work [17] a hybrid pattern of embedding glove
words, contextual and string similarity measures are applied on
the large dataset for key sentence retrieval and classification.
The empirical findings demonstrate that the GloVe extraction
pattern is better than existing metrics for key sentence and
string similarity in large datasets.

 In [18], the authors have studied the fastText feature
extractor and the experimental results show that the FastText
achieves 0.97 area under the ROC curve, 94.2% F-measure, and
74.8 ms inference times for CPU.

B. The state-of-the-art feature extractors

The authors of the paper [19] proposed an attention-
bidirectional algorithm based on the both deep neural networks
CNN and RNN as feature extractor for opinion mining. Their
approaches extracted past and future features by taking in
consideration the temporal data stream in both senses. In
addition, the attention layer mechanism is implemented on the
outputs of the bidirectional LSTM layers to emphasize different
extracted features to a greater or lesser extent. They also applied
the convolution and pooling layers of the CNN in order to
reduce the dimensionality of the extracted features. The results
of the comparison of their approach and six more recently
suggested DNNs for opinion mining indicate that their

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

performance of the learning model. Generally, the identification
of relevant features is done by feature extraction and selection
algorithms. Classifier performance varies from one set of
features to another. These features require good conception and
real thinking to define or guess the right features for the
classification task.

Therefore, feature extraction addresses the issue of identifying
the most distinguishing, informational, and minimized set of
features to enhance the effectiveness of the data treatment.
Relevant feature vectors are still the most popular and suitable
way of representing the sample for classification issues. Many
scientists from various fields, who are focused on data analysis
and classification, are working together to address feature
extraction challenges. Today's developments in both sentiment
analysis and feature extraction algorithms have allowed us to
design the identification tools that can accomplish tasks that
were previously impossible to do. Feature extraction is at the
core of these advancements with applications in sentiment
analysis, as well as numerous other developing applications.

For an efficient classification, it is essential to employ an
accurate feature extraction approach to retrieve a set of
distinguishing and informational features from the input data.
In essence, if the retrieved features do not accurately identify
the employed signals and are not meaningful, a classification
technique employing such set of features may have issues in
finding the feature classes labels. Therefore, the classification
accuracy may be reduced. Due to the importance of feature
extractors, in this paper, we will detail the principle of the most
commonly used extractors. The main points of this paper can
be summarized as follows:

 The discussion of the existing feature extractors in the
opinion mining domain.

 The description of the advantages and the
inconveniences of each extractor

 The used dataset is the Sentiment140 dataset contains
approximately 1.6 million tweets that were
automatically retrieved with the Twitter API.

 Application of multiple feature extractors and
determination of the most effective extractor in the
case of Sentiment140.

 Implementation of the convolutional neural network,
NB, SVM, ID3 and C4.5 as a classifier.

 Setting up the Hadoop framework for the parallel
implementation of our proposal

II. RELATED WORKS
 Most conventional research papers on sentiment analysis has
employed supervised machine learning approaches as the
primary module for classification or clustering [11]. These
approaches typically exploit the Bag-Of-Words, Word2vec,
GloVe, FastText, N-Gram and TF-IDF models to extract the
essential features of the text containing user-generated
sentiments [12].

A. Baseline feature extraction methods

 The authors of the paper [13] evaluated the performance of
the feature extractor N-gram in opinion mining field. They
proposed to combine the approach based lexicon with the N-
gram method for performing the sentiment classification. And
their proposed Senti-N-Gram lexicon based approach
outperforms well-known unigram-lexicon based method
employing the VADER lexicon and an n-gram opinion mining
method SO-CAL.

 The paper [14] provides an introduction to BoW, its
importance, how it operates, its implementations, and the
challenges of utilizing it. This review is helpful in terms of
introducing the BoW methodology to new researchers and
providing a good context with related work to researchers
working on this model.

 In [15], the authors have analyzed the effect of TF-IDF
feature level on the SS-Tweet dataset for opinion extraction.
They found that by employing the TF-IDF feature extractor, the
sentiment analysis performance is 3-4% higher than by
employing the N-gram feature.

 The authors of the paper [16], introduce a Word2vec pattern
that provides additional linguistic features to accommodate
short Chinese dataset. It is compared with the Internet content-
based pattern for long dataset. The empirical findings
demonstrate that our pattern can effectively improve the
performance of opinion classification using six different classes
on Weibo.

 In the work [17] a hybrid pattern of embedding glove
words, contextual and string similarity measures are applied on
the large dataset for key sentence retrieval and classification.
The empirical findings demonstrate that the GloVe extraction
pattern is better than existing metrics for key sentence and
string similarity in large datasets.

 In [18], the authors have studied the fastText feature
extractor and the experimental results show that the FastText
achieves 0.97 area under the ROC curve, 94.2% F-measure, and
74.8 ms inference times for CPU.

B. The state-of-the-art feature extractors

The authors of the paper [19] proposed an attention-
bidirectional algorithm based on the both deep neural networks
CNN and RNN as feature extractor for opinion mining. Their
approaches extracted past and future features by taking in
consideration the temporal data stream in both senses. In
addition, the attention layer mechanism is implemented on the
outputs of the bidirectional LSTM layers to emphasize different
extracted features to a greater or lesser extent. They also applied
the convolution and pooling layers of the CNN in order to
reduce the dimensionality of the extracted features. The results
of the comparison of their approach and six more recently
suggested DNNs for opinion mining indicate that their

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

performance of the learning model. Generally, the identification
of relevant features is done by feature extraction and selection
algorithms. Classifier performance varies from one set of
features to another. These features require good conception and
real thinking to define or guess the right features for the
classification task.

Therefore, feature extraction addresses the issue of identifying
the most distinguishing, informational, and minimized set of
features to enhance the effectiveness of the data treatment.
Relevant feature vectors are still the most popular and suitable
way of representing the sample for classification issues. Many
scientists from various fields, who are focused on data analysis
and classification, are working together to address feature
extraction challenges. Today's developments in both sentiment
analysis and feature extraction algorithms have allowed us to
design the identification tools that can accomplish tasks that
were previously impossible to do. Feature extraction is at the
core of these advancements with applications in sentiment
analysis, as well as numerous other developing applications.

For an efficient classification, it is essential to employ an
accurate feature extraction approach to retrieve a set of
distinguishing and informational features from the input data.
In essence, if the retrieved features do not accurately identify
the employed signals and are not meaningful, a classification
technique employing such set of features may have issues in
finding the feature classes labels. Therefore, the classification
accuracy may be reduced. Due to the importance of feature
extractors, in this paper, we will detail the principle of the most
commonly used extractors. The main points of this paper can
be summarized as follows:

 The discussion of the existing feature extractors in the
opinion mining domain.

 The description of the advantages and the
inconveniences of each extractor

 The used dataset is the Sentiment140 dataset contains
approximately 1.6 million tweets that were
automatically retrieved with the Twitter API.

 Application of multiple feature extractors and
determination of the most effective extractor in the
case of Sentiment140.

 Implementation of the convolutional neural network,
NB, SVM, ID3 and C4.5 as a classifier.

 Setting up the Hadoop framework for the parallel
implementation of our proposal

II. RELATED WORKS
 Most conventional research papers on sentiment analysis has
employed supervised machine learning approaches as the
primary module for classification or clustering [11]. These
approaches typically exploit the Bag-Of-Words, Word2vec,
GloVe, FastText, N-Gram and TF-IDF models to extract the
essential features of the text containing user-generated
sentiments [12].

A. Baseline feature extraction methods

 The authors of the paper [13] evaluated the performance of
the feature extractor N-gram in opinion mining field. They
proposed to combine the approach based lexicon with the N-
gram method for performing the sentiment classification. And
their proposed Senti-N-Gram lexicon based approach
outperforms well-known unigram-lexicon based method
employing the VADER lexicon and an n-gram opinion mining
method SO-CAL.

 The paper [14] provides an introduction to BoW, its
importance, how it operates, its implementations, and the
challenges of utilizing it. This review is helpful in terms of
introducing the BoW methodology to new researchers and
providing a good context with related work to researchers
working on this model.

 In [15], the authors have analyzed the effect of TF-IDF
feature level on the SS-Tweet dataset for opinion extraction.
They found that by employing the TF-IDF feature extractor, the
sentiment analysis performance is 3-4% higher than by
employing the N-gram feature.

 The authors of the paper [16], introduce a Word2vec pattern
that provides additional linguistic features to accommodate
short Chinese dataset. It is compared with the Internet content-
based pattern for long dataset. The empirical findings
demonstrate that our pattern can effectively improve the
performance of opinion classification using six different classes
on Weibo.

 In the work [17] a hybrid pattern of embedding glove
words, contextual and string similarity measures are applied on
the large dataset for key sentence retrieval and classification.
The empirical findings demonstrate that the GloVe extraction
pattern is better than existing metrics for key sentence and
string similarity in large datasets.

 In [18], the authors have studied the fastText feature
extractor and the experimental results show that the FastText
achieves 0.97 area under the ROC curve, 94.2% F-measure, and
74.8 ms inference times for CPU.

B. The state-of-the-art feature extractors

The authors of the paper [19] proposed an attention-
bidirectional algorithm based on the both deep neural networks
CNN and RNN as feature extractor for opinion mining. Their
approaches extracted past and future features by taking in
consideration the temporal data stream in both senses. In
addition, the attention layer mechanism is implemented on the
outputs of the bidirectional LSTM layers to emphasize different
extracted features to a greater or lesser extent. They also applied
the convolution and pooling layers of the CNN in order to
reduce the dimensionality of the extracted features. The results
of the comparison of their approach and six more recently
suggested DNNs for opinion mining indicate that their > REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

performance of the learning model. Generally, the identification
of relevant features is done by feature extraction and selection
algorithms. Classifier performance varies from one set of
features to another. These features require good conception and
real thinking to define or guess the right features for the
classification task.

Therefore, feature extraction addresses the issue of identifying
the most distinguishing, informational, and minimized set of
features to enhance the effectiveness of the data treatment.
Relevant feature vectors are still the most popular and suitable
way of representing the sample for classification issues. Many
scientists from various fields, who are focused on data analysis
and classification, are working together to address feature
extraction challenges. Today's developments in both sentiment
analysis and feature extraction algorithms have allowed us to
design the identification tools that can accomplish tasks that
were previously impossible to do. Feature extraction is at the
core of these advancements with applications in sentiment
analysis, as well as numerous other developing applications.

For an efficient classification, it is essential to employ an
accurate feature extraction approach to retrieve a set of
distinguishing and informational features from the input data.
In essence, if the retrieved features do not accurately identify
the employed signals and are not meaningful, a classification
technique employing such set of features may have issues in
finding the feature classes labels. Therefore, the classification
accuracy may be reduced. Due to the importance of feature
extractors, in this paper, we will detail the principle of the most
commonly used extractors. The main points of this paper can
be summarized as follows:

 The discussion of the existing feature extractors in the
opinion mining domain.

 The description of the advantages and the
inconveniences of each extractor

 The used dataset is the Sentiment140 dataset contains
approximately 1.6 million tweets that were
automatically retrieved with the Twitter API.

 Application of multiple feature extractors and
determination of the most effective extractor in the
case of Sentiment140.

 Implementation of the convolutional neural network,
NB, SVM, ID3 and C4.5 as a classifier.

 Setting up the Hadoop framework for the parallel
implementation of our proposal

II. RELATED WORKS
 Most conventional research papers on sentiment analysis has
employed supervised machine learning approaches as the
primary module for classification or clustering [11]. These
approaches typically exploit the Bag-Of-Words, Word2vec,
GloVe, FastText, N-Gram and TF-IDF models to extract the
essential features of the text containing user-generated
sentiments [12].

A. Baseline feature extraction methods

 The authors of the paper [13] evaluated the performance of
the feature extractor N-gram in opinion mining field. They
proposed to combine the approach based lexicon with the N-
gram method for performing the sentiment classification. And
their proposed Senti-N-Gram lexicon based approach
outperforms well-known unigram-lexicon based method
employing the VADER lexicon and an n-gram opinion mining
method SO-CAL.

 The paper [14] provides an introduction to BoW, its
importance, how it operates, its implementations, and the
challenges of utilizing it. This review is helpful in terms of
introducing the BoW methodology to new researchers and
providing a good context with related work to researchers
working on this model.

 In [15], the authors have analyzed the effect of TF-IDF
feature level on the SS-Tweet dataset for opinion extraction.
They found that by employing the TF-IDF feature extractor, the
sentiment analysis performance is 3-4% higher than by
employing the N-gram feature.

 The authors of the paper [16], introduce a Word2vec pattern
that provides additional linguistic features to accommodate
short Chinese dataset. It is compared with the Internet content-
based pattern for long dataset. The empirical findings
demonstrate that our pattern can effectively improve the
performance of opinion classification using six different classes
on Weibo.

 In the work [17] a hybrid pattern of embedding glove
words, contextual and string similarity measures are applied on
the large dataset for key sentence retrieval and classification.
The empirical findings demonstrate that the GloVe extraction
pattern is better than existing metrics for key sentence and
string similarity in large datasets.

 In [18], the authors have studied the fastText feature
extractor and the experimental results show that the FastText
achieves 0.97 area under the ROC curve, 94.2% F-measure, and
74.8 ms inference times for CPU.

B. The state-of-the-art feature extractors

The authors of the paper [19] proposed an attention-
bidirectional algorithm based on the both deep neural networks
CNN and RNN as feature extractor for opinion mining. Their
approaches extracted past and future features by taking in
consideration the temporal data stream in both senses. In
addition, the attention layer mechanism is implemented on the
outputs of the bidirectional LSTM layers to emphasize different
extracted features to a greater or lesser extent. They also applied
the convolution and pooling layers of the CNN in order to
reduce the dimensionality of the extracted features. The results
of the comparison of their approach and six more recently
suggested DNNs for opinion mining indicate that their

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

performance of the learning model. Generally, the identification
of relevant features is done by feature extraction and selection
algorithms. Classifier performance varies from one set of
features to another. These features require good conception and
real thinking to define or guess the right features for the
classification task.

Therefore, feature extraction addresses the issue of identifying
the most distinguishing, informational, and minimized set of
features to enhance the effectiveness of the data treatment.
Relevant feature vectors are still the most popular and suitable
way of representing the sample for classification issues. Many
scientists from various fields, who are focused on data analysis
and classification, are working together to address feature
extraction challenges. Today's developments in both sentiment
analysis and feature extraction algorithms have allowed us to
design the identification tools that can accomplish tasks that
were previously impossible to do. Feature extraction is at the
core of these advancements with applications in sentiment
analysis, as well as numerous other developing applications.

For an efficient classification, it is essential to employ an
accurate feature extraction approach to retrieve a set of
distinguishing and informational features from the input data.
In essence, if the retrieved features do not accurately identify
the employed signals and are not meaningful, a classification
technique employing such set of features may have issues in
finding the feature classes labels. Therefore, the classification
accuracy may be reduced. Due to the importance of feature
extractors, in this paper, we will detail the principle of the most
commonly used extractors. The main points of this paper can
be summarized as follows:

 The discussion of the existing feature extractors in the
opinion mining domain.

 The description of the advantages and the
inconveniences of each extractor

 The used dataset is the Sentiment140 dataset contains
approximately 1.6 million tweets that were
automatically retrieved with the Twitter API.

 Application of multiple feature extractors and
determination of the most effective extractor in the
case of Sentiment140.

 Implementation of the convolutional neural network,
NB, SVM, ID3 and C4.5 as a classifier.

 Setting up the Hadoop framework for the parallel
implementation of our proposal

II. RELATED WORKS
 Most conventional research papers on sentiment analysis has
employed supervised machine learning approaches as the
primary module for classification or clustering [11]. These
approaches typically exploit the Bag-Of-Words, Word2vec,
GloVe, FastText, N-Gram and TF-IDF models to extract the
essential features of the text containing user-generated
sentiments [12].

A. Baseline feature extraction methods

 The authors of the paper [13] evaluated the performance of
the feature extractor N-gram in opinion mining field. They
proposed to combine the approach based lexicon with the N-
gram method for performing the sentiment classification. And
their proposed Senti-N-Gram lexicon based approach
outperforms well-known unigram-lexicon based method
employing the VADER lexicon and an n-gram opinion mining
method SO-CAL.

 The paper [14] provides an introduction to BoW, its
importance, how it operates, its implementations, and the
challenges of utilizing it. This review is helpful in terms of
introducing the BoW methodology to new researchers and
providing a good context with related work to researchers
working on this model.

 In [15], the authors have analyzed the effect of TF-IDF
feature level on the SS-Tweet dataset for opinion extraction.
They found that by employing the TF-IDF feature extractor, the
sentiment analysis performance is 3-4% higher than by
employing the N-gram feature.

 The authors of the paper [16], introduce a Word2vec pattern
that provides additional linguistic features to accommodate
short Chinese dataset. It is compared with the Internet content-
based pattern for long dataset. The empirical findings
demonstrate that our pattern can effectively improve the
performance of opinion classification using six different classes
on Weibo.

 In the work [17] a hybrid pattern of embedding glove
words, contextual and string similarity measures are applied on
the large dataset for key sentence retrieval and classification.
The empirical findings demonstrate that the GloVe extraction
pattern is better than existing metrics for key sentence and
string similarity in large datasets.

 In [18], the authors have studied the fastText feature
extractor and the experimental results show that the FastText
achieves 0.97 area under the ROC curve, 94.2% F-measure, and
74.8 ms inference times for CPU.

B. The state-of-the-art feature extractors

The authors of the paper [19] proposed an attention-
bidirectional algorithm based on the both deep neural networks
CNN and RNN as feature extractor for opinion mining. Their
approaches extracted past and future features by taking in
consideration the temporal data stream in both senses. In
addition, the attention layer mechanism is implemented on the
outputs of the bidirectional LSTM layers to emphasize different
extracted features to a greater or lesser extent. They also applied
the convolution and pooling layers of the CNN in order to
reduce the dimensionality of the extracted features. The results
of the comparison of their approach and six more recently
suggested DNNs for opinion mining indicate that their

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

performance of the learning model. Generally, the identification
of relevant features is done by feature extraction and selection
algorithms. Classifier performance varies from one set of
features to another. These features require good conception and
real thinking to define or guess the right features for the
classification task.

Therefore, feature extraction addresses the issue of identifying
the most distinguishing, informational, and minimized set of
features to enhance the effectiveness of the data treatment.
Relevant feature vectors are still the most popular and suitable
way of representing the sample for classification issues. Many
scientists from various fields, who are focused on data analysis
and classification, are working together to address feature
extraction challenges. Today's developments in both sentiment
analysis and feature extraction algorithms have allowed us to
design the identification tools that can accomplish tasks that
were previously impossible to do. Feature extraction is at the
core of these advancements with applications in sentiment
analysis, as well as numerous other developing applications.

For an efficient classification, it is essential to employ an
accurate feature extraction approach to retrieve a set of
distinguishing and informational features from the input data.
In essence, if the retrieved features do not accurately identify
the employed signals and are not meaningful, a classification
technique employing such set of features may have issues in
finding the feature classes labels. Therefore, the classification
accuracy may be reduced. Due to the importance of feature
extractors, in this paper, we will detail the principle of the most
commonly used extractors. The main points of this paper can
be summarized as follows:

 The discussion of the existing feature extractors in the
opinion mining domain.

 The description of the advantages and the
inconveniences of each extractor

 The used dataset is the Sentiment140 dataset contains
approximately 1.6 million tweets that were
automatically retrieved with the Twitter API.

 Application of multiple feature extractors and
determination of the most effective extractor in the
case of Sentiment140.

 Implementation of the convolutional neural network,
NB, SVM, ID3 and C4.5 as a classifier.

 Setting up the Hadoop framework for the parallel
implementation of our proposal

II. RELATED WORKS
 Most conventional research papers on sentiment analysis has
employed supervised machine learning approaches as the
primary module for classification or clustering [11]. These
approaches typically exploit the Bag-Of-Words, Word2vec,
GloVe, FastText, N-Gram and TF-IDF models to extract the
essential features of the text containing user-generated
sentiments [12].

A. Baseline feature extraction methods

 The authors of the paper [13] evaluated the performance of
the feature extractor N-gram in opinion mining field. They
proposed to combine the approach based lexicon with the N-
gram method for performing the sentiment classification. And
their proposed Senti-N-Gram lexicon based approach
outperforms well-known unigram-lexicon based method
employing the VADER lexicon and an n-gram opinion mining
method SO-CAL.

 The paper [14] provides an introduction to BoW, its
importance, how it operates, its implementations, and the
challenges of utilizing it. This review is helpful in terms of
introducing the BoW methodology to new researchers and
providing a good context with related work to researchers
working on this model.

 In [15], the authors have analyzed the effect of TF-IDF
feature level on the SS-Tweet dataset for opinion extraction.
They found that by employing the TF-IDF feature extractor, the
sentiment analysis performance is 3-4% higher than by
employing the N-gram feature.

 The authors of the paper [16], introduce a Word2vec pattern
that provides additional linguistic features to accommodate
short Chinese dataset. It is compared with the Internet content-
based pattern for long dataset. The empirical findings
demonstrate that our pattern can effectively improve the
performance of opinion classification using six different classes
on Weibo.

 In the work [17] a hybrid pattern of embedding glove
words, contextual and string similarity measures are applied on
the large dataset for key sentence retrieval and classification.
The empirical findings demonstrate that the GloVe extraction
pattern is better than existing metrics for key sentence and
string similarity in large datasets.

 In [18], the authors have studied the fastText feature
extractor and the experimental results show that the FastText
achieves 0.97 area under the ROC curve, 94.2% F-measure, and
74.8 ms inference times for CPU.

B. The state-of-the-art feature extractors

The authors of the paper [19] proposed an attention-
bidirectional algorithm based on the both deep neural networks
CNN and RNN as feature extractor for opinion mining. Their
approaches extracted past and future features by taking in
consideration the temporal data stream in both senses. In
addition, the attention layer mechanism is implemented on the
outputs of the bidirectional LSTM layers to emphasize different
extracted features to a greater or lesser extent. They also applied
the convolution and pooling layers of the CNN in order to
reduce the dimensionality of the extracted features. The results
of the comparison of their approach and six more recently
suggested DNNs for opinion mining indicate that their

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

approach accomplishes the best performance on both short
tweet and long review polarities detection.

In the paper [20] a novel efficient method for sentiment

classification employing machine learning techniques is
suggested. The process of this novel approach is carried out in
three phases. In the first phase, the dataset is gathered and
pretreated, in the second phase the dataset is tuned by extracting
the relevant characteristics, and in the third phase the trained
dataset is classified into three classes (negative, neutral, and
positive) by implementing several machine learning
techniques. Every machine learning algorithms yield distinct
results. It is observed that the suggested approach i.e., selective
algorithm combined with decision tree provides a high accuracy
of 89.47% in comparison to other machine learning techniques

The authors of the paper [21] evaluate different combinations

of features in Twitter opinion mining. In addition, they assess
and study the effect of combining these separate kinds of
characteristics to detect of which aggregation yield crucial
insights in the polarity classification task in Twitter opinion
mining.

In the paper [22], a comparative study of two extractors (TF-
IDF, and Doc2vec) is carried out. The authors of this paper
implement these two extractors on three datasets such as
Stanford movie review, UCI sentiment, and Cornell movie
review datasets. Also, they applied several preprocessing tasks
such as removing stop words, eliminating the special
characters, stemming and tokenization which increases the
accuracy of sentiment classification and reduce the execution
of time of used classifier. The pertinent features extracted after
the extraction step are tested and trained using various machine
learning algorithms like support vector machine, Bernoulli
naïve bayes, k-nearest neighbors, decision tree, and logistic
regression.

The authors of the paper [23], carried out an experimental
analyze of different techniques of feature extraction in Twitter
sentiments analysis. Their comparative study is performed in
four steps, the first one is the data gathering task which has been
carried out from readily available sources. The second phase is
the application of several preprocessing tasks utilizing the tool
POS. In the third step, various feature selector and extractor are
implemented over the collected tweets. Finally, the
experimental study is performed for detecting the opinion
polarity with different extractors.

Zainuddin et al. [24] proposed a hybrid model for classifying
the tweets aspect-based opinion mining. They carried out a
comparative analyze in terms of classification rate of three
features selectors such as latent semantic analysis, principal
component analysis, and random projection. In addition the
hybrid model was evaluated employing Twitter datasets to
represent various areas, and the evaluation with several
machine learning algorithms also proved that the novel hybrid
model achieved goods results. Their experimental results
showed that the proposed hybrid opinion classification model
was capable to increase the classification rate from the existing
conventional opinion mining approaches by 76.55%, 71.62%

and 74.24 %, respectively.
Pandian suggested in its paper [25], a comparative study of

sentiment classification by employing various deep learning
models. Its proposed paper has incorporated a feature-
extraction with a deep learning model. Furthermore, its research
work has three major phases: The first phase is the design of
opinion classifiers based on deep learning models. This step is
succeeded by the utilization of ensemble techniques and
merging of information to get the final ensemble of data
sources. As the third phase, an aggregation of ensembles the
information is proposed to classify several algorithms along
with the suggested algorithm.

III. EXTRACTORS OF FEATURES
Concerning machine learning approaches, many efforts have

been performed in the literature on Twitter opinion mining to
obtain an efficient vectorization of tweets. In this context,
various kinds of features extractors have been suggested
already, ranging from simple n-gram based vectorization to
meta-level features to word embeddings.

A. N-gram extractor
 The N-gram feature extractor is commonly being employed
in text based-classification [26]. After applied this extractor, the
sentence can be broken down into features of character n-grams
and word n-grams. So, an N-gram is a series of “characters or
words " picked up, in order, from a body of sentence. N-gram
may be unigram (n-gram = 1), bigram (n-gram = 2), trigram (n-
gram = 3), and so on.

 Usually we pick every word in a sentence to compute the
sentiment of the sentence, but there can be a case in which the
word is formerly employed in a positive sense, but now it is
employed in a negative sense; for example, “what an awesome
product, totally waste of money,” if we take only the word
“awesome” the sentence will be positive but if we take in
consideration the whole sentence, it is indicating the negative.
It is because of these types of problems that the N-gram is being
developed.

B. TF_IDF extractor
 TF_IDF means term frequency - inverse document
frequency, which is widely recognized and it is utilized as a
weighting procedure and its performance is also still very
comparable with new approaches [27]. It is a statistical value
that is meant to reflect how much weight a given word has to a
certain document in a corpus or a collection. The TF-IDF rate
boosts proportionally to the number of occurrences of each term
in the document, but is compensated by the occurrence of the
term in the corpus, which aids to adapt for the fact that a certain
terms occur more frequently in overall. The standardization TF-
IDF rates for any document in the corpus via the Euclidean
measure are used. The calculations of TF-IDF are presented in
the following equation:

 (TF_IDF) 𝑖𝑖𝑖𝑖 = (TF)𝑖𝑖𝑖𝑖 ∗ log (IDF)𝑖𝑖 (1)

Where TF = 𝑘𝑘𝑖𝑖𝑖𝑖
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 with k is the

number of times the word i appears in the sentence j.

Evaluation of different extractors of features at
the level of sentiment analysis

INFOCOMMUNICATIONS JOURNAL

JUNE 2022 • VOLUME XIV • NUMBER 2 87

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

performance of the learning model. Generally, the identification
of relevant features is done by feature extraction and selection
algorithms. Classifier performance varies from one set of
features to another. These features require good conception and
real thinking to define or guess the right features for the
classification task.

Therefore, feature extraction addresses the issue of identifying
the most distinguishing, informational, and minimized set of
features to enhance the effectiveness of the data treatment.
Relevant feature vectors are still the most popular and suitable
way of representing the sample for classification issues. Many
scientists from various fields, who are focused on data analysis
and classification, are working together to address feature
extraction challenges. Today's developments in both sentiment
analysis and feature extraction algorithms have allowed us to
design the identification tools that can accomplish tasks that
were previously impossible to do. Feature extraction is at the
core of these advancements with applications in sentiment
analysis, as well as numerous other developing applications.

For an efficient classification, it is essential to employ an
accurate feature extraction approach to retrieve a set of
distinguishing and informational features from the input data.
In essence, if the retrieved features do not accurately identify
the employed signals and are not meaningful, a classification
technique employing such set of features may have issues in
finding the feature classes labels. Therefore, the classification
accuracy may be reduced. Due to the importance of feature
extractors, in this paper, we will detail the principle of the most
commonly used extractors. The main points of this paper can
be summarized as follows:

 The discussion of the existing feature extractors in the
opinion mining domain.

 The description of the advantages and the
inconveniences of each extractor

 The used dataset is the Sentiment140 dataset contains
approximately 1.6 million tweets that were
automatically retrieved with the Twitter API.

 Application of multiple feature extractors and
determination of the most effective extractor in the
case of Sentiment140.

 Implementation of the convolutional neural network,
NB, SVM, ID3 and C4.5 as a classifier.

 Setting up the Hadoop framework for the parallel
implementation of our proposal

II. RELATED WORKS
 Most conventional research papers on sentiment analysis has
employed supervised machine learning approaches as the
primary module for classification or clustering [11]. These
approaches typically exploit the Bag-Of-Words, Word2vec,
GloVe, FastText, N-Gram and TF-IDF models to extract the
essential features of the text containing user-generated
sentiments [12].

A. Baseline feature extraction methods

 The authors of the paper [13] evaluated the performance of
the feature extractor N-gram in opinion mining field. They
proposed to combine the approach based lexicon with the N-
gram method for performing the sentiment classification. And
their proposed Senti-N-Gram lexicon based approach
outperforms well-known unigram-lexicon based method
employing the VADER lexicon and an n-gram opinion mining
method SO-CAL.

 The paper [14] provides an introduction to BoW, its
importance, how it operates, its implementations, and the
challenges of utilizing it. This review is helpful in terms of
introducing the BoW methodology to new researchers and
providing a good context with related work to researchers
working on this model.

 In [15], the authors have analyzed the effect of TF-IDF
feature level on the SS-Tweet dataset for opinion extraction.
They found that by employing the TF-IDF feature extractor, the
sentiment analysis performance is 3-4% higher than by
employing the N-gram feature.

 The authors of the paper [16], introduce a Word2vec pattern
that provides additional linguistic features to accommodate
short Chinese dataset. It is compared with the Internet content-
based pattern for long dataset. The empirical findings
demonstrate that our pattern can effectively improve the
performance of opinion classification using six different classes
on Weibo.

 In the work [17] a hybrid pattern of embedding glove
words, contextual and string similarity measures are applied on
the large dataset for key sentence retrieval and classification.
The empirical findings demonstrate that the GloVe extraction
pattern is better than existing metrics for key sentence and
string similarity in large datasets.

 In [18], the authors have studied the fastText feature
extractor and the experimental results show that the FastText
achieves 0.97 area under the ROC curve, 94.2% F-measure, and
74.8 ms inference times for CPU.

B. The state-of-the-art feature extractors

The authors of the paper [19] proposed an attention-
bidirectional algorithm based on the both deep neural networks
CNN and RNN as feature extractor for opinion mining. Their
approaches extracted past and future features by taking in
consideration the temporal data stream in both senses. In
addition, the attention layer mechanism is implemented on the
outputs of the bidirectional LSTM layers to emphasize different
extracted features to a greater or lesser extent. They also applied
the convolution and pooling layers of the CNN in order to
reduce the dimensionality of the extracted features. The results
of the comparison of their approach and six more recently
suggested DNNs for opinion mining indicate that their

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

approach accomplishes the best performance on both short
tweet and long review polarities detection.

In the paper [20] a novel efficient method for sentiment

classification employing machine learning techniques is
suggested. The process of this novel approach is carried out in
three phases. In the first phase, the dataset is gathered and
pretreated, in the second phase the dataset is tuned by extracting
the relevant characteristics, and in the third phase the trained
dataset is classified into three classes (negative, neutral, and
positive) by implementing several machine learning
techniques. Every machine learning algorithms yield distinct
results. It is observed that the suggested approach i.e., selective
algorithm combined with decision tree provides a high accuracy
of 89.47% in comparison to other machine learning techniques

The authors of the paper [21] evaluate different combinations

of features in Twitter opinion mining. In addition, they assess
and study the effect of combining these separate kinds of
characteristics to detect of which aggregation yield crucial
insights in the polarity classification task in Twitter opinion
mining.

In the paper [22], a comparative study of two extractors (TF-
IDF, and Doc2vec) is carried out. The authors of this paper
implement these two extractors on three datasets such as
Stanford movie review, UCI sentiment, and Cornell movie
review datasets. Also, they applied several preprocessing tasks
such as removing stop words, eliminating the special
characters, stemming and tokenization which increases the
accuracy of sentiment classification and reduce the execution
of time of used classifier. The pertinent features extracted after
the extraction step are tested and trained using various machine
learning algorithms like support vector machine, Bernoulli
naïve bayes, k-nearest neighbors, decision tree, and logistic
regression.

The authors of the paper [23], carried out an experimental
analyze of different techniques of feature extraction in Twitter
sentiments analysis. Their comparative study is performed in
four steps, the first one is the data gathering task which has been
carried out from readily available sources. The second phase is
the application of several preprocessing tasks utilizing the tool
POS. In the third step, various feature selector and extractor are
implemented over the collected tweets. Finally, the
experimental study is performed for detecting the opinion
polarity with different extractors.

Zainuddin et al. [24] proposed a hybrid model for classifying
the tweets aspect-based opinion mining. They carried out a
comparative analyze in terms of classification rate of three
features selectors such as latent semantic analysis, principal
component analysis, and random projection. In addition the
hybrid model was evaluated employing Twitter datasets to
represent various areas, and the evaluation with several
machine learning algorithms also proved that the novel hybrid
model achieved goods results. Their experimental results
showed that the proposed hybrid opinion classification model
was capable to increase the classification rate from the existing
conventional opinion mining approaches by 76.55%, 71.62%

and 74.24 %, respectively.
Pandian suggested in its paper [25], a comparative study of

sentiment classification by employing various deep learning
models. Its proposed paper has incorporated a feature-
extraction with a deep learning model. Furthermore, its research
work has three major phases: The first phase is the design of
opinion classifiers based on deep learning models. This step is
succeeded by the utilization of ensemble techniques and
merging of information to get the final ensemble of data
sources. As the third phase, an aggregation of ensembles the
information is proposed to classify several algorithms along
with the suggested algorithm.

III. EXTRACTORS OF FEATURES
Concerning machine learning approaches, many efforts have

been performed in the literature on Twitter opinion mining to
obtain an efficient vectorization of tweets. In this context,
various kinds of features extractors have been suggested
already, ranging from simple n-gram based vectorization to
meta-level features to word embeddings.

A. N-gram extractor
 The N-gram feature extractor is commonly being employed
in text based-classification [26]. After applied this extractor, the
sentence can be broken down into features of character n-grams
and word n-grams. So, an N-gram is a series of “characters or
words " picked up, in order, from a body of sentence. N-gram
may be unigram (n-gram = 1), bigram (n-gram = 2), trigram (n-
gram = 3), and so on.

 Usually we pick every word in a sentence to compute the
sentiment of the sentence, but there can be a case in which the
word is formerly employed in a positive sense, but now it is
employed in a negative sense; for example, “what an awesome
product, totally waste of money,” if we take only the word
“awesome” the sentence will be positive but if we take in
consideration the whole sentence, it is indicating the negative.
It is because of these types of problems that the N-gram is being
developed.

B. TF_IDF extractor
 TF_IDF means term frequency - inverse document
frequency, which is widely recognized and it is utilized as a
weighting procedure and its performance is also still very
comparable with new approaches [27]. It is a statistical value
that is meant to reflect how much weight a given word has to a
certain document in a corpus or a collection. The TF-IDF rate
boosts proportionally to the number of occurrences of each term
in the document, but is compensated by the occurrence of the
term in the corpus, which aids to adapt for the fact that a certain
terms occur more frequently in overall. The standardization TF-
IDF rates for any document in the corpus via the Euclidean
measure are used. The calculations of TF-IDF are presented in
the following equation:

 (TF_IDF) 𝑖𝑖𝑖𝑖 = (TF)𝑖𝑖𝑖𝑖 ∗ log (IDF)𝑖𝑖 (1)

Where TF = 𝑘𝑘𝑖𝑖𝑖𝑖
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 with k is the

number of times the word i appears in the sentence j.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

performance of the learning model. Generally, the identification
of relevant features is done by feature extraction and selection
algorithms. Classifier performance varies from one set of
features to another. These features require good conception and
real thinking to define or guess the right features for the
classification task.

Therefore, feature extraction addresses the issue of identifying
the most distinguishing, informational, and minimized set of
features to enhance the effectiveness of the data treatment.
Relevant feature vectors are still the most popular and suitable
way of representing the sample for classification issues. Many
scientists from various fields, who are focused on data analysis
and classification, are working together to address feature
extraction challenges. Today's developments in both sentiment
analysis and feature extraction algorithms have allowed us to
design the identification tools that can accomplish tasks that
were previously impossible to do. Feature extraction is at the
core of these advancements with applications in sentiment
analysis, as well as numerous other developing applications.

For an efficient classification, it is essential to employ an
accurate feature extraction approach to retrieve a set of
distinguishing and informational features from the input data.
In essence, if the retrieved features do not accurately identify
the employed signals and are not meaningful, a classification
technique employing such set of features may have issues in
finding the feature classes labels. Therefore, the classification
accuracy may be reduced. Due to the importance of feature
extractors, in this paper, we will detail the principle of the most
commonly used extractors. The main points of this paper can
be summarized as follows:

 The discussion of the existing feature extractors in the
opinion mining domain.

 The description of the advantages and the
inconveniences of each extractor

 The used dataset is the Sentiment140 dataset contains
approximately 1.6 million tweets that were
automatically retrieved with the Twitter API.

 Application of multiple feature extractors and
determination of the most effective extractor in the
case of Sentiment140.

 Implementation of the convolutional neural network,
NB, SVM, ID3 and C4.5 as a classifier.

 Setting up the Hadoop framework for the parallel
implementation of our proposal

II. RELATED WORKS
 Most conventional research papers on sentiment analysis has
employed supervised machine learning approaches as the
primary module for classification or clustering [11]. These
approaches typically exploit the Bag-Of-Words, Word2vec,
GloVe, FastText, N-Gram and TF-IDF models to extract the
essential features of the text containing user-generated
sentiments [12].

A. Baseline feature extraction methods

 The authors of the paper [13] evaluated the performance of
the feature extractor N-gram in opinion mining field. They
proposed to combine the approach based lexicon with the N-
gram method for performing the sentiment classification. And
their proposed Senti-N-Gram lexicon based approach
outperforms well-known unigram-lexicon based method
employing the VADER lexicon and an n-gram opinion mining
method SO-CAL.

 The paper [14] provides an introduction to BoW, its
importance, how it operates, its implementations, and the
challenges of utilizing it. This review is helpful in terms of
introducing the BoW methodology to new researchers and
providing a good context with related work to researchers
working on this model.

 In [15], the authors have analyzed the effect of TF-IDF
feature level on the SS-Tweet dataset for opinion extraction.
They found that by employing the TF-IDF feature extractor, the
sentiment analysis performance is 3-4% higher than by
employing the N-gram feature.

 The authors of the paper [16], introduce a Word2vec pattern
that provides additional linguistic features to accommodate
short Chinese dataset. It is compared with the Internet content-
based pattern for long dataset. The empirical findings
demonstrate that our pattern can effectively improve the
performance of opinion classification using six different classes
on Weibo.

 In the work [17] a hybrid pattern of embedding glove
words, contextual and string similarity measures are applied on
the large dataset for key sentence retrieval and classification.
The empirical findings demonstrate that the GloVe extraction
pattern is better than existing metrics for key sentence and
string similarity in large datasets.

 In [18], the authors have studied the fastText feature
extractor and the experimental results show that the FastText
achieves 0.97 area under the ROC curve, 94.2% F-measure, and
74.8 ms inference times for CPU.

B. The state-of-the-art feature extractors

The authors of the paper [19] proposed an attention-
bidirectional algorithm based on the both deep neural networks
CNN and RNN as feature extractor for opinion mining. Their
approaches extracted past and future features by taking in
consideration the temporal data stream in both senses. In
addition, the attention layer mechanism is implemented on the
outputs of the bidirectional LSTM layers to emphasize different
extracted features to a greater or lesser extent. They also applied
the convolution and pooling layers of the CNN in order to
reduce the dimensionality of the extracted features. The results
of the comparison of their approach and six more recently
suggested DNNs for opinion mining indicate that their

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

performance of the learning model. Generally, the identification
of relevant features is done by feature extraction and selection
algorithms. Classifier performance varies from one set of
features to another. These features require good conception and
real thinking to define or guess the right features for the
classification task.

Therefore, feature extraction addresses the issue of identifying
the most distinguishing, informational, and minimized set of
features to enhance the effectiveness of the data treatment.
Relevant feature vectors are still the most popular and suitable
way of representing the sample for classification issues. Many
scientists from various fields, who are focused on data analysis
and classification, are working together to address feature
extraction challenges. Today's developments in both sentiment
analysis and feature extraction algorithms have allowed us to
design the identification tools that can accomplish tasks that
were previously impossible to do. Feature extraction is at the
core of these advancements with applications in sentiment
analysis, as well as numerous other developing applications.

For an efficient classification, it is essential to employ an
accurate feature extraction approach to retrieve a set of
distinguishing and informational features from the input data.
In essence, if the retrieved features do not accurately identify
the employed signals and are not meaningful, a classification
technique employing such set of features may have issues in
finding the feature classes labels. Therefore, the classification
accuracy may be reduced. Due to the importance of feature
extractors, in this paper, we will detail the principle of the most
commonly used extractors. The main points of this paper can
be summarized as follows:

 The discussion of the existing feature extractors in the
opinion mining domain.

 The description of the advantages and the
inconveniences of each extractor

 The used dataset is the Sentiment140 dataset contains
approximately 1.6 million tweets that were
automatically retrieved with the Twitter API.

 Application of multiple feature extractors and
determination of the most effective extractor in the
case of Sentiment140.

 Implementation of the convolutional neural network,
NB, SVM, ID3 and C4.5 as a classifier.

 Setting up the Hadoop framework for the parallel
implementation of our proposal

II. RELATED WORKS
 Most conventional research papers on sentiment analysis has
employed supervised machine learning approaches as the
primary module for classification or clustering [11]. These
approaches typically exploit the Bag-Of-Words, Word2vec,
GloVe, FastText, N-Gram and TF-IDF models to extract the
essential features of the text containing user-generated
sentiments [12].

A. Baseline feature extraction methods

 The authors of the paper [13] evaluated the performance of
the feature extractor N-gram in opinion mining field. They
proposed to combine the approach based lexicon with the N-
gram method for performing the sentiment classification. And
their proposed Senti-N-Gram lexicon based approach
outperforms well-known unigram-lexicon based method
employing the VADER lexicon and an n-gram opinion mining
method SO-CAL.

 The paper [14] provides an introduction to BoW, its
importance, how it operates, its implementations, and the
challenges of utilizing it. This review is helpful in terms of
introducing the BoW methodology to new researchers and
providing a good context with related work to researchers
working on this model.

 In [15], the authors have analyzed the effect of TF-IDF
feature level on the SS-Tweet dataset for opinion extraction.
They found that by employing the TF-IDF feature extractor, the
sentiment analysis performance is 3-4% higher than by
employing the N-gram feature.

 The authors of the paper [16], introduce a Word2vec pattern
that provides additional linguistic features to accommodate
short Chinese dataset. It is compared with the Internet content-
based pattern for long dataset. The empirical findings
demonstrate that our pattern can effectively improve the
performance of opinion classification using six different classes
on Weibo.

 In the work [17] a hybrid pattern of embedding glove
words, contextual and string similarity measures are applied on
the large dataset for key sentence retrieval and classification.
The empirical findings demonstrate that the GloVe extraction
pattern is better than existing metrics for key sentence and
string similarity in large datasets.

 In [18], the authors have studied the fastText feature
extractor and the experimental results show that the FastText
achieves 0.97 area under the ROC curve, 94.2% F-measure, and
74.8 ms inference times for CPU.

B. The state-of-the-art feature extractors

The authors of the paper [19] proposed an attention-
bidirectional algorithm based on the both deep neural networks
CNN and RNN as feature extractor for opinion mining. Their
approaches extracted past and future features by taking in
consideration the temporal data stream in both senses. In
addition, the attention layer mechanism is implemented on the
outputs of the bidirectional LSTM layers to emphasize different
extracted features to a greater or lesser extent. They also applied
the convolution and pooling layers of the CNN in order to
reduce the dimensionality of the extracted features. The results
of the comparison of their approach and six more recently
suggested DNNs for opinion mining indicate that their

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

approach accomplishes the best performance on both short
tweet and long review polarities detection.

In the paper [20] a novel efficient method for sentiment

classification employing machine learning techniques is
suggested. The process of this novel approach is carried out in
three phases. In the first phase, the dataset is gathered and
pretreated, in the second phase the dataset is tuned by extracting
the relevant characteristics, and in the third phase the trained
dataset is classified into three classes (negative, neutral, and
positive) by implementing several machine learning
techniques. Every machine learning algorithms yield distinct
results. It is observed that the suggested approach i.e., selective
algorithm combined with decision tree provides a high accuracy
of 89.47% in comparison to other machine learning techniques

The authors of the paper [21] evaluate different combinations

of features in Twitter opinion mining. In addition, they assess
and study the effect of combining these separate kinds of
characteristics to detect of which aggregation yield crucial
insights in the polarity classification task in Twitter opinion
mining.

In the paper [22], a comparative study of two extractors (TF-
IDF, and Doc2vec) is carried out. The authors of this paper
implement these two extractors on three datasets such as
Stanford movie review, UCI sentiment, and Cornell movie
review datasets. Also, they applied several preprocessing tasks
such as removing stop words, eliminating the special
characters, stemming and tokenization which increases the
accuracy of sentiment classification and reduce the execution
of time of used classifier. The pertinent features extracted after
the extraction step are tested and trained using various machine
learning algorithms like support vector machine, Bernoulli
naïve bayes, k-nearest neighbors, decision tree, and logistic
regression.

The authors of the paper [23], carried out an experimental
analyze of different techniques of feature extraction in Twitter
sentiments analysis. Their comparative study is performed in
four steps, the first one is the data gathering task which has been
carried out from readily available sources. The second phase is
the application of several preprocessing tasks utilizing the tool
POS. In the third step, various feature selector and extractor are
implemented over the collected tweets. Finally, the
experimental study is performed for detecting the opinion
polarity with different extractors.

Zainuddin et al. [24] proposed a hybrid model for classifying
the tweets aspect-based opinion mining. They carried out a
comparative analyze in terms of classification rate of three
features selectors such as latent semantic analysis, principal
component analysis, and random projection. In addition the
hybrid model was evaluated employing Twitter datasets to
represent various areas, and the evaluation with several
machine learning algorithms also proved that the novel hybrid
model achieved goods results. Their experimental results
showed that the proposed hybrid opinion classification model
was capable to increase the classification rate from the existing
conventional opinion mining approaches by 76.55%, 71.62%

and 74.24 %, respectively.
Pandian suggested in its paper [25], a comparative study of

sentiment classification by employing various deep learning
models. Its proposed paper has incorporated a feature-
extraction with a deep learning model. Furthermore, its research
work has three major phases: The first phase is the design of
opinion classifiers based on deep learning models. This step is
succeeded by the utilization of ensemble techniques and
merging of information to get the final ensemble of data
sources. As the third phase, an aggregation of ensembles the
information is proposed to classify several algorithms along
with the suggested algorithm.

III. EXTRACTORS OF FEATURES
Concerning machine learning approaches, many efforts have

been performed in the literature on Twitter opinion mining to
obtain an efficient vectorization of tweets. In this context,
various kinds of features extractors have been suggested
already, ranging from simple n-gram based vectorization to
meta-level features to word embeddings.

A. N-gram extractor
 The N-gram feature extractor is commonly being employed
in text based-classification [26]. After applied this extractor, the
sentence can be broken down into features of character n-grams
and word n-grams. So, an N-gram is a series of “characters or
words " picked up, in order, from a body of sentence. N-gram
may be unigram (n-gram = 1), bigram (n-gram = 2), trigram (n-
gram = 3), and so on.

 Usually we pick every word in a sentence to compute the
sentiment of the sentence, but there can be a case in which the
word is formerly employed in a positive sense, but now it is
employed in a negative sense; for example, “what an awesome
product, totally waste of money,” if we take only the word
“awesome” the sentence will be positive but if we take in
consideration the whole sentence, it is indicating the negative.
It is because of these types of problems that the N-gram is being
developed.

B. TF_IDF extractor
 TF_IDF means term frequency - inverse document
frequency, which is widely recognized and it is utilized as a
weighting procedure and its performance is also still very
comparable with new approaches [27]. It is a statistical value
that is meant to reflect how much weight a given word has to a
certain document in a corpus or a collection. The TF-IDF rate
boosts proportionally to the number of occurrences of each term
in the document, but is compensated by the occurrence of the
term in the corpus, which aids to adapt for the fact that a certain
terms occur more frequently in overall. The standardization TF-
IDF rates for any document in the corpus via the Euclidean
measure are used. The calculations of TF-IDF are presented in
the following equation:

 (TF_IDF) 𝑖𝑖𝑖𝑖 = (TF)𝑖𝑖𝑖𝑖 ∗ log (IDF)𝑖𝑖 (1)

Where TF = 𝑘𝑘𝑖𝑖𝑖𝑖
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 with k is the

number of times the word i appears in the sentence j.
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

approach accomplishes the best performance on both short
tweet and long review polarities detection.

In the paper [20] a novel efficient method for sentiment

classification employing machine learning techniques is
suggested. The process of this novel approach is carried out in
three phases. In the first phase, the dataset is gathered and
pretreated, in the second phase the dataset is tuned by extracting
the relevant characteristics, and in the third phase the trained
dataset is classified into three classes (negative, neutral, and
positive) by implementing several machine learning
techniques. Every machine learning algorithms yield distinct
results. It is observed that the suggested approach i.e., selective
algorithm combined with decision tree provides a high accuracy
of 89.47% in comparison to other machine learning techniques

The authors of the paper [21] evaluate different combinations

of features in Twitter opinion mining. In addition, they assess
and study the effect of combining these separate kinds of
characteristics to detect of which aggregation yield crucial
insights in the polarity classification task in Twitter opinion
mining.

In the paper [22], a comparative study of two extractors (TF-
IDF, and Doc2vec) is carried out. The authors of this paper
implement these two extractors on three datasets such as
Stanford movie review, UCI sentiment, and Cornell movie
review datasets. Also, they applied several preprocessing tasks
such as removing stop words, eliminating the special
characters, stemming and tokenization which increases the
accuracy of sentiment classification and reduce the execution
of time of used classifier. The pertinent features extracted after
the extraction step are tested and trained using various machine
learning algorithms like support vector machine, Bernoulli
naïve bayes, k-nearest neighbors, decision tree, and logistic
regression.

The authors of the paper [23], carried out an experimental
analyze of different techniques of feature extraction in Twitter
sentiments analysis. Their comparative study is performed in
four steps, the first one is the data gathering task which has been
carried out from readily available sources. The second phase is
the application of several preprocessing tasks utilizing the tool
POS. In the third step, various feature selector and extractor are
implemented over the collected tweets. Finally, the
experimental study is performed for detecting the opinion
polarity with different extractors.

Zainuddin et al. [24] proposed a hybrid model for classifying
the tweets aspect-based opinion mining. They carried out a
comparative analyze in terms of classification rate of three
features selectors such as latent semantic analysis, principal
component analysis, and random projection. In addition the
hybrid model was evaluated employing Twitter datasets to
represent various areas, and the evaluation with several
machine learning algorithms also proved that the novel hybrid
model achieved goods results. Their experimental results
showed that the proposed hybrid opinion classification model
was capable to increase the classification rate from the existing
conventional opinion mining approaches by 76.55%, 71.62%

and 74.24 %, respectively.
Pandian suggested in its paper [25], a comparative study of

sentiment classification by employing various deep learning
models. Its proposed paper has incorporated a feature-
extraction with a deep learning model. Furthermore, its research
work has three major phases: The first phase is the design of
opinion classifiers based on deep learning models. This step is
succeeded by the utilization of ensemble techniques and
merging of information to get the final ensemble of data
sources. As the third phase, an aggregation of ensembles the
information is proposed to classify several algorithms along
with the suggested algorithm.

III. EXTRACTORS OF FEATURES
Concerning machine learning approaches, many efforts have

been performed in the literature on Twitter opinion mining to
obtain an efficient vectorization of tweets. In this context,
various kinds of features extractors have been suggested
already, ranging from simple n-gram based vectorization to
meta-level features to word embeddings.

A. N-gram extractor
 The N-gram feature extractor is commonly being employed
in text based-classification [26]. After applied this extractor, the
sentence can be broken down into features of character n-grams
and word n-grams. So, an N-gram is a series of “characters or
words " picked up, in order, from a body of sentence. N-gram
may be unigram (n-gram = 1), bigram (n-gram = 2), trigram (n-
gram = 3), and so on.

 Usually we pick every word in a sentence to compute the
sentiment of the sentence, but there can be a case in which the
word is formerly employed in a positive sense, but now it is
employed in a negative sense; for example, “what an awesome
product, totally waste of money,” if we take only the word
“awesome” the sentence will be positive but if we take in
consideration the whole sentence, it is indicating the negative.
It is because of these types of problems that the N-gram is being
developed.

B. TF_IDF extractor
 TF_IDF means term frequency - inverse document
frequency, which is widely recognized and it is utilized as a
weighting procedure and its performance is also still very
comparable with new approaches [27]. It is a statistical value
that is meant to reflect how much weight a given word has to a
certain document in a corpus or a collection. The TF-IDF rate
boosts proportionally to the number of occurrences of each term
in the document, but is compensated by the occurrence of the
term in the corpus, which aids to adapt for the fact that a certain
terms occur more frequently in overall. The standardization TF-
IDF rates for any document in the corpus via the Euclidean
measure are used. The calculations of TF-IDF are presented in
the following equation:

 (TF_IDF) 𝑖𝑖𝑖𝑖 = (TF)𝑖𝑖𝑖𝑖 ∗ log (IDF)𝑖𝑖 (1)

Where TF = 𝑘𝑘𝑖𝑖𝑖𝑖
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 with k is the

number of times the word i appears in the sentence j.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

And IDF = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑡𝑡ℎ𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑖𝑖

However, the equation 1 is only applied in cases where (TF) 
1. If it does not, TF_IDF = 0, the equation (2) is used.

(TF_IDF)𝑖𝑖𝑖𝑖 {
(TF)𝑖𝑖𝑖𝑖 ∗ log (IDF)𝑖𝑖 if (TF)𝑖𝑖𝑗𝑗  1
Otherwise (TF_IDF)𝑖𝑖𝑖𝑖 = 0 (2)

Where TF denotes the weight standard. It is the weight, which
indicates the frequency or relative frequency of the word i, in a
given sentence j. And IDF denotes the weight global. It
indicates the support of the word i in respect to jth belonging to
the corpus. In summary:

 (TF)𝑖𝑖𝑖𝑖 ∶ Number of occurrences of word i in sentence j.

 (IDF)𝑖𝑖 ∶ Number of sentences containing the word i.

C. Bag-of-words extractor
 The bag-of-words is an approach that has been suggested
for the first time in the text retrieval area issue for analysis of
documents based-text, and it was later induced for computer
vision implementations [28]. In general, this approach
associates a text with a vector indicating the number of
occurrences of each chosen word in the training corpus, For
example, we have the three book reviews as presented below:

 Review A: This book is very long and boring
 Review B: This book is not boring and is shortened
 Review C: This book is good and enjoyable

The vocabulary of this three movie reviews consists of eleven
words which are: ‘This’, ‘book’, ‘is’, ‘very’, ‘boring’, ‘and’,
‘long’, ‘not’, ‘shortened’, ‘good’, ‘enjoyable’. Therefore the
numerical vector of each review is created by the bag-of-word
method as follows:

 Vector of Review A: [This:1, book:1, is:1, very:1,
boring:1, and:1, long:1, not:0, shortened:0, good:0,
enjoyable:0]

 Vector of Review B: [This:1, book:1, is:1, very:0,
boring:1, and:1, long:0, not:1, shortened:1, good:0,
enjoyable:0]

 Vector of Review C: [This:1, book:1, is:1, very:0,
boring:0, and:1, long:0, not:0, shortened:0, good:1,
enjoyable:1]

D. Word2Vec extractor
Word integration with word2vec [29] identifies the syntactic

characteristics of terms and attributes a sentiment score to every
term in the vector space. Terms that appear in the identical
context are deemed more similar than the terms that appear in
the dissimilar contexts. For example, we have a corpus C which
is composed of a set of tweets, 𝑪𝑪 = {𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐, 𝒕𝒕𝟑𝟑, . . . , 𝒕𝒕𝒏𝒏} and a
vocabulary 𝑽𝑽 = {𝒘𝒘𝟏𝟏, 𝒘𝒘𝟐𝟐, 𝒘𝒘𝟑𝟑, … , 𝒘𝒘𝒎𝒎} is composed of a set of
unique words retrieved from C. Therefore, the vectorization of
the words wi are identified by applying one of the both models
Skip-gram or Continuous bag-of-words of Word2Vec in order
to compute the probability distribution of the rest words of the
set 𝑽𝑽\{𝒘𝒘𝒊𝒊} in the context provided by the words wi. In addition,

𝒘𝒘𝒊𝒊 is expressed as a vector space 𝒔𝒔𝒊𝒊 which includes the
probabilistic rates of all the other words in the lexicon. The
Word2Vec approach extract semantic linked among words in
the vocabulary. Furthermore, the obtained set of vectors spaces
for all words in the lexicon is high-dimensional and is efficacy
for sentiment classification.

E. GloVe extractor
 The GloVe pattern [30] attempts to create a vector

space representation of a term by employing the similarities
between the terms as an invariant. The GloVe combines
techniques provided by two different patterns, which are the
Continuous Bag of Words and Skip-gram pattern. Problem with
the former pattern is the low classification rate but its
computational time is very efficient, while latter had
computational time is inefficient but its classification rate is
very high. What the GloVe attempts to do is to integrate the
techniques introduced by two patterns and it has demonstrated
to be more efficient and accurate than those two patterns.

F. FastText extractor
 In recent years, Facebook researchers have launched a new
word embedding system called FastText [31], which is a quick
and effective way to represent each term with vector space and
to classify text-based sentiments. The primary goal of fastText
term embeddings is to consider the inner structure of terms
rather than to learn term representations. FastText operates by
Dragging a window over the entry text and either learning the
central term from the remainder of the context (by employing
the BOW approach), or all the terms in the remainder of the
context from the central term by using the Skip-gram approach.
The FastText approach is very identical to Word2Vec approach,
the only difference is that the FastText learn the vector
representation of sub-parts of a term so-called character n-
grams.

IV. ADVANTAGES AND DISADVANTAGES OF EACH EXTRACTOR
 In order to implement machine learning approaches to
natural language issues, it is necessary to convert the text-based
data into digital data. The methods used to carry out this
conversion are the extractors described above. Each extractor
has the advantages and disadvantages as presented in the tables
below:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

approach accomplishes the best performance on both short
tweet and long review polarities detection.

In the paper [20] a novel efficient method for sentiment

classification employing machine learning techniques is
suggested. The process of this novel approach is carried out in
three phases. In the first phase, the dataset is gathered and
pretreated, in the second phase the dataset is tuned by extracting
the relevant characteristics, and in the third phase the trained
dataset is classified into three classes (negative, neutral, and
positive) by implementing several machine learning
techniques. Every machine learning algorithms yield distinct
results. It is observed that the suggested approach i.e., selective
algorithm combined with decision tree provides a high accuracy
of 89.47% in comparison to other machine learning techniques

The authors of the paper [21] evaluate different combinations

of features in Twitter opinion mining. In addition, they assess
and study the effect of combining these separate kinds of
characteristics to detect of which aggregation yield crucial
insights in the polarity classification task in Twitter opinion
mining.

In the paper [22], a comparative study of two extractors (TF-
IDF, and Doc2vec) is carried out. The authors of this paper
implement these two extractors on three datasets such as
Stanford movie review, UCI sentiment, and Cornell movie
review datasets. Also, they applied several preprocessing tasks
such as removing stop words, eliminating the special
characters, stemming and tokenization which increases the
accuracy of sentiment classification and reduce the execution
of time of used classifier. The pertinent features extracted after
the extraction step are tested and trained using various machine
learning algorithms like support vector machine, Bernoulli
naïve bayes, k-nearest neighbors, decision tree, and logistic
regression.

The authors of the paper [23], carried out an experimental
analyze of different techniques of feature extraction in Twitter
sentiments analysis. Their comparative study is performed in
four steps, the first one is the data gathering task which has been
carried out from readily available sources. The second phase is
the application of several preprocessing tasks utilizing the tool
POS. In the third step, various feature selector and extractor are
implemented over the collected tweets. Finally, the
experimental study is performed for detecting the opinion
polarity with different extractors.

Zainuddin et al. [24] proposed a hybrid model for classifying
the tweets aspect-based opinion mining. They carried out a
comparative analyze in terms of classification rate of three
features selectors such as latent semantic analysis, principal
component analysis, and random projection. In addition the
hybrid model was evaluated employing Twitter datasets to
represent various areas, and the evaluation with several
machine learning algorithms also proved that the novel hybrid
model achieved goods results. Their experimental results
showed that the proposed hybrid opinion classification model
was capable to increase the classification rate from the existing
conventional opinion mining approaches by 76.55%, 71.62%

and 74.24 %, respectively.
Pandian suggested in its paper [25], a comparative study of

sentiment classification by employing various deep learning
models. Its proposed paper has incorporated a feature-
extraction with a deep learning model. Furthermore, its research
work has three major phases: The first phase is the design of
opinion classifiers based on deep learning models. This step is
succeeded by the utilization of ensemble techniques and
merging of information to get the final ensemble of data
sources. As the third phase, an aggregation of ensembles the
information is proposed to classify several algorithms along
with the suggested algorithm.

III. EXTRACTORS OF FEATURES
Concerning machine learning approaches, many efforts have

been performed in the literature on Twitter opinion mining to
obtain an efficient vectorization of tweets. In this context,
various kinds of features extractors have been suggested
already, ranging from simple n-gram based vectorization to
meta-level features to word embeddings.

A. N-gram extractor
 The N-gram feature extractor is commonly being employed
in text based-classification [26]. After applied this extractor, the
sentence can be broken down into features of character n-grams
and word n-grams. So, an N-gram is a series of “characters or
words " picked up, in order, from a body of sentence. N-gram
may be unigram (n-gram = 1), bigram (n-gram = 2), trigram (n-
gram = 3), and so on.

 Usually we pick every word in a sentence to compute the
sentiment of the sentence, but there can be a case in which the
word is formerly employed in a positive sense, but now it is
employed in a negative sense; for example, “what an awesome
product, totally waste of money,” if we take only the word
“awesome” the sentence will be positive but if we take in
consideration the whole sentence, it is indicating the negative.
It is because of these types of problems that the N-gram is being
developed.

B. TF_IDF extractor
 TF_IDF means term frequency - inverse document
frequency, which is widely recognized and it is utilized as a
weighting procedure and its performance is also still very
comparable with new approaches [27]. It is a statistical value
that is meant to reflect how much weight a given word has to a
certain document in a corpus or a collection. The TF-IDF rate
boosts proportionally to the number of occurrences of each term
in the document, but is compensated by the occurrence of the
term in the corpus, which aids to adapt for the fact that a certain
terms occur more frequently in overall. The standardization TF-
IDF rates for any document in the corpus via the Euclidean
measure are used. The calculations of TF-IDF are presented in
the following equation:

 (TF_IDF) 𝑖𝑖𝑖𝑖 = (TF)𝑖𝑖𝑖𝑖 ∗ log (IDF)𝑖𝑖 (1)

Where TF = 𝑘𝑘𝑖𝑖𝑖𝑖
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 with k is the

number of times the word i appears in the sentence j.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

And IDF = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑡𝑡ℎ𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑖𝑖

However, the equation 1 is only applied in cases where (TF) 
1. If it does not, TF_IDF = 0, the equation (2) is used.

(TF_IDF)𝑖𝑖𝑖𝑖 {
(TF)𝑖𝑖𝑖𝑖 ∗ log (IDF)𝑖𝑖 if (TF)𝑖𝑖𝑗𝑗  1
Otherwise (TF_IDF)𝑖𝑖𝑖𝑖 = 0 (2)

Where TF denotes the weight standard. It is the weight, which
indicates the frequency or relative frequency of the word i, in a
given sentence j. And IDF denotes the weight global. It
indicates the support of the word i in respect to jth belonging to
the corpus. In summary:

 (TF)𝑖𝑖𝑖𝑖 ∶ Number of occurrences of word i in sentence j.

 (IDF)𝑖𝑖 ∶ Number of sentences containing the word i.

C. Bag-of-words extractor
 The bag-of-words is an approach that has been suggested
for the first time in the text retrieval area issue for analysis of
documents based-text, and it was later induced for computer
vision implementations [28]. In general, this approach
associates a text with a vector indicating the number of
occurrences of each chosen word in the training corpus, For
example, we have the three book reviews as presented below:

 Review A: This book is very long and boring
 Review B: This book is not boring and is shortened
 Review C: This book is good and enjoyable

The vocabulary of this three movie reviews consists of eleven
words which are: ‘This’, ‘book’, ‘is’, ‘very’, ‘boring’, ‘and’,
‘long’, ‘not’, ‘shortened’, ‘good’, ‘enjoyable’. Therefore the
numerical vector of each review is created by the bag-of-word
method as follows:

 Vector of Review A: [This:1, book:1, is:1, very:1,
boring:1, and:1, long:1, not:0, shortened:0, good:0,
enjoyable:0]

 Vector of Review B: [This:1, book:1, is:1, very:0,
boring:1, and:1, long:0, not:1, shortened:1, good:0,
enjoyable:0]

 Vector of Review C: [This:1, book:1, is:1, very:0,
boring:0, and:1, long:0, not:0, shortened:0, good:1,
enjoyable:1]

D. Word2Vec extractor
Word integration with word2vec [29] identifies the syntactic

characteristics of terms and attributes a sentiment score to every
term in the vector space. Terms that appear in the identical
context are deemed more similar than the terms that appear in
the dissimilar contexts. For example, we have a corpus C which
is composed of a set of tweets, 𝑪𝑪 = {𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐, 𝒕𝒕𝟑𝟑, . . . , 𝒕𝒕𝒏𝒏} and a
vocabulary 𝑽𝑽 = {𝒘𝒘𝟏𝟏, 𝒘𝒘𝟐𝟐, 𝒘𝒘𝟑𝟑, … , 𝒘𝒘𝒎𝒎} is composed of a set of
unique words retrieved from C. Therefore, the vectorization of
the words wi are identified by applying one of the both models
Skip-gram or Continuous bag-of-words of Word2Vec in order
to compute the probability distribution of the rest words of the
set 𝑽𝑽\{𝒘𝒘𝒊𝒊} in the context provided by the words wi. In addition,

𝒘𝒘𝒊𝒊 is expressed as a vector space 𝒔𝒔𝒊𝒊 which includes the
probabilistic rates of all the other words in the lexicon. The
Word2Vec approach extract semantic linked among words in
the vocabulary. Furthermore, the obtained set of vectors spaces
for all words in the lexicon is high-dimensional and is efficacy
for sentiment classification.

E. GloVe extractor
 The GloVe pattern [30] attempts to create a vector

space representation of a term by employing the similarities
between the terms as an invariant. The GloVe combines
techniques provided by two different patterns, which are the
Continuous Bag of Words and Skip-gram pattern. Problem with
the former pattern is the low classification rate but its
computational time is very efficient, while latter had
computational time is inefficient but its classification rate is
very high. What the GloVe attempts to do is to integrate the
techniques introduced by two patterns and it has demonstrated
to be more efficient and accurate than those two patterns.

F. FastText extractor
 In recent years, Facebook researchers have launched a new
word embedding system called FastText [31], which is a quick
and effective way to represent each term with vector space and
to classify text-based sentiments. The primary goal of fastText
term embeddings is to consider the inner structure of terms
rather than to learn term representations. FastText operates by
Dragging a window over the entry text and either learning the
central term from the remainder of the context (by employing
the BOW approach), or all the terms in the remainder of the
context from the central term by using the Skip-gram approach.
The FastText approach is very identical to Word2Vec approach,
the only difference is that the FastText learn the vector
representation of sub-parts of a term so-called character n-
grams.

IV. ADVANTAGES AND DISADVANTAGES OF EACH EXTRACTOR
 In order to implement machine learning approaches to
natural language issues, it is necessary to convert the text-based
data into digital data. The methods used to carry out this
conversion are the extractors described above. Each extractor
has the advantages and disadvantages as presented in the tables
below:

Evaluation of different extractors of features at
the level of sentiment analysis

JUNE 2022 • VOLUME XIV • NUMBER 288

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

And IDF = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑡𝑡ℎ𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑖𝑖

However, the equation 1 is only applied in cases where (TF) 
1. If it does not, TF_IDF = 0, the equation (2) is used.

(TF_IDF)𝑖𝑖𝑖𝑖 {
(TF)𝑖𝑖𝑖𝑖 ∗ log (IDF)𝑖𝑖 if (TF)𝑖𝑖𝑗𝑗  1
Otherwise (TF_IDF)𝑖𝑖𝑖𝑖 = 0 (2)

Where TF denotes the weight standard. It is the weight, which
indicates the frequency or relative frequency of the word i, in a
given sentence j. And IDF denotes the weight global. It
indicates the support of the word i in respect to jth belonging to
the corpus. In summary:

 (TF)𝑖𝑖𝑖𝑖 ∶ Number of occurrences of word i in sentence j.

 (IDF)𝑖𝑖 ∶ Number of sentences containing the word i.

C. Bag-of-words extractor
 The bag-of-words is an approach that has been suggested
for the first time in the text retrieval area issue for analysis of
documents based-text, and it was later induced for computer
vision implementations [28]. In general, this approach
associates a text with a vector indicating the number of
occurrences of each chosen word in the training corpus, For
example, we have the three book reviews as presented below:

 Review A: This book is very long and boring
 Review B: This book is not boring and is shortened
 Review C: This book is good and enjoyable

The vocabulary of this three movie reviews consists of eleven
words which are: ‘This’, ‘book’, ‘is’, ‘very’, ‘boring’, ‘and’,
‘long’, ‘not’, ‘shortened’, ‘good’, ‘enjoyable’. Therefore the
numerical vector of each review is created by the bag-of-word
method as follows:

 Vector of Review A: [This:1, book:1, is:1, very:1,
boring:1, and:1, long:1, not:0, shortened:0, good:0,
enjoyable:0]

 Vector of Review B: [This:1, book:1, is:1, very:0,
boring:1, and:1, long:0, not:1, shortened:1, good:0,
enjoyable:0]

 Vector of Review C: [This:1, book:1, is:1, very:0,
boring:0, and:1, long:0, not:0, shortened:0, good:1,
enjoyable:1]

D. Word2Vec extractor
Word integration with word2vec [29] identifies the syntactic

characteristics of terms and attributes a sentiment score to every
term in the vector space. Terms that appear in the identical
context are deemed more similar than the terms that appear in
the dissimilar contexts. For example, we have a corpus C which
is composed of a set of tweets, 𝑪𝑪 = {𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐, 𝒕𝒕𝟑𝟑, . . . , 𝒕𝒕𝒏𝒏} and a
vocabulary 𝑽𝑽 = {𝒘𝒘𝟏𝟏, 𝒘𝒘𝟐𝟐, 𝒘𝒘𝟑𝟑, … , 𝒘𝒘𝒎𝒎} is composed of a set of
unique words retrieved from C. Therefore, the vectorization of
the words wi are identified by applying one of the both models
Skip-gram or Continuous bag-of-words of Word2Vec in order
to compute the probability distribution of the rest words of the
set 𝑽𝑽\{𝒘𝒘𝒊𝒊} in the context provided by the words wi. In addition,

𝒘𝒘𝒊𝒊 is expressed as a vector space 𝒔𝒔𝒊𝒊 which includes the
probabilistic rates of all the other words in the lexicon. The
Word2Vec approach extract semantic linked among words in
the vocabulary. Furthermore, the obtained set of vectors spaces
for all words in the lexicon is high-dimensional and is efficacy
for sentiment classification.

E. GloVe extractor
 The GloVe pattern [30] attempts to create a vector

space representation of a term by employing the similarities
between the terms as an invariant. The GloVe combines
techniques provided by two different patterns, which are the
Continuous Bag of Words and Skip-gram pattern. Problem with
the former pattern is the low classification rate but its
computational time is very efficient, while latter had
computational time is inefficient but its classification rate is
very high. What the GloVe attempts to do is to integrate the
techniques introduced by two patterns and it has demonstrated
to be more efficient and accurate than those two patterns.

F. FastText extractor
 In recent years, Facebook researchers have launched a new
word embedding system called FastText [31], which is a quick
and effective way to represent each term with vector space and
to classify text-based sentiments. The primary goal of fastText
term embeddings is to consider the inner structure of terms
rather than to learn term representations. FastText operates by
Dragging a window over the entry text and either learning the
central term from the remainder of the context (by employing
the BOW approach), or all the terms in the remainder of the
context from the central term by using the Skip-gram approach.
The FastText approach is very identical to Word2Vec approach,
the only difference is that the FastText learn the vector
representation of sub-parts of a term so-called character n-
grams.

IV. ADVANTAGES AND DISADVANTAGES OF EACH EXTRACTOR
 In order to implement machine learning approaches to
natural language issues, it is necessary to convert the text-based
data into digital data. The methods used to carry out this
conversion are the extractors described above. Each extractor
has the advantages and disadvantages as presented in the tables
below:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

And IDF = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑡𝑡ℎ𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑖𝑖

However, the equation 1 is only applied in cases where (TF) 
1. If it does not, TF_IDF = 0, the equation (2) is used.

(TF_IDF)𝑖𝑖𝑖𝑖 {
(TF)𝑖𝑖𝑖𝑖 ∗ log (IDF)𝑖𝑖 if (TF)𝑖𝑖𝑗𝑗  1
Otherwise (TF_IDF)𝑖𝑖𝑖𝑖 = 0 (2)

Where TF denotes the weight standard. It is the weight, which
indicates the frequency or relative frequency of the word i, in a
given sentence j. And IDF denotes the weight global. It
indicates the support of the word i in respect to jth belonging to
the corpus. In summary:

 (TF)𝑖𝑖𝑖𝑖 ∶ Number of occurrences of word i in sentence j.

 (IDF)𝑖𝑖 ∶ Number of sentences containing the word i.

C. Bag-of-words extractor
 The bag-of-words is an approach that has been suggested
for the first time in the text retrieval area issue for analysis of
documents based-text, and it was later induced for computer
vision implementations [28]. In general, this approach
associates a text with a vector indicating the number of
occurrences of each chosen word in the training corpus, For
example, we have the three book reviews as presented below:

 Review A: This book is very long and boring
 Review B: This book is not boring and is shortened
 Review C: This book is good and enjoyable

The vocabulary of this three movie reviews consists of eleven
words which are: ‘This’, ‘book’, ‘is’, ‘very’, ‘boring’, ‘and’,
‘long’, ‘not’, ‘shortened’, ‘good’, ‘enjoyable’. Therefore the
numerical vector of each review is created by the bag-of-word
method as follows:

 Vector of Review A: [This:1, book:1, is:1, very:1,
boring:1, and:1, long:1, not:0, shortened:0, good:0,
enjoyable:0]

 Vector of Review B: [This:1, book:1, is:1, very:0,
boring:1, and:1, long:0, not:1, shortened:1, good:0,
enjoyable:0]

 Vector of Review C: [This:1, book:1, is:1, very:0,
boring:0, and:1, long:0, not:0, shortened:0, good:1,
enjoyable:1]

D. Word2Vec extractor
Word integration with word2vec [29] identifies the syntactic

characteristics of terms and attributes a sentiment score to every
term in the vector space. Terms that appear in the identical
context are deemed more similar than the terms that appear in
the dissimilar contexts. For example, we have a corpus C which
is composed of a set of tweets, 𝑪𝑪 = {𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐, 𝒕𝒕𝟑𝟑, . . . , 𝒕𝒕𝒏𝒏} and a
vocabulary 𝑽𝑽 = {𝒘𝒘𝟏𝟏, 𝒘𝒘𝟐𝟐, 𝒘𝒘𝟑𝟑, … , 𝒘𝒘𝒎𝒎} is composed of a set of
unique words retrieved from C. Therefore, the vectorization of
the words wi are identified by applying one of the both models
Skip-gram or Continuous bag-of-words of Word2Vec in order
to compute the probability distribution of the rest words of the
set 𝑽𝑽\{𝒘𝒘𝒊𝒊} in the context provided by the words wi. In addition,

𝒘𝒘𝒊𝒊 is expressed as a vector space 𝒔𝒔𝒊𝒊 which includes the
probabilistic rates of all the other words in the lexicon. The
Word2Vec approach extract semantic linked among words in
the vocabulary. Furthermore, the obtained set of vectors spaces
for all words in the lexicon is high-dimensional and is efficacy
for sentiment classification.

E. GloVe extractor
 The GloVe pattern [30] attempts to create a vector

space representation of a term by employing the similarities
between the terms as an invariant. The GloVe combines
techniques provided by two different patterns, which are the
Continuous Bag of Words and Skip-gram pattern. Problem with
the former pattern is the low classification rate but its
computational time is very efficient, while latter had
computational time is inefficient but its classification rate is
very high. What the GloVe attempts to do is to integrate the
techniques introduced by two patterns and it has demonstrated
to be more efficient and accurate than those two patterns.

F. FastText extractor
 In recent years, Facebook researchers have launched a new
word embedding system called FastText [31], which is a quick
and effective way to represent each term with vector space and
to classify text-based sentiments. The primary goal of fastText
term embeddings is to consider the inner structure of terms
rather than to learn term representations. FastText operates by
Dragging a window over the entry text and either learning the
central term from the remainder of the context (by employing
the BOW approach), or all the terms in the remainder of the
context from the central term by using the Skip-gram approach.
The FastText approach is very identical to Word2Vec approach,
the only difference is that the FastText learn the vector
representation of sub-parts of a term so-called character n-
grams.

IV. ADVANTAGES AND DISADVANTAGES OF EACH EXTRACTOR
 In order to implement machine learning approaches to
natural language issues, it is necessary to convert the text-based
data into digital data. The methods used to carry out this
conversion are the extractors described above. Each extractor
has the advantages and disadvantages as presented in the tables
below:

Evaluation of different extractors of features at
the level of sentiment analysis

INFOCOMMUNICATIONS JOURNAL

JUNE 2022 • VOLUME XIV • NUMBER 2 89

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

And IDF = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑡𝑡ℎ𝑒𝑒 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑖𝑖

However, the equation 1 is only applied in cases where (TF) 
1. If it does not, TF_IDF = 0, the equation (2) is used.

(TF_IDF)𝑖𝑖𝑖𝑖 {
(TF)𝑖𝑖𝑖𝑖 ∗ log (IDF)𝑖𝑖 if (TF)𝑖𝑖𝑗𝑗  1
Otherwise (TF_IDF)𝑖𝑖𝑖𝑖 = 0 (2)

Where TF denotes the weight standard. It is the weight, which
indicates the frequency or relative frequency of the word i, in a
given sentence j. And IDF denotes the weight global. It
indicates the support of the word i in respect to jth belonging to
the corpus. In summary:

 (TF)𝑖𝑖𝑖𝑖 ∶ Number of occurrences of word i in sentence j.

 (IDF)𝑖𝑖 ∶ Number of sentences containing the word i.

C. Bag-of-words extractor
 The bag-of-words is an approach that has been suggested
for the first time in the text retrieval area issue for analysis of
documents based-text, and it was later induced for computer
vision implementations [28]. In general, this approach
associates a text with a vector indicating the number of
occurrences of each chosen word in the training corpus, For
example, we have the three book reviews as presented below:

 Review A: This book is very long and boring
 Review B: This book is not boring and is shortened
 Review C: This book is good and enjoyable

The vocabulary of this three movie reviews consists of eleven
words which are: ‘This’, ‘book’, ‘is’, ‘very’, ‘boring’, ‘and’,
‘long’, ‘not’, ‘shortened’, ‘good’, ‘enjoyable’. Therefore the
numerical vector of each review is created by the bag-of-word
method as follows:

 Vector of Review A: [This:1, book:1, is:1, very:1,
boring:1, and:1, long:1, not:0, shortened:0, good:0,
enjoyable:0]

 Vector of Review B: [This:1, book:1, is:1, very:0,
boring:1, and:1, long:0, not:1, shortened:1, good:0,
enjoyable:0]

 Vector of Review C: [This:1, book:1, is:1, very:0,
boring:0, and:1, long:0, not:0, shortened:0, good:1,
enjoyable:1]

D. Word2Vec extractor
Word integration with word2vec [29] identifies the syntactic

characteristics of terms and attributes a sentiment score to every
term in the vector space. Terms that appear in the identical
context are deemed more similar than the terms that appear in
the dissimilar contexts. For example, we have a corpus C which
is composed of a set of tweets, 𝑪𝑪 = {𝒕𝒕𝟏𝟏, 𝒕𝒕𝟐𝟐, 𝒕𝒕𝟑𝟑, . . . , 𝒕𝒕𝒏𝒏} and a
vocabulary 𝑽𝑽 = {𝒘𝒘𝟏𝟏, 𝒘𝒘𝟐𝟐, 𝒘𝒘𝟑𝟑, … , 𝒘𝒘𝒎𝒎} is composed of a set of
unique words retrieved from C. Therefore, the vectorization of
the words wi are identified by applying one of the both models
Skip-gram or Continuous bag-of-words of Word2Vec in order
to compute the probability distribution of the rest words of the
set 𝑽𝑽\{𝒘𝒘𝒊𝒊} in the context provided by the words wi. In addition,

𝒘𝒘𝒊𝒊 is expressed as a vector space 𝒔𝒔𝒊𝒊 which includes the
probabilistic rates of all the other words in the lexicon. The
Word2Vec approach extract semantic linked among words in
the vocabulary. Furthermore, the obtained set of vectors spaces
for all words in the lexicon is high-dimensional and is efficacy
for sentiment classification.

E. GloVe extractor
 The GloVe pattern [30] attempts to create a vector

space representation of a term by employing the similarities
between the terms as an invariant. The GloVe combines
techniques provided by two different patterns, which are the
Continuous Bag of Words and Skip-gram pattern. Problem with
the former pattern is the low classification rate but its
computational time is very efficient, while latter had
computational time is inefficient but its classification rate is
very high. What the GloVe attempts to do is to integrate the
techniques introduced by two patterns and it has demonstrated
to be more efficient and accurate than those two patterns.

F. FastText extractor
 In recent years, Facebook researchers have launched a new
word embedding system called FastText [31], which is a quick
and effective way to represent each term with vector space and
to classify text-based sentiments. The primary goal of fastText
term embeddings is to consider the inner structure of terms
rather than to learn term representations. FastText operates by
Dragging a window over the entry text and either learning the
central term from the remainder of the context (by employing
the BOW approach), or all the terms in the remainder of the
context from the central term by using the Skip-gram approach.
The FastText approach is very identical to Word2Vec approach,
the only difference is that the FastText learn the vector
representation of sub-parts of a term so-called character n-
grams.

IV. ADVANTAGES AND DISADVANTAGES OF EACH EXTRACTOR
 In order to implement machine learning approaches to
natural language issues, it is necessary to convert the text-based
data into digital data. The methods used to carry out this
conversion are the extractors described above. Each extractor
has the advantages and disadvantages as presented in the tables
below:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

TABLE I: Advantages and disadvantages of each extractor

Extractor Advantages Inconveniences

N-gram

-It pick up the representation of the out-of-lexicon
terms because it divide the word into N-gram
characters [27].
-Simplicity and scalability which means that this
approach can efficiently scale small experiments. It
can also stock more background with a good
understanding of the space-time compromise [28].
-It is efficient in handling textual mistakes and
character identification issues that is because of the
N-gram structure [27].

- When its parameter N is very large, its parameters space
is much too large [28].

- There is also a text smoothness issue because of text
sparsity. That’s means that we used an approximating
function that tries to detect significant features in the data
[29].

-It does not take into account the semantics.

Bag-of-words

- It encrypts each term in the lexicon as one-hot
vector that renders our training data more
meaningful and more expressible, and can be easily
rescaled [30].

- It is very simple to comprehend and to implement
because is based on one-hot vector representation.

- It generates a simplified word representation
because it is easier to calculate a likelihood for
values by utilizing numerical values. [30].

-It does not take into account the semantics of the term
because it does not compute the semantic similarity of
each terms [31].

-It does not take into account the semantic connection
between the terms because it does not compute the
semantic similarity between the terms [31].

-It is suffering from the curse of dimensionality because
it represents each term by one-hot vector [30].

TF-IDF

-Short extraction time, simple and easy to calculate
because it merges only two notions, term frequency
and document frequency [32].

-It provides a certain basic metric to retrieve the
most descriptive words in the corpus because it
calculates easily the similarities between two
sentences or two documents in the corpus [32].

- It does not detect semantics, status in text, co-
occurrences in diverse sentences in the corpus because it
cannot contribute to convey a semantical sense. [33].

- It is only used as a lexical level characteristic because it
gives importance to the terms by the way it weights them
and it cannot adequately infer the meaning of the terms
and understand their significance in this way [34].

-It cannot pick up the semantics with respect to thematic
patterns, term embeddings [34].

- A further drawback is that it may suffer from a lack of
memory as TF-IDF may suffer from the curse of
dimensionality [33].

Word2Vec

-It identifies the syntactic characteristics of terms
because it utilizes a neural network pattern so that
once a pattern is trained it can recognize antonymic
and synonymous words or can propose a new word
to complete an incomplete partial phrase [35].

-It does not learn vectors space of the character n-grams
because Word2Vec employs the same vector of numbers
to represent any unseen word [35].

TABLE I
Advantages and disadvantages of each extractor

Evaluation of different extractors of features at
the level of sentiment analysis

JUNE 2022 • VOLUME XIV • NUMBER 290

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

TABLE II: Advantages and disadvantages of each extractor (continued)

Extractor Advantages Inconveniences

Word2Vec

-It attributes a sentiment score to every term. For
instance, certain negative terms that are adjectives
will be more closely related to each other and
inversely for positive adjectives. It picks up the
semantic and syntactic data of the words [36].

- Its embedding vector size is very small which
avoids both drawback of the lack of memory and
the curse of dimensionality [36].

-Its context data is never lost because it employs the
continuous bag of words method and skip-gram
method for predicting the word or the context any
word [35].

- It is not very efficacy with term analogy tasks compared
to word similarity task [36].

- Word2Vec cannot deal well with out-of-vocabulary
terms. It attributes a random vectorial mapping for out-
of-vocabulary words, which may be suboptimal [35].
And it is incapable of taking advantage of the statistics of
the corpus.

 - Long extraction time because Word2vec train either
continuous bag of words method or skip-gram method
and these both methods train the neural network model
which trains huge number of instructions and that takes
long execution time [36].

GloVe

-It forces term vectors to pick up sub-linear
relations in the vector space since vector spaces
being by nature linear structures, the easiest way to
proceed is to use vector differences [37].

-It outperforms Word2vec in the tasks of terms
analogies because it is based on leveraging global
word to word co-occurrence counts leveraging the
entire corpus [38].

-It adds a more convenient meaning to term vectors
by considering the relations between terms pair to
pair rather than term to term [37].

-It assigns a smaller weight to very frequent term
pairs in order to avoid meaningless terms such as
“the”, “a” [38].

-Its pattern is learned on the terms co-occurrence matrix,
which requires a lot of storage space because the co-
occurrence matrix expands so rapidly and is high-
dimensional [38].

-It consumes very time, because the change in level of
hyper-parameters requires the reconstruct of the co-
occurrence matrix [37].

-It cannot pick up the representation of the out-of-lexicon
terms because Glove processes each term in the corpus as
an atomic entity and produces a vector for each term [38].

-It is difficult to detach several opposite term pairs using
GloVe unlike the Word2Vec [36, 37].

FastText

-It learns usually often the numeric vector of terms
in the sentiment analyses process because it is based
on the combination of the concept of Word2Vec
approach and N-gram method [39].

-It requires a few preprocessing tasks, and little
hyper parameter tuning thus needs small memory
spaces because it is based on character N-gram [40].

-It learn the vector spaces of character n-grams that
make it very efficacy to deal with out-of-vocabulary
terms [40].

- Sublinear connections are not explicitly identified
because FastText cannot compute the semantic similarity
of each term [40].

- As the size of the corpora increases, the memory space
used by the FastText word embeddings needs to be
increase which takes long execution time for extracting
the pertinences features [39].

- It could be very hard to be trained if the Softmax
function is used, since the size of the vocabulary is much
too big [40].

TABLE II
Advantages and disadvantages of each extractor

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

V. SENTIMENT ANALYSIS METHODOLOGY
 In the current work, we train a convolutional neural network
as classifier on Sentiment140 dataset [26] of sentiment
sentences in order to evaluate each extractor (N-gram, Bag-of-
word, TF-IDF, Word2Vec, GloVe, and FastText) for
identifying the most efficient one. In general our sentiment
analysis methodology consists of four steps which are data
collection phase in which we used the Sentiment140 dataset,
data pre-processing phase in which we applied several
techniques for improving the data quality and eliminate the data
noisy, feature extraction phase in which we implemented six
extractors in order to determine the most efficient one among
them, et finally the data classification phase, in which we
applied the convolutional neural network (CNN) as classifier as
shown in the fig.1.

A. Data collection phase
To implement our contribution we have used the

Sentiment140 dataset. This dataset contains approximately 1.6
million tweets that were automatically retrieved with the
Twitter API. These tweets were automatically annotated
assuming that those containing the ":)" emoticon were positive
and those containing the ":(" emoticon were negative. Those
containing neither of these emoticons, and those containing
both, were not kept. The training set is annotated in two classes
(positive and negative) while the test set is annotated by hand
on three different classes (positive, negative and neutral). For

our experiments, we use only the positive and negative classes
of the test set. Table 3 gives the details of the data set.

Table 3. Details of the used data set.

Training set Testing set
Positive 720,000 Positive 80,000
Negative 720,000 Negative 80,000

Each line of the file contains a single tweet with a maximum

of 140 characters and can contain several sentences (depending
on the length). Because the tweets have been collected directly
on the twitter API, they can therefore contain HTML addresses,
hashtags and user names (preceded by @). Finally the
structure of each line is as follows:

1. The polarity of the tweet (e.g., 0 = negative, 2 =
neutral, 4 = positive).

2. The id of the tweet (e.g., 6532).
3. The date of the tweet (e.g., FAR Sep 18 15:45:31

UTC 2021).
4. The name of the user who posted the tweet (e.g., Es-

sabery).
5. The text of the tweet.

B. Data pre-processing phase
After looking at the data, we saw that the sentences contained

HTML tags, empty words and all punctuation. So we started by
removing the noise to normalize our sentences. We remove
HTML tags with the BeautifulSoup2 module. We also remove

Fig. 1. Architecture global of the sentiment analysis methodology

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

V. SENTIMENT ANALYSIS METHODOLOGY
 In the current work, we train a convolutional neural network
as classifier on Sentiment140 dataset [26] of sentiment
sentences in order to evaluate each extractor (N-gram, Bag-of-
word, TF-IDF, Word2Vec, GloVe, and FastText) for
identifying the most efficient one. In general our sentiment
analysis methodology consists of four steps which are data
collection phase in which we used the Sentiment140 dataset,
data pre-processing phase in which we applied several
techniques for improving the data quality and eliminate the data
noisy, feature extraction phase in which we implemented six
extractors in order to determine the most efficient one among
them, et finally the data classification phase, in which we
applied the convolutional neural network (CNN) as classifier as
shown in the fig.1.

A. Data collection phase
To implement our contribution we have used the

Sentiment140 dataset. This dataset contains approximately 1.6
million tweets that were automatically retrieved with the
Twitter API. These tweets were automatically annotated
assuming that those containing the ":)" emoticon were positive
and those containing the ":(" emoticon were negative. Those
containing neither of these emoticons, and those containing
both, were not kept. The training set is annotated in two classes
(positive and negative) while the test set is annotated by hand
on three different classes (positive, negative and neutral). For

our experiments, we use only the positive and negative classes
of the test set. Table 3 gives the details of the data set.

Table 3. Details of the used data set.

Training set Testing set
Positive 720,000 Positive 80,000
Negative 720,000 Negative 80,000

Each line of the file contains a single tweet with a maximum

of 140 characters and can contain several sentences (depending
on the length). Because the tweets have been collected directly
on the twitter API, they can therefore contain HTML addresses,
hashtags and user names (preceded by @). Finally the
structure of each line is as follows:

1. The polarity of the tweet (e.g., 0 = negative, 2 =
neutral, 4 = positive).

2. The id of the tweet (e.g., 6532).
3. The date of the tweet (e.g., FAR Sep 18 15:45:31

UTC 2021).
4. The name of the user who posted the tweet (e.g., Es-

sabery).
5. The text of the tweet.

B. Data pre-processing phase
After looking at the data, we saw that the sentences contained

HTML tags, empty words and all punctuation. So we started by
removing the noise to normalize our sentences. We remove
HTML tags with the BeautifulSoup2 module. We also remove

Fig. 1. Architecture global of the sentiment analysis methodology

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

V. SENTIMENT ANALYSIS METHODOLOGY
 In the current work, we train a convolutional neural network
as classifier on Sentiment140 dataset [26] of sentiment
sentences in order to evaluate each extractor (N-gram, Bag-of-
word, TF-IDF, Word2Vec, GloVe, and FastText) for
identifying the most efficient one. In general our sentiment
analysis methodology consists of four steps which are data
collection phase in which we used the Sentiment140 dataset,
data pre-processing phase in which we applied several
techniques for improving the data quality and eliminate the data
noisy, feature extraction phase in which we implemented six
extractors in order to determine the most efficient one among
them, et finally the data classification phase, in which we
applied the convolutional neural network (CNN) as classifier as
shown in the fig.1.

A. Data collection phase
To implement our contribution we have used the

Sentiment140 dataset. This dataset contains approximately 1.6
million tweets that were automatically retrieved with the
Twitter API. These tweets were automatically annotated
assuming that those containing the ":)" emoticon were positive
and those containing the ":(" emoticon were negative. Those
containing neither of these emoticons, and those containing
both, were not kept. The training set is annotated in two classes
(positive and negative) while the test set is annotated by hand
on three different classes (positive, negative and neutral). For

our experiments, we use only the positive and negative classes
of the test set. Table 3 gives the details of the data set.

Table 3. Details of the used data set.

Training set Testing set
Positive 720,000 Positive 80,000
Negative 720,000 Negative 80,000

Each line of the file contains a single tweet with a maximum

of 140 characters and can contain several sentences (depending
on the length). Because the tweets have been collected directly
on the twitter API, they can therefore contain HTML addresses,
hashtags and user names (preceded by @). Finally the
structure of each line is as follows:

1. The polarity of the tweet (e.g., 0 = negative, 2 =
neutral, 4 = positive).

2. The id of the tweet (e.g., 6532).
3. The date of the tweet (e.g., FAR Sep 18 15:45:31

UTC 2021).
4. The name of the user who posted the tweet (e.g., Es-

sabery).
5. The text of the tweet.

B. Data pre-processing phase
After looking at the data, we saw that the sentences contained

HTML tags, empty words and all punctuation. So we started by
removing the noise to normalize our sentences. We remove
HTML tags with the BeautifulSoup2 module. We also remove

Fig. 1. Architecture global of the sentiment analysis methodology

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

V. SENTIMENT ANALYSIS METHODOLOGY
 In the current work, we train a convolutional neural network
as classifier on Sentiment140 dataset [26] of sentiment
sentences in order to evaluate each extractor (N-gram, Bag-of-
word, TF-IDF, Word2Vec, GloVe, and FastText) for
identifying the most efficient one. In general our sentiment
analysis methodology consists of four steps which are data
collection phase in which we used the Sentiment140 dataset,
data pre-processing phase in which we applied several
techniques for improving the data quality and eliminate the data
noisy, feature extraction phase in which we implemented six
extractors in order to determine the most efficient one among
them, et finally the data classification phase, in which we
applied the convolutional neural network (CNN) as classifier as
shown in the fig.1.

A. Data collection phase
To implement our contribution we have used the

Sentiment140 dataset. This dataset contains approximately 1.6
million tweets that were automatically retrieved with the
Twitter API. These tweets were automatically annotated
assuming that those containing the ":)" emoticon were positive
and those containing the ":(" emoticon were negative. Those
containing neither of these emoticons, and those containing
both, were not kept. The training set is annotated in two classes
(positive and negative) while the test set is annotated by hand
on three different classes (positive, negative and neutral). For

our experiments, we use only the positive and negative classes
of the test set. Table 3 gives the details of the data set.

Table 3. Details of the used data set.

Training set Testing set
Positive 720,000 Positive 80,000
Negative 720,000 Negative 80,000

Each line of the file contains a single tweet with a maximum

of 140 characters and can contain several sentences (depending
on the length). Because the tweets have been collected directly
on the twitter API, they can therefore contain HTML addresses,
hashtags and user names (preceded by @). Finally the
structure of each line is as follows:

1. The polarity of the tweet (e.g., 0 = negative, 2 =
neutral, 4 = positive).

2. The id of the tweet (e.g., 6532).
3. The date of the tweet (e.g., FAR Sep 18 15:45:31

UTC 2021).
4. The name of the user who posted the tweet (e.g., Es-

sabery).
5. The text of the tweet.

B. Data pre-processing phase
After looking at the data, we saw that the sentences contained

HTML tags, empty words and all punctuation. So we started by
removing the noise to normalize our sentences. We remove
HTML tags with the BeautifulSoup2 module. We also remove

Fig. 1. Architecture global of the sentiment analysis methodology

Evaluation of different extractors of features at
the level of sentiment analysis

INFOCOMMUNICATIONS JOURNAL

JUNE 2022 • VOLUME XIV • NUMBER 2 91

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

V. SENTIMENT ANALYSIS METHODOLOGY
 In the current work, we train a convolutional neural network
as classifier on Sentiment140 dataset [26] of sentiment
sentences in order to evaluate each extractor (N-gram, Bag-of-
word, TF-IDF, Word2Vec, GloVe, and FastText) for
identifying the most efficient one. In general our sentiment
analysis methodology consists of four steps which are data
collection phase in which we used the Sentiment140 dataset,
data pre-processing phase in which we applied several
techniques for improving the data quality and eliminate the data
noisy, feature extraction phase in which we implemented six
extractors in order to determine the most efficient one among
them, et finally the data classification phase, in which we
applied the convolutional neural network (CNN) as classifier as
shown in the fig.1.

A. Data collection phase
To implement our contribution we have used the

Sentiment140 dataset. This dataset contains approximately 1.6
million tweets that were automatically retrieved with the
Twitter API. These tweets were automatically annotated
assuming that those containing the ":)" emoticon were positive
and those containing the ":(" emoticon were negative. Those
containing neither of these emoticons, and those containing
both, were not kept. The training set is annotated in two classes
(positive and negative) while the test set is annotated by hand
on three different classes (positive, negative and neutral). For

our experiments, we use only the positive and negative classes
of the test set. Table 3 gives the details of the data set.

Table 3. Details of the used data set.

Training set Testing set
Positive 720,000 Positive 80,000
Negative 720,000 Negative 80,000

Each line of the file contains a single tweet with a maximum

of 140 characters and can contain several sentences (depending
on the length). Because the tweets have been collected directly
on the twitter API, they can therefore contain HTML addresses,
hashtags and user names (preceded by @). Finally the
structure of each line is as follows:

1. The polarity of the tweet (e.g., 0 = negative, 2 =
neutral, 4 = positive).

2. The id of the tweet (e.g., 6532).
3. The date of the tweet (e.g., FAR Sep 18 15:45:31

UTC 2021).
4. The name of the user who posted the tweet (e.g., Es-

sabery).
5. The text of the tweet.

B. Data pre-processing phase
After looking at the data, we saw that the sentences contained

HTML tags, empty words and all punctuation. So we started by
removing the noise to normalize our sentences. We remove
HTML tags with the BeautifulSoup2 module. We also remove

Fig. 1. Architecture global of the sentiment analysis methodology

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

TABLE II: Advantages and disadvantages of each extractor (continued)

Extractor Advantages Inconveniences

Word2Vec

-It attributes a sentiment score to every term. For
instance, certain negative terms that are adjectives
will be more closely related to each other and
inversely for positive adjectives. It picks up the
semantic and syntactic data of the words [36].

- Its embedding vector size is very small which
avoids both drawback of the lack of memory and
the curse of dimensionality [36].

-Its context data is never lost because it employs the
continuous bag of words method and skip-gram
method for predicting the word or the context any
word [35].

- It is not very efficacy with term analogy tasks compared
to word similarity task [36].

- Word2Vec cannot deal well with out-of-vocabulary
terms. It attributes a random vectorial mapping for out-
of-vocabulary words, which may be suboptimal [35].
And it is incapable of taking advantage of the statistics of
the corpus.

 - Long extraction time because Word2vec train either
continuous bag of words method or skip-gram method
and these both methods train the neural network model
which trains huge number of instructions and that takes
long execution time [36].

GloVe

-It forces term vectors to pick up sub-linear
relations in the vector space since vector spaces
being by nature linear structures, the easiest way to
proceed is to use vector differences [37].

-It outperforms Word2vec in the tasks of terms
analogies because it is based on leveraging global
word to word co-occurrence counts leveraging the
entire corpus [38].

-It adds a more convenient meaning to term vectors
by considering the relations between terms pair to
pair rather than term to term [37].

-It assigns a smaller weight to very frequent term
pairs in order to avoid meaningless terms such as
“the”, “a” [38].

-Its pattern is learned on the terms co-occurrence matrix,
which requires a lot of storage space because the co-
occurrence matrix expands so rapidly and is high-
dimensional [38].

-It consumes very time, because the change in level of
hyper-parameters requires the reconstruct of the co-
occurrence matrix [37].

-It cannot pick up the representation of the out-of-lexicon
terms because Glove processes each term in the corpus as
an atomic entity and produces a vector for each term [38].

-It is difficult to detach several opposite term pairs using
GloVe unlike the Word2Vec [36, 37].

FastText

-It learns usually often the numeric vector of terms
in the sentiment analyses process because it is based
on the combination of the concept of Word2Vec
approach and N-gram method [39].

-It requires a few preprocessing tasks, and little
hyper parameter tuning thus needs small memory
spaces because it is based on character N-gram [40].

-It learn the vector spaces of character n-grams that
make it very efficacy to deal with out-of-vocabulary
terms [40].

- Sublinear connections are not explicitly identified
because FastText cannot compute the semantic similarity
of each term [40].

- As the size of the corpora increases, the memory space
used by the FastText word embeddings needs to be
increase which takes long execution time for extracting
the pertinences features [39].

- It could be very hard to be trained if the Softmax
function is used, since the size of the vocabulary is much
too big [40].

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

V. SENTIMENT ANALYSIS METHODOLOGY
 In the current work, we train a convolutional neural network
as classifier on Sentiment140 dataset [26] of sentiment
sentences in order to evaluate each extractor (N-gram, Bag-of-
word, TF-IDF, Word2Vec, GloVe, and FastText) for
identifying the most efficient one. In general our sentiment
analysis methodology consists of four steps which are data
collection phase in which we used the Sentiment140 dataset,
data pre-processing phase in which we applied several
techniques for improving the data quality and eliminate the data
noisy, feature extraction phase in which we implemented six
extractors in order to determine the most efficient one among
them, et finally the data classification phase, in which we
applied the convolutional neural network (CNN) as classifier as
shown in the fig.1.

A. Data collection phase
To implement our contribution we have used the

Sentiment140 dataset. This dataset contains approximately 1.6
million tweets that were automatically retrieved with the
Twitter API. These tweets were automatically annotated
assuming that those containing the ":)" emoticon were positive
and those containing the ":(" emoticon were negative. Those
containing neither of these emoticons, and those containing
both, were not kept. The training set is annotated in two classes
(positive and negative) while the test set is annotated by hand
on three different classes (positive, negative and neutral). For

our experiments, we use only the positive and negative classes
of the test set. Table 3 gives the details of the data set.

Table 3. Details of the used data set.

Training set Testing set
Positive 720,000 Positive 80,000
Negative 720,000 Negative 80,000

Each line of the file contains a single tweet with a maximum

of 140 characters and can contain several sentences (depending
on the length). Because the tweets have been collected directly
on the twitter API, they can therefore contain HTML addresses,
hashtags and user names (preceded by @). Finally the
structure of each line is as follows:

1. The polarity of the tweet (e.g., 0 = negative, 2 =
neutral, 4 = positive).

2. The id of the tweet (e.g., 6532).
3. The date of the tweet (e.g., FAR Sep 18 15:45:31

UTC 2021).
4. The name of the user who posted the tweet (e.g., Es-

sabery).
5. The text of the tweet.

B. Data pre-processing phase
After looking at the data, we saw that the sentences contained

HTML tags, empty words and all punctuation. So we started by
removing the noise to normalize our sentences. We remove
HTML tags with the BeautifulSoup2 module. We also remove

Fig. 1. Architecture global of the sentiment analysis methodology

TABLE 3
Details of the used data set

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

V. SENTIMENT ANALYSIS METHODOLOGY
 In the current work, we train a convolutional neural network
as classifier on Sentiment140 dataset [26] of sentiment
sentences in order to evaluate each extractor (N-gram, Bag-of-
word, TF-IDF, Word2Vec, GloVe, and FastText) for
identifying the most efficient one. In general our sentiment
analysis methodology consists of four steps which are data
collection phase in which we used the Sentiment140 dataset,
data pre-processing phase in which we applied several
techniques for improving the data quality and eliminate the data
noisy, feature extraction phase in which we implemented six
extractors in order to determine the most efficient one among
them, et finally the data classification phase, in which we
applied the convolutional neural network (CNN) as classifier as
shown in the fig.1.

A. Data collection phase
To implement our contribution we have used the

Sentiment140 dataset. This dataset contains approximately 1.6
million tweets that were automatically retrieved with the
Twitter API. These tweets were automatically annotated
assuming that those containing the ":)" emoticon were positive
and those containing the ":(" emoticon were negative. Those
containing neither of these emoticons, and those containing
both, were not kept. The training set is annotated in two classes
(positive and negative) while the test set is annotated by hand
on three different classes (positive, negative and neutral). For

our experiments, we use only the positive and negative classes
of the test set. Table 3 gives the details of the data set.

Table 3. Details of the used data set.

Training set Testing set
Positive 720,000 Positive 80,000
Negative 720,000 Negative 80,000

Each line of the file contains a single tweet with a maximum

of 140 characters and can contain several sentences (depending
on the length). Because the tweets have been collected directly
on the twitter API, they can therefore contain HTML addresses,
hashtags and user names (preceded by @). Finally the
structure of each line is as follows:

1. The polarity of the tweet (e.g., 0 = negative, 2 =
neutral, 4 = positive).

2. The id of the tweet (e.g., 6532).
3. The date of the tweet (e.g., FAR Sep 18 15:45:31

UTC 2021).
4. The name of the user who posted the tweet (e.g., Es-

sabery).
5. The text of the tweet.

B. Data pre-processing phase
After looking at the data, we saw that the sentences contained

HTML tags, empty words and all punctuation. So we started by
removing the noise to normalize our sentences. We remove
HTML tags with the BeautifulSoup2 module. We also remove

Fig. 1. Architecture global of the sentiment analysis methodology

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

V. SENTIMENT ANALYSIS METHODOLOGY
 In the current work, we train a convolutional neural network
as classifier on Sentiment140 dataset [26] of sentiment
sentences in order to evaluate each extractor (N-gram, Bag-of-
word, TF-IDF, Word2Vec, GloVe, and FastText) for
identifying the most efficient one. In general our sentiment
analysis methodology consists of four steps which are data
collection phase in which we used the Sentiment140 dataset,
data pre-processing phase in which we applied several
techniques for improving the data quality and eliminate the data
noisy, feature extraction phase in which we implemented six
extractors in order to determine the most efficient one among
them, et finally the data classification phase, in which we
applied the convolutional neural network (CNN) as classifier as
shown in the fig.1.

A. Data collection phase
To implement our contribution we have used the

Sentiment140 dataset. This dataset contains approximately 1.6
million tweets that were automatically retrieved with the
Twitter API. These tweets were automatically annotated
assuming that those containing the ":)" emoticon were positive
and those containing the ":(" emoticon were negative. Those
containing neither of these emoticons, and those containing
both, were not kept. The training set is annotated in two classes
(positive and negative) while the test set is annotated by hand
on three different classes (positive, negative and neutral). For

our experiments, we use only the positive and negative classes
of the test set. Table 3 gives the details of the data set.

Table 3. Details of the used data set.

Training set Testing set
Positive 720,000 Positive 80,000
Negative 720,000 Negative 80,000

Each line of the file contains a single tweet with a maximum

of 140 characters and can contain several sentences (depending
on the length). Because the tweets have been collected directly
on the twitter API, they can therefore contain HTML addresses,
hashtags and user names (preceded by @). Finally the
structure of each line is as follows:

1. The polarity of the tweet (e.g., 0 = negative, 2 =
neutral, 4 = positive).

2. The id of the tweet (e.g., 6532).
3. The date of the tweet (e.g., FAR Sep 18 15:45:31

UTC 2021).
4. The name of the user who posted the tweet (e.g., Es-

sabery).
5. The text of the tweet.

B. Data pre-processing phase
After looking at the data, we saw that the sentences contained

HTML tags, empty words and all punctuation. So we started by
removing the noise to normalize our sentences. We remove
HTML tags with the BeautifulSoup2 module. We also remove

Fig. 1. Architecture global of the sentiment analysis methodology

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

V. SENTIMENT ANALYSIS METHODOLOGY
 In the current work, we train a convolutional neural network
as classifier on Sentiment140 dataset [26] of sentiment
sentences in order to evaluate each extractor (N-gram, Bag-of-
word, TF-IDF, Word2Vec, GloVe, and FastText) for
identifying the most efficient one. In general our sentiment
analysis methodology consists of four steps which are data
collection phase in which we used the Sentiment140 dataset,
data pre-processing phase in which we applied several
techniques for improving the data quality and eliminate the data
noisy, feature extraction phase in which we implemented six
extractors in order to determine the most efficient one among
them, et finally the data classification phase, in which we
applied the convolutional neural network (CNN) as classifier as
shown in the fig.1.

A. Data collection phase
To implement our contribution we have used the

Sentiment140 dataset. This dataset contains approximately 1.6
million tweets that were automatically retrieved with the
Twitter API. These tweets were automatically annotated
assuming that those containing the ":)" emoticon were positive
and those containing the ":(" emoticon were negative. Those
containing neither of these emoticons, and those containing
both, were not kept. The training set is annotated in two classes
(positive and negative) while the test set is annotated by hand
on three different classes (positive, negative and neutral). For

our experiments, we use only the positive and negative classes
of the test set. Table 3 gives the details of the data set.

Table 3. Details of the used data set.

Training set Testing set
Positive 720,000 Positive 80,000
Negative 720,000 Negative 80,000

Each line of the file contains a single tweet with a maximum

of 140 characters and can contain several sentences (depending
on the length). Because the tweets have been collected directly
on the twitter API, they can therefore contain HTML addresses,
hashtags and user names (preceded by @). Finally the
structure of each line is as follows:

1. The polarity of the tweet (e.g., 0 = negative, 2 =
neutral, 4 = positive).

2. The id of the tweet (e.g., 6532).
3. The date of the tweet (e.g., FAR Sep 18 15:45:31

UTC 2021).
4. The name of the user who posted the tweet (e.g., Es-

sabery).
5. The text of the tweet.

B. Data pre-processing phase
After looking at the data, we saw that the sentences contained

HTML tags, empty words and all punctuation. So we started by
removing the noise to normalize our sentences. We remove
HTML tags with the BeautifulSoup2 module. We also remove

Fig. 1. Architecture global of the sentiment analysis methodology

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

V. SENTIMENT ANALYSIS METHODOLOGY
 In the current work, we train a convolutional neural network
as classifier on Sentiment140 dataset [26] of sentiment
sentences in order to evaluate each extractor (N-gram, Bag-of-
word, TF-IDF, Word2Vec, GloVe, and FastText) for
identifying the most efficient one. In general our sentiment
analysis methodology consists of four steps which are data
collection phase in which we used the Sentiment140 dataset,
data pre-processing phase in which we applied several
techniques for improving the data quality and eliminate the data
noisy, feature extraction phase in which we implemented six
extractors in order to determine the most efficient one among
them, et finally the data classification phase, in which we
applied the convolutional neural network (CNN) as classifier as
shown in the fig.1.

A. Data collection phase
To implement our contribution we have used the

Sentiment140 dataset. This dataset contains approximately 1.6
million tweets that were automatically retrieved with the
Twitter API. These tweets were automatically annotated
assuming that those containing the ":)" emoticon were positive
and those containing the ":(" emoticon were negative. Those
containing neither of these emoticons, and those containing
both, were not kept. The training set is annotated in two classes
(positive and negative) while the test set is annotated by hand
on three different classes (positive, negative and neutral). For

our experiments, we use only the positive and negative classes
of the test set. Table 3 gives the details of the data set.

Table 3. Details of the used data set.

Training set Testing set
Positive 720,000 Positive 80,000
Negative 720,000 Negative 80,000

Each line of the file contains a single tweet with a maximum

of 140 characters and can contain several sentences (depending
on the length). Because the tweets have been collected directly
on the twitter API, they can therefore contain HTML addresses,
hashtags and user names (preceded by @). Finally the
structure of each line is as follows:

1. The polarity of the tweet (e.g., 0 = negative, 2 =
neutral, 4 = positive).

2. The id of the tweet (e.g., 6532).
3. The date of the tweet (e.g., FAR Sep 18 15:45:31

UTC 2021).
4. The name of the user who posted the tweet (e.g., Es-

sabery).
5. The text of the tweet.

B. Data pre-processing phase
After looking at the data, we saw that the sentences contained

HTML tags, empty words and all punctuation. So we started by
removing the noise to normalize our sentences. We remove
HTML tags with the BeautifulSoup2 module. We also remove

Fig. 1. Architecture global of the sentiment analysis methodology

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

V. SENTIMENT ANALYSIS METHODOLOGY
 In the current work, we train a convolutional neural network
as classifier on Sentiment140 dataset [26] of sentiment
sentences in order to evaluate each extractor (N-gram, Bag-of-
word, TF-IDF, Word2Vec, GloVe, and FastText) for
identifying the most efficient one. In general our sentiment
analysis methodology consists of four steps which are data
collection phase in which we used the Sentiment140 dataset,
data pre-processing phase in which we applied several
techniques for improving the data quality and eliminate the data
noisy, feature extraction phase in which we implemented six
extractors in order to determine the most efficient one among
them, et finally the data classification phase, in which we
applied the convolutional neural network (CNN) as classifier as
shown in the fig.1.

A. Data collection phase
To implement our contribution we have used the

Sentiment140 dataset. This dataset contains approximately 1.6
million tweets that were automatically retrieved with the
Twitter API. These tweets were automatically annotated
assuming that those containing the ":)" emoticon were positive
and those containing the ":(" emoticon were negative. Those
containing neither of these emoticons, and those containing
both, were not kept. The training set is annotated in two classes
(positive and negative) while the test set is annotated by hand
on three different classes (positive, negative and neutral). For

our experiments, we use only the positive and negative classes
of the test set. Table 3 gives the details of the data set.

Table 3. Details of the used data set.

Training set Testing set
Positive 720,000 Positive 80,000
Negative 720,000 Negative 80,000

Each line of the file contains a single tweet with a maximum

of 140 characters and can contain several sentences (depending
on the length). Because the tweets have been collected directly
on the twitter API, they can therefore contain HTML addresses,
hashtags and user names (preceded by @). Finally the
structure of each line is as follows:

1. The polarity of the tweet (e.g., 0 = negative, 2 =
neutral, 4 = positive).

2. The id of the tweet (e.g., 6532).
3. The date of the tweet (e.g., FAR Sep 18 15:45:31

UTC 2021).
4. The name of the user who posted the tweet (e.g., Es-

sabery).
5. The text of the tweet.

B. Data pre-processing phase
After looking at the data, we saw that the sentences contained

HTML tags, empty words and all punctuation. So we started by
removing the noise to normalize our sentences. We remove
HTML tags with the BeautifulSoup2 module. We also remove

Fig. 1. Architecture global of the sentiment analysis methodology

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

V. SENTIMENT ANALYSIS METHODOLOGY
 In the current work, we train a convolutional neural network
as classifier on Sentiment140 dataset [26] of sentiment
sentences in order to evaluate each extractor (N-gram, Bag-of-
word, TF-IDF, Word2Vec, GloVe, and FastText) for
identifying the most efficient one. In general our sentiment
analysis methodology consists of four steps which are data
collection phase in which we used the Sentiment140 dataset,
data pre-processing phase in which we applied several
techniques for improving the data quality and eliminate the data
noisy, feature extraction phase in which we implemented six
extractors in order to determine the most efficient one among
them, et finally the data classification phase, in which we
applied the convolutional neural network (CNN) as classifier as
shown in the fig.1.

A. Data collection phase
To implement our contribution we have used the

Sentiment140 dataset. This dataset contains approximately 1.6
million tweets that were automatically retrieved with the
Twitter API. These tweets were automatically annotated
assuming that those containing the ":)" emoticon were positive
and those containing the ":(" emoticon were negative. Those
containing neither of these emoticons, and those containing
both, were not kept. The training set is annotated in two classes
(positive and negative) while the test set is annotated by hand
on three different classes (positive, negative and neutral). For

our experiments, we use only the positive and negative classes
of the test set. Table 3 gives the details of the data set.

Table 3. Details of the used data set.

Training set Testing set
Positive 720,000 Positive 80,000
Negative 720,000 Negative 80,000

Each line of the file contains a single tweet with a maximum

of 140 characters and can contain several sentences (depending
on the length). Because the tweets have been collected directly
on the twitter API, they can therefore contain HTML addresses,
hashtags and user names (preceded by @). Finally the
structure of each line is as follows:

1. The polarity of the tweet (e.g., 0 = negative, 2 =
neutral, 4 = positive).

2. The id of the tweet (e.g., 6532).
3. The date of the tweet (e.g., FAR Sep 18 15:45:31

UTC 2021).
4. The name of the user who posted the tweet (e.g., Es-

sabery).
5. The text of the tweet.

B. Data pre-processing phase
After looking at the data, we saw that the sentences contained

HTML tags, empty words and all punctuation. So we started by
removing the noise to normalize our sentences. We remove
HTML tags with the BeautifulSoup2 module. We also remove

Fig. 1. Architecture global of the sentiment analysis methodology

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

V. SENTIMENT ANALYSIS METHODOLOGY
 In the current work, we train a convolutional neural network
as classifier on Sentiment140 dataset [26] of sentiment
sentences in order to evaluate each extractor (N-gram, Bag-of-
word, TF-IDF, Word2Vec, GloVe, and FastText) for
identifying the most efficient one. In general our sentiment
analysis methodology consists of four steps which are data
collection phase in which we used the Sentiment140 dataset,
data pre-processing phase in which we applied several
techniques for improving the data quality and eliminate the data
noisy, feature extraction phase in which we implemented six
extractors in order to determine the most efficient one among
them, et finally the data classification phase, in which we
applied the convolutional neural network (CNN) as classifier as
shown in the fig.1.

A. Data collection phase
To implement our contribution we have used the

Sentiment140 dataset. This dataset contains approximately 1.6
million tweets that were automatically retrieved with the
Twitter API. These tweets were automatically annotated
assuming that those containing the ":)" emoticon were positive
and those containing the ":(" emoticon were negative. Those
containing neither of these emoticons, and those containing
both, were not kept. The training set is annotated in two classes
(positive and negative) while the test set is annotated by hand
on three different classes (positive, negative and neutral). For

our experiments, we use only the positive and negative classes
of the test set. Table 3 gives the details of the data set.

Table 3. Details of the used data set.

Training set Testing set
Positive 720,000 Positive 80,000
Negative 720,000 Negative 80,000

Each line of the file contains a single tweet with a maximum

of 140 characters and can contain several sentences (depending
on the length). Because the tweets have been collected directly
on the twitter API, they can therefore contain HTML addresses,
hashtags and user names (preceded by @). Finally the
structure of each line is as follows:

1. The polarity of the tweet (e.g., 0 = negative, 2 =
neutral, 4 = positive).

2. The id of the tweet (e.g., 6532).
3. The date of the tweet (e.g., FAR Sep 18 15:45:31

UTC 2021).
4. The name of the user who posted the tweet (e.g., Es-

sabery).
5. The text of the tweet.

B. Data pre-processing phase
After looking at the data, we saw that the sentences contained

HTML tags, empty words and all punctuation. So we started by
removing the noise to normalize our sentences. We remove
HTML tags with the BeautifulSoup2 module. We also remove

Fig. 1. Architecture global of the sentiment analysis methodology

Evaluation of different extractors of features at
the level of sentiment analysis

JUNE 2022 • VOLUME XIV • NUMBER 292

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

all the characters that are not letters and therefore, remove all
punctuation from texts. Because stop words, by definition, do
not bring any information to the text, we eliminate them too.
All letters are also changed to lower case. Finally, we root all
the words to process each inflection of a word into a single
word. Below we detail some important pre-processing steps.

Nicknames: Since nicknames (e.g., @username) are useless for
sentiment analysis, we replace all @usernames with the text
AT_USER so that we can delete them later.

Repeated letters: The language used on Twitter is mostly
familiar. It is therefore not uncommon for words to be written
with a letter (or several) that is repeated when it should not be.
For example the word "dog" can be found as "dooooooog" on
Twitter. As soon as a word contains identical letters that are
repeated more than more than twice, they are replaced by only
two occurrences of the same letter ("dooooooog" becomes
“doog").

Hashtags: Twitter hashtags are used to create an instant
connection with other users. The word that follows the # is
usually a word that provides a lot of information about the
sentiment of the sentence. We keep this word, but the hashtag
character is removed.

Lemmatization: We transform all inflections into their root.
The objective is to reduce the derived forms of a word to a
common base form in order to facilitate the correspondence
between the different terms.

1) EFFECT OF PRETREATMENT

Table 4 shows the effect of these preprocessing on the

number of useful words in the text.

Table 4. Effect of noise reduction
Reduction Number of features % of the original
None 1 569 914 100%
Username 65 993 96.88%
URLs 609 692 54.22%
Repeated
letters

298 673 78.35%

All 984 139 39.43%

All these text noise removals lead to a reduction of the corpus
set to 39.43% of the original corpus size.

Table 5. Accuracy and error rate without and with
preprocessing

Criteria Without preprocessing With preprocessing
Accuracy 50.19% 82.35%
Error rate 49.81% 17.65%

As shown in the table below (5), the preprocessing tasks reduce
the error rate from 49.81% to 17.65 and increase the accuracy
from 50.19% to 82.35%. So, it is necessary to apply the
preprocessing process before the application of machine
learning algorithm.

C. Feature extraction phase
In order to obtain a reliable system based on a numerical

approach, the design of good features is the most important step
for classification. Bags of words, n-grams, TF-IDF, Word2vec,
GloVe and FastText are the most common extractor of features
in sentiment analysis. The main purpose of this work is to test
different sets of extractors and pre-trained word embeddings by
applying the CNN classifier.

D. Data classification phase
After the feature extraction step, the next step is the data

classification in which we have used the CNN. The CNN is a
specialized type of multi-layer neural network generally used
when the input is structured according to a grid (e.g. an image).
These networks were inspired by the visual cortex of animals,
and more particularly on its properties: local receptive fields
and weight sharing. Figure 2 shows the different layers of a
convolutional neural network. The latter is composed of one or
more convolution and pooling blocks, one or more hidden
layers and an output layer. The CNN takes as input a multi-
dimensional grid representing a learning or inference instance,
and provides as output the corresponding class.

Fig. 2. Simple version of the convolutional neural network

VI. EXPERIMENTAL RESULTS
As mentioned earlier, this approach consists of evaluating the

set of extractors described below using the CNN as a classifier.
In this section we will examine the performance of each
extractors by applying them on the corpus Sentiment10 and by
computing four evaluations criteria [41] which are the
following:

Precision (P): represents the average of the precisions of the

k classes. It is calculated according to equation (5).

 𝑃𝑃 = ∑ 𝑃𝑃𝑗𝑗
𝑘𝑘
𝑗𝑗=1

𝑘𝑘 (5)
With:
𝑃𝑃𝑗𝑗 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖
 (6)

Recall (R): represents the average of the recalls of the k
classes. It is calculated according to the following equation

 𝑅𝑅 = ∑ 𝑅𝑅𝑗𝑗
𝑘𝑘
𝑗𝑗=1

𝑘𝑘 (7)
With:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

all the characters that are not letters and therefore, remove all
punctuation from texts. Because stop words, by definition, do
not bring any information to the text, we eliminate them too.
All letters are also changed to lower case. Finally, we root all
the words to process each inflection of a word into a single
word. Below we detail some important pre-processing steps.

Nicknames: Since nicknames (e.g., @username) are useless for
sentiment analysis, we replace all @usernames with the text
AT_USER so that we can delete them later.

Repeated letters: The language used on Twitter is mostly
familiar. It is therefore not uncommon for words to be written
with a letter (or several) that is repeated when it should not be.
For example the word "dog" can be found as "dooooooog" on
Twitter. As soon as a word contains identical letters that are
repeated more than more than twice, they are replaced by only
two occurrences of the same letter ("dooooooog" becomes
“doog").

Hashtags: Twitter hashtags are used to create an instant
connection with other users. The word that follows the # is
usually a word that provides a lot of information about the
sentiment of the sentence. We keep this word, but the hashtag
character is removed.

Lemmatization: We transform all inflections into their root.
The objective is to reduce the derived forms of a word to a
common base form in order to facilitate the correspondence
between the different terms.

1) EFFECT OF PRETREATMENT

Table 4 shows the effect of these preprocessing on the

number of useful words in the text.

Table 4. Effect of noise reduction
Reduction Number of features % of the original
None 1 569 914 100%
Username 65 993 96.88%
URLs 609 692 54.22%
Repeated
letters

298 673 78.35%

All 984 139 39.43%

All these text noise removals lead to a reduction of the corpus
set to 39.43% of the original corpus size.

Table 5. Accuracy and error rate without and with
preprocessing

Criteria Without preprocessing With preprocessing
Accuracy 50.19% 82.35%
Error rate 49.81% 17.65%

As shown in the table below (5), the preprocessing tasks reduce
the error rate from 49.81% to 17.65 and increase the accuracy
from 50.19% to 82.35%. So, it is necessary to apply the
preprocessing process before the application of machine
learning algorithm.

C. Feature extraction phase
In order to obtain a reliable system based on a numerical

approach, the design of good features is the most important step
for classification. Bags of words, n-grams, TF-IDF, Word2vec,
GloVe and FastText are the most common extractor of features
in sentiment analysis. The main purpose of this work is to test
different sets of extractors and pre-trained word embeddings by
applying the CNN classifier.

D. Data classification phase
After the feature extraction step, the next step is the data

classification in which we have used the CNN. The CNN is a
specialized type of multi-layer neural network generally used
when the input is structured according to a grid (e.g. an image).
These networks were inspired by the visual cortex of animals,
and more particularly on its properties: local receptive fields
and weight sharing. Figure 2 shows the different layers of a
convolutional neural network. The latter is composed of one or
more convolution and pooling blocks, one or more hidden
layers and an output layer. The CNN takes as input a multi-
dimensional grid representing a learning or inference instance,
and provides as output the corresponding class.

Fig. 2. Simple version of the convolutional neural network

VI. EXPERIMENTAL RESULTS
As mentioned earlier, this approach consists of evaluating the

set of extractors described below using the CNN as a classifier.
In this section we will examine the performance of each
extractors by applying them on the corpus Sentiment10 and by
computing four evaluations criteria [41] which are the
following:

Precision (P): represents the average of the precisions of the

k classes. It is calculated according to equation (5).

 𝑃𝑃 = ∑ 𝑃𝑃𝑗𝑗
𝑘𝑘
𝑗𝑗=1

𝑘𝑘 (5)
With:
𝑃𝑃𝑗𝑗 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖
 (6)

Recall (R): represents the average of the recalls of the k
classes. It is calculated according to the following equation

 𝑅𝑅 = ∑ 𝑅𝑅𝑗𝑗
𝑘𝑘
𝑗𝑗=1

𝑘𝑘 (7)
With:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

all the characters that are not letters and therefore, remove all
punctuation from texts. Because stop words, by definition, do
not bring any information to the text, we eliminate them too.
All letters are also changed to lower case. Finally, we root all
the words to process each inflection of a word into a single
word. Below we detail some important pre-processing steps.

Nicknames: Since nicknames (e.g., @username) are useless for
sentiment analysis, we replace all @usernames with the text
AT_USER so that we can delete them later.

Repeated letters: The language used on Twitter is mostly
familiar. It is therefore not uncommon for words to be written
with a letter (or several) that is repeated when it should not be.
For example the word "dog" can be found as "dooooooog" on
Twitter. As soon as a word contains identical letters that are
repeated more than more than twice, they are replaced by only
two occurrences of the same letter ("dooooooog" becomes
“doog").

Hashtags: Twitter hashtags are used to create an instant
connection with other users. The word that follows the # is
usually a word that provides a lot of information about the
sentiment of the sentence. We keep this word, but the hashtag
character is removed.

Lemmatization: We transform all inflections into their root.
The objective is to reduce the derived forms of a word to a
common base form in order to facilitate the correspondence
between the different terms.

1) EFFECT OF PRETREATMENT

Table 4 shows the effect of these preprocessing on the

number of useful words in the text.

Table 4. Effect of noise reduction
Reduction Number of features % of the original
None 1 569 914 100%
Username 65 993 96.88%
URLs 609 692 54.22%
Repeated
letters

298 673 78.35%

All 984 139 39.43%

All these text noise removals lead to a reduction of the corpus
set to 39.43% of the original corpus size.

Table 5. Accuracy and error rate without and with
preprocessing

Criteria Without preprocessing With preprocessing
Accuracy 50.19% 82.35%
Error rate 49.81% 17.65%

As shown in the table below (5), the preprocessing tasks reduce
the error rate from 49.81% to 17.65 and increase the accuracy
from 50.19% to 82.35%. So, it is necessary to apply the
preprocessing process before the application of machine
learning algorithm.

C. Feature extraction phase
In order to obtain a reliable system based on a numerical

approach, the design of good features is the most important step
for classification. Bags of words, n-grams, TF-IDF, Word2vec,
GloVe and FastText are the most common extractor of features
in sentiment analysis. The main purpose of this work is to test
different sets of extractors and pre-trained word embeddings by
applying the CNN classifier.

D. Data classification phase
After the feature extraction step, the next step is the data

classification in which we have used the CNN. The CNN is a
specialized type of multi-layer neural network generally used
when the input is structured according to a grid (e.g. an image).
These networks were inspired by the visual cortex of animals,
and more particularly on its properties: local receptive fields
and weight sharing. Figure 2 shows the different layers of a
convolutional neural network. The latter is composed of one or
more convolution and pooling blocks, one or more hidden
layers and an output layer. The CNN takes as input a multi-
dimensional grid representing a learning or inference instance,
and provides as output the corresponding class.

Fig. 2. Simple version of the convolutional neural network

VI. EXPERIMENTAL RESULTS
As mentioned earlier, this approach consists of evaluating the

set of extractors described below using the CNN as a classifier.
In this section we will examine the performance of each
extractors by applying them on the corpus Sentiment10 and by
computing four evaluations criteria [41] which are the
following:

Precision (P): represents the average of the precisions of the

k classes. It is calculated according to equation (5).

 𝑃𝑃 = ∑ 𝑃𝑃𝑗𝑗
𝑘𝑘
𝑗𝑗=1

𝑘𝑘 (5)
With:
𝑃𝑃𝑗𝑗 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖
 (6)

Recall (R): represents the average of the recalls of the k
classes. It is calculated according to the following equation

 𝑅𝑅 = ∑ 𝑅𝑅𝑗𝑗
𝑘𝑘
𝑗𝑗=1

𝑘𝑘 (7)
With:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

all the characters that are not letters and therefore, remove all
punctuation from texts. Because stop words, by definition, do
not bring any information to the text, we eliminate them too.
All letters are also changed to lower case. Finally, we root all
the words to process each inflection of a word into a single
word. Below we detail some important pre-processing steps.

Nicknames: Since nicknames (e.g., @username) are useless for
sentiment analysis, we replace all @usernames with the text
AT_USER so that we can delete them later.

Repeated letters: The language used on Twitter is mostly
familiar. It is therefore not uncommon for words to be written
with a letter (or several) that is repeated when it should not be.
For example the word "dog" can be found as "dooooooog" on
Twitter. As soon as a word contains identical letters that are
repeated more than more than twice, they are replaced by only
two occurrences of the same letter ("dooooooog" becomes
“doog").

Hashtags: Twitter hashtags are used to create an instant
connection with other users. The word that follows the # is
usually a word that provides a lot of information about the
sentiment of the sentence. We keep this word, but the hashtag
character is removed.

Lemmatization: We transform all inflections into their root.
The objective is to reduce the derived forms of a word to a
common base form in order to facilitate the correspondence
between the different terms.

1) EFFECT OF PRETREATMENT

Table 4 shows the effect of these preprocessing on the

number of useful words in the text.

Table 4. Effect of noise reduction
Reduction Number of features % of the original
None 1 569 914 100%
Username 65 993 96.88%
URLs 609 692 54.22%
Repeated
letters

298 673 78.35%

All 984 139 39.43%

All these text noise removals lead to a reduction of the corpus
set to 39.43% of the original corpus size.

Table 5. Accuracy and error rate without and with
preprocessing

Criteria Without preprocessing With preprocessing
Accuracy 50.19% 82.35%
Error rate 49.81% 17.65%

As shown in the table below (5), the preprocessing tasks reduce
the error rate from 49.81% to 17.65 and increase the accuracy
from 50.19% to 82.35%. So, it is necessary to apply the
preprocessing process before the application of machine
learning algorithm.

C. Feature extraction phase
In order to obtain a reliable system based on a numerical

approach, the design of good features is the most important step
for classification. Bags of words, n-grams, TF-IDF, Word2vec,
GloVe and FastText are the most common extractor of features
in sentiment analysis. The main purpose of this work is to test
different sets of extractors and pre-trained word embeddings by
applying the CNN classifier.

D. Data classification phase
After the feature extraction step, the next step is the data

classification in which we have used the CNN. The CNN is a
specialized type of multi-layer neural network generally used
when the input is structured according to a grid (e.g. an image).
These networks were inspired by the visual cortex of animals,
and more particularly on its properties: local receptive fields
and weight sharing. Figure 2 shows the different layers of a
convolutional neural network. The latter is composed of one or
more convolution and pooling blocks, one or more hidden
layers and an output layer. The CNN takes as input a multi-
dimensional grid representing a learning or inference instance,
and provides as output the corresponding class.

Fig. 2. Simple version of the convolutional neural network

VI. EXPERIMENTAL RESULTS
As mentioned earlier, this approach consists of evaluating the

set of extractors described below using the CNN as a classifier.
In this section we will examine the performance of each
extractors by applying them on the corpus Sentiment10 and by
computing four evaluations criteria [41] which are the
following:

Precision (P): represents the average of the precisions of the

k classes. It is calculated according to equation (5).

 𝑃𝑃 = ∑ 𝑃𝑃𝑗𝑗
𝑘𝑘
𝑗𝑗=1

𝑘𝑘 (5)
With:
𝑃𝑃𝑗𝑗 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖
 (6)

Recall (R): represents the average of the recalls of the k
classes. It is calculated according to the following equation

 𝑅𝑅 = ∑ 𝑅𝑅𝑗𝑗
𝑘𝑘
𝑗𝑗=1

𝑘𝑘 (7)
With:

TABLE 4
Effect of noise reduction

TABLE 5
Accuracy and error rate without and with preprocessing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

𝑅𝑅𝑗𝑗 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑔𝑔 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖

 (8)

F1 measure (F1): represents the harmonic mean of precision
and recall. It measures the performance of the system and is
calculated according to equation (9).

 𝐹𝐹1 = 2 × 𝑃𝑃 × 𝑅𝑅
𝑃𝑃 + 𝑅𝑅 (9)

Accuracy A: evaluates our approach in an overall [23]. It is

calculated according to the equation (10).

𝐴𝐴 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑟𝑟 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (10)

We have also implemented our approach on Hadoop
framework with a cluster of five machine: four slave nodes and
one master node. The configuration of the cluster is presented
in the following table 6:

Table 6. Parameters setting of the Hadoop cluster.

Configuration Parameters

N. of nodes 5
apache hadoop version 2.7.2

OS Ubuntu 20.04.4
Memory 16 GB

CPU Intel(R) Core(TM) i7-
4810MQ CPU @

2.80GHz 2.80 GHz

The Parameters settings of CNN used in our implementation

are shown in the following table 7:

Table 7. Parameters setting of the CNN.
Parameter Value

Vocabulary size 45,000
Padding 0

Regularizer L2
Size of filter 4,7

Number of filter 15
Activation function ReLU

Function of Pooling layer Max-pooling
N. of pooling layer 3

N. of convolutional layer 3
Input embedding matrix 500x500

A. Impact of the choice of input embeddings on the CNN
The CNN architecture was trained on the Sentiment140

corpus with the different existing pre-trained word embeddings
(Bag-of-Word, N-grams, TF-IDF, Word2vec, GloVe, and

FastText). The table 3 reports the performance of our approach
in terms of precision, recall, F1 measure and accuracy.

Table 8. P, R F1, A of the all combinations of our approach.

Combination\criteria

(%)
P R F1 A

CNN+BOW 64.08 63.51 63.79 66.92
CNN+N-grams 49.97 60.23 54.62 58.49
CNN+TF-IDF 68.88 71.59 70.20 70.02

CNN+Word2vec 86.13 83.55 84.82 85.06
CNN+GloVe 79.49 80.05 79.76 79.54

CNN+FastText 93.43 90.89 92.14 91.32

 From the table 8, we remark that the combination
CNN+FastText performs better than other combinations in
terms of P(93.43%), R(90.89%), F1(92.14%) and A(91.32%).

Pattern complexity is a metric for the time and space
consumption used by a pattern. In these following tables, we
assessed the time and space complexity of all combinations of
our approach.

Table 9. Space complexity of the all combinations of our

approach.
Combination\ complexity N. operations N. parameters

CNN+BOW 65.5M 40M
CNN+N-grams 77.25M 36M
CNN+TF-IDF 89M 46M

CNN+Word2vec 53.5M 29M
CNN+GloVe 45M 27M

CNN+FastText 39M 22M

As the experimental findings indicate in the table 9 above,
the combination CNN+FastText requires computational
complexity in space much lower than others combinations.
Since it carried out numerous operations with a size equal to
39M and its size of parameters is equal to 22M.

The following table 10 illustrates the experimental findings

after gauging the computational time complexity of all
combinations of our approach in terms of both training time
consumed and testing time consumed.

Table 10. Time complexity of the all combinations of our

approach.
Combination\ complexity Training time Testing time

CNN+BOW 46.23s 17.5s
CNN+N-grams 51s 19s
CNN+TF-IDF 69s 21s

CNN+Word2vec 38.25s 14.5s
CNN+GloVe 28.65s 15.25s

CNN+FastText 15.46s 10.98s

As the experimental findings indicate in the table 10 above,

the combination CNN+FastText requires computational

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

𝑅𝑅𝑗𝑗 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑔𝑔 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖

 (8)

F1 measure (F1): represents the harmonic mean of precision
and recall. It measures the performance of the system and is
calculated according to equation (9).

 𝐹𝐹1 = 2 × 𝑃𝑃 × 𝑅𝑅
𝑃𝑃 + 𝑅𝑅 (9)

Accuracy A: evaluates our approach in an overall [23]. It is

calculated according to the equation (10).

𝐴𝐴 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑟𝑟 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (10)

We have also implemented our approach on Hadoop
framework with a cluster of five machine: four slave nodes and
one master node. The configuration of the cluster is presented
in the following table 6:

Table 6. Parameters setting of the Hadoop cluster.

Configuration Parameters

N. of nodes 5
apache hadoop version 2.7.2

OS Ubuntu 20.04.4
Memory 16 GB

CPU Intel(R) Core(TM) i7-
4810MQ CPU @

2.80GHz 2.80 GHz

The Parameters settings of CNN used in our implementation

are shown in the following table 7:

Table 7. Parameters setting of the CNN.
Parameter Value

Vocabulary size 45,000
Padding 0

Regularizer L2
Size of filter 4,7

Number of filter 15
Activation function ReLU

Function of Pooling layer Max-pooling
N. of pooling layer 3

N. of convolutional layer 3
Input embedding matrix 500x500

A. Impact of the choice of input embeddings on the CNN
The CNN architecture was trained on the Sentiment140

corpus with the different existing pre-trained word embeddings
(Bag-of-Word, N-grams, TF-IDF, Word2vec, GloVe, and

FastText). The table 3 reports the performance of our approach
in terms of precision, recall, F1 measure and accuracy.

Table 8. P, R F1, A of the all combinations of our approach.

Combination\criteria

(%)
P R F1 A

CNN+BOW 64.08 63.51 63.79 66.92
CNN+N-grams 49.97 60.23 54.62 58.49
CNN+TF-IDF 68.88 71.59 70.20 70.02

CNN+Word2vec 86.13 83.55 84.82 85.06
CNN+GloVe 79.49 80.05 79.76 79.54

CNN+FastText 93.43 90.89 92.14 91.32

 From the table 8, we remark that the combination
CNN+FastText performs better than other combinations in
terms of P(93.43%), R(90.89%), F1(92.14%) and A(91.32%).

Pattern complexity is a metric for the time and space
consumption used by a pattern. In these following tables, we
assessed the time and space complexity of all combinations of
our approach.

Table 9. Space complexity of the all combinations of our

approach.
Combination\ complexity N. operations N. parameters

CNN+BOW 65.5M 40M
CNN+N-grams 77.25M 36M
CNN+TF-IDF 89M 46M

CNN+Word2vec 53.5M 29M
CNN+GloVe 45M 27M

CNN+FastText 39M 22M

As the experimental findings indicate in the table 9 above,
the combination CNN+FastText requires computational
complexity in space much lower than others combinations.
Since it carried out numerous operations with a size equal to
39M and its size of parameters is equal to 22M.

The following table 10 illustrates the experimental findings

after gauging the computational time complexity of all
combinations of our approach in terms of both training time
consumed and testing time consumed.

Table 10. Time complexity of the all combinations of our

approach.
Combination\ complexity Training time Testing time

CNN+BOW 46.23s 17.5s
CNN+N-grams 51s 19s
CNN+TF-IDF 69s 21s

CNN+Word2vec 38.25s 14.5s
CNN+GloVe 28.65s 15.25s

CNN+FastText 15.46s 10.98s

As the experimental findings indicate in the table 10 above,

the combination CNN+FastText requires computational

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

𝑅𝑅𝑗𝑗 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑔𝑔 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖

 (8)

F1 measure (F1): represents the harmonic mean of precision
and recall. It measures the performance of the system and is
calculated according to equation (9).

 𝐹𝐹1 = 2 × 𝑃𝑃 × 𝑅𝑅
𝑃𝑃 + 𝑅𝑅 (9)

Accuracy A: evaluates our approach in an overall [23]. It is

calculated according to the equation (10).

𝐴𝐴 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑟𝑟 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (10)

We have also implemented our approach on Hadoop
framework with a cluster of five machine: four slave nodes and
one master node. The configuration of the cluster is presented
in the following table 6:

Table 6. Parameters setting of the Hadoop cluster.

Configuration Parameters

N. of nodes 5
apache hadoop version 2.7.2

OS Ubuntu 20.04.4
Memory 16 GB

CPU Intel(R) Core(TM) i7-
4810MQ CPU @

2.80GHz 2.80 GHz

The Parameters settings of CNN used in our implementation

are shown in the following table 7:

Table 7. Parameters setting of the CNN.
Parameter Value

Vocabulary size 45,000
Padding 0

Regularizer L2
Size of filter 4,7

Number of filter 15
Activation function ReLU

Function of Pooling layer Max-pooling
N. of pooling layer 3

N. of convolutional layer 3
Input embedding matrix 500x500

A. Impact of the choice of input embeddings on the CNN
The CNN architecture was trained on the Sentiment140

corpus with the different existing pre-trained word embeddings
(Bag-of-Word, N-grams, TF-IDF, Word2vec, GloVe, and

FastText). The table 3 reports the performance of our approach
in terms of precision, recall, F1 measure and accuracy.

Table 8. P, R F1, A of the all combinations of our approach.

Combination\criteria

(%)
P R F1 A

CNN+BOW 64.08 63.51 63.79 66.92
CNN+N-grams 49.97 60.23 54.62 58.49
CNN+TF-IDF 68.88 71.59 70.20 70.02

CNN+Word2vec 86.13 83.55 84.82 85.06
CNN+GloVe 79.49 80.05 79.76 79.54

CNN+FastText 93.43 90.89 92.14 91.32

 From the table 8, we remark that the combination
CNN+FastText performs better than other combinations in
terms of P(93.43%), R(90.89%), F1(92.14%) and A(91.32%).

Pattern complexity is a metric for the time and space
consumption used by a pattern. In these following tables, we
assessed the time and space complexity of all combinations of
our approach.

Table 9. Space complexity of the all combinations of our

approach.
Combination\ complexity N. operations N. parameters

CNN+BOW 65.5M 40M
CNN+N-grams 77.25M 36M
CNN+TF-IDF 89M 46M

CNN+Word2vec 53.5M 29M
CNN+GloVe 45M 27M

CNN+FastText 39M 22M

As the experimental findings indicate in the table 9 above,
the combination CNN+FastText requires computational
complexity in space much lower than others combinations.
Since it carried out numerous operations with a size equal to
39M and its size of parameters is equal to 22M.

The following table 10 illustrates the experimental findings

after gauging the computational time complexity of all
combinations of our approach in terms of both training time
consumed and testing time consumed.

Table 10. Time complexity of the all combinations of our

approach.
Combination\ complexity Training time Testing time

CNN+BOW 46.23s 17.5s
CNN+N-grams 51s 19s
CNN+TF-IDF 69s 21s

CNN+Word2vec 38.25s 14.5s
CNN+GloVe 28.65s 15.25s

CNN+FastText 15.46s 10.98s

As the experimental findings indicate in the table 10 above,

the combination CNN+FastText requires computational

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

𝑅𝑅𝑗𝑗 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑔𝑔 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖

 (8)

F1 measure (F1): represents the harmonic mean of precision
and recall. It measures the performance of the system and is
calculated according to equation (9).

 𝐹𝐹1 = 2 × 𝑃𝑃 × 𝑅𝑅
𝑃𝑃 + 𝑅𝑅 (9)

Accuracy A: evaluates our approach in an overall [23]. It is

calculated according to the equation (10).

𝐴𝐴 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑟𝑟 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (10)

We have also implemented our approach on Hadoop
framework with a cluster of five machine: four slave nodes and
one master node. The configuration of the cluster is presented
in the following table 6:

Table 6. Parameters setting of the Hadoop cluster.

Configuration Parameters

N. of nodes 5
apache hadoop version 2.7.2

OS Ubuntu 20.04.4
Memory 16 GB

CPU Intel(R) Core(TM) i7-
4810MQ CPU @

2.80GHz 2.80 GHz

The Parameters settings of CNN used in our implementation

are shown in the following table 7:

Table 7. Parameters setting of the CNN.
Parameter Value

Vocabulary size 45,000
Padding 0

Regularizer L2
Size of filter 4,7

Number of filter 15
Activation function ReLU

Function of Pooling layer Max-pooling
N. of pooling layer 3

N. of convolutional layer 3
Input embedding matrix 500x500

A. Impact of the choice of input embeddings on the CNN
The CNN architecture was trained on the Sentiment140

corpus with the different existing pre-trained word embeddings
(Bag-of-Word, N-grams, TF-IDF, Word2vec, GloVe, and

FastText). The table 3 reports the performance of our approach
in terms of precision, recall, F1 measure and accuracy.

Table 8. P, R F1, A of the all combinations of our approach.

Combination\criteria

(%)
P R F1 A

CNN+BOW 64.08 63.51 63.79 66.92
CNN+N-grams 49.97 60.23 54.62 58.49
CNN+TF-IDF 68.88 71.59 70.20 70.02

CNN+Word2vec 86.13 83.55 84.82 85.06
CNN+GloVe 79.49 80.05 79.76 79.54

CNN+FastText 93.43 90.89 92.14 91.32

 From the table 8, we remark that the combination
CNN+FastText performs better than other combinations in
terms of P(93.43%), R(90.89%), F1(92.14%) and A(91.32%).

Pattern complexity is a metric for the time and space
consumption used by a pattern. In these following tables, we
assessed the time and space complexity of all combinations of
our approach.

Table 9. Space complexity of the all combinations of our

approach.
Combination\ complexity N. operations N. parameters

CNN+BOW 65.5M 40M
CNN+N-grams 77.25M 36M
CNN+TF-IDF 89M 46M

CNN+Word2vec 53.5M 29M
CNN+GloVe 45M 27M

CNN+FastText 39M 22M

As the experimental findings indicate in the table 9 above,
the combination CNN+FastText requires computational
complexity in space much lower than others combinations.
Since it carried out numerous operations with a size equal to
39M and its size of parameters is equal to 22M.

The following table 10 illustrates the experimental findings

after gauging the computational time complexity of all
combinations of our approach in terms of both training time
consumed and testing time consumed.

Table 10. Time complexity of the all combinations of our

approach.
Combination\ complexity Training time Testing time

CNN+BOW 46.23s 17.5s
CNN+N-grams 51s 19s
CNN+TF-IDF 69s 21s

CNN+Word2vec 38.25s 14.5s
CNN+GloVe 28.65s 15.25s

CNN+FastText 15.46s 10.98s

As the experimental findings indicate in the table 10 above,

the combination CNN+FastText requires computational

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

𝑅𝑅𝑗𝑗 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑔𝑔 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖

 (8)

F1 measure (F1): represents the harmonic mean of precision
and recall. It measures the performance of the system and is
calculated according to equation (9).

 𝐹𝐹1 = 2 × 𝑃𝑃 × 𝑅𝑅
𝑃𝑃 + 𝑅𝑅 (9)

Accuracy A: evaluates our approach in an overall [23]. It is

calculated according to the equation (10).

𝐴𝐴 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑟𝑟 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (10)

We have also implemented our approach on Hadoop
framework with a cluster of five machine: four slave nodes and
one master node. The configuration of the cluster is presented
in the following table 6:

Table 6. Parameters setting of the Hadoop cluster.

Configuration Parameters

N. of nodes 5
apache hadoop version 2.7.2

OS Ubuntu 20.04.4
Memory 16 GB

CPU Intel(R) Core(TM) i7-
4810MQ CPU @

2.80GHz 2.80 GHz

The Parameters settings of CNN used in our implementation

are shown in the following table 7:

Table 7. Parameters setting of the CNN.
Parameter Value

Vocabulary size 45,000
Padding 0

Regularizer L2
Size of filter 4,7

Number of filter 15
Activation function ReLU

Function of Pooling layer Max-pooling
N. of pooling layer 3

N. of convolutional layer 3
Input embedding matrix 500x500

A. Impact of the choice of input embeddings on the CNN
The CNN architecture was trained on the Sentiment140

corpus with the different existing pre-trained word embeddings
(Bag-of-Word, N-grams, TF-IDF, Word2vec, GloVe, and

FastText). The table 3 reports the performance of our approach
in terms of precision, recall, F1 measure and accuracy.

Table 8. P, R F1, A of the all combinations of our approach.

Combination\criteria

(%)
P R F1 A

CNN+BOW 64.08 63.51 63.79 66.92
CNN+N-grams 49.97 60.23 54.62 58.49
CNN+TF-IDF 68.88 71.59 70.20 70.02

CNN+Word2vec 86.13 83.55 84.82 85.06
CNN+GloVe 79.49 80.05 79.76 79.54

CNN+FastText 93.43 90.89 92.14 91.32

 From the table 8, we remark that the combination
CNN+FastText performs better than other combinations in
terms of P(93.43%), R(90.89%), F1(92.14%) and A(91.32%).

Pattern complexity is a metric for the time and space
consumption used by a pattern. In these following tables, we
assessed the time and space complexity of all combinations of
our approach.

Table 9. Space complexity of the all combinations of our

approach.
Combination\ complexity N. operations N. parameters

CNN+BOW 65.5M 40M
CNN+N-grams 77.25M 36M
CNN+TF-IDF 89M 46M

CNN+Word2vec 53.5M 29M
CNN+GloVe 45M 27M

CNN+FastText 39M 22M

As the experimental findings indicate in the table 9 above,
the combination CNN+FastText requires computational
complexity in space much lower than others combinations.
Since it carried out numerous operations with a size equal to
39M and its size of parameters is equal to 22M.

The following table 10 illustrates the experimental findings

after gauging the computational time complexity of all
combinations of our approach in terms of both training time
consumed and testing time consumed.

Table 10. Time complexity of the all combinations of our

approach.
Combination\ complexity Training time Testing time

CNN+BOW 46.23s 17.5s
CNN+N-grams 51s 19s
CNN+TF-IDF 69s 21s

CNN+Word2vec 38.25s 14.5s
CNN+GloVe 28.65s 15.25s

CNN+FastText 15.46s 10.98s

As the experimental findings indicate in the table 10 above,

the combination CNN+FastText requires computational

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

𝑅𝑅𝑗𝑗 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑔𝑔 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖

 (8)

F1 measure (F1): represents the harmonic mean of precision
and recall. It measures the performance of the system and is
calculated according to equation (9).

 𝐹𝐹1 = 2 × 𝑃𝑃 × 𝑅𝑅
𝑃𝑃 + 𝑅𝑅 (9)

Accuracy A: evaluates our approach in an overall [23]. It is

calculated according to the equation (10).

𝐴𝐴 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑟𝑟 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (10)

We have also implemented our approach on Hadoop
framework with a cluster of five machine: four slave nodes and
one master node. The configuration of the cluster is presented
in the following table 6:

Table 6. Parameters setting of the Hadoop cluster.

Configuration Parameters

N. of nodes 5
apache hadoop version 2.7.2

OS Ubuntu 20.04.4
Memory 16 GB

CPU Intel(R) Core(TM) i7-
4810MQ CPU @

2.80GHz 2.80 GHz

The Parameters settings of CNN used in our implementation

are shown in the following table 7:

Table 7. Parameters setting of the CNN.
Parameter Value

Vocabulary size 45,000
Padding 0

Regularizer L2
Size of filter 4,7

Number of filter 15
Activation function ReLU

Function of Pooling layer Max-pooling
N. of pooling layer 3

N. of convolutional layer 3
Input embedding matrix 500x500

A. Impact of the choice of input embeddings on the CNN
The CNN architecture was trained on the Sentiment140

corpus with the different existing pre-trained word embeddings
(Bag-of-Word, N-grams, TF-IDF, Word2vec, GloVe, and

FastText). The table 3 reports the performance of our approach
in terms of precision, recall, F1 measure and accuracy.

Table 8. P, R F1, A of the all combinations of our approach.

Combination\criteria

(%)
P R F1 A

CNN+BOW 64.08 63.51 63.79 66.92
CNN+N-grams 49.97 60.23 54.62 58.49
CNN+TF-IDF 68.88 71.59 70.20 70.02

CNN+Word2vec 86.13 83.55 84.82 85.06
CNN+GloVe 79.49 80.05 79.76 79.54

CNN+FastText 93.43 90.89 92.14 91.32

 From the table 8, we remark that the combination
CNN+FastText performs better than other combinations in
terms of P(93.43%), R(90.89%), F1(92.14%) and A(91.32%).

Pattern complexity is a metric for the time and space
consumption used by a pattern. In these following tables, we
assessed the time and space complexity of all combinations of
our approach.

Table 9. Space complexity of the all combinations of our

approach.
Combination\ complexity N. operations N. parameters

CNN+BOW 65.5M 40M
CNN+N-grams 77.25M 36M
CNN+TF-IDF 89M 46M

CNN+Word2vec 53.5M 29M
CNN+GloVe 45M 27M

CNN+FastText 39M 22M

As the experimental findings indicate in the table 9 above,
the combination CNN+FastText requires computational
complexity in space much lower than others combinations.
Since it carried out numerous operations with a size equal to
39M and its size of parameters is equal to 22M.

The following table 10 illustrates the experimental findings

after gauging the computational time complexity of all
combinations of our approach in terms of both training time
consumed and testing time consumed.

Table 10. Time complexity of the all combinations of our

approach.
Combination\ complexity Training time Testing time

CNN+BOW 46.23s 17.5s
CNN+N-grams 51s 19s
CNN+TF-IDF 69s 21s

CNN+Word2vec 38.25s 14.5s
CNN+GloVe 28.65s 15.25s

CNN+FastText 15.46s 10.98s

As the experimental findings indicate in the table 10 above,

the combination CNN+FastText requires computational

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

𝑅𝑅𝑗𝑗 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑔𝑔 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖

 (8)

F1 measure (F1): represents the harmonic mean of precision
and recall. It measures the performance of the system and is
calculated according to equation (9).

 𝐹𝐹1 = 2 × 𝑃𝑃 × 𝑅𝑅
𝑃𝑃 + 𝑅𝑅 (9)

Accuracy A: evaluates our approach in an overall [23]. It is

calculated according to the equation (10).

𝐴𝐴 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑟𝑟 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (10)

We have also implemented our approach on Hadoop
framework with a cluster of five machine: four slave nodes and
one master node. The configuration of the cluster is presented
in the following table 6:

Table 6. Parameters setting of the Hadoop cluster.

Configuration Parameters

N. of nodes 5
apache hadoop version 2.7.2

OS Ubuntu 20.04.4
Memory 16 GB

CPU Intel(R) Core(TM) i7-
4810MQ CPU @

2.80GHz 2.80 GHz

The Parameters settings of CNN used in our implementation

are shown in the following table 7:

Table 7. Parameters setting of the CNN.
Parameter Value

Vocabulary size 45,000
Padding 0

Regularizer L2
Size of filter 4,7

Number of filter 15
Activation function ReLU

Function of Pooling layer Max-pooling
N. of pooling layer 3

N. of convolutional layer 3
Input embedding matrix 500x500

A. Impact of the choice of input embeddings on the CNN
The CNN architecture was trained on the Sentiment140

corpus with the different existing pre-trained word embeddings
(Bag-of-Word, N-grams, TF-IDF, Word2vec, GloVe, and

FastText). The table 3 reports the performance of our approach
in terms of precision, recall, F1 measure and accuracy.

Table 8. P, R F1, A of the all combinations of our approach.

Combination\criteria

(%)
P R F1 A

CNN+BOW 64.08 63.51 63.79 66.92
CNN+N-grams 49.97 60.23 54.62 58.49
CNN+TF-IDF 68.88 71.59 70.20 70.02

CNN+Word2vec 86.13 83.55 84.82 85.06
CNN+GloVe 79.49 80.05 79.76 79.54

CNN+FastText 93.43 90.89 92.14 91.32

 From the table 8, we remark that the combination
CNN+FastText performs better than other combinations in
terms of P(93.43%), R(90.89%), F1(92.14%) and A(91.32%).

Pattern complexity is a metric for the time and space
consumption used by a pattern. In these following tables, we
assessed the time and space complexity of all combinations of
our approach.

Table 9. Space complexity of the all combinations of our

approach.
Combination\ complexity N. operations N. parameters

CNN+BOW 65.5M 40M
CNN+N-grams 77.25M 36M
CNN+TF-IDF 89M 46M

CNN+Word2vec 53.5M 29M
CNN+GloVe 45M 27M

CNN+FastText 39M 22M

As the experimental findings indicate in the table 9 above,
the combination CNN+FastText requires computational
complexity in space much lower than others combinations.
Since it carried out numerous operations with a size equal to
39M and its size of parameters is equal to 22M.

The following table 10 illustrates the experimental findings

after gauging the computational time complexity of all
combinations of our approach in terms of both training time
consumed and testing time consumed.

Table 10. Time complexity of the all combinations of our

approach.
Combination\ complexity Training time Testing time

CNN+BOW 46.23s 17.5s
CNN+N-grams 51s 19s
CNN+TF-IDF 69s 21s

CNN+Word2vec 38.25s 14.5s
CNN+GloVe 28.65s 15.25s

CNN+FastText 15.46s 10.98s

As the experimental findings indicate in the table 10 above,

the combination CNN+FastText requires computational

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

𝑅𝑅𝑗𝑗 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑔𝑔 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖

 (8)

F1 measure (F1): represents the harmonic mean of precision
and recall. It measures the performance of the system and is
calculated according to equation (9).

 𝐹𝐹1 = 2 × 𝑃𝑃 × 𝑅𝑅
𝑃𝑃 + 𝑅𝑅 (9)

Accuracy A: evaluates our approach in an overall [23]. It is

calculated according to the equation (10).

𝐴𝐴 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑟𝑟 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (10)

We have also implemented our approach on Hadoop
framework with a cluster of five machine: four slave nodes and
one master node. The configuration of the cluster is presented
in the following table 6:

Table 6. Parameters setting of the Hadoop cluster.

Configuration Parameters

N. of nodes 5
apache hadoop version 2.7.2

OS Ubuntu 20.04.4
Memory 16 GB

CPU Intel(R) Core(TM) i7-
4810MQ CPU @

2.80GHz 2.80 GHz

The Parameters settings of CNN used in our implementation

are shown in the following table 7:

Table 7. Parameters setting of the CNN.
Parameter Value

Vocabulary size 45,000
Padding 0

Regularizer L2
Size of filter 4,7

Number of filter 15
Activation function ReLU

Function of Pooling layer Max-pooling
N. of pooling layer 3

N. of convolutional layer 3
Input embedding matrix 500x500

A. Impact of the choice of input embeddings on the CNN
The CNN architecture was trained on the Sentiment140

corpus with the different existing pre-trained word embeddings
(Bag-of-Word, N-grams, TF-IDF, Word2vec, GloVe, and

FastText). The table 3 reports the performance of our approach
in terms of precision, recall, F1 measure and accuracy.

Table 8. P, R F1, A of the all combinations of our approach.

Combination\criteria

(%)
P R F1 A

CNN+BOW 64.08 63.51 63.79 66.92
CNN+N-grams 49.97 60.23 54.62 58.49
CNN+TF-IDF 68.88 71.59 70.20 70.02

CNN+Word2vec 86.13 83.55 84.82 85.06
CNN+GloVe 79.49 80.05 79.76 79.54

CNN+FastText 93.43 90.89 92.14 91.32

 From the table 8, we remark that the combination
CNN+FastText performs better than other combinations in
terms of P(93.43%), R(90.89%), F1(92.14%) and A(91.32%).

Pattern complexity is a metric for the time and space
consumption used by a pattern. In these following tables, we
assessed the time and space complexity of all combinations of
our approach.

Table 9. Space complexity of the all combinations of our

approach.
Combination\ complexity N. operations N. parameters

CNN+BOW 65.5M 40M
CNN+N-grams 77.25M 36M
CNN+TF-IDF 89M 46M

CNN+Word2vec 53.5M 29M
CNN+GloVe 45M 27M

CNN+FastText 39M 22M

As the experimental findings indicate in the table 9 above,
the combination CNN+FastText requires computational
complexity in space much lower than others combinations.
Since it carried out numerous operations with a size equal to
39M and its size of parameters is equal to 22M.

The following table 10 illustrates the experimental findings

after gauging the computational time complexity of all
combinations of our approach in terms of both training time
consumed and testing time consumed.

Table 10. Time complexity of the all combinations of our

approach.
Combination\ complexity Training time Testing time

CNN+BOW 46.23s 17.5s
CNN+N-grams 51s 19s
CNN+TF-IDF 69s 21s

CNN+Word2vec 38.25s 14.5s
CNN+GloVe 28.65s 15.25s

CNN+FastText 15.46s 10.98s

As the experimental findings indicate in the table 10 above,

the combination CNN+FastText requires computational

Evaluation of different extractors of features at
the level of sentiment analysis

INFOCOMMUNICATIONS JOURNAL

JUNE 2022 • VOLUME XIV • NUMBER 2 93

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

𝑅𝑅𝑗𝑗 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑔𝑔 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖

 (8)

F1 measure (F1): represents the harmonic mean of precision
and recall. It measures the performance of the system and is
calculated according to equation (9).

 𝐹𝐹1 = 2 × 𝑃𝑃 × 𝑅𝑅
𝑃𝑃 + 𝑅𝑅 (9)

Accuracy A: evaluates our approach in an overall [23]. It is

calculated according to the equation (10).

𝐴𝐴 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑟𝑟 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (10)

We have also implemented our approach on Hadoop
framework with a cluster of five machine: four slave nodes and
one master node. The configuration of the cluster is presented
in the following table 6:

Table 6. Parameters setting of the Hadoop cluster.

Configuration Parameters

N. of nodes 5
apache hadoop version 2.7.2

OS Ubuntu 20.04.4
Memory 16 GB

CPU Intel(R) Core(TM) i7-
4810MQ CPU @

2.80GHz 2.80 GHz

The Parameters settings of CNN used in our implementation

are shown in the following table 7:

Table 7. Parameters setting of the CNN.
Parameter Value

Vocabulary size 45,000
Padding 0

Regularizer L2
Size of filter 4,7

Number of filter 15
Activation function ReLU

Function of Pooling layer Max-pooling
N. of pooling layer 3

N. of convolutional layer 3
Input embedding matrix 500x500

A. Impact of the choice of input embeddings on the CNN
The CNN architecture was trained on the Sentiment140

corpus with the different existing pre-trained word embeddings
(Bag-of-Word, N-grams, TF-IDF, Word2vec, GloVe, and

FastText). The table 3 reports the performance of our approach
in terms of precision, recall, F1 measure and accuracy.

Table 8. P, R F1, A of the all combinations of our approach.

Combination\criteria

(%)
P R F1 A

CNN+BOW 64.08 63.51 63.79 66.92
CNN+N-grams 49.97 60.23 54.62 58.49
CNN+TF-IDF 68.88 71.59 70.20 70.02

CNN+Word2vec 86.13 83.55 84.82 85.06
CNN+GloVe 79.49 80.05 79.76 79.54

CNN+FastText 93.43 90.89 92.14 91.32

 From the table 8, we remark that the combination
CNN+FastText performs better than other combinations in
terms of P(93.43%), R(90.89%), F1(92.14%) and A(91.32%).

Pattern complexity is a metric for the time and space
consumption used by a pattern. In these following tables, we
assessed the time and space complexity of all combinations of
our approach.

Table 9. Space complexity of the all combinations of our

approach.
Combination\ complexity N. operations N. parameters

CNN+BOW 65.5M 40M
CNN+N-grams 77.25M 36M
CNN+TF-IDF 89M 46M

CNN+Word2vec 53.5M 29M
CNN+GloVe 45M 27M

CNN+FastText 39M 22M

As the experimental findings indicate in the table 9 above,
the combination CNN+FastText requires computational
complexity in space much lower than others combinations.
Since it carried out numerous operations with a size equal to
39M and its size of parameters is equal to 22M.

The following table 10 illustrates the experimental findings

after gauging the computational time complexity of all
combinations of our approach in terms of both training time
consumed and testing time consumed.

Table 10. Time complexity of the all combinations of our

approach.
Combination\ complexity Training time Testing time

CNN+BOW 46.23s 17.5s
CNN+N-grams 51s 19s
CNN+TF-IDF 69s 21s

CNN+Word2vec 38.25s 14.5s
CNN+GloVe 28.65s 15.25s

CNN+FastText 15.46s 10.98s

As the experimental findings indicate in the table 10 above,

the combination CNN+FastText requires computational

TABLE 6
 Parameters setting of the Hadoop cluster

TABLE 8
P, R F1, A of the all combinations of our approach

TABLE 9
Space complexity of the all combinations of our approach

TABLE 10
Time complexity of the all combinations of our approach

TABLE 7
Parameters setting of the CNN

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

𝑅𝑅𝑗𝑗 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑔𝑔 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖

 (8)

F1 measure (F1): represents the harmonic mean of precision
and recall. It measures the performance of the system and is
calculated according to equation (9).

 𝐹𝐹1 = 2 × 𝑃𝑃 × 𝑅𝑅
𝑃𝑃 + 𝑅𝑅 (9)

Accuracy A: evaluates our approach in an overall [23]. It is

calculated according to the equation (10).

𝐴𝐴 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑟𝑟 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (10)

We have also implemented our approach on Hadoop
framework with a cluster of five machine: four slave nodes and
one master node. The configuration of the cluster is presented
in the following table 6:

Table 6. Parameters setting of the Hadoop cluster.

Configuration Parameters

N. of nodes 5
apache hadoop version 2.7.2

OS Ubuntu 20.04.4
Memory 16 GB

CPU Intel(R) Core(TM) i7-
4810MQ CPU @

2.80GHz 2.80 GHz

The Parameters settings of CNN used in our implementation

are shown in the following table 7:

Table 7. Parameters setting of the CNN.
Parameter Value

Vocabulary size 45,000
Padding 0

Regularizer L2
Size of filter 4,7

Number of filter 15
Activation function ReLU

Function of Pooling layer Max-pooling
N. of pooling layer 3

N. of convolutional layer 3
Input embedding matrix 500x500

A. Impact of the choice of input embeddings on the CNN
The CNN architecture was trained on the Sentiment140

corpus with the different existing pre-trained word embeddings
(Bag-of-Word, N-grams, TF-IDF, Word2vec, GloVe, and

FastText). The table 3 reports the performance of our approach
in terms of precision, recall, F1 measure and accuracy.

Table 8. P, R F1, A of the all combinations of our approach.

Combination\criteria

(%)
P R F1 A

CNN+BOW 64.08 63.51 63.79 66.92
CNN+N-grams 49.97 60.23 54.62 58.49
CNN+TF-IDF 68.88 71.59 70.20 70.02

CNN+Word2vec 86.13 83.55 84.82 85.06
CNN+GloVe 79.49 80.05 79.76 79.54

CNN+FastText 93.43 90.89 92.14 91.32

 From the table 8, we remark that the combination
CNN+FastText performs better than other combinations in
terms of P(93.43%), R(90.89%), F1(92.14%) and A(91.32%).

Pattern complexity is a metric for the time and space
consumption used by a pattern. In these following tables, we
assessed the time and space complexity of all combinations of
our approach.

Table 9. Space complexity of the all combinations of our

approach.
Combination\ complexity N. operations N. parameters

CNN+BOW 65.5M 40M
CNN+N-grams 77.25M 36M
CNN+TF-IDF 89M 46M

CNN+Word2vec 53.5M 29M
CNN+GloVe 45M 27M

CNN+FastText 39M 22M

As the experimental findings indicate in the table 9 above,
the combination CNN+FastText requires computational
complexity in space much lower than others combinations.
Since it carried out numerous operations with a size equal to
39M and its size of parameters is equal to 22M.

The following table 10 illustrates the experimental findings

after gauging the computational time complexity of all
combinations of our approach in terms of both training time
consumed and testing time consumed.

Table 10. Time complexity of the all combinations of our

approach.
Combination\ complexity Training time Testing time

CNN+BOW 46.23s 17.5s
CNN+N-grams 51s 19s
CNN+TF-IDF 69s 21s

CNN+Word2vec 38.25s 14.5s
CNN+GloVe 28.65s 15.25s

CNN+FastText 15.46s 10.98s

As the experimental findings indicate in the table 10 above,

the combination CNN+FastText requires computational

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

𝑅𝑅𝑗𝑗 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑔𝑔 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖

 (8)

F1 measure (F1): represents the harmonic mean of precision
and recall. It measures the performance of the system and is
calculated according to equation (9).

 𝐹𝐹1 = 2 × 𝑃𝑃 × 𝑅𝑅
𝑃𝑃 + 𝑅𝑅 (9)

Accuracy A: evaluates our approach in an overall [23]. It is

calculated according to the equation (10).

𝐴𝐴 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑟𝑟 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (10)

We have also implemented our approach on Hadoop
framework with a cluster of five machine: four slave nodes and
one master node. The configuration of the cluster is presented
in the following table 6:

Table 6. Parameters setting of the Hadoop cluster.

Configuration Parameters

N. of nodes 5
apache hadoop version 2.7.2

OS Ubuntu 20.04.4
Memory 16 GB

CPU Intel(R) Core(TM) i7-
4810MQ CPU @

2.80GHz 2.80 GHz

The Parameters settings of CNN used in our implementation

are shown in the following table 7:

Table 7. Parameters setting of the CNN.
Parameter Value

Vocabulary size 45,000
Padding 0

Regularizer L2
Size of filter 4,7

Number of filter 15
Activation function ReLU

Function of Pooling layer Max-pooling
N. of pooling layer 3

N. of convolutional layer 3
Input embedding matrix 500x500

A. Impact of the choice of input embeddings on the CNN
The CNN architecture was trained on the Sentiment140

corpus with the different existing pre-trained word embeddings
(Bag-of-Word, N-grams, TF-IDF, Word2vec, GloVe, and

FastText). The table 3 reports the performance of our approach
in terms of precision, recall, F1 measure and accuracy.

Table 8. P, R F1, A of the all combinations of our approach.

Combination\criteria

(%)
P R F1 A

CNN+BOW 64.08 63.51 63.79 66.92
CNN+N-grams 49.97 60.23 54.62 58.49
CNN+TF-IDF 68.88 71.59 70.20 70.02

CNN+Word2vec 86.13 83.55 84.82 85.06
CNN+GloVe 79.49 80.05 79.76 79.54

CNN+FastText 93.43 90.89 92.14 91.32

 From the table 8, we remark that the combination
CNN+FastText performs better than other combinations in
terms of P(93.43%), R(90.89%), F1(92.14%) and A(91.32%).

Pattern complexity is a metric for the time and space
consumption used by a pattern. In these following tables, we
assessed the time and space complexity of all combinations of
our approach.

Table 9. Space complexity of the all combinations of our

approach.
Combination\ complexity N. operations N. parameters

CNN+BOW 65.5M 40M
CNN+N-grams 77.25M 36M
CNN+TF-IDF 89M 46M

CNN+Word2vec 53.5M 29M
CNN+GloVe 45M 27M

CNN+FastText 39M 22M

As the experimental findings indicate in the table 9 above,
the combination CNN+FastText requires computational
complexity in space much lower than others combinations.
Since it carried out numerous operations with a size equal to
39M and its size of parameters is equal to 22M.

The following table 10 illustrates the experimental findings

after gauging the computational time complexity of all
combinations of our approach in terms of both training time
consumed and testing time consumed.

Table 10. Time complexity of the all combinations of our

approach.
Combination\ complexity Training time Testing time

CNN+BOW 46.23s 17.5s
CNN+N-grams 51s 19s
CNN+TF-IDF 69s 21s

CNN+Word2vec 38.25s 14.5s
CNN+GloVe 28.65s 15.25s

CNN+FastText 15.46s 10.98s

As the experimental findings indicate in the table 10 above,

the combination CNN+FastText requires computational

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

𝑅𝑅𝑗𝑗 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑔𝑔 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖

 (8)

F1 measure (F1): represents the harmonic mean of precision
and recall. It measures the performance of the system and is
calculated according to equation (9).

 𝐹𝐹1 = 2 × 𝑃𝑃 × 𝑅𝑅
𝑃𝑃 + 𝑅𝑅 (9)

Accuracy A: evaluates our approach in an overall [23]. It is

calculated according to the equation (10).

𝐴𝐴 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑟𝑟 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (10)

We have also implemented our approach on Hadoop
framework with a cluster of five machine: four slave nodes and
one master node. The configuration of the cluster is presented
in the following table 6:

Table 6. Parameters setting of the Hadoop cluster.

Configuration Parameters

N. of nodes 5
apache hadoop version 2.7.2

OS Ubuntu 20.04.4
Memory 16 GB

CPU Intel(R) Core(TM) i7-
4810MQ CPU @

2.80GHz 2.80 GHz

The Parameters settings of CNN used in our implementation

are shown in the following table 7:

Table 7. Parameters setting of the CNN.
Parameter Value

Vocabulary size 45,000
Padding 0

Regularizer L2
Size of filter 4,7

Number of filter 15
Activation function ReLU

Function of Pooling layer Max-pooling
N. of pooling layer 3

N. of convolutional layer 3
Input embedding matrix 500x500

A. Impact of the choice of input embeddings on the CNN
The CNN architecture was trained on the Sentiment140

corpus with the different existing pre-trained word embeddings
(Bag-of-Word, N-grams, TF-IDF, Word2vec, GloVe, and

FastText). The table 3 reports the performance of our approach
in terms of precision, recall, F1 measure and accuracy.

Table 8. P, R F1, A of the all combinations of our approach.

Combination\criteria

(%)
P R F1 A

CNN+BOW 64.08 63.51 63.79 66.92
CNN+N-grams 49.97 60.23 54.62 58.49
CNN+TF-IDF 68.88 71.59 70.20 70.02

CNN+Word2vec 86.13 83.55 84.82 85.06
CNN+GloVe 79.49 80.05 79.76 79.54

CNN+FastText 93.43 90.89 92.14 91.32

 From the table 8, we remark that the combination
CNN+FastText performs better than other combinations in
terms of P(93.43%), R(90.89%), F1(92.14%) and A(91.32%).

Pattern complexity is a metric for the time and space
consumption used by a pattern. In these following tables, we
assessed the time and space complexity of all combinations of
our approach.

Table 9. Space complexity of the all combinations of our

approach.
Combination\ complexity N. operations N. parameters

CNN+BOW 65.5M 40M
CNN+N-grams 77.25M 36M
CNN+TF-IDF 89M 46M

CNN+Word2vec 53.5M 29M
CNN+GloVe 45M 27M

CNN+FastText 39M 22M

As the experimental findings indicate in the table 9 above,
the combination CNN+FastText requires computational
complexity in space much lower than others combinations.
Since it carried out numerous operations with a size equal to
39M and its size of parameters is equal to 22M.

The following table 10 illustrates the experimental findings

after gauging the computational time complexity of all
combinations of our approach in terms of both training time
consumed and testing time consumed.

Table 10. Time complexity of the all combinations of our

approach.
Combination\ complexity Training time Testing time

CNN+BOW 46.23s 17.5s
CNN+N-grams 51s 19s
CNN+TF-IDF 69s 21s

CNN+Word2vec 38.25s 14.5s
CNN+GloVe 28.65s 15.25s

CNN+FastText 15.46s 10.98s

As the experimental findings indicate in the table 10 above,

the combination CNN+FastText requires computational

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

𝑅𝑅𝑗𝑗 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑔𝑔 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖

 (8)

F1 measure (F1): represents the harmonic mean of precision
and recall. It measures the performance of the system and is
calculated according to equation (9).

 𝐹𝐹1 = 2 × 𝑃𝑃 × 𝑅𝑅
𝑃𝑃 + 𝑅𝑅 (9)

Accuracy A: evaluates our approach in an overall [23]. It is

calculated according to the equation (10).

𝐴𝐴 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑟𝑟 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (10)

We have also implemented our approach on Hadoop
framework with a cluster of five machine: four slave nodes and
one master node. The configuration of the cluster is presented
in the following table 6:

Table 6. Parameters setting of the Hadoop cluster.

Configuration Parameters

N. of nodes 5
apache hadoop version 2.7.2

OS Ubuntu 20.04.4
Memory 16 GB

CPU Intel(R) Core(TM) i7-
4810MQ CPU @

2.80GHz 2.80 GHz

The Parameters settings of CNN used in our implementation

are shown in the following table 7:

Table 7. Parameters setting of the CNN.
Parameter Value

Vocabulary size 45,000
Padding 0

Regularizer L2
Size of filter 4,7

Number of filter 15
Activation function ReLU

Function of Pooling layer Max-pooling
N. of pooling layer 3

N. of convolutional layer 3
Input embedding matrix 500x500

A. Impact of the choice of input embeddings on the CNN
The CNN architecture was trained on the Sentiment140

corpus with the different existing pre-trained word embeddings
(Bag-of-Word, N-grams, TF-IDF, Word2vec, GloVe, and

FastText). The table 3 reports the performance of our approach
in terms of precision, recall, F1 measure and accuracy.

Table 8. P, R F1, A of the all combinations of our approach.

Combination\criteria

(%)
P R F1 A

CNN+BOW 64.08 63.51 63.79 66.92
CNN+N-grams 49.97 60.23 54.62 58.49
CNN+TF-IDF 68.88 71.59 70.20 70.02

CNN+Word2vec 86.13 83.55 84.82 85.06
CNN+GloVe 79.49 80.05 79.76 79.54

CNN+FastText 93.43 90.89 92.14 91.32

 From the table 8, we remark that the combination
CNN+FastText performs better than other combinations in
terms of P(93.43%), R(90.89%), F1(92.14%) and A(91.32%).

Pattern complexity is a metric for the time and space
consumption used by a pattern. In these following tables, we
assessed the time and space complexity of all combinations of
our approach.

Table 9. Space complexity of the all combinations of our

approach.
Combination\ complexity N. operations N. parameters

CNN+BOW 65.5M 40M
CNN+N-grams 77.25M 36M
CNN+TF-IDF 89M 46M

CNN+Word2vec 53.5M 29M
CNN+GloVe 45M 27M

CNN+FastText 39M 22M

As the experimental findings indicate in the table 9 above,
the combination CNN+FastText requires computational
complexity in space much lower than others combinations.
Since it carried out numerous operations with a size equal to
39M and its size of parameters is equal to 22M.

The following table 10 illustrates the experimental findings

after gauging the computational time complexity of all
combinations of our approach in terms of both training time
consumed and testing time consumed.

Table 10. Time complexity of the all combinations of our

approach.
Combination\ complexity Training time Testing time

CNN+BOW 46.23s 17.5s
CNN+N-grams 51s 19s
CNN+TF-IDF 69s 21s

CNN+Word2vec 38.25s 14.5s
CNN+GloVe 28.65s 15.25s

CNN+FastText 15.46s 10.98s

As the experimental findings indicate in the table 10 above,

the combination CNN+FastText requires computational

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

𝑅𝑅𝑗𝑗 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑔𝑔 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖

 (8)

F1 measure (F1): represents the harmonic mean of precision
and recall. It measures the performance of the system and is
calculated according to equation (9).

 𝐹𝐹1 = 2 × 𝑃𝑃 × 𝑅𝑅
𝑃𝑃 + 𝑅𝑅 (9)

Accuracy A: evaluates our approach in an overall [23]. It is

calculated according to the equation (10).

𝐴𝐴 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑟𝑟 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (10)

We have also implemented our approach on Hadoop
framework with a cluster of five machine: four slave nodes and
one master node. The configuration of the cluster is presented
in the following table 6:

Table 6. Parameters setting of the Hadoop cluster.

Configuration Parameters

N. of nodes 5
apache hadoop version 2.7.2

OS Ubuntu 20.04.4
Memory 16 GB

CPU Intel(R) Core(TM) i7-
4810MQ CPU @

2.80GHz 2.80 GHz

The Parameters settings of CNN used in our implementation

are shown in the following table 7:

Table 7. Parameters setting of the CNN.
Parameter Value

Vocabulary size 45,000
Padding 0

Regularizer L2
Size of filter 4,7

Number of filter 15
Activation function ReLU

Function of Pooling layer Max-pooling
N. of pooling layer 3

N. of convolutional layer 3
Input embedding matrix 500x500

A. Impact of the choice of input embeddings on the CNN
The CNN architecture was trained on the Sentiment140

corpus with the different existing pre-trained word embeddings
(Bag-of-Word, N-grams, TF-IDF, Word2vec, GloVe, and

FastText). The table 3 reports the performance of our approach
in terms of precision, recall, F1 measure and accuracy.

Table 8. P, R F1, A of the all combinations of our approach.

Combination\criteria

(%)
P R F1 A

CNN+BOW 64.08 63.51 63.79 66.92
CNN+N-grams 49.97 60.23 54.62 58.49
CNN+TF-IDF 68.88 71.59 70.20 70.02

CNN+Word2vec 86.13 83.55 84.82 85.06
CNN+GloVe 79.49 80.05 79.76 79.54

CNN+FastText 93.43 90.89 92.14 91.32

 From the table 8, we remark that the combination
CNN+FastText performs better than other combinations in
terms of P(93.43%), R(90.89%), F1(92.14%) and A(91.32%).

Pattern complexity is a metric for the time and space
consumption used by a pattern. In these following tables, we
assessed the time and space complexity of all combinations of
our approach.

Table 9. Space complexity of the all combinations of our

approach.
Combination\ complexity N. operations N. parameters

CNN+BOW 65.5M 40M
CNN+N-grams 77.25M 36M
CNN+TF-IDF 89M 46M

CNN+Word2vec 53.5M 29M
CNN+GloVe 45M 27M

CNN+FastText 39M 22M

As the experimental findings indicate in the table 9 above,
the combination CNN+FastText requires computational
complexity in space much lower than others combinations.
Since it carried out numerous operations with a size equal to
39M and its size of parameters is equal to 22M.

The following table 10 illustrates the experimental findings

after gauging the computational time complexity of all
combinations of our approach in terms of both training time
consumed and testing time consumed.

Table 10. Time complexity of the all combinations of our

approach.
Combination\ complexity Training time Testing time

CNN+BOW 46.23s 17.5s
CNN+N-grams 51s 19s
CNN+TF-IDF 69s 21s

CNN+Word2vec 38.25s 14.5s
CNN+GloVe 28.65s 15.25s

CNN+FastText 15.46s 10.98s

As the experimental findings indicate in the table 10 above,

the combination CNN+FastText requires computational

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

𝑅𝑅𝑗𝑗 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑔𝑔 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖

 (8)

F1 measure (F1): represents the harmonic mean of precision
and recall. It measures the performance of the system and is
calculated according to equation (9).

 𝐹𝐹1 = 2 × 𝑃𝑃 × 𝑅𝑅
𝑃𝑃 + 𝑅𝑅 (9)

Accuracy A: evaluates our approach in an overall [23]. It is

calculated according to the equation (10).

𝐴𝐴 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑟𝑟 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (10)

We have also implemented our approach on Hadoop
framework with a cluster of five machine: four slave nodes and
one master node. The configuration of the cluster is presented
in the following table 6:

Table 6. Parameters setting of the Hadoop cluster.

Configuration Parameters

N. of nodes 5
apache hadoop version 2.7.2

OS Ubuntu 20.04.4
Memory 16 GB

CPU Intel(R) Core(TM) i7-
4810MQ CPU @

2.80GHz 2.80 GHz

The Parameters settings of CNN used in our implementation

are shown in the following table 7:

Table 7. Parameters setting of the CNN.
Parameter Value

Vocabulary size 45,000
Padding 0

Regularizer L2
Size of filter 4,7

Number of filter 15
Activation function ReLU

Function of Pooling layer Max-pooling
N. of pooling layer 3

N. of convolutional layer 3
Input embedding matrix 500x500

A. Impact of the choice of input embeddings on the CNN
The CNN architecture was trained on the Sentiment140

corpus with the different existing pre-trained word embeddings
(Bag-of-Word, N-grams, TF-IDF, Word2vec, GloVe, and

FastText). The table 3 reports the performance of our approach
in terms of precision, recall, F1 measure and accuracy.

Table 8. P, R F1, A of the all combinations of our approach.

Combination\criteria

(%)
P R F1 A

CNN+BOW 64.08 63.51 63.79 66.92
CNN+N-grams 49.97 60.23 54.62 58.49
CNN+TF-IDF 68.88 71.59 70.20 70.02

CNN+Word2vec 86.13 83.55 84.82 85.06
CNN+GloVe 79.49 80.05 79.76 79.54

CNN+FastText 93.43 90.89 92.14 91.32

 From the table 8, we remark that the combination
CNN+FastText performs better than other combinations in
terms of P(93.43%), R(90.89%), F1(92.14%) and A(91.32%).

Pattern complexity is a metric for the time and space
consumption used by a pattern. In these following tables, we
assessed the time and space complexity of all combinations of
our approach.

Table 9. Space complexity of the all combinations of our

approach.
Combination\ complexity N. operations N. parameters

CNN+BOW 65.5M 40M
CNN+N-grams 77.25M 36M
CNN+TF-IDF 89M 46M

CNN+Word2vec 53.5M 29M
CNN+GloVe 45M 27M

CNN+FastText 39M 22M

As the experimental findings indicate in the table 9 above,
the combination CNN+FastText requires computational
complexity in space much lower than others combinations.
Since it carried out numerous operations with a size equal to
39M and its size of parameters is equal to 22M.

The following table 10 illustrates the experimental findings

after gauging the computational time complexity of all
combinations of our approach in terms of both training time
consumed and testing time consumed.

Table 10. Time complexity of the all combinations of our

approach.
Combination\ complexity Training time Testing time

CNN+BOW 46.23s 17.5s
CNN+N-grams 51s 19s
CNN+TF-IDF 69s 21s

CNN+Word2vec 38.25s 14.5s
CNN+GloVe 28.65s 15.25s

CNN+FastText 15.46s 10.98s

As the experimental findings indicate in the table 10 above,

the combination CNN+FastText requires computational

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

𝑅𝑅𝑗𝑗 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑔𝑔 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖

 (8)

F1 measure (F1): represents the harmonic mean of precision
and recall. It measures the performance of the system and is
calculated according to equation (9).

 𝐹𝐹1 = 2 × 𝑃𝑃 × 𝑅𝑅
𝑃𝑃 + 𝑅𝑅 (9)

Accuracy A: evaluates our approach in an overall [23]. It is

calculated according to the equation (10).

𝐴𝐴 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑟𝑟 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (10)

We have also implemented our approach on Hadoop
framework with a cluster of five machine: four slave nodes and
one master node. The configuration of the cluster is presented
in the following table 6:

Table 6. Parameters setting of the Hadoop cluster.

Configuration Parameters

N. of nodes 5
apache hadoop version 2.7.2

OS Ubuntu 20.04.4
Memory 16 GB

CPU Intel(R) Core(TM) i7-
4810MQ CPU @

2.80GHz 2.80 GHz

The Parameters settings of CNN used in our implementation

are shown in the following table 7:

Table 7. Parameters setting of the CNN.
Parameter Value

Vocabulary size 45,000
Padding 0

Regularizer L2
Size of filter 4,7

Number of filter 15
Activation function ReLU

Function of Pooling layer Max-pooling
N. of pooling layer 3

N. of convolutional layer 3
Input embedding matrix 500x500

A. Impact of the choice of input embeddings on the CNN
The CNN architecture was trained on the Sentiment140

corpus with the different existing pre-trained word embeddings
(Bag-of-Word, N-grams, TF-IDF, Word2vec, GloVe, and

FastText). The table 3 reports the performance of our approach
in terms of precision, recall, F1 measure and accuracy.

Table 8. P, R F1, A of the all combinations of our approach.

Combination\criteria

(%)
P R F1 A

CNN+BOW 64.08 63.51 63.79 66.92
CNN+N-grams 49.97 60.23 54.62 58.49
CNN+TF-IDF 68.88 71.59 70.20 70.02

CNN+Word2vec 86.13 83.55 84.82 85.06
CNN+GloVe 79.49 80.05 79.76 79.54

CNN+FastText 93.43 90.89 92.14 91.32

 From the table 8, we remark that the combination
CNN+FastText performs better than other combinations in
terms of P(93.43%), R(90.89%), F1(92.14%) and A(91.32%).

Pattern complexity is a metric for the time and space
consumption used by a pattern. In these following tables, we
assessed the time and space complexity of all combinations of
our approach.

Table 9. Space complexity of the all combinations of our

approach.
Combination\ complexity N. operations N. parameters

CNN+BOW 65.5M 40M
CNN+N-grams 77.25M 36M
CNN+TF-IDF 89M 46M

CNN+Word2vec 53.5M 29M
CNN+GloVe 45M 27M

CNN+FastText 39M 22M

As the experimental findings indicate in the table 9 above,
the combination CNN+FastText requires computational
complexity in space much lower than others combinations.
Since it carried out numerous operations with a size equal to
39M and its size of parameters is equal to 22M.

The following table 10 illustrates the experimental findings

after gauging the computational time complexity of all
combinations of our approach in terms of both training time
consumed and testing time consumed.

Table 10. Time complexity of the all combinations of our

approach.
Combination\ complexity Training time Testing time

CNN+BOW 46.23s 17.5s
CNN+N-grams 51s 19s
CNN+TF-IDF 69s 21s

CNN+Word2vec 38.25s 14.5s
CNN+GloVe 28.65s 15.25s

CNN+FastText 15.46s 10.98s

As the experimental findings indicate in the table 10 above,

the combination CNN+FastText requires computational

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

𝑅𝑅𝑗𝑗 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑔𝑔 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖

 (8)

F1 measure (F1): represents the harmonic mean of precision
and recall. It measures the performance of the system and is
calculated according to equation (9).

 𝐹𝐹1 = 2 × 𝑃𝑃 × 𝑅𝑅
𝑃𝑃 + 𝑅𝑅 (9)

Accuracy A: evaluates our approach in an overall [23]. It is

calculated according to the equation (10).

𝐴𝐴 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑟𝑟 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (10)

We have also implemented our approach on Hadoop
framework with a cluster of five machine: four slave nodes and
one master node. The configuration of the cluster is presented
in the following table 6:

Table 6. Parameters setting of the Hadoop cluster.

Configuration Parameters

N. of nodes 5
apache hadoop version 2.7.2

OS Ubuntu 20.04.4
Memory 16 GB

CPU Intel(R) Core(TM) i7-
4810MQ CPU @

2.80GHz 2.80 GHz

The Parameters settings of CNN used in our implementation

are shown in the following table 7:

Table 7. Parameters setting of the CNN.
Parameter Value

Vocabulary size 45,000
Padding 0

Regularizer L2
Size of filter 4,7

Number of filter 15
Activation function ReLU

Function of Pooling layer Max-pooling
N. of pooling layer 3

N. of convolutional layer 3
Input embedding matrix 500x500

A. Impact of the choice of input embeddings on the CNN
The CNN architecture was trained on the Sentiment140

corpus with the different existing pre-trained word embeddings
(Bag-of-Word, N-grams, TF-IDF, Word2vec, GloVe, and

FastText). The table 3 reports the performance of our approach
in terms of precision, recall, F1 measure and accuracy.

Table 8. P, R F1, A of the all combinations of our approach.

Combination\criteria

(%)
P R F1 A

CNN+BOW 64.08 63.51 63.79 66.92
CNN+N-grams 49.97 60.23 54.62 58.49
CNN+TF-IDF 68.88 71.59 70.20 70.02

CNN+Word2vec 86.13 83.55 84.82 85.06
CNN+GloVe 79.49 80.05 79.76 79.54

CNN+FastText 93.43 90.89 92.14 91.32

 From the table 8, we remark that the combination
CNN+FastText performs better than other combinations in
terms of P(93.43%), R(90.89%), F1(92.14%) and A(91.32%).

Pattern complexity is a metric for the time and space
consumption used by a pattern. In these following tables, we
assessed the time and space complexity of all combinations of
our approach.

Table 9. Space complexity of the all combinations of our

approach.
Combination\ complexity N. operations N. parameters

CNN+BOW 65.5M 40M
CNN+N-grams 77.25M 36M
CNN+TF-IDF 89M 46M

CNN+Word2vec 53.5M 29M
CNN+GloVe 45M 27M

CNN+FastText 39M 22M

As the experimental findings indicate in the table 9 above,
the combination CNN+FastText requires computational
complexity in space much lower than others combinations.
Since it carried out numerous operations with a size equal to
39M and its size of parameters is equal to 22M.

The following table 10 illustrates the experimental findings

after gauging the computational time complexity of all
combinations of our approach in terms of both training time
consumed and testing time consumed.

Table 10. Time complexity of the all combinations of our

approach.
Combination\ complexity Training time Testing time

CNN+BOW 46.23s 17.5s
CNN+N-grams 51s 19s
CNN+TF-IDF 69s 21s

CNN+Word2vec 38.25s 14.5s
CNN+GloVe 28.65s 15.25s

CNN+FastText 15.46s 10.98s

As the experimental findings indicate in the table 10 above,

the combination CNN+FastText requires computational

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

𝑅𝑅𝑗𝑗 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑔𝑔 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖

 (8)

F1 measure (F1): represents the harmonic mean of precision
and recall. It measures the performance of the system and is
calculated according to equation (9).

 𝐹𝐹1 = 2 × 𝑃𝑃 × 𝑅𝑅
𝑃𝑃 + 𝑅𝑅 (9)

Accuracy A: evaluates our approach in an overall [23]. It is

calculated according to the equation (10).

𝐴𝐴 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑟𝑟 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (10)

We have also implemented our approach on Hadoop
framework with a cluster of five machine: four slave nodes and
one master node. The configuration of the cluster is presented
in the following table 6:

Table 6. Parameters setting of the Hadoop cluster.

Configuration Parameters

N. of nodes 5
apache hadoop version 2.7.2

OS Ubuntu 20.04.4
Memory 16 GB

CPU Intel(R) Core(TM) i7-
4810MQ CPU @

2.80GHz 2.80 GHz

The Parameters settings of CNN used in our implementation

are shown in the following table 7:

Table 7. Parameters setting of the CNN.
Parameter Value

Vocabulary size 45,000
Padding 0

Regularizer L2
Size of filter 4,7

Number of filter 15
Activation function ReLU

Function of Pooling layer Max-pooling
N. of pooling layer 3

N. of convolutional layer 3
Input embedding matrix 500x500

A. Impact of the choice of input embeddings on the CNN
The CNN architecture was trained on the Sentiment140

corpus with the different existing pre-trained word embeddings
(Bag-of-Word, N-grams, TF-IDF, Word2vec, GloVe, and

FastText). The table 3 reports the performance of our approach
in terms of precision, recall, F1 measure and accuracy.

Table 8. P, R F1, A of the all combinations of our approach.

Combination\criteria

(%)
P R F1 A

CNN+BOW 64.08 63.51 63.79 66.92
CNN+N-grams 49.97 60.23 54.62 58.49
CNN+TF-IDF 68.88 71.59 70.20 70.02

CNN+Word2vec 86.13 83.55 84.82 85.06
CNN+GloVe 79.49 80.05 79.76 79.54

CNN+FastText 93.43 90.89 92.14 91.32

 From the table 8, we remark that the combination
CNN+FastText performs better than other combinations in
terms of P(93.43%), R(90.89%), F1(92.14%) and A(91.32%).

Pattern complexity is a metric for the time and space
consumption used by a pattern. In these following tables, we
assessed the time and space complexity of all combinations of
our approach.

Table 9. Space complexity of the all combinations of our

approach.
Combination\ complexity N. operations N. parameters

CNN+BOW 65.5M 40M
CNN+N-grams 77.25M 36M
CNN+TF-IDF 89M 46M

CNN+Word2vec 53.5M 29M
CNN+GloVe 45M 27M

CNN+FastText 39M 22M

As the experimental findings indicate in the table 9 above,
the combination CNN+FastText requires computational
complexity in space much lower than others combinations.
Since it carried out numerous operations with a size equal to
39M and its size of parameters is equal to 22M.

The following table 10 illustrates the experimental findings

after gauging the computational time complexity of all
combinations of our approach in terms of both training time
consumed and testing time consumed.

Table 10. Time complexity of the all combinations of our

approach.
Combination\ complexity Training time Testing time

CNN+BOW 46.23s 17.5s
CNN+N-grams 51s 19s
CNN+TF-IDF 69s 21s

CNN+Word2vec 38.25s 14.5s
CNN+GloVe 28.65s 15.25s

CNN+FastText 15.46s 10.98s

As the experimental findings indicate in the table 10 above,

the combination CNN+FastText requires computational

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

𝑅𝑅𝑗𝑗 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑔𝑔 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖

 (8)

F1 measure (F1): represents the harmonic mean of precision
and recall. It measures the performance of the system and is
calculated according to equation (9).

 𝐹𝐹1 = 2 × 𝑃𝑃 × 𝑅𝑅
𝑃𝑃 + 𝑅𝑅 (9)

Accuracy A: evaluates our approach in an overall [23]. It is

calculated according to the equation (10).

𝐴𝐴 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑟𝑟 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (10)

We have also implemented our approach on Hadoop
framework with a cluster of five machine: four slave nodes and
one master node. The configuration of the cluster is presented
in the following table 6:

Table 6. Parameters setting of the Hadoop cluster.

Configuration Parameters

N. of nodes 5
apache hadoop version 2.7.2

OS Ubuntu 20.04.4
Memory 16 GB

CPU Intel(R) Core(TM) i7-
4810MQ CPU @

2.80GHz 2.80 GHz

The Parameters settings of CNN used in our implementation

are shown in the following table 7:

Table 7. Parameters setting of the CNN.
Parameter Value

Vocabulary size 45,000
Padding 0

Regularizer L2
Size of filter 4,7

Number of filter 15
Activation function ReLU

Function of Pooling layer Max-pooling
N. of pooling layer 3

N. of convolutional layer 3
Input embedding matrix 500x500

A. Impact of the choice of input embeddings on the CNN
The CNN architecture was trained on the Sentiment140

corpus with the different existing pre-trained word embeddings
(Bag-of-Word, N-grams, TF-IDF, Word2vec, GloVe, and

FastText). The table 3 reports the performance of our approach
in terms of precision, recall, F1 measure and accuracy.

Table 8. P, R F1, A of the all combinations of our approach.

Combination\criteria

(%)
P R F1 A

CNN+BOW 64.08 63.51 63.79 66.92
CNN+N-grams 49.97 60.23 54.62 58.49
CNN+TF-IDF 68.88 71.59 70.20 70.02

CNN+Word2vec 86.13 83.55 84.82 85.06
CNN+GloVe 79.49 80.05 79.76 79.54

CNN+FastText 93.43 90.89 92.14 91.32

 From the table 8, we remark that the combination
CNN+FastText performs better than other combinations in
terms of P(93.43%), R(90.89%), F1(92.14%) and A(91.32%).

Pattern complexity is a metric for the time and space
consumption used by a pattern. In these following tables, we
assessed the time and space complexity of all combinations of
our approach.

Table 9. Space complexity of the all combinations of our

approach.
Combination\ complexity N. operations N. parameters

CNN+BOW 65.5M 40M
CNN+N-grams 77.25M 36M
CNN+TF-IDF 89M 46M

CNN+Word2vec 53.5M 29M
CNN+GloVe 45M 27M

CNN+FastText 39M 22M

As the experimental findings indicate in the table 9 above,
the combination CNN+FastText requires computational
complexity in space much lower than others combinations.
Since it carried out numerous operations with a size equal to
39M and its size of parameters is equal to 22M.

The following table 10 illustrates the experimental findings

after gauging the computational time complexity of all
combinations of our approach in terms of both training time
consumed and testing time consumed.

Table 10. Time complexity of the all combinations of our

approach.
Combination\ complexity Training time Testing time

CNN+BOW 46.23s 17.5s
CNN+N-grams 51s 19s
CNN+TF-IDF 69s 21s

CNN+Word2vec 38.25s 14.5s
CNN+GloVe 28.65s 15.25s

CNN+FastText 15.46s 10.98s

As the experimental findings indicate in the table 10 above,

the combination CNN+FastText requires computational

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

𝑅𝑅𝑗𝑗 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑔𝑔 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑖𝑖

 (8)

F1 measure (F1): represents the harmonic mean of precision
and recall. It measures the performance of the system and is
calculated according to equation (9).

 𝐹𝐹1 = 2 × 𝑃𝑃 × 𝑅𝑅
𝑃𝑃 + 𝑅𝑅 (9)

Accuracy A: evaluates our approach in an overall [23]. It is

calculated according to the equation (10).

𝐴𝐴 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑟𝑟 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (10)

We have also implemented our approach on Hadoop
framework with a cluster of five machine: four slave nodes and
one master node. The configuration of the cluster is presented
in the following table 6:

Table 6. Parameters setting of the Hadoop cluster.

Configuration Parameters

N. of nodes 5
apache hadoop version 2.7.2

OS Ubuntu 20.04.4
Memory 16 GB

CPU Intel(R) Core(TM) i7-
4810MQ CPU @

2.80GHz 2.80 GHz

The Parameters settings of CNN used in our implementation

are shown in the following table 7:

Table 7. Parameters setting of the CNN.
Parameter Value

Vocabulary size 45,000
Padding 0

Regularizer L2
Size of filter 4,7

Number of filter 15
Activation function ReLU

Function of Pooling layer Max-pooling
N. of pooling layer 3

N. of convolutional layer 3
Input embedding matrix 500x500

A. Impact of the choice of input embeddings on the CNN
The CNN architecture was trained on the Sentiment140

corpus with the different existing pre-trained word embeddings
(Bag-of-Word, N-grams, TF-IDF, Word2vec, GloVe, and

FastText). The table 3 reports the performance of our approach
in terms of precision, recall, F1 measure and accuracy.

Table 8. P, R F1, A of the all combinations of our approach.

Combination\criteria

(%)
P R F1 A

CNN+BOW 64.08 63.51 63.79 66.92
CNN+N-grams 49.97 60.23 54.62 58.49
CNN+TF-IDF 68.88 71.59 70.20 70.02

CNN+Word2vec 86.13 83.55 84.82 85.06
CNN+GloVe 79.49 80.05 79.76 79.54

CNN+FastText 93.43 90.89 92.14 91.32

 From the table 8, we remark that the combination
CNN+FastText performs better than other combinations in
terms of P(93.43%), R(90.89%), F1(92.14%) and A(91.32%).

Pattern complexity is a metric for the time and space
consumption used by a pattern. In these following tables, we
assessed the time and space complexity of all combinations of
our approach.

Table 9. Space complexity of the all combinations of our

approach.
Combination\ complexity N. operations N. parameters

CNN+BOW 65.5M 40M
CNN+N-grams 77.25M 36M
CNN+TF-IDF 89M 46M

CNN+Word2vec 53.5M 29M
CNN+GloVe 45M 27M

CNN+FastText 39M 22M

As the experimental findings indicate in the table 9 above,
the combination CNN+FastText requires computational
complexity in space much lower than others combinations.
Since it carried out numerous operations with a size equal to
39M and its size of parameters is equal to 22M.

The following table 10 illustrates the experimental findings

after gauging the computational time complexity of all
combinations of our approach in terms of both training time
consumed and testing time consumed.

Table 10. Time complexity of the all combinations of our

approach.
Combination\ complexity Training time Testing time

CNN+BOW 46.23s 17.5s
CNN+N-grams 51s 19s
CNN+TF-IDF 69s 21s

CNN+Word2vec 38.25s 14.5s
CNN+GloVe 28.65s 15.25s

CNN+FastText 15.46s 10.98s

As the experimental findings indicate in the table 10 above,

the combination CNN+FastText requires computational

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

complexity in time much lower than others combinations. Since
it consumed a training time equal to 15.46s and a testing time
equal to 10.98s.

B. A COMPARISON OF OUR APPROACH WITH OTHER MACHINE
LEARNING ALGORITHMS.
This experiment makes a comparison of the combinations of
four machines-learning algorithms which are Naive Bayes
(NB), Support Vector Machine (SVM), ID3 and C4.5 decision
tree algorithm with six feature extractors which are BOW, N-
grams, TF-IDF, Word2vec, GloVe and FastText in terms of
precision (P), Recall (R), and F1 measure (F1) and Accuracy
(A). Its empirical findings are displayed in the Table 11.

Table 11. P, R, F1 and A of the combination of four machines-

learning algorithms and six feature extractors

Combination\criteria P R F1 A
NB+BOW 48.31 45.64 46.93 47.12

NB+N-grams 35.84 34.15 34.97 36.02
NB+TF-IDF 50.97 51.08 51.02 52.68

NB+Word2vec 49.64 50.09 49.86 50.32
NB+GloVe 53.26 55.42 54.31 55.29

NB+FastText 56.74 57.49 57.11 58.18
SVM+BOW 45.61 44.88 45.24 46.07

 SVM+N-grams 40.33 39.50 39.91 40.26
SVM+TF-IDF 51.64 50.37 50.99 51.63

SVM+Word2vec 45.87 46.25 46.05 45.91
SVM+GloVe 50.89 49.68 50.27 49.82

SVM+FastText 60.43 61.27 60.48 61.39
ID3+BOW 62.54 63.19 62.86 63.42

ID3+N-grams 53.48 54.02 53.74 54.13
ID3+TF-IDF 64.85 63.94 64.39 65.07

ID3+Word2vec 58.46 60.32 59.37 61.53
ID3+GloVe 64.15 63.24 63.69 64.18

ID3+FastText 70.65 72.39 71.50 72.87
C4.5+BOW 60.58 59.67 60.12 59.93

C4.5+N-grams 58.34 60.59 59.44 61.48
C4.5+TF-IDF 70.49 71.64 71.06 70.97

C4.5+Word2vec 68.31 69.25 68.77 69.51
C4.5+GloVe 71.58 73.82 72.68 73.96

C4.5+FastText 77.65 76.92 77.28 76.64

From the table 11, we remark that the combination machine-
learning algorithm+FastText performs better than other
combinations in terms of P, R, F1 and A. Therefore, we notice
that the feature extractor FastText outperforms all others feature
extractors (BOW, N-grams, TF-IDF, Word2vec, and GloVe).
And from the tables 10 and 11, we remark that CNN+FastText
performs better than others machine learning algorithms
(NB,SVM,ID3 and C4.5) in terms of P(93.43%), R(90.89%),
F1(92.14%) and A(91.32%).

In Table 11, we see that some values are lower than 0.5. In
the case of the NB classifier. This is because the input values to

the NB classifier are numerical values in this contribution. And,
as we know from the machine learning literature, NB performs
well for categorical versus numerical input variables.

C. A comparison of our approach with other approaches
selected from the existing literature.
For further testing of our proposed approach, we carried out
another experiment aimed at comparing our method with the
other approaches taken from the literature, namely Naresh et al.
[14], Carvalho et al. [15], Avinash et al. [16], Kumar et al. [17]
and Zainuddin et al. [18]. However, in this experiment, the
evaluation measures used will be precision (P), Recall (R), and
F1 measure (F1) and Accuracy (A). Its empirical findings are
displayed in the Table 12.

Table 12. P, R, F1 and A of our approach with other
approaches selected from the existing literature

Approach P R F1 A
 Naresh et al. [14] 65.48 67.12 66.28 66.87
Carvalho et al. [15] 79.56 80.04 79.79 78.95
Avinash et al. [16] 70.19 69.38 69.78 68.42
Kumar et al. [17] 83.21 82.40 82.80 81.94
Zainuddin et al. [18] 69.34 70.67 69.99 71.68
CNN+FastText 93.43 90.89 92.14 91.32

From the results shown in the table 12, we remark that our
approach (CNN+FastText) obtained the strongest performances
in terms of accuracy (91.32%), precision (93.43%), recall
(90.89%), and F1 measures (92.14%) compared to other chosen
classifiers from the literature which are Naresh et al. [14],
Carvalho et al. [15], Avinash et al. [16], Kumar et al. [17] and
Zainuddin et al. [18].

VII. CONCLUSION
Feature extraction is needed to get good performance in
sentiment classification. The purpose of feature extraction is to
identify the strongest and most informational set of features to
enhance the effectiveness of the classifier. Moreover, Feature
extraction is the most critical aspect of opinion classification
since classification efficiency can be negatively affected if
features are not properly chosen. For that, in this paper, we
presented a preliminary study of the most popular feature
extractors. And, we combined a CNN, NB, SVM, ID3, and C4.5
with several word embedding methods in order to identify the
most efficient extractor of features that positively affected the
classifier performances. Accordingly to the experimental
results, the performance of the used classifiers varies a little
with the nature of the word embedding sets. In general we found
the combination CNN+FastText outperforms all other
combinations in terms of accuracy, precision, recall, and F1
measure.

REFERENCES
[1] R. Ahuja, A. Chug, S. Kohli, S. Gupta, and P. Ahuja, “The Impact of

Features Extraction on the Sentiment Analysis,” Proceedings of the 2019
International Conference on Pervasive Computing Advances and
Applications, Jaipur, India, (2019) January 8-10.

Evaluation of different extractors of features at
the level of sentiment analysis

JUNE 2022 • VOLUME XIV • NUMBER 294

INFOCOMMUNICATIONS JOURNAL
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

complexity in time much lower than others combinations. Since
it consumed a training time equal to 15.46s and a testing time
equal to 10.98s.

B. A COMPARISON OF OUR APPROACH WITH OTHER MACHINE
LEARNING ALGORITHMS.
This experiment makes a comparison of the combinations of
four machines-learning algorithms which are Naive Bayes
(NB), Support Vector Machine (SVM), ID3 and C4.5 decision
tree algorithm with six feature extractors which are BOW, N-
grams, TF-IDF, Word2vec, GloVe and FastText in terms of
precision (P), Recall (R), and F1 measure (F1) and Accuracy
(A). Its empirical findings are displayed in the Table 11.

Table 11. P, R, F1 and A of the combination of four machines-

learning algorithms and six feature extractors

Combination\criteria P R F1 A
NB+BOW 48.31 45.64 46.93 47.12

NB+N-grams 35.84 34.15 34.97 36.02
NB+TF-IDF 50.97 51.08 51.02 52.68

NB+Word2vec 49.64 50.09 49.86 50.32
NB+GloVe 53.26 55.42 54.31 55.29

NB+FastText 56.74 57.49 57.11 58.18
SVM+BOW 45.61 44.88 45.24 46.07

 SVM+N-grams 40.33 39.50 39.91 40.26
SVM+TF-IDF 51.64 50.37 50.99 51.63

SVM+Word2vec 45.87 46.25 46.05 45.91
SVM+GloVe 50.89 49.68 50.27 49.82

SVM+FastText 60.43 61.27 60.48 61.39
ID3+BOW 62.54 63.19 62.86 63.42

ID3+N-grams 53.48 54.02 53.74 54.13
ID3+TF-IDF 64.85 63.94 64.39 65.07

ID3+Word2vec 58.46 60.32 59.37 61.53
ID3+GloVe 64.15 63.24 63.69 64.18

ID3+FastText 70.65 72.39 71.50 72.87
C4.5+BOW 60.58 59.67 60.12 59.93

C4.5+N-grams 58.34 60.59 59.44 61.48
C4.5+TF-IDF 70.49 71.64 71.06 70.97

C4.5+Word2vec 68.31 69.25 68.77 69.51
C4.5+GloVe 71.58 73.82 72.68 73.96

C4.5+FastText 77.65 76.92 77.28 76.64

From the table 11, we remark that the combination machine-
learning algorithm+FastText performs better than other
combinations in terms of P, R, F1 and A. Therefore, we notice
that the feature extractor FastText outperforms all others feature
extractors (BOW, N-grams, TF-IDF, Word2vec, and GloVe).
And from the tables 10 and 11, we remark that CNN+FastText
performs better than others machine learning algorithms
(NB,SVM,ID3 and C4.5) in terms of P(93.43%), R(90.89%),
F1(92.14%) and A(91.32%).

In Table 11, we see that some values are lower than 0.5. In
the case of the NB classifier. This is because the input values to

the NB classifier are numerical values in this contribution. And,
as we know from the machine learning literature, NB performs
well for categorical versus numerical input variables.

C. A comparison of our approach with other approaches
selected from the existing literature.
For further testing of our proposed approach, we carried out
another experiment aimed at comparing our method with the
other approaches taken from the literature, namely Naresh et al.
[14], Carvalho et al. [15], Avinash et al. [16], Kumar et al. [17]
and Zainuddin et al. [18]. However, in this experiment, the
evaluation measures used will be precision (P), Recall (R), and
F1 measure (F1) and Accuracy (A). Its empirical findings are
displayed in the Table 12.

Table 12. P, R, F1 and A of our approach with other
approaches selected from the existing literature

Approach P R F1 A
 Naresh et al. [14] 65.48 67.12 66.28 66.87
Carvalho et al. [15] 79.56 80.04 79.79 78.95
Avinash et al. [16] 70.19 69.38 69.78 68.42
Kumar et al. [17] 83.21 82.40 82.80 81.94
Zainuddin et al. [18] 69.34 70.67 69.99 71.68
CNN+FastText 93.43 90.89 92.14 91.32

From the results shown in the table 12, we remark that our
approach (CNN+FastText) obtained the strongest performances
in terms of accuracy (91.32%), precision (93.43%), recall
(90.89%), and F1 measures (92.14%) compared to other chosen
classifiers from the literature which are Naresh et al. [14],
Carvalho et al. [15], Avinash et al. [16], Kumar et al. [17] and
Zainuddin et al. [18].

VII. CONCLUSION
Feature extraction is needed to get good performance in
sentiment classification. The purpose of feature extraction is to
identify the strongest and most informational set of features to
enhance the effectiveness of the classifier. Moreover, Feature
extraction is the most critical aspect of opinion classification
since classification efficiency can be negatively affected if
features are not properly chosen. For that, in this paper, we
presented a preliminary study of the most popular feature
extractors. And, we combined a CNN, NB, SVM, ID3, and C4.5
with several word embedding methods in order to identify the
most efficient extractor of features that positively affected the
classifier performances. Accordingly to the experimental
results, the performance of the used classifiers varies a little
with the nature of the word embedding sets. In general we found
the combination CNN+FastText outperforms all other
combinations in terms of accuracy, precision, recall, and F1
measure.

REFERENCES
[1] R. Ahuja, A. Chug, S. Kohli, S. Gupta, and P. Ahuja, “The Impact of

Features Extraction on the Sentiment Analysis,” Proceedings of the 2019
International Conference on Pervasive Computing Advances and
Applications, Jaipur, India, (2019) January 8-10.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

complexity in time much lower than others combinations. Since
it consumed a training time equal to 15.46s and a testing time
equal to 10.98s.

B. A COMPARISON OF OUR APPROACH WITH OTHER MACHINE
LEARNING ALGORITHMS.
This experiment makes a comparison of the combinations of
four machines-learning algorithms which are Naive Bayes
(NB), Support Vector Machine (SVM), ID3 and C4.5 decision
tree algorithm with six feature extractors which are BOW, N-
grams, TF-IDF, Word2vec, GloVe and FastText in terms of
precision (P), Recall (R), and F1 measure (F1) and Accuracy
(A). Its empirical findings are displayed in the Table 11.

Table 11. P, R, F1 and A of the combination of four machines-

learning algorithms and six feature extractors

Combination\criteria P R F1 A
NB+BOW 48.31 45.64 46.93 47.12

NB+N-grams 35.84 34.15 34.97 36.02
NB+TF-IDF 50.97 51.08 51.02 52.68

NB+Word2vec 49.64 50.09 49.86 50.32
NB+GloVe 53.26 55.42 54.31 55.29

NB+FastText 56.74 57.49 57.11 58.18
SVM+BOW 45.61 44.88 45.24 46.07

 SVM+N-grams 40.33 39.50 39.91 40.26
SVM+TF-IDF 51.64 50.37 50.99 51.63

SVM+Word2vec 45.87 46.25 46.05 45.91
SVM+GloVe 50.89 49.68 50.27 49.82

SVM+FastText 60.43 61.27 60.48 61.39
ID3+BOW 62.54 63.19 62.86 63.42

ID3+N-grams 53.48 54.02 53.74 54.13
ID3+TF-IDF 64.85 63.94 64.39 65.07

ID3+Word2vec 58.46 60.32 59.37 61.53
ID3+GloVe 64.15 63.24 63.69 64.18

ID3+FastText 70.65 72.39 71.50 72.87
C4.5+BOW 60.58 59.67 60.12 59.93

C4.5+N-grams 58.34 60.59 59.44 61.48
C4.5+TF-IDF 70.49 71.64 71.06 70.97

C4.5+Word2vec 68.31 69.25 68.77 69.51
C4.5+GloVe 71.58 73.82 72.68 73.96

C4.5+FastText 77.65 76.92 77.28 76.64

From the table 11, we remark that the combination machine-
learning algorithm+FastText performs better than other
combinations in terms of P, R, F1 and A. Therefore, we notice
that the feature extractor FastText outperforms all others feature
extractors (BOW, N-grams, TF-IDF, Word2vec, and GloVe).
And from the tables 10 and 11, we remark that CNN+FastText
performs better than others machine learning algorithms
(NB,SVM,ID3 and C4.5) in terms of P(93.43%), R(90.89%),
F1(92.14%) and A(91.32%).

In Table 11, we see that some values are lower than 0.5. In
the case of the NB classifier. This is because the input values to

the NB classifier are numerical values in this contribution. And,
as we know from the machine learning literature, NB performs
well for categorical versus numerical input variables.

C. A comparison of our approach with other approaches
selected from the existing literature.
For further testing of our proposed approach, we carried out
another experiment aimed at comparing our method with the
other approaches taken from the literature, namely Naresh et al.
[14], Carvalho et al. [15], Avinash et al. [16], Kumar et al. [17]
and Zainuddin et al. [18]. However, in this experiment, the
evaluation measures used will be precision (P), Recall (R), and
F1 measure (F1) and Accuracy (A). Its empirical findings are
displayed in the Table 12.

Table 12. P, R, F1 and A of our approach with other
approaches selected from the existing literature

Approach P R F1 A
 Naresh et al. [14] 65.48 67.12 66.28 66.87
Carvalho et al. [15] 79.56 80.04 79.79 78.95
Avinash et al. [16] 70.19 69.38 69.78 68.42
Kumar et al. [17] 83.21 82.40 82.80 81.94
Zainuddin et al. [18] 69.34 70.67 69.99 71.68
CNN+FastText 93.43 90.89 92.14 91.32

From the results shown in the table 12, we remark that our
approach (CNN+FastText) obtained the strongest performances
in terms of accuracy (91.32%), precision (93.43%), recall
(90.89%), and F1 measures (92.14%) compared to other chosen
classifiers from the literature which are Naresh et al. [14],
Carvalho et al. [15], Avinash et al. [16], Kumar et al. [17] and
Zainuddin et al. [18].

VII. CONCLUSION
Feature extraction is needed to get good performance in
sentiment classification. The purpose of feature extraction is to
identify the strongest and most informational set of features to
enhance the effectiveness of the classifier. Moreover, Feature
extraction is the most critical aspect of opinion classification
since classification efficiency can be negatively affected if
features are not properly chosen. For that, in this paper, we
presented a preliminary study of the most popular feature
extractors. And, we combined a CNN, NB, SVM, ID3, and C4.5
with several word embedding methods in order to identify the
most efficient extractor of features that positively affected the
classifier performances. Accordingly to the experimental
results, the performance of the used classifiers varies a little
with the nature of the word embedding sets. In general we found
the combination CNN+FastText outperforms all other
combinations in terms of accuracy, precision, recall, and F1
measure.

REFERENCES
[1] R. Ahuja, A. Chug, S. Kohli, S. Gupta, and P. Ahuja, “The Impact of

Features Extraction on the Sentiment Analysis,” Proceedings of the 2019
International Conference on Pervasive Computing Advances and
Applications, Jaipur, India, (2019) January 8-10.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

complexity in time much lower than others combinations. Since
it consumed a training time equal to 15.46s and a testing time
equal to 10.98s.

B. A COMPARISON OF OUR APPROACH WITH OTHER MACHINE
LEARNING ALGORITHMS.
This experiment makes a comparison of the combinations of
four machines-learning algorithms which are Naive Bayes
(NB), Support Vector Machine (SVM), ID3 and C4.5 decision
tree algorithm with six feature extractors which are BOW, N-
grams, TF-IDF, Word2vec, GloVe and FastText in terms of
precision (P), Recall (R), and F1 measure (F1) and Accuracy
(A). Its empirical findings are displayed in the Table 11.

Table 11. P, R, F1 and A of the combination of four machines-

learning algorithms and six feature extractors

Combination\criteria P R F1 A
NB+BOW 48.31 45.64 46.93 47.12

NB+N-grams 35.84 34.15 34.97 36.02
NB+TF-IDF 50.97 51.08 51.02 52.68

NB+Word2vec 49.64 50.09 49.86 50.32
NB+GloVe 53.26 55.42 54.31 55.29

NB+FastText 56.74 57.49 57.11 58.18
SVM+BOW 45.61 44.88 45.24 46.07

 SVM+N-grams 40.33 39.50 39.91 40.26
SVM+TF-IDF 51.64 50.37 50.99 51.63

SVM+Word2vec 45.87 46.25 46.05 45.91
SVM+GloVe 50.89 49.68 50.27 49.82

SVM+FastText 60.43 61.27 60.48 61.39
ID3+BOW 62.54 63.19 62.86 63.42

ID3+N-grams 53.48 54.02 53.74 54.13
ID3+TF-IDF 64.85 63.94 64.39 65.07

ID3+Word2vec 58.46 60.32 59.37 61.53
ID3+GloVe 64.15 63.24 63.69 64.18

ID3+FastText 70.65 72.39 71.50 72.87
C4.5+BOW 60.58 59.67 60.12 59.93

C4.5+N-grams 58.34 60.59 59.44 61.48
C4.5+TF-IDF 70.49 71.64 71.06 70.97

C4.5+Word2vec 68.31 69.25 68.77 69.51
C4.5+GloVe 71.58 73.82 72.68 73.96

C4.5+FastText 77.65 76.92 77.28 76.64

From the table 11, we remark that the combination machine-
learning algorithm+FastText performs better than other
combinations in terms of P, R, F1 and A. Therefore, we notice
that the feature extractor FastText outperforms all others feature
extractors (BOW, N-grams, TF-IDF, Word2vec, and GloVe).
And from the tables 10 and 11, we remark that CNN+FastText
performs better than others machine learning algorithms
(NB,SVM,ID3 and C4.5) in terms of P(93.43%), R(90.89%),
F1(92.14%) and A(91.32%).

In Table 11, we see that some values are lower than 0.5. In
the case of the NB classifier. This is because the input values to

the NB classifier are numerical values in this contribution. And,
as we know from the machine learning literature, NB performs
well for categorical versus numerical input variables.

C. A comparison of our approach with other approaches
selected from the existing literature.
For further testing of our proposed approach, we carried out
another experiment aimed at comparing our method with the
other approaches taken from the literature, namely Naresh et al.
[14], Carvalho et al. [15], Avinash et al. [16], Kumar et al. [17]
and Zainuddin et al. [18]. However, in this experiment, the
evaluation measures used will be precision (P), Recall (R), and
F1 measure (F1) and Accuracy (A). Its empirical findings are
displayed in the Table 12.

Table 12. P, R, F1 and A of our approach with other
approaches selected from the existing literature

Approach P R F1 A
 Naresh et al. [14] 65.48 67.12 66.28 66.87
Carvalho et al. [15] 79.56 80.04 79.79 78.95
Avinash et al. [16] 70.19 69.38 69.78 68.42
Kumar et al. [17] 83.21 82.40 82.80 81.94
Zainuddin et al. [18] 69.34 70.67 69.99 71.68
CNN+FastText 93.43 90.89 92.14 91.32

From the results shown in the table 12, we remark that our
approach (CNN+FastText) obtained the strongest performances
in terms of accuracy (91.32%), precision (93.43%), recall
(90.89%), and F1 measures (92.14%) compared to other chosen
classifiers from the literature which are Naresh et al. [14],
Carvalho et al. [15], Avinash et al. [16], Kumar et al. [17] and
Zainuddin et al. [18].

VII. CONCLUSION
Feature extraction is needed to get good performance in
sentiment classification. The purpose of feature extraction is to
identify the strongest and most informational set of features to
enhance the effectiveness of the classifier. Moreover, Feature
extraction is the most critical aspect of opinion classification
since classification efficiency can be negatively affected if
features are not properly chosen. For that, in this paper, we
presented a preliminary study of the most popular feature
extractors. And, we combined a CNN, NB, SVM, ID3, and C4.5
with several word embedding methods in order to identify the
most efficient extractor of features that positively affected the
classifier performances. Accordingly to the experimental
results, the performance of the used classifiers varies a little
with the nature of the word embedding sets. In general we found
the combination CNN+FastText outperforms all other
combinations in terms of accuracy, precision, recall, and F1
measure.

REFERENCES
[1] R. Ahuja, A. Chug, S. Kohli, S. Gupta, and P. Ahuja, “The Impact of

Features Extraction on the Sentiment Analysis,” Proceedings of the 2019
International Conference on Pervasive Computing Advances and
Applications, Jaipur, India, (2019) January 8-10.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

complexity in time much lower than others combinations. Since
it consumed a training time equal to 15.46s and a testing time
equal to 10.98s.

B. A COMPARISON OF OUR APPROACH WITH OTHER MACHINE
LEARNING ALGORITHMS.
This experiment makes a comparison of the combinations of
four machines-learning algorithms which are Naive Bayes
(NB), Support Vector Machine (SVM), ID3 and C4.5 decision
tree algorithm with six feature extractors which are BOW, N-
grams, TF-IDF, Word2vec, GloVe and FastText in terms of
precision (P), Recall (R), and F1 measure (F1) and Accuracy
(A). Its empirical findings are displayed in the Table 11.

Table 11. P, R, F1 and A of the combination of four machines-

learning algorithms and six feature extractors

Combination\criteria P R F1 A
NB+BOW 48.31 45.64 46.93 47.12

NB+N-grams 35.84 34.15 34.97 36.02
NB+TF-IDF 50.97 51.08 51.02 52.68

NB+Word2vec 49.64 50.09 49.86 50.32
NB+GloVe 53.26 55.42 54.31 55.29

NB+FastText 56.74 57.49 57.11 58.18
SVM+BOW 45.61 44.88 45.24 46.07

 SVM+N-grams 40.33 39.50 39.91 40.26
SVM+TF-IDF 51.64 50.37 50.99 51.63

SVM+Word2vec 45.87 46.25 46.05 45.91
SVM+GloVe 50.89 49.68 50.27 49.82

SVM+FastText 60.43 61.27 60.48 61.39
ID3+BOW 62.54 63.19 62.86 63.42

ID3+N-grams 53.48 54.02 53.74 54.13
ID3+TF-IDF 64.85 63.94 64.39 65.07

ID3+Word2vec 58.46 60.32 59.37 61.53
ID3+GloVe 64.15 63.24 63.69 64.18

ID3+FastText 70.65 72.39 71.50 72.87
C4.5+BOW 60.58 59.67 60.12 59.93

C4.5+N-grams 58.34 60.59 59.44 61.48
C4.5+TF-IDF 70.49 71.64 71.06 70.97

C4.5+Word2vec 68.31 69.25 68.77 69.51
C4.5+GloVe 71.58 73.82 72.68 73.96

C4.5+FastText 77.65 76.92 77.28 76.64

From the table 11, we remark that the combination machine-
learning algorithm+FastText performs better than other
combinations in terms of P, R, F1 and A. Therefore, we notice
that the feature extractor FastText outperforms all others feature
extractors (BOW, N-grams, TF-IDF, Word2vec, and GloVe).
And from the tables 10 and 11, we remark that CNN+FastText
performs better than others machine learning algorithms
(NB,SVM,ID3 and C4.5) in terms of P(93.43%), R(90.89%),
F1(92.14%) and A(91.32%).

In Table 11, we see that some values are lower than 0.5. In
the case of the NB classifier. This is because the input values to

the NB classifier are numerical values in this contribution. And,
as we know from the machine learning literature, NB performs
well for categorical versus numerical input variables.

C. A comparison of our approach with other approaches
selected from the existing literature.
For further testing of our proposed approach, we carried out
another experiment aimed at comparing our method with the
other approaches taken from the literature, namely Naresh et al.
[14], Carvalho et al. [15], Avinash et al. [16], Kumar et al. [17]
and Zainuddin et al. [18]. However, in this experiment, the
evaluation measures used will be precision (P), Recall (R), and
F1 measure (F1) and Accuracy (A). Its empirical findings are
displayed in the Table 12.

Table 12. P, R, F1 and A of our approach with other
approaches selected from the existing literature

Approach P R F1 A
 Naresh et al. [14] 65.48 67.12 66.28 66.87
Carvalho et al. [15] 79.56 80.04 79.79 78.95
Avinash et al. [16] 70.19 69.38 69.78 68.42
Kumar et al. [17] 83.21 82.40 82.80 81.94
Zainuddin et al. [18] 69.34 70.67 69.99 71.68
CNN+FastText 93.43 90.89 92.14 91.32

From the results shown in the table 12, we remark that our
approach (CNN+FastText) obtained the strongest performances
in terms of accuracy (91.32%), precision (93.43%), recall
(90.89%), and F1 measures (92.14%) compared to other chosen
classifiers from the literature which are Naresh et al. [14],
Carvalho et al. [15], Avinash et al. [16], Kumar et al. [17] and
Zainuddin et al. [18].

VII. CONCLUSION
Feature extraction is needed to get good performance in
sentiment classification. The purpose of feature extraction is to
identify the strongest and most informational set of features to
enhance the effectiveness of the classifier. Moreover, Feature
extraction is the most critical aspect of opinion classification
since classification efficiency can be negatively affected if
features are not properly chosen. For that, in this paper, we
presented a preliminary study of the most popular feature
extractors. And, we combined a CNN, NB, SVM, ID3, and C4.5
with several word embedding methods in order to identify the
most efficient extractor of features that positively affected the
classifier performances. Accordingly to the experimental
results, the performance of the used classifiers varies a little
with the nature of the word embedding sets. In general we found
the combination CNN+FastText outperforms all other
combinations in terms of accuracy, precision, recall, and F1
measure.

REFERENCES
[1] R. Ahuja, A. Chug, S. Kohli, S. Gupta, and P. Ahuja, “The Impact of

Features Extraction on the Sentiment Analysis,” Proceedings of the 2019
International Conference on Pervasive Computing Advances and
Applications, Jaipur, India, (2019) January 8-10.

TABLE 11
P, R, F1 and A of the combination of four machines- learning

algorithms and six feature extractors
TABLE 12

P, R, F1 and A of our approach with other approaches selected
from the existing literature

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

complexity in time much lower than others combinations. Since
it consumed a training time equal to 15.46s and a testing time
equal to 10.98s.

B. A COMPARISON OF OUR APPROACH WITH OTHER MACHINE
LEARNING ALGORITHMS.
This experiment makes a comparison of the combinations of
four machines-learning algorithms which are Naive Bayes
(NB), Support Vector Machine (SVM), ID3 and C4.5 decision
tree algorithm with six feature extractors which are BOW, N-
grams, TF-IDF, Word2vec, GloVe and FastText in terms of
precision (P), Recall (R), and F1 measure (F1) and Accuracy
(A). Its empirical findings are displayed in the Table 11.

Table 11. P, R, F1 and A of the combination of four machines-

learning algorithms and six feature extractors

Combination\criteria P R F1 A
NB+BOW 48.31 45.64 46.93 47.12

NB+N-grams 35.84 34.15 34.97 36.02
NB+TF-IDF 50.97 51.08 51.02 52.68

NB+Word2vec 49.64 50.09 49.86 50.32
NB+GloVe 53.26 55.42 54.31 55.29

NB+FastText 56.74 57.49 57.11 58.18
SVM+BOW 45.61 44.88 45.24 46.07

 SVM+N-grams 40.33 39.50 39.91 40.26
SVM+TF-IDF 51.64 50.37 50.99 51.63

SVM+Word2vec 45.87 46.25 46.05 45.91
SVM+GloVe 50.89 49.68 50.27 49.82

SVM+FastText 60.43 61.27 60.48 61.39
ID3+BOW 62.54 63.19 62.86 63.42

ID3+N-grams 53.48 54.02 53.74 54.13
ID3+TF-IDF 64.85 63.94 64.39 65.07

ID3+Word2vec 58.46 60.32 59.37 61.53
ID3+GloVe 64.15 63.24 63.69 64.18

ID3+FastText 70.65 72.39 71.50 72.87
C4.5+BOW 60.58 59.67 60.12 59.93

C4.5+N-grams 58.34 60.59 59.44 61.48
C4.5+TF-IDF 70.49 71.64 71.06 70.97

C4.5+Word2vec 68.31 69.25 68.77 69.51
C4.5+GloVe 71.58 73.82 72.68 73.96

C4.5+FastText 77.65 76.92 77.28 76.64

From the table 11, we remark that the combination machine-
learning algorithm+FastText performs better than other
combinations in terms of P, R, F1 and A. Therefore, we notice
that the feature extractor FastText outperforms all others feature
extractors (BOW, N-grams, TF-IDF, Word2vec, and GloVe).
And from the tables 10 and 11, we remark that CNN+FastText
performs better than others machine learning algorithms
(NB,SVM,ID3 and C4.5) in terms of P(93.43%), R(90.89%),
F1(92.14%) and A(91.32%).

In Table 11, we see that some values are lower than 0.5. In
the case of the NB classifier. This is because the input values to

the NB classifier are numerical values in this contribution. And,
as we know from the machine learning literature, NB performs
well for categorical versus numerical input variables.

C. A comparison of our approach with other approaches
selected from the existing literature.
For further testing of our proposed approach, we carried out
another experiment aimed at comparing our method with the
other approaches taken from the literature, namely Naresh et al.
[14], Carvalho et al. [15], Avinash et al. [16], Kumar et al. [17]
and Zainuddin et al. [18]. However, in this experiment, the
evaluation measures used will be precision (P), Recall (R), and
F1 measure (F1) and Accuracy (A). Its empirical findings are
displayed in the Table 12.

Table 12. P, R, F1 and A of our approach with other
approaches selected from the existing literature

Approach P R F1 A
 Naresh et al. [14] 65.48 67.12 66.28 66.87
Carvalho et al. [15] 79.56 80.04 79.79 78.95
Avinash et al. [16] 70.19 69.38 69.78 68.42
Kumar et al. [17] 83.21 82.40 82.80 81.94
Zainuddin et al. [18] 69.34 70.67 69.99 71.68
CNN+FastText 93.43 90.89 92.14 91.32

From the results shown in the table 12, we remark that our
approach (CNN+FastText) obtained the strongest performances
in terms of accuracy (91.32%), precision (93.43%), recall
(90.89%), and F1 measures (92.14%) compared to other chosen
classifiers from the literature which are Naresh et al. [14],
Carvalho et al. [15], Avinash et al. [16], Kumar et al. [17] and
Zainuddin et al. [18].

VII. CONCLUSION
Feature extraction is needed to get good performance in
sentiment classification. The purpose of feature extraction is to
identify the strongest and most informational set of features to
enhance the effectiveness of the classifier. Moreover, Feature
extraction is the most critical aspect of opinion classification
since classification efficiency can be negatively affected if
features are not properly chosen. For that, in this paper, we
presented a preliminary study of the most popular feature
extractors. And, we combined a CNN, NB, SVM, ID3, and C4.5
with several word embedding methods in order to identify the
most efficient extractor of features that positively affected the
classifier performances. Accordingly to the experimental
results, the performance of the used classifiers varies a little
with the nature of the word embedding sets. In general we found
the combination CNN+FastText outperforms all other
combinations in terms of accuracy, precision, recall, and F1
measure.

REFERENCES
[1] R. Ahuja, A. Chug, S. Kohli, S. Gupta, and P. Ahuja, “The Impact of

Features Extraction on the Sentiment Analysis,” Proceedings of the 2019
International Conference on Pervasive Computing Advances and
Applications, Jaipur, India, (2019) January 8-10.

B. A comparison of our approach with other machine learning
algorithms.

C. A comparison of our approach with other approaches se-
lected from the existing literature.

	 [1]	 R. Ahuja, A. Chug, S. Kohli, S. Gupta, and P. Ahuja, “The Impact of
Features Extraction on the Sentiment Analysis,” Proceedings of the
2019 International Conference on Pervasive Computing Advances
and Applications, Jaipur, India, (2019) January 8-10.

	 [2]	 M. S. Neethu and R. Rajasree, “Sentiment analysis in twitter using
machine learning techniques,” Proceedings of the 2013 Fourth
International Conference on Computing, Communications and
Networking Technologies, Tiruchengode, India, (2013) July 4-6.

References

Evaluation of different extractors of features at
the level of sentiment analysis

INFOCOMMUNICATIONS JOURNAL

JUNE 2022 • VOLUME XIV • NUMBER 2 95

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

complexity in time much lower than others combinations. Since
it consumed a training time equal to 15.46s and a testing time
equal to 10.98s.

B. A COMPARISON OF OUR APPROACH WITH OTHER MACHINE
LEARNING ALGORITHMS.
This experiment makes a comparison of the combinations of
four machines-learning algorithms which are Naive Bayes
(NB), Support Vector Machine (SVM), ID3 and C4.5 decision
tree algorithm with six feature extractors which are BOW, N-
grams, TF-IDF, Word2vec, GloVe and FastText in terms of
precision (P), Recall (R), and F1 measure (F1) and Accuracy
(A). Its empirical findings are displayed in the Table 11.

Table 11. P, R, F1 and A of the combination of four machines-

learning algorithms and six feature extractors

Combination\criteria P R F1 A
NB+BOW 48.31 45.64 46.93 47.12

NB+N-grams 35.84 34.15 34.97 36.02
NB+TF-IDF 50.97 51.08 51.02 52.68

NB+Word2vec 49.64 50.09 49.86 50.32
NB+GloVe 53.26 55.42 54.31 55.29

NB+FastText 56.74 57.49 57.11 58.18
SVM+BOW 45.61 44.88 45.24 46.07

 SVM+N-grams 40.33 39.50 39.91 40.26
SVM+TF-IDF 51.64 50.37 50.99 51.63

SVM+Word2vec 45.87 46.25 46.05 45.91
SVM+GloVe 50.89 49.68 50.27 49.82

SVM+FastText 60.43 61.27 60.48 61.39
ID3+BOW 62.54 63.19 62.86 63.42

ID3+N-grams 53.48 54.02 53.74 54.13
ID3+TF-IDF 64.85 63.94 64.39 65.07

ID3+Word2vec 58.46 60.32 59.37 61.53
ID3+GloVe 64.15 63.24 63.69 64.18

ID3+FastText 70.65 72.39 71.50 72.87
C4.5+BOW 60.58 59.67 60.12 59.93

C4.5+N-grams 58.34 60.59 59.44 61.48
C4.5+TF-IDF 70.49 71.64 71.06 70.97

C4.5+Word2vec 68.31 69.25 68.77 69.51
C4.5+GloVe 71.58 73.82 72.68 73.96

C4.5+FastText 77.65 76.92 77.28 76.64

From the table 11, we remark that the combination machine-
learning algorithm+FastText performs better than other
combinations in terms of P, R, F1 and A. Therefore, we notice
that the feature extractor FastText outperforms all others feature
extractors (BOW, N-grams, TF-IDF, Word2vec, and GloVe).
And from the tables 10 and 11, we remark that CNN+FastText
performs better than others machine learning algorithms
(NB,SVM,ID3 and C4.5) in terms of P(93.43%), R(90.89%),
F1(92.14%) and A(91.32%).

In Table 11, we see that some values are lower than 0.5. In
the case of the NB classifier. This is because the input values to

the NB classifier are numerical values in this contribution. And,
as we know from the machine learning literature, NB performs
well for categorical versus numerical input variables.

C. A comparison of our approach with other approaches
selected from the existing literature.
For further testing of our proposed approach, we carried out
another experiment aimed at comparing our method with the
other approaches taken from the literature, namely Naresh et al.
[14], Carvalho et al. [15], Avinash et al. [16], Kumar et al. [17]
and Zainuddin et al. [18]. However, in this experiment, the
evaluation measures used will be precision (P), Recall (R), and
F1 measure (F1) and Accuracy (A). Its empirical findings are
displayed in the Table 12.

Table 12. P, R, F1 and A of our approach with other
approaches selected from the existing literature

Approach P R F1 A
 Naresh et al. [14] 65.48 67.12 66.28 66.87
Carvalho et al. [15] 79.56 80.04 79.79 78.95
Avinash et al. [16] 70.19 69.38 69.78 68.42
Kumar et al. [17] 83.21 82.40 82.80 81.94
Zainuddin et al. [18] 69.34 70.67 69.99 71.68
CNN+FastText 93.43 90.89 92.14 91.32

From the results shown in the table 12, we remark that our
approach (CNN+FastText) obtained the strongest performances
in terms of accuracy (91.32%), precision (93.43%), recall
(90.89%), and F1 measures (92.14%) compared to other chosen
classifiers from the literature which are Naresh et al. [14],
Carvalho et al. [15], Avinash et al. [16], Kumar et al. [17] and
Zainuddin et al. [18].

VII. CONCLUSION
Feature extraction is needed to get good performance in
sentiment classification. The purpose of feature extraction is to
identify the strongest and most informational set of features to
enhance the effectiveness of the classifier. Moreover, Feature
extraction is the most critical aspect of opinion classification
since classification efficiency can be negatively affected if
features are not properly chosen. For that, in this paper, we
presented a preliminary study of the most popular feature
extractors. And, we combined a CNN, NB, SVM, ID3, and C4.5
with several word embedding methods in order to identify the
most efficient extractor of features that positively affected the
classifier performances. Accordingly to the experimental
results, the performance of the used classifiers varies a little
with the nature of the word embedding sets. In general we found
the combination CNN+FastText outperforms all other
combinations in terms of accuracy, precision, recall, and F1
measure.

REFERENCES
[1] R. Ahuja, A. Chug, S. Kohli, S. Gupta, and P. Ahuja, “The Impact of

Features Extraction on the Sentiment Analysis,” Proceedings of the 2019
International Conference on Pervasive Computing Advances and
Applications, Jaipur, India, (2019) January 8-10.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

complexity in time much lower than others combinations. Since
it consumed a training time equal to 15.46s and a testing time
equal to 10.98s.

B. A COMPARISON OF OUR APPROACH WITH OTHER MACHINE
LEARNING ALGORITHMS.
This experiment makes a comparison of the combinations of
four machines-learning algorithms which are Naive Bayes
(NB), Support Vector Machine (SVM), ID3 and C4.5 decision
tree algorithm with six feature extractors which are BOW, N-
grams, TF-IDF, Word2vec, GloVe and FastText in terms of
precision (P), Recall (R), and F1 measure (F1) and Accuracy
(A). Its empirical findings are displayed in the Table 11.

Table 11. P, R, F1 and A of the combination of four machines-

learning algorithms and six feature extractors

Combination\criteria P R F1 A
NB+BOW 48.31 45.64 46.93 47.12

NB+N-grams 35.84 34.15 34.97 36.02
NB+TF-IDF 50.97 51.08 51.02 52.68

NB+Word2vec 49.64 50.09 49.86 50.32
NB+GloVe 53.26 55.42 54.31 55.29

NB+FastText 56.74 57.49 57.11 58.18
SVM+BOW 45.61 44.88 45.24 46.07

 SVM+N-grams 40.33 39.50 39.91 40.26
SVM+TF-IDF 51.64 50.37 50.99 51.63

SVM+Word2vec 45.87 46.25 46.05 45.91
SVM+GloVe 50.89 49.68 50.27 49.82

SVM+FastText 60.43 61.27 60.48 61.39
ID3+BOW 62.54 63.19 62.86 63.42

ID3+N-grams 53.48 54.02 53.74 54.13
ID3+TF-IDF 64.85 63.94 64.39 65.07

ID3+Word2vec 58.46 60.32 59.37 61.53
ID3+GloVe 64.15 63.24 63.69 64.18

ID3+FastText 70.65 72.39 71.50 72.87
C4.5+BOW 60.58 59.67 60.12 59.93

C4.5+N-grams 58.34 60.59 59.44 61.48
C4.5+TF-IDF 70.49 71.64 71.06 70.97

C4.5+Word2vec 68.31 69.25 68.77 69.51
C4.5+GloVe 71.58 73.82 72.68 73.96

C4.5+FastText 77.65 76.92 77.28 76.64

From the table 11, we remark that the combination machine-
learning algorithm+FastText performs better than other
combinations in terms of P, R, F1 and A. Therefore, we notice
that the feature extractor FastText outperforms all others feature
extractors (BOW, N-grams, TF-IDF, Word2vec, and GloVe).
And from the tables 10 and 11, we remark that CNN+FastText
performs better than others machine learning algorithms
(NB,SVM,ID3 and C4.5) in terms of P(93.43%), R(90.89%),
F1(92.14%) and A(91.32%).

In Table 11, we see that some values are lower than 0.5. In
the case of the NB classifier. This is because the input values to

the NB classifier are numerical values in this contribution. And,
as we know from the machine learning literature, NB performs
well for categorical versus numerical input variables.

C. A comparison of our approach with other approaches
selected from the existing literature.
For further testing of our proposed approach, we carried out
another experiment aimed at comparing our method with the
other approaches taken from the literature, namely Naresh et al.
[14], Carvalho et al. [15], Avinash et al. [16], Kumar et al. [17]
and Zainuddin et al. [18]. However, in this experiment, the
evaluation measures used will be precision (P), Recall (R), and
F1 measure (F1) and Accuracy (A). Its empirical findings are
displayed in the Table 12.

Table 12. P, R, F1 and A of our approach with other
approaches selected from the existing literature

Approach P R F1 A
 Naresh et al. [14] 65.48 67.12 66.28 66.87
Carvalho et al. [15] 79.56 80.04 79.79 78.95
Avinash et al. [16] 70.19 69.38 69.78 68.42
Kumar et al. [17] 83.21 82.40 82.80 81.94
Zainuddin et al. [18] 69.34 70.67 69.99 71.68
CNN+FastText 93.43 90.89 92.14 91.32

From the results shown in the table 12, we remark that our
approach (CNN+FastText) obtained the strongest performances
in terms of accuracy (91.32%), precision (93.43%), recall
(90.89%), and F1 measures (92.14%) compared to other chosen
classifiers from the literature which are Naresh et al. [14],
Carvalho et al. [15], Avinash et al. [16], Kumar et al. [17] and
Zainuddin et al. [18].

VII. CONCLUSION
Feature extraction is needed to get good performance in
sentiment classification. The purpose of feature extraction is to
identify the strongest and most informational set of features to
enhance the effectiveness of the classifier. Moreover, Feature
extraction is the most critical aspect of opinion classification
since classification efficiency can be negatively affected if
features are not properly chosen. For that, in this paper, we
presented a preliminary study of the most popular feature
extractors. And, we combined a CNN, NB, SVM, ID3, and C4.5
with several word embedding methods in order to identify the
most efficient extractor of features that positively affected the
classifier performances. Accordingly to the experimental
results, the performance of the used classifiers varies a little
with the nature of the word embedding sets. In general we found
the combination CNN+FastText outperforms all other
combinations in terms of accuracy, precision, recall, and F1
measure.

REFERENCES
[1] R. Ahuja, A. Chug, S. Kohli, S. Gupta, and P. Ahuja, “The Impact of

Features Extraction on the Sentiment Analysis,” Proceedings of the 2019
International Conference on Pervasive Computing Advances and
Applications, Jaipur, India, (2019) January 8-10.

	 [3]	 H. Saif, Y. He, and H. Alani, “Semantic Sentiment Analysis of
Twitter,” Proceedings of the International Conference on Semantic
Web, Boston, MA, USA, (2012) November 11-15.

	 [4]	 N. Al-Twairesh and H. Al-Negheimish, “Surface and Deep Features
Ensemble for Sentiment Analysis of Arabic Tweets,” Journal of IEEE
Access, vol. 7, (2019), pp. 84122–84131.

	 [5]	 M. Venugopalan and D. Gupta, “Exploring sentiment analysis on
twitter data,” Proceedings of the 2015 Eighth International Conference
on Contemporary Computing, Noida, India, (2015) August 20-22.

	 [6]	 H. Kaur, V. Mangat, and Nidhi, “A survey of sentiment analysis
techniques,” Proceedings of the 2017 International Conference on
IoT in Social, Mobile, Analytics and Cloud, Palladam, India, (2017)
February 10-11.

	 [7]	 S. Liao, J. Wang, R. Yu, K. Sato, and Z. Cheng, “CNN for situations
understanding based on sentiment analysis of twitter data,” Proceed-
ings of the 8th International Conference on Advances in Information
Technology, Macau, China, (2016) December 19-22.

	 [8]	 B. Gupta, M. Negi, K. Vishwakarma, G. Rawat, and P. Badhani, “Study
of Twitter Sentiment Analysis using Machine Learning Algorithms on
Python,” International Journal of Computer Application, vol. 165, no.
9, pp. 29–34.

	 [9]	 H. Hamdan, P. Bellot, and F. Bechet, “Lsislif: Feature Extraction and
Label Weighting for Sentiment Analysis in Twitter,” Proceedings
of the 9th International Workshop on Semantic Evaluation, Denver,
Colorado, (2015) June 4-5.

	[10]	 A. P. Jain and P. Dandannavar, “Application of machine learning tech-
niques to sentiment analysis,” Proceedings of the 2nd International
Conference on Applied and Theoretical Computing and Communica-
tion Technology, Bangalore, India, (2016) July 21-23.

[11]		 F. Es-sabery, K. Es-sabery, and A. Hair, “A MapReduce Improved
ID3 Decision Tree for Classifying Twitter Data,” Edited M. Fakir, M.
Baslam, and R. El Ayachi, Springer, Cham, (2021), pp. 160–182.

[12]	 F. Es-Sabery et al., “A MapReduce Opinion Mining for COVID-19-
Related Tweets Classification Using Enhanced ID3 Decision Tree
Classifier,” International Journal of the IEEE Access, vol. 9, (2021),
pp. 58706–58739.

[13]	 A. Dey, M. Jenamani, and J. J. Thakkar, “Senti-N-Gram: An n-gram
lexicon for sentiment analysis,” Expert Systems with Applications,
vol. 103, pp. 92–105, Aug. 2018, doi: 10.1016/j.eswa.2018.03.004.

[14]	 W. A. Qader, M. M. Ameen, and B. I. Ahmed, “An Overview of Bag of
Words; Importance, Implementation, Applications, and Challenges,”
in 2019 International Engineering Conference (IEC), Jun. 2019, pp.
200–204. doi: 10.1109/IEC47844.2019.8950616.

[15]	 R. Ahuja, A. Chug, S. Kohli, S. Gupta, and P. Ahuja, “The Impact of
Features Extraction on the Sentiment Analysis,” Procedia Computer
Science, vol. 152, pp. 341–348, Jan. 2019,

		 doi: 10.1016/j.procs.2019.05.008.
[16]	 B. Shi, J. Zhao, and K. Xu, “A Word2vec Model for Sentiment

Analysis of Weibo,” in 2019 16th International Conference on Service
Systems and Service Management (ICSSSM), Jul. 2019, pp. 1–6.

		 doi: 10.1109/ICSSSM.2019.8887652.
[17]	 S. Anjali Devi and S. Sivakumar, “An efficient contextual glove

feature extraction model on large textual databases,” Int J Speech
Technol, Sep. 2021, https://doi.org/10.1007/s10772-021-09884-2.

[18]	 J. Kralicek and J. Matas, “Fast Text vs. Non-text Classification of
Images,” in Document Analysis and Recognition – ICDAR 2021,
Cham, 2021, pp. 18–32. doi: 10.1007/978-3-030-86337-1_2.

[19]	 M. E. Basiri, S. Nemati, M. Abdar, E. Cambria, and U. R. Acharya,
“ABCDM: An Attention-based Bidirectional CNN-RNN Deep Model
for sentiment analysis,” International Journal of the Future Generation
Computer Systems, vol. 115, (2021), pp. 279–294.

[20]	 A. Naresh and P. Venkata Krishna, “An efficient approach for sentiment
analysis using machine learning algorithm,” International Journal of the
Evolutionary Intelligence, vol. 14, no. 2, (2021), pp. 725–731.

[21]	 J. Carvalho and A. Plastino, “On the evaluation and combination of
state-of-the-art features in Twitter sentiment analysis,” International
Journal of the Artificial Intelligence Review, vol. 54, no. 3, (2021), pp.
1887–1936.

[22]	 M. Avinash and E. Sivasankar, “A Study of Feature Extraction
Techniques for Sentiment Analysis,” Edited M. Ajith, M. Paramartha,
M. Jyotsna, M. Abhishek, M. Soumi, Springer, Cham, (2019), pp.
475–486.

[23]	 J. A. Kumar and S. Abirami, “An Experimental Study of Feature
Extraction Techniques in Opinion Mining,” International Journal on
Soft Computing, Artificial Intelligence and Applications, vol. 4, no. 1,
(2015), pp. 15–21.

[24]	 N. Zainuddin, A. Selamat, and R. Ibrahim, “Hybrid sentiment classifi-
cation on twitter aspect-based sentiment analysis,” International Jour-
nal of the Applied Intelligence, vol. 48, no. 5, (2018), pp. 1218–1232.

[25]	 A. P. Pandian, “Performance Evaluation and Comparison using Deep
Learning Techniques in Sentiment Analysis,” International Journal of
Soft Computing Paradigm, vol. 3, no. 2, (2021), pp. 123–134.

[26]	 F. Es-Sabery et al., “Sentence-Level Classification Using Parallel
Fuzzy Deep Learning Classifier,” International Journal of IEEE
Access, vol. 9, (2021), pp. 58706–58739.

[27]	 F. Es-sabery, K. Es-sabery, H. Garmani, and A. Hair, “Sentiment
Analysis of Covid19 Tweets Using A MapReduce Fuzzified Hybrid
Classifier Based On C4.5 Decision Tree and Convolutional Neural
Network,” E3S Web Conf., vol. 297, p. 01052, 2021,

		 doi: 10.1051/e3sconf/202129701052.
[28]	 F. Es-sabery and A. Hair, “A MapReduce C4.5 Decision Tree

Algorithm Based on Fuzzy Rule-Based System,” Fuzzy Information
and Engineering, vol. 11, no. 4, (2019), pp. 446–473,

		 doi: 10.1080/16168658.2020.1756099.
	[29]	 F. Es-sabery and A. Hair, An Improved ID3 Classification Algorithm

Based On Correlation Function and Weighted Attribute *. 2019, p. 8.
doi: 10.1109/ISACS48493.2019.9068891.

[30] H. Choi, K. Cho, and Y. Bengio, “Context-dependent word representa-
tion for neural machine translation,” Computer Speech & Language,
vol. 45, pp. 149–160, Sep. 2017, doi: 10.1016/j.csl.2017.01.007.

[31]	 L. Wu, S. C. H. Hoi, and N. Yu, “Semantics-Preserving Bag-of-Words
Models and Applications,” IEEE Transactions on Image Processing,
vol. 19, no. 7, pp. 1908–1920, Jul. 2010,

		 doi: 10.1109/TIP.2010.2045169.
	[32]	 S.-W. Kim and J.-M. Gil, “Research paper classification systems

based on TF-IDF and LDA schemes,” Hum. Cent. Comput. Inf. Sci.,
vol. 9, no. 1, p. 30, Aug. 2019, doi: 10.1186/s13673-019-0192-7.

	[33]	 M. Karthiga, S. Sountharrajan, A. Bazila Banu, S. Sankarananth, E.
Suganya, and B. Sathish Kumar, “Similarity Analytics for Semantic
Text Using Natural Language Processing,” in 3rd EAI International
Conference on Big Data Innovation for Sustainable Cognitive Comput-
ing, Cham, 2022, pp. 239–248. doi: 10.1007/978-3-030-78750-9_17.

	[34]	 V. Kalra, I. Kashyap, and H. Kaur, “Improving document classification
using domain-specific vocabulary: hybridization of deep learning
approach with TFIDF,” Int. j. inf. tecnol., Mar. 2022,

		 doi: 10.1007/s41870-022-00889-x.
	[35]	 P. F. Muhammad, R. Kusumaningrum, and A. Wibowo, “Sentiment

Analysis Using Word2vec And Long Short-Term Memory (LSTM)
For Indonesian Hotel Reviews,” Procedia Computer Science, vol.
179, pp. 728–735, Jan. 2021, doi: 10.1016/j.procs.2021.01.061.

	[36]	 B. Li, A. Drozd, Y. Guo, T. Liu, S. Matsuoka, and X. Du, “Scaling
Word2Vec on Big Corpus,” Data Sci. Eng., vol. 4, no. 2, pp. 157–175,
Jun. 2019, doi: 10.1007/s41019-019-0096-6.

	[37]	 J. Bernabé-Moreno, A. Tejeda-Lorente, J. Herce-Zelaya, C. Porcel,
and E. Herrera-Viedma, “A context-aware embeddings supported
method to extract a fuzzy sentiment polarity dictionary,” Knowledge-
Based Systems, vol. 190, p. 105236, Feb. 2020,

		 doi: 10.1016/j.knosys.2019.105236.
	[38]	 M. I. Prabha and G. Umarani Srikanth, “Survey of Sentiment

Analysis Using Deep Learning Techniques,” in 2019 1st International
Conference on Innovations in Information and Communication
Technology (ICIICT), Apr. 2019, pp. 1–9.

		 doi: 10.1109/ICIICT1.2019.8741438.
	[39]	 P. Mojumder, M. Hasan, Md. F. Hossain, and K. M. A. Hasan, “A

Study of fastText Word Embedding Effects in Document Classification
in Bangla Language,” in Cyber Security and Computer Science, Cham,
2020, pp. 441–453. doi: 0.1007/978-3-030-52856-0_35.

https://doi.org/10.1016/j.eswa.2018.03.004
https://doi.org/10.1109/IEC47844.2019.8950616
https://doi.org/10.1016/j.procs.2019.05.008
https://doi.org/10.1109/ICSSSM.2019.8887652
https://doi.org/10.1007/s10772-021-09884-2
https://doi.org/10.1007/978-3-030-86337-1_2
https://doi.org/10.1051/e3sconf/202129701052
https://doi.org/10.1080/16168658.2020.1756099
https://doi.org/10.1016/j.csl.2017.01.007
https://doi.org/10.1109/TIP.2010.2045169
https://doi.org/10.1007/978-3-030-78750-9_17
https://doi.org/10.1007/s41870-022-00889-x
https://doi.org/10.1016/j.procs.2021.01.061
https://doi.org/10.1007/s41019-019-0096-6
https://doi.org/10.1016/j.knosys.2019.105236
https://doi.org/10.1109/ICIICT1.2019.8741438
https://doi.org/10.1007/978-3-030-52856-0_35

Evaluation of different extractors of features at
the level of sentiment analysis

JUNE 2022 • VOLUME XIV • NUMBER 296

INFOCOMMUNICATIONS JOURNAL

	[40]	 A. G. D’Sa, I. Illina, and D. Fohr, “BERT and fastText Embeddings for
Automatic Detection of Toxic Speech,” in 2020 International Multi-
Conference on: “Organization of Knowledge and Advanced Technologies”
(OCTA), Feb. 2020, pp. 1–5.	 doi: 10.1109/OCTA49274.2020.9151853.

	[41]	 F. Es-sabery, K. Es-sabery, B. El Akraoui, and A. Hair, “Optimization
Focused on Parallel Fuzzy Deep Belief Neural Network for Opinion
Mining,” in Business Intelligence, Cham, 2022, pp. 3–28.

		 doi: 10.1007/978-3-031-06458-6_1.

Fatima Es-Sabery received PhD degree in BigData
Mining from the Department of Computer Sciences,
Sultan Moulay Sliman University, Beni Mellal,
Morocco, in 2022. Her general research interests
include data mining area, big data field, wireless
sensor networks, fuzzy systems, machine learning,
deep learning, and the Internet of Things.

Khadija Es-Sabery received the Engineering degree
from the Department of Computer Science, National
School of Applied Sciences, Cadi Ayyad University,
Marrakech, Morocco, in 2021. Her general interests
include data mining area, big data field, wireless
sensor networks, fuzzy systems, machine learning,
deep learning, and the Internet Things.

Hamid Garmani received the Ph.D. degrees from
University Sultan Moulay Slimane, Morocco, in 2020.
His research interests include network economics,
network security, applications of game theory in
wireless networks, and radio resource management.

Junaid Qadir is currently pursuing the Ph.D.
degree with the Department of Electrical, Electronic
and Telecommunications Engineering, and Naval
Architecture (DITEN), University of Genova, Italy. He
is also a Research Collaborator with the Department
of Signal Theory, Communications and Telematics
Engineering, University of Valladolid, Spain. He has
published many research articles in highly reputed
international journals and conferences.

Abdellatif Hair currently works as a Full Professor
with the Department of Computer, FST Beni Mellal,
Morocco, and a member of the LAMSC Laboratory.
His research interests include object-oriented analysis/
design, security of mobile agents, wireless sensor
network (WSN), data warehousing, and machine
learning (ML).

https://doi.org/10.1109/OCTA49274.2020.9151853
https://doi.org/10.1007/978-3-031-06458-6_1

