
A practical framework to generate and manage
synthetic sensor data

JUNE 2022 • VOLUME XIV • NUMBER 264

INFOCOMMUNICATIONS JOURNAL
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— A huge number of sensors are around us and they

generate different kinds of data. Data owners, e.g. the companies
need IT environments and applications to handle these datasets.
The collected data often contain sensitive information about the
operation of the companies and the production processes.
Therefore, artificial sensor data are strongly needed in the
development and testing phase of these applications.

In this paper, we introduce a complex application with three
main modules to manage synthetic sensor data. The first
component is the data generator module, which is capable of
creating synthetic sensor data according to the user-defined
distributions and parameters. The second module is in charge of
storing the generated data in a flexible relational database,
developed by us. The third component ensures the filtering and the
visualization of the collected or generated data. A common
interface was created to bring together the components and to
provide a unified interface for the users. The adequate user
management was an important aspect of our work. Accordingly,
four different user types and authorities were defined.

Index Terms— synthetic sensor data; data generation; database

for sensor data; data visualization

I. INTRODUCTION
owadays various types of sensors are available to measure
various things around us. They can be applied in our

everyday lives to map the attributes of our environment or to
measure our health conditions. In addition to this, they can be
part of a smart home or smart devices. Apart from these
possibilities, sensors can be utilized in industrial environment
as well. According to the challenges of IoT and Industry 4.0 an
expanding number of the companies and factories apply sensors
[1] [2]. These devices measure different kinds of quantitative
and qualitative attributes connected to the production, including
the actual manufacturing processes and other related attributes
(e.g. current consumption) [3]. Collected data can help us to
improve the efficiency of the product, to reduce the cost, the
amount of waste and to increase the income and the profit.
Companies often require special, individual software solutions
and applications connected to their data processing and
displaying [4].

1 Zoltán Pödör is with Eötvös Loránd University, Faculty of Informatics

(e-mail: pz@inf.elte.hu)
2 Anna Szabó is with Eötvös Loránd University, Faculty of Informatics

(e-mail: h6co1g@inf.elte.hu)

Security issues - connected to IoT and Industry 4.0 -, such as
privacy, access control, information storage and management
and the reliability of data management software are the main
challenges [5] [6]. Besides the security and privacy questions,
the reliability of the developed software is an important
problem [7].

Bugs in the code or an incorrectly implemented analysis
method can cause different kinds of problems, e.g. a huge loss
for the company. Different aspects of software testing are
important parameters of developing software that are free from
bugs and problems [8]. Test data are the basic elements of the
reliable and well-qualified software testing methods [9]. In
many cases, the collected data can be sensitive, especially in an
industrial environment. For example, the machine and the
product data of a given company or the personal data of the
workers can be considered sensitive. In many cases, the person
or the company who ordered the software cannot disclose the
sensitive data to the developers, only in the form of
transformed, encrypted data [10].

There are two main ways of creating artificial data in order
to handle this problem. First one is data masking [11] when real
data are replaced with generated data with a high, measurable
level of similarity. The name of these artificial data is semi-
synthetic, or hybrid data. Another type of artificial data is the
full-synthetic data that is created by an algorithm, and it is
usually used for test datasets of production or operational data
[12]. In this paper, we focus on the problems of functionality
testing.

Synthesis of data is a simple simulation with the primary aim
of generating data according to a given model [13]. The
elementary simulations can be: (1) sequences that generate
various increments; (2) randomizers that create random values
using any well-known distributions; (3) mathematical functions
that describe the form of generated data; (4) noisers which are
generators of lists with missing values, range filters, etc. In this
paper we focus on the randomizers with some general
distributions. The details and descriptions of different kind of
data generator applications are introduced in Section II.B.
These and the above mentioned solutions and applications
focus only on the data generating method, without the
possibility of included, direct and efficient data storing and data
processing. The data handler applications target special kind of

A practical framework to generate and manage
synthetic sensor data

Zoltán Pödör1, and Anna Szabó2

N

A practical framework to generate and manage
synthetic sensor data

Zoltán Pödör1, and Anna Szabó2

Abstract—A huge number of sensors are around us and they
generate different kinds of data. Data owners, e.g. the companies
need IT environments and applications to handle these datasets.
The collected data often contain sensitive information about
the operation of the companies and the production processes.
Therefore, artificial sensor data are strongly needed in the
development and testing phase of these applications.

In this paper, we introduce a complex application with
three main modules to manage synthetic sensor data. The first
component is the data generator module, which is capable of
creating synthetic sensor data according to the user-defined
distributions and parameters. The second module is in charge
of storing the generated data in a flexible relational database,
developed by us. The third component ensures the filtering and
the visualization of the collected or generated data. A common
interface was created to bring together the components and
to provide a unified interface for the users. The adequate user
management was an important aspect of our work. Accordingly,
four different user types and authorities were defined.

Index Terms—synthetic sensor data; data generation; data-
base for sensor data; data visualization

1 Zoltán Pödör is with Eötvös Loránd University, Faculty of Informatics
(e-mail: pz@inf.elte.hu)

2 Anna Szabó is with Eötvös Loránd University, Faculty of Informatics
(e-mail: h6co1g@inf.elte.hu)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— A huge number of sensors are around us and they

generate different kinds of data. Data owners, e.g. the companies
need IT environments and applications to handle these datasets.
The collected data often contain sensitive information about the
operation of the companies and the production processes.
Therefore, artificial sensor data are strongly needed in the
development and testing phase of these applications.

In this paper, we introduce a complex application with three
main modules to manage synthetic sensor data. The first
component is the data generator module, which is capable of
creating synthetic sensor data according to the user-defined
distributions and parameters. The second module is in charge of
storing the generated data in a flexible relational database,
developed by us. The third component ensures the filtering and the
visualization of the collected or generated data. A common
interface was created to bring together the components and to
provide a unified interface for the users. The adequate user
management was an important aspect of our work. Accordingly,
four different user types and authorities were defined.

Index Terms— synthetic sensor data; data generation; database

for sensor data; data visualization

I. INTRODUCTION
owadays various types of sensors are available to measure
various things around us. They can be applied in our

everyday lives to map the attributes of our environment or to
measure our health conditions. In addition to this, they can be
part of a smart home or smart devices. Apart from these
possibilities, sensors can be utilized in industrial environment
as well. According to the challenges of IoT and Industry 4.0 an
expanding number of the companies and factories apply sensors
[1] [2]. These devices measure different kinds of quantitative
and qualitative attributes connected to the production, including
the actual manufacturing processes and other related attributes
(e.g. current consumption) [3]. Collected data can help us to
improve the efficiency of the product, to reduce the cost, the
amount of waste and to increase the income and the profit.
Companies often require special, individual software solutions
and applications connected to their data processing and
displaying [4].

1 Zoltán Pödör is with Eötvös Loránd University, Faculty of Informatics

(e-mail: pz@inf.elte.hu)
2 Anna Szabó is with Eötvös Loránd University, Faculty of Informatics

(e-mail: h6co1g@inf.elte.hu)

Security issues - connected to IoT and Industry 4.0 -, such as
privacy, access control, information storage and management
and the reliability of data management software are the main
challenges [5] [6]. Besides the security and privacy questions,
the reliability of the developed software is an important
problem [7].

Bugs in the code or an incorrectly implemented analysis
method can cause different kinds of problems, e.g. a huge loss
for the company. Different aspects of software testing are
important parameters of developing software that are free from
bugs and problems [8]. Test data are the basic elements of the
reliable and well-qualified software testing methods [9]. In
many cases, the collected data can be sensitive, especially in an
industrial environment. For example, the machine and the
product data of a given company or the personal data of the
workers can be considered sensitive. In many cases, the person
or the company who ordered the software cannot disclose the
sensitive data to the developers, only in the form of
transformed, encrypted data [10].

There are two main ways of creating artificial data in order
to handle this problem. First one is data masking [11] when real
data are replaced with generated data with a high, measurable
level of similarity. The name of these artificial data is semi-
synthetic, or hybrid data. Another type of artificial data is the
full-synthetic data that is created by an algorithm, and it is
usually used for test datasets of production or operational data
[12]. In this paper, we focus on the problems of functionality
testing.

Synthesis of data is a simple simulation with the primary aim
of generating data according to a given model [13]. The
elementary simulations can be: (1) sequences that generate
various increments; (2) randomizers that create random values
using any well-known distributions; (3) mathematical functions
that describe the form of generated data; (4) noisers which are
generators of lists with missing values, range filters, etc. In this
paper we focus on the randomizers with some general
distributions. The details and descriptions of different kind of
data generator applications are introduced in Section II.B.
These and the above mentioned solutions and applications
focus only on the data generating method, without the
possibility of included, direct and efficient data storing and data
processing. The data handler applications target special kind of

A practical framework to generate and manage
synthetic sensor data

Zoltán Pödör1, and Anna Szabó2

N

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— A huge number of sensors are around us and they

generate different kinds of data. Data owners, e.g. the companies
need IT environments and applications to handle these datasets.
The collected data often contain sensitive information about the
operation of the companies and the production processes.
Therefore, artificial sensor data are strongly needed in the
development and testing phase of these applications.

In this paper, we introduce a complex application with three
main modules to manage synthetic sensor data. The first
component is the data generator module, which is capable of
creating synthetic sensor data according to the user-defined
distributions and parameters. The second module is in charge of
storing the generated data in a flexible relational database,
developed by us. The third component ensures the filtering and the
visualization of the collected or generated data. A common
interface was created to bring together the components and to
provide a unified interface for the users. The adequate user
management was an important aspect of our work. Accordingly,
four different user types and authorities were defined.

Index Terms— synthetic sensor data; data generation; database

for sensor data; data visualization

I. INTRODUCTION
owadays various types of sensors are available to measure
various things around us. They can be applied in our

everyday lives to map the attributes of our environment or to
measure our health conditions. In addition to this, they can be
part of a smart home or smart devices. Apart from these
possibilities, sensors can be utilized in industrial environment
as well. According to the challenges of IoT and Industry 4.0 an
expanding number of the companies and factories apply sensors
[1] [2]. These devices measure different kinds of quantitative
and qualitative attributes connected to the production, including
the actual manufacturing processes and other related attributes
(e.g. current consumption) [3]. Collected data can help us to
improve the efficiency of the product, to reduce the cost, the
amount of waste and to increase the income and the profit.
Companies often require special, individual software solutions
and applications connected to their data processing and
displaying [4].

1 Zoltán Pödör is with Eötvös Loránd University, Faculty of Informatics

(e-mail: pz@inf.elte.hu)
2 Anna Szabó is with Eötvös Loránd University, Faculty of Informatics

(e-mail: h6co1g@inf.elte.hu)

Security issues - connected to IoT and Industry 4.0 -, such as
privacy, access control, information storage and management
and the reliability of data management software are the main
challenges [5] [6]. Besides the security and privacy questions,
the reliability of the developed software is an important
problem [7].

Bugs in the code or an incorrectly implemented analysis
method can cause different kinds of problems, e.g. a huge loss
for the company. Different aspects of software testing are
important parameters of developing software that are free from
bugs and problems [8]. Test data are the basic elements of the
reliable and well-qualified software testing methods [9]. In
many cases, the collected data can be sensitive, especially in an
industrial environment. For example, the machine and the
product data of a given company or the personal data of the
workers can be considered sensitive. In many cases, the person
or the company who ordered the software cannot disclose the
sensitive data to the developers, only in the form of
transformed, encrypted data [10].

There are two main ways of creating artificial data in order
to handle this problem. First one is data masking [11] when real
data are replaced with generated data with a high, measurable
level of similarity. The name of these artificial data is semi-
synthetic, or hybrid data. Another type of artificial data is the
full-synthetic data that is created by an algorithm, and it is
usually used for test datasets of production or operational data
[12]. In this paper, we focus on the problems of functionality
testing.

Synthesis of data is a simple simulation with the primary aim
of generating data according to a given model [13]. The
elementary simulations can be: (1) sequences that generate
various increments; (2) randomizers that create random values
using any well-known distributions; (3) mathematical functions
that describe the form of generated data; (4) noisers which are
generators of lists with missing values, range filters, etc. In this
paper we focus on the randomizers with some general
distributions. The details and descriptions of different kind of
data generator applications are introduced in Section II.B.
These and the above mentioned solutions and applications
focus only on the data generating method, without the
possibility of included, direct and efficient data storing and data
processing. The data handler applications target special kind of

A practical framework to generate and manage
synthetic sensor data

Zoltán Pödör1, and Anna Szabó2

N

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

visualization and analysis possibilities [14], including the pre-
and post-processing methods. They usually do not have the
ability to create artificial sensor data. They usually use outer
databases, which store the actual used data and they focus only
on data visualization and data analysis. The uniqueness of our
solution is that these three important components (data
generator, database and data handler) are connected into one
complex application with an appropriate user management
according to the stored datasets.

For that reason, on one hand, we offer a Python-based
solution to create artificial sensor data according to different
conditions (range, measurement frequency, measurement unit,
accuracy, etc.) to help the testing period of the software
development process. The generated sensor data is stored in the
database module that is an integrated part of our application.
The data generator was implemented to test the functionality of
the developed software with special distributions of the
generated synthetic sensor data. On the other hand, our solution
is a complex framework with a database to store the generated
data and a visualization surface to check, visualize the
generated data. Another big advantage is the common surface
above the modules that contains all available services of the
application, and it grants the services only to the authorized
users from the artificial sensor creation through the data
generation to storing and visualization. The data visualization
and the basic analysis modules allow to process data, from
different, outer sources, but stored in the application’s database.

Our main aim is to support different kinds of data-based
application development and testing phase with artificial sensor
data samples. The problem of sensitive data can be handled by
the included data generation module during the software
development period. Our application can be used in different
areas. The integrated database and visualization modules
provide the opportunity to handle the data that is either
artificially generated or comes from an external source. The
module-based structure provides easy expandability in terms of
the number of the modules and their structure while the user-
friendly interface provides easy handling and use for non-IT
professionals because it does not require any special prior
knowledge. In the future we plan to include other types of
databases and to develop the visualization and analysis modules
next to the data generator module.

II. THE APPLICATION COMPONENTS

The application contains three main modules (Fig. 1.). First
one is the flexible database to store the generated artificial data
with all connected properties, like timestamp, unit, location,
devices etc. Another database was created to store separately
the data of the different users.

Second one is the data generator module that is responsible
for the generation of the artificial sensor data according to the
user-defined parameters and distributions.

Third part is the filtering and visualization module that
intends to select and visualize the appropriate data. This module
gives the opportunity to create some basic statistical properties

Fig. 1. Structure of the application

DOI: 10.36244/ICJ.2022.2.7

mailto:pz%40inf.elte.hu?subject=
mailto:h6co1g%40inf.elte.hu?subject=
https://doi.org/10.36244/ICJ.2022.2.7

A practical framework to generate and manage
synthetic sensor data

INFOCOMMUNICATIONS JOURNAL

JUNE 2022 • VOLUME XIV • NUMBER 2 65

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— A huge number of sensors are around us and they

generate different kinds of data. Data owners, e.g. the companies
need IT environments and applications to handle these datasets.
The collected data often contain sensitive information about the
operation of the companies and the production processes.
Therefore, artificial sensor data are strongly needed in the
development and testing phase of these applications.

In this paper, we introduce a complex application with three
main modules to manage synthetic sensor data. The first
component is the data generator module, which is capable of
creating synthetic sensor data according to the user-defined
distributions and parameters. The second module is in charge of
storing the generated data in a flexible relational database,
developed by us. The third component ensures the filtering and the
visualization of the collected or generated data. A common
interface was created to bring together the components and to
provide a unified interface for the users. The adequate user
management was an important aspect of our work. Accordingly,
four different user types and authorities were defined.

Index Terms— synthetic sensor data; data generation; database

for sensor data; data visualization

I. INTRODUCTION
owadays various types of sensors are available to measure
various things around us. They can be applied in our

everyday lives to map the attributes of our environment or to
measure our health conditions. In addition to this, they can be
part of a smart home or smart devices. Apart from these
possibilities, sensors can be utilized in industrial environment
as well. According to the challenges of IoT and Industry 4.0 an
expanding number of the companies and factories apply sensors
[1] [2]. These devices measure different kinds of quantitative
and qualitative attributes connected to the production, including
the actual manufacturing processes and other related attributes
(e.g. current consumption) [3]. Collected data can help us to
improve the efficiency of the product, to reduce the cost, the
amount of waste and to increase the income and the profit.
Companies often require special, individual software solutions
and applications connected to their data processing and
displaying [4].

1 Zoltán Pödör is with Eötvös Loránd University, Faculty of Informatics

(e-mail: pz@inf.elte.hu)
2 Anna Szabó is with Eötvös Loránd University, Faculty of Informatics

(e-mail: h6co1g@inf.elte.hu)

Security issues - connected to IoT and Industry 4.0 -, such as
privacy, access control, information storage and management
and the reliability of data management software are the main
challenges [5] [6]. Besides the security and privacy questions,
the reliability of the developed software is an important
problem [7].

Bugs in the code or an incorrectly implemented analysis
method can cause different kinds of problems, e.g. a huge loss
for the company. Different aspects of software testing are
important parameters of developing software that are free from
bugs and problems [8]. Test data are the basic elements of the
reliable and well-qualified software testing methods [9]. In
many cases, the collected data can be sensitive, especially in an
industrial environment. For example, the machine and the
product data of a given company or the personal data of the
workers can be considered sensitive. In many cases, the person
or the company who ordered the software cannot disclose the
sensitive data to the developers, only in the form of
transformed, encrypted data [10].

There are two main ways of creating artificial data in order
to handle this problem. First one is data masking [11] when real
data are replaced with generated data with a high, measurable
level of similarity. The name of these artificial data is semi-
synthetic, or hybrid data. Another type of artificial data is the
full-synthetic data that is created by an algorithm, and it is
usually used for test datasets of production or operational data
[12]. In this paper, we focus on the problems of functionality
testing.

Synthesis of data is a simple simulation with the primary aim
of generating data according to a given model [13]. The
elementary simulations can be: (1) sequences that generate
various increments; (2) randomizers that create random values
using any well-known distributions; (3) mathematical functions
that describe the form of generated data; (4) noisers which are
generators of lists with missing values, range filters, etc. In this
paper we focus on the randomizers with some general
distributions. The details and descriptions of different kind of
data generator applications are introduced in Section II.B.
These and the above mentioned solutions and applications
focus only on the data generating method, without the
possibility of included, direct and efficient data storing and data
processing. The data handler applications target special kind of

A practical framework to generate and manage
synthetic sensor data

Zoltán Pödör1, and Anna Szabó2

N

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

visualization and analysis possibilities [14], including the pre-
and post-processing methods. They usually do not have the
ability to create artificial sensor data. They usually use outer
databases, which store the actual used data and they focus only
on data visualization and data analysis. The uniqueness of our
solution is that these three important components (data
generator, database and data handler) are connected into one
complex application with an appropriate user management
according to the stored datasets.

For that reason, on one hand, we offer a Python-based
solution to create artificial sensor data according to different
conditions (range, measurement frequency, measurement unit,
accuracy, etc.) to help the testing period of the software
development process. The generated sensor data is stored in the
database module that is an integrated part of our application.
The data generator was implemented to test the functionality of
the developed software with special distributions of the
generated synthetic sensor data. On the other hand, our solution
is a complex framework with a database to store the generated
data and a visualization surface to check, visualize the
generated data. Another big advantage is the common surface
above the modules that contains all available services of the
application, and it grants the services only to the authorized
users from the artificial sensor creation through the data
generation to storing and visualization. The data visualization
and the basic analysis modules allow to process data, from
different, outer sources, but stored in the application’s database.

Our main aim is to support different kinds of data-based
application development and testing phase with artificial sensor
data samples. The problem of sensitive data can be handled by
the included data generation module during the software
development period. Our application can be used in different
areas. The integrated database and visualization modules
provide the opportunity to handle the data that is either
artificially generated or comes from an external source. The
module-based structure provides easy expandability in terms of
the number of the modules and their structure while the user-
friendly interface provides easy handling and use for non-IT
professionals because it does not require any special prior
knowledge. In the future we plan to include other types of
databases and to develop the visualization and analysis modules
next to the data generator module.

II. THE APPLICATION COMPONENTS

The application contains three main modules (Fig. 1.). First
one is the flexible database to store the generated artificial data
with all connected properties, like timestamp, unit, location,
devices etc. Another database was created to store separately
the data of the different users.

Second one is the data generator module that is responsible
for the generation of the artificial sensor data according to the
user-defined parameters and distributions.

Third part is the filtering and visualization module that
intends to select and visualize the appropriate data. This module
gives the opportunity to create some basic statistical properties

Fig. 1. Structure of the application

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

visualization and analysis possibilities [14], including the pre-
and post-processing methods. They usually do not have the
ability to create artificial sensor data. They usually use outer
databases, which store the actual used data and they focus only
on data visualization and data analysis. The uniqueness of our
solution is that these three important components (data
generator, database and data handler) are connected into one
complex application with an appropriate user management
according to the stored datasets.

For that reason, on one hand, we offer a Python-based
solution to create artificial sensor data according to different
conditions (range, measurement frequency, measurement unit,
accuracy, etc.) to help the testing period of the software
development process. The generated sensor data is stored in the
database module that is an integrated part of our application.
The data generator was implemented to test the functionality of
the developed software with special distributions of the
generated synthetic sensor data. On the other hand, our solution
is a complex framework with a database to store the generated
data and a visualization surface to check, visualize the
generated data. Another big advantage is the common surface
above the modules that contains all available services of the
application, and it grants the services only to the authorized
users from the artificial sensor creation through the data
generation to storing and visualization. The data visualization
and the basic analysis modules allow to process data, from
different, outer sources, but stored in the application’s database.

Our main aim is to support different kinds of data-based
application development and testing phase with artificial sensor
data samples. The problem of sensitive data can be handled by
the included data generation module during the software
development period. Our application can be used in different
areas. The integrated database and visualization modules
provide the opportunity to handle the data that is either
artificially generated or comes from an external source. The
module-based structure provides easy expandability in terms of
the number of the modules and their structure while the user-
friendly interface provides easy handling and use for non-IT
professionals because it does not require any special prior
knowledge. In the future we plan to include other types of
databases and to develop the visualization and analysis modules
next to the data generator module.

II. THE APPLICATION COMPONENTS

The application contains three main modules (Fig. 1.). First
one is the flexible database to store the generated artificial data
with all connected properties, like timestamp, unit, location,
devices etc. Another database was created to store separately
the data of the different users.

Second one is the data generator module that is responsible
for the generation of the artificial sensor data according to the
user-defined parameters and distributions.

Third part is the filtering and visualization module that
intends to select and visualize the appropriate data. This module
gives the opportunity to create some basic statistical properties

Fig. 1. Structure of the application

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

visualization and analysis possibilities [14], including the pre-
and post-processing methods. They usually do not have the
ability to create artificial sensor data. They usually use outer
databases, which store the actual used data and they focus only
on data visualization and data analysis. The uniqueness of our
solution is that these three important components (data
generator, database and data handler) are connected into one
complex application with an appropriate user management
according to the stored datasets.

For that reason, on one hand, we offer a Python-based
solution to create artificial sensor data according to different
conditions (range, measurement frequency, measurement unit,
accuracy, etc.) to help the testing period of the software
development process. The generated sensor data is stored in the
database module that is an integrated part of our application.
The data generator was implemented to test the functionality of
the developed software with special distributions of the
generated synthetic sensor data. On the other hand, our solution
is a complex framework with a database to store the generated
data and a visualization surface to check, visualize the
generated data. Another big advantage is the common surface
above the modules that contains all available services of the
application, and it grants the services only to the authorized
users from the artificial sensor creation through the data
generation to storing and visualization. The data visualization
and the basic analysis modules allow to process data, from
different, outer sources, but stored in the application’s database.

Our main aim is to support different kinds of data-based
application development and testing phase with artificial sensor
data samples. The problem of sensitive data can be handled by
the included data generation module during the software
development period. Our application can be used in different
areas. The integrated database and visualization modules
provide the opportunity to handle the data that is either
artificially generated or comes from an external source. The
module-based structure provides easy expandability in terms of
the number of the modules and their structure while the user-
friendly interface provides easy handling and use for non-IT
professionals because it does not require any special prior
knowledge. In the future we plan to include other types of
databases and to develop the visualization and analysis modules
next to the data generator module.

II. THE APPLICATION COMPONENTS

The application contains three main modules (Fig. 1.). First
one is the flexible database to store the generated artificial data
with all connected properties, like timestamp, unit, location,
devices etc. Another database was created to store separately
the data of the different users.

Second one is the data generator module that is responsible
for the generation of the artificial sensor data according to the
user-defined parameters and distributions.

Third part is the filtering and visualization module that
intends to select and visualize the appropriate data. This module
gives the opportunity to create some basic statistical properties

Fig. 1. Structure of the application

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 3

of the generated data besides the visualization which can help
us to compare the artificial data with the real data.

These three modules are embedded into a web-based
interface to provide a unified user interface, easy application
handling, and user-friendly system for all potential users. The
common surface includes all available services of our
application but only for the authorized users.

Because of the data security difficulties, user management
was an important aspect of our work. Four different types of
users were created. The tool admin can handle the sensors
(create, delete and modify them), the data generator can use and
set the data generator module, the data handler uses the analysis
and visualization module while the user admin manages the
data (name, e-mail address, roles etc.) of the system’s users and
registers new members. In the next chapters we will introduce
these components in detail.

A. The database
Not only the sensors but also the systems which can handle

them (store, analyse the collected data, display the raw and the
processed data) are important. A basic element of such a system
is an efficient, reliable and flexible database to store the
collected sensor data. Relational and non-relational databases
have a lot of advantages and some disadvantages too and both
of them offer the opportunity to store the collected sensor data
[15]. The structure of a non-relational database is not fixed
(unstructured), which means that there are no relation schemas,
connections, and the form and the structure of data can be easily

modified [16]. The IoT and the sensor based applications often
use non-relational databases, because they have a lot of
advantages, e.g. the free structure of the database [17]. One of
the advantages of the relational databases that they are capable
of performing more complex queries and filtering [18] [19].
Our main aim is to create and store artificial sensor data to help
the testing of the functionality of the developed software and
not to serve big queries. Because of the above-mentioned
reasons, we decided to create and use a flexible relational
database in MSSQL environment. It is the first module of our
complex system, which can store the data derived from the data
generator module.

The structure of the database can be seen in Fig. 2 shown as
an entity-relationship diagram. The following tables were
defined:

 Sensor_types table: general characterization of the
different sensor types defined by a unique identifier (id)
and each type has a practical name (name). Max_values
and min_values define the possible minimum and
maximum values measured by the given sensor type.
The measurement_length defines the length of one
measurement and the measurement_accuracy defines
the measurement precision of the actual sensor type.

 Sensors table: it describes the parameters of a given
sensor, which belongs to a certain type. Each one of the
sensors is defined by a unique identifier (id) and has a
practical name (name). The alarm_low_boundary and
the alarm_over_boundary attributes define the lowest

Fig. 2. Entity-relationship diagram of the database structure

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

visualization and analysis possibilities [14], including the pre-
and post-processing methods. They usually do not have the
ability to create artificial sensor data. They usually use outer
databases, which store the actual used data and they focus only
on data visualization and data analysis. The uniqueness of our
solution is that these three important components (data
generator, database and data handler) are connected into one
complex application with an appropriate user management
according to the stored datasets.

For that reason, on one hand, we offer a Python-based
solution to create artificial sensor data according to different
conditions (range, measurement frequency, measurement unit,
accuracy, etc.) to help the testing period of the software
development process. The generated sensor data is stored in the
database module that is an integrated part of our application.
The data generator was implemented to test the functionality of
the developed software with special distributions of the
generated synthetic sensor data. On the other hand, our solution
is a complex framework with a database to store the generated
data and a visualization surface to check, visualize the
generated data. Another big advantage is the common surface
above the modules that contains all available services of the
application, and it grants the services only to the authorized
users from the artificial sensor creation through the data
generation to storing and visualization. The data visualization
and the basic analysis modules allow to process data, from
different, outer sources, but stored in the application’s database.

Our main aim is to support different kinds of data-based
application development and testing phase with artificial sensor
data samples. The problem of sensitive data can be handled by
the included data generation module during the software
development period. Our application can be used in different
areas. The integrated database and visualization modules
provide the opportunity to handle the data that is either
artificially generated or comes from an external source. The
module-based structure provides easy expandability in terms of
the number of the modules and their structure while the user-
friendly interface provides easy handling and use for non-IT
professionals because it does not require any special prior
knowledge. In the future we plan to include other types of
databases and to develop the visualization and analysis modules
next to the data generator module.

II. THE APPLICATION COMPONENTS

The application contains three main modules (Fig. 1.). First
one is the flexible database to store the generated artificial data
with all connected properties, like timestamp, unit, location,
devices etc. Another database was created to store separately
the data of the different users.

Second one is the data generator module that is responsible
for the generation of the artificial sensor data according to the
user-defined parameters and distributions.

Third part is the filtering and visualization module that
intends to select and visualize the appropriate data. This module
gives the opportunity to create some basic statistical properties

Fig. 1. Structure of the application

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

visualization and analysis possibilities [14], including the pre-
and post-processing methods. They usually do not have the
ability to create artificial sensor data. They usually use outer
databases, which store the actual used data and they focus only
on data visualization and data analysis. The uniqueness of our
solution is that these three important components (data
generator, database and data handler) are connected into one
complex application with an appropriate user management
according to the stored datasets.

For that reason, on one hand, we offer a Python-based
solution to create artificial sensor data according to different
conditions (range, measurement frequency, measurement unit,
accuracy, etc.) to help the testing period of the software
development process. The generated sensor data is stored in the
database module that is an integrated part of our application.
The data generator was implemented to test the functionality of
the developed software with special distributions of the
generated synthetic sensor data. On the other hand, our solution
is a complex framework with a database to store the generated
data and a visualization surface to check, visualize the
generated data. Another big advantage is the common surface
above the modules that contains all available services of the
application, and it grants the services only to the authorized
users from the artificial sensor creation through the data
generation to storing and visualization. The data visualization
and the basic analysis modules allow to process data, from
different, outer sources, but stored in the application’s database.

Our main aim is to support different kinds of data-based
application development and testing phase with artificial sensor
data samples. The problem of sensitive data can be handled by
the included data generation module during the software
development period. Our application can be used in different
areas. The integrated database and visualization modules
provide the opportunity to handle the data that is either
artificially generated or comes from an external source. The
module-based structure provides easy expandability in terms of
the number of the modules and their structure while the user-
friendly interface provides easy handling and use for non-IT
professionals because it does not require any special prior
knowledge. In the future we plan to include other types of
databases and to develop the visualization and analysis modules
next to the data generator module.

II. THE APPLICATION COMPONENTS

The application contains three main modules (Fig. 1.). First
one is the flexible database to store the generated artificial data
with all connected properties, like timestamp, unit, location,
devices etc. Another database was created to store separately
the data of the different users.

Second one is the data generator module that is responsible
for the generation of the artificial sensor data according to the
user-defined parameters and distributions.

Third part is the filtering and visualization module that
intends to select and visualize the appropriate data. This module
gives the opportunity to create some basic statistical properties

Fig. 1. Structure of the application

A practical framework to generate and manage
synthetic sensor data

JUNE 2022 • VOLUME XIV • NUMBER 266

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 3

of the generated data besides the visualization which can help
us to compare the artificial data with the real data.

These three modules are embedded into a web-based
interface to provide a unified user interface, easy application
handling, and user-friendly system for all potential users. The
common surface includes all available services of our
application but only for the authorized users.

Because of the data security difficulties, user management
was an important aspect of our work. Four different types of
users were created. The tool admin can handle the sensors
(create, delete and modify them), the data generator can use and
set the data generator module, the data handler uses the analysis
and visualization module while the user admin manages the
data (name, e-mail address, roles etc.) of the system’s users and
registers new members. In the next chapters we will introduce
these components in detail.

A. The database
Not only the sensors but also the systems which can handle

them (store, analyse the collected data, display the raw and the
processed data) are important. A basic element of such a system
is an efficient, reliable and flexible database to store the
collected sensor data. Relational and non-relational databases
have a lot of advantages and some disadvantages too and both
of them offer the opportunity to store the collected sensor data
[15]. The structure of a non-relational database is not fixed
(unstructured), which means that there are no relation schemas,
connections, and the form and the structure of data can be easily

modified [16]. The IoT and the sensor based applications often
use non-relational databases, because they have a lot of
advantages, e.g. the free structure of the database [17]. One of
the advantages of the relational databases that they are capable
of performing more complex queries and filtering [18] [19].
Our main aim is to create and store artificial sensor data to help
the testing of the functionality of the developed software and
not to serve big queries. Because of the above-mentioned
reasons, we decided to create and use a flexible relational
database in MSSQL environment. It is the first module of our
complex system, which can store the data derived from the data
generator module.

The structure of the database can be seen in Fig. 2 shown as
an entity-relationship diagram. The following tables were
defined:

 Sensor_types table: general characterization of the
different sensor types defined by a unique identifier (id)
and each type has a practical name (name). Max_values
and min_values define the possible minimum and
maximum values measured by the given sensor type.
The measurement_length defines the length of one
measurement and the measurement_accuracy defines
the measurement precision of the actual sensor type.

 Sensors table: it describes the parameters of a given
sensor, which belongs to a certain type. Each one of the
sensors is defined by a unique identifier (id) and has a
practical name (name). The alarm_low_boundary and
the alarm_over_boundary attributes define the lowest

Fig. 2. Entity-relationship diagram of the database structure

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 3

of the generated data besides the visualization which can help
us to compare the artificial data with the real data.

These three modules are embedded into a web-based
interface to provide a unified user interface, easy application
handling, and user-friendly system for all potential users. The
common surface includes all available services of our
application but only for the authorized users.

Because of the data security difficulties, user management
was an important aspect of our work. Four different types of
users were created. The tool admin can handle the sensors
(create, delete and modify them), the data generator can use and
set the data generator module, the data handler uses the analysis
and visualization module while the user admin manages the
data (name, e-mail address, roles etc.) of the system’s users and
registers new members. In the next chapters we will introduce
these components in detail.

A. The database
Not only the sensors but also the systems which can handle

them (store, analyse the collected data, display the raw and the
processed data) are important. A basic element of such a system
is an efficient, reliable and flexible database to store the
collected sensor data. Relational and non-relational databases
have a lot of advantages and some disadvantages too and both
of them offer the opportunity to store the collected sensor data
[15]. The structure of a non-relational database is not fixed
(unstructured), which means that there are no relation schemas,
connections, and the form and the structure of data can be easily

modified [16]. The IoT and the sensor based applications often
use non-relational databases, because they have a lot of
advantages, e.g. the free structure of the database [17]. One of
the advantages of the relational databases that they are capable
of performing more complex queries and filtering [18] [19].
Our main aim is to create and store artificial sensor data to help
the testing of the functionality of the developed software and
not to serve big queries. Because of the above-mentioned
reasons, we decided to create and use a flexible relational
database in MSSQL environment. It is the first module of our
complex system, which can store the data derived from the data
generator module.

The structure of the database can be seen in Fig. 2 shown as
an entity-relationship diagram. The following tables were
defined:

 Sensor_types table: general characterization of the
different sensor types defined by a unique identifier (id)
and each type has a practical name (name). Max_values
and min_values define the possible minimum and
maximum values measured by the given sensor type.
The measurement_length defines the length of one
measurement and the measurement_accuracy defines
the measurement precision of the actual sensor type.

 Sensors table: it describes the parameters of a given
sensor, which belongs to a certain type. Each one of the
sensors is defined by a unique identifier (id) and has a
practical name (name). The alarm_low_boundary and
the alarm_over_boundary attributes define the lowest

Fig. 2. Entity-relationship diagram of the database structure

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 3

of the generated data besides the visualization which can help
us to compare the artificial data with the real data.

These three modules are embedded into a web-based
interface to provide a unified user interface, easy application
handling, and user-friendly system for all potential users. The
common surface includes all available services of our
application but only for the authorized users.

Because of the data security difficulties, user management
was an important aspect of our work. Four different types of
users were created. The tool admin can handle the sensors
(create, delete and modify them), the data generator can use and
set the data generator module, the data handler uses the analysis
and visualization module while the user admin manages the
data (name, e-mail address, roles etc.) of the system’s users and
registers new members. In the next chapters we will introduce
these components in detail.

A. The database
Not only the sensors but also the systems which can handle

them (store, analyse the collected data, display the raw and the
processed data) are important. A basic element of such a system
is an efficient, reliable and flexible database to store the
collected sensor data. Relational and non-relational databases
have a lot of advantages and some disadvantages too and both
of them offer the opportunity to store the collected sensor data
[15]. The structure of a non-relational database is not fixed
(unstructured), which means that there are no relation schemas,
connections, and the form and the structure of data can be easily

modified [16]. The IoT and the sensor based applications often
use non-relational databases, because they have a lot of
advantages, e.g. the free structure of the database [17]. One of
the advantages of the relational databases that they are capable
of performing more complex queries and filtering [18] [19].
Our main aim is to create and store artificial sensor data to help
the testing of the functionality of the developed software and
not to serve big queries. Because of the above-mentioned
reasons, we decided to create and use a flexible relational
database in MSSQL environment. It is the first module of our
complex system, which can store the data derived from the data
generator module.

The structure of the database can be seen in Fig. 2 shown as
an entity-relationship diagram. The following tables were
defined:

 Sensor_types table: general characterization of the
different sensor types defined by a unique identifier (id)
and each type has a practical name (name). Max_values
and min_values define the possible minimum and
maximum values measured by the given sensor type.
The measurement_length defines the length of one
measurement and the measurement_accuracy defines
the measurement precision of the actual sensor type.

 Sensors table: it describes the parameters of a given
sensor, which belongs to a certain type. Each one of the
sensors is defined by a unique identifier (id) and has a
practical name (name). The alarm_low_boundary and
the alarm_over_boundary attributes define the lowest

Fig. 2. Entity-relationship diagram of the database structure

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 3

of the generated data besides the visualization which can help
us to compare the artificial data with the real data.

These three modules are embedded into a web-based
interface to provide a unified user interface, easy application
handling, and user-friendly system for all potential users. The
common surface includes all available services of our
application but only for the authorized users.

Because of the data security difficulties, user management
was an important aspect of our work. Four different types of
users were created. The tool admin can handle the sensors
(create, delete and modify them), the data generator can use and
set the data generator module, the data handler uses the analysis
and visualization module while the user admin manages the
data (name, e-mail address, roles etc.) of the system’s users and
registers new members. In the next chapters we will introduce
these components in detail.

A. The database
Not only the sensors but also the systems which can handle

them (store, analyse the collected data, display the raw and the
processed data) are important. A basic element of such a system
is an efficient, reliable and flexible database to store the
collected sensor data. Relational and non-relational databases
have a lot of advantages and some disadvantages too and both
of them offer the opportunity to store the collected sensor data
[15]. The structure of a non-relational database is not fixed
(unstructured), which means that there are no relation schemas,
connections, and the form and the structure of data can be easily

modified [16]. The IoT and the sensor based applications often
use non-relational databases, because they have a lot of
advantages, e.g. the free structure of the database [17]. One of
the advantages of the relational databases that they are capable
of performing more complex queries and filtering [18] [19].
Our main aim is to create and store artificial sensor data to help
the testing of the functionality of the developed software and
not to serve big queries. Because of the above-mentioned
reasons, we decided to create and use a flexible relational
database in MSSQL environment. It is the first module of our
complex system, which can store the data derived from the data
generator module.

The structure of the database can be seen in Fig. 2 shown as
an entity-relationship diagram. The following tables were
defined:

 Sensor_types table: general characterization of the
different sensor types defined by a unique identifier (id)
and each type has a practical name (name). Max_values
and min_values define the possible minimum and
maximum values measured by the given sensor type.
The measurement_length defines the length of one
measurement and the measurement_accuracy defines
the measurement precision of the actual sensor type.

 Sensors table: it describes the parameters of a given
sensor, which belongs to a certain type. Each one of the
sensors is defined by a unique identifier (id) and has a
practical name (name). The alarm_low_boundary and
the alarm_over_boundary attributes define the lowest

Fig. 2. Entity-relationship diagram of the database structure

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

and the highest measured values which might be
practically correct. The frequency defines the regularity
of the measurement. Furthermore, the year of production
(year_prod) and the date of calibration (calib_date) are
stored in this table.

 Measurement_types table: describes the parameters of
the measured data. Each piece of data has a unique
identifier (id) and has a practical name (name). The unit
of the measured values is stored as well (unit).

 Measured_values table: it contains the measured sensor
values, which are defined by two attributes: the date and
the sensor.id. The attribute measured_value stores the
measured sensor values. The attribute valid is a binary
parameter with only two values, 1 and 0. Value 1 shows
that the measured value is correct, which means that it is
between the sensors.alarm_low_boundary and
sensors.alarm_over_boundary values from Sensors
table, and the error_rate attribute is NULL. Value 0
shows that the measured value is incorrect. In this case,
the value of error_rate is the value of signed distance
between the measured value and the given boundary.
The values of attributes valid and error_rate are created
automatically by a trigger.

 Devices table: describes the parameters of the devices
which contain the sensors. Each device is defined by a
unique identifier (id) and has a practical name (name).

 Locations table: describes the parameters of the location
of the devices and sensors. Each place and location is
defined by a unique identifier (id). Attributes location1,
location2 and location3 store the details of the location,
e.g. the name of the location or company. The attribute
GPS_coordinates contains the accurate location in GPS
format. Condition1, condition2 and condition3 provide
an opportunity to store information about the conditions
of the location, e.g. if the sensor or the device is an
indoor or outdoor gadget.

The next connections were defined between the tables:
 Each of the sensors has one and only one sensor type. In

other words, there are sensor families, with some well-
defined general parameters in which we can define a
concrete sensor, which belongs to the given sensor
family. This connection is a one-to-many relationship,
because one sensor family can contain more sensors and
one sensor always belongs to only one family.

 Each of the sensor types includes the unit and the type
of the measurement. It is a one-to-many relationship,
because a given sensor type measures only one thing, but
one type of measurement can measure more than one
sensor type.

 The measured values are connected to the sensor which
measured them. This is a one-to-many connection,
because a measured value always belongs to only one
given sensor, which measured it, but one sensor can
measure more than one data.

 All sensors belong to a device, which contains the given
sensor. This connection is a one-to-many relationship,

because a device can contain a lot of sensors, but one
sensor is always in one device.

 It is important to store the conditions, e.g. the place of
the sensor. It is a one-to-many connection, because a
given device is always in one place, but more than one
device can be in one place.

Our database is suited for storing any measured sensor data
or storing the data, which are generated by the application’s
second module, the data generator. Of course, in the future, if it
is necessary or practical, we can replace our relational database
with another type of database.

B. The data generator
This module supports the development and testing phase of

the applications, which use sensitive data, because it generates
artificial data according to the user-defined parameters. These
artificial data are similar to the original but sensitive data. There
are some solutions for generating synthetic or artificial data, but
they usually have other, special goals with their solutions. For
example, it is possible that they are made for a special task.
Zimmering et al. [20] created a novel method for a generation
process of data to compare the selected machine learning
methods. Tam et al. [21] have developed an automatic process
for creating input files (connected to building sensors) to a fire
model simulation. Norgaard et al. [22] proposed a supervised
generative adversarial network architecture to create synthetic
sensor data connected to health monitoring.

In some synthetic generation, tools need a sample of the real-
data as an input. They learn from the original dataset, and they
generate the new clone datasets based on this information.
CTGAN [23] is an open-source project from MIT which is a
collection of Deep Learning-based Synthetic Data Generators.
Synsys [24] is a system written in Python and it uses Hidden
Markov Models to generate sensor event sequences and it
accepts an existing dataset as input and generates a similar
synthetic dataset.

There are some solutions which do not need a sample dataset
but need a schema to describe the real-data. We have taken to
examples to show it. Log-synth [25] generates data in
accordance with a given schema. It contains only two
distributions which are the normal and random walk. The user
can define starting time, frequency and the parameters of the
given distribution in the schema file. Iosynth [26] is similar to
log-synth, but it allows for more flexibility in terms of defining
the type of data to be generated (in a schema file). Furthermore,
it has more implementations of distributions to choose from.
We can choose either fixed interval sampling, normal or
exponential distributions. Both solutions can create JSON files
as an output.

The above-mentioned data generators are simple solutions,
which implies that they do not have either an included database,
user management or a web-based surface to handle the whole
application. They do not give the opportunity to create artificial
sensors and devices connected to the data synthetization.

Our main aim is to generate artificial sensor data to support
the testing phase of software and their functionalities which
were developed to handle the original sensor data. It was an

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 3

of the generated data besides the visualization which can help
us to compare the artificial data with the real data.

These three modules are embedded into a web-based
interface to provide a unified user interface, easy application
handling, and user-friendly system for all potential users. The
common surface includes all available services of our
application but only for the authorized users.

Because of the data security difficulties, user management
was an important aspect of our work. Four different types of
users were created. The tool admin can handle the sensors
(create, delete and modify them), the data generator can use and
set the data generator module, the data handler uses the analysis
and visualization module while the user admin manages the
data (name, e-mail address, roles etc.) of the system’s users and
registers new members. In the next chapters we will introduce
these components in detail.

A. The database
Not only the sensors but also the systems which can handle

them (store, analyse the collected data, display the raw and the
processed data) are important. A basic element of such a system
is an efficient, reliable and flexible database to store the
collected sensor data. Relational and non-relational databases
have a lot of advantages and some disadvantages too and both
of them offer the opportunity to store the collected sensor data
[15]. The structure of a non-relational database is not fixed
(unstructured), which means that there are no relation schemas,
connections, and the form and the structure of data can be easily

modified [16]. The IoT and the sensor based applications often
use non-relational databases, because they have a lot of
advantages, e.g. the free structure of the database [17]. One of
the advantages of the relational databases that they are capable
of performing more complex queries and filtering [18] [19].
Our main aim is to create and store artificial sensor data to help
the testing of the functionality of the developed software and
not to serve big queries. Because of the above-mentioned
reasons, we decided to create and use a flexible relational
database in MSSQL environment. It is the first module of our
complex system, which can store the data derived from the data
generator module.

The structure of the database can be seen in Fig. 2 shown as
an entity-relationship diagram. The following tables were
defined:

 Sensor_types table: general characterization of the
different sensor types defined by a unique identifier (id)
and each type has a practical name (name). Max_values
and min_values define the possible minimum and
maximum values measured by the given sensor type.
The measurement_length defines the length of one
measurement and the measurement_accuracy defines
the measurement precision of the actual sensor type.

 Sensors table: it describes the parameters of a given
sensor, which belongs to a certain type. Each one of the
sensors is defined by a unique identifier (id) and has a
practical name (name). The alarm_low_boundary and
the alarm_over_boundary attributes define the lowest

Fig. 2. Entity-relationship diagram of the database structure

A practical framework to generate and manage
synthetic sensor data

INFOCOMMUNICATIONS JOURNAL

JUNE 2022 • VOLUME XIV • NUMBER 2 67

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

and the highest measured values which might be
practically correct. The frequency defines the regularity
of the measurement. Furthermore, the year of production
(year_prod) and the date of calibration (calib_date) are
stored in this table.

 Measurement_types table: describes the parameters of
the measured data. Each piece of data has a unique
identifier (id) and has a practical name (name). The unit
of the measured values is stored as well (unit).

 Measured_values table: it contains the measured sensor
values, which are defined by two attributes: the date and
the sensor.id. The attribute measured_value stores the
measured sensor values. The attribute valid is a binary
parameter with only two values, 1 and 0. Value 1 shows
that the measured value is correct, which means that it is
between the sensors.alarm_low_boundary and
sensors.alarm_over_boundary values from Sensors
table, and the error_rate attribute is NULL. Value 0
shows that the measured value is incorrect. In this case,
the value of error_rate is the value of signed distance
between the measured value and the given boundary.
The values of attributes valid and error_rate are created
automatically by a trigger.

 Devices table: describes the parameters of the devices
which contain the sensors. Each device is defined by a
unique identifier (id) and has a practical name (name).

 Locations table: describes the parameters of the location
of the devices and sensors. Each place and location is
defined by a unique identifier (id). Attributes location1,
location2 and location3 store the details of the location,
e.g. the name of the location or company. The attribute
GPS_coordinates contains the accurate location in GPS
format. Condition1, condition2 and condition3 provide
an opportunity to store information about the conditions
of the location, e.g. if the sensor or the device is an
indoor or outdoor gadget.

The next connections were defined between the tables:
 Each of the sensors has one and only one sensor type. In

other words, there are sensor families, with some well-
defined general parameters in which we can define a
concrete sensor, which belongs to the given sensor
family. This connection is a one-to-many relationship,
because one sensor family can contain more sensors and
one sensor always belongs to only one family.

 Each of the sensor types includes the unit and the type
of the measurement. It is a one-to-many relationship,
because a given sensor type measures only one thing, but
one type of measurement can measure more than one
sensor type.

 The measured values are connected to the sensor which
measured them. This is a one-to-many connection,
because a measured value always belongs to only one
given sensor, which measured it, but one sensor can
measure more than one data.

 All sensors belong to a device, which contains the given
sensor. This connection is a one-to-many relationship,

because a device can contain a lot of sensors, but one
sensor is always in one device.

 It is important to store the conditions, e.g. the place of
the sensor. It is a one-to-many connection, because a
given device is always in one place, but more than one
device can be in one place.

Our database is suited for storing any measured sensor data
or storing the data, which are generated by the application’s
second module, the data generator. Of course, in the future, if it
is necessary or practical, we can replace our relational database
with another type of database.

B. The data generator
This module supports the development and testing phase of

the applications, which use sensitive data, because it generates
artificial data according to the user-defined parameters. These
artificial data are similar to the original but sensitive data. There
are some solutions for generating synthetic or artificial data, but
they usually have other, special goals with their solutions. For
example, it is possible that they are made for a special task.
Zimmering et al. [20] created a novel method for a generation
process of data to compare the selected machine learning
methods. Tam et al. [21] have developed an automatic process
for creating input files (connected to building sensors) to a fire
model simulation. Norgaard et al. [22] proposed a supervised
generative adversarial network architecture to create synthetic
sensor data connected to health monitoring.

In some synthetic generation, tools need a sample of the real-
data as an input. They learn from the original dataset, and they
generate the new clone datasets based on this information.
CTGAN [23] is an open-source project from MIT which is a
collection of Deep Learning-based Synthetic Data Generators.
Synsys [24] is a system written in Python and it uses Hidden
Markov Models to generate sensor event sequences and it
accepts an existing dataset as input and generates a similar
synthetic dataset.

There are some solutions which do not need a sample dataset
but need a schema to describe the real-data. We have taken to
examples to show it. Log-synth [25] generates data in
accordance with a given schema. It contains only two
distributions which are the normal and random walk. The user
can define starting time, frequency and the parameters of the
given distribution in the schema file. Iosynth [26] is similar to
log-synth, but it allows for more flexibility in terms of defining
the type of data to be generated (in a schema file). Furthermore,
it has more implementations of distributions to choose from.
We can choose either fixed interval sampling, normal or
exponential distributions. Both solutions can create JSON files
as an output.

The above-mentioned data generators are simple solutions,
which implies that they do not have either an included database,
user management or a web-based surface to handle the whole
application. They do not give the opportunity to create artificial
sensors and devices connected to the data synthetization.

Our main aim is to generate artificial sensor data to support
the testing phase of software and their functionalities which
were developed to handle the original sensor data. It was an

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

and the highest measured values which might be
practically correct. The frequency defines the regularity
of the measurement. Furthermore, the year of production
(year_prod) and the date of calibration (calib_date) are
stored in this table.

 Measurement_types table: describes the parameters of
the measured data. Each piece of data has a unique
identifier (id) and has a practical name (name). The unit
of the measured values is stored as well (unit).

 Measured_values table: it contains the measured sensor
values, which are defined by two attributes: the date and
the sensor.id. The attribute measured_value stores the
measured sensor values. The attribute valid is a binary
parameter with only two values, 1 and 0. Value 1 shows
that the measured value is correct, which means that it is
between the sensors.alarm_low_boundary and
sensors.alarm_over_boundary values from Sensors
table, and the error_rate attribute is NULL. Value 0
shows that the measured value is incorrect. In this case,
the value of error_rate is the value of signed distance
between the measured value and the given boundary.
The values of attributes valid and error_rate are created
automatically by a trigger.

 Devices table: describes the parameters of the devices
which contain the sensors. Each device is defined by a
unique identifier (id) and has a practical name (name).

 Locations table: describes the parameters of the location
of the devices and sensors. Each place and location is
defined by a unique identifier (id). Attributes location1,
location2 and location3 store the details of the location,
e.g. the name of the location or company. The attribute
GPS_coordinates contains the accurate location in GPS
format. Condition1, condition2 and condition3 provide
an opportunity to store information about the conditions
of the location, e.g. if the sensor or the device is an
indoor or outdoor gadget.

The next connections were defined between the tables:
 Each of the sensors has one and only one sensor type. In

other words, there are sensor families, with some well-
defined general parameters in which we can define a
concrete sensor, which belongs to the given sensor
family. This connection is a one-to-many relationship,
because one sensor family can contain more sensors and
one sensor always belongs to only one family.

 Each of the sensor types includes the unit and the type
of the measurement. It is a one-to-many relationship,
because a given sensor type measures only one thing, but
one type of measurement can measure more than one
sensor type.

 The measured values are connected to the sensor which
measured them. This is a one-to-many connection,
because a measured value always belongs to only one
given sensor, which measured it, but one sensor can
measure more than one data.

 All sensors belong to a device, which contains the given
sensor. This connection is a one-to-many relationship,

because a device can contain a lot of sensors, but one
sensor is always in one device.

 It is important to store the conditions, e.g. the place of
the sensor. It is a one-to-many connection, because a
given device is always in one place, but more than one
device can be in one place.

Our database is suited for storing any measured sensor data
or storing the data, which are generated by the application’s
second module, the data generator. Of course, in the future, if it
is necessary or practical, we can replace our relational database
with another type of database.

B. The data generator
This module supports the development and testing phase of

the applications, which use sensitive data, because it generates
artificial data according to the user-defined parameters. These
artificial data are similar to the original but sensitive data. There
are some solutions for generating synthetic or artificial data, but
they usually have other, special goals with their solutions. For
example, it is possible that they are made for a special task.
Zimmering et al. [20] created a novel method for a generation
process of data to compare the selected machine learning
methods. Tam et al. [21] have developed an automatic process
for creating input files (connected to building sensors) to a fire
model simulation. Norgaard et al. [22] proposed a supervised
generative adversarial network architecture to create synthetic
sensor data connected to health monitoring.

In some synthetic generation, tools need a sample of the real-
data as an input. They learn from the original dataset, and they
generate the new clone datasets based on this information.
CTGAN [23] is an open-source project from MIT which is a
collection of Deep Learning-based Synthetic Data Generators.
Synsys [24] is a system written in Python and it uses Hidden
Markov Models to generate sensor event sequences and it
accepts an existing dataset as input and generates a similar
synthetic dataset.

There are some solutions which do not need a sample dataset
but need a schema to describe the real-data. We have taken to
examples to show it. Log-synth [25] generates data in
accordance with a given schema. It contains only two
distributions which are the normal and random walk. The user
can define starting time, frequency and the parameters of the
given distribution in the schema file. Iosynth [26] is similar to
log-synth, but it allows for more flexibility in terms of defining
the type of data to be generated (in a schema file). Furthermore,
it has more implementations of distributions to choose from.
We can choose either fixed interval sampling, normal or
exponential distributions. Both solutions can create JSON files
as an output.

The above-mentioned data generators are simple solutions,
which implies that they do not have either an included database,
user management or a web-based surface to handle the whole
application. They do not give the opportunity to create artificial
sensors and devices connected to the data synthetization.

Our main aim is to generate artificial sensor data to support
the testing phase of software and their functionalities which
were developed to handle the original sensor data. It was an

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

and the highest measured values which might be
practically correct. The frequency defines the regularity
of the measurement. Furthermore, the year of production
(year_prod) and the date of calibration (calib_date) are
stored in this table.

 Measurement_types table: describes the parameters of
the measured data. Each piece of data has a unique
identifier (id) and has a practical name (name). The unit
of the measured values is stored as well (unit).

 Measured_values table: it contains the measured sensor
values, which are defined by two attributes: the date and
the sensor.id. The attribute measured_value stores the
measured sensor values. The attribute valid is a binary
parameter with only two values, 1 and 0. Value 1 shows
that the measured value is correct, which means that it is
between the sensors.alarm_low_boundary and
sensors.alarm_over_boundary values from Sensors
table, and the error_rate attribute is NULL. Value 0
shows that the measured value is incorrect. In this case,
the value of error_rate is the value of signed distance
between the measured value and the given boundary.
The values of attributes valid and error_rate are created
automatically by a trigger.

 Devices table: describes the parameters of the devices
which contain the sensors. Each device is defined by a
unique identifier (id) and has a practical name (name).

 Locations table: describes the parameters of the location
of the devices and sensors. Each place and location is
defined by a unique identifier (id). Attributes location1,
location2 and location3 store the details of the location,
e.g. the name of the location or company. The attribute
GPS_coordinates contains the accurate location in GPS
format. Condition1, condition2 and condition3 provide
an opportunity to store information about the conditions
of the location, e.g. if the sensor or the device is an
indoor or outdoor gadget.

The next connections were defined between the tables:
 Each of the sensors has one and only one sensor type. In

other words, there are sensor families, with some well-
defined general parameters in which we can define a
concrete sensor, which belongs to the given sensor
family. This connection is a one-to-many relationship,
because one sensor family can contain more sensors and
one sensor always belongs to only one family.

 Each of the sensor types includes the unit and the type
of the measurement. It is a one-to-many relationship,
because a given sensor type measures only one thing, but
one type of measurement can measure more than one
sensor type.

 The measured values are connected to the sensor which
measured them. This is a one-to-many connection,
because a measured value always belongs to only one
given sensor, which measured it, but one sensor can
measure more than one data.

 All sensors belong to a device, which contains the given
sensor. This connection is a one-to-many relationship,

because a device can contain a lot of sensors, but one
sensor is always in one device.

 It is important to store the conditions, e.g. the place of
the sensor. It is a one-to-many connection, because a
given device is always in one place, but more than one
device can be in one place.

Our database is suited for storing any measured sensor data
or storing the data, which are generated by the application’s
second module, the data generator. Of course, in the future, if it
is necessary or practical, we can replace our relational database
with another type of database.

B. The data generator
This module supports the development and testing phase of

the applications, which use sensitive data, because it generates
artificial data according to the user-defined parameters. These
artificial data are similar to the original but sensitive data. There
are some solutions for generating synthetic or artificial data, but
they usually have other, special goals with their solutions. For
example, it is possible that they are made for a special task.
Zimmering et al. [20] created a novel method for a generation
process of data to compare the selected machine learning
methods. Tam et al. [21] have developed an automatic process
for creating input files (connected to building sensors) to a fire
model simulation. Norgaard et al. [22] proposed a supervised
generative adversarial network architecture to create synthetic
sensor data connected to health monitoring.

In some synthetic generation, tools need a sample of the real-
data as an input. They learn from the original dataset, and they
generate the new clone datasets based on this information.
CTGAN [23] is an open-source project from MIT which is a
collection of Deep Learning-based Synthetic Data Generators.
Synsys [24] is a system written in Python and it uses Hidden
Markov Models to generate sensor event sequences and it
accepts an existing dataset as input and generates a similar
synthetic dataset.

There are some solutions which do not need a sample dataset
but need a schema to describe the real-data. We have taken to
examples to show it. Log-synth [25] generates data in
accordance with a given schema. It contains only two
distributions which are the normal and random walk. The user
can define starting time, frequency and the parameters of the
given distribution in the schema file. Iosynth [26] is similar to
log-synth, but it allows for more flexibility in terms of defining
the type of data to be generated (in a schema file). Furthermore,
it has more implementations of distributions to choose from.
We can choose either fixed interval sampling, normal or
exponential distributions. Both solutions can create JSON files
as an output.

The above-mentioned data generators are simple solutions,
which implies that they do not have either an included database,
user management or a web-based surface to handle the whole
application. They do not give the opportunity to create artificial
sensors and devices connected to the data synthetization.

Our main aim is to generate artificial sensor data to support
the testing phase of software and their functionalities which
were developed to handle the original sensor data. It was an

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

important aspect of creating this application not to use real data
in the generation method, only their, like Iosynth and log-synth.

The main part of the generator module was implemented in
Python language. A public Github project, which was
developed by a Korean developer team, was integrated into our
module to help us to create data. It is called Mandrova which
means “make it” in English, but it means “make sensor data” in
the context of sensors [27]. Developers can generate values
with many kinds of distributions with the help of this project,
but only three of them were used:

 normal distribution with the mean (μ) and the standard
deviation (σ) parameters:

 𝑓𝑓(𝑥𝑥) = 1
𝜎𝜎√2𝜋𝜋 𝑒𝑒−(𝑥𝑥−𝜇𝜇)2

2𝜎𝜎2 (1)

 exponential distribution with lambda parameter:

 𝑓𝑓(𝑥𝑥) = {𝜆𝜆𝑒𝑒−𝜆𝜆𝜆𝜆, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥 ≥ 0
0, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥 < 0 (2)

 gamma distribution with α and β parameters:

 𝑓𝑓(𝑥𝑥) = {
𝛽𝛽𝛼𝛼𝜆𝜆𝛼𝛼−1𝑒𝑒−𝛽𝛽𝑥𝑥

Γ(𝛼𝛼) , 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥 > 0
0, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥 ≤ 0

 (3)

These three types were chosen in our current solution,

because they are among the most general distributions [28]. The
surveyed data generators, which use the distribution of the
data,use less or the same distributions as our application. Log-
synth [25] contains only normal distribution and random walk.
Using Iosynth [26] we can choose normal or exponential
distributions and fixed interval sampling. We are planning to
build in other distributions in the future to extend the
possibilities of this module.

The generation of the values is based on four basic
parameters. At first, an existing sensor must be chosen for
which the values will be generated. All sensors (which are
stored in the database, except for those that have not been
connected to a sensor type) are listed and can be selected. The
second criterion is the type of statistical distribution with
appropriate parameters. The user also has to decide how much
data should be generated. Finally, a timestamp has to be given,
which is the date of the latest created data. Before the actual
data generation process, some important information is
automatically queried from the database. The table
sensor_types guarantees the following attributes of the chosen
sensor: measurement_accuracy, max_values and min_values.
Measurement_accuracy defines the accuracy of the stored data.
If this record is missing, the rounding value is one by default
(as one decimal). When the generated value exceeds the
max_values or it is less than the min_values parameters, the
generated data’s new error indicator values are 9999 or -9999
(it depends on whether the value is over the maximum or under
the minimum). This notation helps us to determine and handle
“measurements” which are certainly wrong. If both min_values

and max_values fields are empty in the database, all incoming
data are accepted. If only one of them is missing, all the
generated values are correct which are under or over the
existing limit.

In accordance with the above-mentioned conditions, the
generator module’s algorithm has three main steps. The first
one is to generate the artificial data based on the user-defined
distribution and connected parameters. The second one is the
checking method, to decide whether the generated value is valid
or not according to the parameters min_values and max_values.
If it is necessary, the algorithm changes the generated values to
the error indicator values. The last step is the data rounding on
the basis of the parameter measurement_accuracy. After that,
the module stores the new records in the database.

C. Filtering and visualization
Data filtering and visualization are the most important basic

tasks of data handling and they are essential for further data
analysis [28]. The third module’s visualization part is a
JavaScript-based component and it gives the opportunity to
handle and visualize the generated datasets and to analyse them
later in Python language following further development.
Currently, the module has two main functions: filtering data by
different aspects, like timestamp, sensors, places etc. and
visualizing and creating basic statistical properties of datasets.
This second function allows a basic comparison between the
generated and the original, real data.

A user-friendly interface was created to filter and visualize
the stored data. It was an important aim not to develop this
module only for IT specialists. Therefore, a huge number of
automatized solutions were built in to help users.

Users can filter by devices, sensor types or sensors and enter
a starting and an ending date. The device selection is optional,
but if a device has been chosen, only those sensor types and
sensors are available which are connected to the selected
device. Otherwise, all stored sensor types are available to users.
Sensor type selection is required because our goal was to
visualize only those sensors which have the same type and for
example the same unit. Obviously, the user must choose at least
one sensor. The last two parameters, the timestamps are
optional. After setting these parameters, the application queries
all records from the database according to the selected
parameters. Our aim was to visualize more than one sensor from
one sensor type, but we had to handle the problem of different
timestamps of different sensors. To solve it, an algorithm was
created and implemented. For visualization, we had to use a
two-dimensional table, which stores the values that the user
wants to display. The first column stores timestamps after
which there is one column for each sensor. This table is loaded
up with data by the above-mentioned algorithm whose main
task is to check if the selected sensors made measurements at a
given time or not. The algorithm uses all the timestamps when
any of the selected sensors (in the given time period) made a
measurement. Timestamps are stored twice, in two arrays. In
the first one, we store all the available dates in chronological
order. All of them are stored in the second one too but they are
grouped by sensors. The algorithm iterates over the first array

A practical framework to generate and manage
synthetic sensor data

JUNE 2022 • VOLUME XIV • NUMBER 268

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

important aspect of creating this application not to use real data
in the generation method, only their, like Iosynth and log-synth.

The main part of the generator module was implemented in
Python language. A public Github project, which was
developed by a Korean developer team, was integrated into our
module to help us to create data. It is called Mandrova which
means “make it” in English, but it means “make sensor data” in
the context of sensors [27]. Developers can generate values
with many kinds of distributions with the help of this project,
but only three of them were used:

 normal distribution with the mean (μ) and the standard
deviation (σ) parameters:

 𝑓𝑓(𝑥𝑥) = 1
𝜎𝜎√2𝜋𝜋 𝑒𝑒−(𝑥𝑥−𝜇𝜇)2

2𝜎𝜎2 (1)

 exponential distribution with lambda parameter:

 𝑓𝑓(𝑥𝑥) = {𝜆𝜆𝑒𝑒−𝜆𝜆𝜆𝜆, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥 ≥ 0
0, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥 < 0 (2)

 gamma distribution with α and β parameters:

 𝑓𝑓(𝑥𝑥) = {
𝛽𝛽𝛼𝛼𝜆𝜆𝛼𝛼−1𝑒𝑒−𝛽𝛽𝑥𝑥

Γ(𝛼𝛼) , 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥 > 0
0, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥 ≤ 0

 (3)

These three types were chosen in our current solution,

because they are among the most general distributions [28]. The
surveyed data generators, which use the distribution of the
data,use less or the same distributions as our application. Log-
synth [25] contains only normal distribution and random walk.
Using Iosynth [26] we can choose normal or exponential
distributions and fixed interval sampling. We are planning to
build in other distributions in the future to extend the
possibilities of this module.

The generation of the values is based on four basic
parameters. At first, an existing sensor must be chosen for
which the values will be generated. All sensors (which are
stored in the database, except for those that have not been
connected to a sensor type) are listed and can be selected. The
second criterion is the type of statistical distribution with
appropriate parameters. The user also has to decide how much
data should be generated. Finally, a timestamp has to be given,
which is the date of the latest created data. Before the actual
data generation process, some important information is
automatically queried from the database. The table
sensor_types guarantees the following attributes of the chosen
sensor: measurement_accuracy, max_values and min_values.
Measurement_accuracy defines the accuracy of the stored data.
If this record is missing, the rounding value is one by default
(as one decimal). When the generated value exceeds the
max_values or it is less than the min_values parameters, the
generated data’s new error indicator values are 9999 or -9999
(it depends on whether the value is over the maximum or under
the minimum). This notation helps us to determine and handle
“measurements” which are certainly wrong. If both min_values

and max_values fields are empty in the database, all incoming
data are accepted. If only one of them is missing, all the
generated values are correct which are under or over the
existing limit.

In accordance with the above-mentioned conditions, the
generator module’s algorithm has three main steps. The first
one is to generate the artificial data based on the user-defined
distribution and connected parameters. The second one is the
checking method, to decide whether the generated value is valid
or not according to the parameters min_values and max_values.
If it is necessary, the algorithm changes the generated values to
the error indicator values. The last step is the data rounding on
the basis of the parameter measurement_accuracy. After that,
the module stores the new records in the database.

C. Filtering and visualization
Data filtering and visualization are the most important basic

tasks of data handling and they are essential for further data
analysis [28]. The third module’s visualization part is a
JavaScript-based component and it gives the opportunity to
handle and visualize the generated datasets and to analyse them
later in Python language following further development.
Currently, the module has two main functions: filtering data by
different aspects, like timestamp, sensors, places etc. and
visualizing and creating basic statistical properties of datasets.
This second function allows a basic comparison between the
generated and the original, real data.

A user-friendly interface was created to filter and visualize
the stored data. It was an important aim not to develop this
module only for IT specialists. Therefore, a huge number of
automatized solutions were built in to help users.

Users can filter by devices, sensor types or sensors and enter
a starting and an ending date. The device selection is optional,
but if a device has been chosen, only those sensor types and
sensors are available which are connected to the selected
device. Otherwise, all stored sensor types are available to users.
Sensor type selection is required because our goal was to
visualize only those sensors which have the same type and for
example the same unit. Obviously, the user must choose at least
one sensor. The last two parameters, the timestamps are
optional. After setting these parameters, the application queries
all records from the database according to the selected
parameters. Our aim was to visualize more than one sensor from
one sensor type, but we had to handle the problem of different
timestamps of different sensors. To solve it, an algorithm was
created and implemented. For visualization, we had to use a
two-dimensional table, which stores the values that the user
wants to display. The first column stores timestamps after
which there is one column for each sensor. This table is loaded
up with data by the above-mentioned algorithm whose main
task is to check if the selected sensors made measurements at a
given time or not. The algorithm uses all the timestamps when
any of the selected sensors (in the given time period) made a
measurement. Timestamps are stored twice, in two arrays. In
the first one, we store all the available dates in chronological
order. All of them are stored in the second one too but they are
grouped by sensors. The algorithm iterates over the first array

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

important aspect of creating this application not to use real data
in the generation method, only their, like Iosynth and log-synth.

The main part of the generator module was implemented in
Python language. A public Github project, which was
developed by a Korean developer team, was integrated into our
module to help us to create data. It is called Mandrova which
means “make it” in English, but it means “make sensor data” in
the context of sensors [27]. Developers can generate values
with many kinds of distributions with the help of this project,
but only three of them were used:

 normal distribution with the mean (μ) and the standard
deviation (σ) parameters:

 𝑓𝑓(𝑥𝑥) = 1
𝜎𝜎√2𝜋𝜋 𝑒𝑒−(𝑥𝑥−𝜇𝜇)2

2𝜎𝜎2 (1)

 exponential distribution with lambda parameter:

 𝑓𝑓(𝑥𝑥) = {𝜆𝜆𝑒𝑒−𝜆𝜆𝜆𝜆, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥 ≥ 0
0, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥 < 0 (2)

 gamma distribution with α and β parameters:

 𝑓𝑓(𝑥𝑥) = {
𝛽𝛽𝛼𝛼𝜆𝜆𝛼𝛼−1𝑒𝑒−𝛽𝛽𝑥𝑥

Γ(𝛼𝛼) , 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥 > 0
0, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥 ≤ 0

 (3)

These three types were chosen in our current solution,

because they are among the most general distributions [28]. The
surveyed data generators, which use the distribution of the
data,use less or the same distributions as our application. Log-
synth [25] contains only normal distribution and random walk.
Using Iosynth [26] we can choose normal or exponential
distributions and fixed interval sampling. We are planning to
build in other distributions in the future to extend the
possibilities of this module.

The generation of the values is based on four basic
parameters. At first, an existing sensor must be chosen for
which the values will be generated. All sensors (which are
stored in the database, except for those that have not been
connected to a sensor type) are listed and can be selected. The
second criterion is the type of statistical distribution with
appropriate parameters. The user also has to decide how much
data should be generated. Finally, a timestamp has to be given,
which is the date of the latest created data. Before the actual
data generation process, some important information is
automatically queried from the database. The table
sensor_types guarantees the following attributes of the chosen
sensor: measurement_accuracy, max_values and min_values.
Measurement_accuracy defines the accuracy of the stored data.
If this record is missing, the rounding value is one by default
(as one decimal). When the generated value exceeds the
max_values or it is less than the min_values parameters, the
generated data’s new error indicator values are 9999 or -9999
(it depends on whether the value is over the maximum or under
the minimum). This notation helps us to determine and handle
“measurements” which are certainly wrong. If both min_values

and max_values fields are empty in the database, all incoming
data are accepted. If only one of them is missing, all the
generated values are correct which are under or over the
existing limit.

In accordance with the above-mentioned conditions, the
generator module’s algorithm has three main steps. The first
one is to generate the artificial data based on the user-defined
distribution and connected parameters. The second one is the
checking method, to decide whether the generated value is valid
or not according to the parameters min_values and max_values.
If it is necessary, the algorithm changes the generated values to
the error indicator values. The last step is the data rounding on
the basis of the parameter measurement_accuracy. After that,
the module stores the new records in the database.

C. Filtering and visualization
Data filtering and visualization are the most important basic

tasks of data handling and they are essential for further data
analysis [28]. The third module’s visualization part is a
JavaScript-based component and it gives the opportunity to
handle and visualize the generated datasets and to analyse them
later in Python language following further development.
Currently, the module has two main functions: filtering data by
different aspects, like timestamp, sensors, places etc. and
visualizing and creating basic statistical properties of datasets.
This second function allows a basic comparison between the
generated and the original, real data.

A user-friendly interface was created to filter and visualize
the stored data. It was an important aim not to develop this
module only for IT specialists. Therefore, a huge number of
automatized solutions were built in to help users.

Users can filter by devices, sensor types or sensors and enter
a starting and an ending date. The device selection is optional,
but if a device has been chosen, only those sensor types and
sensors are available which are connected to the selected
device. Otherwise, all stored sensor types are available to users.
Sensor type selection is required because our goal was to
visualize only those sensors which have the same type and for
example the same unit. Obviously, the user must choose at least
one sensor. The last two parameters, the timestamps are
optional. After setting these parameters, the application queries
all records from the database according to the selected
parameters. Our aim was to visualize more than one sensor from
one sensor type, but we had to handle the problem of different
timestamps of different sensors. To solve it, an algorithm was
created and implemented. For visualization, we had to use a
two-dimensional table, which stores the values that the user
wants to display. The first column stores timestamps after
which there is one column for each sensor. This table is loaded
up with data by the above-mentioned algorithm whose main
task is to check if the selected sensors made measurements at a
given time or not. The algorithm uses all the timestamps when
any of the selected sensors (in the given time period) made a
measurement. Timestamps are stored twice, in two arrays. In
the first one, we store all the available dates in chronological
order. All of them are stored in the second one too but they are
grouped by sensors. The algorithm iterates over the first array

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

important aspect of creating this application not to use real data
in the generation method, only their, like Iosynth and log-synth.

The main part of the generator module was implemented in
Python language. A public Github project, which was
developed by a Korean developer team, was integrated into our
module to help us to create data. It is called Mandrova which
means “make it” in English, but it means “make sensor data” in
the context of sensors [27]. Developers can generate values
with many kinds of distributions with the help of this project,
but only three of them were used:

 normal distribution with the mean (μ) and the standard
deviation (σ) parameters:

 𝑓𝑓(𝑥𝑥) = 1
𝜎𝜎√2𝜋𝜋 𝑒𝑒−(𝑥𝑥−𝜇𝜇)2

2𝜎𝜎2 (1)

 exponential distribution with lambda parameter:

 𝑓𝑓(𝑥𝑥) = {𝜆𝜆𝑒𝑒−𝜆𝜆𝜆𝜆, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥 ≥ 0
0, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥 < 0 (2)

 gamma distribution with α and β parameters:

 𝑓𝑓(𝑥𝑥) = {
𝛽𝛽𝛼𝛼𝜆𝜆𝛼𝛼−1𝑒𝑒−𝛽𝛽𝑥𝑥

Γ(𝛼𝛼) , 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥 > 0
0, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑥𝑥 ≤ 0

 (3)

These three types were chosen in our current solution,

because they are among the most general distributions [28]. The
surveyed data generators, which use the distribution of the
data,use less or the same distributions as our application. Log-
synth [25] contains only normal distribution and random walk.
Using Iosynth [26] we can choose normal or exponential
distributions and fixed interval sampling. We are planning to
build in other distributions in the future to extend the
possibilities of this module.

The generation of the values is based on four basic
parameters. At first, an existing sensor must be chosen for
which the values will be generated. All sensors (which are
stored in the database, except for those that have not been
connected to a sensor type) are listed and can be selected. The
second criterion is the type of statistical distribution with
appropriate parameters. The user also has to decide how much
data should be generated. Finally, a timestamp has to be given,
which is the date of the latest created data. Before the actual
data generation process, some important information is
automatically queried from the database. The table
sensor_types guarantees the following attributes of the chosen
sensor: measurement_accuracy, max_values and min_values.
Measurement_accuracy defines the accuracy of the stored data.
If this record is missing, the rounding value is one by default
(as one decimal). When the generated value exceeds the
max_values or it is less than the min_values parameters, the
generated data’s new error indicator values are 9999 or -9999
(it depends on whether the value is over the maximum or under
the minimum). This notation helps us to determine and handle
“measurements” which are certainly wrong. If both min_values

and max_values fields are empty in the database, all incoming
data are accepted. If only one of them is missing, all the
generated values are correct which are under or over the
existing limit.

In accordance with the above-mentioned conditions, the
generator module’s algorithm has three main steps. The first
one is to generate the artificial data based on the user-defined
distribution and connected parameters. The second one is the
checking method, to decide whether the generated value is valid
or not according to the parameters min_values and max_values.
If it is necessary, the algorithm changes the generated values to
the error indicator values. The last step is the data rounding on
the basis of the parameter measurement_accuracy. After that,
the module stores the new records in the database.

C. Filtering and visualization
Data filtering and visualization are the most important basic

tasks of data handling and they are essential for further data
analysis [28]. The third module’s visualization part is a
JavaScript-based component and it gives the opportunity to
handle and visualize the generated datasets and to analyse them
later in Python language following further development.
Currently, the module has two main functions: filtering data by
different aspects, like timestamp, sensors, places etc. and
visualizing and creating basic statistical properties of datasets.
This second function allows a basic comparison between the
generated and the original, real data.

A user-friendly interface was created to filter and visualize
the stored data. It was an important aim not to develop this
module only for IT specialists. Therefore, a huge number of
automatized solutions were built in to help users.

Users can filter by devices, sensor types or sensors and enter
a starting and an ending date. The device selection is optional,
but if a device has been chosen, only those sensor types and
sensors are available which are connected to the selected
device. Otherwise, all stored sensor types are available to users.
Sensor type selection is required because our goal was to
visualize only those sensors which have the same type and for
example the same unit. Obviously, the user must choose at least
one sensor. The last two parameters, the timestamps are
optional. After setting these parameters, the application queries
all records from the database according to the selected
parameters. Our aim was to visualize more than one sensor from
one sensor type, but we had to handle the problem of different
timestamps of different sensors. To solve it, an algorithm was
created and implemented. For visualization, we had to use a
two-dimensional table, which stores the values that the user
wants to display. The first column stores timestamps after
which there is one column for each sensor. This table is loaded
up with data by the above-mentioned algorithm whose main
task is to check if the selected sensors made measurements at a
given time or not. The algorithm uses all the timestamps when
any of the selected sensors (in the given time period) made a
measurement. Timestamps are stored twice, in two arrays. In
the first one, we store all the available dates in chronological
order. All of them are stored in the second one too but they are
grouped by sensors. The algorithm iterates over the first array

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

and compares the elements to the other array’s timestamps. If
they are equal, it means that a measurement was made at this
time by the current sensor, and we store this measured value in
the given sensor’s column. Otherwise, we insert a null value
into the appropriate sensor in the given timestamp. Such a table
can be seen below (Table I.). The timestamps are in the first
column, and it can be seen in the others that the three sensors
(named S1, S2, S3) did not make measurements at the same
time, so there are null values in these fields.

TABLE I
AN EXAMPLE FOR THE UPLOADED TWO-DIMENSIONAL TABLE

date S1 S2 S3
2021-11-02 14:00:00 null 17.03 null
2021-11-02 14:05:00 20.17 null 10.58
2021-11-02 14:10:00 null 23.11 null
2021-11-02 14:15:00 22.05 null 9.87

For displaying the selected data, Google Charts was used
which is an API that helps developers to display data on
diagrams simply. The easiest way to use it is to load some
libraries and embed a JavaScript code in the application [30].

The application has a user-friendly web-based interface to
provide a uniform display for the using of all three main
modules and their functionalities. The available application
menus depend on the actual user’s authorities. This solution
ensures that users can only use those functions which are
available to them. To guarantee this, user management is an
important part of the application.

III. USER ADMINISTRATION

Data security and the adequate user authorities are basic
requirements for such an application [31]. According to this,
our software can be used only by registered users. The attributes
of the users are stored in an independent database. It consists of
two tables. One is for the users and the other is for the different
roles. A user can have more than one role (Fig. 3).

Four different roles are defined. These roles are separated
from each other, and they are related to well-defined tasks. First
is tool admin who manages the data of measurement types,
sensors, sensor types, devices and locations. It is the tool
admin’s responsibility to modify the attributes of a given
element, e.g. the alarm boundaries of a sensor, the year of the
production, the date of the calibration and the measurement
frequency.

Due to the relationship between the database tables, there
may be anomalies after a modification or creation, and we have

to handle them. A special menu was created for this. The
application can identify and inform the tool admin about the
next anomalies:

 There is no measurement type connected to a sensor
type,

 A sensor is not connected to a sensor type,
 A sensor is not connected to a device,
 A device does not have a location.

The application can identify these anomalies, and it creates a

list about the problems for users to correct them. The interface
of this menu is shown in Fig. 4.

The second type of user is data generator, who can generate
the artificial sensor data by specifying various parameters. The
details are in Section II B.

Data handler manages the visualization interface. This role
gives the opportunity to give some filtering conditions.
Afterwards, the diagram, which is created by the program based
on the given conditions, can be viewed by the user.

The last user is the user admin, who manages the data of the
users and registers new users. User admin can handle the
personal data of the users, like name, e-mail address and it is
his/her responsibility to set the authorities of the users. The
current surface of the application corresponds to the logged
user’s authorities. It means that a given user can reach only
those functions that come under his or her authority. For
example, a data generator user can only use the functions
connected to artificial data generation, but not other functions,

Fig. 4. Anomalies

Fig. 3. Users and roles

A practical framework to generate and manage
synthetic sensor data

INFOCOMMUNICATIONS JOURNAL

JUNE 2022 • VOLUME XIV • NUMBER 2 69

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 7

like visualization, sensor and user management. Of course, a
user can be assigned multiple roles who can reach and use all
related functions in the application.

IV. A DEMONSTRATION USE-CASE

In this section, we would like to show the functionality of our
application from the data generation to data filtering and
visualization. To do this, different kinds of users were defined
with the appropriate roles and authorities. At first, we generated
some artificial values with our data generator module. Before
generating, some test elements (sensors, sensor types etc.) were
inserted into our database. In this test, one sensor, named
Tempr2 was selected, which is a thermometer, and the other
parameters were entered. We chose the normal distribution and
1000 values were generated where the starting date was 2022.
01. 07 23:00:00. (Fig. 5). At the end of the process, a message
tells us if the generation was successful or not. We manually
checked the generated data in the database.

After a huge number of values had been generated, we started
to test the visualization component. As it can be seen in Fig. 6,
humidity sensor type was selected and two sensors appeared in
the box which means that there are two sensors in the database
connected to the chosen sensor type. We also entered the
starting and the ending date, and then the line diagram was
created by the program as shown in Fig. 7. Besides, we tested
the filter under the diagram that also worked properly as we
could easily change the interval of the dates. In addition, some
random values were selected from the diagram and we checked
in the database if they matched, and we experienced that all of
them were the same at the given times.

Fig. 5. Interface of a test data generation

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

and compares the elements to the other array’s timestamps. If
they are equal, it means that a measurement was made at this
time by the current sensor, and we store this measured value in
the given sensor’s column. Otherwise, we insert a null value
into the appropriate sensor in the given timestamp. Such a table
can be seen below (Table I.). The timestamps are in the first
column, and it can be seen in the others that the three sensors
(named S1, S2, S3) did not make measurements at the same
time, so there are null values in these fields.

TABLE I
AN EXAMPLE FOR THE UPLOADED TWO-DIMENSIONAL TABLE

date S1 S2 S3
2021-11-02 14:00:00 null 17.03 null
2021-11-02 14:05:00 20.17 null 10.58
2021-11-02 14:10:00 null 23.11 null
2021-11-02 14:15:00 22.05 null 9.87

For displaying the selected data, Google Charts was used
which is an API that helps developers to display data on
diagrams simply. The easiest way to use it is to load some
libraries and embed a JavaScript code in the application [30].

The application has a user-friendly web-based interface to
provide a uniform display for the using of all three main
modules and their functionalities. The available application
menus depend on the actual user’s authorities. This solution
ensures that users can only use those functions which are
available to them. To guarantee this, user management is an
important part of the application.

III. USER ADMINISTRATION

Data security and the adequate user authorities are basic
requirements for such an application [31]. According to this,
our software can be used only by registered users. The attributes
of the users are stored in an independent database. It consists of
two tables. One is for the users and the other is for the different
roles. A user can have more than one role (Fig. 3).

Four different roles are defined. These roles are separated
from each other, and they are related to well-defined tasks. First
is tool admin who manages the data of measurement types,
sensors, sensor types, devices and locations. It is the tool
admin’s responsibility to modify the attributes of a given
element, e.g. the alarm boundaries of a sensor, the year of the
production, the date of the calibration and the measurement
frequency.

Due to the relationship between the database tables, there
may be anomalies after a modification or creation, and we have

to handle them. A special menu was created for this. The
application can identify and inform the tool admin about the
next anomalies:

 There is no measurement type connected to a sensor
type,

 A sensor is not connected to a sensor type,
 A sensor is not connected to a device,
 A device does not have a location.

The application can identify these anomalies, and it creates a

list about the problems for users to correct them. The interface
of this menu is shown in Fig. 4.

The second type of user is data generator, who can generate
the artificial sensor data by specifying various parameters. The
details are in Section II B.

Data handler manages the visualization interface. This role
gives the opportunity to give some filtering conditions.
Afterwards, the diagram, which is created by the program based
on the given conditions, can be viewed by the user.

The last user is the user admin, who manages the data of the
users and registers new users. User admin can handle the
personal data of the users, like name, e-mail address and it is
his/her responsibility to set the authorities of the users. The
current surface of the application corresponds to the logged
user’s authorities. It means that a given user can reach only
those functions that come under his or her authority. For
example, a data generator user can only use the functions
connected to artificial data generation, but not other functions,

Fig. 4. Anomalies

Fig. 3. Users and roles

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

and compares the elements to the other array’s timestamps. If
they are equal, it means that a measurement was made at this
time by the current sensor, and we store this measured value in
the given sensor’s column. Otherwise, we insert a null value
into the appropriate sensor in the given timestamp. Such a table
can be seen below (Table I.). The timestamps are in the first
column, and it can be seen in the others that the three sensors
(named S1, S2, S3) did not make measurements at the same
time, so there are null values in these fields.

TABLE I
AN EXAMPLE FOR THE UPLOADED TWO-DIMENSIONAL TABLE

date S1 S2 S3
2021-11-02 14:00:00 null 17.03 null
2021-11-02 14:05:00 20.17 null 10.58
2021-11-02 14:10:00 null 23.11 null
2021-11-02 14:15:00 22.05 null 9.87

For displaying the selected data, Google Charts was used
which is an API that helps developers to display data on
diagrams simply. The easiest way to use it is to load some
libraries and embed a JavaScript code in the application [30].

The application has a user-friendly web-based interface to
provide a uniform display for the using of all three main
modules and their functionalities. The available application
menus depend on the actual user’s authorities. This solution
ensures that users can only use those functions which are
available to them. To guarantee this, user management is an
important part of the application.

III. USER ADMINISTRATION

Data security and the adequate user authorities are basic
requirements for such an application [31]. According to this,
our software can be used only by registered users. The attributes
of the users are stored in an independent database. It consists of
two tables. One is for the users and the other is for the different
roles. A user can have more than one role (Fig. 3).

Four different roles are defined. These roles are separated
from each other, and they are related to well-defined tasks. First
is tool admin who manages the data of measurement types,
sensors, sensor types, devices and locations. It is the tool
admin’s responsibility to modify the attributes of a given
element, e.g. the alarm boundaries of a sensor, the year of the
production, the date of the calibration and the measurement
frequency.

Due to the relationship between the database tables, there
may be anomalies after a modification or creation, and we have

to handle them. A special menu was created for this. The
application can identify and inform the tool admin about the
next anomalies:

 There is no measurement type connected to a sensor
type,

 A sensor is not connected to a sensor type,
 A sensor is not connected to a device,
 A device does not have a location.

The application can identify these anomalies, and it creates a

list about the problems for users to correct them. The interface
of this menu is shown in Fig. 4.

The second type of user is data generator, who can generate
the artificial sensor data by specifying various parameters. The
details are in Section II B.

Data handler manages the visualization interface. This role
gives the opportunity to give some filtering conditions.
Afterwards, the diagram, which is created by the program based
on the given conditions, can be viewed by the user.

The last user is the user admin, who manages the data of the
users and registers new users. User admin can handle the
personal data of the users, like name, e-mail address and it is
his/her responsibility to set the authorities of the users. The
current surface of the application corresponds to the logged
user’s authorities. It means that a given user can reach only
those functions that come under his or her authority. For
example, a data generator user can only use the functions
connected to artificial data generation, but not other functions,

Fig. 4. Anomalies

Fig. 3. Users and roles

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

and compares the elements to the other array’s timestamps. If
they are equal, it means that a measurement was made at this
time by the current sensor, and we store this measured value in
the given sensor’s column. Otherwise, we insert a null value
into the appropriate sensor in the given timestamp. Such a table
can be seen below (Table I.). The timestamps are in the first
column, and it can be seen in the others that the three sensors
(named S1, S2, S3) did not make measurements at the same
time, so there are null values in these fields.

TABLE I
AN EXAMPLE FOR THE UPLOADED TWO-DIMENSIONAL TABLE

date S1 S2 S3
2021-11-02 14:00:00 null 17.03 null
2021-11-02 14:05:00 20.17 null 10.58
2021-11-02 14:10:00 null 23.11 null
2021-11-02 14:15:00 22.05 null 9.87

For displaying the selected data, Google Charts was used
which is an API that helps developers to display data on
diagrams simply. The easiest way to use it is to load some
libraries and embed a JavaScript code in the application [30].

The application has a user-friendly web-based interface to
provide a uniform display for the using of all three main
modules and their functionalities. The available application
menus depend on the actual user’s authorities. This solution
ensures that users can only use those functions which are
available to them. To guarantee this, user management is an
important part of the application.

III. USER ADMINISTRATION

Data security and the adequate user authorities are basic
requirements for such an application [31]. According to this,
our software can be used only by registered users. The attributes
of the users are stored in an independent database. It consists of
two tables. One is for the users and the other is for the different
roles. A user can have more than one role (Fig. 3).

Four different roles are defined. These roles are separated
from each other, and they are related to well-defined tasks. First
is tool admin who manages the data of measurement types,
sensors, sensor types, devices and locations. It is the tool
admin’s responsibility to modify the attributes of a given
element, e.g. the alarm boundaries of a sensor, the year of the
production, the date of the calibration and the measurement
frequency.

Due to the relationship between the database tables, there
may be anomalies after a modification or creation, and we have

to handle them. A special menu was created for this. The
application can identify and inform the tool admin about the
next anomalies:

 There is no measurement type connected to a sensor
type,

 A sensor is not connected to a sensor type,
 A sensor is not connected to a device,
 A device does not have a location.

The application can identify these anomalies, and it creates a

list about the problems for users to correct them. The interface
of this menu is shown in Fig. 4.

The second type of user is data generator, who can generate
the artificial sensor data by specifying various parameters. The
details are in Section II B.

Data handler manages the visualization interface. This role
gives the opportunity to give some filtering conditions.
Afterwards, the diagram, which is created by the program based
on the given conditions, can be viewed by the user.

The last user is the user admin, who manages the data of the
users and registers new users. User admin can handle the
personal data of the users, like name, e-mail address and it is
his/her responsibility to set the authorities of the users. The
current surface of the application corresponds to the logged
user’s authorities. It means that a given user can reach only
those functions that come under his or her authority. For
example, a data generator user can only use the functions
connected to artificial data generation, but not other functions,

Fig. 4. Anomalies

Fig. 3. Users and roles

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

and compares the elements to the other array’s timestamps. If
they are equal, it means that a measurement was made at this
time by the current sensor, and we store this measured value in
the given sensor’s column. Otherwise, we insert a null value
into the appropriate sensor in the given timestamp. Such a table
can be seen below (Table I.). The timestamps are in the first
column, and it can be seen in the others that the three sensors
(named S1, S2, S3) did not make measurements at the same
time, so there are null values in these fields.

TABLE I
AN EXAMPLE FOR THE UPLOADED TWO-DIMENSIONAL TABLE

date S1 S2 S3
2021-11-02 14:00:00 null 17.03 null
2021-11-02 14:05:00 20.17 null 10.58
2021-11-02 14:10:00 null 23.11 null
2021-11-02 14:15:00 22.05 null 9.87

For displaying the selected data, Google Charts was used
which is an API that helps developers to display data on
diagrams simply. The easiest way to use it is to load some
libraries and embed a JavaScript code in the application [30].

The application has a user-friendly web-based interface to
provide a uniform display for the using of all three main
modules and their functionalities. The available application
menus depend on the actual user’s authorities. This solution
ensures that users can only use those functions which are
available to them. To guarantee this, user management is an
important part of the application.

III. USER ADMINISTRATION

Data security and the adequate user authorities are basic
requirements for such an application [31]. According to this,
our software can be used only by registered users. The attributes
of the users are stored in an independent database. It consists of
two tables. One is for the users and the other is for the different
roles. A user can have more than one role (Fig. 3).

Four different roles are defined. These roles are separated
from each other, and they are related to well-defined tasks. First
is tool admin who manages the data of measurement types,
sensors, sensor types, devices and locations. It is the tool
admin’s responsibility to modify the attributes of a given
element, e.g. the alarm boundaries of a sensor, the year of the
production, the date of the calibration and the measurement
frequency.

Due to the relationship between the database tables, there
may be anomalies after a modification or creation, and we have

to handle them. A special menu was created for this. The
application can identify and inform the tool admin about the
next anomalies:

 There is no measurement type connected to a sensor
type,

 A sensor is not connected to a sensor type,
 A sensor is not connected to a device,
 A device does not have a location.

The application can identify these anomalies, and it creates a

list about the problems for users to correct them. The interface
of this menu is shown in Fig. 4.

The second type of user is data generator, who can generate
the artificial sensor data by specifying various parameters. The
details are in Section II B.

Data handler manages the visualization interface. This role
gives the opportunity to give some filtering conditions.
Afterwards, the diagram, which is created by the program based
on the given conditions, can be viewed by the user.

The last user is the user admin, who manages the data of the
users and registers new users. User admin can handle the
personal data of the users, like name, e-mail address and it is
his/her responsibility to set the authorities of the users. The
current surface of the application corresponds to the logged
user’s authorities. It means that a given user can reach only
those functions that come under his or her authority. For
example, a data generator user can only use the functions
connected to artificial data generation, but not other functions,

Fig. 4. Anomalies

Fig. 3. Users and roles

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

and compares the elements to the other array’s timestamps. If
they are equal, it means that a measurement was made at this
time by the current sensor, and we store this measured value in
the given sensor’s column. Otherwise, we insert a null value
into the appropriate sensor in the given timestamp. Such a table
can be seen below (Table I.). The timestamps are in the first
column, and it can be seen in the others that the three sensors
(named S1, S2, S3) did not make measurements at the same
time, so there are null values in these fields.

TABLE I
AN EXAMPLE FOR THE UPLOADED TWO-DIMENSIONAL TABLE

date S1 S2 S3
2021-11-02 14:00:00 null 17.03 null
2021-11-02 14:05:00 20.17 null 10.58
2021-11-02 14:10:00 null 23.11 null
2021-11-02 14:15:00 22.05 null 9.87

For displaying the selected data, Google Charts was used
which is an API that helps developers to display data on
diagrams simply. The easiest way to use it is to load some
libraries and embed a JavaScript code in the application [30].

The application has a user-friendly web-based interface to
provide a uniform display for the using of all three main
modules and their functionalities. The available application
menus depend on the actual user’s authorities. This solution
ensures that users can only use those functions which are
available to them. To guarantee this, user management is an
important part of the application.

III. USER ADMINISTRATION

Data security and the adequate user authorities are basic
requirements for such an application [31]. According to this,
our software can be used only by registered users. The attributes
of the users are stored in an independent database. It consists of
two tables. One is for the users and the other is for the different
roles. A user can have more than one role (Fig. 3).

Four different roles are defined. These roles are separated
from each other, and they are related to well-defined tasks. First
is tool admin who manages the data of measurement types,
sensors, sensor types, devices and locations. It is the tool
admin’s responsibility to modify the attributes of a given
element, e.g. the alarm boundaries of a sensor, the year of the
production, the date of the calibration and the measurement
frequency.

Due to the relationship between the database tables, there
may be anomalies after a modification or creation, and we have

to handle them. A special menu was created for this. The
application can identify and inform the tool admin about the
next anomalies:

 There is no measurement type connected to a sensor
type,

 A sensor is not connected to a sensor type,
 A sensor is not connected to a device,
 A device does not have a location.

The application can identify these anomalies, and it creates a

list about the problems for users to correct them. The interface
of this menu is shown in Fig. 4.

The second type of user is data generator, who can generate
the artificial sensor data by specifying various parameters. The
details are in Section II B.

Data handler manages the visualization interface. This role
gives the opportunity to give some filtering conditions.
Afterwards, the diagram, which is created by the program based
on the given conditions, can be viewed by the user.

The last user is the user admin, who manages the data of the
users and registers new users. User admin can handle the
personal data of the users, like name, e-mail address and it is
his/her responsibility to set the authorities of the users. The
current surface of the application corresponds to the logged
user’s authorities. It means that a given user can reach only
those functions that come under his or her authority. For
example, a data generator user can only use the functions
connected to artificial data generation, but not other functions,

Fig. 4. Anomalies

Fig. 3. Users and roles

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

and compares the elements to the other array’s timestamps. If
they are equal, it means that a measurement was made at this
time by the current sensor, and we store this measured value in
the given sensor’s column. Otherwise, we insert a null value
into the appropriate sensor in the given timestamp. Such a table
can be seen below (Table I.). The timestamps are in the first
column, and it can be seen in the others that the three sensors
(named S1, S2, S3) did not make measurements at the same
time, so there are null values in these fields.

TABLE I
AN EXAMPLE FOR THE UPLOADED TWO-DIMENSIONAL TABLE

date S1 S2 S3
2021-11-02 14:00:00 null 17.03 null
2021-11-02 14:05:00 20.17 null 10.58
2021-11-02 14:10:00 null 23.11 null
2021-11-02 14:15:00 22.05 null 9.87

For displaying the selected data, Google Charts was used
which is an API that helps developers to display data on
diagrams simply. The easiest way to use it is to load some
libraries and embed a JavaScript code in the application [30].

The application has a user-friendly web-based interface to
provide a uniform display for the using of all three main
modules and their functionalities. The available application
menus depend on the actual user’s authorities. This solution
ensures that users can only use those functions which are
available to them. To guarantee this, user management is an
important part of the application.

III. USER ADMINISTRATION

Data security and the adequate user authorities are basic
requirements for such an application [31]. According to this,
our software can be used only by registered users. The attributes
of the users are stored in an independent database. It consists of
two tables. One is for the users and the other is for the different
roles. A user can have more than one role (Fig. 3).

Four different roles are defined. These roles are separated
from each other, and they are related to well-defined tasks. First
is tool admin who manages the data of measurement types,
sensors, sensor types, devices and locations. It is the tool
admin’s responsibility to modify the attributes of a given
element, e.g. the alarm boundaries of a sensor, the year of the
production, the date of the calibration and the measurement
frequency.

Due to the relationship between the database tables, there
may be anomalies after a modification or creation, and we have

to handle them. A special menu was created for this. The
application can identify and inform the tool admin about the
next anomalies:

 There is no measurement type connected to a sensor
type,

 A sensor is not connected to a sensor type,
 A sensor is not connected to a device,
 A device does not have a location.

The application can identify these anomalies, and it creates a

list about the problems for users to correct them. The interface
of this menu is shown in Fig. 4.

The second type of user is data generator, who can generate
the artificial sensor data by specifying various parameters. The
details are in Section II B.

Data handler manages the visualization interface. This role
gives the opportunity to give some filtering conditions.
Afterwards, the diagram, which is created by the program based
on the given conditions, can be viewed by the user.

The last user is the user admin, who manages the data of the
users and registers new users. User admin can handle the
personal data of the users, like name, e-mail address and it is
his/her responsibility to set the authorities of the users. The
current surface of the application corresponds to the logged
user’s authorities. It means that a given user can reach only
those functions that come under his or her authority. For
example, a data generator user can only use the functions
connected to artificial data generation, but not other functions,

Fig. 4. Anomalies

Fig. 3. Users and roles

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

and compares the elements to the other array’s timestamps. If
they are equal, it means that a measurement was made at this
time by the current sensor, and we store this measured value in
the given sensor’s column. Otherwise, we insert a null value
into the appropriate sensor in the given timestamp. Such a table
can be seen below (Table I.). The timestamps are in the first
column, and it can be seen in the others that the three sensors
(named S1, S2, S3) did not make measurements at the same
time, so there are null values in these fields.

TABLE I
AN EXAMPLE FOR THE UPLOADED TWO-DIMENSIONAL TABLE

date S1 S2 S3
2021-11-02 14:00:00 null 17.03 null
2021-11-02 14:05:00 20.17 null 10.58
2021-11-02 14:10:00 null 23.11 null
2021-11-02 14:15:00 22.05 null 9.87

For displaying the selected data, Google Charts was used
which is an API that helps developers to display data on
diagrams simply. The easiest way to use it is to load some
libraries and embed a JavaScript code in the application [30].

The application has a user-friendly web-based interface to
provide a uniform display for the using of all three main
modules and their functionalities. The available application
menus depend on the actual user’s authorities. This solution
ensures that users can only use those functions which are
available to them. To guarantee this, user management is an
important part of the application.

III. USER ADMINISTRATION

Data security and the adequate user authorities are basic
requirements for such an application [31]. According to this,
our software can be used only by registered users. The attributes
of the users are stored in an independent database. It consists of
two tables. One is for the users and the other is for the different
roles. A user can have more than one role (Fig. 3).

Four different roles are defined. These roles are separated
from each other, and they are related to well-defined tasks. First
is tool admin who manages the data of measurement types,
sensors, sensor types, devices and locations. It is the tool
admin’s responsibility to modify the attributes of a given
element, e.g. the alarm boundaries of a sensor, the year of the
production, the date of the calibration and the measurement
frequency.

Due to the relationship between the database tables, there
may be anomalies after a modification or creation, and we have

to handle them. A special menu was created for this. The
application can identify and inform the tool admin about the
next anomalies:

 There is no measurement type connected to a sensor
type,

 A sensor is not connected to a sensor type,
 A sensor is not connected to a device,
 A device does not have a location.

The application can identify these anomalies, and it creates a

list about the problems for users to correct them. The interface
of this menu is shown in Fig. 4.

The second type of user is data generator, who can generate
the artificial sensor data by specifying various parameters. The
details are in Section II B.

Data handler manages the visualization interface. This role
gives the opportunity to give some filtering conditions.
Afterwards, the diagram, which is created by the program based
on the given conditions, can be viewed by the user.

The last user is the user admin, who manages the data of the
users and registers new users. User admin can handle the
personal data of the users, like name, e-mail address and it is
his/her responsibility to set the authorities of the users. The
current surface of the application corresponds to the logged
user’s authorities. It means that a given user can reach only
those functions that come under his or her authority. For
example, a data generator user can only use the functions
connected to artificial data generation, but not other functions,

Fig. 4. Anomalies

Fig. 3. Users and roles

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

and compares the elements to the other array’s timestamps. If
they are equal, it means that a measurement was made at this
time by the current sensor, and we store this measured value in
the given sensor’s column. Otherwise, we insert a null value
into the appropriate sensor in the given timestamp. Such a table
can be seen below (Table I.). The timestamps are in the first
column, and it can be seen in the others that the three sensors
(named S1, S2, S3) did not make measurements at the same
time, so there are null values in these fields.

TABLE I
AN EXAMPLE FOR THE UPLOADED TWO-DIMENSIONAL TABLE

date S1 S2 S3
2021-11-02 14:00:00 null 17.03 null
2021-11-02 14:05:00 20.17 null 10.58
2021-11-02 14:10:00 null 23.11 null
2021-11-02 14:15:00 22.05 null 9.87

For displaying the selected data, Google Charts was used
which is an API that helps developers to display data on
diagrams simply. The easiest way to use it is to load some
libraries and embed a JavaScript code in the application [30].

The application has a user-friendly web-based interface to
provide a uniform display for the using of all three main
modules and their functionalities. The available application
menus depend on the actual user’s authorities. This solution
ensures that users can only use those functions which are
available to them. To guarantee this, user management is an
important part of the application.

III. USER ADMINISTRATION

Data security and the adequate user authorities are basic
requirements for such an application [31]. According to this,
our software can be used only by registered users. The attributes
of the users are stored in an independent database. It consists of
two tables. One is for the users and the other is for the different
roles. A user can have more than one role (Fig. 3).

Four different roles are defined. These roles are separated
from each other, and they are related to well-defined tasks. First
is tool admin who manages the data of measurement types,
sensors, sensor types, devices and locations. It is the tool
admin’s responsibility to modify the attributes of a given
element, e.g. the alarm boundaries of a sensor, the year of the
production, the date of the calibration and the measurement
frequency.

Due to the relationship between the database tables, there
may be anomalies after a modification or creation, and we have

to handle them. A special menu was created for this. The
application can identify and inform the tool admin about the
next anomalies:

 There is no measurement type connected to a sensor
type,

 A sensor is not connected to a sensor type,
 A sensor is not connected to a device,
 A device does not have a location.

The application can identify these anomalies, and it creates a

list about the problems for users to correct them. The interface
of this menu is shown in Fig. 4.

The second type of user is data generator, who can generate
the artificial sensor data by specifying various parameters. The
details are in Section II B.

Data handler manages the visualization interface. This role
gives the opportunity to give some filtering conditions.
Afterwards, the diagram, which is created by the program based
on the given conditions, can be viewed by the user.

The last user is the user admin, who manages the data of the
users and registers new users. User admin can handle the
personal data of the users, like name, e-mail address and it is
his/her responsibility to set the authorities of the users. The
current surface of the application corresponds to the logged
user’s authorities. It means that a given user can reach only
those functions that come under his or her authority. For
example, a data generator user can only use the functions
connected to artificial data generation, but not other functions,

Fig. 4. Anomalies

Fig. 3. Users and roles

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 7

like visualization, sensor and user management. Of course, a
user can be assigned multiple roles who can reach and use all
related functions in the application.

IV. A DEMONSTRATION USE-CASE

In this section, we would like to show the functionality of our
application from the data generation to data filtering and
visualization. To do this, different kinds of users were defined
with the appropriate roles and authorities. At first, we generated
some artificial values with our data generator module. Before
generating, some test elements (sensors, sensor types etc.) were
inserted into our database. In this test, one sensor, named
Tempr2 was selected, which is a thermometer, and the other
parameters were entered. We chose the normal distribution and
1000 values were generated where the starting date was 2022.
01. 07 23:00:00. (Fig. 5). At the end of the process, a message
tells us if the generation was successful or not. We manually
checked the generated data in the database.

After a huge number of values had been generated, we started
to test the visualization component. As it can be seen in Fig. 6,
humidity sensor type was selected and two sensors appeared in
the box which means that there are two sensors in the database
connected to the chosen sensor type. We also entered the
starting and the ending date, and then the line diagram was
created by the program as shown in Fig. 7. Besides, we tested
the filter under the diagram that also worked properly as we
could easily change the interval of the dates. In addition, some
random values were selected from the diagram and we checked
in the database if they matched, and we experienced that all of
them were the same at the given times.

Fig. 5. Interface of a test data generation

A practical framework to generate and manage
synthetic sensor data

JUNE 2022 • VOLUME XIV • NUMBER 270

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 7

like visualization, sensor and user management. Of course, a
user can be assigned multiple roles who can reach and use all
related functions in the application.

IV. A DEMONSTRATION USE-CASE

In this section, we would like to show the functionality of our
application from the data generation to data filtering and
visualization. To do this, different kinds of users were defined
with the appropriate roles and authorities. At first, we generated
some artificial values with our data generator module. Before
generating, some test elements (sensors, sensor types etc.) were
inserted into our database. In this test, one sensor, named
Tempr2 was selected, which is a thermometer, and the other
parameters were entered. We chose the normal distribution and
1000 values were generated where the starting date was 2022.
01. 07 23:00:00. (Fig. 5). At the end of the process, a message
tells us if the generation was successful or not. We manually
checked the generated data in the database.

After a huge number of values had been generated, we started
to test the visualization component. As it can be seen in Fig. 6,
humidity sensor type was selected and two sensors appeared in
the box which means that there are two sensors in the database
connected to the chosen sensor type. We also entered the
starting and the ending date, and then the line diagram was
created by the program as shown in Fig. 7. Besides, we tested
the filter under the diagram that also worked properly as we
could easily change the interval of the dates. In addition, some
random values were selected from the diagram and we checked
in the database if they matched, and we experienced that all of
them were the same at the given times.

Fig. 5. Interface of a test data generation

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 8

V. CONCLUSION

In this paper we created and implemented an artificial sensor
data generator as part of a complex sensor data handling
application. The application includes a flexible database
structure (designed by us) to store the data, the above-
mentioned data generator module and a visualization module to
filter and visualize the selected data. The main idea behind the
generator module is that there are a huge number of applications
which are developed to handle sensitive, industrial sensor data.
This module is able to create artificial sensor data sample to

support the development and testing phase of the software and
their functionalities. A common web-interface guarantees
access to the whole application.

User management was an important part of the software.
Accordingly, the four defined roles and the connected
authorities define the available application interface and
functions for a given user. The connected data is stored in a
separated database.

The examined similar data generators are simple solutions
since they do not have included database and user-friendly
surface. The parametrization and the use of them is possible
only in command line or in special environment. User
administration is the other specialty of our solution that defines

Fig. 6. Filtering before visualization

Fig. 7. Line diagram of measured values

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 7

like visualization, sensor and user management. Of course, a
user can be assigned multiple roles who can reach and use all
related functions in the application.

IV. A DEMONSTRATION USE-CASE

In this section, we would like to show the functionality of our
application from the data generation to data filtering and
visualization. To do this, different kinds of users were defined
with the appropriate roles and authorities. At first, we generated
some artificial values with our data generator module. Before
generating, some test elements (sensors, sensor types etc.) were
inserted into our database. In this test, one sensor, named
Tempr2 was selected, which is a thermometer, and the other
parameters were entered. We chose the normal distribution and
1000 values were generated where the starting date was 2022.
01. 07 23:00:00. (Fig. 5). At the end of the process, a message
tells us if the generation was successful or not. We manually
checked the generated data in the database.

After a huge number of values had been generated, we started
to test the visualization component. As it can be seen in Fig. 6,
humidity sensor type was selected and two sensors appeared in
the box which means that there are two sensors in the database
connected to the chosen sensor type. We also entered the
starting and the ending date, and then the line diagram was
created by the program as shown in Fig. 7. Besides, we tested
the filter under the diagram that also worked properly as we
could easily change the interval of the dates. In addition, some
random values were selected from the diagram and we checked
in the database if they matched, and we experienced that all of
them were the same at the given times.

Fig. 5. Interface of a test data generation

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 7

like visualization, sensor and user management. Of course, a
user can be assigned multiple roles who can reach and use all
related functions in the application.

IV. A DEMONSTRATION USE-CASE

In this section, we would like to show the functionality of our
application from the data generation to data filtering and
visualization. To do this, different kinds of users were defined
with the appropriate roles and authorities. At first, we generated
some artificial values with our data generator module. Before
generating, some test elements (sensors, sensor types etc.) were
inserted into our database. In this test, one sensor, named
Tempr2 was selected, which is a thermometer, and the other
parameters were entered. We chose the normal distribution and
1000 values were generated where the starting date was 2022.
01. 07 23:00:00. (Fig. 5). At the end of the process, a message
tells us if the generation was successful or not. We manually
checked the generated data in the database.

After a huge number of values had been generated, we started
to test the visualization component. As it can be seen in Fig. 6,
humidity sensor type was selected and two sensors appeared in
the box which means that there are two sensors in the database
connected to the chosen sensor type. We also entered the
starting and the ending date, and then the line diagram was
created by the program as shown in Fig. 7. Besides, we tested
the filter under the diagram that also worked properly as we
could easily change the interval of the dates. In addition, some
random values were selected from the diagram and we checked
in the database if they matched, and we experienced that all of
them were the same at the given times.

Fig. 5. Interface of a test data generation

A practical framework to generate and manage
synthetic sensor data

INFOCOMMUNICATIONS JOURNAL

JUNE 2022 • VOLUME XIV • NUMBER 2 71

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 8

V. CONCLUSION

In this paper we created and implemented an artificial sensor
data generator as part of a complex sensor data handling
application. The application includes a flexible database
structure (designed by us) to store the data, the above-
mentioned data generator module and a visualization module to
filter and visualize the selected data. The main idea behind the
generator module is that there are a huge number of applications
which are developed to handle sensitive, industrial sensor data.
This module is able to create artificial sensor data sample to

support the development and testing phase of the software and
their functionalities. A common web-interface guarantees
access to the whole application.

User management was an important part of the software.
Accordingly, the four defined roles and the connected
authorities define the available application interface and
functions for a given user. The connected data is stored in a
separated database.

The examined similar data generators are simple solutions
since they do not have included database and user-friendly
surface. The parametrization and the use of them is possible
only in command line or in special environment. User
administration is the other specialty of our solution that defines

Fig. 6. Filtering before visualization

Fig. 7. Line diagram of measured values

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 8

V. CONCLUSION

In this paper we created and implemented an artificial sensor
data generator as part of a complex sensor data handling
application. The application includes a flexible database
structure (designed by us) to store the data, the above-
mentioned data generator module and a visualization module to
filter and visualize the selected data. The main idea behind the
generator module is that there are a huge number of applications
which are developed to handle sensitive, industrial sensor data.
This module is able to create artificial sensor data sample to

support the development and testing phase of the software and
their functionalities. A common web-interface guarantees
access to the whole application.

User management was an important part of the software.
Accordingly, the four defined roles and the connected
authorities define the available application interface and
functions for a given user. The connected data is stored in a
separated database.

The examined similar data generators are simple solutions
since they do not have included database and user-friendly
surface. The parametrization and the use of them is possible
only in command line or in special environment. User
administration is the other specialty of our solution that defines

Fig. 6. Filtering before visualization

Fig. 7. Line diagram of measured values

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 8

V. CONCLUSION

In this paper we created and implemented an artificial sensor
data generator as part of a complex sensor data handling
application. The application includes a flexible database
structure (designed by us) to store the data, the above-
mentioned data generator module and a visualization module to
filter and visualize the selected data. The main idea behind the
generator module is that there are a huge number of applications
which are developed to handle sensitive, industrial sensor data.
This module is able to create artificial sensor data sample to

support the development and testing phase of the software and
their functionalities. A common web-interface guarantees
access to the whole application.

User management was an important part of the software.
Accordingly, the four defined roles and the connected
authorities define the available application interface and
functions for a given user. The connected data is stored in a
separated database.

The examined similar data generators are simple solutions
since they do not have included database and user-friendly
surface. The parametrization and the use of them is possible
only in command line or in special environment. User
administration is the other specialty of our solution that defines

Fig. 6. Filtering before visualization

Fig. 7. Line diagram of measured values

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

the access to the artificial devices, to the sensor, and to the
generated data.

The architecture and the module-based design of the
application allows for later expandability and further steps of
development. There are three possible distributions in our
current generator module, but we can expand this circle with
other important distributions to broaden the range of
possibilities of this module. The visualization module currently
contains simple analytic functions to create some basic
statistical parameters and we are planning the expansion in this
direction. The range of the user roles can be expanded too in the
future. The current version of our framework – thanks to the
well based database structure, user administration and module
structure - is a good basis for the future making it possible for
us to extend the sphere of the modules and their functionalities.

ACKNOWLEDGMENT
 The research was supported by the project No. 2019-1.3.1-

KK-2019-00011 financed by the National Research,
Development and Innovation Fund of Hungary under the
Establishment of Competence Centers, Development of
Research Infrastructure Programme funding scheme.

REFERENCES
[1] G. Dalmarco, F. R. Ramalho, A. C. Barros, and A. L. Soares,

“Providing industry 4.0 technologies: The case of a production
technology cluster,” The Journal of High Technology
Management Research, vol. 30, no. 2, 2019, DOI:
10.1016/j.hitech.2019.100355.

[2] A. Koncz, and A. Gludovatz, “Calculation of indirect electricity
consumption in product manufacturing,” International Journal
of Energy Production and Management, vol. 6, no. 3, pp. 229–
244, 2021, DOI: 10.2495/EQ-V6-N3-229-244.

[3] S. A. Hashmi, C. F. Ali, and S. Zafar, “Internet of things and
cloud computing‐based energy management system for demand
side management in Smart Grid,” International Journal of
Energy Research, vol. 45, no. 1, pp. 1007–1022, 2020, DOI:
10.1002/er.6141.

[4] J. -Q. Li, F. R. Yu, G. Deng, C. Luo, Z. Ming, and Q. Yan,
“Industrial Internet: A Survey on the Enabling Technologies,
Applications, and Challenges,” IEEE Communications Surveys
& Tutorials, vol. 19, no. 3, pp. 1504-1526, 2017, DOI:
10.1109/COMST.2017.2691349.

[5] Q. Jing, A. V. Vasilakos, J. Wan, J. Lu, and D. Qiu, “Security of
the internet of things: Perspectives and challenges,” Wireless
Networks, vol. 20, no. 8, pp. 2481–2501, 2014, DOI:
10.1007/s11276-014-0761-7

[6] K. R. Sollins, “Iot Big Data Security and Privacy Versus
Innovation,” IEEE Internet of Things Journal, vol. 6, no. 2, pp.
1628–1635, 2019, DOI: 10.1109/JIOT.2019.2898113

[7] A. Garg and A. Arora, “Software Reliability–A Review”,
International Journal of scientific research and management,
vol. 4, no. 7, 2016.

[8] H. Tahbildar and B. Kalita, “Automated Software Test Data
Generation: Direction of Research,” International Journal of
Computer Science & Engineering Survey, vol. 2, no. 1, pp.
99–120, 2011, DOI: 10.5121/ijcses.2011.2108

[9] M. Esnaashari and A. H. Damia, “Automation of software test
data generation using genetic algorithm and reinforcement

learning,” Expert Systems with Applications, vol. 183, 2021,
DOI: 10.1016/j.eswa.2021.115446.

[10] M. A. Calles, “Protecting Sensitive Data,” in Serverless Security,
Berkeley, CA, USA: Apress, 2020, pp. 257-283, DOI:
10.1007/978-1-4842-6100-2_10.

[11] A Net 2000 Ltd., “Data Masking: What You Need to Know”
2016.

[12] N. Laskowski, “What is synthetic data? - definition from
whatis.com,” SearchCIO, 12-Feb-2018. [Online]. Available:
https://www.techtarget.com/searchcio/definition/synthetic-data.
[Accessed: 09-Mar-2022].

[13] S. Popic, B. Pavkovic, I. Velikic, and N. Teslic, “Data
Generators: A short survey of techniques and use cases with
focus on testing,” 2019 IEEE 9th International Conference on
Consumer Electronics (ICCE-Berlin), pp. 189–194, 2019, DOI:
10.1109/ICCE-Berlin47944.2019.8966202.

[14] O. Embarrak, Data Analysis and Visualization Using Python,
Apress Berkeley, CA, 2018 DOI: 10.1007/978-1-4842-4109-7

[15] K. Fraczek, M. Plechawska-Wojcik, “Comparative Analysis of
Relational and Non-relational Databases in the Context of
Performance in Web Applications,” in BDAS 2017 DOI:
10.1007/978-3-319-58274-0_13

[16] B. Anderson and B. Nicholson, “SQL vs. NoSQL databases:
What's the difference?,” IBM, 15-Jun-2021. [Online]. Available:
https://www.ibm.com/cloud/blog/sql-vs-nosql. [Accessed: 19-
Jan-2022].

[17] S. Kontogiannis, C. Asiminidis and G. Kokkonis, “Comparing
Relational and NoSQL Databases for carrying IoT data”, Journal
of Scientific and Engineering Research, 2019.

[18] A. Gopani, A. Choudhary, S. Bhattacharyya, and S. Goled, “10
most used databases by developers in 2020,” Analytics India
Magazine, 12-Jan-2022. [Online]. Available:
https://analyticsindiamag.com/10-most-used-databases-by-
developers-in-2020/. [Accessed: 19-Jan-2022].

[19] “Engines ranking,” DB. [Online]. Available: https://db-
engines.com/en/ranking [Accessed: 19-Jan-2022].

[20] B. Zimmering, O. Niggemann, C. Hasterok, E. Pfannstiel, D.
Ramming, and J. Pfrommer, “Generating artificial sensor data
for the comparison of unsupervised machine learning methods,”
Sensors, vol. 21, no. 7, 2021, DOI: 10.3390/s21072397.

[21] W. C. Tam, E. Y. Fu, R. Peacock, P. Reneke, J. Wang, J. Li, and
T. Cleary, “Generating synthetic sensor data to facilitate
machine learning paradigm for prediction of Building Fire
Hazard,” Fire Technology, 2020, DOI: 10.1007/s10694-020-
01022-9.

[22] S. Norgaard, R. Saeedi, K. Sasani, and A. H. Gebremedhin,
“Synthetic Sensor Data Generation for Health Applications: A
Supervised Deep Learning Approach,” in Annual International
Conference of the EMBC, Honolulu, HI, USA, 2018, pp. 1164-
1167, DOI: 10.1109/EMBC.2018.8512470.

[23] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K.
Veeramachaneni. “Modeling tabular data using Conditional
GAN”. 2019, DOI: 10.48550/arXiv.1907.00503.

[24] J. Dahmen and D. Cook, “SynSys: A Synthetic Data Generation
System for Healthcare Applications,” Sensors, vol. 19, no. 5,
2019.

[25] Tdunning, “TDUNNING/log-synth: Generates more or less
realistic log data for testing simple aggregation queries.,”
GitHub. [Online]. Available: https://github.com/tdunning/log-
synth. [Accessed: 09-Mar-2022].

[26] Rradev, “Rradev/iosynth: Iosynth is IOT device/sensor
simulator and synthetic data generator.,” GitHub. [Online].

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

the access to the artificial devices, to the sensor, and to the
generated data.

The architecture and the module-based design of the
application allows for later expandability and further steps of
development. There are three possible distributions in our
current generator module, but we can expand this circle with
other important distributions to broaden the range of
possibilities of this module. The visualization module currently
contains simple analytic functions to create some basic
statistical parameters and we are planning the expansion in this
direction. The range of the user roles can be expanded too in the
future. The current version of our framework – thanks to the
well based database structure, user administration and module
structure - is a good basis for the future making it possible for
us to extend the sphere of the modules and their functionalities.

ACKNOWLEDGMENT
 The research was supported by the project No. 2019-1.3.1-

KK-2019-00011 financed by the National Research,
Development and Innovation Fund of Hungary under the
Establishment of Competence Centers, Development of
Research Infrastructure Programme funding scheme.

REFERENCES
[1] G. Dalmarco, F. R. Ramalho, A. C. Barros, and A. L. Soares,

“Providing industry 4.0 technologies: The case of a production
technology cluster,” The Journal of High Technology
Management Research, vol. 30, no. 2, 2019, DOI:
10.1016/j.hitech.2019.100355.

[2] A. Koncz, and A. Gludovatz, “Calculation of indirect electricity
consumption in product manufacturing,” International Journal
of Energy Production and Management, vol. 6, no. 3, pp. 229–
244, 2021, DOI: 10.2495/EQ-V6-N3-229-244.

[3] S. A. Hashmi, C. F. Ali, and S. Zafar, “Internet of things and
cloud computing‐based energy management system for demand
side management in Smart Grid,” International Journal of
Energy Research, vol. 45, no. 1, pp. 1007–1022, 2020, DOI:
10.1002/er.6141.

[4] J. -Q. Li, F. R. Yu, G. Deng, C. Luo, Z. Ming, and Q. Yan,
“Industrial Internet: A Survey on the Enabling Technologies,
Applications, and Challenges,” IEEE Communications Surveys
& Tutorials, vol. 19, no. 3, pp. 1504-1526, 2017, DOI:
10.1109/COMST.2017.2691349.

[5] Q. Jing, A. V. Vasilakos, J. Wan, J. Lu, and D. Qiu, “Security of
the internet of things: Perspectives and challenges,” Wireless
Networks, vol. 20, no. 8, pp. 2481–2501, 2014, DOI:
10.1007/s11276-014-0761-7

[6] K. R. Sollins, “Iot Big Data Security and Privacy Versus
Innovation,” IEEE Internet of Things Journal, vol. 6, no. 2, pp.
1628–1635, 2019, DOI: 10.1109/JIOT.2019.2898113

[7] A. Garg and A. Arora, “Software Reliability–A Review”,
International Journal of scientific research and management,
vol. 4, no. 7, 2016.

[8] H. Tahbildar and B. Kalita, “Automated Software Test Data
Generation: Direction of Research,” International Journal of
Computer Science & Engineering Survey, vol. 2, no. 1, pp.
99–120, 2011, DOI: 10.5121/ijcses.2011.2108

[9] M. Esnaashari and A. H. Damia, “Automation of software test
data generation using genetic algorithm and reinforcement

learning,” Expert Systems with Applications, vol. 183, 2021,
DOI: 10.1016/j.eswa.2021.115446.

[10] M. A. Calles, “Protecting Sensitive Data,” in Serverless Security,
Berkeley, CA, USA: Apress, 2020, pp. 257-283, DOI:
10.1007/978-1-4842-6100-2_10.

[11] A Net 2000 Ltd., “Data Masking: What You Need to Know”
2016.

[12] N. Laskowski, “What is synthetic data? - definition from
whatis.com,” SearchCIO, 12-Feb-2018. [Online]. Available:
https://www.techtarget.com/searchcio/definition/synthetic-data.
[Accessed: 09-Mar-2022].

[13] S. Popic, B. Pavkovic, I. Velikic, and N. Teslic, “Data
Generators: A short survey of techniques and use cases with
focus on testing,” 2019 IEEE 9th International Conference on
Consumer Electronics (ICCE-Berlin), pp. 189–194, 2019, DOI:
10.1109/ICCE-Berlin47944.2019.8966202.

[14] O. Embarrak, Data Analysis and Visualization Using Python,
Apress Berkeley, CA, 2018 DOI: 10.1007/978-1-4842-4109-7

[15] K. Fraczek, M. Plechawska-Wojcik, “Comparative Analysis of
Relational and Non-relational Databases in the Context of
Performance in Web Applications,” in BDAS 2017 DOI:
10.1007/978-3-319-58274-0_13

[16] B. Anderson and B. Nicholson, “SQL vs. NoSQL databases:
What's the difference?,” IBM, 15-Jun-2021. [Online]. Available:
https://www.ibm.com/cloud/blog/sql-vs-nosql. [Accessed: 19-
Jan-2022].

[17] S. Kontogiannis, C. Asiminidis and G. Kokkonis, “Comparing
Relational and NoSQL Databases for carrying IoT data”, Journal
of Scientific and Engineering Research, 2019.

[18] A. Gopani, A. Choudhary, S. Bhattacharyya, and S. Goled, “10
most used databases by developers in 2020,” Analytics India
Magazine, 12-Jan-2022. [Online]. Available:
https://analyticsindiamag.com/10-most-used-databases-by-
developers-in-2020/. [Accessed: 19-Jan-2022].

[19] “Engines ranking,” DB. [Online]. Available: https://db-
engines.com/en/ranking [Accessed: 19-Jan-2022].

[20] B. Zimmering, O. Niggemann, C. Hasterok, E. Pfannstiel, D.
Ramming, and J. Pfrommer, “Generating artificial sensor data
for the comparison of unsupervised machine learning methods,”
Sensors, vol. 21, no. 7, 2021, DOI: 10.3390/s21072397.

[21] W. C. Tam, E. Y. Fu, R. Peacock, P. Reneke, J. Wang, J. Li, and
T. Cleary, “Generating synthetic sensor data to facilitate
machine learning paradigm for prediction of Building Fire
Hazard,” Fire Technology, 2020, DOI: 10.1007/s10694-020-
01022-9.

[22] S. Norgaard, R. Saeedi, K. Sasani, and A. H. Gebremedhin,
“Synthetic Sensor Data Generation for Health Applications: A
Supervised Deep Learning Approach,” in Annual International
Conference of the EMBC, Honolulu, HI, USA, 2018, pp. 1164-
1167, DOI: 10.1109/EMBC.2018.8512470.

[23] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K.
Veeramachaneni. “Modeling tabular data using Conditional
GAN”. 2019, DOI: 10.48550/arXiv.1907.00503.

[24] J. Dahmen and D. Cook, “SynSys: A Synthetic Data Generation
System for Healthcare Applications,” Sensors, vol. 19, no. 5,
2019.

[25] Tdunning, “TDUNNING/log-synth: Generates more or less
realistic log data for testing simple aggregation queries.,”
GitHub. [Online]. Available: https://github.com/tdunning/log-
synth. [Accessed: 09-Mar-2022].

[26] Rradev, “Rradev/iosynth: Iosynth is IOT device/sensor
simulator and synthetic data generator.,” GitHub. [Online].

 [1] G. Dalmarco, F. R. Ramalho, A. C. Barros, and A. L. Soares,
“Providing industry 4.0 technologies: The case of a production
technology cluster,” The Journal of High Technology Management
Research, vol. 30, no. 2, 2019, doi: 10.1016/j.hitech.2019.100355.

 [2] A. Koncz, and A. Gludovatz, “Calculation of indirect electricity
consumption in product manufacturing,” International Journal of
Energy Production and Management, vol. 6, no. 3, pp. 229–244, 2021,
doi: 10.2495/EQ-V6-N3-229-244.

 [3] S. A. Hashmi, C. F. Ali, and S. Zafar, “Internet of things and cloud
computing-based energy management system for demand side
management in Smart Grid,” International Journal of Energy
Research, vol. 45, no. 1, pp. 1007–1022, 2020, doi: 10.1002/er.6141.

 [4] J.-Q. Li, F. R. Yu, G. Deng, C. Luo, Z. Ming, and Q. Yan, “Industrial
Internet: A Survey on the Enabling Technologies, Applications, and
Challenges,” IEEE Communications Surveys & Tutorials, vol. 19, no.
3, pp. 1504-1526, 2017, doi: 10.1109/COMST.2017.2691349.

 [5] Q. Jing, A. V. Vasilakos, J. Wan, J. Lu, and D. Qiu, “Security of the
internet of things: Perspectives and challenges,” Wireless Networks,
vol. 20, no. 8, pp. 2481–2501, 2014, doi: 10.1007/s11276-014-0761-7

 [6] K. R. Sollins, “Iot Big Data Security and Privacy Versus Innovation,”
IEEE Internet of Things Journal, vol. 6, no. 2, pp. 1628–1635, 2019,
doi: 10.1109/JIOT.2019.2898113

References

https://doi.org/10.1016/j.hitech.2019.100355
https://doi.org/10.2495/EQ-V6-N3-229-244
https://doi.org/10.1002/er.6141
https://doi.org/10.1109/COMST.2017.2691349
https://doi.org/10.1007/s11276-014-0761-7
https://doi.org/10.1109/JIOT.2019.2898113

A practical framework to generate and manage
synthetic sensor data

JUNE 2022 • VOLUME XIV • NUMBER 272

INFOCOMMUNICATIONS JOURNAL

 [7] A. Garg and A. Arora, “Software Reliability–A Review”, International
Journal of scientific research and management, vol. 4, no. 7, 2016.

 [8] H. Tahbildar and B. Kalita, “Automated Software Test Data
Generation: Direction of Research,” International Journal of
Computer Science & Engineering Survey, vol. 2, no. 1, pp. 99–
120, 2011, doi: 10.5121/ijcses.2011.2108

 [9] M. Esnaashari and A. H. Damia, “Automation of software test data
generation using genetic algorithm and reinforcement learning,”
Expert Systems with Applications, vol. 183, 2021,

 doi: 10.1016/j.eswa.2021.115446.
 [10] M. A. Calles, “Protecting Sensitive Data,” in Serverless Security,

Berkeley, CA, USA: Apress, 2020, pp. 257-283,
 doi: 10.1007/978-1-4842-6100-2_10.
 [11] A Net 2000 Ltd., “Data Masking: What You Need to Know” 2016.
	[12]	 N.	 Laskowski,	 “What	 is	 synthetic	 data?	 -	 definition	 from	 whatis.

com,” SearchCIO, 12-Feb-2018. [Online]. Available: https://www.
techtarget.com/searchcio/definition/synthetic-data. [Accessed: 09-
Mar-2022].

 [13] S. Popic, B. Pavkovic, I. Velikic, and N. Teslic, “Data Generators: A
short survey of techniques and use cases with focus on testing,” 2019
IEEE 9th International Conference on Consumer Electronics (ICCE-
Berlin), pp. 189–194, 2019,

 doi: 10.1109/ICCE-Berlin47944.2019.8966202.
 [14] O. Embarrak, Data Analysis and Visualization Using Python, Apress

Berkeley, CA, 2018 doi: 10.1007/978-1-4842-4109-7
 [15] K. Fraczek, M. Plechawska-Wojcik, “Comparative Analysis

of Relational and Non-relational Databases in the Context of
Performance in Web Applications,” in BDAS 2017

 doi: 10.1007/978-3-319-58274-0_13
 [16] B. Anderson and B. Nicholson, “SQL vs. NoSQL databases: What's

the difference?,” IBM, 15-Jun-2021. [Online]. Available: https://
www.ibm.com/cloud/blog/sql-vs-nosql. [Accessed: 19- Jan-2022].

 [17] S. Kontogiannis, C. Asiminidis and G. Kokkonis, “Comparing
Relational and NoSQL Databases for carrying IoT data”, Journal of
Scientific and Engineering Research, 2019.

 [18] A. Gopani, A. Choudhary, S. Bhattacharyya, and S. Goled, “10 most
used databases by developers in 2020,” Analytics India Magazine,
12-Jan-2022. [Online]. Available: https://analyticsindiamag.com/10-
most-used-databases-by-developers-in-2020/. [Accessed: 19-Jan-
2022].

 [19] “Engines ranking,” DB. [Online]. Available: https://db-engines.com/
en/ranking [Accessed: 19-Jan-2022].

 [20] B. Zimmering, O. Niggemann, C. Hasterok, E. Pfannstiel, D.
Ramming,	and	J.	Pfrommer,	“Generating	artificial	sensor	data	for	the	
comparison of unsupervised machine learning methods,” Sensors,
vol. 21, no. 7, 2021, doi: 10.3390/s21072397.

 [21] W. C. Tam, E. Y. Fu, R. Peacock, P. Reneke, J. Wang, J. Li, and T.
Cleary, “Generating synthetic sensor data to facilitate machine
learning paradigm for prediction of Building Fire Hazard,” Fire
Technology, 2020, doi: 10.1007/s10694-020-01022-9.

 [22] S. Norgaard, R. Saeedi, K. Sasani, and A. H. Gebremedhin, “Synthetic
Sensor Data Generation for Health Applications: A Supervised Deep
Learning Approach,” in Annual International Conference of the
EMBC, Honolulu, HI, USA, 2018, pp. 1164-1167,

 doi: 10.1109/EMBC.2018.8512470.

 [23] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni.
“Modeling tabular data using Conditional GAN”. 2019,

 doi: 10.48550/arXiv.1907.00503.
 [24] J. Dahmen and D. Cook, “SynSys: A Synthetic Data Generation

System for Healthcare Applications,” Sensors, vol. 19, no. 5, 2019.
 [25] Tdunning, “TDUNNING/log-synth: Generates more or less realistic

log data for testing simple aggregation queries.,” GitHub. [Online].
Available: https://github.com/tdunning/log-synth. [Accessed: 09-Mar-
2022].

 [26] Rradev, “Rradev/iosynth: Iosynth is IOT device/sensor simulator and
synthetic data generator.,” GitHub. [Online]. Available: https://github.
com/rradev/iosynth. [Accessed: 09-Mar-2022].

[27] Makinarocks, “Makinarocks/Mandrova: An Awesome Synthetic
Sensor Data Generator for Python3,” GitHub. [Online]. Available:
https://github.com/makinarocks/Mandrova. [Accessed: 02-Mar-
2022].

[28] C. Forbes, M. Evans, N. Hastings, and B. Peacock, Statistical
Distributions, 4th Edition, Hoboken, New Jersey, USA: John Wiley
& Sons, Inc., 2011

[29] S. K. Peddoju, and H. Upadhyay, “Evaluation of IoT data visualization
tools and techniques,” in Data Visualization, Singapore: Springer,
2020. pp. 115-139. doi: 10.1007/978-981-15-2282-6_7

[30] “Using google charts | google developers,” Google. [Online].
Available: https://developers.google.com/chart/interactive/docs.
[Accessed: 02-Mar-2022].

[31] K. Tabassum, A. Ibrahim, and S. A. El Rahman, “Security Issues and
Challenges in IoT,” in ICCIS, Sakaka, Saudi Arabia, 2019, pp. 1-5,
doi: 10.1109/ICCISci.2019.8716460.

Zoltán Pödör received the M.Sc. degree in Math-
ematics and Computer Science from the University of
Szeged in 1999. He wrote his PhD thesis on the exten-
sion opportunities of time series analysis based on spe-
cial method at University of West Hungary in 2014.
Between 2006 and 2020 he worked at the University
of Sopron, Hungary in various positions including
Head of Institute of Informatics and Economics. Since
2020 he has been associate professor at Eötvös Loránd
University, faculty of Informatics. His current research

interests cover time series analysis, data mining techniques in practice and
handling and processing of sensor data. He has more than 70 publications.

Anna Szabó has been a BSc student at Eötvös Loránd
University, Szombathely, Hungary in Computer
Science since 2019. Her current interests are storage,
handling, visualization and analysis of different kinds
of data (mainly sensor data).

INFOCOMMUNICATIONS JOURNAL 1

On the Quality of Experience of Content Sharing in
Online Education and Online Meetings

Tushig Bat-Erdene, Yazan N. H. Zayed, Xinyu Qiu, Ibrar Shakoor, Achref Mekni,
Peter A. Kara, Member, IEEE, Maria G. Martini, Senior Member, IEEE, Laszlo Bokor, Member, IEEE,

and Aniko Simon

Abstract—The turn of the decade introduced a new era
of global pandemics to the world through the appearance of
COVID-19, which is still an active crisis at the time of this paper.
As a countermeasure, the phenomena of home office and online
education became not only widely available, but also mandatory
in many countries. However, the performance, reliability and
general usability of such real-time activities may be severely
affected by unfavorable network conditions. In both contexts,
content sharing is now a common practice, and the success of the
related use cases may fundamentally depend on it. In this paper,
we present our surveys and subjective studies on the Quality
of Experience of content sharing in online education and online
meetings. A total of 6 surveys and 5 experiments are detailed,
addressing topics of student experience, user interface settings,
sharing options of lecturers and employees of the private sector,
the perceivable effects of network impairments and the related
long-term adaptation, the rubber band effect of slide sharing,
the overall perceived quality and the separate quality aspects of
media loading times, and the preference between visual quality,
average frame rate and frame rate uniformity. The findings of
the subjective studies do not characterize the use cases of the
investigated topics on a general, widely-applicable level, as only
a single online platform is involved throughout the experiments.
However, their experimental configurations are reinforced by
comprehensive surveys and many results indicate statistically
significant differences between the selected test conditions.

Index Terms—Quality of Experience, Quality of Service, online
meeting, online education, video quality, video resolution, loading
time.

I. INTRODUCTION

DUE to the ongoing global pandemic SARS-CoV-2 – also
known as COVID-19 – the employees of more and more

companies and institutions perform their daily occupation-
related activities from the safety of their homes. Similarly, as
the virus appeared in every corner of the world – threatening
the lives of millions – education suddenly shifted towards
its online variations, as an attempt to battle this crisis. In
numerous countries, online education is still the only rea-
sonable option in 2021, since even at the time of writing
this paper, although vaccines are already available, yet the

Tushig Bat-Erdene, Yazan N. H. Zayed, Xinyu Qiu, Ibrar Shakoor,
Achref Mekni, Peter A. Kara and Laszlo Bokor are with the Budapest
University of Technology and Economics, Budapest, Hungary. Email: {bat-
erdene.tushig, yzayed, qiuxinyu, ibrarshakoor, achrefmekni}@edu.bme.hu,
{kara, bokorl}@hit.bme.hu

Peter A. Kara and Maria G. Martini are with Kingston University, London,
United Kingdom. Email: {p.kara, m.martini}@kingston.ac.uk

Aniko Simon is with Sigma Technology, Budapest, Hungary. Email:
aniko.simon@sigmatechnology.se

Manuscript received December 26, 2021.

disease remains to be dealt with – particularly due to the
continuously evolving variants. Additionally, new threats are
on the rise, such as the 2022 human monkeypox outbreak, and
other pandemics may emerge as well.

Remote education via modern technology is far from being
a completely novel phenomenon. In fact, media (i.e., radio
and educational films) was already utilized for educational
purposes more than a hundred years ago [1]–[3]. In the age of
the Internet, we have a vast array of techniques to choose from.
There are multiple types of self-learn, self-study software,
pre-recorded lectures are available online – either publicly or
solely to the students of the institution – and classes, lectures
are interactively held via online communication platforms.
However, the latter is a real-time educational service, and
therefore, its perceived quality highly depends on network
conditions. Of course, quality in this context refers to media
quality, yet unfavorable network conditions may indeed affect
the educational quality of such online classes. Unfortunately,
there are so many factors that can degrade network conditions
during real-time online education. It only makes matters worse
when resource-demanding dynamic multimedia – and not just
static slides – is being shared, such as the introduction of
the usage of certain technical tools via a camera. Network
impairments during the different types of content sharing may
have a severe effect on online education. Yet, throughout
longer portions of online lectures with shared multimedia,
students may adapt to smaller extents of such impairments.

In the context of home office, a notable percentage of online
activities happen in real time. Probably the most commonly
known form of such real-time activities is the online meeting.
In online meetings, content sharing is relatively frequent. In
most cases, the shared content is a sequence of slides, but
other contents may be shared as well, such as a video or the
window of a specific application, or even the entire screen.
However, when such action is started, the content is not nec-
essarily available instantaneously to the other participants of
the meeting. The amount of this delay may depend on a variety
of factors, like the type of the content and the associated
bandwidth requirements. The initial delay of content sharing
may not only affect user experience, but in a professional
context, it may also cause further undesirable effects – for
example, missing important information related to the subject
at hand. Moreover, when a video is shared, playback may be
subject to the rubber band effect (i.e., playback is not uniform
in terms of frame speed), especially right after it becomes
available to the observers.

https://doi.org/10.5121/ijcses.2011.2108
https://doi.org/10.1016/j.eswa.2021.115446
https://doi.org/10.1007/978-1-4842-6100-2_10
https://www.techtarget.com/searchcio/definition/synthetic-data
https://www.techtarget.com/searchcio/definition/synthetic-data
https://doi.org/10.1109/ICCE-Berlin47944.2019.8966202
https://doi.org/10.1007/978-1-4842-4109-7
https://doi.org/10.1007/978-3-319-58274-0_13
https://www.ibm.com/cloud/blog/sql-vs-nosql
https://www.ibm.com/cloud/blog/sql-vs-nosql
https://analyticsindiamag.com/10-most-used-databases-by-developers-in-2020
https://analyticsindiamag.com/10-most-used-databases-by-developers-in-2020
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking
https://doi.org/10.3390/s21072397
https://doi.org/10.1007/s10694-020-01022-9
https://doi.org/10.1109/EMBC.2018.8512470
https://doi.org/10.48550/arXiv.1907.00503
https://github.com/tdunning/log-synth
https://github.com/makinarocks/Mandrova
https://doi.org/10.1007/978-981-15-2282-6_7
https://developers.google.com/chart/interactive/docs
https://doi.org/10.1109/ICCISci.2019.8716460

