
 Infocommunications
Journal

A PUBLICATION OF THE SCIENTIFIC ASSOCIATION FOR INFOCOMMUNICATIONS (HTE)

March 2022	 Volume XIV	 Number 1	 ISSN 2061-2079

MESSAGE FROM THE EDITOR-IN-CHIEF
Diverse Infocommunication Technologies to Assist
Heterogeneous Distributed Systems ..Pal Varga	 1

PAPERS FROM OPEN CALL
Predicting the Price of Second-Hand Housing Based on
Lambda Architecture and KD Tree Qinghe Pan, Zeguo Qiu, Yaoqun Xu and Guilin Yao	 2
Turbo decoding of concatenated codes based on RS codes using Adapted
scaling factorsEs-said Azougaghe, Abderrazak Farchane, Said Safi and Mostafa Belkasmi	 11
Determining Hybrid Re-id Features of Vehicles in Videos
for Transport Analysis.. Dávid Papp and Regő Borsodi	 17
A comprehensive survey on the application of blockchain/hash chain
technologies in V2X communications Hassan Farran, David Khoury, and László Bokor	 24
Optimizing Camera Stream Transport in Cloud-Based Industrial
Robotic Systems .. Marcell Balogh and Attila Vidács 	 36
Batch-scheduling Data Flow Graphs with Service-level Objectives
on Multicore Systems .. Tamás Lévai and Gábor Rétvári 	 43
Knowgraph-TT: Knowledge-Graph-Based Transit Time Matching in Semiconductor
Supply Chains.......Nour Ramzy, Hans Ehm, Sandra Durst, Konstanze Wibmer, and Werner Bick	 51

CALL FOR PAPER / PARTICIPATION
CNSM 2022 / 18th International Conference on Network and Service Management
CNSM 2022, Thessaloniki, Greece ... 	 59

ADDITIONAL
Guidelines for our Authors... 	 60

INFOCOMMUNICATIONS JOURNAL

JAVIER ARACIL
	 Universidad Autónoma de Madrid, Spain
LUIGI ATZORI
	 University of Cagliari, Italy
PÉTER BARANYI
	 Széchenyi István University of Gyôr, Hungary
JÓZSEF BÍRÓ
	 Budapest University of Technology and Economics, Hungary
STEFANO BREGNI
	 Politecnico di Milano, Italy
VESNA CRNOJEVIÇ-BENGIN
	 University of Novi Sad, Serbia
KÁROLY FARKAS
	 Budapest University of Technology and Economics, Hungary
VIKTORIA FODOR
	 Royal Technical University, Stockholm
EROL GELENBE
	 Institute of Theoretical and Applied Informatics Polish Academy 	
	 of Sciences, Gliwice, Poland
ISTVÁN GÓDOR
	 Ericsson Hungary Ltd., Budapest, Hungary
CHRISTIAN GÜTL
	 Graz University of Technology, Austria
ANDRÁS HAJDU
	 University of Debrecen, Hungary
LAJOS HANZO
	 University of Southampton, UK
THOMAS HEISTRACHER
	 Salzburg University of Applied Sciences, Austria
ATTILA HILT
	 Nokia Networks, Budapest, Hungary
JUKKA HUHTAMÄKI
	 Tampere University of Technology, Finland
SÁNDOR IMRE
	 Budapest University of Technology and Economics, Hungary
ANDRZEJ JAJSZCZYK
	 AGH University of Science and Technology, Krakow, Poland
FRANTISEK JAKAB
	 Technical University Kosice, Slovakia
GÁBOR JÁRÓ
	 Nokia Networks, Budapest, Hungary
MARTIN KLIMO
	 University of Zilina, Slovakia
DUSAN KOCUR
	 Technical University Kosice, Slovakia
ANDREY KOUCHERYAVY
	 St. Petersburg State University of Telecommunications, Russia

LEVENTE KOVÁCS
	 Óbuda University, Budapest, Hungary
MAJA MATIJASEVIC
	 University of Zagreb, Croatia
VACLAV MATYAS
	 Masaryk University, Brno, Czech Republic
OSCAR MAYORA
	 FBK, Trento, Italy
MIKLÓS MOLNÁR
	 University of Montpellier, France
SZILVIA NAGY
	 Széchenyi István University of Gyôr, Hungary
PÉTER ODRY
	 VTS Subotica, Serbia
JAUDELICE DE OLIVEIRA
	 Drexel University, USA
MICHAL PIORO
	 Warsaw University of Technology, Poland
ROBERTO SARACCO
	 Trento Rise, Italy
GHEORGHE SEBESTYÉN
	 Technical University Cluj-Napoca, Romania
BURKHARD STILLER
	 University of Zürich, Switzerland
CSABA A. SZABÓ
	 Budapest University of Technology and Economics, Hungary
GÉZA SZABÓ
	 Ericsson Hungary Ltd., Budapest, Hungary
LÁSZLÓ ZSOLT SZABÓ
	 Sapientia University, Tirgu Mures, Romania
TAMÁS SZIRÁNYI
	 Institute for Computer Science and Control, Budapest, Hungary
JÁNOS SZTRIK
	 University of Debrecen, Hungary
DAMLA TURGUT
	 University of Central Florida, USA
ESZTER UDVARY
	 Budapest University of Technology and Economics, Hungary
SCOTT VALCOURT
	 Roux Institute, Northeastern University, Boston, USA
JÓZSEF VARGA
	 Nokia Bell Labs, Budapest, Hungary
JINSONG WU
	 Bell Labs Shanghai, China
KE XIONG
	 Beijing Jiaotong University, China
GERGELY ZÁRUBA
	 University of Texas at Arlington, USA

Editorial Board
Editor-in-Chief: PÁL VARGA, Budapest University of Technology and Economics (BME), Hungary

Associate Editor-in-Chief: ROLLAND VIDA, Budapest University of Technology and Economics (BME), Hungary
Associate Editor-in-Chief: LÁSZLÓ BACSÁRDI, Budapest University of Technology and Economics (BME), Hungary

Indexing information
Infocommunications Journal is covered by Inspec, Compendex and Scopus.

Infocommunications Journal is also included in the Thomson Reuters – Web of ScienceTM Core Collection,
Emerging Sources Citation Index (ESCI)

www.infocommunications.hu

Infocommunications Journal
Technically co-sponsored by IEEE Communications Society and IEEE Hungary Section

Supporters
FERENC VÁGUJHELYI – president, Scientific Association for Infocommunications (HTE)

Articles can be sent also to the following address:
Budapest University of Technology and Economics

Department of Telecommunications and Media Informatics
Phone: +36 1 463 4189, Fax: +36 1 463 3108

E-mail: pvarga@tmit.bme.hu

Editorial Office (Subscription and Advertisements):
Scientific Association for Infocommunications
H-1051 Budapest, Bajcsy-Zsilinszky str. 12, Room: 502
Phone: +36 1 353 1027
E-mail: info@hte.hu • Web: www.hte.hu

Publisher: PÉTER NAGY

HU ISSN 2061-2079 • Layout: PLAZMA DS • Printed by: FOM Media

Subscription rates for foreign subscribers: 4 issues 10.000 HUF + postage

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 1

Welcome by the Editor

WE live in the age of infocommunication technology boom,
where research results are applied in various fields. This

first 2022 issue of the Infocommunications Journal presents a
colorful blend of technologies used in various fields, most of
which can be categorized as distributed systems. The range of
application areas is wide: from predicting housing prices through
transportation, from cloud-based robotic control through multi-
core batch-scheduling to semiconductor supply chains.

Let us have a brief overview of the articles included in the
current, first 2022-issue of the Infocommunications Journal.

Qinghe Pan and his co-authors designed and implemented
a system based on Lambda architecture to predict the price of
second-hand housing. After comparing the performance of
various machine learning algorithms, they chose the KD tree
model to predict prices in both real-time and batch processing
services. Besides, they further suggested that the nearest k
neighbours can be used as a housing recommending list. Their
implementation of Lambda architecture is based on open Apache
components such as Kafka, Spark, Cassandra and Flask, making
the setup relatively easy to replicate.

In their paper, Es-said Azougaghe et al. studied the effect
of various usage parameters of generalized parallel concate-
nated block codes based on Reed-Solomon (RS) codes. Their
simulation results show that the chosen adapted parameters
– such as the weighting factor α, the reliablilty factor β, the
reciprocal value of the extrinsic information delivered by the
previous decoder (α(p)) are effective in providing good the
decoding performance. Furthermore, they show the effect of
the number of iteration as well as the multi-block M and the
interleaver structure on the decoding performance.

Dávid Papp and Regő Borsodi presented a lightweight solu-
tion on a transportation-related computer vision problem: how
to provide accurate annotation of vehicles for transport analysis.
They introduce hybrid re-identification features, which combine
latent, static, and dynamic attributes to improve tracking. They
propose multiple scenarios to calculate the static attributes, from
which the desired ones can be selected, based on the given task
requirements.

Hassan Farran, David Khoury and László Bokor provided
a comprehensive survey on the blockchain/hash chain tech-
nologies in Vehicle-to-Everything (V2X) communications. It
is clear from their paper that these technologies can play an
important role in various aspects of V2X communications,
enabling the resolution of many issues, including traceable
key negotiation between vehicles, security issues in V2X
communication, simplification of the distribution of participant
CA, trust authentication between vehicles, and many others.

Cloud-based control of visual-guided robotic systems are the
state-of-the-art in the domain of industrial robotic research. One
of the many challenges is related to sending a vast amount of
sensory data with low latency under limited networking con-
ditions. Marcell Balogh and Attila Vidács propose a general
solution for efficient camera stream transportation in cloud
robotic systems. The evaluation of their streaming solution
shows better performance by one order of magnitude when
compared with the industry-standard ROS solution.

In data flow graphs, the nodes represent processing primitives
and edges between them describe the control flow. Processing
data-flows with a multi-core system can improve performance
significantly, but batch-scheduling is a challenge. Batch
processing is one of the elemental data processing methods,
and Batchy is a state-of-the-art batch-scheduling framework for
high-end programmable software switches. In their paper, Tamás
Lévai and Gábor Rátvári extend Batchy with a non-trivial task:
to leverage parallel execution. They developed and implemented
effective control algorithms to be used in practical data flow
graph batch-scheduling, and evaluated it in a real 5G use-case.

Supply chains has scheduling challenges as well, among
which the proper planning of Transit Time (TT) is a currently
interesting one because this would help minimize delays.
Transit Time in this context is the time taken to move goods
physically between different locations in a supply chain. Nour
Ramzy and her co-authors approached the problem through
Knowledge Graphs, and applied their solution to the semi-
conductor industry. By examining the time violations, experts
can study how to update the planned transit time concerning
actual transit times to create a non-conservative and reliable
demand fulfilment. Their approach is called Knowgraph-TT, as
it connects actual and planned TT, shows the gaps via applied
queries, and enables an optimized update of planned TT.

Infocommunications Journal wishes peace and perseverance
in 2022 to all its readers, reviewers, and authors.

Pal Varga received his Ph.D. degree from the
Budapest University of Technology and Economics,
Hungary. He is currently an Associate Professor at the
Budapest University of Technology and Economics
and also the Director at AITIA International Inc.
His main research interests include communication
systems, Cyber-Physical Systems and Industrial
Internet of Things, network traffic analysis, end-
to-end QoS and SLA issues – for which he is
keen to apply hardware acceleration and artificial
intelligence, machine learning techniques as well.

Besides being a member of HTE, he is a senior member of IEEE, where he
is active both in the IEEE ComSoc (Communication Society) and IEEE IES
(Industrial Electronics Society) communities. He is Editorial Board member
of the Sensors (MDPI) and Electronics (MDPI) journals, and the Editor-in-
Chief of the Infocommunications Journal.

Diverse Infocommunication Technologies to Assist
Heterogeneous Distributed Systems

Pal Varga

Predicting the Price of Second-Hand Housing Based
on Lambda Architecture and KD Tree

MARCH 2022 • VOLUME XIV • NUMBER 12

INFOCOMMUNICATIONS JOURNAL

1,2,3 School of Computer and Information Engineering, Harbin University of
Commerce, Harbin, China.

1corresponding author (e-mail: panqh@hrbcu.edu.cn)

Predicting the Price of Second-Hand Housing Based
on Lambda Architecture and KD Tree

Qinghe Pan1, Zeguo Qiu2, Yaoqun Xu2 and Guilin Yao3

DOI: 10.36244/ICJ.2022.1.1

Abstract—In this paper a system is designed and implemented
to predict the price of second-hand housing. This system based
on Lambda architecture can execute prediction in both real-
time and batch modes so it can give two kinds of different
price predictions that reflect current and historical conditions
respectively. The kNN related algorithms are used for price
prediction. By comparing the performance of brute kNN, kd tree
and ball tree, kd tree is selected as the price prediction model
of the system. In system implementation the kd tree model is
chosen to predict prices in both real-time and batch services.
The kd tree model can also recommend housings to user besides
price prediction. The experiment shows the effectiveness
of our system. Time and space performance of brute kNN,
kd tree and ball tree are compared by experiments. And the
evaluation metrics of other available maching learning models
are compared. The reason of choosing the kd tree model is also
explained by the experimental results.

Index Terms—Lambda Architecture, real-time system, batch
system, kd tree.

1

Predicting the Price of Second-Hand Housing Based
on Lambda Architecture and KD Tree

Qinghe Pan1, Zeguo Qiu2, Yaoqun Xu2 and Guilin Yao3

Abstract—In this paper a system is designed and implemented
to predict the price of second-hand housing. This system based
on Lambda architecture can execute prediction in both real-
time and batch modes so it can give two kinds of different
price predictions that reflect current and historical conditions
respectively. The kNN related algorithms are used for price
prediction. By comparing the performance of brute kNN, kd tree
and ball tree, kd tree is selected as the price prediction model of
the system. In system implementation the kd tree model is chosen
to predict prices in both real-time and batch services. The kd
tree model can also recommend housings to user besides price
prediction. The experiment shows the effectiveness of our system.
Time and space performance of brute kNN, kd tree and ball
tree are compared by experiments. And the evaluation metrics
of other available maching learning models are compared. The
reason of choosing the kd tree model is also explained by the
experimental results.

Index Terms—Lambda Architecture, real-time system, batch
system, kd tree.

I. INTRODUCTION

IN recent years the techniques of big data have been
developing in industrial and commercial areas. Emerging

business requirements continually bring new challenges to
software and hardware architectures in the big data industry.
One of the most important fields is prediction which can
greatly help individuals and enterprises to make decisions.
Lambda architecture [1], [2], [3], [4] can help us achieve this
goal with its special construction. This architecture consists of
three layers: speed, service and batch layers. The speed layer
is responsible for real-time computation on streaming data and
the batch layer is in charge of batch computation on historical
big data. The service layer can provide services to users so one
can get computation results based on the latest and historical
data at the same time.

Lambda architecture has been deployed in various appli-
cations such as recommendation system [5], [6], anomaly
detection [7], [8], monitoring system [9] and so on. In this
paper it is used to predict the second-hand housing prices in
China where the second-hand housing transactions are usually
processed in trading agents. The sellers provide their housing
information to realtors of the agents who publish the second-
hand housing information on websites. The buyers can search
on websites to choose the interesting housings. The price
of the second-hand housing is a more attracting attribute
than other attributes. This paper designs and implements a
system to predict the second-hand housing price based on

1,2,3 School of Computer and Information Engineering, Harbin University
of Commerce, Harbin, China.

1corresponding author (e-mail: panqh@hrbcu.edu.cn)

Lambda Architecture. The system can help realtors to publish
reasonable housing price and buyers to learn the current market
price. And it can also be used to study the price trend by
research institutions, and be used by bankers to evaluate the
price of mortgaged housing.

In [1] the similar problem has been studied and an architec-
ture named Alarea has been designed and applied successfully
in price prediction of real estate. In [1] the data of real estate
transactions on different categories from Spanish Ministry of
Development (2004-2016) is used in batch layer. And data
from Twitter real-time API is used in real-time layer. The
influence of sentiment(like tweets) on housing prediction has
been studied in [10], [11], [12]. In [13] and [14], real-time
sentiment analysis is particularly studied. Based on big data
technology, multiple data sources can be associated together,
and more accurate prediction can be provided from both
historical and real-time perspectives. Our research is very
similar to [1], but in the batch layer and real-time layer, our
system uses the same data source. In future research we will
consider to absorb other real-time factors and ingredients into
our existing system to improve the prediction effect.

The representative models of housing price prediction are
AVMs (Automated Valuation Models) [15]. The traditional
benchmark for AVMs is the hedonic model based on the theory
that the price of an asset is a function of its quantifiable
characteristics. Now instead of hedonic models most AVMs
use some type of ML technique [16], such as neural network,
decision tree, random forest, SVM regression and so on. In
this paper, kd(k dimensional) tree [17], [18] is used as the
prediction model in batch and real-time layers. Because kd
tree resides in memory after it is trained, it can also be used in
service layer to provide querying service. Compared to other
kNN(K Nearest Neighbor) related algorithms such as brute
kNN and ball tree [19], [20], kd tree has its advantages in
performance. Other models such as linear regression, neural
network, SVM and so on can also be used in in batch and real-
time layers. In experiment the performances of these models
are compared with kd tree.

Besides Lambda architecture, other architectures or systems
with reasonable techniques stack can achieve the same pre-
diction goal. Based on Kafka [21] and Flink [22], Kappa
architecture [23] can unify batch processing and real-time
computing. Alarea [1] can handle source data in different
formats. Compared with Lambda and Kappa architectures,
it has equivalent or better quality attributes, so it is very
attractive.

The rest of this paper is arranged by the following way.
In Section II the characteristics of Lambda architecture are

1

Predicting the Price of Second-Hand Housing Based
on Lambda Architecture and KD Tree

Qinghe Pan1, Zeguo Qiu2, Yaoqun Xu2 and Guilin Yao3

Abstract—In this paper a system is designed and implemented
to predict the price of second-hand housing. This system based
on Lambda architecture can execute prediction in both real-
time and batch modes so it can give two kinds of different
price predictions that reflect current and historical conditions
respectively. The kNN related algorithms are used for price
prediction. By comparing the performance of brute kNN, kd tree
and ball tree, kd tree is selected as the price prediction model of
the system. In system implementation the kd tree model is chosen
to predict prices in both real-time and batch services. The kd
tree model can also recommend housings to user besides price
prediction. The experiment shows the effectiveness of our system.
Time and space performance of brute kNN, kd tree and ball
tree are compared by experiments. And the evaluation metrics
of other available maching learning models are compared. The
reason of choosing the kd tree model is also explained by the
experimental results.

Index Terms—Lambda Architecture, real-time system, batch
system, kd tree.

I. INTRODUCTION

IN recent years the techniques of big data have been
developing in industrial and commercial areas. Emerging

business requirements continually bring new challenges to
software and hardware architectures in the big data industry.
One of the most important fields is prediction which can
greatly help individuals and enterprises to make decisions.
Lambda architecture [1], [2], [3], [4] can help us achieve this
goal with its special construction. This architecture consists of
three layers: speed, service and batch layers. The speed layer
is responsible for real-time computation on streaming data and
the batch layer is in charge of batch computation on historical
big data. The service layer can provide services to users so one
can get computation results based on the latest and historical
data at the same time.

Lambda architecture has been deployed in various appli-
cations such as recommendation system [5], [6], anomaly
detection [7], [8], monitoring system [9] and so on. In this
paper it is used to predict the second-hand housing prices in
China where the second-hand housing transactions are usually
processed in trading agents. The sellers provide their housing
information to realtors of the agents who publish the second-
hand housing information on websites. The buyers can search
on websites to choose the interesting housings. The price
of the second-hand housing is a more attracting attribute
than other attributes. This paper designs and implements a
system to predict the second-hand housing price based on

1,2,3 School of Computer and Information Engineering, Harbin University
of Commerce, Harbin, China.

1corresponding author (e-mail: panqh@hrbcu.edu.cn)

Lambda Architecture. The system can help realtors to publish
reasonable housing price and buyers to learn the current market
price. And it can also be used to study the price trend by
research institutions, and be used by bankers to evaluate the
price of mortgaged housing.

In [1] the similar problem has been studied and an architec-
ture named Alarea has been designed and applied successfully
in price prediction of real estate. In [1] the data of real estate
transactions on different categories from Spanish Ministry of
Development (2004-2016) is used in batch layer. And data
from Twitter real-time API is used in real-time layer. The
influence of sentiment(like tweets) on housing prediction has
been studied in [10], [11], [12]. In [13] and [14], real-time
sentiment analysis is particularly studied. Based on big data
technology, multiple data sources can be associated together,
and more accurate prediction can be provided from both
historical and real-time perspectives. Our research is very
similar to [1], but in the batch layer and real-time layer, our
system uses the same data source. In future research we will
consider to absorb other real-time factors and ingredients into
our existing system to improve the prediction effect.

The representative models of housing price prediction are
AVMs (Automated Valuation Models) [15]. The traditional
benchmark for AVMs is the hedonic model based on the theory
that the price of an asset is a function of its quantifiable
characteristics. Now instead of hedonic models most AVMs
use some type of ML technique [16], such as neural network,
decision tree, random forest, SVM regression and so on. In
this paper, kd(k dimensional) tree [17], [18] is used as the
prediction model in batch and real-time layers. Because kd
tree resides in memory after it is trained, it can also be used in
service layer to provide querying service. Compared to other
kNN(K Nearest Neighbor) related algorithms such as brute
kNN and ball tree [19], [20], kd tree has its advantages in
performance. Other models such as linear regression, neural
network, SVM and so on can also be used in in batch and real-
time layers. In experiment the performances of these models
are compared with kd tree.

Besides Lambda architecture, other architectures or systems
with reasonable techniques stack can achieve the same pre-
diction goal. Based on Kafka [21] and Flink [22], Kappa
architecture [23] can unify batch processing and real-time
computing. Alarea [1] can handle source data in different
formats. Compared with Lambda and Kappa architectures,
it has equivalent or better quality attributes, so it is very
attractive.

The rest of this paper is arranged by the following way.
In Section II the characteristics of Lambda architecture are

mailto:panqh%40hrbcu.edu.cn?subject=
https://doi.org/10.36244/ICJ.2022.1.1

Predicting the Price of Second-Hand Housing Based
on Lambda Architecture and KD Tree

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 3

2

described, and Kappa and Alarea architectures are briefly
introduced and analyzed. In Section III kNN-related models
are discussed and the housing data is briefly explored. In Sec-
tion IV-A the results of experiment are analyzed. It describes
the details of components in our system, discusses experiment
results and compares the performance and metrics of different
models. Lastly, the paper is concluded in Section VI.

II. RELATED ARCHITECTURES

A. Lambda architecture

Lambda Architecture is initiated by Nathan Marz [24].
There are three layers in this architecture. The names and
functions of the layers are described in Table I. The batch
layer is responsible for providing batch views based on the
master database. The speed layer executes fast and timely
computation that will compensate for high latency to serving
layer. This schema can also be depicted in Fig. 1 [24]. In
Fig. 1 the new data flows into two places. One direction is
to batch layer where the new data will be appended to the
master database so when next update the batch views will
contain the new data. The other direction is to speed layer
where the same new data will be accumulated in this layer
to produce real-time views before the next iteration of batch
views in serving layer. The functions of Lambda Architecture
in full can be summarized by these three equations:

batch view = function(all data)
real-time view = function(real-time view, new data)
query = function(batch view, real-time view)

TABLE I
THE NAMES AND FUNCTIONS OF LAYERS IN LAMBDA ARCHITECTURE.

Layers Function Descriptions

Speed layer

1. Compensate for high latency of updates to
serving layer.
2. Fast, incremental algorithms.
3. Batch layer eventually overrides speed.

Serving layer
1. Provide access services to batch views.
2. Updated by batch layers.

Batch layer
1. Store growing master dataset.
2. Compute functions on the dataset.
3. Provide batch views.

B. Kappa architecture

Kappa architecture [23] is a simplification of Lambda
architecture. Compared to Lambda architecture Kappa unifies
the batch and real-time layers. The structure of Kappa is shown
is Fig. 2. The main reason for the popularity of Kappa is the
Apache Kafka [21] and Apache Flink [22] frameworks. Kafka
not only acts as a message queue, but also can save historical
data for a longer time to replace the batch layer in Lambda
architecture. Flink takes an earlier time as the starting point
and plays the role of batch processing. At the same time, Flink
solves the problem of accuracy of calculation results under
the disorder of events. If batch processing is consistent with
real-time processing, Kappa is more appropriate. However,

Fig. 1. The illustration of Lambda Architecture.

in some other scenarios, the whole historical data set needs
to be processed in batch, so Lambda architecture is more
appropriate.

Fig. 2. The illustration of Kappa Architecture.

C. Alarea architecture

Alarea [1] is an architecture that combines batch processing
and real-time processing in two different layers and has been
deployed to deal with big data and real-time data in the real
estate domain. Compared with Lambda and Kappa, Alarea has
the following three advantages.

1. Alarea mixes and integrates heterogeneous data sources.
2. Alarea gives developers the opportunity to decide which

layer is better for their purposes.
3. Alarea copes with two kind of data processing and is

capable of treating it no matter the timing that they present.
In [1] Lambda, Kappa, and Alarea are also compared based

on the four quality attributes, including recoverability, fault
tolerance, new data gap and hardware consumption.

III. MODELS

A. KNN Models

The most effective method to evaluate the price of a house
in a building is to obverse the prices of the nearest floors
above or beneath it. So kNN(K Nearest Neighbors) model is
an intuitive approach to predict the housing price. Compared
to other prediction models kNN has two advantages in our
application scenario.

Predicting the Price of Second-Hand Housing Based
on Lambda Architecture and KD Tree

MARCH 2022 • VOLUME XIV • NUMBER 14

INFOCOMMUNICATIONS JOURNAL

3

The first advantage is that kNN can get more accurate result
when the number of sample data is few. KNN only needs to
find out the k nearest neighbors from the sample data but other
prediction models may have to get more data to execute the
training. If the dataset only contains two samples(k=2), for
example the housing information of the 4th and 6th floors.
If the task is to predict the price of housing on the 5th floor
that between 4th and 6th floors in the same building, then kNN
model will get the 4th and 6th floors as its 2 nearest neighbors
and predict the 5th housing price by averaging the prices of
the two neighbors. But for others models two samples are too
small to execute the training.

The second advantage is that kNN can also generate a
recommending housings list by the k nearest neighbors them-
selves besides predicting housing price.

Assume that the data set X = {x1, . . . , xm}, where m
represents the number of housing records. xi = (xi1, . . . , xin),
1 ≤ i ≤ m, where n is the number of fields in each record
and xin is the price field. Suppose the data of a house is
h = (h1, . . . , hn−1, hprice), where h1, . . . , hn−1 are known
and hprice is the targeting value that will be predicted by kNN.
The following steps describe the details of prediction by kNN
method.

Step 1. For each data record x in X, its 1st to (n-1)th fields
are used to calculate the Euclidean distance from h and the re-
sults are collected and sorted to find the k nearest data records.
Let Xk = (xs1 , . . . , xsk) be the vector representing the k
nearest data records by distance from near to far, and the cor-
responding distance vector is Distk = (dists1 , . . . , distsk).

Step 2. Use the nth field of the k data records to estimate
the value of hprice, as shown in (1).

hprice =

∑k
i=1 xsin

k
(1)

Where xsin is the nth field of record xsi , i.e., the price
field.

The variation of kNN is Weighted kNN that considers the
influences of different distances on hprice instead of directly
averaging the nth field of the k data records in (1). The
following (2) calculates the weight for each data record based
on the distance, where δ is the appropriate positive constant.

wsi = e−
distsi

2

2δ2 (2)

The value range of wsi is (0, 1]. The larger the value
of distsi , the smaller the value of wsi , and vice versa.
These characteristics determine that wsi is a better choice
for representing weight. After the introduction of weights, the
calculation of hprice is shown in (3).

hprice =

∑k
i=1 wsixsin∑k

i=1 wsi

(3)

B. Kd tree and ball tree

The naive or brute kNN is to choose the k nearest neighbors
from the n samples by sample-wise comparison. The time
complexity to predict price of one housing is O(n2). When

n is large the brute kNN is not a practicable method. Many
improved methods are designed to solve this problem such as
the kd tree [17], [18], ball tree [19], [20], Hybrid Spill Tree
[25], [26] and so on. The time complexity of these tree-based
methods are O(log(n)).

The process of building kd tree is recursive process that
includes two main steps shown in Fig. 3.

Step1. Computes the variance of the dimensions and splits
the data at median based on the dimension Root that has the
highest variance. Let the two split datasets be Left and Right.

Step2. Repeat the step 1 for Left and Right until Left and
Right cannot be split.

Fig. 3. The construction of kd tree.

The process of building ball tree is also a recursive process
that includes two main steps shown in Fig. 4.

Step1. All data is split into two almost equal sized balls
ballA and ballB .

Step2. Repeat the step 1 for ballA and ballB until ballA
and ballB cannot be split.

Fig. 4. The construction of ball tree.

In this paper the kd tree is used in both batch and speed
layers in Lambda architecture. The reason will be explained in
detail in Section V. After trained by data the kd tree will reside
in memory and provide prediction service until next iteration.
For instance, in batch layer the kd tree is trained every day
and in speed layer the training frequency is decided by the
size of time windows.

IV. EXPERIMENT

A. Data

Usually, the second-hand housing data is crawled from the
official websites on the Internet. A distributed crawling system
is designed and deployed on cloud to gather data. In such

Predicting the Price of Second-Hand Housing Based
on Lambda Architecture and KD Tree

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 5

4

system each node has its IP address and crawlers on each node
run as daemons to crawl data from the websites that own large
real-time and historical housing information. By the research
purpose the second-hand housing data used in this paper is
from one public dataset [27]. This dataset includes 318851
housing information records in Beijing from 2011 to 2017.
The data in this dataset will be used as input to our system.
It means that the crawlers in our system can directly read
records in this dataset as if the data obtained from websites on
Internet. This way will save us the time to clean data and help
us focus on the system implementation itself. One notation is
that housing price in this dataset is the final price but we will
ignore this attribute. So the price can be used as the listing
price or final price. Each record in dataset consists of 26 fields
but only 11 fields are used. The names and meanings of these
fields are listed in Table II.

TABLE II
THE NAMES AND MEANINGS OF FIELDS IN DATASET.

Field names Meanings
bedroom the number of bedroom

living room the number of living room

bathroom the number of bathroom

kitchen the number of kitchen

floor the height of the house

ladder ratio the number of ladders a resident have on average

square the square of house

subway not near to subway(0) and near to subway(1)

lat the latitude of house

lng the longitude of house

price the average price by square

For example the list [3, 2, 2, 1, 6, 0.5, 102.66, 0, 39.873867,
116.66589] consists of data items corresponding to the fields
in table. For training kd tree the data must be processed further.
Firstly, the dataset should be split into X matrix and Y targeting
vector. The Y consists of all housing prices in price field and
the X matrix consists of data in other fields except for price
field. Secondly, the X matrix should be normalized before it is
used to train kd tree. For example the subway field should be
one-hot encoding and other nine fields in the X matrix should
be standardized by using max-min or std-dev methods. The
data is explored and the results are shown in Fig. 5.

The Fig. 6 shows the relationship between the price field and
the longitude and latitude fields. It can be seen that the closer
to the central urban area, the higher the average housing price,
the more housings for sale, and the more frequent transactions.

The Pearson correlation coefficient between data fields is
shown in the Fig. 7. It can be seen that the bedroom, living
room and bathroom fields are positively correlated and have
high correlation coefficients. At the same time, there are also
strong positive correlations between the square field and the
bedroom, living room and bathroom fields. The subway field
has a strong positive correlation with the price field. Because
the data comes from Beijing and it belongs to the economic
center, whether there is a subway has a great impact on the
housing price. The bedroom, living room and bathroom fields

have negative correlations with the price field, because usually
the total price of houses with large area is higher, which makes
it more difficult to sell, resulting in lower the price field.

B. System structure

In this experiment the main frameworks used in our system
are described in Table III. The concise experiment topology
is shown in Fig. 8. Both Apache Flume and Apache Kafka
are distributed, reliable, and available components. They are
widely used in big data processing. In this research they are
combined together to implement Lambda architecture. There
are four reasons for this combination.

1. In production environment because there are many real-
time data sources, it is not convenient to build many Kafka
clients to publish data to central topics with one topic per
activity type. So, usually in implementation the real-time data
is delivered to Flume firstly.

2. There are many interceptors in Flume that can be used
to filter and clean data. It is more convenient to process data
in Flume than in Kafka.

3. When Flume is connected to Spark streaming directly
without Kafka, if the speed of data flowing in is faster than
the speed of data processing in Spark streaming then the data
that cannot be processed in time will be lost. It can be solved
by using Kafka between Flume and Spark streaming. Kafka
likes a cache that can store data over a period of time.

4. Besides connecting Flume to Spark streaming, Kafka
can also provide data to Cassandra for persistent storage. So,
Kafka is the core component in our implementation of Lambda
architecture.

There are two crawlers c1 and c2 for housing data col-
lecting. As described in IV-A the c1 and c2 read records in
dataset as if they crawl them from websites on Internet. The
c1 and c2 put their data into f1 and f2 respectively. The f1 and
f2 put their data into f3. The f3 directly connects to Kafka.
Spark streaming system fetch data from Kafka based on the
time window. The fetched data flows into two directions. In
one direction the data is pushed to speed layer and in this
layer the kd tree model is trained by the data. In the other
direction the same data is appended to the existing distributed
Cassandra database and in the batch layer the kd tree is trained
by all or partial data in Cassandra. For speed layer the model
training frequency is decided by the size of time window which
can be set half an hour, one hour, or two hours and so on.
The model training frequency for batch layer can be set one
day, two days and so on. Based on speed layer the real-time
service can be built which can provide price prediction and
house recommending based on the coming data in the time
window. The batch service built on batch layer can do the
same task based on the historical data. The results from real-
time and batch services can support decision making from
different perspectives.

C. Experimental Results

We can test the effectiveness of price prediction and housing
recommendation by submitting some data to the real-time
and batch service respectively. For example, after running a

3

The first advantage is that kNN can get more accurate result
when the number of sample data is few. KNN only needs to
find out the k nearest neighbors from the sample data but other
prediction models may have to get more data to execute the
training. If the dataset only contains two samples(k=2), for
example the housing information of the 4th and 6th floors.
If the task is to predict the price of housing on the 5th floor
that between 4th and 6th floors in the same building, then kNN
model will get the 4th and 6th floors as its 2 nearest neighbors
and predict the 5th housing price by averaging the prices of
the two neighbors. But for others models two samples are too
small to execute the training.

The second advantage is that kNN can also generate a
recommending housings list by the k nearest neighbors them-
selves besides predicting housing price.

Assume that the data set X = {x1, . . . , xm}, where m
represents the number of housing records. xi = (xi1, . . . , xin),
1 ≤ i ≤ m, where n is the number of fields in each record
and xin is the price field. Suppose the data of a house is
h = (h1, . . . , hn−1, hprice), where h1, . . . , hn−1 are known
and hprice is the targeting value that will be predicted by kNN.
The following steps describe the details of prediction by kNN
method.

Step 1. For each data record x in X, its 1st to (n-1)th fields
are used to calculate the Euclidean distance from h and the re-
sults are collected and sorted to find the k nearest data records.
Let Xk = (xs1 , . . . , xsk) be the vector representing the k
nearest data records by distance from near to far, and the cor-
responding distance vector is Distk = (dists1 , . . . , distsk).

Step 2. Use the nth field of the k data records to estimate
the value of hprice, as shown in (1).

hprice =

∑k
i=1 xsin

k
(1)

Where xsin is the nth field of record xsi , i.e., the price
field.

The variation of kNN is Weighted kNN that considers the
influences of different distances on hprice instead of directly
averaging the nth field of the k data records in (1). The
following (2) calculates the weight for each data record based
on the distance, where δ is the appropriate positive constant.

wsi = e−
distsi

2

2δ2 (2)

The value range of wsi is (0, 1]. The larger the value
of distsi , the smaller the value of wsi , and vice versa.
These characteristics determine that wsi is a better choice
for representing weight. After the introduction of weights, the
calculation of hprice is shown in (3).

hprice =

∑k
i=1 wsixsin∑k

i=1 wsi

(3)

B. Kd tree and ball tree

The naive or brute kNN is to choose the k nearest neighbors
from the n samples by sample-wise comparison. The time
complexity to predict price of one housing is O(n2). When

n is large the brute kNN is not a practicable method. Many
improved methods are designed to solve this problem such as
the kd tree [17], [18], ball tree [19], [20], Hybrid Spill Tree
[25], [26] and so on. The time complexity of these tree-based
methods are O(log(n)).

The process of building kd tree is recursive process that
includes two main steps shown in Fig. 3.

Step1. Computes the variance of the dimensions and splits
the data at median based on the dimension Root that has the
highest variance. Let the two split datasets be Left and Right.

Step2. Repeat the step 1 for Left and Right until Left and
Right cannot be split.

Fig. 3. The construction of kd tree.

The process of building ball tree is also a recursive process
that includes two main steps shown in Fig. 4.

Step1. All data is split into two almost equal sized balls
ballA and ballB .

Step2. Repeat the step 1 for ballA and ballB until ballA
and ballB cannot be split.

Fig. 4. The construction of ball tree.

In this paper the kd tree is used in both batch and speed
layers in Lambda architecture. The reason will be explained in
detail in Section V. After trained by data the kd tree will reside
in memory and provide prediction service until next iteration.
For instance, in batch layer the kd tree is trained every day
and in speed layer the training frequency is decided by the
size of time windows.

IV. EXPERIMENT

A. Data

Usually, the second-hand housing data is crawled from the
official websites on the Internet. A distributed crawling system
is designed and deployed on cloud to gather data. In such

Predicting the Price of Second-Hand Housing Based
on Lambda Architecture and KD Tree

MARCH 2022 • VOLUME XIV • NUMBER 16

INFOCOMMUNICATIONS JOURNAL

5

Fig. 5. The exploration of all data fields.

Fig. 6. The housing price distribution of different latitude and longitude.

period of time, there are 153626 records in Cassandra and
the kd tree has been trained by data in batch layer. The time
window of Spark streaming is set to 30s and the kd tree in
speed layer has been trained by data in this time span. The
housing information [3, 2, 2, 1, 6, 0.5, 102.66, 0, 39.873867,
116.66589] is submitted to the real time and batch service

Fig. 7. The corralation of data fields.

respectively. Both services are deployed in Flask and the
housing information is post to corresponding service in JSON
format.

5

Fig. 5. The exploration of all data fields.

Fig. 6. The housing price distribution of different latitude and longitude.

period of time, there are 153626 records in Cassandra and
the kd tree has been trained by data in batch layer. The time
window of Spark streaming is set to 30s and the kd tree in
speed layer has been trained by data in this time span. The
housing information [3, 2, 2, 1, 6, 0.5, 102.66, 0, 39.873867,
116.66589] is submitted to the real time and batch service

Fig. 7. The corralation of data fields.

respectively. Both services are deployed in Flask and the
housing information is post to corresponding service in JSON
format.

5

Fig. 5. The exploration of all data fields.

Fig. 6. The housing price distribution of different latitude and longitude.

period of time, there are 153626 records in Cassandra and
the kd tree has been trained by data in batch layer. The time
window of Spark streaming is set to 30s and the kd tree in
speed layer has been trained by data in this time span. The
housing information [3, 2, 2, 1, 6, 0.5, 102.66, 0, 39.873867,
116.66589] is submitted to the real time and batch service

Fig. 7. The corralation of data fields.

respectively. Both services are deployed in Flask and the
housing information is post to corresponding service in JSON
format.

5

Fig. 5. The exploration of all data fields.

Fig. 6. The housing price distribution of different latitude and longitude.

period of time, there are 153626 records in Cassandra and
the kd tree has been trained by data in batch layer. The time
window of Spark streaming is set to 30s and the kd tree in
speed layer has been trained by data in this time span. The
housing information [3, 2, 2, 1, 6, 0.5, 102.66, 0, 39.873867,
116.66589] is submitted to the real time and batch service

Fig. 7. The corralation of data fields.

respectively. Both services are deployed in Flask and the
housing information is post to corresponding service in JSON
format.

5

Fig. 5. The exploration of all data fields.

Fig. 6. The housing price distribution of different latitude and longitude.

period of time, there are 153626 records in Cassandra and
the kd tree has been trained by data in batch layer. The time
window of Spark streaming is set to 30s and the kd tree in
speed layer has been trained by data in this time span. The
housing information [3, 2, 2, 1, 6, 0.5, 102.66, 0, 39.873867,
116.66589] is submitted to the real time and batch service

Fig. 7. The corralation of data fields.

respectively. Both services are deployed in Flask and the
housing information is post to corresponding service in JSON
format.

5

Fig. 5. The exploration of all data fields.

Fig. 6. The housing price distribution of different latitude and longitude.

period of time, there are 153626 records in Cassandra and
the kd tree has been trained by data in batch layer. The time
window of Spark streaming is set to 30s and the kd tree in
speed layer has been trained by data in this time span. The
housing information [3, 2, 2, 1, 6, 0.5, 102.66, 0, 39.873867,
116.66589] is submitted to the real time and batch service

Fig. 7. The corralation of data fields.

respectively. Both services are deployed in Flask and the
housing information is post to corresponding service in JSON
format.

5

Fig. 5. The exploration of all data fields.

Fig. 6. The housing price distribution of different latitude and longitude.

period of time, there are 153626 records in Cassandra and
the kd tree has been trained by data in batch layer. The time
window of Spark streaming is set to 30s and the kd tree in
speed layer has been trained by data in this time span. The
housing information [3, 2, 2, 1, 6, 0.5, 102.66, 0, 39.873867,
116.66589] is submitted to the real time and batch service

Fig. 7. The corralation of data fields.

respectively. Both services are deployed in Flask and the
housing information is post to corresponding service in JSON
format.

6

TABLE III
THE COMPONENTS AND FRAMEWORKS IN THE SYSTEM

Frameworks Functions Office websites
Flume Gather and redirect streaming data. http://flume.apache.org/

Kafka Cache the data flow from Flume and provide streaming data to Spark streaming system. http://kafka.apache.org/

Spark streaming
1. Be used in speed layer to get streaming data for real-time computation.
2. Store streaming data as real-time views.
3. Append streaming data to distributed Cassandra database.

https://spark.apache.org/streaming/

Cassandra Be used in batch layer to store the streaming data and provide batch views. https://cassandra.apache.org

Flask
1. Train kd trees based on real-time and batch views respectively.
2. Provide web interfaces for both real-time and batch services.

https://flask.palletsprojects.com/

Fig. 8. The structure of price prediction system.

Table IV shows the results returned by batch service when
k = 10. The predicted price is 33194.3 that is the average price
of the 10 nearest neighbors. We can also compute the price
by weighted kNN. The response time of service is 0.001753s
that is short enough. The id field gives the neighbor index in
the 153626 records. So one whole housing information with
26 fields can be obtained by each id.

Table V shows the results returned by real-time service
when k = 10. The predicted price is 34910.6 and the numbers
in id field are the housing indices in the records of the
corresponding time window.

For the same input data the batch and real-time services
give different price predictions. The reason is that the kd tree
in batch service is trained by the all or partial historical data,
but the kd tree in real-time service is trained by the data in
time window. In our example the more training data the greater
chance to find out the most nearest neighbors. It can be seen
from the distance values in the distance column in Table IV
and V. It is clear that the 10 neighbors got in batch service
are closer to input data than in the real-time service.

So in Lambda architecture we can get more accurate pre-
diction in batch service and get more timely prediction in real-
time service that can reflect the trend and fluctuation of price in
short term. These two kinds of prices can give us the different
perspectives to make decision.

V. RESULTS AND DISCUSSION

In this section the time and space performance of brute kNN,
kd tree and ball tree are compared. The results show that kd
tree is better than other two models in our application. We
also compare some other machine learning models with the
three kNN related models.

Figure 9 shows the memory space of different models after
training for different n, here n is the number of records in
training data. The values of n are set 20000, 50000, 100000
and 150000. It can be seen that with the growth of n the
memory space of different models increases accordingly. And
the memory space of kd tree and ball tree has more significant
increase than brute kNN. The reason is that besides the basic
data information both the kd tree and ball tree need additional
space to store tree structure information.

Figure 10 shows time cost of different models for different
n during the training process. It can be seen that the brute
kNN uses less training time than both kd tree and ball tree.
The time cost of kd tree and ball tree has significant increase
as the growth of n because both tree-based models need more
time to construct the tree structures.

So from Fig. 9 and 10 it can be seen that both kd tree and
ball tree need more memory space and training time. But after
trained, the tree-based models have shorter prediction time. It
can be proved by the following experiment. The testing dataset
includes 1000 samples and all models are trained by the same
training dataset. When k=3, 5, 10, 15, 20, 25 we compute the
averaging prediction time of 1000 samples on brute kNN, ball

5

Fig. 5. The exploration of all data fields.

Fig. 6. The housing price distribution of different latitude and longitude.

period of time, there are 153626 records in Cassandra and
the kd tree has been trained by data in batch layer. The time
window of Spark streaming is set to 30s and the kd tree in
speed layer has been trained by data in this time span. The
housing information [3, 2, 2, 1, 6, 0.5, 102.66, 0, 39.873867,
116.66589] is submitted to the real time and batch service

Fig. 7. The corralation of data fields.

respectively. Both services are deployed in Flask and the
housing information is post to corresponding service in JSON
format.

Predicting the Price of Second-Hand Housing Based
on Lambda Architecture and KD Tree

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 7

6

TABLE III
THE COMPONENTS AND FRAMEWORKS IN THE SYSTEM

Frameworks Functions Office websites
Flume Gather and redirect streaming data. http://flume.apache.org/

Kafka Cache the data flow from Flume and provide streaming data to Spark streaming system. http://kafka.apache.org/

Spark streaming
1. Be used in speed layer to get streaming data for real-time computation.
2. Store streaming data as real-time views.
3. Append streaming data to distributed Cassandra database.

https://spark.apache.org/streaming/

Cassandra Be used in batch layer to store the streaming data and provide batch views. https://cassandra.apache.org

Flask
1. Train kd trees based on real-time and batch views respectively.
2. Provide web interfaces for both real-time and batch services.

https://flask.palletsprojects.com/

Fig. 8. The structure of price prediction system.

Table IV shows the results returned by batch service when
k = 10. The predicted price is 33194.3 that is the average price
of the 10 nearest neighbors. We can also compute the price
by weighted kNN. The response time of service is 0.001753s
that is short enough. The id field gives the neighbor index in
the 153626 records. So one whole housing information with
26 fields can be obtained by each id.

Table V shows the results returned by real-time service
when k = 10. The predicted price is 34910.6 and the numbers
in id field are the housing indices in the records of the
corresponding time window.

For the same input data the batch and real-time services
give different price predictions. The reason is that the kd tree
in batch service is trained by the all or partial historical data,
but the kd tree in real-time service is trained by the data in
time window. In our example the more training data the greater
chance to find out the most nearest neighbors. It can be seen
from the distance values in the distance column in Table IV
and V. It is clear that the 10 neighbors got in batch service
are closer to input data than in the real-time service.

So in Lambda architecture we can get more accurate pre-
diction in batch service and get more timely prediction in real-
time service that can reflect the trend and fluctuation of price in
short term. These two kinds of prices can give us the different
perspectives to make decision.

V. RESULTS AND DISCUSSION

In this section the time and space performance of brute kNN,
kd tree and ball tree are compared. The results show that kd
tree is better than other two models in our application. We
also compare some other machine learning models with the
three kNN related models.

Figure 9 shows the memory space of different models after
training for different n, here n is the number of records in
training data. The values of n are set 20000, 50000, 100000
and 150000. It can be seen that with the growth of n the
memory space of different models increases accordingly. And
the memory space of kd tree and ball tree has more significant
increase than brute kNN. The reason is that besides the basic
data information both the kd tree and ball tree need additional
space to store tree structure information.

Figure 10 shows time cost of different models for different
n during the training process. It can be seen that the brute
kNN uses less training time than both kd tree and ball tree.
The time cost of kd tree and ball tree has significant increase
as the growth of n because both tree-based models need more
time to construct the tree structures.

So from Fig. 9 and 10 it can be seen that both kd tree and
ball tree need more memory space and training time. But after
trained, the tree-based models have shorter prediction time. It
can be proved by the following experiment. The testing dataset
includes 1000 samples and all models are trained by the same
training dataset. When k=3, 5, 10, 15, 20, 25 we compute the
averaging prediction time of 1000 samples on brute kNN, ball

5

Fig. 5. The exploration of all data fields.

Fig. 6. The housing price distribution of different latitude and longitude.

period of time, there are 153626 records in Cassandra and
the kd tree has been trained by data in batch layer. The time
window of Spark streaming is set to 30s and the kd tree in
speed layer has been trained by data in this time span. The
housing information [3, 2, 2, 1, 6, 0.5, 102.66, 0, 39.873867,
116.66589] is submitted to the real time and batch service

Fig. 7. The corralation of data fields.

respectively. Both services are deployed in Flask and the
housing information is post to corresponding service in JSON
format.

5

Fig. 5. The exploration of all data fields.

Fig. 6. The housing price distribution of different latitude and longitude.

period of time, there are 153626 records in Cassandra and
the kd tree has been trained by data in batch layer. The time
window of Spark streaming is set to 30s and the kd tree in
speed layer has been trained by data in this time span. The
housing information [3, 2, 2, 1, 6, 0.5, 102.66, 0, 39.873867,
116.66589] is submitted to the real time and batch service

Fig. 7. The corralation of data fields.

respectively. Both services are deployed in Flask and the
housing information is post to corresponding service in JSON
format.

5

Fig. 5. The exploration of all data fields.

Fig. 6. The housing price distribution of different latitude and longitude.

period of time, there are 153626 records in Cassandra and
the kd tree has been trained by data in batch layer. The time
window of Spark streaming is set to 30s and the kd tree in
speed layer has been trained by data in this time span. The
housing information [3, 2, 2, 1, 6, 0.5, 102.66, 0, 39.873867,
116.66589] is submitted to the real time and batch service

Fig. 7. The corralation of data fields.

respectively. Both services are deployed in Flask and the
housing information is post to corresponding service in JSON
format.

6

TABLE III
THE COMPONENTS AND FRAMEWORKS IN THE SYSTEM

Frameworks Functions Office websites
Flume Gather and redirect streaming data. http://flume.apache.org/

Kafka Cache the data flow from Flume and provide streaming data to Spark streaming system. http://kafka.apache.org/

Spark streaming
1. Be used in speed layer to get streaming data for real-time computation.
2. Store streaming data as real-time views.
3. Append streaming data to distributed Cassandra database.

https://spark.apache.org/streaming/

Cassandra Be used in batch layer to store the streaming data and provide batch views. https://cassandra.apache.org

Flask
1. Train kd trees based on real-time and batch views respectively.
2. Provide web interfaces for both real-time and batch services.

https://flask.palletsprojects.com/

Fig. 8. The structure of price prediction system.

Table IV shows the results returned by batch service when
k = 10. The predicted price is 33194.3 that is the average price
of the 10 nearest neighbors. We can also compute the price
by weighted kNN. The response time of service is 0.001753s
that is short enough. The id field gives the neighbor index in
the 153626 records. So one whole housing information with
26 fields can be obtained by each id.

Table V shows the results returned by real-time service
when k = 10. The predicted price is 34910.6 and the numbers
in id field are the housing indices in the records of the
corresponding time window.

For the same input data the batch and real-time services
give different price predictions. The reason is that the kd tree
in batch service is trained by the all or partial historical data,
but the kd tree in real-time service is trained by the data in
time window. In our example the more training data the greater
chance to find out the most nearest neighbors. It can be seen
from the distance values in the distance column in Table IV
and V. It is clear that the 10 neighbors got in batch service
are closer to input data than in the real-time service.

So in Lambda architecture we can get more accurate pre-
diction in batch service and get more timely prediction in real-
time service that can reflect the trend and fluctuation of price in
short term. These two kinds of prices can give us the different
perspectives to make decision.

V. RESULTS AND DISCUSSION

In this section the time and space performance of brute kNN,
kd tree and ball tree are compared. The results show that kd
tree is better than other two models in our application. We
also compare some other machine learning models with the
three kNN related models.

Figure 9 shows the memory space of different models after
training for different n, here n is the number of records in
training data. The values of n are set 20000, 50000, 100000
and 150000. It can be seen that with the growth of n the
memory space of different models increases accordingly. And
the memory space of kd tree and ball tree has more significant
increase than brute kNN. The reason is that besides the basic
data information both the kd tree and ball tree need additional
space to store tree structure information.

Figure 10 shows time cost of different models for different
n during the training process. It can be seen that the brute
kNN uses less training time than both kd tree and ball tree.
The time cost of kd tree and ball tree has significant increase
as the growth of n because both tree-based models need more
time to construct the tree structures.

So from Fig. 9 and 10 it can be seen that both kd tree and
ball tree need more memory space and training time. But after
trained, the tree-based models have shorter prediction time. It
can be proved by the following experiment. The testing dataset
includes 1000 samples and all models are trained by the same
training dataset. When k=3, 5, 10, 15, 20, 25 we compute the
averaging prediction time of 1000 samples on brute kNN, ball

6

TABLE III
THE COMPONENTS AND FRAMEWORKS IN THE SYSTEM

Frameworks Functions Office websites
Flume Gather and redirect streaming data. http://flume.apache.org/

Kafka Cache the data flow from Flume and provide streaming data to Spark streaming system. http://kafka.apache.org/

Spark streaming
1. Be used in speed layer to get streaming data for real-time computation.
2. Store streaming data as real-time views.
3. Append streaming data to distributed Cassandra database.

https://spark.apache.org/streaming/

Cassandra Be used in batch layer to store the streaming data and provide batch views. https://cassandra.apache.org

Flask
1. Train kd trees based on real-time and batch views respectively.
2. Provide web interfaces for both real-time and batch services.

https://flask.palletsprojects.com/

Fig. 8. The structure of price prediction system.

Table IV shows the results returned by batch service when
k = 10. The predicted price is 33194.3 that is the average price
of the 10 nearest neighbors. We can also compute the price
by weighted kNN. The response time of service is 0.001753s
that is short enough. The id field gives the neighbor index in
the 153626 records. So one whole housing information with
26 fields can be obtained by each id.

Table V shows the results returned by real-time service
when k = 10. The predicted price is 34910.6 and the numbers
in id field are the housing indices in the records of the
corresponding time window.

For the same input data the batch and real-time services
give different price predictions. The reason is that the kd tree
in batch service is trained by the all or partial historical data,
but the kd tree in real-time service is trained by the data in
time window. In our example the more training data the greater
chance to find out the most nearest neighbors. It can be seen
from the distance values in the distance column in Table IV
and V. It is clear that the 10 neighbors got in batch service
are closer to input data than in the real-time service.

So in Lambda architecture we can get more accurate pre-
diction in batch service and get more timely prediction in real-
time service that can reflect the trend and fluctuation of price in
short term. These two kinds of prices can give us the different
perspectives to make decision.

V. RESULTS AND DISCUSSION

In this section the time and space performance of brute kNN,
kd tree and ball tree are compared. The results show that kd
tree is better than other two models in our application. We
also compare some other machine learning models with the
three kNN related models.

Figure 9 shows the memory space of different models after
training for different n, here n is the number of records in
training data. The values of n are set 20000, 50000, 100000
and 150000. It can be seen that with the growth of n the
memory space of different models increases accordingly. And
the memory space of kd tree and ball tree has more significant
increase than brute kNN. The reason is that besides the basic
data information both the kd tree and ball tree need additional
space to store tree structure information.

Figure 10 shows time cost of different models for different
n during the training process. It can be seen that the brute
kNN uses less training time than both kd tree and ball tree.
The time cost of kd tree and ball tree has significant increase
as the growth of n because both tree-based models need more
time to construct the tree structures.

So from Fig. 9 and 10 it can be seen that both kd tree and
ball tree need more memory space and training time. But after
trained, the tree-based models have shorter prediction time. It
can be proved by the following experiment. The testing dataset
includes 1000 samples and all models are trained by the same
training dataset. When k=3, 5, 10, 15, 20, 25 we compute the
averaging prediction time of 1000 samples on brute kNN, ball

6

TABLE III
THE COMPONENTS AND FRAMEWORKS IN THE SYSTEM

Frameworks Functions Office websites
Flume Gather and redirect streaming data. http://flume.apache.org/

Kafka Cache the data flow from Flume and provide streaming data to Spark streaming system. http://kafka.apache.org/

Spark streaming
1. Be used in speed layer to get streaming data for real-time computation.
2. Store streaming data as real-time views.
3. Append streaming data to distributed Cassandra database.

https://spark.apache.org/streaming/

Cassandra Be used in batch layer to store the streaming data and provide batch views. https://cassandra.apache.org

Flask
1. Train kd trees based on real-time and batch views respectively.
2. Provide web interfaces for both real-time and batch services.

https://flask.palletsprojects.com/

Fig. 8. The structure of price prediction system.

Table IV shows the results returned by batch service when
k = 10. The predicted price is 33194.3 that is the average price
of the 10 nearest neighbors. We can also compute the price
by weighted kNN. The response time of service is 0.001753s
that is short enough. The id field gives the neighbor index in
the 153626 records. So one whole housing information with
26 fields can be obtained by each id.

Table V shows the results returned by real-time service
when k = 10. The predicted price is 34910.6 and the numbers
in id field are the housing indices in the records of the
corresponding time window.

For the same input data the batch and real-time services
give different price predictions. The reason is that the kd tree
in batch service is trained by the all or partial historical data,
but the kd tree in real-time service is trained by the data in
time window. In our example the more training data the greater
chance to find out the most nearest neighbors. It can be seen
from the distance values in the distance column in Table IV
and V. It is clear that the 10 neighbors got in batch service
are closer to input data than in the real-time service.

So in Lambda architecture we can get more accurate pre-
diction in batch service and get more timely prediction in real-
time service that can reflect the trend and fluctuation of price in
short term. These two kinds of prices can give us the different
perspectives to make decision.

V. RESULTS AND DISCUSSION

In this section the time and space performance of brute kNN,
kd tree and ball tree are compared. The results show that kd
tree is better than other two models in our application. We
also compare some other machine learning models with the
three kNN related models.

Figure 9 shows the memory space of different models after
training for different n, here n is the number of records in
training data. The values of n are set 20000, 50000, 100000
and 150000. It can be seen that with the growth of n the
memory space of different models increases accordingly. And
the memory space of kd tree and ball tree has more significant
increase than brute kNN. The reason is that besides the basic
data information both the kd tree and ball tree need additional
space to store tree structure information.

Figure 10 shows time cost of different models for different
n during the training process. It can be seen that the brute
kNN uses less training time than both kd tree and ball tree.
The time cost of kd tree and ball tree has significant increase
as the growth of n because both tree-based models need more
time to construct the tree structures.

So from Fig. 9 and 10 it can be seen that both kd tree and
ball tree need more memory space and training time. But after
trained, the tree-based models have shorter prediction time. It
can be proved by the following experiment. The testing dataset
includes 1000 samples and all models are trained by the same
training dataset. When k=3, 5, 10, 15, 20, 25 we compute the
averaging prediction time of 1000 samples on brute kNN, ball

7

TABLE IV
THE BATCH SERVICE RESULTS WHEN k = 10.

id bedroom livingroom bathroom kitchen floor ladderratio square subway lat lng distances
65707 3 2 2 1 6 0.5 105.97 0 39.879143 116.652458 0.158833

151840 3 2 2 1 6 0.5 108.38 0 39.882812 116.661682 0.186459

151820 3 2 2 1 6 0.5 108.70 0 39.882812 116.661682 0.193895

14604 3 2 2 1 6 0.5 110.00 0 39.876873 116.655457 0.222846

14596 3 2 2 1 6 0.333 110.00 0 39.876873 116.655457 0.222846

65726 3 2 2 1 6 0.333 109.92 0 39.879143 116.652458 0.237487

14603 3 2 2 1 6 0.5 110.81 0 39.876873 116.655457 0.242931

112687 3 2 2 1 6 0.5 111.62 0 39.882767 116.669685 0.264404

142464 3 2 2 1 6 0.5 111.65 0 39.883930 116.655563 0.282764

112650 3 2 2 1 6 0.5 92.90 0 39.882767 116.669685 0.284707

TABLE V
THE REAL-TIME SERVICE RESULTS WHEN k = 10.

id bedroom livingroom bathroom kitchen floor ladderratio square subway lat lng distances
91 3 2 2 1 15 0.3 114.60 0 39.910679 116.594887 1.666115

73 3 3 2 1 4 0.5 144.70 0 39.970848 116.552177 2.611373

59 2 2 1 1 6 0.5 79.88 0 39.934643 116.695198 2.942007

82 2 2 2 1 4 0.028 52.41 0 39.774361 116.512253 3.288918

78 3 2 2 1 6 0.5 129.56 0 40.092632 116.381378 3.437851

41 3 2 2 1 6 0.5 187.16 0 40.110054 116.560165 3.452464

64 3 1 1 1 9 0.5 95.00 0 39.971687 116.544952 3.491309

44 4 2 2 1 6 0.5 158.00 0 40.162060 116.555733 3.619236

84 3 2 2 1 13 0.5 158.93 1 40.082584 116.416153 3.679577

96 3 2 2 1 25 0.375 129.83 0 40.045547 116.430565 3.754350

Fig. 9. The memory space of brute kNN, kd tree and ball tree models.

tree and kd tree respectively. In Fig. 11 it can be seen that
kd tree have less prediction time than both ball tree and brute
kNN.

Besides the comparison of space and time cost the evalu-
ation metrics RMSE(Root Mean Squared Error), MAE(Mean
Absolute Error) ,R-Squared and MAPE(Mean Absolute Per-
centage Error) are chosen to evaluate the models. The smaller

Fig. 10. Training time of of brute kNN, kd tree and ball tree models.

these metrics the better performance of models. In this pa-
per the k-fold cross-validation technique is used in order to
compute the average values of RMSE, MAE, R-Squared and
MAPE. The k is set to 5. We compare these metrics between
the brute kNN, ball tree and kd tree. Table VI shows the
computed results of RMSE, MAE, R-Squared and MAPE of

7

TABLE IV
THE BATCH SERVICE RESULTS WHEN k = 10.

id bedroom livingroom bathroom kitchen floor ladderratio square subway lat lng distances
65707 3 2 2 1 6 0.5 105.97 0 39.879143 116.652458 0.158833

151840 3 2 2 1 6 0.5 108.38 0 39.882812 116.661682 0.186459

151820 3 2 2 1 6 0.5 108.70 0 39.882812 116.661682 0.193895

14604 3 2 2 1 6 0.5 110.00 0 39.876873 116.655457 0.222846

14596 3 2 2 1 6 0.333 110.00 0 39.876873 116.655457 0.222846

65726 3 2 2 1 6 0.333 109.92 0 39.879143 116.652458 0.237487

14603 3 2 2 1 6 0.5 110.81 0 39.876873 116.655457 0.242931

112687 3 2 2 1 6 0.5 111.62 0 39.882767 116.669685 0.264404

142464 3 2 2 1 6 0.5 111.65 0 39.883930 116.655563 0.282764

112650 3 2 2 1 6 0.5 92.90 0 39.882767 116.669685 0.284707

TABLE V
THE REAL-TIME SERVICE RESULTS WHEN k = 10.

id bedroom livingroom bathroom kitchen floor ladderratio square subway lat lng distances
91 3 2 2 1 15 0.3 114.60 0 39.910679 116.594887 1.666115

73 3 3 2 1 4 0.5 144.70 0 39.970848 116.552177 2.611373

59 2 2 1 1 6 0.5 79.88 0 39.934643 116.695198 2.942007

82 2 2 2 1 4 0.028 52.41 0 39.774361 116.512253 3.288918

78 3 2 2 1 6 0.5 129.56 0 40.092632 116.381378 3.437851

41 3 2 2 1 6 0.5 187.16 0 40.110054 116.560165 3.452464

64 3 1 1 1 9 0.5 95.00 0 39.971687 116.544952 3.491309

44 4 2 2 1 6 0.5 158.00 0 40.162060 116.555733 3.619236

84 3 2 2 1 13 0.5 158.93 1 40.082584 116.416153 3.679577

96 3 2 2 1 25 0.375 129.83 0 40.045547 116.430565 3.754350

Fig. 9. The memory space of brute kNN, kd tree and ball tree models.

tree and kd tree respectively. In Fig. 11 it can be seen that
kd tree have less prediction time than both ball tree and brute
kNN.

Besides the comparison of space and time cost the evalu-
ation metrics RMSE(Root Mean Squared Error), MAE(Mean
Absolute Error) ,R-Squared and MAPE(Mean Absolute Per-
centage Error) are chosen to evaluate the models. The smaller

Fig. 10. Training time of of brute kNN, kd tree and ball tree models.

these metrics the better performance of models. In this pa-
per the k-fold cross-validation technique is used in order to
compute the average values of RMSE, MAE, R-Squared and
MAPE. The k is set to 5. We compare these metrics between
the brute kNN, ball tree and kd tree. Table VI shows the
computed results of RMSE, MAE, R-Squared and MAPE of

6

TABLE III
THE COMPONENTS AND FRAMEWORKS IN THE SYSTEM

Frameworks Functions Office websites
Flume Gather and redirect streaming data. http://flume.apache.org/

Kafka Cache the data flow from Flume and provide streaming data to Spark streaming system. http://kafka.apache.org/

Spark streaming
1. Be used in speed layer to get streaming data for real-time computation.
2. Store streaming data as real-time views.
3. Append streaming data to distributed Cassandra database.

https://spark.apache.org/streaming/

Cassandra Be used in batch layer to store the streaming data and provide batch views. https://cassandra.apache.org

Flask
1. Train kd trees based on real-time and batch views respectively.
2. Provide web interfaces for both real-time and batch services.

https://flask.palletsprojects.com/

Fig. 8. The structure of price prediction system.

Table IV shows the results returned by batch service when
k = 10. The predicted price is 33194.3 that is the average price
of the 10 nearest neighbors. We can also compute the price
by weighted kNN. The response time of service is 0.001753s
that is short enough. The id field gives the neighbor index in
the 153626 records. So one whole housing information with
26 fields can be obtained by each id.

Table V shows the results returned by real-time service
when k = 10. The predicted price is 34910.6 and the numbers
in id field are the housing indices in the records of the
corresponding time window.

For the same input data the batch and real-time services
give different price predictions. The reason is that the kd tree
in batch service is trained by the all or partial historical data,
but the kd tree in real-time service is trained by the data in
time window. In our example the more training data the greater
chance to find out the most nearest neighbors. It can be seen
from the distance values in the distance column in Table IV
and V. It is clear that the 10 neighbors got in batch service
are closer to input data than in the real-time service.

So in Lambda architecture we can get more accurate pre-
diction in batch service and get more timely prediction in real-
time service that can reflect the trend and fluctuation of price in
short term. These two kinds of prices can give us the different
perspectives to make decision.

V. RESULTS AND DISCUSSION

In this section the time and space performance of brute kNN,
kd tree and ball tree are compared. The results show that kd
tree is better than other two models in our application. We
also compare some other machine learning models with the
three kNN related models.

Figure 9 shows the memory space of different models after
training for different n, here n is the number of records in
training data. The values of n are set 20000, 50000, 100000
and 150000. It can be seen that with the growth of n the
memory space of different models increases accordingly. And
the memory space of kd tree and ball tree has more significant
increase than brute kNN. The reason is that besides the basic
data information both the kd tree and ball tree need additional
space to store tree structure information.

Figure 10 shows time cost of different models for different
n during the training process. It can be seen that the brute
kNN uses less training time than both kd tree and ball tree.
The time cost of kd tree and ball tree has significant increase
as the growth of n because both tree-based models need more
time to construct the tree structures.

So from Fig. 9 and 10 it can be seen that both kd tree and
ball tree need more memory space and training time. But after
trained, the tree-based models have shorter prediction time. It
can be proved by the following experiment. The testing dataset
includes 1000 samples and all models are trained by the same
training dataset. When k=3, 5, 10, 15, 20, 25 we compute the
averaging prediction time of 1000 samples on brute kNN, ball

6

TABLE III
THE COMPONENTS AND FRAMEWORKS IN THE SYSTEM

Frameworks Functions Office websites
Flume Gather and redirect streaming data. http://flume.apache.org/

Kafka Cache the data flow from Flume and provide streaming data to Spark streaming system. http://kafka.apache.org/

Spark streaming
1. Be used in speed layer to get streaming data for real-time computation.
2. Store streaming data as real-time views.
3. Append streaming data to distributed Cassandra database.

https://spark.apache.org/streaming/

Cassandra Be used in batch layer to store the streaming data and provide batch views. https://cassandra.apache.org

Flask
1. Train kd trees based on real-time and batch views respectively.
2. Provide web interfaces for both real-time and batch services.

https://flask.palletsprojects.com/

Fig. 8. The structure of price prediction system.

Table IV shows the results returned by batch service when
k = 10. The predicted price is 33194.3 that is the average price
of the 10 nearest neighbors. We can also compute the price
by weighted kNN. The response time of service is 0.001753s
that is short enough. The id field gives the neighbor index in
the 153626 records. So one whole housing information with
26 fields can be obtained by each id.

Table V shows the results returned by real-time service
when k = 10. The predicted price is 34910.6 and the numbers
in id field are the housing indices in the records of the
corresponding time window.

For the same input data the batch and real-time services
give different price predictions. The reason is that the kd tree
in batch service is trained by the all or partial historical data,
but the kd tree in real-time service is trained by the data in
time window. In our example the more training data the greater
chance to find out the most nearest neighbors. It can be seen
from the distance values in the distance column in Table IV
and V. It is clear that the 10 neighbors got in batch service
are closer to input data than in the real-time service.

So in Lambda architecture we can get more accurate pre-
diction in batch service and get more timely prediction in real-
time service that can reflect the trend and fluctuation of price in
short term. These two kinds of prices can give us the different
perspectives to make decision.

V. RESULTS AND DISCUSSION

In this section the time and space performance of brute kNN,
kd tree and ball tree are compared. The results show that kd
tree is better than other two models in our application. We
also compare some other machine learning models with the
three kNN related models.

Figure 9 shows the memory space of different models after
training for different n, here n is the number of records in
training data. The values of n are set 20000, 50000, 100000
and 150000. It can be seen that with the growth of n the
memory space of different models increases accordingly. And
the memory space of kd tree and ball tree has more significant
increase than brute kNN. The reason is that besides the basic
data information both the kd tree and ball tree need additional
space to store tree structure information.

Figure 10 shows time cost of different models for different
n during the training process. It can be seen that the brute
kNN uses less training time than both kd tree and ball tree.
The time cost of kd tree and ball tree has significant increase
as the growth of n because both tree-based models need more
time to construct the tree structures.

So from Fig. 9 and 10 it can be seen that both kd tree and
ball tree need more memory space and training time. But after
trained, the tree-based models have shorter prediction time. It
can be proved by the following experiment. The testing dataset
includes 1000 samples and all models are trained by the same
training dataset. When k=3, 5, 10, 15, 20, 25 we compute the
averaging prediction time of 1000 samples on brute kNN, ball

Predicting the Price of Second-Hand Housing Based
on Lambda Architecture and KD Tree

MARCH 2022 • VOLUME XIV • NUMBER 18

INFOCOMMUNICATIONS JOURNAL
7

TABLE IV
THE BATCH SERVICE RESULTS WHEN k = 10.

id bedroom livingroom bathroom kitchen floor ladderratio square subway lat lng distances
65707 3 2 2 1 6 0.5 105.97 0 39.879143 116.652458 0.158833

151840 3 2 2 1 6 0.5 108.38 0 39.882812 116.661682 0.186459

151820 3 2 2 1 6 0.5 108.70 0 39.882812 116.661682 0.193895

14604 3 2 2 1 6 0.5 110.00 0 39.876873 116.655457 0.222846

14596 3 2 2 1 6 0.333 110.00 0 39.876873 116.655457 0.222846

65726 3 2 2 1 6 0.333 109.92 0 39.879143 116.652458 0.237487

14603 3 2 2 1 6 0.5 110.81 0 39.876873 116.655457 0.242931

112687 3 2 2 1 6 0.5 111.62 0 39.882767 116.669685 0.264404

142464 3 2 2 1 6 0.5 111.65 0 39.883930 116.655563 0.282764

112650 3 2 2 1 6 0.5 92.90 0 39.882767 116.669685 0.284707

TABLE V
THE REAL-TIME SERVICE RESULTS WHEN k = 10.

id bedroom livingroom bathroom kitchen floor ladderratio square subway lat lng distances
91 3 2 2 1 15 0.3 114.60 0 39.910679 116.594887 1.666115

73 3 3 2 1 4 0.5 144.70 0 39.970848 116.552177 2.611373

59 2 2 1 1 6 0.5 79.88 0 39.934643 116.695198 2.942007

82 2 2 2 1 4 0.028 52.41 0 39.774361 116.512253 3.288918

78 3 2 2 1 6 0.5 129.56 0 40.092632 116.381378 3.437851

41 3 2 2 1 6 0.5 187.16 0 40.110054 116.560165 3.452464

64 3 1 1 1 9 0.5 95.00 0 39.971687 116.544952 3.491309

44 4 2 2 1 6 0.5 158.00 0 40.162060 116.555733 3.619236

84 3 2 2 1 13 0.5 158.93 1 40.082584 116.416153 3.679577

96 3 2 2 1 25 0.375 129.83 0 40.045547 116.430565 3.754350

Fig. 9. The memory space of brute kNN, kd tree and ball tree models.

tree and kd tree respectively. In Fig. 11 it can be seen that
kd tree have less prediction time than both ball tree and brute
kNN.

Besides the comparison of space and time cost the evalu-
ation metrics RMSE(Root Mean Squared Error), MAE(Mean
Absolute Error) ,R-Squared and MAPE(Mean Absolute Per-
centage Error) are chosen to evaluate the models. The smaller

Fig. 10. Training time of of brute kNN, kd tree and ball tree models.

these metrics the better performance of models. In this pa-
per the k-fold cross-validation technique is used in order to
compute the average values of RMSE, MAE, R-Squared and
MAPE. The k is set to 5. We compare these metrics between
the brute kNN, ball tree and kd tree. Table VI shows the
computed results of RMSE, MAE, R-Squared and MAPE of

7

TABLE IV
THE BATCH SERVICE RESULTS WHEN k = 10.

id bedroom livingroom bathroom kitchen floor ladderratio square subway lat lng distances
65707 3 2 2 1 6 0.5 105.97 0 39.879143 116.652458 0.158833

151840 3 2 2 1 6 0.5 108.38 0 39.882812 116.661682 0.186459

151820 3 2 2 1 6 0.5 108.70 0 39.882812 116.661682 0.193895

14604 3 2 2 1 6 0.5 110.00 0 39.876873 116.655457 0.222846

14596 3 2 2 1 6 0.333 110.00 0 39.876873 116.655457 0.222846

65726 3 2 2 1 6 0.333 109.92 0 39.879143 116.652458 0.237487

14603 3 2 2 1 6 0.5 110.81 0 39.876873 116.655457 0.242931

112687 3 2 2 1 6 0.5 111.62 0 39.882767 116.669685 0.264404

142464 3 2 2 1 6 0.5 111.65 0 39.883930 116.655563 0.282764

112650 3 2 2 1 6 0.5 92.90 0 39.882767 116.669685 0.284707

TABLE V
THE REAL-TIME SERVICE RESULTS WHEN k = 10.

id bedroom livingroom bathroom kitchen floor ladderratio square subway lat lng distances
91 3 2 2 1 15 0.3 114.60 0 39.910679 116.594887 1.666115

73 3 3 2 1 4 0.5 144.70 0 39.970848 116.552177 2.611373

59 2 2 1 1 6 0.5 79.88 0 39.934643 116.695198 2.942007

82 2 2 2 1 4 0.028 52.41 0 39.774361 116.512253 3.288918

78 3 2 2 1 6 0.5 129.56 0 40.092632 116.381378 3.437851

41 3 2 2 1 6 0.5 187.16 0 40.110054 116.560165 3.452464

64 3 1 1 1 9 0.5 95.00 0 39.971687 116.544952 3.491309

44 4 2 2 1 6 0.5 158.00 0 40.162060 116.555733 3.619236

84 3 2 2 1 13 0.5 158.93 1 40.082584 116.416153 3.679577

96 3 2 2 1 25 0.375 129.83 0 40.045547 116.430565 3.754350

Fig. 9. The memory space of brute kNN, kd tree and ball tree models.

tree and kd tree respectively. In Fig. 11 it can be seen that
kd tree have less prediction time than both ball tree and brute
kNN.

Besides the comparison of space and time cost the evalu-
ation metrics RMSE(Root Mean Squared Error), MAE(Mean
Absolute Error) ,R-Squared and MAPE(Mean Absolute Per-
centage Error) are chosen to evaluate the models. The smaller

Fig. 10. Training time of of brute kNN, kd tree and ball tree models.

these metrics the better performance of models. In this pa-
per the k-fold cross-validation technique is used in order to
compute the average values of RMSE, MAE, R-Squared and
MAPE. The k is set to 5. We compare these metrics between
the brute kNN, ball tree and kd tree. Table VI shows the
computed results of RMSE, MAE, R-Squared and MAPE of

7

TABLE IV
THE BATCH SERVICE RESULTS WHEN k = 10.

id bedroom livingroom bathroom kitchen floor ladderratio square subway lat lng distances
65707 3 2 2 1 6 0.5 105.97 0 39.879143 116.652458 0.158833

151840 3 2 2 1 6 0.5 108.38 0 39.882812 116.661682 0.186459

151820 3 2 2 1 6 0.5 108.70 0 39.882812 116.661682 0.193895

14604 3 2 2 1 6 0.5 110.00 0 39.876873 116.655457 0.222846

14596 3 2 2 1 6 0.333 110.00 0 39.876873 116.655457 0.222846

65726 3 2 2 1 6 0.333 109.92 0 39.879143 116.652458 0.237487

14603 3 2 2 1 6 0.5 110.81 0 39.876873 116.655457 0.242931

112687 3 2 2 1 6 0.5 111.62 0 39.882767 116.669685 0.264404

142464 3 2 2 1 6 0.5 111.65 0 39.883930 116.655563 0.282764

112650 3 2 2 1 6 0.5 92.90 0 39.882767 116.669685 0.284707

TABLE V
THE REAL-TIME SERVICE RESULTS WHEN k = 10.

id bedroom livingroom bathroom kitchen floor ladderratio square subway lat lng distances
91 3 2 2 1 15 0.3 114.60 0 39.910679 116.594887 1.666115

73 3 3 2 1 4 0.5 144.70 0 39.970848 116.552177 2.611373

59 2 2 1 1 6 0.5 79.88 0 39.934643 116.695198 2.942007

82 2 2 2 1 4 0.028 52.41 0 39.774361 116.512253 3.288918

78 3 2 2 1 6 0.5 129.56 0 40.092632 116.381378 3.437851

41 3 2 2 1 6 0.5 187.16 0 40.110054 116.560165 3.452464

64 3 1 1 1 9 0.5 95.00 0 39.971687 116.544952 3.491309

44 4 2 2 1 6 0.5 158.00 0 40.162060 116.555733 3.619236

84 3 2 2 1 13 0.5 158.93 1 40.082584 116.416153 3.679577

96 3 2 2 1 25 0.375 129.83 0 40.045547 116.430565 3.754350

Fig. 9. The memory space of brute kNN, kd tree and ball tree models.

tree and kd tree respectively. In Fig. 11 it can be seen that
kd tree have less prediction time than both ball tree and brute
kNN.

Besides the comparison of space and time cost the evalu-
ation metrics RMSE(Root Mean Squared Error), MAE(Mean
Absolute Error) ,R-Squared and MAPE(Mean Absolute Per-
centage Error) are chosen to evaluate the models. The smaller

Fig. 10. Training time of of brute kNN, kd tree and ball tree models.

these metrics the better performance of models. In this pa-
per the k-fold cross-validation technique is used in order to
compute the average values of RMSE, MAE, R-Squared and
MAPE. The k is set to 5. We compare these metrics between
the brute kNN, ball tree and kd tree. Table VI shows the
computed results of RMSE, MAE, R-Squared and MAPE of

8

Fig. 11. Predicting time of brute kNN, kd tree and ball tree models.

three kNN related models for k=3, 5, 10, 15, 20, 25. It can be
seen that there is no obvious difference of performance in all
cases.

TABLE VI
THE EVALUATION METRICS FOR DIFFERENT k ON THE brute kNN, ball tree

AND kd tree MODELS.

k Models RMSE MAE R-Squared MAPE
3 brute kNN 18206.3527 13926.4134 0.4257 364.7942

ball tree 18202.1706 13926.7102 0.4260 364.7693

kd tree 18200.8848 13926.0901 0.4260 358.1100

5 brute kNN 17562.3638 13584.7236 0.4656 350.8004

ball tree 17548.6531 13577.2199 0.4664 346.4767

kd tree 17553.8938 13579.8747 0.4661 346.4880

10 brute kNN 17129.0225 13382.8892 0.4916 337.2047

ball tree 17122.4624 13377.2459 0.4920 336.3491

kd tree 17126.3306 13377.2684 0.4918 335.6577

15 brute kNN 17062.6534 13373.7111 0.4956 347.9658

ball tree 17061.8768 13377.6418 0.4956 345.4252

kd tree 17064.7471 13376.5118 0.4955 345.9193

20 brute kNN 17062.9813 13407.4079 0.4956 351.2006

ball tree 17062.5500 13403.7100 0.4956 352.4062

kd tree 17067.8417 13410.3385 0.4953 352.5939

25 brute kNN 17086.2347 13437.6975 0.4942 364.1835

ball tree 17086.8381 13436.8339 0.4942 364.5805

kd tree 17086.4431 13437.4806 0.4942 364.1689

In the k-fold cross-validation above, other machine learning
models are chosen to complete the same prediction task,
including regression, neural network, decision tree, random
forest and SVM regression. The description and parameter
information and the average values of RMSE, MAE, R-
Squared and MAPE of these models are shown in Table VII.
From Table VI and VII we can see that kNN-related models
have better performance in our application.

From these experiments we can see:
1. The brute kNN, kd tree and ball tree have similar

evaluation metrics that are better than other machine learning
models in our system.

2. Although the ball tree and kd tree need more memory
space and training time than brute kNN, the prediction time is
less.

3. In our application the kd tree has less prediction time
than ball tree. So we choose kd tree as the final model.

VI. CONCLUSION

The accurate and timely housing price prediction can help
individuals and enterprises make reasonable decisions. In this
paper we design and implement a system for the prediction
of second-hand housing price based on Lambda Architecture.
This system can provide housing price prediction by both
historical and real-time data, so it can provide two different
perspectives on prediction. By analysis of the space and time
performance and metrics comparison with other models, the
kd tree is used as prediction model in both batch layer and
speed layer. Besides price prediction, the other benefit of using
the kd tree is that the nearest k neighbors can be used as a
housing recommending list. The system can also be used in
other applications to provide prediction services.

Other architectures, such as Kappa and Alarea, can also
complete the same task. In the future, we will consider porting
the existing system to these two frameworks and compare their
implementation performance with that of Lambda architecture.
Alarea is very attractive because its techniques stack is very
similar to that of our system, and it combines the advantages
of Lambda and Kappa architectures.

ACKNOWLEDGMENT

This research was funded by the School-level Scientific
Research Project of Harbin University of Commerce (grant
number 18XN021), the Heilongjiang Provincial Natural Sci-
ence Foundation of China (grant number LH2019F044) and
the Heilongjiang Provincial Key Laboratory of Electronic
Commerce and Information Processing.

REFERENCES

[1] H. Garcı́a-González, D. Fernández-Álvarez, J. E. Labra-Gayo, and
P. Ordóñez de Pablos, “Applying big data and stream processing to
the real estate domain,” Behaviour & Information Technology, vol. 38,
no. 9, pp. 950–958, 2019, DOI: 10.1109/TMC.2019.2944829.

[2] A. A. Munshi and Y. A.-R. I. Mohamed, “Data lake lambda architecture
for smart grids big data analytics,” IEEE Access, vol. 6, pp. 40 463–
40 471, 2018, DOI: 10.1109/access.2018.2858256.

[3] M. Gribaudo, M. Iacono, and M. Kiran, “A performance model-
ing framework for lambda architecture based applications,” Future
Generation Computer Systems, vol. 86, pp. 1032–1041, 2018, DOI:
10.1016/j.future.2017.07.033.

[4] O. Debauche, S. A. Mahmoudi, N. De Cock, S. Mahmoudi, P. Man-
neback, and F. Lebeau, “Cloud architecture for plant phenotyping
research,” Concurrency and Computation: Practice and Experience,
vol. 32, no. 17, p. e5661, 2020, DOI: 10.1002/cpe.5661.

[5] T. Numnonda, “A real-time recommendation engine using lambda archi-
tecture,” Artificial Life and Robotics, vol. 23, no. 2, pp. 249–254, 2018,
DOI: 10.1007/s10015-017-0424-8.

[6] I. Ganchev, Z. Ji, and M. O’Droma, “A conceptual framework for
building a mobile services’ recommendation engine,” in 2016 IEEE 8th
International Conference on Intelligent Systems (IS). IEEE, 2016, pp.
285–289, DOI: 10.1109/IS.2016.7737435.

8

Fig. 11. Predicting time of brute kNN, kd tree and ball tree models.

three kNN related models for k=3, 5, 10, 15, 20, 25. It can be
seen that there is no obvious difference of performance in all
cases.

TABLE VI
THE EVALUATION METRICS FOR DIFFERENT k ON THE brute kNN, ball tree

AND kd tree MODELS.

k Models RMSE MAE R-Squared MAPE
3 brute kNN 18206.3527 13926.4134 0.4257 364.7942

ball tree 18202.1706 13926.7102 0.4260 364.7693

kd tree 18200.8848 13926.0901 0.4260 358.1100

5 brute kNN 17562.3638 13584.7236 0.4656 350.8004

ball tree 17548.6531 13577.2199 0.4664 346.4767

kd tree 17553.8938 13579.8747 0.4661 346.4880

10 brute kNN 17129.0225 13382.8892 0.4916 337.2047

ball tree 17122.4624 13377.2459 0.4920 336.3491

kd tree 17126.3306 13377.2684 0.4918 335.6577

15 brute kNN 17062.6534 13373.7111 0.4956 347.9658

ball tree 17061.8768 13377.6418 0.4956 345.4252

kd tree 17064.7471 13376.5118 0.4955 345.9193

20 brute kNN 17062.9813 13407.4079 0.4956 351.2006

ball tree 17062.5500 13403.7100 0.4956 352.4062

kd tree 17067.8417 13410.3385 0.4953 352.5939

25 brute kNN 17086.2347 13437.6975 0.4942 364.1835

ball tree 17086.8381 13436.8339 0.4942 364.5805

kd tree 17086.4431 13437.4806 0.4942 364.1689

In the k-fold cross-validation above, other machine learning
models are chosen to complete the same prediction task,
including regression, neural network, decision tree, random
forest and SVM regression. The description and parameter
information and the average values of RMSE, MAE, R-
Squared and MAPE of these models are shown in Table VII.
From Table VI and VII we can see that kNN-related models
have better performance in our application.

From these experiments we can see:
1. The brute kNN, kd tree and ball tree have similar

evaluation metrics that are better than other machine learning
models in our system.

2. Although the ball tree and kd tree need more memory
space and training time than brute kNN, the prediction time is
less.

3. In our application the kd tree has less prediction time
than ball tree. So we choose kd tree as the final model.

VI. CONCLUSION

The accurate and timely housing price prediction can help
individuals and enterprises make reasonable decisions. In this
paper we design and implement a system for the prediction
of second-hand housing price based on Lambda Architecture.
This system can provide housing price prediction by both
historical and real-time data, so it can provide two different
perspectives on prediction. By analysis of the space and time
performance and metrics comparison with other models, the
kd tree is used as prediction model in both batch layer and
speed layer. Besides price prediction, the other benefit of using
the kd tree is that the nearest k neighbors can be used as a
housing recommending list. The system can also be used in
other applications to provide prediction services.

Other architectures, such as Kappa and Alarea, can also
complete the same task. In the future, we will consider porting
the existing system to these two frameworks and compare their
implementation performance with that of Lambda architecture.
Alarea is very attractive because its techniques stack is very
similar to that of our system, and it combines the advantages
of Lambda and Kappa architectures.

ACKNOWLEDGMENT

This research was funded by the School-level Scientific
Research Project of Harbin University of Commerce (grant
number 18XN021), the Heilongjiang Provincial Natural Sci-
ence Foundation of China (grant number LH2019F044) and
the Heilongjiang Provincial Key Laboratory of Electronic
Commerce and Information Processing.

REFERENCES

[1] H. Garcı́a-González, D. Fernández-Álvarez, J. E. Labra-Gayo, and
P. Ordóñez de Pablos, “Applying big data and stream processing to
the real estate domain,” Behaviour & Information Technology, vol. 38,
no. 9, pp. 950–958, 2019, DOI: 10.1109/TMC.2019.2944829.

[2] A. A. Munshi and Y. A.-R. I. Mohamed, “Data lake lambda architecture
for smart grids big data analytics,” IEEE Access, vol. 6, pp. 40 463–
40 471, 2018, DOI: 10.1109/access.2018.2858256.

[3] M. Gribaudo, M. Iacono, and M. Kiran, “A performance model-
ing framework for lambda architecture based applications,” Future
Generation Computer Systems, vol. 86, pp. 1032–1041, 2018, DOI:
10.1016/j.future.2017.07.033.

[4] O. Debauche, S. A. Mahmoudi, N. De Cock, S. Mahmoudi, P. Man-
neback, and F. Lebeau, “Cloud architecture for plant phenotyping
research,” Concurrency and Computation: Practice and Experience,
vol. 32, no. 17, p. e5661, 2020, DOI: 10.1002/cpe.5661.

[5] T. Numnonda, “A real-time recommendation engine using lambda archi-
tecture,” Artificial Life and Robotics, vol. 23, no. 2, pp. 249–254, 2018,
DOI: 10.1007/s10015-017-0424-8.

[6] I. Ganchev, Z. Ji, and M. O’Droma, “A conceptual framework for
building a mobile services’ recommendation engine,” in 2016 IEEE 8th
International Conference on Intelligent Systems (IS). IEEE, 2016, pp.
285–289, DOI: 10.1109/IS.2016.7737435.

7

TABLE IV
THE BATCH SERVICE RESULTS WHEN k = 10.

id bedroom livingroom bathroom kitchen floor ladderratio square subway lat lng distances
65707 3 2 2 1 6 0.5 105.97 0 39.879143 116.652458 0.158833

151840 3 2 2 1 6 0.5 108.38 0 39.882812 116.661682 0.186459

151820 3 2 2 1 6 0.5 108.70 0 39.882812 116.661682 0.193895

14604 3 2 2 1 6 0.5 110.00 0 39.876873 116.655457 0.222846

14596 3 2 2 1 6 0.333 110.00 0 39.876873 116.655457 0.222846

65726 3 2 2 1 6 0.333 109.92 0 39.879143 116.652458 0.237487

14603 3 2 2 1 6 0.5 110.81 0 39.876873 116.655457 0.242931

112687 3 2 2 1 6 0.5 111.62 0 39.882767 116.669685 0.264404

142464 3 2 2 1 6 0.5 111.65 0 39.883930 116.655563 0.282764

112650 3 2 2 1 6 0.5 92.90 0 39.882767 116.669685 0.284707

TABLE V
THE REAL-TIME SERVICE RESULTS WHEN k = 10.

id bedroom livingroom bathroom kitchen floor ladderratio square subway lat lng distances
91 3 2 2 1 15 0.3 114.60 0 39.910679 116.594887 1.666115

73 3 3 2 1 4 0.5 144.70 0 39.970848 116.552177 2.611373

59 2 2 1 1 6 0.5 79.88 0 39.934643 116.695198 2.942007

82 2 2 2 1 4 0.028 52.41 0 39.774361 116.512253 3.288918

78 3 2 2 1 6 0.5 129.56 0 40.092632 116.381378 3.437851

41 3 2 2 1 6 0.5 187.16 0 40.110054 116.560165 3.452464

64 3 1 1 1 9 0.5 95.00 0 39.971687 116.544952 3.491309

44 4 2 2 1 6 0.5 158.00 0 40.162060 116.555733 3.619236

84 3 2 2 1 13 0.5 158.93 1 40.082584 116.416153 3.679577

96 3 2 2 1 25 0.375 129.83 0 40.045547 116.430565 3.754350

Fig. 9. The memory space of brute kNN, kd tree and ball tree models.

tree and kd tree respectively. In Fig. 11 it can be seen that
kd tree have less prediction time than both ball tree and brute
kNN.

Besides the comparison of space and time cost the evalu-
ation metrics RMSE(Root Mean Squared Error), MAE(Mean
Absolute Error) ,R-Squared and MAPE(Mean Absolute Per-
centage Error) are chosen to evaluate the models. The smaller

Fig. 10. Training time of of brute kNN, kd tree and ball tree models.

these metrics the better performance of models. In this pa-
per the k-fold cross-validation technique is used in order to
compute the average values of RMSE, MAE, R-Squared and
MAPE. The k is set to 5. We compare these metrics between
the brute kNN, ball tree and kd tree. Table VI shows the
computed results of RMSE, MAE, R-Squared and MAPE of

7

TABLE IV
THE BATCH SERVICE RESULTS WHEN k = 10.

id bedroom livingroom bathroom kitchen floor ladderratio square subway lat lng distances
65707 3 2 2 1 6 0.5 105.97 0 39.879143 116.652458 0.158833

151840 3 2 2 1 6 0.5 108.38 0 39.882812 116.661682 0.186459

151820 3 2 2 1 6 0.5 108.70 0 39.882812 116.661682 0.193895

14604 3 2 2 1 6 0.5 110.00 0 39.876873 116.655457 0.222846

14596 3 2 2 1 6 0.333 110.00 0 39.876873 116.655457 0.222846

65726 3 2 2 1 6 0.333 109.92 0 39.879143 116.652458 0.237487

14603 3 2 2 1 6 0.5 110.81 0 39.876873 116.655457 0.242931

112687 3 2 2 1 6 0.5 111.62 0 39.882767 116.669685 0.264404

142464 3 2 2 1 6 0.5 111.65 0 39.883930 116.655563 0.282764

112650 3 2 2 1 6 0.5 92.90 0 39.882767 116.669685 0.284707

TABLE V
THE REAL-TIME SERVICE RESULTS WHEN k = 10.

id bedroom livingroom bathroom kitchen floor ladderratio square subway lat lng distances
91 3 2 2 1 15 0.3 114.60 0 39.910679 116.594887 1.666115

73 3 3 2 1 4 0.5 144.70 0 39.970848 116.552177 2.611373

59 2 2 1 1 6 0.5 79.88 0 39.934643 116.695198 2.942007

82 2 2 2 1 4 0.028 52.41 0 39.774361 116.512253 3.288918

78 3 2 2 1 6 0.5 129.56 0 40.092632 116.381378 3.437851

41 3 2 2 1 6 0.5 187.16 0 40.110054 116.560165 3.452464

64 3 1 1 1 9 0.5 95.00 0 39.971687 116.544952 3.491309

44 4 2 2 1 6 0.5 158.00 0 40.162060 116.555733 3.619236

84 3 2 2 1 13 0.5 158.93 1 40.082584 116.416153 3.679577

96 3 2 2 1 25 0.375 129.83 0 40.045547 116.430565 3.754350

Fig. 9. The memory space of brute kNN, kd tree and ball tree models.

tree and kd tree respectively. In Fig. 11 it can be seen that
kd tree have less prediction time than both ball tree and brute
kNN.

Besides the comparison of space and time cost the evalu-
ation metrics RMSE(Root Mean Squared Error), MAE(Mean
Absolute Error) ,R-Squared and MAPE(Mean Absolute Per-
centage Error) are chosen to evaluate the models. The smaller

Fig. 10. Training time of of brute kNN, kd tree and ball tree models.

these metrics the better performance of models. In this pa-
per the k-fold cross-validation technique is used in order to
compute the average values of RMSE, MAE, R-Squared and
MAPE. The k is set to 5. We compare these metrics between
the brute kNN, ball tree and kd tree. Table VI shows the
computed results of RMSE, MAE, R-Squared and MAPE of

7

TABLE IV
THE BATCH SERVICE RESULTS WHEN k = 10.

id bedroom livingroom bathroom kitchen floor ladderratio square subway lat lng distances
65707 3 2 2 1 6 0.5 105.97 0 39.879143 116.652458 0.158833

151840 3 2 2 1 6 0.5 108.38 0 39.882812 116.661682 0.186459

151820 3 2 2 1 6 0.5 108.70 0 39.882812 116.661682 0.193895

14604 3 2 2 1 6 0.5 110.00 0 39.876873 116.655457 0.222846

14596 3 2 2 1 6 0.333 110.00 0 39.876873 116.655457 0.222846

65726 3 2 2 1 6 0.333 109.92 0 39.879143 116.652458 0.237487

14603 3 2 2 1 6 0.5 110.81 0 39.876873 116.655457 0.242931

112687 3 2 2 1 6 0.5 111.62 0 39.882767 116.669685 0.264404

142464 3 2 2 1 6 0.5 111.65 0 39.883930 116.655563 0.282764

112650 3 2 2 1 6 0.5 92.90 0 39.882767 116.669685 0.284707

TABLE V
THE REAL-TIME SERVICE RESULTS WHEN k = 10.

id bedroom livingroom bathroom kitchen floor ladderratio square subway lat lng distances
91 3 2 2 1 15 0.3 114.60 0 39.910679 116.594887 1.666115

73 3 3 2 1 4 0.5 144.70 0 39.970848 116.552177 2.611373

59 2 2 1 1 6 0.5 79.88 0 39.934643 116.695198 2.942007

82 2 2 2 1 4 0.028 52.41 0 39.774361 116.512253 3.288918

78 3 2 2 1 6 0.5 129.56 0 40.092632 116.381378 3.437851

41 3 2 2 1 6 0.5 187.16 0 40.110054 116.560165 3.452464

64 3 1 1 1 9 0.5 95.00 0 39.971687 116.544952 3.491309

44 4 2 2 1 6 0.5 158.00 0 40.162060 116.555733 3.619236

84 3 2 2 1 13 0.5 158.93 1 40.082584 116.416153 3.679577

96 3 2 2 1 25 0.375 129.83 0 40.045547 116.430565 3.754350

Fig. 9. The memory space of brute kNN, kd tree and ball tree models.

tree and kd tree respectively. In Fig. 11 it can be seen that
kd tree have less prediction time than both ball tree and brute
kNN.

Besides the comparison of space and time cost the evalu-
ation metrics RMSE(Root Mean Squared Error), MAE(Mean
Absolute Error) ,R-Squared and MAPE(Mean Absolute Per-
centage Error) are chosen to evaluate the models. The smaller

Fig. 10. Training time of of brute kNN, kd tree and ball tree models.

these metrics the better performance of models. In this pa-
per the k-fold cross-validation technique is used in order to
compute the average values of RMSE, MAE, R-Squared and
MAPE. The k is set to 5. We compare these metrics between
the brute kNN, ball tree and kd tree. Table VI shows the
computed results of RMSE, MAE, R-Squared and MAPE of

Predicting the Price of Second-Hand Housing Based
on Lambda Architecture and KD Tree

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 9

8

Fig. 11. Predicting time of brute kNN, kd tree and ball tree models.

three kNN related models for k=3, 5, 10, 15, 20, 25. It can be
seen that there is no obvious difference of performance in all
cases.

TABLE VI
THE EVALUATION METRICS FOR DIFFERENT k ON THE brute kNN, ball tree

AND kd tree MODELS.

k Models RMSE MAE R-Squared MAPE
3 brute kNN 18206.3527 13926.4134 0.4257 364.7942

ball tree 18202.1706 13926.7102 0.4260 364.7693

kd tree 18200.8848 13926.0901 0.4260 358.1100

5 brute kNN 17562.3638 13584.7236 0.4656 350.8004

ball tree 17548.6531 13577.2199 0.4664 346.4767

kd tree 17553.8938 13579.8747 0.4661 346.4880

10 brute kNN 17129.0225 13382.8892 0.4916 337.2047

ball tree 17122.4624 13377.2459 0.4920 336.3491

kd tree 17126.3306 13377.2684 0.4918 335.6577

15 brute kNN 17062.6534 13373.7111 0.4956 347.9658

ball tree 17061.8768 13377.6418 0.4956 345.4252

kd tree 17064.7471 13376.5118 0.4955 345.9193

20 brute kNN 17062.9813 13407.4079 0.4956 351.2006

ball tree 17062.5500 13403.7100 0.4956 352.4062

kd tree 17067.8417 13410.3385 0.4953 352.5939

25 brute kNN 17086.2347 13437.6975 0.4942 364.1835

ball tree 17086.8381 13436.8339 0.4942 364.5805

kd tree 17086.4431 13437.4806 0.4942 364.1689

In the k-fold cross-validation above, other machine learning
models are chosen to complete the same prediction task,
including regression, neural network, decision tree, random
forest and SVM regression. The description and parameter
information and the average values of RMSE, MAE, R-
Squared and MAPE of these models are shown in Table VII.
From Table VI and VII we can see that kNN-related models
have better performance in our application.

From these experiments we can see:
1. The brute kNN, kd tree and ball tree have similar

evaluation metrics that are better than other machine learning
models in our system.

2. Although the ball tree and kd tree need more memory
space and training time than brute kNN, the prediction time is
less.

3. In our application the kd tree has less prediction time
than ball tree. So we choose kd tree as the final model.

VI. CONCLUSION

The accurate and timely housing price prediction can help
individuals and enterprises make reasonable decisions. In this
paper we design and implement a system for the prediction
of second-hand housing price based on Lambda Architecture.
This system can provide housing price prediction by both
historical and real-time data, so it can provide two different
perspectives on prediction. By analysis of the space and time
performance and metrics comparison with other models, the
kd tree is used as prediction model in both batch layer and
speed layer. Besides price prediction, the other benefit of using
the kd tree is that the nearest k neighbors can be used as a
housing recommending list. The system can also be used in
other applications to provide prediction services.

Other architectures, such as Kappa and Alarea, can also
complete the same task. In the future, we will consider porting
the existing system to these two frameworks and compare their
implementation performance with that of Lambda architecture.
Alarea is very attractive because its techniques stack is very
similar to that of our system, and it combines the advantages
of Lambda and Kappa architectures.

ACKNOWLEDGMENT

This research was funded by the School-level Scientific
Research Project of Harbin University of Commerce (grant
number 18XN021), the Heilongjiang Provincial Natural Sci-
ence Foundation of China (grant number LH2019F044) and
the Heilongjiang Provincial Key Laboratory of Electronic
Commerce and Information Processing.

REFERENCES

[1] H. Garcı́a-González, D. Fernández-Álvarez, J. E. Labra-Gayo, and
P. Ordóñez de Pablos, “Applying big data and stream processing to
the real estate domain,” Behaviour & Information Technology, vol. 38,
no. 9, pp. 950–958, 2019, DOI: 10.1109/TMC.2019.2944829.

[2] A. A. Munshi and Y. A.-R. I. Mohamed, “Data lake lambda architecture
for smart grids big data analytics,” IEEE Access, vol. 6, pp. 40 463–
40 471, 2018, DOI: 10.1109/access.2018.2858256.

[3] M. Gribaudo, M. Iacono, and M. Kiran, “A performance model-
ing framework for lambda architecture based applications,” Future
Generation Computer Systems, vol. 86, pp. 1032–1041, 2018, DOI:
10.1016/j.future.2017.07.033.

[4] O. Debauche, S. A. Mahmoudi, N. De Cock, S. Mahmoudi, P. Man-
neback, and F. Lebeau, “Cloud architecture for plant phenotyping
research,” Concurrency and Computation: Practice and Experience,
vol. 32, no. 17, p. e5661, 2020, DOI: 10.1002/cpe.5661.

[5] T. Numnonda, “A real-time recommendation engine using lambda archi-
tecture,” Artificial Life and Robotics, vol. 23, no. 2, pp. 249–254, 2018,
DOI: 10.1007/s10015-017-0424-8.

[6] I. Ganchev, Z. Ji, and M. O’Droma, “A conceptual framework for
building a mobile services’ recommendation engine,” in 2016 IEEE 8th
International Conference on Intelligent Systems (IS). IEEE, 2016, pp.
285–289, DOI: 10.1109/IS.2016.7737435.

8

Fig. 11. Predicting time of brute kNN, kd tree and ball tree models.

three kNN related models for k=3, 5, 10, 15, 20, 25. It can be
seen that there is no obvious difference of performance in all
cases.

TABLE VI
THE EVALUATION METRICS FOR DIFFERENT k ON THE brute kNN, ball tree

AND kd tree MODELS.

k Models RMSE MAE R-Squared MAPE
3 brute kNN 18206.3527 13926.4134 0.4257 364.7942

ball tree 18202.1706 13926.7102 0.4260 364.7693

kd tree 18200.8848 13926.0901 0.4260 358.1100

5 brute kNN 17562.3638 13584.7236 0.4656 350.8004

ball tree 17548.6531 13577.2199 0.4664 346.4767

kd tree 17553.8938 13579.8747 0.4661 346.4880

10 brute kNN 17129.0225 13382.8892 0.4916 337.2047

ball tree 17122.4624 13377.2459 0.4920 336.3491

kd tree 17126.3306 13377.2684 0.4918 335.6577

15 brute kNN 17062.6534 13373.7111 0.4956 347.9658

ball tree 17061.8768 13377.6418 0.4956 345.4252

kd tree 17064.7471 13376.5118 0.4955 345.9193

20 brute kNN 17062.9813 13407.4079 0.4956 351.2006

ball tree 17062.5500 13403.7100 0.4956 352.4062

kd tree 17067.8417 13410.3385 0.4953 352.5939

25 brute kNN 17086.2347 13437.6975 0.4942 364.1835

ball tree 17086.8381 13436.8339 0.4942 364.5805

kd tree 17086.4431 13437.4806 0.4942 364.1689

In the k-fold cross-validation above, other machine learning
models are chosen to complete the same prediction task,
including regression, neural network, decision tree, random
forest and SVM regression. The description and parameter
information and the average values of RMSE, MAE, R-
Squared and MAPE of these models are shown in Table VII.
From Table VI and VII we can see that kNN-related models
have better performance in our application.

From these experiments we can see:
1. The brute kNN, kd tree and ball tree have similar

evaluation metrics that are better than other machine learning
models in our system.

2. Although the ball tree and kd tree need more memory
space and training time than brute kNN, the prediction time is
less.

3. In our application the kd tree has less prediction time
than ball tree. So we choose kd tree as the final model.

VI. CONCLUSION

The accurate and timely housing price prediction can help
individuals and enterprises make reasonable decisions. In this
paper we design and implement a system for the prediction
of second-hand housing price based on Lambda Architecture.
This system can provide housing price prediction by both
historical and real-time data, so it can provide two different
perspectives on prediction. By analysis of the space and time
performance and metrics comparison with other models, the
kd tree is used as prediction model in both batch layer and
speed layer. Besides price prediction, the other benefit of using
the kd tree is that the nearest k neighbors can be used as a
housing recommending list. The system can also be used in
other applications to provide prediction services.

Other architectures, such as Kappa and Alarea, can also
complete the same task. In the future, we will consider porting
the existing system to these two frameworks and compare their
implementation performance with that of Lambda architecture.
Alarea is very attractive because its techniques stack is very
similar to that of our system, and it combines the advantages
of Lambda and Kappa architectures.

ACKNOWLEDGMENT

This research was funded by the School-level Scientific
Research Project of Harbin University of Commerce (grant
number 18XN021), the Heilongjiang Provincial Natural Sci-
ence Foundation of China (grant number LH2019F044) and
the Heilongjiang Provincial Key Laboratory of Electronic
Commerce and Information Processing.

REFERENCES

[1] H. Garcı́a-González, D. Fernández-Álvarez, J. E. Labra-Gayo, and
P. Ordóñez de Pablos, “Applying big data and stream processing to
the real estate domain,” Behaviour & Information Technology, vol. 38,
no. 9, pp. 950–958, 2019, DOI: 10.1109/TMC.2019.2944829.

[2] A. A. Munshi and Y. A.-R. I. Mohamed, “Data lake lambda architecture
for smart grids big data analytics,” IEEE Access, vol. 6, pp. 40 463–
40 471, 2018, DOI: 10.1109/access.2018.2858256.

[3] M. Gribaudo, M. Iacono, and M. Kiran, “A performance model-
ing framework for lambda architecture based applications,” Future
Generation Computer Systems, vol. 86, pp. 1032–1041, 2018, DOI:
10.1016/j.future.2017.07.033.

[4] O. Debauche, S. A. Mahmoudi, N. De Cock, S. Mahmoudi, P. Man-
neback, and F. Lebeau, “Cloud architecture for plant phenotyping
research,” Concurrency and Computation: Practice and Experience,
vol. 32, no. 17, p. e5661, 2020, DOI: 10.1002/cpe.5661.

[5] T. Numnonda, “A real-time recommendation engine using lambda archi-
tecture,” Artificial Life and Robotics, vol. 23, no. 2, pp. 249–254, 2018,
DOI: 10.1007/s10015-017-0424-8.

[6] I. Ganchev, Z. Ji, and M. O’Droma, “A conceptual framework for
building a mobile services’ recommendation engine,” in 2016 IEEE 8th
International Conference on Intelligent Systems (IS). IEEE, 2016, pp.
285–289, DOI: 10.1109/IS.2016.7737435.

8

Fig. 11. Predicting time of brute kNN, kd tree and ball tree models.

three kNN related models for k=3, 5, 10, 15, 20, 25. It can be
seen that there is no obvious difference of performance in all
cases.

TABLE VI
THE EVALUATION METRICS FOR DIFFERENT k ON THE brute kNN, ball tree

AND kd tree MODELS.

k Models RMSE MAE R-Squared MAPE
3 brute kNN 18206.3527 13926.4134 0.4257 364.7942

ball tree 18202.1706 13926.7102 0.4260 364.7693

kd tree 18200.8848 13926.0901 0.4260 358.1100

5 brute kNN 17562.3638 13584.7236 0.4656 350.8004

ball tree 17548.6531 13577.2199 0.4664 346.4767

kd tree 17553.8938 13579.8747 0.4661 346.4880

10 brute kNN 17129.0225 13382.8892 0.4916 337.2047

ball tree 17122.4624 13377.2459 0.4920 336.3491

kd tree 17126.3306 13377.2684 0.4918 335.6577

15 brute kNN 17062.6534 13373.7111 0.4956 347.9658

ball tree 17061.8768 13377.6418 0.4956 345.4252

kd tree 17064.7471 13376.5118 0.4955 345.9193

20 brute kNN 17062.9813 13407.4079 0.4956 351.2006

ball tree 17062.5500 13403.7100 0.4956 352.4062

kd tree 17067.8417 13410.3385 0.4953 352.5939

25 brute kNN 17086.2347 13437.6975 0.4942 364.1835

ball tree 17086.8381 13436.8339 0.4942 364.5805

kd tree 17086.4431 13437.4806 0.4942 364.1689

In the k-fold cross-validation above, other machine learning
models are chosen to complete the same prediction task,
including regression, neural network, decision tree, random
forest and SVM regression. The description and parameter
information and the average values of RMSE, MAE, R-
Squared and MAPE of these models are shown in Table VII.
From Table VI and VII we can see that kNN-related models
have better performance in our application.

From these experiments we can see:
1. The brute kNN, kd tree and ball tree have similar

evaluation metrics that are better than other machine learning
models in our system.

2. Although the ball tree and kd tree need more memory
space and training time than brute kNN, the prediction time is
less.

3. In our application the kd tree has less prediction time
than ball tree. So we choose kd tree as the final model.

VI. CONCLUSION

The accurate and timely housing price prediction can help
individuals and enterprises make reasonable decisions. In this
paper we design and implement a system for the prediction
of second-hand housing price based on Lambda Architecture.
This system can provide housing price prediction by both
historical and real-time data, so it can provide two different
perspectives on prediction. By analysis of the space and time
performance and metrics comparison with other models, the
kd tree is used as prediction model in both batch layer and
speed layer. Besides price prediction, the other benefit of using
the kd tree is that the nearest k neighbors can be used as a
housing recommending list. The system can also be used in
other applications to provide prediction services.

Other architectures, such as Kappa and Alarea, can also
complete the same task. In the future, we will consider porting
the existing system to these two frameworks and compare their
implementation performance with that of Lambda architecture.
Alarea is very attractive because its techniques stack is very
similar to that of our system, and it combines the advantages
of Lambda and Kappa architectures.

ACKNOWLEDGMENT

This research was funded by the School-level Scientific
Research Project of Harbin University of Commerce (grant
number 18XN021), the Heilongjiang Provincial Natural Sci-
ence Foundation of China (grant number LH2019F044) and
the Heilongjiang Provincial Key Laboratory of Electronic
Commerce and Information Processing.

REFERENCES

[1] H. Garcı́a-González, D. Fernández-Álvarez, J. E. Labra-Gayo, and
P. Ordóñez de Pablos, “Applying big data and stream processing to
the real estate domain,” Behaviour & Information Technology, vol. 38,
no. 9, pp. 950–958, 2019, DOI: 10.1109/TMC.2019.2944829.

[2] A. A. Munshi and Y. A.-R. I. Mohamed, “Data lake lambda architecture
for smart grids big data analytics,” IEEE Access, vol. 6, pp. 40 463–
40 471, 2018, DOI: 10.1109/access.2018.2858256.

[3] M. Gribaudo, M. Iacono, and M. Kiran, “A performance model-
ing framework for lambda architecture based applications,” Future
Generation Computer Systems, vol. 86, pp. 1032–1041, 2018, DOI:
10.1016/j.future.2017.07.033.

[4] O. Debauche, S. A. Mahmoudi, N. De Cock, S. Mahmoudi, P. Man-
neback, and F. Lebeau, “Cloud architecture for plant phenotyping
research,” Concurrency and Computation: Practice and Experience,
vol. 32, no. 17, p. e5661, 2020, DOI: 10.1002/cpe.5661.

[5] T. Numnonda, “A real-time recommendation engine using lambda archi-
tecture,” Artificial Life and Robotics, vol. 23, no. 2, pp. 249–254, 2018,
DOI: 10.1007/s10015-017-0424-8.

[6] I. Ganchev, Z. Ji, and M. O’Droma, “A conceptual framework for
building a mobile services’ recommendation engine,” in 2016 IEEE 8th
International Conference on Intelligent Systems (IS). IEEE, 2016, pp.
285–289, DOI: 10.1109/IS.2016.7737435.

8

Fig. 11. Predicting time of brute kNN, kd tree and ball tree models.

three kNN related models for k=3, 5, 10, 15, 20, 25. It can be
seen that there is no obvious difference of performance in all
cases.

TABLE VI
THE EVALUATION METRICS FOR DIFFERENT k ON THE brute kNN, ball tree

AND kd tree MODELS.

k Models RMSE MAE R-Squared MAPE
3 brute kNN 18206.3527 13926.4134 0.4257 364.7942

ball tree 18202.1706 13926.7102 0.4260 364.7693

kd tree 18200.8848 13926.0901 0.4260 358.1100

5 brute kNN 17562.3638 13584.7236 0.4656 350.8004

ball tree 17548.6531 13577.2199 0.4664 346.4767

kd tree 17553.8938 13579.8747 0.4661 346.4880

10 brute kNN 17129.0225 13382.8892 0.4916 337.2047

ball tree 17122.4624 13377.2459 0.4920 336.3491

kd tree 17126.3306 13377.2684 0.4918 335.6577

15 brute kNN 17062.6534 13373.7111 0.4956 347.9658

ball tree 17061.8768 13377.6418 0.4956 345.4252

kd tree 17064.7471 13376.5118 0.4955 345.9193

20 brute kNN 17062.9813 13407.4079 0.4956 351.2006

ball tree 17062.5500 13403.7100 0.4956 352.4062

kd tree 17067.8417 13410.3385 0.4953 352.5939

25 brute kNN 17086.2347 13437.6975 0.4942 364.1835

ball tree 17086.8381 13436.8339 0.4942 364.5805

kd tree 17086.4431 13437.4806 0.4942 364.1689

In the k-fold cross-validation above, other machine learning
models are chosen to complete the same prediction task,
including regression, neural network, decision tree, random
forest and SVM regression. The description and parameter
information and the average values of RMSE, MAE, R-
Squared and MAPE of these models are shown in Table VII.
From Table VI and VII we can see that kNN-related models
have better performance in our application.

From these experiments we can see:
1. The brute kNN, kd tree and ball tree have similar

evaluation metrics that are better than other machine learning
models in our system.

2. Although the ball tree and kd tree need more memory
space and training time than brute kNN, the prediction time is
less.

3. In our application the kd tree has less prediction time
than ball tree. So we choose kd tree as the final model.

VI. CONCLUSION

The accurate and timely housing price prediction can help
individuals and enterprises make reasonable decisions. In this
paper we design and implement a system for the prediction
of second-hand housing price based on Lambda Architecture.
This system can provide housing price prediction by both
historical and real-time data, so it can provide two different
perspectives on prediction. By analysis of the space and time
performance and metrics comparison with other models, the
kd tree is used as prediction model in both batch layer and
speed layer. Besides price prediction, the other benefit of using
the kd tree is that the nearest k neighbors can be used as a
housing recommending list. The system can also be used in
other applications to provide prediction services.

Other architectures, such as Kappa and Alarea, can also
complete the same task. In the future, we will consider porting
the existing system to these two frameworks and compare their
implementation performance with that of Lambda architecture.
Alarea is very attractive because its techniques stack is very
similar to that of our system, and it combines the advantages
of Lambda and Kappa architectures.

ACKNOWLEDGMENT

This research was funded by the School-level Scientific
Research Project of Harbin University of Commerce (grant
number 18XN021), the Heilongjiang Provincial Natural Sci-
ence Foundation of China (grant number LH2019F044) and
the Heilongjiang Provincial Key Laboratory of Electronic
Commerce and Information Processing.

REFERENCES

[1] H. Garcı́a-González, D. Fernández-Álvarez, J. E. Labra-Gayo, and
P. Ordóñez de Pablos, “Applying big data and stream processing to
the real estate domain,” Behaviour & Information Technology, vol. 38,
no. 9, pp. 950–958, 2019, DOI: 10.1109/TMC.2019.2944829.

[2] A. A. Munshi and Y. A.-R. I. Mohamed, “Data lake lambda architecture
for smart grids big data analytics,” IEEE Access, vol. 6, pp. 40 463–
40 471, 2018, DOI: 10.1109/access.2018.2858256.

[3] M. Gribaudo, M. Iacono, and M. Kiran, “A performance model-
ing framework for lambda architecture based applications,” Future
Generation Computer Systems, vol. 86, pp. 1032–1041, 2018, DOI:
10.1016/j.future.2017.07.033.

[4] O. Debauche, S. A. Mahmoudi, N. De Cock, S. Mahmoudi, P. Man-
neback, and F. Lebeau, “Cloud architecture for plant phenotyping
research,” Concurrency and Computation: Practice and Experience,
vol. 32, no. 17, p. e5661, 2020, DOI: 10.1002/cpe.5661.

[5] T. Numnonda, “A real-time recommendation engine using lambda archi-
tecture,” Artificial Life and Robotics, vol. 23, no. 2, pp. 249–254, 2018,
DOI: 10.1007/s10015-017-0424-8.

[6] I. Ganchev, Z. Ji, and M. O’Droma, “A conceptual framework for
building a mobile services’ recommendation engine,” in 2016 IEEE 8th
International Conference on Intelligent Systems (IS). IEEE, 2016, pp.
285–289, DOI: 10.1109/IS.2016.7737435.

8

Fig. 11. Predicting time of brute kNN, kd tree and ball tree models.

three kNN related models for k=3, 5, 10, 15, 20, 25. It can be
seen that there is no obvious difference of performance in all
cases.

TABLE VI
THE EVALUATION METRICS FOR DIFFERENT k ON THE brute kNN, ball tree

AND kd tree MODELS.

k Models RMSE MAE R-Squared MAPE
3 brute kNN 18206.3527 13926.4134 0.4257 364.7942

ball tree 18202.1706 13926.7102 0.4260 364.7693

kd tree 18200.8848 13926.0901 0.4260 358.1100

5 brute kNN 17562.3638 13584.7236 0.4656 350.8004

ball tree 17548.6531 13577.2199 0.4664 346.4767

kd tree 17553.8938 13579.8747 0.4661 346.4880

10 brute kNN 17129.0225 13382.8892 0.4916 337.2047

ball tree 17122.4624 13377.2459 0.4920 336.3491

kd tree 17126.3306 13377.2684 0.4918 335.6577

15 brute kNN 17062.6534 13373.7111 0.4956 347.9658

ball tree 17061.8768 13377.6418 0.4956 345.4252

kd tree 17064.7471 13376.5118 0.4955 345.9193

20 brute kNN 17062.9813 13407.4079 0.4956 351.2006

ball tree 17062.5500 13403.7100 0.4956 352.4062

kd tree 17067.8417 13410.3385 0.4953 352.5939

25 brute kNN 17086.2347 13437.6975 0.4942 364.1835

ball tree 17086.8381 13436.8339 0.4942 364.5805

kd tree 17086.4431 13437.4806 0.4942 364.1689

In the k-fold cross-validation above, other machine learning
models are chosen to complete the same prediction task,
including regression, neural network, decision tree, random
forest and SVM regression. The description and parameter
information and the average values of RMSE, MAE, R-
Squared and MAPE of these models are shown in Table VII.
From Table VI and VII we can see that kNN-related models
have better performance in our application.

From these experiments we can see:
1. The brute kNN, kd tree and ball tree have similar

evaluation metrics that are better than other machine learning
models in our system.

2. Although the ball tree and kd tree need more memory
space and training time than brute kNN, the prediction time is
less.

3. In our application the kd tree has less prediction time
than ball tree. So we choose kd tree as the final model.

VI. CONCLUSION

The accurate and timely housing price prediction can help
individuals and enterprises make reasonable decisions. In this
paper we design and implement a system for the prediction
of second-hand housing price based on Lambda Architecture.
This system can provide housing price prediction by both
historical and real-time data, so it can provide two different
perspectives on prediction. By analysis of the space and time
performance and metrics comparison with other models, the
kd tree is used as prediction model in both batch layer and
speed layer. Besides price prediction, the other benefit of using
the kd tree is that the nearest k neighbors can be used as a
housing recommending list. The system can also be used in
other applications to provide prediction services.

Other architectures, such as Kappa and Alarea, can also
complete the same task. In the future, we will consider porting
the existing system to these two frameworks and compare their
implementation performance with that of Lambda architecture.
Alarea is very attractive because its techniques stack is very
similar to that of our system, and it combines the advantages
of Lambda and Kappa architectures.

ACKNOWLEDGMENT

This research was funded by the School-level Scientific
Research Project of Harbin University of Commerce (grant
number 18XN021), the Heilongjiang Provincial Natural Sci-
ence Foundation of China (grant number LH2019F044) and
the Heilongjiang Provincial Key Laboratory of Electronic
Commerce and Information Processing.

REFERENCES

[1] H. Garcı́a-González, D. Fernández-Álvarez, J. E. Labra-Gayo, and
P. Ordóñez de Pablos, “Applying big data and stream processing to
the real estate domain,” Behaviour & Information Technology, vol. 38,
no. 9, pp. 950–958, 2019, DOI: 10.1109/TMC.2019.2944829.

[2] A. A. Munshi and Y. A.-R. I. Mohamed, “Data lake lambda architecture
for smart grids big data analytics,” IEEE Access, vol. 6, pp. 40 463–
40 471, 2018, DOI: 10.1109/access.2018.2858256.

[3] M. Gribaudo, M. Iacono, and M. Kiran, “A performance model-
ing framework for lambda architecture based applications,” Future
Generation Computer Systems, vol. 86, pp. 1032–1041, 2018, DOI:
10.1016/j.future.2017.07.033.

[4] O. Debauche, S. A. Mahmoudi, N. De Cock, S. Mahmoudi, P. Man-
neback, and F. Lebeau, “Cloud architecture for plant phenotyping
research,” Concurrency and Computation: Practice and Experience,
vol. 32, no. 17, p. e5661, 2020, DOI: 10.1002/cpe.5661.

[5] T. Numnonda, “A real-time recommendation engine using lambda archi-
tecture,” Artificial Life and Robotics, vol. 23, no. 2, pp. 249–254, 2018,
DOI: 10.1007/s10015-017-0424-8.

[6] I. Ganchev, Z. Ji, and M. O’Droma, “A conceptual framework for
building a mobile services’ recommendation engine,” in 2016 IEEE 8th
International Conference on Intelligent Systems (IS). IEEE, 2016, pp.
285–289, DOI: 10.1109/IS.2016.7737435.

9

TABLE VII
THE EVALUATION METRICS OF OTHER MODELS.

Models Description RMSE MAE R-Squared MAPE
regression Ordinary least squares linear regression with the intercept term. 22572.6282 17639.8669 0.1172 373.0176

neural network
Multilayer perceptron. It has two hidden layers.
The first hidden layer contains 5 neurons.
The second hidden layer contains 3 neurons.
It uses L2 regularization.

22212.5016 17321.2284 0.1451 374.2383

decision tree It uses mean squared error as feature selection criterion. 20340.7861 15163.8469 0.2831 343.9726

random forest
It uses mean squared error as feature selection criterion.
The number of trees in the forest is set to 100.

17193.4087 13176.5261 0.4878 356.1482

SVM regression Support vector regression with linear kernel. 25372.5650 18480.4802 -0.1154 294.4954

[7] P. Krajsic and B. Franczyk, “Lambda architecture for anomaly detection
in online process mining using autoencoders,” in International Confer-
ence on Computational Collective Intelligence. Springer, 2020, pp.
579–589, DOI: 10.1007/978-3-030-63119-2 47.

[8] D. Vajda, A. Pekár, and K. Farkas, “Towards machine learning-
based anomaly detection on time-series data,” INFOCOMMUNI-
CATIONS JOURNAL, vol. 13, no. 1, pp. 35–44, 2021, DOI:
10.36244/ICJ.2021.1.5.

[9] U. Suthakar, L. Magnoni, D. R. Smith, and A. Khan, “Optimised lambda
architecture for monitoring scientific infrastructure,” IEEE Transactions
on Parallel and Distributed Systems, vol. 32, no. 6, pp. 1395–1408,
2018, DOI: 10.1109/tpds.2017.2772241.

[10] R. M. Croce and D. R. Haurin, “Predicting turning points in the housing
market,” Journal of Housing Economics, vol. 18, no. 4, pp. 281–293,
2009, DOI: 10.1016/j.jhe.2009.09.001 .

[11] P. Dua, “Analysis of consumers’ perceptions of buying conditions for
houses,” The Journal of Real Estate Finance and Economics, vol. 37,
no. 4, pp. 335–350, 2008, DOI: 10.1007/s11146-007-9084-0 .

[12] C. Jin, G. Soydemir, and A. Tidwell, “The u.s. housing market and the
pricing of risk: Fundamental analysis and market sentiment,” Journal
of Real Estate Research, vol. 36, no. 2, pp. 187–220, 2014, DOI:
10.1080/10835547.2014.12091390 .

[13] L. Zhang, J. Zhao, and K. Xu, “Emotion-based social computing plat-
form for streaming big-data: Architecture and application,” in 2016 13th
International Conference on Service Systems and Service Management
(ICSSSM). IEEE, 2016, pp. 1–6, DOI: 10.1109/ICSSSM.2016.7538620.

[14] J. Smailović, M. Grčar, N. Lavrač, and M. Žnidaršič, “Stream-based ac-
tive learning for sentiment analysis in the financial domain,” Information
sciences, vol. 285, pp. 181–203, 2014, DOI: 10.1016/j.ins.2014.04.034.

[15] R. Schulz, M. Wersing, and A. Werwatz, “Automated valuation mod-
elling: a specification exercise,” Journal of Property Research, vol. 31,
no. 2, pp. 131–153, 2014, DOI: 10.1080/09599916.2013.846930.

[16] M. Steurer, R. J. Hill, and N. Pfeifer, “Metrics for evaluat-
ing the performance of machine learning based automated valua-
tion models,” Journal of Property Research, pp. 1–31, 2021, DOI:
10.1080/09599916.2020.1858937 .

[17] Y. Chen, L. Zhou, Y. Tang, J. P. Singh, N. Bouguila, C. Wang, H. Wang,
and J. Du, “Fast neighbor search by using revised kd tree,” Information
Sciences, vol. 472, pp. 145–162, 2019, DOI: 10.1016/j.ins.2018.09.012.

[18] L. Hu and S. Nooshabadi, “High-dimensional image descriptor matching
using highly parallel kd-tree construction and approximate nearest
neighbor search,” Journal of Parallel and Distributed Computing, vol.
132, pp. 127–140, 2019, DOI: 10.1016/j.jpdc.2019.06.003.

[19] L. Wang, B. Yang, Y. Chen, X. Zhang, and J. Orchard, “Improving
neural-network classifiers using nearest neighbor partitioning,” IEEE
transactions on neural networks and learning systems, vol. 28, no. 10,
pp. 2255–2267, 2016, DOI: 10.1109/TNNLS.2016.2580570.

[20] A. A. Neloy, M. S. Oshman, M. M. Islam, M. J. Hossain, and Z. B.
Zahir, “Content-based health recommender system for icu patient,”
in International Conference on Multi-disciplinary Trends in Artificial
Intelligence. Springer, 2019, pp. 229–237, DOI: 10.1007/978-3-030-
33709-4 20.

[21] B. R. Hiraman et al., “A study of apache kafka in big data stream
processing,” in 2018 International Conference on Information, Commu-
nication, Engineering and Technology (ICICET). IEEE, 2018, pp. 1–3,
DOI: 10.1109/ICICET.2018.8533771.

[22] D. Garcı́a-Gil, S. Ramı́rez-Gallego, S. Garcı́a, and F. Herrera, “A
comparison on scalability for batch big data processing on apache spark

and apache flink,” Big Data Analytics, vol. 2, no. 1, pp. 1–11, 2017,
DOI: 10.1186/s41044-016-0020-2.

[23] J. Kreps, “Questioning the lambda architecture.”
2014. [Online]. Available: https://www.oreilly.com/radar/
questioning-the-lambda-architecture/

[24] J. Warren and N. Marz, Big Data: Principles and best practices of
scalable realtime data systems. Simon and Schuster, 2015.

[25] J. Maillo, S. Garcı́a, J. Luengo, F. Herrera, and I. Triguero, “Fast and
scalable approaches to accelerate the fuzzy k-nearest neighbors classifier
for big data,” IEEE Transactions on Fuzzy Systems, vol. 28, no. 5, pp.
874–886, 2019, DOI: 10.1109/TFUZZ.2019.2936356.

[26] J. Maillo, J. Luengo, S. Garcı́a, F. Herrera, and I. Triguero, “A pre-
liminary study on hybrid spill-tree fuzzy k-nearest neighbors for big
data classification,” in 2018 IEEE international conference on fuzzy
systems (fuzz-IEEE). IEEE, 2018, pp. 1–8, DOI: 10.1109/FUZZ-
IEEE.2018.8491595.

[27] Q. Qiu, “Housing price in beijing.” 2018. [Online]. Available:
https://www.kaggle.com/ruiqurm/lianjia/version/2

Qinghe Pan is currently an associate professor at the
School of Computer and Information Engineering
of Harbin University of Commerce. His current
research interests focus on big data techniques,
data mining and machine learning algorithms. He
currently teaches in many areas such as Hadoop
and Spark architectures, distributed systems and data
mining methods.

Zeguo Qiu is currently a professor at Harbin Univer-
sity of Commerce. He received PhD in Management
Science and Engineering from the Dongbei Univer-
sity of Finance and Economics, Liaoning, China, in
2013. In 2015, he joined the Northeast Asia Service
Outsourcing Postdoctoral Workstation and worked
on the topic of management decision, information
system re-engineering, enterprise technology innova-
tion and e-commerce. His research interests include
management decision making, information systems
and e-commerce.

Yaoqun Xu received the B.S. degree in mathematics
from Jilin University, Changchun, China, in 1993,
the M.S. degree in mathematics from the Harbin
Institute of Technology, Harbin, China, in 1997,
and the Ph.D. degree in navigation, guidance, and
control from Harbin Engineering University, Harbin,
in 2002. He is currently a Professor with the College
of Computer and Information Engineering, Harbin
University of Commerce. His current research inter-
ests include chaotic dynamics, neural networks, and
intelligent optimization and decision.

9

TABLE VII
THE EVALUATION METRICS OF OTHER MODELS.

Models Description RMSE MAE R-Squared MAPE
regression Ordinary least squares linear regression with the intercept term. 22572.6282 17639.8669 0.1172 373.0176

neural network
Multilayer perceptron. It has two hidden layers.
The first hidden layer contains 5 neurons.
The second hidden layer contains 3 neurons.
It uses L2 regularization.

22212.5016 17321.2284 0.1451 374.2383

decision tree It uses mean squared error as feature selection criterion. 20340.7861 15163.8469 0.2831 343.9726

random forest
It uses mean squared error as feature selection criterion.
The number of trees in the forest is set to 100.

17193.4087 13176.5261 0.4878 356.1482

SVM regression Support vector regression with linear kernel. 25372.5650 18480.4802 -0.1154 294.4954

[7] P. Krajsic and B. Franczyk, “Lambda architecture for anomaly detection
in online process mining using autoencoders,” in International Confer-
ence on Computational Collective Intelligence. Springer, 2020, pp.
579–589, DOI: 10.1007/978-3-030-63119-2 47.

[8] D. Vajda, A. Pekár, and K. Farkas, “Towards machine learning-
based anomaly detection on time-series data,” INFOCOMMUNI-
CATIONS JOURNAL, vol. 13, no. 1, pp. 35–44, 2021, DOI:
10.36244/ICJ.2021.1.5.

[9] U. Suthakar, L. Magnoni, D. R. Smith, and A. Khan, “Optimised lambda
architecture for monitoring scientific infrastructure,” IEEE Transactions
on Parallel and Distributed Systems, vol. 32, no. 6, pp. 1395–1408,
2018, DOI: 10.1109/tpds.2017.2772241.

[10] R. M. Croce and D. R. Haurin, “Predicting turning points in the housing
market,” Journal of Housing Economics, vol. 18, no. 4, pp. 281–293,
2009, DOI: 10.1016/j.jhe.2009.09.001 .

[11] P. Dua, “Analysis of consumers’ perceptions of buying conditions for
houses,” The Journal of Real Estate Finance and Economics, vol. 37,
no. 4, pp. 335–350, 2008, DOI: 10.1007/s11146-007-9084-0 .

[12] C. Jin, G. Soydemir, and A. Tidwell, “The u.s. housing market and the
pricing of risk: Fundamental analysis and market sentiment,” Journal
of Real Estate Research, vol. 36, no. 2, pp. 187–220, 2014, DOI:
10.1080/10835547.2014.12091390 .

[13] L. Zhang, J. Zhao, and K. Xu, “Emotion-based social computing plat-
form for streaming big-data: Architecture and application,” in 2016 13th
International Conference on Service Systems and Service Management
(ICSSSM). IEEE, 2016, pp. 1–6, DOI: 10.1109/ICSSSM.2016.7538620.

[14] J. Smailović, M. Grčar, N. Lavrač, and M. Žnidaršič, “Stream-based ac-
tive learning for sentiment analysis in the financial domain,” Information
sciences, vol. 285, pp. 181–203, 2014, DOI: 10.1016/j.ins.2014.04.034.

[15] R. Schulz, M. Wersing, and A. Werwatz, “Automated valuation mod-
elling: a specification exercise,” Journal of Property Research, vol. 31,
no. 2, pp. 131–153, 2014, DOI: 10.1080/09599916.2013.846930.

[16] M. Steurer, R. J. Hill, and N. Pfeifer, “Metrics for evaluat-
ing the performance of machine learning based automated valua-
tion models,” Journal of Property Research, pp. 1–31, 2021, DOI:
10.1080/09599916.2020.1858937 .

[17] Y. Chen, L. Zhou, Y. Tang, J. P. Singh, N. Bouguila, C. Wang, H. Wang,
and J. Du, “Fast neighbor search by using revised kd tree,” Information
Sciences, vol. 472, pp. 145–162, 2019, DOI: 10.1016/j.ins.2018.09.012.

[18] L. Hu and S. Nooshabadi, “High-dimensional image descriptor matching
using highly parallel kd-tree construction and approximate nearest
neighbor search,” Journal of Parallel and Distributed Computing, vol.
132, pp. 127–140, 2019, DOI: 10.1016/j.jpdc.2019.06.003.

[19] L. Wang, B. Yang, Y. Chen, X. Zhang, and J. Orchard, “Improving
neural-network classifiers using nearest neighbor partitioning,” IEEE
transactions on neural networks and learning systems, vol. 28, no. 10,
pp. 2255–2267, 2016, DOI: 10.1109/TNNLS.2016.2580570.

[20] A. A. Neloy, M. S. Oshman, M. M. Islam, M. J. Hossain, and Z. B.
Zahir, “Content-based health recommender system for icu patient,”
in International Conference on Multi-disciplinary Trends in Artificial
Intelligence. Springer, 2019, pp. 229–237, DOI: 10.1007/978-3-030-
33709-4 20.

[21] B. R. Hiraman et al., “A study of apache kafka in big data stream
processing,” in 2018 International Conference on Information, Commu-
nication, Engineering and Technology (ICICET). IEEE, 2018, pp. 1–3,
DOI: 10.1109/ICICET.2018.8533771.

[22] D. Garcı́a-Gil, S. Ramı́rez-Gallego, S. Garcı́a, and F. Herrera, “A
comparison on scalability for batch big data processing on apache spark

and apache flink,” Big Data Analytics, vol. 2, no. 1, pp. 1–11, 2017,
DOI: 10.1186/s41044-016-0020-2.

[23] J. Kreps, “Questioning the lambda architecture.”
2014. [Online]. Available: https://www.oreilly.com/radar/
questioning-the-lambda-architecture/

[24] J. Warren and N. Marz, Big Data: Principles and best practices of
scalable realtime data systems. Simon and Schuster, 2015.

[25] J. Maillo, S. Garcı́a, J. Luengo, F. Herrera, and I. Triguero, “Fast and
scalable approaches to accelerate the fuzzy k-nearest neighbors classifier
for big data,” IEEE Transactions on Fuzzy Systems, vol. 28, no. 5, pp.
874–886, 2019, DOI: 10.1109/TFUZZ.2019.2936356.

[26] J. Maillo, J. Luengo, S. Garcı́a, F. Herrera, and I. Triguero, “A pre-
liminary study on hybrid spill-tree fuzzy k-nearest neighbors for big
data classification,” in 2018 IEEE international conference on fuzzy
systems (fuzz-IEEE). IEEE, 2018, pp. 1–8, DOI: 10.1109/FUZZ-
IEEE.2018.8491595.

[27] Q. Qiu, “Housing price in beijing.” 2018. [Online]. Available:
https://www.kaggle.com/ruiqurm/lianjia/version/2

Qinghe Pan is currently an associate professor at the
School of Computer and Information Engineering
of Harbin University of Commerce. His current
research interests focus on big data techniques,
data mining and machine learning algorithms. He
currently teaches in many areas such as Hadoop
and Spark architectures, distributed systems and data
mining methods.

Zeguo Qiu is currently a professor at Harbin Univer-
sity of Commerce. He received PhD in Management
Science and Engineering from the Dongbei Univer-
sity of Finance and Economics, Liaoning, China, in
2013. In 2015, he joined the Northeast Asia Service
Outsourcing Postdoctoral Workstation and worked
on the topic of management decision, information
system re-engineering, enterprise technology innova-
tion and e-commerce. His research interests include
management decision making, information systems
and e-commerce.

Yaoqun Xu received the B.S. degree in mathematics
from Jilin University, Changchun, China, in 1993,
the M.S. degree in mathematics from the Harbin
Institute of Technology, Harbin, China, in 1997,
and the Ph.D. degree in navigation, guidance, and
control from Harbin Engineering University, Harbin,
in 2002. He is currently a Professor with the College
of Computer and Information Engineering, Harbin
University of Commerce. His current research inter-
ests include chaotic dynamics, neural networks, and
intelligent optimization and decision.

9

TABLE VII
THE EVALUATION METRICS OF OTHER MODELS.

Models Description RMSE MAE R-Squared MAPE
regression Ordinary least squares linear regression with the intercept term. 22572.6282 17639.8669 0.1172 373.0176

neural network
Multilayer perceptron. It has two hidden layers.
The first hidden layer contains 5 neurons.
The second hidden layer contains 3 neurons.
It uses L2 regularization.

22212.5016 17321.2284 0.1451 374.2383

decision tree It uses mean squared error as feature selection criterion. 20340.7861 15163.8469 0.2831 343.9726

random forest
It uses mean squared error as feature selection criterion.
The number of trees in the forest is set to 100.

17193.4087 13176.5261 0.4878 356.1482

SVM regression Support vector regression with linear kernel. 25372.5650 18480.4802 -0.1154 294.4954

[7] P. Krajsic and B. Franczyk, “Lambda architecture for anomaly detection
in online process mining using autoencoders,” in International Confer-
ence on Computational Collective Intelligence. Springer, 2020, pp.
579–589, DOI: 10.1007/978-3-030-63119-2 47.

[8] D. Vajda, A. Pekár, and K. Farkas, “Towards machine learning-
based anomaly detection on time-series data,” INFOCOMMUNI-
CATIONS JOURNAL, vol. 13, no. 1, pp. 35–44, 2021, DOI:
10.36244/ICJ.2021.1.5.

[9] U. Suthakar, L. Magnoni, D. R. Smith, and A. Khan, “Optimised lambda
architecture for monitoring scientific infrastructure,” IEEE Transactions
on Parallel and Distributed Systems, vol. 32, no. 6, pp. 1395–1408,
2018, DOI: 10.1109/tpds.2017.2772241.

[10] R. M. Croce and D. R. Haurin, “Predicting turning points in the housing
market,” Journal of Housing Economics, vol. 18, no. 4, pp. 281–293,
2009, DOI: 10.1016/j.jhe.2009.09.001 .

[11] P. Dua, “Analysis of consumers’ perceptions of buying conditions for
houses,” The Journal of Real Estate Finance and Economics, vol. 37,
no. 4, pp. 335–350, 2008, DOI: 10.1007/s11146-007-9084-0 .

[12] C. Jin, G. Soydemir, and A. Tidwell, “The u.s. housing market and the
pricing of risk: Fundamental analysis and market sentiment,” Journal
of Real Estate Research, vol. 36, no. 2, pp. 187–220, 2014, DOI:
10.1080/10835547.2014.12091390 .

[13] L. Zhang, J. Zhao, and K. Xu, “Emotion-based social computing plat-
form for streaming big-data: Architecture and application,” in 2016 13th
International Conference on Service Systems and Service Management
(ICSSSM). IEEE, 2016, pp. 1–6, DOI: 10.1109/ICSSSM.2016.7538620.

[14] J. Smailović, M. Grčar, N. Lavrač, and M. Žnidaršič, “Stream-based ac-
tive learning for sentiment analysis in the financial domain,” Information
sciences, vol. 285, pp. 181–203, 2014, DOI: 10.1016/j.ins.2014.04.034.

[15] R. Schulz, M. Wersing, and A. Werwatz, “Automated valuation mod-
elling: a specification exercise,” Journal of Property Research, vol. 31,
no. 2, pp. 131–153, 2014, DOI: 10.1080/09599916.2013.846930.

[16] M. Steurer, R. J. Hill, and N. Pfeifer, “Metrics for evaluat-
ing the performance of machine learning based automated valua-
tion models,” Journal of Property Research, pp. 1–31, 2021, DOI:
10.1080/09599916.2020.1858937 .

[17] Y. Chen, L. Zhou, Y. Tang, J. P. Singh, N. Bouguila, C. Wang, H. Wang,
and J. Du, “Fast neighbor search by using revised kd tree,” Information
Sciences, vol. 472, pp. 145–162, 2019, DOI: 10.1016/j.ins.2018.09.012.

[18] L. Hu and S. Nooshabadi, “High-dimensional image descriptor matching
using highly parallel kd-tree construction and approximate nearest
neighbor search,” Journal of Parallel and Distributed Computing, vol.
132, pp. 127–140, 2019, DOI: 10.1016/j.jpdc.2019.06.003.

[19] L. Wang, B. Yang, Y. Chen, X. Zhang, and J. Orchard, “Improving
neural-network classifiers using nearest neighbor partitioning,” IEEE
transactions on neural networks and learning systems, vol. 28, no. 10,
pp. 2255–2267, 2016, DOI: 10.1109/TNNLS.2016.2580570.

[20] A. A. Neloy, M. S. Oshman, M. M. Islam, M. J. Hossain, and Z. B.
Zahir, “Content-based health recommender system for icu patient,”
in International Conference on Multi-disciplinary Trends in Artificial
Intelligence. Springer, 2019, pp. 229–237, DOI: 10.1007/978-3-030-
33709-4 20.

[21] B. R. Hiraman et al., “A study of apache kafka in big data stream
processing,” in 2018 International Conference on Information, Commu-
nication, Engineering and Technology (ICICET). IEEE, 2018, pp. 1–3,
DOI: 10.1109/ICICET.2018.8533771.

[22] D. Garcı́a-Gil, S. Ramı́rez-Gallego, S. Garcı́a, and F. Herrera, “A
comparison on scalability for batch big data processing on apache spark

and apache flink,” Big Data Analytics, vol. 2, no. 1, pp. 1–11, 2017,
DOI: 10.1186/s41044-016-0020-2.

[23] J. Kreps, “Questioning the lambda architecture.”
2014. [Online]. Available: https://www.oreilly.com/radar/
questioning-the-lambda-architecture/

[24] J. Warren and N. Marz, Big Data: Principles and best practices of
scalable realtime data systems. Simon and Schuster, 2015.

[25] J. Maillo, S. Garcı́a, J. Luengo, F. Herrera, and I. Triguero, “Fast and
scalable approaches to accelerate the fuzzy k-nearest neighbors classifier
for big data,” IEEE Transactions on Fuzzy Systems, vol. 28, no. 5, pp.
874–886, 2019, DOI: 10.1109/TFUZZ.2019.2936356.

[26] J. Maillo, J. Luengo, S. Garcı́a, F. Herrera, and I. Triguero, “A pre-
liminary study on hybrid spill-tree fuzzy k-nearest neighbors for big
data classification,” in 2018 IEEE international conference on fuzzy
systems (fuzz-IEEE). IEEE, 2018, pp. 1–8, DOI: 10.1109/FUZZ-
IEEE.2018.8491595.

[27] Q. Qiu, “Housing price in beijing.” 2018. [Online]. Available:
https://www.kaggle.com/ruiqurm/lianjia/version/2

Qinghe Pan is currently an associate professor at the
School of Computer and Information Engineering
of Harbin University of Commerce. His current
research interests focus on big data techniques,
data mining and machine learning algorithms. He
currently teaches in many areas such as Hadoop
and Spark architectures, distributed systems and data
mining methods.

Zeguo Qiu is currently a professor at Harbin Univer-
sity of Commerce. He received PhD in Management
Science and Engineering from the Dongbei Univer-
sity of Finance and Economics, Liaoning, China, in
2013. In 2015, he joined the Northeast Asia Service
Outsourcing Postdoctoral Workstation and worked
on the topic of management decision, information
system re-engineering, enterprise technology innova-
tion and e-commerce. His research interests include
management decision making, information systems
and e-commerce.

Yaoqun Xu received the B.S. degree in mathematics
from Jilin University, Changchun, China, in 1993,
the M.S. degree in mathematics from the Harbin
Institute of Technology, Harbin, China, in 1997,
and the Ph.D. degree in navigation, guidance, and
control from Harbin Engineering University, Harbin,
in 2002. He is currently a Professor with the College
of Computer and Information Engineering, Harbin
University of Commerce. His current research inter-
ests include chaotic dynamics, neural networks, and
intelligent optimization and decision.

9

TABLE VII
THE EVALUATION METRICS OF OTHER MODELS.

Models Description RMSE MAE R-Squared MAPE
regression Ordinary least squares linear regression with the intercept term. 22572.6282 17639.8669 0.1172 373.0176

neural network
Multilayer perceptron. It has two hidden layers.
The first hidden layer contains 5 neurons.
The second hidden layer contains 3 neurons.
It uses L2 regularization.

22212.5016 17321.2284 0.1451 374.2383

decision tree It uses mean squared error as feature selection criterion. 20340.7861 15163.8469 0.2831 343.9726

random forest
It uses mean squared error as feature selection criterion.
The number of trees in the forest is set to 100.

17193.4087 13176.5261 0.4878 356.1482

SVM regression Support vector regression with linear kernel. 25372.5650 18480.4802 -0.1154 294.4954

[7] P. Krajsic and B. Franczyk, “Lambda architecture for anomaly detection
in online process mining using autoencoders,” in International Confer-
ence on Computational Collective Intelligence. Springer, 2020, pp.
579–589, DOI: 10.1007/978-3-030-63119-2 47.

[8] D. Vajda, A. Pekár, and K. Farkas, “Towards machine learning-
based anomaly detection on time-series data,” INFOCOMMUNI-
CATIONS JOURNAL, vol. 13, no. 1, pp. 35–44, 2021, DOI:
10.36244/ICJ.2021.1.5.

[9] U. Suthakar, L. Magnoni, D. R. Smith, and A. Khan, “Optimised lambda
architecture for monitoring scientific infrastructure,” IEEE Transactions
on Parallel and Distributed Systems, vol. 32, no. 6, pp. 1395–1408,
2018, DOI: 10.1109/tpds.2017.2772241.

[10] R. M. Croce and D. R. Haurin, “Predicting turning points in the housing
market,” Journal of Housing Economics, vol. 18, no. 4, pp. 281–293,
2009, DOI: 10.1016/j.jhe.2009.09.001 .

[11] P. Dua, “Analysis of consumers’ perceptions of buying conditions for
houses,” The Journal of Real Estate Finance and Economics, vol. 37,
no. 4, pp. 335–350, 2008, DOI: 10.1007/s11146-007-9084-0 .

[12] C. Jin, G. Soydemir, and A. Tidwell, “The u.s. housing market and the
pricing of risk: Fundamental analysis and market sentiment,” Journal
of Real Estate Research, vol. 36, no. 2, pp. 187–220, 2014, DOI:
10.1080/10835547.2014.12091390 .

[13] L. Zhang, J. Zhao, and K. Xu, “Emotion-based social computing plat-
form for streaming big-data: Architecture and application,” in 2016 13th
International Conference on Service Systems and Service Management
(ICSSSM). IEEE, 2016, pp. 1–6, DOI: 10.1109/ICSSSM.2016.7538620.

[14] J. Smailović, M. Grčar, N. Lavrač, and M. Žnidaršič, “Stream-based ac-
tive learning for sentiment analysis in the financial domain,” Information
sciences, vol. 285, pp. 181–203, 2014, DOI: 10.1016/j.ins.2014.04.034.

[15] R. Schulz, M. Wersing, and A. Werwatz, “Automated valuation mod-
elling: a specification exercise,” Journal of Property Research, vol. 31,
no. 2, pp. 131–153, 2014, DOI: 10.1080/09599916.2013.846930.

[16] M. Steurer, R. J. Hill, and N. Pfeifer, “Metrics for evaluat-
ing the performance of machine learning based automated valua-
tion models,” Journal of Property Research, pp. 1–31, 2021, DOI:
10.1080/09599916.2020.1858937 .

[17] Y. Chen, L. Zhou, Y. Tang, J. P. Singh, N. Bouguila, C. Wang, H. Wang,
and J. Du, “Fast neighbor search by using revised kd tree,” Information
Sciences, vol. 472, pp. 145–162, 2019, DOI: 10.1016/j.ins.2018.09.012.

[18] L. Hu and S. Nooshabadi, “High-dimensional image descriptor matching
using highly parallel kd-tree construction and approximate nearest
neighbor search,” Journal of Parallel and Distributed Computing, vol.
132, pp. 127–140, 2019, DOI: 10.1016/j.jpdc.2019.06.003.

[19] L. Wang, B. Yang, Y. Chen, X. Zhang, and J. Orchard, “Improving
neural-network classifiers using nearest neighbor partitioning,” IEEE
transactions on neural networks and learning systems, vol. 28, no. 10,
pp. 2255–2267, 2016, DOI: 10.1109/TNNLS.2016.2580570.

[20] A. A. Neloy, M. S. Oshman, M. M. Islam, M. J. Hossain, and Z. B.
Zahir, “Content-based health recommender system for icu patient,”
in International Conference on Multi-disciplinary Trends in Artificial
Intelligence. Springer, 2019, pp. 229–237, DOI: 10.1007/978-3-030-
33709-4 20.

[21] B. R. Hiraman et al., “A study of apache kafka in big data stream
processing,” in 2018 International Conference on Information, Commu-
nication, Engineering and Technology (ICICET). IEEE, 2018, pp. 1–3,
DOI: 10.1109/ICICET.2018.8533771.

[22] D. Garcı́a-Gil, S. Ramı́rez-Gallego, S. Garcı́a, and F. Herrera, “A
comparison on scalability for batch big data processing on apache spark

and apache flink,” Big Data Analytics, vol. 2, no. 1, pp. 1–11, 2017,
DOI: 10.1186/s41044-016-0020-2.

[23] J. Kreps, “Questioning the lambda architecture.”
2014. [Online]. Available: https://www.oreilly.com/radar/
questioning-the-lambda-architecture/

[24] J. Warren and N. Marz, Big Data: Principles and best practices of
scalable realtime data systems. Simon and Schuster, 2015.

[25] J. Maillo, S. Garcı́a, J. Luengo, F. Herrera, and I. Triguero, “Fast and
scalable approaches to accelerate the fuzzy k-nearest neighbors classifier
for big data,” IEEE Transactions on Fuzzy Systems, vol. 28, no. 5, pp.
874–886, 2019, DOI: 10.1109/TFUZZ.2019.2936356.

[26] J. Maillo, J. Luengo, S. Garcı́a, F. Herrera, and I. Triguero, “A pre-
liminary study on hybrid spill-tree fuzzy k-nearest neighbors for big
data classification,” in 2018 IEEE international conference on fuzzy
systems (fuzz-IEEE). IEEE, 2018, pp. 1–8, DOI: 10.1109/FUZZ-
IEEE.2018.8491595.

[27] Q. Qiu, “Housing price in beijing.” 2018. [Online]. Available:
https://www.kaggle.com/ruiqurm/lianjia/version/2

Qinghe Pan is currently an associate professor at the
School of Computer and Information Engineering
of Harbin University of Commerce. His current
research interests focus on big data techniques,
data mining and machine learning algorithms. He
currently teaches in many areas such as Hadoop
and Spark architectures, distributed systems and data
mining methods.

Zeguo Qiu is currently a professor at Harbin Univer-
sity of Commerce. He received PhD in Management
Science and Engineering from the Dongbei Univer-
sity of Finance and Economics, Liaoning, China, in
2013. In 2015, he joined the Northeast Asia Service
Outsourcing Postdoctoral Workstation and worked
on the topic of management decision, information
system re-engineering, enterprise technology innova-
tion and e-commerce. His research interests include
management decision making, information systems
and e-commerce.

Yaoqun Xu received the B.S. degree in mathematics
from Jilin University, Changchun, China, in 1993,
the M.S. degree in mathematics from the Harbin
Institute of Technology, Harbin, China, in 1997,
and the Ph.D. degree in navigation, guidance, and
control from Harbin Engineering University, Harbin,
in 2002. He is currently a Professor with the College
of Computer and Information Engineering, Harbin
University of Commerce. His current research inter-
ests include chaotic dynamics, neural networks, and
intelligent optimization and decision.

9

TABLE VII
THE EVALUATION METRICS OF OTHER MODELS.

Models Description RMSE MAE R-Squared MAPE
regression Ordinary least squares linear regression with the intercept term. 22572.6282 17639.8669 0.1172 373.0176

neural network
Multilayer perceptron. It has two hidden layers.
The first hidden layer contains 5 neurons.
The second hidden layer contains 3 neurons.
It uses L2 regularization.

22212.5016 17321.2284 0.1451 374.2383

decision tree It uses mean squared error as feature selection criterion. 20340.7861 15163.8469 0.2831 343.9726

random forest
It uses mean squared error as feature selection criterion.
The number of trees in the forest is set to 100.

17193.4087 13176.5261 0.4878 356.1482

SVM regression Support vector regression with linear kernel. 25372.5650 18480.4802 -0.1154 294.4954

[7] P. Krajsic and B. Franczyk, “Lambda architecture for anomaly detection
in online process mining using autoencoders,” in International Confer-
ence on Computational Collective Intelligence. Springer, 2020, pp.
579–589, DOI: 10.1007/978-3-030-63119-2 47.

[8] D. Vajda, A. Pekár, and K. Farkas, “Towards machine learning-
based anomaly detection on time-series data,” INFOCOMMUNI-
CATIONS JOURNAL, vol. 13, no. 1, pp. 35–44, 2021, DOI:
10.36244/ICJ.2021.1.5.

[9] U. Suthakar, L. Magnoni, D. R. Smith, and A. Khan, “Optimised lambda
architecture for monitoring scientific infrastructure,” IEEE Transactions
on Parallel and Distributed Systems, vol. 32, no. 6, pp. 1395–1408,
2018, DOI: 10.1109/tpds.2017.2772241.

[10] R. M. Croce and D. R. Haurin, “Predicting turning points in the housing
market,” Journal of Housing Economics, vol. 18, no. 4, pp. 281–293,
2009, DOI: 10.1016/j.jhe.2009.09.001 .

[11] P. Dua, “Analysis of consumers’ perceptions of buying conditions for
houses,” The Journal of Real Estate Finance and Economics, vol. 37,
no. 4, pp. 335–350, 2008, DOI: 10.1007/s11146-007-9084-0 .

[12] C. Jin, G. Soydemir, and A. Tidwell, “The u.s. housing market and the
pricing of risk: Fundamental analysis and market sentiment,” Journal
of Real Estate Research, vol. 36, no. 2, pp. 187–220, 2014, DOI:
10.1080/10835547.2014.12091390 .

[13] L. Zhang, J. Zhao, and K. Xu, “Emotion-based social computing plat-
form for streaming big-data: Architecture and application,” in 2016 13th
International Conference on Service Systems and Service Management
(ICSSSM). IEEE, 2016, pp. 1–6, DOI: 10.1109/ICSSSM.2016.7538620.

[14] J. Smailović, M. Grčar, N. Lavrač, and M. Žnidaršič, “Stream-based ac-
tive learning for sentiment analysis in the financial domain,” Information
sciences, vol. 285, pp. 181–203, 2014, DOI: 10.1016/j.ins.2014.04.034.

[15] R. Schulz, M. Wersing, and A. Werwatz, “Automated valuation mod-
elling: a specification exercise,” Journal of Property Research, vol. 31,
no. 2, pp. 131–153, 2014, DOI: 10.1080/09599916.2013.846930.

[16] M. Steurer, R. J. Hill, and N. Pfeifer, “Metrics for evaluat-
ing the performance of machine learning based automated valua-
tion models,” Journal of Property Research, pp. 1–31, 2021, DOI:
10.1080/09599916.2020.1858937 .

[17] Y. Chen, L. Zhou, Y. Tang, J. P. Singh, N. Bouguila, C. Wang, H. Wang,
and J. Du, “Fast neighbor search by using revised kd tree,” Information
Sciences, vol. 472, pp. 145–162, 2019, DOI: 10.1016/j.ins.2018.09.012.

[18] L. Hu and S. Nooshabadi, “High-dimensional image descriptor matching
using highly parallel kd-tree construction and approximate nearest
neighbor search,” Journal of Parallel and Distributed Computing, vol.
132, pp. 127–140, 2019, DOI: 10.1016/j.jpdc.2019.06.003.

[19] L. Wang, B. Yang, Y. Chen, X. Zhang, and J. Orchard, “Improving
neural-network classifiers using nearest neighbor partitioning,” IEEE
transactions on neural networks and learning systems, vol. 28, no. 10,
pp. 2255–2267, 2016, DOI: 10.1109/TNNLS.2016.2580570.

[20] A. A. Neloy, M. S. Oshman, M. M. Islam, M. J. Hossain, and Z. B.
Zahir, “Content-based health recommender system for icu patient,”
in International Conference on Multi-disciplinary Trends in Artificial
Intelligence. Springer, 2019, pp. 229–237, DOI: 10.1007/978-3-030-
33709-4 20.

[21] B. R. Hiraman et al., “A study of apache kafka in big data stream
processing,” in 2018 International Conference on Information, Commu-
nication, Engineering and Technology (ICICET). IEEE, 2018, pp. 1–3,
DOI: 10.1109/ICICET.2018.8533771.

[22] D. Garcı́a-Gil, S. Ramı́rez-Gallego, S. Garcı́a, and F. Herrera, “A
comparison on scalability for batch big data processing on apache spark

and apache flink,” Big Data Analytics, vol. 2, no. 1, pp. 1–11, 2017,
DOI: 10.1186/s41044-016-0020-2.

[23] J. Kreps, “Questioning the lambda architecture.”
2014. [Online]. Available: https://www.oreilly.com/radar/
questioning-the-lambda-architecture/

[24] J. Warren and N. Marz, Big Data: Principles and best practices of
scalable realtime data systems. Simon and Schuster, 2015.

[25] J. Maillo, S. Garcı́a, J. Luengo, F. Herrera, and I. Triguero, “Fast and
scalable approaches to accelerate the fuzzy k-nearest neighbors classifier
for big data,” IEEE Transactions on Fuzzy Systems, vol. 28, no. 5, pp.
874–886, 2019, DOI: 10.1109/TFUZZ.2019.2936356.

[26] J. Maillo, J. Luengo, S. Garcı́a, F. Herrera, and I. Triguero, “A pre-
liminary study on hybrid spill-tree fuzzy k-nearest neighbors for big
data classification,” in 2018 IEEE international conference on fuzzy
systems (fuzz-IEEE). IEEE, 2018, pp. 1–8, DOI: 10.1109/FUZZ-
IEEE.2018.8491595.

[27] Q. Qiu, “Housing price in beijing.” 2018. [Online]. Available:
https://www.kaggle.com/ruiqurm/lianjia/version/2

Qinghe Pan is currently an associate professor at the
School of Computer and Information Engineering
of Harbin University of Commerce. His current
research interests focus on big data techniques,
data mining and machine learning algorithms. He
currently teaches in many areas such as Hadoop
and Spark architectures, distributed systems and data
mining methods.

Zeguo Qiu is currently a professor at Harbin Univer-
sity of Commerce. He received PhD in Management
Science and Engineering from the Dongbei Univer-
sity of Finance and Economics, Liaoning, China, in
2013. In 2015, he joined the Northeast Asia Service
Outsourcing Postdoctoral Workstation and worked
on the topic of management decision, information
system re-engineering, enterprise technology innova-
tion and e-commerce. His research interests include
management decision making, information systems
and e-commerce.

Yaoqun Xu received the B.S. degree in mathematics
from Jilin University, Changchun, China, in 1993,
the M.S. degree in mathematics from the Harbin
Institute of Technology, Harbin, China, in 1997,
and the Ph.D. degree in navigation, guidance, and
control from Harbin Engineering University, Harbin,
in 2002. He is currently a Professor with the College
of Computer and Information Engineering, Harbin
University of Commerce. His current research inter-
ests include chaotic dynamics, neural networks, and
intelligent optimization and decision.

8

Fig. 11. Predicting time of brute kNN, kd tree and ball tree models.

three kNN related models for k=3, 5, 10, 15, 20, 25. It can be
seen that there is no obvious difference of performance in all
cases.

TABLE VI
THE EVALUATION METRICS FOR DIFFERENT k ON THE brute kNN, ball tree

AND kd tree MODELS.

k Models RMSE MAE R-Squared MAPE
3 brute kNN 18206.3527 13926.4134 0.4257 364.7942

ball tree 18202.1706 13926.7102 0.4260 364.7693

kd tree 18200.8848 13926.0901 0.4260 358.1100

5 brute kNN 17562.3638 13584.7236 0.4656 350.8004

ball tree 17548.6531 13577.2199 0.4664 346.4767

kd tree 17553.8938 13579.8747 0.4661 346.4880

10 brute kNN 17129.0225 13382.8892 0.4916 337.2047

ball tree 17122.4624 13377.2459 0.4920 336.3491

kd tree 17126.3306 13377.2684 0.4918 335.6577

15 brute kNN 17062.6534 13373.7111 0.4956 347.9658

ball tree 17061.8768 13377.6418 0.4956 345.4252

kd tree 17064.7471 13376.5118 0.4955 345.9193

20 brute kNN 17062.9813 13407.4079 0.4956 351.2006

ball tree 17062.5500 13403.7100 0.4956 352.4062

kd tree 17067.8417 13410.3385 0.4953 352.5939

25 brute kNN 17086.2347 13437.6975 0.4942 364.1835

ball tree 17086.8381 13436.8339 0.4942 364.5805

kd tree 17086.4431 13437.4806 0.4942 364.1689

In the k-fold cross-validation above, other machine learning
models are chosen to complete the same prediction task,
including regression, neural network, decision tree, random
forest and SVM regression. The description and parameter
information and the average values of RMSE, MAE, R-
Squared and MAPE of these models are shown in Table VII.
From Table VI and VII we can see that kNN-related models
have better performance in our application.

From these experiments we can see:
1. The brute kNN, kd tree and ball tree have similar

evaluation metrics that are better than other machine learning
models in our system.

2. Although the ball tree and kd tree need more memory
space and training time than brute kNN, the prediction time is
less.

3. In our application the kd tree has less prediction time
than ball tree. So we choose kd tree as the final model.

VI. CONCLUSION

The accurate and timely housing price prediction can help
individuals and enterprises make reasonable decisions. In this
paper we design and implement a system for the prediction
of second-hand housing price based on Lambda Architecture.
This system can provide housing price prediction by both
historical and real-time data, so it can provide two different
perspectives on prediction. By analysis of the space and time
performance and metrics comparison with other models, the
kd tree is used as prediction model in both batch layer and
speed layer. Besides price prediction, the other benefit of using
the kd tree is that the nearest k neighbors can be used as a
housing recommending list. The system can also be used in
other applications to provide prediction services.

Other architectures, such as Kappa and Alarea, can also
complete the same task. In the future, we will consider porting
the existing system to these two frameworks and compare their
implementation performance with that of Lambda architecture.
Alarea is very attractive because its techniques stack is very
similar to that of our system, and it combines the advantages
of Lambda and Kappa architectures.

ACKNOWLEDGMENT

This research was funded by the School-level Scientific
Research Project of Harbin University of Commerce (grant
number 18XN021), the Heilongjiang Provincial Natural Sci-
ence Foundation of China (grant number LH2019F044) and
the Heilongjiang Provincial Key Laboratory of Electronic
Commerce and Information Processing.

REFERENCES

[1] H. Garcı́a-González, D. Fernández-Álvarez, J. E. Labra-Gayo, and
P. Ordóñez de Pablos, “Applying big data and stream processing to
the real estate domain,” Behaviour & Information Technology, vol. 38,
no. 9, pp. 950–958, 2019, DOI: 10.1109/TMC.2019.2944829.

[2] A. A. Munshi and Y. A.-R. I. Mohamed, “Data lake lambda architecture
for smart grids big data analytics,” IEEE Access, vol. 6, pp. 40 463–
40 471, 2018, DOI: 10.1109/access.2018.2858256.

[3] M. Gribaudo, M. Iacono, and M. Kiran, “A performance model-
ing framework for lambda architecture based applications,” Future
Generation Computer Systems, vol. 86, pp. 1032–1041, 2018, DOI:
10.1016/j.future.2017.07.033.

[4] O. Debauche, S. A. Mahmoudi, N. De Cock, S. Mahmoudi, P. Man-
neback, and F. Lebeau, “Cloud architecture for plant phenotyping
research,” Concurrency and Computation: Practice and Experience,
vol. 32, no. 17, p. e5661, 2020, DOI: 10.1002/cpe.5661.

[5] T. Numnonda, “A real-time recommendation engine using lambda archi-
tecture,” Artificial Life and Robotics, vol. 23, no. 2, pp. 249–254, 2018,
DOI: 10.1007/s10015-017-0424-8.

[6] I. Ganchev, Z. Ji, and M. O’Droma, “A conceptual framework for
building a mobile services’ recommendation engine,” in 2016 IEEE 8th
International Conference on Intelligent Systems (IS). IEEE, 2016, pp.
285–289, DOI: 10.1109/IS.2016.7737435.

8

Fig. 11. Predicting time of brute kNN, kd tree and ball tree models.

three kNN related models for k=3, 5, 10, 15, 20, 25. It can be
seen that there is no obvious difference of performance in all
cases.

TABLE VI
THE EVALUATION METRICS FOR DIFFERENT k ON THE brute kNN, ball tree

AND kd tree MODELS.

k Models RMSE MAE R-Squared MAPE
3 brute kNN 18206.3527 13926.4134 0.4257 364.7942

ball tree 18202.1706 13926.7102 0.4260 364.7693

kd tree 18200.8848 13926.0901 0.4260 358.1100

5 brute kNN 17562.3638 13584.7236 0.4656 350.8004

ball tree 17548.6531 13577.2199 0.4664 346.4767

kd tree 17553.8938 13579.8747 0.4661 346.4880

10 brute kNN 17129.0225 13382.8892 0.4916 337.2047

ball tree 17122.4624 13377.2459 0.4920 336.3491

kd tree 17126.3306 13377.2684 0.4918 335.6577

15 brute kNN 17062.6534 13373.7111 0.4956 347.9658

ball tree 17061.8768 13377.6418 0.4956 345.4252

kd tree 17064.7471 13376.5118 0.4955 345.9193

20 brute kNN 17062.9813 13407.4079 0.4956 351.2006

ball tree 17062.5500 13403.7100 0.4956 352.4062

kd tree 17067.8417 13410.3385 0.4953 352.5939

25 brute kNN 17086.2347 13437.6975 0.4942 364.1835

ball tree 17086.8381 13436.8339 0.4942 364.5805

kd tree 17086.4431 13437.4806 0.4942 364.1689

In the k-fold cross-validation above, other machine learning
models are chosen to complete the same prediction task,
including regression, neural network, decision tree, random
forest and SVM regression. The description and parameter
information and the average values of RMSE, MAE, R-
Squared and MAPE of these models are shown in Table VII.
From Table VI and VII we can see that kNN-related models
have better performance in our application.

From these experiments we can see:
1. The brute kNN, kd tree and ball tree have similar

evaluation metrics that are better than other machine learning
models in our system.

2. Although the ball tree and kd tree need more memory
space and training time than brute kNN, the prediction time is
less.

3. In our application the kd tree has less prediction time
than ball tree. So we choose kd tree as the final model.

VI. CONCLUSION

The accurate and timely housing price prediction can help
individuals and enterprises make reasonable decisions. In this
paper we design and implement a system for the prediction
of second-hand housing price based on Lambda Architecture.
This system can provide housing price prediction by both
historical and real-time data, so it can provide two different
perspectives on prediction. By analysis of the space and time
performance and metrics comparison with other models, the
kd tree is used as prediction model in both batch layer and
speed layer. Besides price prediction, the other benefit of using
the kd tree is that the nearest k neighbors can be used as a
housing recommending list. The system can also be used in
other applications to provide prediction services.

Other architectures, such as Kappa and Alarea, can also
complete the same task. In the future, we will consider porting
the existing system to these two frameworks and compare their
implementation performance with that of Lambda architecture.
Alarea is very attractive because its techniques stack is very
similar to that of our system, and it combines the advantages
of Lambda and Kappa architectures.

ACKNOWLEDGMENT

This research was funded by the School-level Scientific
Research Project of Harbin University of Commerce (grant
number 18XN021), the Heilongjiang Provincial Natural Sci-
ence Foundation of China (grant number LH2019F044) and
the Heilongjiang Provincial Key Laboratory of Electronic
Commerce and Information Processing.

REFERENCES

[1] H. Garcı́a-González, D. Fernández-Álvarez, J. E. Labra-Gayo, and
P. Ordóñez de Pablos, “Applying big data and stream processing to
the real estate domain,” Behaviour & Information Technology, vol. 38,
no. 9, pp. 950–958, 2019, DOI: 10.1109/TMC.2019.2944829.

[2] A. A. Munshi and Y. A.-R. I. Mohamed, “Data lake lambda architecture
for smart grids big data analytics,” IEEE Access, vol. 6, pp. 40 463–
40 471, 2018, DOI: 10.1109/access.2018.2858256.

[3] M. Gribaudo, M. Iacono, and M. Kiran, “A performance model-
ing framework for lambda architecture based applications,” Future
Generation Computer Systems, vol. 86, pp. 1032–1041, 2018, DOI:
10.1016/j.future.2017.07.033.

[4] O. Debauche, S. A. Mahmoudi, N. De Cock, S. Mahmoudi, P. Man-
neback, and F. Lebeau, “Cloud architecture for plant phenotyping
research,” Concurrency and Computation: Practice and Experience,
vol. 32, no. 17, p. e5661, 2020, DOI: 10.1002/cpe.5661.

[5] T. Numnonda, “A real-time recommendation engine using lambda archi-
tecture,” Artificial Life and Robotics, vol. 23, no. 2, pp. 249–254, 2018,
DOI: 10.1007/s10015-017-0424-8.

[6] I. Ganchev, Z. Ji, and M. O’Droma, “A conceptual framework for
building a mobile services’ recommendation engine,” in 2016 IEEE 8th
International Conference on Intelligent Systems (IS). IEEE, 2016, pp.
285–289, DOI: 10.1109/IS.2016.7737435.

8

Fig. 11. Predicting time of brute kNN, kd tree and ball tree models.

three kNN related models for k=3, 5, 10, 15, 20, 25. It can be
seen that there is no obvious difference of performance in all
cases.

TABLE VI
THE EVALUATION METRICS FOR DIFFERENT k ON THE brute kNN, ball tree

AND kd tree MODELS.

k Models RMSE MAE R-Squared MAPE
3 brute kNN 18206.3527 13926.4134 0.4257 364.7942

ball tree 18202.1706 13926.7102 0.4260 364.7693

kd tree 18200.8848 13926.0901 0.4260 358.1100

5 brute kNN 17562.3638 13584.7236 0.4656 350.8004

ball tree 17548.6531 13577.2199 0.4664 346.4767

kd tree 17553.8938 13579.8747 0.4661 346.4880

10 brute kNN 17129.0225 13382.8892 0.4916 337.2047

ball tree 17122.4624 13377.2459 0.4920 336.3491

kd tree 17126.3306 13377.2684 0.4918 335.6577

15 brute kNN 17062.6534 13373.7111 0.4956 347.9658

ball tree 17061.8768 13377.6418 0.4956 345.4252

kd tree 17064.7471 13376.5118 0.4955 345.9193

20 brute kNN 17062.9813 13407.4079 0.4956 351.2006

ball tree 17062.5500 13403.7100 0.4956 352.4062

kd tree 17067.8417 13410.3385 0.4953 352.5939

25 brute kNN 17086.2347 13437.6975 0.4942 364.1835

ball tree 17086.8381 13436.8339 0.4942 364.5805

kd tree 17086.4431 13437.4806 0.4942 364.1689

In the k-fold cross-validation above, other machine learning
models are chosen to complete the same prediction task,
including regression, neural network, decision tree, random
forest and SVM regression. The description and parameter
information and the average values of RMSE, MAE, R-
Squared and MAPE of these models are shown in Table VII.
From Table VI and VII we can see that kNN-related models
have better performance in our application.

From these experiments we can see:
1. The brute kNN, kd tree and ball tree have similar

evaluation metrics that are better than other machine learning
models in our system.

2. Although the ball tree and kd tree need more memory
space and training time than brute kNN, the prediction time is
less.

3. In our application the kd tree has less prediction time
than ball tree. So we choose kd tree as the final model.

VI. CONCLUSION

The accurate and timely housing price prediction can help
individuals and enterprises make reasonable decisions. In this
paper we design and implement a system for the prediction
of second-hand housing price based on Lambda Architecture.
This system can provide housing price prediction by both
historical and real-time data, so it can provide two different
perspectives on prediction. By analysis of the space and time
performance and metrics comparison with other models, the
kd tree is used as prediction model in both batch layer and
speed layer. Besides price prediction, the other benefit of using
the kd tree is that the nearest k neighbors can be used as a
housing recommending list. The system can also be used in
other applications to provide prediction services.

Other architectures, such as Kappa and Alarea, can also
complete the same task. In the future, we will consider porting
the existing system to these two frameworks and compare their
implementation performance with that of Lambda architecture.
Alarea is very attractive because its techniques stack is very
similar to that of our system, and it combines the advantages
of Lambda and Kappa architectures.

ACKNOWLEDGMENT

This research was funded by the School-level Scientific
Research Project of Harbin University of Commerce (grant
number 18XN021), the Heilongjiang Provincial Natural Sci-
ence Foundation of China (grant number LH2019F044) and
the Heilongjiang Provincial Key Laboratory of Electronic
Commerce and Information Processing.

REFERENCES

[1] H. Garcı́a-González, D. Fernández-Álvarez, J. E. Labra-Gayo, and
P. Ordóñez de Pablos, “Applying big data and stream processing to
the real estate domain,” Behaviour & Information Technology, vol. 38,
no. 9, pp. 950–958, 2019, DOI: 10.1109/TMC.2019.2944829.

[2] A. A. Munshi and Y. A.-R. I. Mohamed, “Data lake lambda architecture
for smart grids big data analytics,” IEEE Access, vol. 6, pp. 40 463–
40 471, 2018, DOI: 10.1109/access.2018.2858256.

[3] M. Gribaudo, M. Iacono, and M. Kiran, “A performance model-
ing framework for lambda architecture based applications,” Future
Generation Computer Systems, vol. 86, pp. 1032–1041, 2018, DOI:
10.1016/j.future.2017.07.033.

[4] O. Debauche, S. A. Mahmoudi, N. De Cock, S. Mahmoudi, P. Man-
neback, and F. Lebeau, “Cloud architecture for plant phenotyping
research,” Concurrency and Computation: Practice and Experience,
vol. 32, no. 17, p. e5661, 2020, DOI: 10.1002/cpe.5661.

[5] T. Numnonda, “A real-time recommendation engine using lambda archi-
tecture,” Artificial Life and Robotics, vol. 23, no. 2, pp. 249–254, 2018,
DOI: 10.1007/s10015-017-0424-8.

[6] I. Ganchev, Z. Ji, and M. O’Droma, “A conceptual framework for
building a mobile services’ recommendation engine,” in 2016 IEEE 8th
International Conference on Intelligent Systems (IS). IEEE, 2016, pp.
285–289, DOI: 10.1109/IS.2016.7737435.

8

Fig. 11. Predicting time of brute kNN, kd tree and ball tree models.

three kNN related models for k=3, 5, 10, 15, 20, 25. It can be
seen that there is no obvious difference of performance in all
cases.

TABLE VI
THE EVALUATION METRICS FOR DIFFERENT k ON THE brute kNN, ball tree

AND kd tree MODELS.

k Models RMSE MAE R-Squared MAPE
3 brute kNN 18206.3527 13926.4134 0.4257 364.7942

ball tree 18202.1706 13926.7102 0.4260 364.7693

kd tree 18200.8848 13926.0901 0.4260 358.1100

5 brute kNN 17562.3638 13584.7236 0.4656 350.8004

ball tree 17548.6531 13577.2199 0.4664 346.4767

kd tree 17553.8938 13579.8747 0.4661 346.4880

10 brute kNN 17129.0225 13382.8892 0.4916 337.2047

ball tree 17122.4624 13377.2459 0.4920 336.3491

kd tree 17126.3306 13377.2684 0.4918 335.6577

15 brute kNN 17062.6534 13373.7111 0.4956 347.9658

ball tree 17061.8768 13377.6418 0.4956 345.4252

kd tree 17064.7471 13376.5118 0.4955 345.9193

20 brute kNN 17062.9813 13407.4079 0.4956 351.2006

ball tree 17062.5500 13403.7100 0.4956 352.4062

kd tree 17067.8417 13410.3385 0.4953 352.5939

25 brute kNN 17086.2347 13437.6975 0.4942 364.1835

ball tree 17086.8381 13436.8339 0.4942 364.5805

kd tree 17086.4431 13437.4806 0.4942 364.1689

In the k-fold cross-validation above, other machine learning
models are chosen to complete the same prediction task,
including regression, neural network, decision tree, random
forest and SVM regression. The description and parameter
information and the average values of RMSE, MAE, R-
Squared and MAPE of these models are shown in Table VII.
From Table VI and VII we can see that kNN-related models
have better performance in our application.

From these experiments we can see:
1. The brute kNN, kd tree and ball tree have similar

evaluation metrics that are better than other machine learning
models in our system.

2. Although the ball tree and kd tree need more memory
space and training time than brute kNN, the prediction time is
less.

3. In our application the kd tree has less prediction time
than ball tree. So we choose kd tree as the final model.

VI. CONCLUSION

The accurate and timely housing price prediction can help
individuals and enterprises make reasonable decisions. In this
paper we design and implement a system for the prediction
of second-hand housing price based on Lambda Architecture.
This system can provide housing price prediction by both
historical and real-time data, so it can provide two different
perspectives on prediction. By analysis of the space and time
performance and metrics comparison with other models, the
kd tree is used as prediction model in both batch layer and
speed layer. Besides price prediction, the other benefit of using
the kd tree is that the nearest k neighbors can be used as a
housing recommending list. The system can also be used in
other applications to provide prediction services.

Other architectures, such as Kappa and Alarea, can also
complete the same task. In the future, we will consider porting
the existing system to these two frameworks and compare their
implementation performance with that of Lambda architecture.
Alarea is very attractive because its techniques stack is very
similar to that of our system, and it combines the advantages
of Lambda and Kappa architectures.

ACKNOWLEDGMENT

This research was funded by the School-level Scientific
Research Project of Harbin University of Commerce (grant
number 18XN021), the Heilongjiang Provincial Natural Sci-
ence Foundation of China (grant number LH2019F044) and
the Heilongjiang Provincial Key Laboratory of Electronic
Commerce and Information Processing.

REFERENCES

[1] H. Garcı́a-González, D. Fernández-Álvarez, J. E. Labra-Gayo, and
P. Ordóñez de Pablos, “Applying big data and stream processing to
the real estate domain,” Behaviour & Information Technology, vol. 38,
no. 9, pp. 950–958, 2019, DOI: 10.1109/TMC.2019.2944829.

[2] A. A. Munshi and Y. A.-R. I. Mohamed, “Data lake lambda architecture
for smart grids big data analytics,” IEEE Access, vol. 6, pp. 40 463–
40 471, 2018, DOI: 10.1109/access.2018.2858256.

[3] M. Gribaudo, M. Iacono, and M. Kiran, “A performance model-
ing framework for lambda architecture based applications,” Future
Generation Computer Systems, vol. 86, pp. 1032–1041, 2018, DOI:
10.1016/j.future.2017.07.033.

[4] O. Debauche, S. A. Mahmoudi, N. De Cock, S. Mahmoudi, P. Man-
neback, and F. Lebeau, “Cloud architecture for plant phenotyping
research,” Concurrency and Computation: Practice and Experience,
vol. 32, no. 17, p. e5661, 2020, DOI: 10.1002/cpe.5661.

[5] T. Numnonda, “A real-time recommendation engine using lambda archi-
tecture,” Artificial Life and Robotics, vol. 23, no. 2, pp. 249–254, 2018,
DOI: 10.1007/s10015-017-0424-8.

[6] I. Ganchev, Z. Ji, and M. O’Droma, “A conceptual framework for
building a mobile services’ recommendation engine,” in 2016 IEEE 8th
International Conference on Intelligent Systems (IS). IEEE, 2016, pp.
285–289, DOI: 10.1109/IS.2016.7737435.

References
	 [1]	 H. García-González, D. Fernández-Álvarez, J. E. Labra-Gayo, and P.

Ordóñez de Pablos, “Applying big data and stream processing to the
real estate domain,” Behaviour & Information Technology, vol. 38, no.
9, pp. 950–958, 2019, doi: 10.1109/TMC.2019.2944829.

	 [2]	 A. A. Munshi and Y. A.-R. I. Mohamed, “Data lake lambda architecture
for smart grids big data analytics,” IEEE Access, vol. 6, pp. 40463– 40
471, 2018, doi: 10.1109/access.2018.2858256.

https://doi.org/10.1109/TMC.2019.2944829
https://doi.org/10.1109/access.2018.2858256

Predicting the Price of Second-Hand Housing Based
on Lambda Architecture and KD Tree

MARCH 2022 • VOLUME XIV • NUMBER 110

INFOCOMMUNICATIONS JOURNAL

	[21]	 B. R. Hiraman et al., “A study of apache kafka in big data stream
processing,” in 2018 International Conference on Information,
Commu- nication, Engineering and Technology (ICICET). IEEE, 2018,
pp. 1–3, doi: 10.1109/ICICET.2018.8533771.

	[22]	 D. García-Gil, S. Ramírez-Gallego, S. García, and F. Herrera, “A
comparison on scalability for batch big data processing on apache spark
and apache flink,” Big Data Analytics, vol. 2, no. 1, pp. 1–11, 2017,

		 doi: 10.1186/s41044-016-0020-2.
	[23]	 J. Kreps, “Questioning the lambda architecture.” 2014. [Online].

Available: https://www.oreilly.com/radar/questioning-the-lambda-
architecture/

	[24]	 J. Warren and N. Marz, Big Data: Principles and best practices of
scalable realtime data systems. Simon and Schuster, 2015.

	[25]	 J. Maillo, S. García, J. Luengo, F. Herrera, and I. Triguero, “Fast
and scalable approaches to accelerate the fuzzy k-nearest neighbors
classifier for big data,” IEEE Transactions on Fuzzy Systems, vol. 28,
no. 5, pp. 874–886, 2019, doi: 10.1109/TFUZZ.2019.2936356.

	[26]	 J. Maillo, J. Luengo, S. García, F. Herrera, and I. Triguero, “A pre-
liminary study on hybrid spill-tree fuzzy k-nearest neighbors for big
data classification,” in 2018 IEEE international conference on fuzzy
systems (fuzz-IEEE). IEEE, 2018, pp. 1–8,

		 doi: 10.1109/FUZZ-IEEE.2018.8491595.
	[27]	 Q. Qiu, “Housing price in beijing.” 2018. [Online]. Available:

https://www.kaggle.com/ruiqurm/lianjia/version/2

	 [3]	 M. Gribaudo, M. Iacono, and M. Kiran, “A performance model- ing
framework for lambda architecture based applications,” Future
Generation Computer Systems, vol. 86, pp. 1032–1041, 2018,

		 doi: 10.1016/j.future.2017.07.033.
	 [4]	 O. Debauche, S. A. Mahmoudi, N. De Cock, S. Mahmoudi, P. Man-

neback, and F. Lebeau, “Cloud architecture for plant phenotyping
research,” Concurrency and Computation: Practice and Experience,
vol. 32, no. 17, p. e5661, 2020, doi: 10.1002/cpe.5661.

	 [5]	 T. Numnonda, “Areal-time recommendation engine using lambda
architecture,” Artificial Life and Robotics, vol. 23, no. 2, pp. 249–254,
2018, doi: 10.1007/s10015-017-0424-8.

	 [6]	 I. Ganchev, Z. Ji, and M. O’Droma, “A conceptual framework for
building a mobile services’ recommendation engine,” in 2016 IEEE 8th
International Conference on Intelligent Systems (IS). IEEE, 2016, pp.
285–289, doi: 10.1109/IS.2016.7737435.

	 [7]	 P. Krajsic and B. Franczyk, “Lambda architecture for anomaly detection
in online process mining using autoencoders,” in International Confer-
ence on Computational Collective Intelligence. Springer, 2020, pp.
579–589, doi: 10.1007/978-3-030-63119-2-47.

	 [8]	 D. Vajda, A. Pekár, and K. Farkas, “Towards machine learning-based
anomaly detection on time-series data,” INFOCOMMUNICATIONS
JOURNAL, vol. 13, no. 1, pp. 35–44, 2021,

		 doi: 10.36244/ICJ.2021.1.5.
	 [9]	 U. Suthakar, L. Magnoni, D. R. Smith, and A. Khan, “Optimised

lambda architecture for monitoring scientific infrastructure,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 6, pp.
1395–1408, 2018, doi: 10.1109/tpds.2017.2772241.

	[10]	 R. M. Croce and D. R. Haurin, “Predicting turning points in the housing
market,” Journal of Housing Economics, vol. 18, no. 4, pp. 281–293,
2009, doi: 10.1016/j.jhe.2009.09.001.

	[11]	 P. Dua, “Analysis of consumers’ perceptions of buying conditions for
houses,” The Journal of Real Estate Finance and Economics, vol. 37,
no. 4, pp. 335–350, 2008, doi: 10.1007/s11146-007-9084-0.

	[12]	 C. Jin, G. Soydemir, and A. Tidwell, “The u.s. housing market and the
pricing of risk: Fundamental analysis and market sentiment,” Journal
of Real Estate Research, vol. 36, no. 2, pp. 187–220, 2014,

		 doi: 10.1080/10835547.2014.12091390.
	[13]	 L. Zhang, J. Zhao, and K. Xu, “Emotion-based social computing plat-

form for streaming big-data: Architecture and application,” in 2016 13th
International Conference on Service Systems and Service Management
(ICSSSM). IEEE, 2016, pp.1–6, doi: 10.1109/ICSSSM.2016.7538620.

	[14]	 J. Smailović, M. Grčar, N. Lavrač, and M. Žnidaršič, “Stream-based
active learning for sentiment analysis in the financial domain,”
Information sciences, vol. 285, pp. 181–203, 2014,

		 doi: 10.1016/j.ins.2014.04.034.
	[15]	 R. Schulz, M. Wersing, and A. Werwatz, “Automated valuation mod-

elling: a specification exercise,” Journal of Property Research, vol. 31,
no. 2, pp. 131–153, 2014, doi: 10.1080/09599916.2013.846930.

	[16]	 M. Steurer, R. J. Hill, and N. Pfeifer, “Metrics for evaluating the
performance of machine learning based automated valuation models,”
Journal of Property Research, pp. 1–31, 2021,

		 doi: 10.1080/09599916.2020.1858937 .
	[17]	 Y. Chen, L. Zhou, Y. Tang, J. P. Singh, N. Bouguila, C. Wang, H. Wang,

and J. Du, “Fast neighbor search by using revised kd tree,” Information
Sciences, vol. 472, pp. 145–162, 2019, doi: 10.1016/j.ins.2018.09.012.

	[18]	 L. Huand S. Nooshabadi, “High-dimensional image descript or matching
using highly parallel kd-tree construction and approximate nearest
neighbor search,” Journal of Parallel and Distributed Computing, vol.
132, pp. 127–140, 2019, doi: 10.1016/j.jpdc.2019.06.003.

	[19]	 L. Wang, B. Yang, Y. Chen, X. Zhang, and J. Orchard, “Improving
neural-network classifiers using nearest neighbor partitioning,” IEEE
transactions on neural networks and learning systems, vol. 28, no. 10,
pp. 2255–2267, 2016, doi: 10.1109/TNNLS.2016.2580570.

	[20]	 A. A. Neloy, M. S. Oshman, M. M. Islam, M. J. Hossain, and Z. B.
Zahir, “Content-based health recommender system for icu patient,”
in International Conference on Multi-disciplinary Trends in Artificial
Intelligence. Springer, 2019, pp. 229–237,

		 doi: 10.1007/978-3-030-33709-4_20.

Qinghe Pan is currently an associate professor at the
School of Computer and Information Engineering of
Harbin University of Commerce. His current research
interests focus on big data techniques, data mining and
machine learning algorithms. He currently teaches in
many areas such as Hadoop and Spark architectures,
distributed systems and data mining methods.

Zeguo Qiu is currently a professor at Harbin Univer-
sity of Commerce. He received PhD in Management
Science and Engineering from the Dongbei Univer-
sity of Finance and Economics, Liaoning, China, in
2013. In 2015, he joined the Northeast Asia Service
Outsourcing Postdoctoral Workstation and worked on
the topic of management decision, information system
re-engineering, enterprise technology innovation and
e-commerce. His research interests include management
decision making, information systems and e-commerce.

Yaoqun Xu received the B.S. degree in mathematics
from Jilin University, Changchun, China, in 1993, the
M.S. degree in mathematics from the Harbin Institute
of Technology, Harbin, China, in 1997, and the Ph.D.
degree in navigation, guidance, and control from
Harbin Engineering University, Harbin, in 2002. He
is currently a Professor with the College of Computer
and Information Engineering, Harbin University of
Commerce. His current research interests include
chaotic dynamics, neural networks, and intelligent
optimization and decision.

Guilin Yao is currently an associate professor in the
School of Computer and Information Engineering,
Harbin University of Commerce, Harbin, China. His
research interests include image processing, computer
vision, and machine learning.

https://doi.org/10.1109/ICICET.2018.8533771
https://doi.org/10.1186/s41044-016-0020-2
https://www.oreilly.com/radar/questioning-the-lambda-architecture/
https://www.oreilly.com/radar/questioning-the-lambda-architecture/
https://doi.org/10.1109/TFUZZ.2019.2936356
https://doi.org/10.1109/FUZZ-IEEE.2018.8491595
https://www.kaggle.com/ruiqurm/lianjia/version/2
https://doi.org/10.1016/j.future.2017.07.033
https://doi.org/10.1002/cpe.5661
https://doi.org/10.1007/s10015-017-0424-8
https://doi.org/10.1109/IS.2016.7737435
https://doi.org/10.1007/978-3-030-63119-2-47
https://doi.org/10.36244/ICJ.2021.1.5
https://doi.org/10.1109/tpds.2017.2772241
https://doi.org/10.1016/j.jhe.2009.09.001
https://doi.org/10.1007/s11146-007-9084-0
https://doi.org/10.1080/10835547.2014.12091390
https://doi.org/10.1109/ICSSSM.2016.7538620
https://doi.org/10.1016/j.ins.2014.04.034
https://doi.org/10.1080/09599916.2013.846930
https://doi.org/10.1080/09599916.2020.1858937
https://doi.org/10.1016/j.ins.2018.09.012
https://doi.org/10.1016/j.jpdc.2019.06.003
https://doi.org/10.1109/TNNLS.2016.2580570
https://doi.org/10.1007/978-3-030-33709-4_20

Turbo decoding of concatenated codes based on RS
codes using adapted scaling factors

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 11

1

Turbo decoding of concatenated codes based on RS
codes using adapted scaling factors

Es-said Azougaghe∗, Abderrazak Farchane∗, Said Safi∗ and Mostafa Belkasmi§
∗Department of Mathematics and Informatics,

Laboratory of Mathematics Innovation and Information Technology (LIMATI),
Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco

Emails:{essaidinfo, a.farchane, safi.said }@gmail.com
§Department of Communication Technology, Mohammed V Souissi University, Rabat,

National School of Computer Science and Systems Analysis (ENSIAS), Rabat, Morocco
Email: Belkasmi@ensias.ma

Abstract—Iteratively decoded block turbo codes are product
codes that exhibit excellent performance with reasonable com-
plexity. In this paper, a generalization of parallel concatenated
block codes (GPCBs) based on RS codes is presented. We propose
an efficient decoding algorithm with modifications of the Chase-
Pyndiah algorithm is written by using Weighting factor α and
Reliability factor β.
In this work, we studied the effect of diverse parametres
such as the effect of various component codes, interleaver size
(number of sub-blocks) and number of iterations. The simulation
results shows the relevance of the adapted parameters to decode
generalized parallel concatenated block codes based on RS codes.
The proposed algorithm (MCP) using the adapted parameters
performs better than the one using with empirical parameters
(CP).

Index Terms— RS codes, Chase decoding, Modified Chase-
Pyndiah Algorithm, iterative decoding, generalized parallel con-
catenated codes.

I. INTRODUCTION

There are many reasons that contributed to the massive
interest in product codes. First of all, product codes have
noticed a great growth as a result of the introduction of
Turbo decoding. In addition to this, the product codes are
very identical to concatenated codes as well as to multilevel
codes in the sense that almost any solution that works for
product codes can easily be compatible to concatenated codes
and multilevel codes. Many scholars have suggested different
computation methods of soft value for iterative decoding of
product codes. A case in example can be found in the works
of Pyndiah et al. [1] [2] [3] and [4] who proposed a new
iterative decoding algorithm based on Chase decoding [5][6].
The obtained results for product codes based on BCH codes
suggested that there is a similarity with those obtained by
convolutional turbo codes. Likewise, the generalized parallel
concatenated block (GPCB) codes can be seen to be similar
to convolutional turbo codes in both encoding and decoding
structures. Iterative decoding of concatenated codes uses long
powerful codes, and keeps the decoder relatively simple. The
length and power of these codes result in safety and durability
of application.

Our study is based on RS codes that we decode by using
the Modified Chase-Pyndiah algorithm (MCP) [7][8]. Our
contribution, in this work, lies in that we tested the application
of the Modified Chase-Pyndiah SISO algorithm to decode the
GPCB-RS codes based on RS CODES, and we investigated the
impact of various component codes, the number of iterations,
interleaver size, length and pattern using simulations with an
adapted scaling factor to the circumstances of the decoder,
namely β and α.
Relevant studies adapted scaling factor to the circumstances of
the decoder. The adapted parameter can outperforms the previ-
ous empirical factor, except that the adapted parameter works
without re-optimisation after every change in application. This
can be noticed in the generalized serial concatenated block
codes presented in [9] and parallel concatenated block codes
in [10]. Unlike the aforementioned works that applied adapted
scaling factor for BCH codes, our study applies this adapted
parameter to decode GPCB-RS codes. We can compare our
work with several recent works using turbo decoding for con-
volutional codes or block codes using experimental weighting
parameters namely [11][12] [13] and [14], our result gave good
performance at the level of the gold decoding gain close to
the Shannon limits [15].
The remainder of this paper is structured as follows : Section
II presents the encoder structure of the generalized parallel
concatenated block codes. In Section III, we present the
component decoder. We describe the iterative decoding of the
GPCB codes, in Section IV. The simulation results are given
in Section V. The last Section concludes this paper.

II. GENERALIZED PARALLEL CONCATENATED
BLOCK CODES (GPCB)

1) CONSTRUCTION:

The Fig. 1 illustrates the construction of the generalized
parallel concatenated block codes (GPCB). Here a block of
N = M × k data symbols at the input of the encoder
is subdivided to M sub-blocks each of k symbols. Each k
symbols vector is encoded in order to produce n symbols
codeword. The input block is scrambled by the interleaver

Turbo decoding of concatenated codes based on RS
codes using adapted scaling factors

Es-said Azougaghe1, Abderrazak Farchane1, Said Safi1 and Mostafa Belkasmi2

Abstract—Iteratively decoded block turbo codes are product
codes that exhibit excellent performance with reasonable com-
plexity. In this paper, a generalization of parallel concatenated
block codes (GPCBs) based on RS codes is presented. We propose
an efficient decoding algorithm with modifications of the Chase-
Pyndiah algorithm is written by using Weighting factor α and
Reliability factor β.

In this work, we studied the effect of diverse parametres
such as the effect of various component codes, interleaver size
(number of sub-blocks) and number of iterations. The simulation
results shows the relevance of the adapted parameters to
decode generalized parallel concatenated block codes based on
RS codes. The proposed algorithm (MCP) using the adapted
parameters performs better than the one using with empirical
parameters (CP).

Index Terms—RS codes, Chase decoding, Modified Chase-
Pyndiah Algorithm, iterative decoding, generalized parallel con-
catenated codes.

1 Department of Mathematics and Informatics, Laboratory of Mathematics
Innovation and Information Technology (LIMATI), Polydisciplinary Faculty,
Sultan Moulay Slimane University, Beni Mellal, Morocco

(e-mails:{essaidinfo, a.farchane, safi.said}@gmail.com)
2 Department of Communication Technology, Mohammed V Souissi

University, Rabat, National School of Computer Science and Systems Analysis
(ENSIAS), Rabat, Morocco (e-mail: Belkasmi@ensias.ma)

1

Turbo decoding of concatenated codes based on RS
codes using adapted scaling factors

Es-said Azougaghe∗, Abderrazak Farchane∗, Said Safi∗ and Mostafa Belkasmi§
∗Department of Mathematics and Informatics,

Laboratory of Mathematics Innovation and Information Technology (LIMATI),
Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal, Morocco

Emails:{essaidinfo, a.farchane, safi.said }@gmail.com
§Department of Communication Technology, Mohammed V Souissi University, Rabat,

National School of Computer Science and Systems Analysis (ENSIAS), Rabat, Morocco
Email: Belkasmi@ensias.ma

Abstract—Iteratively decoded block turbo codes are product
codes that exhibit excellent performance with reasonable com-
plexity. In this paper, a generalization of parallel concatenated
block codes (GPCBs) based on RS codes is presented. We propose
an efficient decoding algorithm with modifications of the Chase-
Pyndiah algorithm is written by using Weighting factor α and
Reliability factor β.
In this work, we studied the effect of diverse parametres
such as the effect of various component codes, interleaver size
(number of sub-blocks) and number of iterations. The simulation
results shows the relevance of the adapted parameters to decode
generalized parallel concatenated block codes based on RS codes.
The proposed algorithm (MCP) using the adapted parameters
performs better than the one using with empirical parameters
(CP).

Index Terms— RS codes, Chase decoding, Modified Chase-
Pyndiah Algorithm, iterative decoding, generalized parallel con-
catenated codes.

I. INTRODUCTION

There are many reasons that contributed to the massive
interest in product codes. First of all, product codes have
noticed a great growth as a result of the introduction of
Turbo decoding. In addition to this, the product codes are
very identical to concatenated codes as well as to multilevel
codes in the sense that almost any solution that works for
product codes can easily be compatible to concatenated codes
and multilevel codes. Many scholars have suggested different
computation methods of soft value for iterative decoding of
product codes. A case in example can be found in the works
of Pyndiah et al. [1] [2] [3] and [4] who proposed a new
iterative decoding algorithm based on Chase decoding [5][6].
The obtained results for product codes based on BCH codes
suggested that there is a similarity with those obtained by
convolutional turbo codes. Likewise, the generalized parallel
concatenated block (GPCB) codes can be seen to be similar
to convolutional turbo codes in both encoding and decoding
structures. Iterative decoding of concatenated codes uses long
powerful codes, and keeps the decoder relatively simple. The
length and power of these codes result in safety and durability
of application.

Our study is based on RS codes that we decode by using
the Modified Chase-Pyndiah algorithm (MCP) [7][8]. Our
contribution, in this work, lies in that we tested the application
of the Modified Chase-Pyndiah SISO algorithm to decode the
GPCB-RS codes based on RS CODES, and we investigated the
impact of various component codes, the number of iterations,
interleaver size, length and pattern using simulations with an
adapted scaling factor to the circumstances of the decoder,
namely β and α.
Relevant studies adapted scaling factor to the circumstances of
the decoder. The adapted parameter can outperforms the previ-
ous empirical factor, except that the adapted parameter works
without re-optimisation after every change in application. This
can be noticed in the generalized serial concatenated block
codes presented in [9] and parallel concatenated block codes
in [10]. Unlike the aforementioned works that applied adapted
scaling factor for BCH codes, our study applies this adapted
parameter to decode GPCB-RS codes. We can compare our
work with several recent works using turbo decoding for con-
volutional codes or block codes using experimental weighting
parameters namely [11][12] [13] and [14], our result gave good
performance at the level of the gold decoding gain close to
the Shannon limits [15].
The remainder of this paper is structured as follows : Section
II presents the encoder structure of the generalized parallel
concatenated block codes. In Section III, we present the
component decoder. We describe the iterative decoding of the
GPCB codes, in Section IV. The simulation results are given
in Section V. The last Section concludes this paper.

II. GENERALIZED PARALLEL CONCATENATED
BLOCK CODES (GPCB)

1) CONSTRUCTION:

The Fig. 1 illustrates the construction of the generalized
parallel concatenated block codes (GPCB). Here a block of
N = M × k data symbols at the input of the encoder
is subdivided to M sub-blocks each of k symbols. Each k
symbols vector is encoded in order to produce n symbols
codeword. The input block is scrambled by the interleaver

2

Fig. 1. Encoder structure of GPCB

-denoted by Π- before entering in the second encoder. The
codeword of GPCB code, as shown in Fig. 2, consists of
the input block followed by the parity check symbols of both
encoders. In this contribution, several interleaving techniques
were invoked such as random, helical, diagonal and primitive
interleaver.
A systematic GPCB code is based on two component sys-
tematic block codes, C1 with parameters (n1, k) and C2

with parameters (n2, k). Viewing the coding scheme of 1
as single GPCB encoder, the length of the information-word
to be encoded by the GPCB code is given by the size of
the interleaver N = M × k . The first encoder produces
P1 = M×(n1−k) parity check symbols. The second encoder
produces P2 = M × (n2 − k) parity check symbols. Thus
the total number of parity symbols generated by the GPCB
encoder is:P = P1 + P2 = M × (n1 + n2 − 2 × k). The
length of the GPCB codeword is given by: L = N + P =
M × (n1 + n2 − k) Consequently, the code rate of the
GPCB codes can be computed by: R = N

L = k
(n1+n2−k) .

This implies that the GPCB code rate is independent of the
interleaver size N .

Fig. 2. Systematic GPCB encoding

2) SOFT DECoding of RS code:
If we consider the transmission of block coded binary symbols
{−1,+1} using BPSK signaling over a Gaussian channel, the
sequence R at the input of the RS decoder has the following
expression: R = E +B

where :

R =




r11 · · · r1j · · · r1n
...

... rij
...

...
rm1 · · · rmj · · · rmn




is the received sample word,

E =




e11 · · · e1j · · · e1n
...

... eij
...

...
em1 · · · emj · · · emn




is the transmitted word,

B =




b11 · · · b1j · · · b1n
...

... bij
...

...
bm1 · · · bmj · · · bmn




are Additive White Gaussian Noise (AWGN) samples of
standard deviation σ. Decoding the received sequence R
according to the maximum likelihood criteria is given by :

D = Ci if Pr(E = Ci|R) > Pr(E = Cl|R) ∀l ̸= i
(1)

where:

Ci =




ci11 · · · ci1j · · · ci1n
...

... ciij
...

...
cim1 · · · cimj · · · cimn




is the ith code word of code C with parameters (n, i) and

D =




d11 · · · d1j · · · d1n
...

... dij
...

...
dm1 · · · dmj · · · dmn




The decision corresponding to maximum likelihood transmit-
ted sequence conditionally to R.
For received samples corrupted by AWGN, decoding rule (1)
is simplified into : D = Ci if |R−Ci|2 < |R−Cl|2 ∀l ̸= i
where:

|R− Ci|2 =
n

j=1

l
f=1

(rjf − cijf)
2

III. COMPONENT DECODER

We choose as component decoder the Modified Chase-
Pyndiah algorithm [7]. This decoder works as follows:
The decoder starts by generating a set of codewords which
are in the vicinity of the received vector R. Then, among
those codewords, it selects the nearest codeword from R in
term of Euclidean distance. By doing that it tries to determine
the most likelihood codeword. The reliability of the decoded
bits is given by the log likelihood ratio (LLR) of the decision
dif which is defined by:

LLRif = ln


Pr(ejf = +1|R)

Pr(ejf = −1|R)


(2)

DOI: 10.36244/ICJ.2022.1.2

mailto:essaidinfo%40gmail.com?subject=
mailto:a.farchane%40gmail.com?subject=
mailto:safi.said%40gmail.com?subject=
mailto:Belkasmi%40ensias.ma?subject=
https://doi.org/10.36244/ICJ.2022.1.2

Turbo decoding of concatenated codes based on RS
codes using adapted scaling factors

MARCH 2022 • VOLUME XIV • NUMBER 112

INFOCOMMUNICATIONS JOURNAL

2

Fig. 1. Encoder structure of GPCB

-denoted by Π- before entering in the second encoder. The
codeword of GPCB code, as shown in Fig. 2, consists of
the input block followed by the parity check symbols of both
encoders. In this contribution, several interleaving techniques
were invoked such as random, helical, diagonal and primitive
interleaver.
A systematic GPCB code is based on two component sys-
tematic block codes, C1 with parameters (n1, k) and C2

with parameters (n2, k). Viewing the coding scheme of 1
as single GPCB encoder, the length of the information-word
to be encoded by the GPCB code is given by the size of
the interleaver N = M × k . The first encoder produces
P1 = M×(n1−k) parity check symbols. The second encoder
produces P2 = M × (n2 − k) parity check symbols. Thus
the total number of parity symbols generated by the GPCB
encoder is:P = P1 + P2 = M × (n1 + n2 − 2 × k). The
length of the GPCB codeword is given by: L = N + P =
M × (n1 + n2 − k) Consequently, the code rate of the
GPCB codes can be computed by: R = N

L = k
(n1+n2−k) .

This implies that the GPCB code rate is independent of the
interleaver size N .

Fig. 2. Systematic GPCB encoding

2) SOFT DECoding of RS code:
If we consider the transmission of block coded binary symbols
{−1,+1} using BPSK signaling over a Gaussian channel, the
sequence R at the input of the RS decoder has the following
expression: R = E +B

where :

R =




r11 · · · r1j · · · r1n
...

... rij
...

...
rm1 · · · rmj · · · rmn




is the received sample word,

E =




e11 · · · e1j · · · e1n
...

... eij
...

...
em1 · · · emj · · · emn




is the transmitted word,

B =




b11 · · · b1j · · · b1n
...

... bij
...

...
bm1 · · · bmj · · · bmn




are Additive White Gaussian Noise (AWGN) samples of
standard deviation σ. Decoding the received sequence R
according to the maximum likelihood criteria is given by :

D = Ci if Pr(E = Ci|R) > Pr(E = Cl|R) ∀l ̸= i
(1)

where:

Ci =




ci11 · · · ci1j · · · ci1n
...

... ciij
...

...
cim1 · · · cimj · · · cimn




is the ith code word of code C with parameters (n, i) and

D =




d11 · · · d1j · · · d1n
...

... dij
...

...
dm1 · · · dmj · · · dmn




The decision corresponding to maximum likelihood transmit-
ted sequence conditionally to R.
For received samples corrupted by AWGN, decoding rule (1)
is simplified into : D = Ci if |R−Ci|2 < |R−Cl|2 ∀l ̸= i
where:

|R− Ci|2 =
n

j=1

l
f=1

(rjf − cijf)
2

III. COMPONENT DECODER

We choose as component decoder the Modified Chase-
Pyndiah algorithm [7]. This decoder works as follows:
The decoder starts by generating a set of codewords which
are in the vicinity of the received vector R. Then, among
those codewords, it selects the nearest codeword from R in
term of Euclidean distance. By doing that it tries to determine
the most likelihood codeword. The reliability of the decoded
bits is given by the log likelihood ratio (LLR) of the decision
dif which is defined by:

LLRif = ln


Pr(ejf = +1|R)

Pr(ejf = −1|R)


(2)

3

Where ejf is the binary element in position (j, f) of the
transmitted code word E, 1 ≤ j ≤ n et 1 ≤ f ≤ m. Using the
bayes rule and taking into account that the noise is Gaussian,

LLRif = log


Σq∈S+1

j
exp−(|R−Cq|2

2σ2)

Σq∈S−1
j

exp−(|R−Cq|2
2σ2)


 (3)

where Si
j represent the set of codewords having a bit equal to

i(i = 1) in position j. LLRif can be approximated, in the case
of the AWGN, by: The expression of the can be approximated,
in the case of the AWGN, by:

LLRif =
1

2σ2


|R− Cmin(−1)|2 − |R− Cmin(+1)|2


(4)

Where c
min(+1)
jf and c

min(−1)
jf are two codewords at mini-

mum Euclidean distance from R with c
min(+1)
jf = +1 and

c
min(−1)
jf = −1 , cmin(+1)

jf and c
min(−1)
jf are chosen among the

subset of code word given by Chase algorithm. By expanding
relation 4 we obtain:

LLRif =
2

σ2


rjf +

n
x=1x ̸=j

n
z=1z ̸=f

rxzc
min(+1)
xz ρxz




Where

((x, z) ̸= (j, f)) ρxz =


0, if c

min(+1)
xz = c

min(−1)
xz

1, if c
min(+1)
xz ̸= c

min(−1)
xz

If we normalize the approximated LLR of dif with respect to
2
σ2 we obtain:

r
′

jf = (
σ2

2
)LLRif = rjf + wjf

The estimated normalized LLR of decision dif , r
′

jf is given
by input samples rjf plus wjf which is independent of rjf .
The LLR of r

′

jf is an estimation of the soft decision of the
RS decoder.
To compute the normalized LLRif , of binary elements at
the output RS decoder, we must first select the codeword
at minimum Euclidean distance from R. Let Cmin(+i) be
this code word, Cmin(+i) has a binary element i at position
(j, f)(i = ±1). Then we look for codeword Cmin(+i) at
minimal Euclidean distance from R among the codeword
subset obtained by Chase algorithm.
Cmin(−i) must have −i as binary element at position (j, f).
If the Cmin(+i) codeword is found, the soft decision r

′

jf can
be computed using the relation given bellow:

r
′

jf =


(Mmin(−i) −Mmin(i))

4


c
min(i)
jf

Where Mmin(−i) and Mmin(i) represent respectively the
c
min(−i)
jf Euclidean distance from R and c

min(i)
jf Euclidean

distance from R.
Else we use the relation: r

′

jf = (12σR + |rij |)cmin(i)
jf where

σR is the standard deviation of the decoder input sequence R.

Fig. 3. Iterative decoding structure for the GPCB codes

IV. ITERATIVE DECODING OF GPCB CODES

A. GPCB decoder

The decoding of the GPCB codes is iterative. The decoder
structure is shown in Fig. 3. An iteration consists in using
two component decoders serially. The first one uses the
systematic information and the first parity check symbols in
order to generate extrinsic information W as in the Modified
Chase-Pyndiah algorithm. This extrinsic information is used
to update the reliabilities of the systematic information which
will be interleaved and feed into the second decoder with the
second parity check symbols received from the channel. The
second decoder also generates the extrinsic information using
Chase-Pyndiah decoder, and then updates the reliabilities of
the systematic information for the second time. The updated
reliabilities will be desinterleaved and feed again into first
decoder, for the next iteration. The process resumes until a
maximum number of iterations is reached.

B. Parameters α and β

1) Weighting factor α: To reduce the dependency of α on
the product code, the mean absolute value of the extrinsic
information |W | is normalized to one. The evolution of α
with the decoding number is:

α = [0.00, 0.01, 0.08, 0.12, 0.16, 0.20, 0.24, 0.28, 0.32, 0.36,

0.40, 0.44, 0.48, 0.52, 0.56, 0.60, 0.61, 0.67, 0.70, 0.72]

2) Reliability factor β: To operate under optimal condi-
tions, the reliability factor should be determined as a function
of the BER. For practical considerations, we have fixed the
evolution of β with the decoding step to the following values:
β with the decoding number is:

β = [0.56, 0.60, 0.64, 0.68, 0.72, 0.76, 0.80, 0.82, 0.86, 0.88,

0.90, 0.91, 0.93, 0.95, 0.97, 0.99, 0.99, 1.00, 1.00, 1.00]

We have determined the values of α and β empirically
[16]. The later parameters play a crucial role to have good
performance. So, the better parameters you have the better
performance you will gain. Therefore, we should carefully
determine these parameters. To obtain good parameters, we
choose some condition for which codes are sensitive. Thus,
we take the parameter M equal to 100, and relatively high
component code length.
We begin our process by setting the number of iterations in
1, and vary the value of α , where 0 < α < 1, in order to
have good performance, and keep the value of α which gives
the best BER (bit error rate). Next, we vary the value of the

2

Fig. 1. Encoder structure of GPCB

-denoted by Π- before entering in the second encoder. The
codeword of GPCB code, as shown in Fig. 2, consists of
the input block followed by the parity check symbols of both
encoders. In this contribution, several interleaving techniques
were invoked such as random, helical, diagonal and primitive
interleaver.
A systematic GPCB code is based on two component sys-
tematic block codes, C1 with parameters (n1, k) and C2

with parameters (n2, k). Viewing the coding scheme of 1
as single GPCB encoder, the length of the information-word
to be encoded by the GPCB code is given by the size of
the interleaver N = M × k . The first encoder produces
P1 = M×(n1−k) parity check symbols. The second encoder
produces P2 = M × (n2 − k) parity check symbols. Thus
the total number of parity symbols generated by the GPCB
encoder is:P = P1 + P2 = M × (n1 + n2 − 2 × k). The
length of the GPCB codeword is given by: L = N + P =
M × (n1 + n2 − k) Consequently, the code rate of the
GPCB codes can be computed by: R = N

L = k
(n1+n2−k) .

This implies that the GPCB code rate is independent of the
interleaver size N .

Fig. 2. Systematic GPCB encoding

2) SOFT DECoding of RS code:
If we consider the transmission of block coded binary symbols
{−1,+1} using BPSK signaling over a Gaussian channel, the
sequence R at the input of the RS decoder has the following
expression: R = E +B

where :

R =




r11 · · · r1j · · · r1n
...

... rij
...

...
rm1 · · · rmj · · · rmn




is the received sample word,

E =




e11 · · · e1j · · · e1n
...

... eij
...

...
em1 · · · emj · · · emn




is the transmitted word,

B =




b11 · · · b1j · · · b1n
...

... bij
...

...
bm1 · · · bmj · · · bmn




are Additive White Gaussian Noise (AWGN) samples of
standard deviation σ. Decoding the received sequence R
according to the maximum likelihood criteria is given by :

D = Ci if Pr(E = Ci|R) > Pr(E = Cl|R) ∀l ̸= i
(1)

where:

Ci =




ci11 · · · ci1j · · · ci1n
...

... ciij
...

...
cim1 · · · cimj · · · cimn




is the ith code word of code C with parameters (n, i) and

D =




d11 · · · d1j · · · d1n
...

... dij
...

...
dm1 · · · dmj · · · dmn




The decision corresponding to maximum likelihood transmit-
ted sequence conditionally to R.
For received samples corrupted by AWGN, decoding rule (1)
is simplified into : D = Ci if |R−Ci|2 < |R−Cl|2 ∀l ̸= i
where:

|R− Ci|2 =
n

j=1

l
f=1

(rjf − cijf)
2

III. COMPONENT DECODER

We choose as component decoder the Modified Chase-
Pyndiah algorithm [7]. This decoder works as follows:
The decoder starts by generating a set of codewords which
are in the vicinity of the received vector R. Then, among
those codewords, it selects the nearest codeword from R in
term of Euclidean distance. By doing that it tries to determine
the most likelihood codeword. The reliability of the decoded
bits is given by the log likelihood ratio (LLR) of the decision
dif which is defined by:

LLRif = ln


Pr(ejf = +1|R)

Pr(ejf = −1|R)


(2)

2

Fig. 1. Encoder structure of GPCB

-denoted by Π- before entering in the second encoder. The
codeword of GPCB code, as shown in Fig. 2, consists of
the input block followed by the parity check symbols of both
encoders. In this contribution, several interleaving techniques
were invoked such as random, helical, diagonal and primitive
interleaver.
A systematic GPCB code is based on two component sys-
tematic block codes, C1 with parameters (n1, k) and C2

with parameters (n2, k). Viewing the coding scheme of 1
as single GPCB encoder, the length of the information-word
to be encoded by the GPCB code is given by the size of
the interleaver N = M × k . The first encoder produces
P1 = M×(n1−k) parity check symbols. The second encoder
produces P2 = M × (n2 − k) parity check symbols. Thus
the total number of parity symbols generated by the GPCB
encoder is:P = P1 + P2 = M × (n1 + n2 − 2 × k). The
length of the GPCB codeword is given by: L = N + P =
M × (n1 + n2 − k) Consequently, the code rate of the
GPCB codes can be computed by: R = N

L = k
(n1+n2−k) .

This implies that the GPCB code rate is independent of the
interleaver size N .

Fig. 2. Systematic GPCB encoding

2) SOFT DECoding of RS code:
If we consider the transmission of block coded binary symbols
{−1,+1} using BPSK signaling over a Gaussian channel, the
sequence R at the input of the RS decoder has the following
expression: R = E +B

where :

R =




r11 · · · r1j · · · r1n
...

... rij
...

...
rm1 · · · rmj · · · rmn




is the received sample word,

E =




e11 · · · e1j · · · e1n
...

... eij
...

...
em1 · · · emj · · · emn




is the transmitted word,

B =




b11 · · · b1j · · · b1n
...

... bij
...

...
bm1 · · · bmj · · · bmn




are Additive White Gaussian Noise (AWGN) samples of
standard deviation σ. Decoding the received sequence R
according to the maximum likelihood criteria is given by :

D = Ci if Pr(E = Ci|R) > Pr(E = Cl|R) ∀l ̸= i
(1)

where:

Ci =




ci11 · · · ci1j · · · ci1n
...

... ciij
...

...
cim1 · · · cimj · · · cimn




is the ith code word of code C with parameters (n, i) and

D =




d11 · · · d1j · · · d1n
...

... dij
...

...
dm1 · · · dmj · · · dmn




The decision corresponding to maximum likelihood transmit-
ted sequence conditionally to R.
For received samples corrupted by AWGN, decoding rule (1)
is simplified into : D = Ci if |R−Ci|2 < |R−Cl|2 ∀l ̸= i
where:

|R− Ci|2 =

n
j=1

l
f=1

(rjf − cijf)
2

III. COMPONENT DECODER

We choose as component decoder the Modified Chase-
Pyndiah algorithm [7]. This decoder works as follows:
The decoder starts by generating a set of codewords which
are in the vicinity of the received vector R. Then, among
those codewords, it selects the nearest codeword from R in
term of Euclidean distance. By doing that it tries to determine
the most likelihood codeword. The reliability of the decoded
bits is given by the log likelihood ratio (LLR) of the decision
dif which is defined by:

LLRif = ln


Pr(ejf = +1|R)

Pr(ejf = −1|R)


(2)

2

Fig. 1. Encoder structure of GPCB

-denoted by Π- before entering in the second encoder. The
codeword of GPCB code, as shown in Fig. 2, consists of
the input block followed by the parity check symbols of both
encoders. In this contribution, several interleaving techniques
were invoked such as random, helical, diagonal and primitive
interleaver.
A systematic GPCB code is based on two component sys-
tematic block codes, C1 with parameters (n1, k) and C2

with parameters (n2, k). Viewing the coding scheme of 1
as single GPCB encoder, the length of the information-word
to be encoded by the GPCB code is given by the size of
the interleaver N = M × k . The first encoder produces
P1 = M×(n1−k) parity check symbols. The second encoder
produces P2 = M × (n2 − k) parity check symbols. Thus
the total number of parity symbols generated by the GPCB
encoder is:P = P1 + P2 = M × (n1 + n2 − 2 × k). The
length of the GPCB codeword is given by: L = N + P =
M × (n1 + n2 − k) Consequently, the code rate of the
GPCB codes can be computed by: R = N

L = k
(n1+n2−k) .

This implies that the GPCB code rate is independent of the
interleaver size N .

Fig. 2. Systematic GPCB encoding

2) SOFT DECoding of RS code:
If we consider the transmission of block coded binary symbols
{−1,+1} using BPSK signaling over a Gaussian channel, the
sequence R at the input of the RS decoder has the following
expression: R = E +B

where :

R =




r11 · · · r1j · · · r1n
...

... rij
...

...
rm1 · · · rmj · · · rmn




is the received sample word,

E =




e11 · · · e1j · · · e1n
...

... eij
...

...
em1 · · · emj · · · emn




is the transmitted word,

B =




b11 · · · b1j · · · b1n
...

... bij
...

...
bm1 · · · bmj · · · bmn




are Additive White Gaussian Noise (AWGN) samples of
standard deviation σ. Decoding the received sequence R
according to the maximum likelihood criteria is given by :

D = Ci if Pr(E = Ci|R) > Pr(E = Cl|R) ∀l ̸= i
(1)

where:

Ci =




ci11 · · · ci1j · · · ci1n
...

... ciij
...

...
cim1 · · · cimj · · · cimn




is the ith code word of code C with parameters (n, i) and

D =




d11 · · · d1j · · · d1n
...

... dij
...

...
dm1 · · · dmj · · · dmn




The decision corresponding to maximum likelihood transmit-
ted sequence conditionally to R.
For received samples corrupted by AWGN, decoding rule (1)
is simplified into : D = Ci if |R−Ci|2 < |R−Cl|2 ∀l ̸= i
where:

|R− Ci|2 =
n

j=1

l
f=1

(rjf − cijf)
2

III. COMPONENT DECODER

We choose as component decoder the Modified Chase-
Pyndiah algorithm [7]. This decoder works as follows:
The decoder starts by generating a set of codewords which
are in the vicinity of the received vector R. Then, among
those codewords, it selects the nearest codeword from R in
term of Euclidean distance. By doing that it tries to determine
the most likelihood codeword. The reliability of the decoded
bits is given by the log likelihood ratio (LLR) of the decision
dif which is defined by:

LLRif = ln


Pr(ejf = +1|R)

Pr(ejf = −1|R)


(2)

2

Fig. 1. Encoder structure of GPCB

-denoted by Π- before entering in the second encoder. The
codeword of GPCB code, as shown in Fig. 2, consists of
the input block followed by the parity check symbols of both
encoders. In this contribution, several interleaving techniques
were invoked such as random, helical, diagonal and primitive
interleaver.
A systematic GPCB code is based on two component sys-
tematic block codes, C1 with parameters (n1, k) and C2

with parameters (n2, k). Viewing the coding scheme of 1
as single GPCB encoder, the length of the information-word
to be encoded by the GPCB code is given by the size of
the interleaver N = M × k . The first encoder produces
P1 = M×(n1−k) parity check symbols. The second encoder
produces P2 = M × (n2 − k) parity check symbols. Thus
the total number of parity symbols generated by the GPCB
encoder is:P = P1 + P2 = M × (n1 + n2 − 2 × k). The
length of the GPCB codeword is given by: L = N + P =
M × (n1 + n2 − k) Consequently, the code rate of the
GPCB codes can be computed by: R = N

L = k
(n1+n2−k) .

This implies that the GPCB code rate is independent of the
interleaver size N .

Fig. 2. Systematic GPCB encoding

2) SOFT DECoding of RS code:
If we consider the transmission of block coded binary symbols
{−1,+1} using BPSK signaling over a Gaussian channel, the
sequence R at the input of the RS decoder has the following
expression: R = E +B

where :

R =




r11 · · · r1j · · · r1n
...

... rij
...

...
rm1 · · · rmj · · · rmn




is the received sample word,

E =




e11 · · · e1j · · · e1n
...

... eij
...

...
em1 · · · emj · · · emn




is the transmitted word,

B =




b11 · · · b1j · · · b1n
...

... bij
...

...
bm1 · · · bmj · · · bmn




are Additive White Gaussian Noise (AWGN) samples of
standard deviation σ. Decoding the received sequence R
according to the maximum likelihood criteria is given by :

D = Ci if Pr(E = Ci|R) > Pr(E = Cl|R) ∀l ̸= i
(1)

where:

Ci =




ci11 · · · ci1j · · · ci1n
...

... ciij
...

...
cim1 · · · cimj · · · cimn




is the ith code word of code C with parameters (n, i) and

D =




d11 · · · d1j · · · d1n
...

... dij
...

...
dm1 · · · dmj · · · dmn




The decision corresponding to maximum likelihood transmit-
ted sequence conditionally to R.
For received samples corrupted by AWGN, decoding rule (1)
is simplified into : D = Ci if |R−Ci|2 < |R−Cl|2 ∀l ̸= i
where:

|R− Ci|2 =
n

j=1

l
f=1

(rjf − cijf)
2

III. COMPONENT DECODER

We choose as component decoder the Modified Chase-
Pyndiah algorithm [7]. This decoder works as follows:
The decoder starts by generating a set of codewords which
are in the vicinity of the received vector R. Then, among
those codewords, it selects the nearest codeword from R in
term of Euclidean distance. By doing that it tries to determine
the most likelihood codeword. The reliability of the decoded
bits is given by the log likelihood ratio (LLR) of the decision
dif which is defined by:

LLRif = ln


Pr(ejf = +1|R)

Pr(ejf = −1|R)


(2)

2

Fig. 1. Encoder structure of GPCB

-denoted by Π- before entering in the second encoder. The
codeword of GPCB code, as shown in Fig. 2, consists of
the input block followed by the parity check symbols of both
encoders. In this contribution, several interleaving techniques
were invoked such as random, helical, diagonal and primitive
interleaver.
A systematic GPCB code is based on two component sys-
tematic block codes, C1 with parameters (n1, k) and C2

with parameters (n2, k). Viewing the coding scheme of 1
as single GPCB encoder, the length of the information-word
to be encoded by the GPCB code is given by the size of
the interleaver N = M × k . The first encoder produces
P1 = M×(n1−k) parity check symbols. The second encoder
produces P2 = M × (n2 − k) parity check symbols. Thus
the total number of parity symbols generated by the GPCB
encoder is:P = P1 + P2 = M × (n1 + n2 − 2 × k). The
length of the GPCB codeword is given by: L = N + P =
M × (n1 + n2 − k) Consequently, the code rate of the
GPCB codes can be computed by: R = N

L = k
(n1+n2−k) .

This implies that the GPCB code rate is independent of the
interleaver size N .

Fig. 2. Systematic GPCB encoding

2) SOFT DECoding of RS code:
If we consider the transmission of block coded binary symbols
{−1,+1} using BPSK signaling over a Gaussian channel, the
sequence R at the input of the RS decoder has the following
expression: R = E +B

where :

R =




r11 · · · r1j · · · r1n
...

... rij
...

...
rm1 · · · rmj · · · rmn




is the received sample word,

E =




e11 · · · e1j · · · e1n
...

... eij
...

...
em1 · · · emj · · · emn




is the transmitted word,

B =




b11 · · · b1j · · · b1n
...

... bij
...

...
bm1 · · · bmj · · · bmn




are Additive White Gaussian Noise (AWGN) samples of
standard deviation σ. Decoding the received sequence R
according to the maximum likelihood criteria is given by :

D = Ci if Pr(E = Ci|R) > Pr(E = Cl|R) ∀l ̸= i
(1)

where:

Ci =




ci11 · · · ci1j · · · ci1n
...

... ciij
...

...
cim1 · · · cimj · · · cimn




is the ith code word of code C with parameters (n, i) and

D =




d11 · · · d1j · · · d1n
...

... dij
...

...
dm1 · · · dmj · · · dmn




The decision corresponding to maximum likelihood transmit-
ted sequence conditionally to R.
For received samples corrupted by AWGN, decoding rule (1)
is simplified into : D = Ci if |R−Ci|2 < |R−Cl|2 ∀l ̸= i
where:

|R− Ci|2 =
n

j=1

l
f=1

(rjf − cijf)
2

III. COMPONENT DECODER

We choose as component decoder the Modified Chase-
Pyndiah algorithm [7]. This decoder works as follows:
The decoder starts by generating a set of codewords which
are in the vicinity of the received vector R. Then, among
those codewords, it selects the nearest codeword from R in
term of Euclidean distance. By doing that it tries to determine
the most likelihood codeword. The reliability of the decoded
bits is given by the log likelihood ratio (LLR) of the decision
dif which is defined by:

LLRif = ln


Pr(ejf = +1|R)

Pr(ejf = −1|R)


(2)

2

Fig. 1. Encoder structure of GPCB

-denoted by Π- before entering in the second encoder. The
codeword of GPCB code, as shown in Fig. 2, consists of
the input block followed by the parity check symbols of both
encoders. In this contribution, several interleaving techniques
were invoked such as random, helical, diagonal and primitive
interleaver.
A systematic GPCB code is based on two component sys-
tematic block codes, C1 with parameters (n1, k) and C2

with parameters (n2, k). Viewing the coding scheme of 1
as single GPCB encoder, the length of the information-word
to be encoded by the GPCB code is given by the size of
the interleaver N = M × k . The first encoder produces
P1 = M×(n1−k) parity check symbols. The second encoder
produces P2 = M × (n2 − k) parity check symbols. Thus
the total number of parity symbols generated by the GPCB
encoder is:P = P1 + P2 = M × (n1 + n2 − 2 × k). The
length of the GPCB codeword is given by: L = N + P =
M × (n1 + n2 − k) Consequently, the code rate of the
GPCB codes can be computed by: R = N

L = k
(n1+n2−k) .

This implies that the GPCB code rate is independent of the
interleaver size N .

Fig. 2. Systematic GPCB encoding

2) SOFT DECoding of RS code:
If we consider the transmission of block coded binary symbols
{−1,+1} using BPSK signaling over a Gaussian channel, the
sequence R at the input of the RS decoder has the following
expression: R = E +B

where :

R =




r11 · · · r1j · · · r1n
...

... rij
...

...
rm1 · · · rmj · · · rmn




is the received sample word,

E =




e11 · · · e1j · · · e1n
...

... eij
...

...
em1 · · · emj · · · emn




is the transmitted word,

B =




b11 · · · b1j · · · b1n
...

... bij
...

...
bm1 · · · bmj · · · bmn




are Additive White Gaussian Noise (AWGN) samples of
standard deviation σ. Decoding the received sequence R
according to the maximum likelihood criteria is given by :

D = Ci if Pr(E = Ci|R) > Pr(E = Cl|R) ∀l ̸= i
(1)

where:

Ci =




ci11 · · · ci1j · · · ci1n
...

... ciij
...

...
cim1 · · · cimj · · · cimn




is the ith code word of code C with parameters (n, i) and

D =




d11 · · · d1j · · · d1n
...

... dij
...

...
dm1 · · · dmj · · · dmn




The decision corresponding to maximum likelihood transmit-
ted sequence conditionally to R.
For received samples corrupted by AWGN, decoding rule (1)
is simplified into : D = Ci if |R−Ci|2 < |R−Cl|2 ∀l ̸= i
where:

|R− Ci|2 =
n

j=1

l
f=1

(rjf − cijf)
2

III. COMPONENT DECODER

We choose as component decoder the Modified Chase-
Pyndiah algorithm [7]. This decoder works as follows:
The decoder starts by generating a set of codewords which
are in the vicinity of the received vector R. Then, among
those codewords, it selects the nearest codeword from R in
term of Euclidean distance. By doing that it tries to determine
the most likelihood codeword. The reliability of the decoded
bits is given by the log likelihood ratio (LLR) of the decision
dif which is defined by:

LLRif = ln


Pr(ejf = +1|R)

Pr(ejf = −1|R)


(2)

2

Fig. 1. Encoder structure of GPCB

-denoted by Π- before entering in the second encoder. The
codeword of GPCB code, as shown in Fig. 2, consists of
the input block followed by the parity check symbols of both
encoders. In this contribution, several interleaving techniques
were invoked such as random, helical, diagonal and primitive
interleaver.
A systematic GPCB code is based on two component sys-
tematic block codes, C1 with parameters (n1, k) and C2

with parameters (n2, k). Viewing the coding scheme of 1
as single GPCB encoder, the length of the information-word
to be encoded by the GPCB code is given by the size of
the interleaver N = M × k . The first encoder produces
P1 = M×(n1−k) parity check symbols. The second encoder
produces P2 = M × (n2 − k) parity check symbols. Thus
the total number of parity symbols generated by the GPCB
encoder is:P = P1 + P2 = M × (n1 + n2 − 2 × k). The
length of the GPCB codeword is given by: L = N + P =
M × (n1 + n2 − k) Consequently, the code rate of the
GPCB codes can be computed by: R = N

L = k
(n1+n2−k) .

This implies that the GPCB code rate is independent of the
interleaver size N .

Fig. 2. Systematic GPCB encoding

2) SOFT DECoding of RS code:
If we consider the transmission of block coded binary symbols
{−1,+1} using BPSK signaling over a Gaussian channel, the
sequence R at the input of the RS decoder has the following
expression: R = E +B

where :

R =




r11 · · · r1j · · · r1n
...

... rij
...

...
rm1 · · · rmj · · · rmn




is the received sample word,

E =




e11 · · · e1j · · · e1n
...

... eij
...

...
em1 · · · emj · · · emn




is the transmitted word,

B =




b11 · · · b1j · · · b1n
...

... bij
...

...
bm1 · · · bmj · · · bmn




are Additive White Gaussian Noise (AWGN) samples of
standard deviation σ. Decoding the received sequence R
according to the maximum likelihood criteria is given by :

D = Ci if Pr(E = Ci|R) > Pr(E = Cl|R) ∀l ̸= i
(1)

where:

Ci =




ci11 · · · ci1j · · · ci1n
...

... ciij
...

...
cim1 · · · cimj · · · cimn




is the ith code word of code C with parameters (n, i) and

D =




d11 · · · d1j · · · d1n
...

... dij
...

...
dm1 · · · dmj · · · dmn




The decision corresponding to maximum likelihood transmit-
ted sequence conditionally to R.
For received samples corrupted by AWGN, decoding rule (1)
is simplified into : D = Ci if |R−Ci|2 < |R−Cl|2 ∀l ̸= i
where:

|R− Ci|2 =
n

j=1

l
f=1

(rjf − cijf)
2

III. COMPONENT DECODER

We choose as component decoder the Modified Chase-
Pyndiah algorithm [7]. This decoder works as follows:
The decoder starts by generating a set of codewords which
are in the vicinity of the received vector R. Then, among
those codewords, it selects the nearest codeword from R in
term of Euclidean distance. By doing that it tries to determine
the most likelihood codeword. The reliability of the decoded
bits is given by the log likelihood ratio (LLR) of the decision
dif which is defined by:

LLRif = ln


Pr(ejf = +1|R)

Pr(ejf = −1|R)


(2)

Turbo decoding of concatenated codes based on RS
codes using adapted scaling factors

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 13

3

Where ejf is the binary element in position (j, f) of the
transmitted code word E, 1 ≤ j ≤ n et 1 ≤ f ≤ m. Using the
bayes rule and taking into account that the noise is Gaussian,

LLRif = log


Σq∈S+1

j
exp−(|R−Cq|2

2σ2)

Σq∈S−1
j

exp−(|R−Cq|2
2σ2)


 (3)

where Si
j represent the set of codewords having a bit equal to

i(i = 1) in position j. LLRif can be approximated, in the case
of the AWGN, by: The expression of the can be approximated,
in the case of the AWGN, by:

LLRif =
1

2σ2


|R− Cmin(−1)|2 − |R− Cmin(+1)|2


(4)

Where c
min(+1)
jf and c

min(−1)
jf are two codewords at mini-

mum Euclidean distance from R with c
min(+1)
jf = +1 and

c
min(−1)
jf = −1 , cmin(+1)

jf and c
min(−1)
jf are chosen among the

subset of code word given by Chase algorithm. By expanding
relation 4 we obtain:

LLRif =
2

σ2


rjf +

n
x=1x ̸=j

n
z=1z ̸=f

rxzc
min(+1)
xz ρxz




Where

((x, z) ̸= (j, f)) ρxz =


0, if c

min(+1)
xz = c

min(−1)
xz

1, if c
min(+1)
xz ̸= c

min(−1)
xz

If we normalize the approximated LLR of dif with respect to
2
σ2 we obtain:

r
′

jf = (
σ2

2
)LLRif = rjf + wjf

The estimated normalized LLR of decision dif , r
′

jf is given
by input samples rjf plus wjf which is independent of rjf .
The LLR of r

′

jf is an estimation of the soft decision of the
RS decoder.
To compute the normalized LLRif , of binary elements at
the output RS decoder, we must first select the codeword
at minimum Euclidean distance from R. Let Cmin(+i) be
this code word, Cmin(+i) has a binary element i at position
(j, f)(i = ±1). Then we look for codeword Cmin(+i) at
minimal Euclidean distance from R among the codeword
subset obtained by Chase algorithm.
Cmin(−i) must have −i as binary element at position (j, f).
If the Cmin(+i) codeword is found, the soft decision r

′

jf can
be computed using the relation given bellow:

r
′

jf =


(Mmin(−i) −Mmin(i))

4


c
min(i)
jf

Where Mmin(−i) and Mmin(i) represent respectively the
c
min(−i)
jf Euclidean distance from R and c

min(i)
jf Euclidean

distance from R.
Else we use the relation: r

′

jf = (12σR + |rij |)cmin(i)
jf where

σR is the standard deviation of the decoder input sequence R.

Fig. 3. Iterative decoding structure for the GPCB codes

IV. ITERATIVE DECODING OF GPCB CODES

A. GPCB decoder

The decoding of the GPCB codes is iterative. The decoder
structure is shown in Fig. 3. An iteration consists in using
two component decoders serially. The first one uses the
systematic information and the first parity check symbols in
order to generate extrinsic information W as in the Modified
Chase-Pyndiah algorithm. This extrinsic information is used
to update the reliabilities of the systematic information which
will be interleaved and feed into the second decoder with the
second parity check symbols received from the channel. The
second decoder also generates the extrinsic information using
Chase-Pyndiah decoder, and then updates the reliabilities of
the systematic information for the second time. The updated
reliabilities will be desinterleaved and feed again into first
decoder, for the next iteration. The process resumes until a
maximum number of iterations is reached.

B. Parameters α and β

1) Weighting factor α: To reduce the dependency of α on
the product code, the mean absolute value of the extrinsic
information |W | is normalized to one. The evolution of α
with the decoding number is:

α = [0.00, 0.01, 0.08, 0.12, 0.16, 0.20, 0.24, 0.28, 0.32, 0.36,

0.40, 0.44, 0.48, 0.52, 0.56, 0.60, 0.61, 0.67, 0.70, 0.72]

2) Reliability factor β: To operate under optimal condi-
tions, the reliability factor should be determined as a function
of the BER. For practical considerations, we have fixed the
evolution of β with the decoding step to the following values:
β with the decoding number is:

β = [0.56, 0.60, 0.64, 0.68, 0.72, 0.76, 0.80, 0.82, 0.86, 0.88,

0.90, 0.91, 0.93, 0.95, 0.97, 0.99, 0.99, 1.00, 1.00, 1.00]

We have determined the values of α and β empirically
[16]. The later parameters play a crucial role to have good
performance. So, the better parameters you have the better
performance you will gain. Therefore, we should carefully
determine these parameters. To obtain good parameters, we
choose some condition for which codes are sensitive. Thus,
we take the parameter M equal to 100, and relatively high
component code length.
We begin our process by setting the number of iterations in
1, and vary the value of α , where 0 < α < 1, in order to
have good performance, and keep the value of α which gives
the best BER (bit error rate). Next, we vary the value of the

2

Fig. 1. Encoder structure of GPCB

-denoted by Π- before entering in the second encoder. The
codeword of GPCB code, as shown in Fig. 2, consists of
the input block followed by the parity check symbols of both
encoders. In this contribution, several interleaving techniques
were invoked such as random, helical, diagonal and primitive
interleaver.
A systematic GPCB code is based on two component sys-
tematic block codes, C1 with parameters (n1, k) and C2

with parameters (n2, k). Viewing the coding scheme of 1
as single GPCB encoder, the length of the information-word
to be encoded by the GPCB code is given by the size of
the interleaver N = M × k . The first encoder produces
P1 = M×(n1−k) parity check symbols. The second encoder
produces P2 = M × (n2 − k) parity check symbols. Thus
the total number of parity symbols generated by the GPCB
encoder is:P = P1 + P2 = M × (n1 + n2 − 2 × k). The
length of the GPCB codeword is given by: L = N + P =
M × (n1 + n2 − k) Consequently, the code rate of the
GPCB codes can be computed by: R = N

L = k
(n1+n2−k) .

This implies that the GPCB code rate is independent of the
interleaver size N .

Fig. 2. Systematic GPCB encoding

2) SOFT DECoding of RS code:
If we consider the transmission of block coded binary symbols
{−1,+1} using BPSK signaling over a Gaussian channel, the
sequence R at the input of the RS decoder has the following
expression: R = E +B

where :

R =




r11 · · · r1j · · · r1n
...

... rij
...

...
rm1 · · · rmj · · · rmn




is the received sample word,

E =




e11 · · · e1j · · · e1n
...

... eij
...

...
em1 · · · emj · · · emn




is the transmitted word,

B =




b11 · · · b1j · · · b1n
...

... bij
...

...
bm1 · · · bmj · · · bmn




are Additive White Gaussian Noise (AWGN) samples of
standard deviation σ. Decoding the received sequence R
according to the maximum likelihood criteria is given by :

D = Ci if Pr(E = Ci|R) > Pr(E = Cl|R) ∀l ̸= i
(1)

where:

Ci =




ci11 · · · ci1j · · · ci1n
...

... ciij
...

...
cim1 · · · cimj · · · cimn




is the ith code word of code C with parameters (n, i) and

D =




d11 · · · d1j · · · d1n
...

... dij
...

...
dm1 · · · dmj · · · dmn




The decision corresponding to maximum likelihood transmit-
ted sequence conditionally to R.
For received samples corrupted by AWGN, decoding rule (1)
is simplified into : D = Ci if |R−Ci|2 < |R−Cl|2 ∀l ̸= i
where:

|R− Ci|2 =
n

j=1

l
f=1

(rjf − cijf)
2

III. COMPONENT DECODER

We choose as component decoder the Modified Chase-
Pyndiah algorithm [7]. This decoder works as follows:
The decoder starts by generating a set of codewords which
are in the vicinity of the received vector R. Then, among
those codewords, it selects the nearest codeword from R in
term of Euclidean distance. By doing that it tries to determine
the most likelihood codeword. The reliability of the decoded
bits is given by the log likelihood ratio (LLR) of the decision
dif which is defined by:

LLRif = ln


Pr(ejf = +1|R)

Pr(ejf = −1|R)


(2)

Turbo decoding of concatenated codes based on RS
codes using adapted scaling factors

MARCH 2022 • VOLUME XIV • NUMBER 114

INFOCOMMUNICATIONS JOURNAL

4

parameter β , where 0 < β < 1, in the same way.
Once the good parameters are chosen, for the first iteration, we
increment the number of iterations, and we look for the good
ones for the second iteration. Then we come back without
decrementing the number of iterations so as to adjust the
parameters α and β for eventual improvement of the per-
formance. Afterwards, we increment the number of iterations
and repeat again the same process until a maximal number of
iterations is reached. The coefficients α and β used in Chase-
Pyndiah algorithm are listed in table V.

C. Adapted parameter α(p)

1) Parameter α(p): The role of the parameter α(p) is
vital in the decoding performance. In the works [2][9][16]
and [17], this parameter was experimentally predetermined.
Its values are chosen such as the BER = 10−5 is attained
with the minimum number of iterations. This process is too
hard. We have adapted the parameters to the circumstances
of the product codes and turbo like-codes to overcome this
problem. The following formula gives the expression of α(p) :

α(p) =
1

σ2
W (p−1)

where σ2
W (p−1) denote the variance of the extrinsic infor-

mation delivered by the previous decoder. The performance
obtained by using the adapted parameter α(p) is comparable
to those obtained by the predetermined parameter. Therefore,
we don’t need to re-optimize this parameter if we change the
application.

2) Parameter β: In case of absence of competitor all the
code words have an element cj equal to dj . This means that
all codewords vote for the same decision. In this case the
reliability produced by the decoder must follow the fact that
all the words agree on the same decision dj . This can be
translated by the following relation:

γdj = β.dj

where
β = (σλ + |λj |)

where σλ is the standard deviation of the decoder input
sequence R.

V. RESULTS AND DISCUSSION

In this Section, the performances of generalized parallel
concatenated block codes based on RS codes are evaluated.
Transmission over the additive white Gaussian noise (AWGN)
in channel and binary antipodal modulation are used. We are
interested in the information bit error rate (BER) for different
signal to noise ratios per information bit Eb

N0
in dB. There are

many parameters which affect the performance of GPCB-RS
codes when decoded with iterative decoder. Accordingly, we
studied the effects of the following parameters on the decoder
performance, namely the number of decoding iterations, the
component codes and interleaver size and patterns.
The simulation parameters are summarized in this table V:

TABLE I
SIMULATION PARAMETERS

Parameter Value
Modulation BPSK

Environnement The C Language
Cannel AWGN

Interleaver Random interleaver (default)
Diagonal interleaver
Primitive interleaver
Helical interleaver

Elementary decoder Chase-Pyndiah
Iterations from 1 to 10 (default)

Interleaver size 1× k, 10× k, 100× k, 300× k

A. Effect of iterations

In this part of simulations we compare between the
algorithm of Chase-Pyndiah (CP) which uses the empirical
parameters and the version of this algorithm which we
modified by using the adapted parameters, called algorithm
Modified Chase-Pyndiah (MCP).

2 3 4 5 6

10−5

10−4

10−3

10−2

10−1

Eb

N0

B
E

R

MCP. iter. = 1

CP. iter. = 1

MCP. iter. = 5

MCP. iter. = 9

CP. iter. = 10

MCP. iter. = 20

Fig. 4. Effect of iterations on iterative decoding of GPCB-RS(67 , 59) Code,
with M=100, over AWGN channel

Fig. 4 shows the performance of the code GPCB-RS (67,
59), with M = 100. This figure shows that the slope of curves
and coding gain are improved by increasing the number of
iterations. After the 10th iteration, the amelioration of the
coding gain becomes negligible for Chase-Pyndiah decoder
(CP), whereas the Modified Chase-Pyndiah decoder (MCP)
can go up to the 20th iteration.

B. Effect of the parameter M

The Fig. 5 shows the effect of the multi-block M . The gain
reaches 1.4dB as we pass from M = 1 to M = 10,decreases
to 0.4dB between M = 10 to M = 100 and becomes
negligible beyond M = 100. This demonstrates how effective
is the multi-block M .

4

parameter β , where 0 < β < 1, in the same way.
Once the good parameters are chosen, for the first iteration, we
increment the number of iterations, and we look for the good
ones for the second iteration. Then we come back without
decrementing the number of iterations so as to adjust the
parameters α and β for eventual improvement of the per-
formance. Afterwards, we increment the number of iterations
and repeat again the same process until a maximal number of
iterations is reached. The coefficients α and β used in Chase-
Pyndiah algorithm are listed in table V.

C. Adapted parameter α(p)

1) Parameter α(p): The role of the parameter α(p) is
vital in the decoding performance. In the works [2][9][16]
and [17], this parameter was experimentally predetermined.
Its values are chosen such as the BER = 10−5 is attained
with the minimum number of iterations. This process is too
hard. We have adapted the parameters to the circumstances
of the product codes and turbo like-codes to overcome this
problem. The following formula gives the expression of α(p) :

α(p) =
1

σ2
W (p−1)

where σ2
W (p−1) denote the variance of the extrinsic infor-

mation delivered by the previous decoder. The performance
obtained by using the adapted parameter α(p) is comparable
to those obtained by the predetermined parameter. Therefore,
we don’t need to re-optimize this parameter if we change the
application.

2) Parameter β: In case of absence of competitor all the
code words have an element cj equal to dj . This means that
all codewords vote for the same decision. In this case the
reliability produced by the decoder must follow the fact that
all the words agree on the same decision dj . This can be
translated by the following relation:

γdj = β.dj

where
β = (σλ + |λj |)

where σλ is the standard deviation of the decoder input
sequence R.

V. RESULTS AND DISCUSSION

In this Section, the performances of generalized parallel
concatenated block codes based on RS codes are evaluated.
Transmission over the additive white Gaussian noise (AWGN)
in channel and binary antipodal modulation are used. We are
interested in the information bit error rate (BER) for different
signal to noise ratios per information bit Eb

N0
in dB. There are

many parameters which affect the performance of GPCB-RS
codes when decoded with iterative decoder. Accordingly, we
studied the effects of the following parameters on the decoder
performance, namely the number of decoding iterations, the
component codes and interleaver size and patterns.
The simulation parameters are summarized in this table V:

TABLE I
SIMULATION PARAMETERS

Parameter Value
Modulation BPSK

Environnement The C Language
Cannel AWGN

Interleaver Random interleaver (default)
Diagonal interleaver
Primitive interleaver
Helical interleaver

Elementary decoder Chase-Pyndiah
Iterations from 1 to 10 (default)

Interleaver size 1× k, 10× k, 100× k, 300× k

A. Effect of iterations

In this part of simulations we compare between the
algorithm of Chase-Pyndiah (CP) which uses the empirical
parameters and the version of this algorithm which we
modified by using the adapted parameters, called algorithm
Modified Chase-Pyndiah (MCP).

2 3 4 5 6

10−5

10−4

10−3

10−2

10−1

Eb

N0

B
E

R

MCP. iter. = 1

CP. iter. = 1

MCP. iter. = 5

MCP. iter. = 9

CP. iter. = 10

MCP. iter. = 20

Fig. 4. Effect of iterations on iterative decoding of GPCB-RS(67 , 59) Code,
with M=100, over AWGN channel

Fig. 4 shows the performance of the code GPCB-RS (67,
59), with M = 100. This figure shows that the slope of curves
and coding gain are improved by increasing the number of
iterations. After the 10th iteration, the amelioration of the
coding gain becomes negligible for Chase-Pyndiah decoder
(CP), whereas the Modified Chase-Pyndiah decoder (MCP)
can go up to the 20th iteration.

B. Effect of the parameter M

The Fig. 5 shows the effect of the multi-block M . The gain
reaches 1.4dB as we pass from M = 1 to M = 10,decreases
to 0.4dB between M = 10 to M = 100 and becomes
negligible beyond M = 100. This demonstrates how effective
is the multi-block M .

4

parameter β , where 0 < β < 1, in the same way.
Once the good parameters are chosen, for the first iteration, we
increment the number of iterations, and we look for the good
ones for the second iteration. Then we come back without
decrementing the number of iterations so as to adjust the
parameters α and β for eventual improvement of the per-
formance. Afterwards, we increment the number of iterations
and repeat again the same process until a maximal number of
iterations is reached. The coefficients α and β used in Chase-
Pyndiah algorithm are listed in table V.

C. Adapted parameter α(p)

1) Parameter α(p): The role of the parameter α(p) is
vital in the decoding performance. In the works [2][9][16]
and [17], this parameter was experimentally predetermined.
Its values are chosen such as the BER = 10−5 is attained
with the minimum number of iterations. This process is too
hard. We have adapted the parameters to the circumstances
of the product codes and turbo like-codes to overcome this
problem. The following formula gives the expression of α(p) :

α(p) =
1

σ2
W (p−1)

where σ2
W (p−1) denote the variance of the extrinsic infor-

mation delivered by the previous decoder. The performance
obtained by using the adapted parameter α(p) is comparable
to those obtained by the predetermined parameter. Therefore,
we don’t need to re-optimize this parameter if we change the
application.

2) Parameter β: In case of absence of competitor all the
code words have an element cj equal to dj . This means that
all codewords vote for the same decision. In this case the
reliability produced by the decoder must follow the fact that
all the words agree on the same decision dj . This can be
translated by the following relation:

γdj = β.dj

where
β = (σλ + |λj |)

where σλ is the standard deviation of the decoder input
sequence R.

V. RESULTS AND DISCUSSION

In this Section, the performances of generalized parallel
concatenated block codes based on RS codes are evaluated.
Transmission over the additive white Gaussian noise (AWGN)
in channel and binary antipodal modulation are used. We are
interested in the information bit error rate (BER) for different
signal to noise ratios per information bit Eb

N0
in dB. There are

many parameters which affect the performance of GPCB-RS
codes when decoded with iterative decoder. Accordingly, we
studied the effects of the following parameters on the decoder
performance, namely the number of decoding iterations, the
component codes and interleaver size and patterns.
The simulation parameters are summarized in this table V:

TABLE I
SIMULATION PARAMETERS

Parameter Value
Modulation BPSK

Environnement The C Language
Cannel AWGN

Interleaver Random interleaver (default)
Diagonal interleaver
Primitive interleaver
Helical interleaver

Elementary decoder Chase-Pyndiah
Iterations from 1 to 10 (default)

Interleaver size 1× k, 10× k, 100× k, 300× k

A. Effect of iterations

In this part of simulations we compare between the
algorithm of Chase-Pyndiah (CP) which uses the empirical
parameters and the version of this algorithm which we
modified by using the adapted parameters, called algorithm
Modified Chase-Pyndiah (MCP).

2 3 4 5 6

10−5

10−4

10−3

10−2

10−1

Eb

N0

B
E

R

MCP. iter. = 1

CP. iter. = 1

MCP. iter. = 5

MCP. iter. = 9

CP. iter. = 10

MCP. iter. = 20

Fig. 4. Effect of iterations on iterative decoding of GPCB-RS(67 , 59) Code,
with M=100, over AWGN channel

Fig. 4 shows the performance of the code GPCB-RS (67,
59), with M = 100. This figure shows that the slope of curves
and coding gain are improved by increasing the number of
iterations. After the 10th iteration, the amelioration of the
coding gain becomes negligible for Chase-Pyndiah decoder
(CP), whereas the Modified Chase-Pyndiah decoder (MCP)
can go up to the 20th iteration.

B. Effect of the parameter M

The Fig. 5 shows the effect of the multi-block M . The gain
reaches 1.4dB as we pass from M = 1 to M = 10,decreases
to 0.4dB between M = 10 to M = 100 and becomes
negligible beyond M = 100. This demonstrates how effective
is the multi-block M .

4

parameter β , where 0 < β < 1, in the same way.
Once the good parameters are chosen, for the first iteration, we
increment the number of iterations, and we look for the good
ones for the second iteration. Then we come back without
decrementing the number of iterations so as to adjust the
parameters α and β for eventual improvement of the per-
formance. Afterwards, we increment the number of iterations
and repeat again the same process until a maximal number of
iterations is reached. The coefficients α and β used in Chase-
Pyndiah algorithm are listed in table V.

C. Adapted parameter α(p)

1) Parameter α(p): The role of the parameter α(p) is
vital in the decoding performance. In the works [2][9][16]
and [17], this parameter was experimentally predetermined.
Its values are chosen such as the BER = 10−5 is attained
with the minimum number of iterations. This process is too
hard. We have adapted the parameters to the circumstances
of the product codes and turbo like-codes to overcome this
problem. The following formula gives the expression of α(p) :

α(p) =
1

σ2
W (p−1)

where σ2
W (p−1) denote the variance of the extrinsic infor-

mation delivered by the previous decoder. The performance
obtained by using the adapted parameter α(p) is comparable
to those obtained by the predetermined parameter. Therefore,
we don’t need to re-optimize this parameter if we change the
application.

2) Parameter β: In case of absence of competitor all the
code words have an element cj equal to dj . This means that
all codewords vote for the same decision. In this case the
reliability produced by the decoder must follow the fact that
all the words agree on the same decision dj . This can be
translated by the following relation:

γdj = β.dj

where
β = (σλ + |λj |)

where σλ is the standard deviation of the decoder input
sequence R.

V. RESULTS AND DISCUSSION

In this Section, the performances of generalized parallel
concatenated block codes based on RS codes are evaluated.
Transmission over the additive white Gaussian noise (AWGN)
in channel and binary antipodal modulation are used. We are
interested in the information bit error rate (BER) for different
signal to noise ratios per information bit Eb

N0
in dB. There are

many parameters which affect the performance of GPCB-RS
codes when decoded with iterative decoder. Accordingly, we
studied the effects of the following parameters on the decoder
performance, namely the number of decoding iterations, the
component codes and interleaver size and patterns.
The simulation parameters are summarized in this table V:

TABLE I
SIMULATION PARAMETERS

Parameter Value
Modulation BPSK

Environnement The C Language
Cannel AWGN

Interleaver Random interleaver (default)
Diagonal interleaver
Primitive interleaver
Helical interleaver

Elementary decoder Chase-Pyndiah
Iterations from 1 to 10 (default)

Interleaver size 1× k, 10× k, 100× k, 300× k

A. Effect of iterations

In this part of simulations we compare between the
algorithm of Chase-Pyndiah (CP) which uses the empirical
parameters and the version of this algorithm which we
modified by using the adapted parameters, called algorithm
Modified Chase-Pyndiah (MCP).

2 3 4 5 6

10−5

10−4

10−3

10−2

10−1

Eb

N0

B
E

R

MCP. iter. = 1

CP. iter. = 1

MCP. iter. = 5

MCP. iter. = 9

CP. iter. = 10

MCP. iter. = 20

Fig. 4. Effect of iterations on iterative decoding of GPCB-RS(67 , 59) Code,
with M=100, over AWGN channel

Fig. 4 shows the performance of the code GPCB-RS (67,
59), with M = 100. This figure shows that the slope of curves
and coding gain are improved by increasing the number of
iterations. After the 10th iteration, the amelioration of the
coding gain becomes negligible for Chase-Pyndiah decoder
(CP), whereas the Modified Chase-Pyndiah decoder (MCP)
can go up to the 20th iteration.

B. Effect of the parameter M

The Fig. 5 shows the effect of the multi-block M . The gain
reaches 1.4dB as we pass from M = 1 to M = 10,decreases
to 0.4dB between M = 10 to M = 100 and becomes
negligible beyond M = 100. This demonstrates how effective
is the multi-block M .

4

parameter β , where 0 < β < 1, in the same way.
Once the good parameters are chosen, for the first iteration, we
increment the number of iterations, and we look for the good
ones for the second iteration. Then we come back without
decrementing the number of iterations so as to adjust the
parameters α and β for eventual improvement of the per-
formance. Afterwards, we increment the number of iterations
and repeat again the same process until a maximal number of
iterations is reached. The coefficients α and β used in Chase-
Pyndiah algorithm are listed in table V.

C. Adapted parameter α(p)

1) Parameter α(p): The role of the parameter α(p) is
vital in the decoding performance. In the works [2][9][16]
and [17], this parameter was experimentally predetermined.
Its values are chosen such as the BER = 10−5 is attained
with the minimum number of iterations. This process is too
hard. We have adapted the parameters to the circumstances
of the product codes and turbo like-codes to overcome this
problem. The following formula gives the expression of α(p) :

α(p) =
1

σ2
W (p−1)

where σ2
W (p−1) denote the variance of the extrinsic infor-

mation delivered by the previous decoder. The performance
obtained by using the adapted parameter α(p) is comparable
to those obtained by the predetermined parameter. Therefore,
we don’t need to re-optimize this parameter if we change the
application.

2) Parameter β: In case of absence of competitor all the
code words have an element cj equal to dj . This means that
all codewords vote for the same decision. In this case the
reliability produced by the decoder must follow the fact that
all the words agree on the same decision dj . This can be
translated by the following relation:

γdj = β.dj

where
β = (σλ + |λj |)

where σλ is the standard deviation of the decoder input
sequence R.

V. RESULTS AND DISCUSSION

In this Section, the performances of generalized parallel
concatenated block codes based on RS codes are evaluated.
Transmission over the additive white Gaussian noise (AWGN)
in channel and binary antipodal modulation are used. We are
interested in the information bit error rate (BER) for different
signal to noise ratios per information bit Eb

N0
in dB. There are

many parameters which affect the performance of GPCB-RS
codes when decoded with iterative decoder. Accordingly, we
studied the effects of the following parameters on the decoder
performance, namely the number of decoding iterations, the
component codes and interleaver size and patterns.
The simulation parameters are summarized in this table V:

TABLE I
SIMULATION PARAMETERS

Parameter Value
Modulation BPSK

Environnement The C Language
Cannel AWGN

Interleaver Random interleaver (default)
Diagonal interleaver
Primitive interleaver
Helical interleaver

Elementary decoder Chase-Pyndiah
Iterations from 1 to 10 (default)

Interleaver size 1× k, 10× k, 100× k, 300× k

A. Effect of iterations

In this part of simulations we compare between the
algorithm of Chase-Pyndiah (CP) which uses the empirical
parameters and the version of this algorithm which we
modified by using the adapted parameters, called algorithm
Modified Chase-Pyndiah (MCP).

2 3 4 5 6

10−5

10−4

10−3

10−2

10−1

Eb

N0

B
E

R

MCP. iter. = 1

CP. iter. = 1

MCP. iter. = 5

MCP. iter. = 9

CP. iter. = 10

MCP. iter. = 20

Fig. 4. Effect of iterations on iterative decoding of GPCB-RS(67 , 59) Code,
with M=100, over AWGN channel

Fig. 4 shows the performance of the code GPCB-RS (67,
59), with M = 100. This figure shows that the slope of curves
and coding gain are improved by increasing the number of
iterations. After the 10th iteration, the amelioration of the
coding gain becomes negligible for Chase-Pyndiah decoder
(CP), whereas the Modified Chase-Pyndiah decoder (MCP)
can go up to the 20th iteration.

B. Effect of the parameter M

The Fig. 5 shows the effect of the multi-block M . The gain
reaches 1.4dB as we pass from M = 1 to M = 10,decreases
to 0.4dB between M = 10 to M = 100 and becomes
negligible beyond M = 100. This demonstrates how effective
is the multi-block M .

Turbo decoding of concatenated codes based on RS
codes using adapted scaling factors

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 15

References

	 [1]	 A. Picart and R. Pyndiah, “Adapted iterative decoding of product
codes,” in Global Telecommunications Conference, 1999. GLOBE-
COM’99, vol. 5. IEEE, 1999, pp. 2357–2362.

		 doi: 10.1109/GLOCOM.1999.831724.
	 [2]	 O. Aitsab and R. Pyndiah, “Performance of concatenated Reed-

Solomon/convolutional codes with iterative decoding,” in Global
Telecommunications Conference, 1997. GLOBECOM’97., IEEE, vol.
2. IEEE, 1997, pp. 934–938, doi: 10.1109/GLOCOM.1997.638463.

	 [3]	 Seok-Ho Chang, P. C. Cosman, and L. B. Milstein, “Iterative Channel
Decoding of FEC-Based Multiple-Description Codes,” IEEE Transac-
tions on Image Processing, vol. 21, no. 3, pp. 1138–1152, Mar. 2012,
doi: 10.1109/TIP.2011.2169973.

	 [4]	 J. Son, J. J. Kong, and K. Yang, “Efficient decoding of block turbo
codes,” Journal of Communications and Networks, vol. 20, no. 4, pp.
345–353, Aug. 2018, doi: 10.1109/JCN.2018.000050.

	 [5]	 D. Chase, “Class of algorithms for decoding block codes with channel
measurement information,” IEEE Transactions on Information theory,
vol. 18, no. 1, pp. 170–182, 1972, doi: 10.1109/TIT.1972.1054746.

	 [6]	 P. Wu and N. Jindal, “Performance of hybrid-arq in block-fading
channels: A fixed outage probability analysis,” IEEE Transactions on
Communications, vol. 58, no. 4, pp. 1129–1141, 2010,

		 doi: 10.1109/TCOMM.2010.04.080622.
	 [7]	 A. Farchane and M. Belkasmi, “New efficient decoder for product

and concatenated block codes,” Journal of Telecommunication, vol.
12, pp. 17–22, 2012.

5

2 3 4 5 6

10−5

10−4

10−3

10−2

10−1

Eb

N0

B
E

R

M = 1

M = 10

M = 100

M = 300

Fig. 5. Effect of the parameter M on iterative decoding of GPCB-RS(67 ,
59) code, over AWGN channel

C. Interleaver structure effect

3 3.5 4 4.5 5

10−6

10−5

10−4

10−3

10−2

10−1

Eb

N0

B
E

R

Diagonal Interlever

Random Interlever

Helical Interlever

Primitive Interlever

Fig. 6. Interleaver structure effect on Iterative decoding of GPCB-RS(67 ,
59) Code, with M=100, over AWGN channel To

To study the influence of the interleaver pattern on the
GPCB-RS codes performance, we have evaluated the BER
versus Eb

N0
of the GPCB-RS (67, 59) code using different

interleaver structures such as diagonal, helical, primitive and
random interleaver with parameter M = 100. The Fig. 6
shows the performance results. according to this figure we
observe that the Random interleaver outperforms the other
ones by about 0.5dB at TEB = 10−5.

D. Effect of multi-blocs

To evaluate the performance of the generalized parallel
concatenated block codes, we compare the coding gain at

2 3 4 5

10−5

10−4

10−3

10−2

10−1

Eb

N0

B
E

R

Shannon

GPCB − RS (131, 123)

GPCB − RS (67, 59)

Fig. 7. Effect of multi-blocs on iterative decoding of GPCB codes

the 20th iteration of the following codes GPCB-RS (67,
59), GPCB-RS (131, 123), with the same code rate 0.82
and the parameter M = 100. The performance is shown in
Fig. 7. From this figure, we observe that the performance
becomes worse with increasing the length of the component
code. The GPCB-RS (69,57), GPCB-RS (131, 123) codes are
respectively 2.3, 2.8 away from their Shannon limits.

VI. CONCLUSION

In this paper, we have extended the work that has been done
to decode generalized concatenated block codes based on BCH
codes for RS codes. We have used adapted parameters in order
to avoid determining its value empirically. The simulation
results show that the adapted parameters are effective, as it
can be demonstrated in the asymptotic performance.
This work can be extended to produce codes and generalized
serially concatenated block based on RS codes adopting the
adapted parameters.

REFERENCES

[1] A. Picart and R. Pyndiah, “Adapted iterative decoding of product
codes,” in Global Telecommunications Conference, 1999. GLOBE-
COM’99, vol. 5. IEEE, 1999, pp. 2357–2362. DOI: 10.1109/GLO-
COM.1999.831 724.

[2] O. Aitsab and R. Pyndiah, “Performance of concatenated Reed-
Solomon/convolutional codes with iterative decoding,” in Global
Telecommunications Conference, 1997. GLOBECOM’97., IEEE, vol. 2.
IEEE, 1997, pp. 934–938, DOI: 10.1109/GLOCOM.1997.638 463.

[3] Seok-Ho Chang, P. C. Cosman, and L. B. Milstein, “Iterative Channel
Decoding of FEC-Based Multiple-Description Codes,” IEEE Transac-
tions on Image Processing, vol. 21, no. 3, pp. 1138–1152, Mar. 2012,
DOI: 10.1109/TIP.2011.2169973.

[4] J. Son, J. J. Kong, and K. Yang, “Efficient decoding of block turbo
codes,” Journal of Communications and Networks, vol. 20, no. 4, pp.
345–353, Aug. 2018, DOI: 10.1109/JCN.2018.000050.

[5] D. Chase, “Class of algorithms for decoding block codes with channel
measurement information,” IEEE Transactions on Information theory,
vol. 18, no. 1, pp. 170–182, 1972, DOI: 10.1109/TIT.1972.1054746.

[6] P. Wu and N. Jindal, “Performance of hybrid-arq in block-fading
channels: A fixed outage probability analysis,” IEEE Transactions
on Communications, vol. 58, no. 4, pp. 1129–1141, 2010, DOI:
10.1109/TCOMM.2010.04.080622.

5

2 3 4 5 6

10−5

10−4

10−3

10−2

10−1

Eb

N0

B
E

R

M = 1

M = 10

M = 100

M = 300

Fig. 5. Effect of the parameter M on iterative decoding of GPCB-RS(67 ,
59) code, over AWGN channel

C. Interleaver structure effect

3 3.5 4 4.5 5

10−6

10−5

10−4

10−3

10−2

10−1

Eb

N0

B
E

R

Diagonal Interlever

Random Interlever

Helical Interlever

Primitive Interlever

Fig. 6. Interleaver structure effect on Iterative decoding of GPCB-RS(67 ,
59) Code, with M=100, over AWGN channel To

To study the influence of the interleaver pattern on the
GPCB-RS codes performance, we have evaluated the BER
versus Eb

N0
of the GPCB-RS (67, 59) code using different

interleaver structures such as diagonal, helical, primitive and
random interleaver with parameter M = 100. The Fig. 6
shows the performance results. according to this figure we
observe that the Random interleaver outperforms the other
ones by about 0.5dB at TEB = 10−5.

D. Effect of multi-blocs

To evaluate the performance of the generalized parallel
concatenated block codes, we compare the coding gain at

2 3 4 5

10−5

10−4

10−3

10−2

10−1

Eb

N0

B
E

R

Shannon

GPCB − RS (131, 123)

GPCB − RS (67, 59)

Fig. 7. Effect of multi-blocs on iterative decoding of GPCB codes

the 20th iteration of the following codes GPCB-RS (67,
59), GPCB-RS (131, 123), with the same code rate 0.82
and the parameter M = 100. The performance is shown in
Fig. 7. From this figure, we observe that the performance
becomes worse with increasing the length of the component
code. The GPCB-RS (69,57), GPCB-RS (131, 123) codes are
respectively 2.3, 2.8 away from their Shannon limits.

VI. CONCLUSION

In this paper, we have extended the work that has been done
to decode generalized concatenated block codes based on BCH
codes for RS codes. We have used adapted parameters in order
to avoid determining its value empirically. The simulation
results show that the adapted parameters are effective, as it
can be demonstrated in the asymptotic performance.
This work can be extended to produce codes and generalized
serially concatenated block based on RS codes adopting the
adapted parameters.

REFERENCES

[1] A. Picart and R. Pyndiah, “Adapted iterative decoding of product
codes,” in Global Telecommunications Conference, 1999. GLOBE-
COM’99, vol. 5. IEEE, 1999, pp. 2357–2362. DOI: 10.1109/GLO-
COM.1999.831 724.

[2] O. Aitsab and R. Pyndiah, “Performance of concatenated Reed-
Solomon/convolutional codes with iterative decoding,” in Global
Telecommunications Conference, 1997. GLOBECOM’97., IEEE, vol. 2.
IEEE, 1997, pp. 934–938, DOI: 10.1109/GLOCOM.1997.638 463.

[3] Seok-Ho Chang, P. C. Cosman, and L. B. Milstein, “Iterative Channel
Decoding of FEC-Based Multiple-Description Codes,” IEEE Transac-
tions on Image Processing, vol. 21, no. 3, pp. 1138–1152, Mar. 2012,
DOI: 10.1109/TIP.2011.2169973.

[4] J. Son, J. J. Kong, and K. Yang, “Efficient decoding of block turbo
codes,” Journal of Communications and Networks, vol. 20, no. 4, pp.
345–353, Aug. 2018, DOI: 10.1109/JCN.2018.000050.

[5] D. Chase, “Class of algorithms for decoding block codes with channel
measurement information,” IEEE Transactions on Information theory,
vol. 18, no. 1, pp. 170–182, 1972, DOI: 10.1109/TIT.1972.1054746.

[6] P. Wu and N. Jindal, “Performance of hybrid-arq in block-fading
channels: A fixed outage probability analysis,” IEEE Transactions
on Communications, vol. 58, no. 4, pp. 1129–1141, 2010, DOI:
10.1109/TCOMM.2010.04.080622.

5

2 3 4 5 6

10−5

10−4

10−3

10−2

10−1

Eb

N0

B
E

R

M = 1

M = 10

M = 100

M = 300

Fig. 5. Effect of the parameter M on iterative decoding of GPCB-RS(67 ,
59) code, over AWGN channel

C. Interleaver structure effect

3 3.5 4 4.5 5

10−6

10−5

10−4

10−3

10−2

10−1

Eb

N0

B
E

R

Diagonal Interlever

Random Interlever

Helical Interlever

Primitive Interlever

Fig. 6. Interleaver structure effect on Iterative decoding of GPCB-RS(67 ,
59) Code, with M=100, over AWGN channel To

To study the influence of the interleaver pattern on the
GPCB-RS codes performance, we have evaluated the BER
versus Eb

N0
of the GPCB-RS (67, 59) code using different

interleaver structures such as diagonal, helical, primitive and
random interleaver with parameter M = 100. The Fig. 6
shows the performance results. according to this figure we
observe that the Random interleaver outperforms the other
ones by about 0.5dB at TEB = 10−5.

D. Effect of multi-blocs

To evaluate the performance of the generalized parallel
concatenated block codes, we compare the coding gain at

2 3 4 5

10−5

10−4

10−3

10−2

10−1

Eb

N0

B
E

R

Shannon

GPCB − RS (131, 123)

GPCB − RS (67, 59)

Fig. 7. Effect of multi-blocs on iterative decoding of GPCB codes

the 20th iteration of the following codes GPCB-RS (67,
59), GPCB-RS (131, 123), with the same code rate 0.82
and the parameter M = 100. The performance is shown in
Fig. 7. From this figure, we observe that the performance
becomes worse with increasing the length of the component
code. The GPCB-RS (69,57), GPCB-RS (131, 123) codes are
respectively 2.3, 2.8 away from their Shannon limits.

VI. CONCLUSION

In this paper, we have extended the work that has been done
to decode generalized concatenated block codes based on BCH
codes for RS codes. We have used adapted parameters in order
to avoid determining its value empirically. The simulation
results show that the adapted parameters are effective, as it
can be demonstrated in the asymptotic performance.
This work can be extended to produce codes and generalized
serially concatenated block based on RS codes adopting the
adapted parameters.

REFERENCES

[1] A. Picart and R. Pyndiah, “Adapted iterative decoding of product
codes,” in Global Telecommunications Conference, 1999. GLOBE-
COM’99, vol. 5. IEEE, 1999, pp. 2357–2362. DOI: 10.1109/GLO-
COM.1999.831 724.

[2] O. Aitsab and R. Pyndiah, “Performance of concatenated Reed-
Solomon/convolutional codes with iterative decoding,” in Global
Telecommunications Conference, 1997. GLOBECOM’97., IEEE, vol. 2.
IEEE, 1997, pp. 934–938, DOI: 10.1109/GLOCOM.1997.638 463.

[3] Seok-Ho Chang, P. C. Cosman, and L. B. Milstein, “Iterative Channel
Decoding of FEC-Based Multiple-Description Codes,” IEEE Transac-
tions on Image Processing, vol. 21, no. 3, pp. 1138–1152, Mar. 2012,
DOI: 10.1109/TIP.2011.2169973.

[4] J. Son, J. J. Kong, and K. Yang, “Efficient decoding of block turbo
codes,” Journal of Communications and Networks, vol. 20, no. 4, pp.
345–353, Aug. 2018, DOI: 10.1109/JCN.2018.000050.

[5] D. Chase, “Class of algorithms for decoding block codes with channel
measurement information,” IEEE Transactions on Information theory,
vol. 18, no. 1, pp. 170–182, 1972, DOI: 10.1109/TIT.1972.1054746.

[6] P. Wu and N. Jindal, “Performance of hybrid-arq in block-fading
channels: A fixed outage probability analysis,” IEEE Transactions
on Communications, vol. 58, no. 4, pp. 1129–1141, 2010, DOI:
10.1109/TCOMM.2010.04.080622.

5

2 3 4 5 6

10−5

10−4

10−3

10−2

10−1

Eb

N0

B
E

R

M = 1

M = 10

M = 100

M = 300

Fig. 5. Effect of the parameter M on iterative decoding of GPCB-RS(67 ,
59) code, over AWGN channel

C. Interleaver structure effect

3 3.5 4 4.5 5

10−6

10−5

10−4

10−3

10−2

10−1

Eb

N0

B
E

R

Diagonal Interlever

Random Interlever

Helical Interlever

Primitive Interlever

Fig. 6. Interleaver structure effect on Iterative decoding of GPCB-RS(67 ,
59) Code, with M=100, over AWGN channel To

To study the influence of the interleaver pattern on the
GPCB-RS codes performance, we have evaluated the BER
versus Eb

N0
of the GPCB-RS (67, 59) code using different

interleaver structures such as diagonal, helical, primitive and
random interleaver with parameter M = 100. The Fig. 6
shows the performance results. according to this figure we
observe that the Random interleaver outperforms the other
ones by about 0.5dB at TEB = 10−5.

D. Effect of multi-blocs

To evaluate the performance of the generalized parallel
concatenated block codes, we compare the coding gain at

2 3 4 5

10−5

10−4

10−3

10−2

10−1

Eb

N0

B
E

R

Shannon

GPCB − RS (131, 123)

GPCB − RS (67, 59)

Fig. 7. Effect of multi-blocs on iterative decoding of GPCB codes

the 20th iteration of the following codes GPCB-RS (67,
59), GPCB-RS (131, 123), with the same code rate 0.82
and the parameter M = 100. The performance is shown in
Fig. 7. From this figure, we observe that the performance
becomes worse with increasing the length of the component
code. The GPCB-RS (69,57), GPCB-RS (131, 123) codes are
respectively 2.3, 2.8 away from their Shannon limits.

VI. CONCLUSION

In this paper, we have extended the work that has been done
to decode generalized concatenated block codes based on BCH
codes for RS codes. We have used adapted parameters in order
to avoid determining its value empirically. The simulation
results show that the adapted parameters are effective, as it
can be demonstrated in the asymptotic performance.
This work can be extended to produce codes and generalized
serially concatenated block based on RS codes adopting the
adapted parameters.

REFERENCES

[1] A. Picart and R. Pyndiah, “Adapted iterative decoding of product
codes,” in Global Telecommunications Conference, 1999. GLOBE-
COM’99, vol. 5. IEEE, 1999, pp. 2357–2362. DOI: 10.1109/GLO-
COM.1999.831 724.

[2] O. Aitsab and R. Pyndiah, “Performance of concatenated Reed-
Solomon/convolutional codes with iterative decoding,” in Global
Telecommunications Conference, 1997. GLOBECOM’97., IEEE, vol. 2.
IEEE, 1997, pp. 934–938, DOI: 10.1109/GLOCOM.1997.638 463.

[3] Seok-Ho Chang, P. C. Cosman, and L. B. Milstein, “Iterative Channel
Decoding of FEC-Based Multiple-Description Codes,” IEEE Transac-
tions on Image Processing, vol. 21, no. 3, pp. 1138–1152, Mar. 2012,
DOI: 10.1109/TIP.2011.2169973.

[4] J. Son, J. J. Kong, and K. Yang, “Efficient decoding of block turbo
codes,” Journal of Communications and Networks, vol. 20, no. 4, pp.
345–353, Aug. 2018, DOI: 10.1109/JCN.2018.000050.

[5] D. Chase, “Class of algorithms for decoding block codes with channel
measurement information,” IEEE Transactions on Information theory,
vol. 18, no. 1, pp. 170–182, 1972, DOI: 10.1109/TIT.1972.1054746.

[6] P. Wu and N. Jindal, “Performance of hybrid-arq in block-fading
channels: A fixed outage probability analysis,” IEEE Transactions
on Communications, vol. 58, no. 4, pp. 1129–1141, 2010, DOI:
10.1109/TCOMM.2010.04.080622.

5

2 3 4 5 6

10−5

10−4

10−3

10−2

10−1

Eb

N0

B
E

R

M = 1

M = 10

M = 100

M = 300

Fig. 5. Effect of the parameter M on iterative decoding of GPCB-RS(67 ,
59) code, over AWGN channel

C. Interleaver structure effect

3 3.5 4 4.5 5

10−6

10−5

10−4

10−3

10−2

10−1

Eb

N0

B
E

R

Diagonal Interlever

Random Interlever

Helical Interlever

Primitive Interlever

Fig. 6. Interleaver structure effect on Iterative decoding of GPCB-RS(67 ,
59) Code, with M=100, over AWGN channel To

To study the influence of the interleaver pattern on the
GPCB-RS codes performance, we have evaluated the BER
versus Eb

N0
of the GPCB-RS (67, 59) code using different

interleaver structures such as diagonal, helical, primitive and
random interleaver with parameter M = 100. The Fig. 6
shows the performance results. according to this figure we
observe that the Random interleaver outperforms the other
ones by about 0.5dB at TEB = 10−5.

D. Effect of multi-blocs

To evaluate the performance of the generalized parallel
concatenated block codes, we compare the coding gain at

2 3 4 5

10−5

10−4

10−3

10−2

10−1

Eb

N0

B
E

R

Shannon

GPCB − RS (131, 123)

GPCB − RS (67, 59)

Fig. 7. Effect of multi-blocs on iterative decoding of GPCB codes

the 20th iteration of the following codes GPCB-RS (67,
59), GPCB-RS (131, 123), with the same code rate 0.82
and the parameter M = 100. The performance is shown in
Fig. 7. From this figure, we observe that the performance
becomes worse with increasing the length of the component
code. The GPCB-RS (69,57), GPCB-RS (131, 123) codes are
respectively 2.3, 2.8 away from their Shannon limits.

VI. CONCLUSION

In this paper, we have extended the work that has been done
to decode generalized concatenated block codes based on BCH
codes for RS codes. We have used adapted parameters in order
to avoid determining its value empirically. The simulation
results show that the adapted parameters are effective, as it
can be demonstrated in the asymptotic performance.
This work can be extended to produce codes and generalized
serially concatenated block based on RS codes adopting the
adapted parameters.

REFERENCES

[1] A. Picart and R. Pyndiah, “Adapted iterative decoding of product
codes,” in Global Telecommunications Conference, 1999. GLOBE-
COM’99, vol. 5. IEEE, 1999, pp. 2357–2362. DOI: 10.1109/GLO-
COM.1999.831 724.

[2] O. Aitsab and R. Pyndiah, “Performance of concatenated Reed-
Solomon/convolutional codes with iterative decoding,” in Global
Telecommunications Conference, 1997. GLOBECOM’97., IEEE, vol. 2.
IEEE, 1997, pp. 934–938, DOI: 10.1109/GLOCOM.1997.638 463.

[3] Seok-Ho Chang, P. C. Cosman, and L. B. Milstein, “Iterative Channel
Decoding of FEC-Based Multiple-Description Codes,” IEEE Transac-
tions on Image Processing, vol. 21, no. 3, pp. 1138–1152, Mar. 2012,
DOI: 10.1109/TIP.2011.2169973.

[4] J. Son, J. J. Kong, and K. Yang, “Efficient decoding of block turbo
codes,” Journal of Communications and Networks, vol. 20, no. 4, pp.
345–353, Aug. 2018, DOI: 10.1109/JCN.2018.000050.

[5] D. Chase, “Class of algorithms for decoding block codes with channel
measurement information,” IEEE Transactions on Information theory,
vol. 18, no. 1, pp. 170–182, 1972, DOI: 10.1109/TIT.1972.1054746.

[6] P. Wu and N. Jindal, “Performance of hybrid-arq in block-fading
channels: A fixed outage probability analysis,” IEEE Transactions
on Communications, vol. 58, no. 4, pp. 1129–1141, 2010, DOI:
10.1109/TCOMM.2010.04.080622.

5

2 3 4 5 6

10−5

10−4

10−3

10−2

10−1

Eb

N0

B
E

R

M = 1

M = 10

M = 100

M = 300

Fig. 5. Effect of the parameter M on iterative decoding of GPCB-RS(67 ,
59) code, over AWGN channel

C. Interleaver structure effect

3 3.5 4 4.5 5

10−6

10−5

10−4

10−3

10−2

10−1

Eb

N0

B
E

R

Diagonal Interlever

Random Interlever

Helical Interlever

Primitive Interlever

Fig. 6. Interleaver structure effect on Iterative decoding of GPCB-RS(67 ,
59) Code, with M=100, over AWGN channel To

To study the influence of the interleaver pattern on the
GPCB-RS codes performance, we have evaluated the BER
versus Eb

N0
of the GPCB-RS (67, 59) code using different

interleaver structures such as diagonal, helical, primitive and
random interleaver with parameter M = 100. The Fig. 6
shows the performance results. according to this figure we
observe that the Random interleaver outperforms the other
ones by about 0.5dB at TEB = 10−5.

D. Effect of multi-blocs

To evaluate the performance of the generalized parallel
concatenated block codes, we compare the coding gain at

2 3 4 5

10−5

10−4

10−3

10−2

10−1

Eb

N0

B
E

R

Shannon

GPCB − RS (131, 123)

GPCB − RS (67, 59)

Fig. 7. Effect of multi-blocs on iterative decoding of GPCB codes

the 20th iteration of the following codes GPCB-RS (67,
59), GPCB-RS (131, 123), with the same code rate 0.82
and the parameter M = 100. The performance is shown in
Fig. 7. From this figure, we observe that the performance
becomes worse with increasing the length of the component
code. The GPCB-RS (69,57), GPCB-RS (131, 123) codes are
respectively 2.3, 2.8 away from their Shannon limits.

VI. CONCLUSION

In this paper, we have extended the work that has been done
to decode generalized concatenated block codes based on BCH
codes for RS codes. We have used adapted parameters in order
to avoid determining its value empirically. The simulation
results show that the adapted parameters are effective, as it
can be demonstrated in the asymptotic performance.
This work can be extended to produce codes and generalized
serially concatenated block based on RS codes adopting the
adapted parameters.

REFERENCES

[1] A. Picart and R. Pyndiah, “Adapted iterative decoding of product
codes,” in Global Telecommunications Conference, 1999. GLOBE-
COM’99, vol. 5. IEEE, 1999, pp. 2357–2362. DOI: 10.1109/GLO-
COM.1999.831 724.

[2] O. Aitsab and R. Pyndiah, “Performance of concatenated Reed-
Solomon/convolutional codes with iterative decoding,” in Global
Telecommunications Conference, 1997. GLOBECOM’97., IEEE, vol. 2.
IEEE, 1997, pp. 934–938, DOI: 10.1109/GLOCOM.1997.638 463.

[3] Seok-Ho Chang, P. C. Cosman, and L. B. Milstein, “Iterative Channel
Decoding of FEC-Based Multiple-Description Codes,” IEEE Transac-
tions on Image Processing, vol. 21, no. 3, pp. 1138–1152, Mar. 2012,
DOI: 10.1109/TIP.2011.2169973.

[4] J. Son, J. J. Kong, and K. Yang, “Efficient decoding of block turbo
codes,” Journal of Communications and Networks, vol. 20, no. 4, pp.
345–353, Aug. 2018, DOI: 10.1109/JCN.2018.000050.

[5] D. Chase, “Class of algorithms for decoding block codes with channel
measurement information,” IEEE Transactions on Information theory,
vol. 18, no. 1, pp. 170–182, 1972, DOI: 10.1109/TIT.1972.1054746.

[6] P. Wu and N. Jindal, “Performance of hybrid-arq in block-fading
channels: A fixed outage probability analysis,” IEEE Transactions
on Communications, vol. 58, no. 4, pp. 1129–1141, 2010, DOI:
10.1109/TCOMM.2010.04.080622.

5

2 3 4 5 6

10−5

10−4

10−3

10−2

10−1

Eb

N0

B
E

R

M = 1

M = 10

M = 100

M = 300

Fig. 5. Effect of the parameter M on iterative decoding of GPCB-RS(67 ,
59) code, over AWGN channel

C. Interleaver structure effect

3 3.5 4 4.5 5

10−6

10−5

10−4

10−3

10−2

10−1

Eb

N0

B
E

R

Diagonal Interlever

Random Interlever

Helical Interlever

Primitive Interlever

Fig. 6. Interleaver structure effect on Iterative decoding of GPCB-RS(67 ,
59) Code, with M=100, over AWGN channel To

To study the influence of the interleaver pattern on the
GPCB-RS codes performance, we have evaluated the BER
versus Eb

N0
of the GPCB-RS (67, 59) code using different

interleaver structures such as diagonal, helical, primitive and
random interleaver with parameter M = 100. The Fig. 6
shows the performance results. according to this figure we
observe that the Random interleaver outperforms the other
ones by about 0.5dB at TEB = 10−5.

D. Effect of multi-blocs

To evaluate the performance of the generalized parallel
concatenated block codes, we compare the coding gain at

2 3 4 5

10−5

10−4

10−3

10−2

10−1

Eb

N0

B
E

R

Shannon

GPCB − RS (131, 123)

GPCB − RS (67, 59)

Fig. 7. Effect of multi-blocs on iterative decoding of GPCB codes

the 20th iteration of the following codes GPCB-RS (67,
59), GPCB-RS (131, 123), with the same code rate 0.82
and the parameter M = 100. The performance is shown in
Fig. 7. From this figure, we observe that the performance
becomes worse with increasing the length of the component
code. The GPCB-RS (69,57), GPCB-RS (131, 123) codes are
respectively 2.3, 2.8 away from their Shannon limits.

VI. CONCLUSION

In this paper, we have extended the work that has been done
to decode generalized concatenated block codes based on BCH
codes for RS codes. We have used adapted parameters in order
to avoid determining its value empirically. The simulation
results show that the adapted parameters are effective, as it
can be demonstrated in the asymptotic performance.
This work can be extended to produce codes and generalized
serially concatenated block based on RS codes adopting the
adapted parameters.

REFERENCES

[1] A. Picart and R. Pyndiah, “Adapted iterative decoding of product
codes,” in Global Telecommunications Conference, 1999. GLOBE-
COM’99, vol. 5. IEEE, 1999, pp. 2357–2362. DOI: 10.1109/GLO-
COM.1999.831 724.

[2] O. Aitsab and R. Pyndiah, “Performance of concatenated Reed-
Solomon/convolutional codes with iterative decoding,” in Global
Telecommunications Conference, 1997. GLOBECOM’97., IEEE, vol. 2.
IEEE, 1997, pp. 934–938, DOI: 10.1109/GLOCOM.1997.638 463.

[3] Seok-Ho Chang, P. C. Cosman, and L. B. Milstein, “Iterative Channel
Decoding of FEC-Based Multiple-Description Codes,” IEEE Transac-
tions on Image Processing, vol. 21, no. 3, pp. 1138–1152, Mar. 2012,
DOI: 10.1109/TIP.2011.2169973.

[4] J. Son, J. J. Kong, and K. Yang, “Efficient decoding of block turbo
codes,” Journal of Communications and Networks, vol. 20, no. 4, pp.
345–353, Aug. 2018, DOI: 10.1109/JCN.2018.000050.

[5] D. Chase, “Class of algorithms for decoding block codes with channel
measurement information,” IEEE Transactions on Information theory,
vol. 18, no. 1, pp. 170–182, 1972, DOI: 10.1109/TIT.1972.1054746.

[6] P. Wu and N. Jindal, “Performance of hybrid-arq in block-fading
channels: A fixed outage probability analysis,” IEEE Transactions
on Communications, vol. 58, no. 4, pp. 1129–1141, 2010, DOI:
10.1109/TCOMM.2010.04.080622.

5

2 3 4 5 6

10−5

10−4

10−3

10−2

10−1

Eb

N0

B
E

R

M = 1

M = 10

M = 100

M = 300

Fig. 5. Effect of the parameter M on iterative decoding of GPCB-RS(67 ,
59) code, over AWGN channel

C. Interleaver structure effect

3 3.5 4 4.5 5

10−6

10−5

10−4

10−3

10−2

10−1

Eb

N0

B
E

R

Diagonal Interlever

Random Interlever

Helical Interlever

Primitive Interlever

Fig. 6. Interleaver structure effect on Iterative decoding of GPCB-RS(67 ,
59) Code, with M=100, over AWGN channel To

To study the influence of the interleaver pattern on the
GPCB-RS codes performance, we have evaluated the BER
versus Eb

N0
of the GPCB-RS (67, 59) code using different

interleaver structures such as diagonal, helical, primitive and
random interleaver with parameter M = 100. The Fig. 6
shows the performance results. according to this figure we
observe that the Random interleaver outperforms the other
ones by about 0.5dB at TEB = 10−5.

D. Effect of multi-blocs

To evaluate the performance of the generalized parallel
concatenated block codes, we compare the coding gain at

2 3 4 5

10−5

10−4

10−3

10−2

10−1

Eb

N0

B
E

R

Shannon

GPCB − RS (131, 123)

GPCB − RS (67, 59)

Fig. 7. Effect of multi-blocs on iterative decoding of GPCB codes

the 20th iteration of the following codes GPCB-RS (67,
59), GPCB-RS (131, 123), with the same code rate 0.82
and the parameter M = 100. The performance is shown in
Fig. 7. From this figure, we observe that the performance
becomes worse with increasing the length of the component
code. The GPCB-RS (69,57), GPCB-RS (131, 123) codes are
respectively 2.3, 2.8 away from their Shannon limits.

VI. CONCLUSION

In this paper, we have extended the work that has been done
to decode generalized concatenated block codes based on BCH
codes for RS codes. We have used adapted parameters in order
to avoid determining its value empirically. The simulation
results show that the adapted parameters are effective, as it
can be demonstrated in the asymptotic performance.
This work can be extended to produce codes and generalized
serially concatenated block based on RS codes adopting the
adapted parameters.

REFERENCES

[1] A. Picart and R. Pyndiah, “Adapted iterative decoding of product
codes,” in Global Telecommunications Conference, 1999. GLOBE-
COM’99, vol. 5. IEEE, 1999, pp. 2357–2362. DOI: 10.1109/GLO-
COM.1999.831 724.

[2] O. Aitsab and R. Pyndiah, “Performance of concatenated Reed-
Solomon/convolutional codes with iterative decoding,” in Global
Telecommunications Conference, 1997. GLOBECOM’97., IEEE, vol. 2.
IEEE, 1997, pp. 934–938, DOI: 10.1109/GLOCOM.1997.638 463.

[3] Seok-Ho Chang, P. C. Cosman, and L. B. Milstein, “Iterative Channel
Decoding of FEC-Based Multiple-Description Codes,” IEEE Transac-
tions on Image Processing, vol. 21, no. 3, pp. 1138–1152, Mar. 2012,
DOI: 10.1109/TIP.2011.2169973.

[4] J. Son, J. J. Kong, and K. Yang, “Efficient decoding of block turbo
codes,” Journal of Communications and Networks, vol. 20, no. 4, pp.
345–353, Aug. 2018, DOI: 10.1109/JCN.2018.000050.

[5] D. Chase, “Class of algorithms for decoding block codes with channel
measurement information,” IEEE Transactions on Information theory,
vol. 18, no. 1, pp. 170–182, 1972, DOI: 10.1109/TIT.1972.1054746.

[6] P. Wu and N. Jindal, “Performance of hybrid-arq in block-fading
channels: A fixed outage probability analysis,” IEEE Transactions
on Communications, vol. 58, no. 4, pp. 1129–1141, 2010, DOI:
10.1109/TCOMM.2010.04.080622.

https://doi.org/10.1109/GLOCOM.1999.831724
https://doi.org/10.1109/GLOCOM.1997.638463
https://doi.org/10.1109/TIP.2011.2169973
https://doi.org/10.1109/JCN.2018.000050
https://doi.org/10.1109/TIT.1972.1054746
https://doi.org/10.1109/TCOMM.2010.04.080622

Turbo decoding of concatenated codes based on RS
codes using adapted scaling factors

MARCH 2022 • VOLUME XIV • NUMBER 116

INFOCOMMUNICATIONS JOURNAL

Es-said Azougaghe is a PhD student at in the
Laboratory of Mathematics Innovation and Infor-
mation Technology (LIMATI), Polydisciplinary Fac-
ulty, Sultan Moulay Slimane University, Morocco. His
areas of interest are Information and Coding Theory,
cryptography and network security.

Abderrazak Farchane is a Professor of computer
science in the Polydisciplinary Faculty, Sultan Moulay
Slimane University, Morocco. His areas of interest are
information coding theory, cryptography, and security.

Said Safi is a Professor of computer science in the
Polydisciplinary Faculty, Sultan Moulay Slimane
University, Morocco. His general interests span the
areas of communications and signal processing, es-
timation, time-series analysis.

Mostafa Belkasmi is a Professor at ENSIAS (Ecole
Nationale Supérieure d’Informatique et d’Analyse des
Systèmes, Rabat); head of Telecom and Embedded
Systems Team at SIME Lab. He had PhD at Toulouse
University in 1991(France). His current research
interests include mobile and wireless communications,
interconnexions for 5G, and Information and Coding
Theory.

	 [8]	 J. Cho and W. Sung, “Soft-Decision Error Correction of NAND
Flash Memory with a Turbo Product Code,” p. 13, 2013,

		 doi: 10.1007/s11265-012-0698-y.
	 [9]	 M. Belkasmi and A. Farchane, “Iterative decoding of parallel

concatenated block codes,” in Computer and Communication
Engineering, 2008. ICCCE 2008. International Conference on.
IEEE, 2008, pp. 230–235, doi: 10.1109/ICCCE.2008.4580602.

	[10]	 A. Farchane and M. Belkasmi, “Generalized serially concatenated
codes: construction and iterative decoding,” International Journal of
Mathematical and Computer Sciences, vol. 6, no. 2, 2010.

	[11]	 A. D. Cummins, D. G. Mitchell, and D. J. Costello, “Iterative
threshold decoding of spatially coupled, parallel-concatenated
codes,” in 2021 11th International Symposium on Topics in Coding
(ISTC). IEEE, 2021, pp. 1–5,

		 doi: 10.1109/ISTC49272.2021.9594231.
	[12]	 G. C. Nair, B. Yamuna, K. Balasubramanian, and D. Mishra,

“Hardware design of a turbo product code decoder,” in Proceedings
of International Conference on Communication, Circuits, and
Systems. Springer, 2021, pp. 249–255.

	[13]	 M. Qiu, X. Wu, J. Yuan, and A. G. i Amat, “Generalized spatially
cou- pled parallel concatenated convolutional codes with partial
repetition,” in 2021 IEEE International Symposium on Information
Theory (ISIT). IEEE, 2021, pp. 581–586,

		 doi: 10.1109/ISIT45174.2021.9517979.
	[14]	 M. A. Lafta and S. J. Mohammed, “Image transmission in serial and

parallel turbo code with bpsk and qpsk modulations,” in 2021 1st
Babylon International Conference on Information Technology and
Science (BICITS). IEEE, 2021, pp. 189–193,

		 doi: 10.1109/BICITS51482.2021.9509907.
	[15]	 C. E. Shannon, “A mathematical theory of communication,” Bell

system technical journal, vol. 27, no. 3, pp. 379–423, 1948,
		 doi: 10.1002/j.1538-7305.1948.tb01338.x.
	[16]	 A. Farchane, M. Belkasmi, and S. Nouh, “Generalized parallel con-

catenated block codes based on BCH and RS codes, construction and
Iterative decoding,” arXiv preprint arXiv:1303.4224, 2013.

	[17]	 A. G. R. Pyndiah, A. Picart, and S. Jacq, “Near optimum decoding of
product codes,” GLOBECOM94, 1994,

		 doi: 10.1109/GLOCOM.1994.513494.

https://doi.org/10.1007/s11265-012-0698-y
https://doi.org/10.1109/ICCCE.2008.4580602
https://doi.org/10.1109/ISTC49272.2021.9594231
https://doi.org/10.1109/ISIT45174.2021.9517979
https://doi.org/10.1109/BICITS51482.2021.9509907
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://arxiv.org/abs/1303.4224
https://doi.org/10.1109/GLOCOM.1994.513494

Determining Hybrid Re-id Features of Vehicles
in Videos for Transport Analysis

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 17

86

1

Abstract — The research topic presented in this paper belongs
to computer vision problems in the transport application area,
where the statistical data of the results give the input for the
transport analysis. Although object tracking in a controlled
environment could be performed with good results in general,
accurate and detailed annotation of vehicles is a common problem
in traffic analysis. Such annotation includes static and dynamic
attributes of numerous vehicles. Most recent object trackers
employ CNNs to compute the so-called re-identification features of
the bounding boxes. In this paper we introduce hybrid re-
identification features, which combine latent, static, and dynamic
attributes to improve tracking. Furthermore, we propose a
lightweight solution that could be integrated in a real-time multi-
camera tracking system.

Index Terms — transport analysis, deep learning, feature
extraction, re-identification, multiple object tracking, multi-target
multi-camera tracking

I. INTRODUCTION
The subset of Intelligent Transport Systems allows cooperation
[15] among the vehicles and infrastructure, which is called Co‐
operative Transport System (CTS). CTS systems are designed
for cooperative sensing and predicting flow, infrastructure and
environmental conditions surrounding traffic, with a goal of
improving the safety and efficiency of road transport operations
[28]. The efficiency depends on the individual vehicles as well,
for example their route planning, as an optimization problem.
The uncertainty influences the route; however, a sophisticated
model with an appropriate algorithm can handle this uncertainty
to find the best route [31]. Finding a good solution for route
planning in a transport network is a general problem with
arbitrary network type, like a network of buses, a network of
tram rails, or any other type of a transport network [30].

Video-based vehicle behavior analysis is done by following
and annotating the vehicles across multiple cameras. This
requires accurate multi-target multi-camera tracking (MTMC)
that must be built upon information coming from single
cameras. The detection and tracking of multiple vehicles on a
single-camera is frequently referred to as MTSC (multi-target
single-camera tracking) or MOT (multiple object tracking).
These methods first run an object detector network to detect all
object instances, whose bounding boxes are then matched with
the trajectories based on previous frames. A critical part of
fusing MOTs into MTMC is matching the individual

1 Department of Telecommunications and Media Informatics, Budapest

University of Technology and Economics (BME), Budapest, Hungary (e-mail:
pappd@tmit.bme.hu, rego.borsodi@edu.bme.hu)

trajectories. This could be done by vehicle re-identification, that
aims to retrieve images from a gallery that contain the object of
the same identity as a provided query image. Recent solutions
for MOT extract feature vectors (so called re-id features) using
special CNNs (for example ResNet-IBN variants [23]) and rank
gallery images based on their cosine similarity to the query [9],
[21], [45]. To improve single-camera tracking, some MOT
methods employ the re-id features to help the association
between bounding boxes.

Static and dynamic attributes (such as axle number,
differentiating signs or velocity) of the vehicles could aid
MTMC trajectory matching. Determining these attributes
require frame by frame analysis. Passing vehicles usually
appear in several, most frequently (but not necessarily)
neighboring, frames. Thus, to determine dynamic features, it is
required to correctly identify their trajectories including all
bounding boxes of the object during their progress in front of
the camera. For calculating static features this is not necessary
in general, but it could enhance accuracy by using an ensemble
decision. The same reasoning holds for a system of multiple
cameras, where vehicle re-identification and tracking is
preferable.

In this paper we introduce hybrid re-id features, which
combines latent features, static and dynamic attributes of the
vehicle, and ordinary re-id features. We examine different
scenarios to calculate the hybrid re-id feature, from most
accurate to most lightweight, that could even be used in a real-
time MTMC system.

II. RELATED WORKS

A. Transport Analysis
In transport networks different situations can be analyzed, one
of which is equilibrium at the case of uncertainty situations,
where the uncertainty comes from lack of information. The
uncertainty can be represented by Dempster-Shafer theory, an
interval-based solution has been developed for handling this
situation [29]. In transport analysis different influencing factors
of the traffic congestion can be investigated on the roads using
uncertain probabilities described by probability intervals [32].

Vehicle behavior analysis consists of some parts, like car-
following, lane change maneuvers, velocities of the cars, etc.
As the fundamental control strategy of intelligent vehicles, car-

Determining Hybrid Re-id Features of Vehicles
in Videos for Transport Analysis

Dávid Papp1 and Regő Borsodi1

Determining Hybrid Re-id Features of Vehicles in
Videos for Transport Analysis

Dávid Papp and Regő Borsodi

Department of Telecommunications and Media Informatics, Budapest
University of Technology and Economics (BME), Budapest, Hungary (e-mail:
pappd@tmit.bme.hu, rego.borsodi@edu.bme.hu)

Abstract—The research topic presented in this paper belongs
to computer vision problems in the transport application area,
where the statistical data of the results give the input for the
transport analysis. Although object tracking in a controlled
environment could be performed with good results in general,
accurate and detailed annotation of vehicles is a common
problem in traffic analysis. Such annotation includes static and
dynamic attributes of numerous vehicles. Most recent object
trackers employ CNNs to compute the so-called re-identification
features of the bounding boxes. In this paper we introduce
hybrid re- identification features, which combine latent, static,
and dynamic attributes to improve tracking. Furthermore, we
propose a lightweight solution that could be integrated in a real-
time multi- camera tracking system.

Index Terms—transport analysis, deep learning, feature
extraction, re-identification, multiple object tracking, multi-
target multi-camera tracking

86

1

Abstract — The research topic presented in this paper belongs
to computer vision problems in the transport application area,
where the statistical data of the results give the input for the
transport analysis. Although object tracking in a controlled
environment could be performed with good results in general,
accurate and detailed annotation of vehicles is a common problem
in traffic analysis. Such annotation includes static and dynamic
attributes of numerous vehicles. Most recent object trackers
employ CNNs to compute the so-called re-identification features of
the bounding boxes. In this paper we introduce hybrid re-
identification features, which combine latent, static, and dynamic
attributes to improve tracking. Furthermore, we propose a
lightweight solution that could be integrated in a real-time multi-
camera tracking system.

Index Terms — transport analysis, deep learning, feature
extraction, re-identification, multiple object tracking, multi-target
multi-camera tracking

I. INTRODUCTION
The subset of Intelligent Transport Systems allows cooperation
[15] among the vehicles and infrastructure, which is called Co‐
operative Transport System (CTS). CTS systems are designed
for cooperative sensing and predicting flow, infrastructure and
environmental conditions surrounding traffic, with a goal of
improving the safety and efficiency of road transport operations
[28]. The efficiency depends on the individual vehicles as well,
for example their route planning, as an optimization problem.
The uncertainty influences the route; however, a sophisticated
model with an appropriate algorithm can handle this uncertainty
to find the best route [31]. Finding a good solution for route
planning in a transport network is a general problem with
arbitrary network type, like a network of buses, a network of
tram rails, or any other type of a transport network [30].

Video-based vehicle behavior analysis is done by following
and annotating the vehicles across multiple cameras. This
requires accurate multi-target multi-camera tracking (MTMC)
that must be built upon information coming from single
cameras. The detection and tracking of multiple vehicles on a
single-camera is frequently referred to as MTSC (multi-target
single-camera tracking) or MOT (multiple object tracking).
These methods first run an object detector network to detect all
object instances, whose bounding boxes are then matched with
the trajectories based on previous frames. A critical part of
fusing MOTs into MTMC is matching the individual

1 Department of Telecommunications and Media Informatics, Budapest

University of Technology and Economics (BME), Budapest, Hungary (e-mail:
pappd@tmit.bme.hu, rego.borsodi@edu.bme.hu)

trajectories. This could be done by vehicle re-identification, that
aims to retrieve images from a gallery that contain the object of
the same identity as a provided query image. Recent solutions
for MOT extract feature vectors (so called re-id features) using
special CNNs (for example ResNet-IBN variants [23]) and rank
gallery images based on their cosine similarity to the query [9],
[21], [45]. To improve single-camera tracking, some MOT
methods employ the re-id features to help the association
between bounding boxes.

Static and dynamic attributes (such as axle number,
differentiating signs or velocity) of the vehicles could aid
MTMC trajectory matching. Determining these attributes
require frame by frame analysis. Passing vehicles usually
appear in several, most frequently (but not necessarily)
neighboring, frames. Thus, to determine dynamic features, it is
required to correctly identify their trajectories including all
bounding boxes of the object during their progress in front of
the camera. For calculating static features this is not necessary
in general, but it could enhance accuracy by using an ensemble
decision. The same reasoning holds for a system of multiple
cameras, where vehicle re-identification and tracking is
preferable.

In this paper we introduce hybrid re-id features, which
combines latent features, static and dynamic attributes of the
vehicle, and ordinary re-id features. We examine different
scenarios to calculate the hybrid re-id feature, from most
accurate to most lightweight, that could even be used in a real-
time MTMC system.

II. RELATED WORKS

A. Transport Analysis
In transport networks different situations can be analyzed, one
of which is equilibrium at the case of uncertainty situations,
where the uncertainty comes from lack of information. The
uncertainty can be represented by Dempster-Shafer theory, an
interval-based solution has been developed for handling this
situation [29]. In transport analysis different influencing factors
of the traffic congestion can be investigated on the roads using
uncertain probabilities described by probability intervals [32].

Vehicle behavior analysis consists of some parts, like car-
following, lane change maneuvers, velocities of the cars, etc.
As the fundamental control strategy of intelligent vehicles, car-

Determining Hybrid Re-id Features of Vehicles
in Videos for Transport Analysis

Dávid Papp1 and Regő Borsodi1

86

2

following control directly affects vehicle performance. In
practical driving, drivers usually predict the behavior of
vehicles in the adjacent lane before modulating the driving
strategy of the host vehicle [6]. Prediction of lane change
maneuvers intended by the driver is solved by an artificial
neural network with fusing features modeling the
environmental situation [14]. The characterization of vehicles’
behavior based on their velocities can be modelled by
information theory [1]. A vehicle behavior analysis system can
be used in traffic jams and under complex weather conditions
[26]. To analyze the behavior of vehicles we need determine the
static and dynamic features of vehicles in videos, which belongs
to the discipline of computer vision.

B. Computer Vision
Most solutions for MOT can be categorized as either one-phase
or two-phase approaches. Two-phase methods first run object
detection to get the bounding boxes, then extract (re-id) features
of the detected objects. For the association step the SORT [2]
method uses Kalman filter [10] to predict object locations and
computes the overlap with detected objects. The matching is
performed with the Hungarian algorithm [13], with the nodes
of the graph being the bounding boxes on neighboring frames.
The IOU tracker [3], on the other hand, does the matching based
entirely on the overlaps of bounding boxes, without the use of
the Kalman filter, thus reaching a higher frame rate.

To improve tracking, some two-phase methods, such as
DeepSORT [37] - an improved version of SORT, use deep
learning to extract re-id features of the detected objects. The re-
id features and the IOU (intersection over union) of bounding
boxes are used to compute a cost matrix, which is utilized to do
the linking task using Kalman filter and the Hungarian
algorithm. This approach delivers decent performance in
MOTA (multi-object tracking accuracy), however, the two
different deep learning models (for object detection and re-id
embedding) do not share architecture and, as the networks are
run sequentially, the total inference time is the sum of the
individual execution times. Moreover, in crowded scenes, the
re-id network must be run separately for tens of bounding
boxes, further increasing the total running time.

One-phase approaches merge the object detection and re-id
embedding phases into a single network, thus, reaching real-
time or near real-time execution time. The JDE (Joint Detection

and Embedding) [34] tracker uses a FPN (Feature Pyramid
Network) [16] built on a Yolov3 [5] backbone. The prediction
heads on top of the FPN produce objectness scores, box offset
and box size for each anchor and location while also yielding
the re-id features. The recently proposed FairMOT [42] tracker
eliminates anchors and seeks to strike a balance between
accurate detection and re-id features. The prediction head is
built on a modified DLA (Deep Layer Aggregation) [41]
network on top of a ResNet-34 [7]. The network processes over
25 frames per second on multiple benchmarks [42].

The extraction of re-id features is a crucial part of MOT
methods [34], [37], [42]. On the one hand, one-phase trackers
such as JDE or FairMOT learn embeddings together with
detection by utilizing cross entropy loss or variations of triplet
loss [34], [42]. As video datasets with bounding box and
identity annotations are scarce, weakly supervised learning was
introduced, utilizing images with bounding box annotations,
and treating transformed variants of the same objects as the
same identity [42]. On the other hand, in a two-phase MOT
(scenario B in Figure 1), a separate re-id model is trained for
extracting accurate embeddings. Commonly used models for
this purpose are IBN-net variants with a ResNet [7] or ResNeXt
[38] backbone. Zhu et al trained three models for extracting
features describing the vehicle, camera, and orientation, then in
the final similarity, camera and orientation similarities are
subtracted from vehicle similarity to reduce the bias [45]. Given
the initial ranking based on similarities, several re-ranking
methods have been introduced to improve accuracy, such as the
K-reciprocal nearest neighbor method, that favors gallery
images having a similar set of k nearest neighbors to the query
image [43].

III. MTMC VEHICLE TRACKING
A high-level overview of MTMC process is shown in Fig. 1.
Video streams are fed into a one-phase (A) or a two-phase (B)
tracker, which both provide bounding boxes, re-id features, and
class confidence levels. Tracking algorithms (e.g. DeepSORT)
generate a trajectory when no more bounding boxes are
appended to it for a given interval of frames [37]. Trajectory
filtering is a camera-specific step, when stationary, too noisy,
or unnecessary trajectories, e.g. those containing pedestrians or
off-road vehicles, are discarded. When a single-camera
trajectory is finalized, it is matched with trajectories on other

Figure 1. Overview of the MTMC tracking process using one-phase single-camera tracking (A) or a two-phase one (B). The yellow trajectory
is an erroneous detection; thus, it is filtered out in the single-camera process.

86

1

Abstract — The research topic presented in this paper belongs
to computer vision problems in the transport application area,
where the statistical data of the results give the input for the
transport analysis. Although object tracking in a controlled
environment could be performed with good results in general,
accurate and detailed annotation of vehicles is a common problem
in traffic analysis. Such annotation includes static and dynamic
attributes of numerous vehicles. Most recent object trackers
employ CNNs to compute the so-called re-identification features of
the bounding boxes. In this paper we introduce hybrid re-
identification features, which combine latent, static, and dynamic
attributes to improve tracking. Furthermore, we propose a
lightweight solution that could be integrated in a real-time multi-
camera tracking system.

Index Terms — transport analysis, deep learning, feature
extraction, re-identification, multiple object tracking, multi-target
multi-camera tracking

I. INTRODUCTION
The subset of Intelligent Transport Systems allows cooperation
[15] among the vehicles and infrastructure, which is called Co‐
operative Transport System (CTS). CTS systems are designed
for cooperative sensing and predicting flow, infrastructure and
environmental conditions surrounding traffic, with a goal of
improving the safety and efficiency of road transport operations
[28]. The efficiency depends on the individual vehicles as well,
for example their route planning, as an optimization problem.
The uncertainty influences the route; however, a sophisticated
model with an appropriate algorithm can handle this uncertainty
to find the best route [31]. Finding a good solution for route
planning in a transport network is a general problem with
arbitrary network type, like a network of buses, a network of
tram rails, or any other type of a transport network [30].

Video-based vehicle behavior analysis is done by following
and annotating the vehicles across multiple cameras. This
requires accurate multi-target multi-camera tracking (MTMC)
that must be built upon information coming from single
cameras. The detection and tracking of multiple vehicles on a
single-camera is frequently referred to as MTSC (multi-target
single-camera tracking) or MOT (multiple object tracking).
These methods first run an object detector network to detect all
object instances, whose bounding boxes are then matched with
the trajectories based on previous frames. A critical part of
fusing MOTs into MTMC is matching the individual

1 Department of Telecommunications and Media Informatics, Budapest

University of Technology and Economics (BME), Budapest, Hungary (e-mail:
pappd@tmit.bme.hu, rego.borsodi@edu.bme.hu)

trajectories. This could be done by vehicle re-identification, that
aims to retrieve images from a gallery that contain the object of
the same identity as a provided query image. Recent solutions
for MOT extract feature vectors (so called re-id features) using
special CNNs (for example ResNet-IBN variants [23]) and rank
gallery images based on their cosine similarity to the query [9],
[21], [45]. To improve single-camera tracking, some MOT
methods employ the re-id features to help the association
between bounding boxes.

Static and dynamic attributes (such as axle number,
differentiating signs or velocity) of the vehicles could aid
MTMC trajectory matching. Determining these attributes
require frame by frame analysis. Passing vehicles usually
appear in several, most frequently (but not necessarily)
neighboring, frames. Thus, to determine dynamic features, it is
required to correctly identify their trajectories including all
bounding boxes of the object during their progress in front of
the camera. For calculating static features this is not necessary
in general, but it could enhance accuracy by using an ensemble
decision. The same reasoning holds for a system of multiple
cameras, where vehicle re-identification and tracking is
preferable.

In this paper we introduce hybrid re-id features, which
combines latent features, static and dynamic attributes of the
vehicle, and ordinary re-id features. We examine different
scenarios to calculate the hybrid re-id feature, from most
accurate to most lightweight, that could even be used in a real-
time MTMC system.

II. RELATED WORKS

A. Transport Analysis
In transport networks different situations can be analyzed, one
of which is equilibrium at the case of uncertainty situations,
where the uncertainty comes from lack of information. The
uncertainty can be represented by Dempster-Shafer theory, an
interval-based solution has been developed for handling this
situation [29]. In transport analysis different influencing factors
of the traffic congestion can be investigated on the roads using
uncertain probabilities described by probability intervals [32].

Vehicle behavior analysis consists of some parts, like car-
following, lane change maneuvers, velocities of the cars, etc.
As the fundamental control strategy of intelligent vehicles, car-

Determining Hybrid Re-id Features of Vehicles
in Videos for Transport Analysis

Dávid Papp1 and Regő Borsodi1

DOI: 10.36244/ICJ.2022.1.3

mailto:pappd%40tmit.bme.hu?subject=
mailto:rego.borsodi%40edu.bme.hu?subject=
https://doi.org/10.36244/ICJ.2022.1.3

Determining Hybrid Re-id Features of Vehicles
in Videos for Transport Analysis

MARCH 2022 • VOLUME XIV • NUMBER 118

INFOCOMMUNICATIONS JOURNAL

86

2

following control directly affects vehicle performance. In
practical driving, drivers usually predict the behavior of
vehicles in the adjacent lane before modulating the driving
strategy of the host vehicle [6]. Prediction of lane change
maneuvers intended by the driver is solved by an artificial
neural network with fusing features modeling the
environmental situation [14]. The characterization of vehicles’
behavior based on their velocities can be modelled by
information theory [1]. A vehicle behavior analysis system can
be used in traffic jams and under complex weather conditions
[26]. To analyze the behavior of vehicles we need determine the
static and dynamic features of vehicles in videos, which belongs
to the discipline of computer vision.

B. Computer Vision
Most solutions for MOT can be categorized as either one-phase
or two-phase approaches. Two-phase methods first run object
detection to get the bounding boxes, then extract (re-id) features
of the detected objects. For the association step the SORT [2]
method uses Kalman filter [10] to predict object locations and
computes the overlap with detected objects. The matching is
performed with the Hungarian algorithm [13], with the nodes
of the graph being the bounding boxes on neighboring frames.
The IOU tracker [3], on the other hand, does the matching based
entirely on the overlaps of bounding boxes, without the use of
the Kalman filter, thus reaching a higher frame rate.

To improve tracking, some two-phase methods, such as
DeepSORT [37] - an improved version of SORT, use deep
learning to extract re-id features of the detected objects. The re-
id features and the IOU (intersection over union) of bounding
boxes are used to compute a cost matrix, which is utilized to do
the linking task using Kalman filter and the Hungarian
algorithm. This approach delivers decent performance in
MOTA (multi-object tracking accuracy), however, the two
different deep learning models (for object detection and re-id
embedding) do not share architecture and, as the networks are
run sequentially, the total inference time is the sum of the
individual execution times. Moreover, in crowded scenes, the
re-id network must be run separately for tens of bounding
boxes, further increasing the total running time.

One-phase approaches merge the object detection and re-id
embedding phases into a single network, thus, reaching real-
time or near real-time execution time. The JDE (Joint Detection

and Embedding) [34] tracker uses a FPN (Feature Pyramid
Network) [16] built on a Yolov3 [5] backbone. The prediction
heads on top of the FPN produce objectness scores, box offset
and box size for each anchor and location while also yielding
the re-id features. The recently proposed FairMOT [42] tracker
eliminates anchors and seeks to strike a balance between
accurate detection and re-id features. The prediction head is
built on a modified DLA (Deep Layer Aggregation) [41]
network on top of a ResNet-34 [7]. The network processes over
25 frames per second on multiple benchmarks [42].

The extraction of re-id features is a crucial part of MOT
methods [34], [37], [42]. On the one hand, one-phase trackers
such as JDE or FairMOT learn embeddings together with
detection by utilizing cross entropy loss or variations of triplet
loss [34], [42]. As video datasets with bounding box and
identity annotations are scarce, weakly supervised learning was
introduced, utilizing images with bounding box annotations,
and treating transformed variants of the same objects as the
same identity [42]. On the other hand, in a two-phase MOT
(scenario B in Figure 1), a separate re-id model is trained for
extracting accurate embeddings. Commonly used models for
this purpose are IBN-net variants with a ResNet [7] or ResNeXt
[38] backbone. Zhu et al trained three models for extracting
features describing the vehicle, camera, and orientation, then in
the final similarity, camera and orientation similarities are
subtracted from vehicle similarity to reduce the bias [45]. Given
the initial ranking based on similarities, several re-ranking
methods have been introduced to improve accuracy, such as the
K-reciprocal nearest neighbor method, that favors gallery
images having a similar set of k nearest neighbors to the query
image [43].

III. MTMC VEHICLE TRACKING
A high-level overview of MTMC process is shown in Fig. 1.
Video streams are fed into a one-phase (A) or a two-phase (B)
tracker, which both provide bounding boxes, re-id features, and
class confidence levels. Tracking algorithms (e.g. DeepSORT)
generate a trajectory when no more bounding boxes are
appended to it for a given interval of frames [37]. Trajectory
filtering is a camera-specific step, when stationary, too noisy,
or unnecessary trajectories, e.g. those containing pedestrians or
off-road vehicles, are discarded. When a single-camera
trajectory is finalized, it is matched with trajectories on other

Figure 1. Overview of the MTMC tracking process using one-phase single-camera tracking (A) or a two-phase one (B). The yellow trajectory
is an erroneous detection; thus, it is filtered out in the single-camera process.

86

2

following control directly affects vehicle performance. In
practical driving, drivers usually predict the behavior of
vehicles in the adjacent lane before modulating the driving
strategy of the host vehicle [6]. Prediction of lane change
maneuvers intended by the driver is solved by an artificial
neural network with fusing features modeling the
environmental situation [14]. The characterization of vehicles’
behavior based on their velocities can be modelled by
information theory [1]. A vehicle behavior analysis system can
be used in traffic jams and under complex weather conditions
[26]. To analyze the behavior of vehicles we need determine the
static and dynamic features of vehicles in videos, which belongs
to the discipline of computer vision.

B. Computer Vision
Most solutions for MOT can be categorized as either one-phase
or two-phase approaches. Two-phase methods first run object
detection to get the bounding boxes, then extract (re-id) features
of the detected objects. For the association step the SORT [2]
method uses Kalman filter [10] to predict object locations and
computes the overlap with detected objects. The matching is
performed with the Hungarian algorithm [13], with the nodes
of the graph being the bounding boxes on neighboring frames.
The IOU tracker [3], on the other hand, does the matching based
entirely on the overlaps of bounding boxes, without the use of
the Kalman filter, thus reaching a higher frame rate.

To improve tracking, some two-phase methods, such as
DeepSORT [37] - an improved version of SORT, use deep
learning to extract re-id features of the detected objects. The re-
id features and the IOU (intersection over union) of bounding
boxes are used to compute a cost matrix, which is utilized to do
the linking task using Kalman filter and the Hungarian
algorithm. This approach delivers decent performance in
MOTA (multi-object tracking accuracy), however, the two
different deep learning models (for object detection and re-id
embedding) do not share architecture and, as the networks are
run sequentially, the total inference time is the sum of the
individual execution times. Moreover, in crowded scenes, the
re-id network must be run separately for tens of bounding
boxes, further increasing the total running time.

One-phase approaches merge the object detection and re-id
embedding phases into a single network, thus, reaching real-
time or near real-time execution time. The JDE (Joint Detection

and Embedding) [34] tracker uses a FPN (Feature Pyramid
Network) [16] built on a Yolov3 [5] backbone. The prediction
heads on top of the FPN produce objectness scores, box offset
and box size for each anchor and location while also yielding
the re-id features. The recently proposed FairMOT [42] tracker
eliminates anchors and seeks to strike a balance between
accurate detection and re-id features. The prediction head is
built on a modified DLA (Deep Layer Aggregation) [41]
network on top of a ResNet-34 [7]. The network processes over
25 frames per second on multiple benchmarks [42].

The extraction of re-id features is a crucial part of MOT
methods [34], [37], [42]. On the one hand, one-phase trackers
such as JDE or FairMOT learn embeddings together with
detection by utilizing cross entropy loss or variations of triplet
loss [34], [42]. As video datasets with bounding box and
identity annotations are scarce, weakly supervised learning was
introduced, utilizing images with bounding box annotations,
and treating transformed variants of the same objects as the
same identity [42]. On the other hand, in a two-phase MOT
(scenario B in Figure 1), a separate re-id model is trained for
extracting accurate embeddings. Commonly used models for
this purpose are IBN-net variants with a ResNet [7] or ResNeXt
[38] backbone. Zhu et al trained three models for extracting
features describing the vehicle, camera, and orientation, then in
the final similarity, camera and orientation similarities are
subtracted from vehicle similarity to reduce the bias [45]. Given
the initial ranking based on similarities, several re-ranking
methods have been introduced to improve accuracy, such as the
K-reciprocal nearest neighbor method, that favors gallery
images having a similar set of k nearest neighbors to the query
image [43].

III. MTMC VEHICLE TRACKING
A high-level overview of MTMC process is shown in Fig. 1.
Video streams are fed into a one-phase (A) or a two-phase (B)
tracker, which both provide bounding boxes, re-id features, and
class confidence levels. Tracking algorithms (e.g. DeepSORT)
generate a trajectory when no more bounding boxes are
appended to it for a given interval of frames [37]. Trajectory
filtering is a camera-specific step, when stationary, too noisy,
or unnecessary trajectories, e.g. those containing pedestrians or
off-road vehicles, are discarded. When a single-camera
trajectory is finalized, it is matched with trajectories on other

Figure 1. Overview of the MTMC tracking process using one-phase single-camera tracking (A) or a two-phase one (B). The yellow trajectory
is an erroneous detection; thus, it is filtered out in the single-camera process.

86

2

following control directly affects vehicle performance. In
practical driving, drivers usually predict the behavior of
vehicles in the adjacent lane before modulating the driving
strategy of the host vehicle [6]. Prediction of lane change
maneuvers intended by the driver is solved by an artificial
neural network with fusing features modeling the
environmental situation [14]. The characterization of vehicles’
behavior based on their velocities can be modelled by
information theory [1]. A vehicle behavior analysis system can
be used in traffic jams and under complex weather conditions
[26]. To analyze the behavior of vehicles we need determine the
static and dynamic features of vehicles in videos, which belongs
to the discipline of computer vision.

B. Computer Vision
Most solutions for MOT can be categorized as either one-phase
or two-phase approaches. Two-phase methods first run object
detection to get the bounding boxes, then extract (re-id) features
of the detected objects. For the association step the SORT [2]
method uses Kalman filter [10] to predict object locations and
computes the overlap with detected objects. The matching is
performed with the Hungarian algorithm [13], with the nodes
of the graph being the bounding boxes on neighboring frames.
The IOU tracker [3], on the other hand, does the matching based
entirely on the overlaps of bounding boxes, without the use of
the Kalman filter, thus reaching a higher frame rate.

To improve tracking, some two-phase methods, such as
DeepSORT [37] - an improved version of SORT, use deep
learning to extract re-id features of the detected objects. The re-
id features and the IOU (intersection over union) of bounding
boxes are used to compute a cost matrix, which is utilized to do
the linking task using Kalman filter and the Hungarian
algorithm. This approach delivers decent performance in
MOTA (multi-object tracking accuracy), however, the two
different deep learning models (for object detection and re-id
embedding) do not share architecture and, as the networks are
run sequentially, the total inference time is the sum of the
individual execution times. Moreover, in crowded scenes, the
re-id network must be run separately for tens of bounding
boxes, further increasing the total running time.

One-phase approaches merge the object detection and re-id
embedding phases into a single network, thus, reaching real-
time or near real-time execution time. The JDE (Joint Detection

and Embedding) [34] tracker uses a FPN (Feature Pyramid
Network) [16] built on a Yolov3 [5] backbone. The prediction
heads on top of the FPN produce objectness scores, box offset
and box size for each anchor and location while also yielding
the re-id features. The recently proposed FairMOT [42] tracker
eliminates anchors and seeks to strike a balance between
accurate detection and re-id features. The prediction head is
built on a modified DLA (Deep Layer Aggregation) [41]
network on top of a ResNet-34 [7]. The network processes over
25 frames per second on multiple benchmarks [42].

The extraction of re-id features is a crucial part of MOT
methods [34], [37], [42]. On the one hand, one-phase trackers
such as JDE or FairMOT learn embeddings together with
detection by utilizing cross entropy loss or variations of triplet
loss [34], [42]. As video datasets with bounding box and
identity annotations are scarce, weakly supervised learning was
introduced, utilizing images with bounding box annotations,
and treating transformed variants of the same objects as the
same identity [42]. On the other hand, in a two-phase MOT
(scenario B in Figure 1), a separate re-id model is trained for
extracting accurate embeddings. Commonly used models for
this purpose are IBN-net variants with a ResNet [7] or ResNeXt
[38] backbone. Zhu et al trained three models for extracting
features describing the vehicle, camera, and orientation, then in
the final similarity, camera and orientation similarities are
subtracted from vehicle similarity to reduce the bias [45]. Given
the initial ranking based on similarities, several re-ranking
methods have been introduced to improve accuracy, such as the
K-reciprocal nearest neighbor method, that favors gallery
images having a similar set of k nearest neighbors to the query
image [43].

III. MTMC VEHICLE TRACKING
A high-level overview of MTMC process is shown in Fig. 1.
Video streams are fed into a one-phase (A) or a two-phase (B)
tracker, which both provide bounding boxes, re-id features, and
class confidence levels. Tracking algorithms (e.g. DeepSORT)
generate a trajectory when no more bounding boxes are
appended to it for a given interval of frames [37]. Trajectory
filtering is a camera-specific step, when stationary, too noisy,
or unnecessary trajectories, e.g. those containing pedestrians or
off-road vehicles, are discarded. When a single-camera
trajectory is finalized, it is matched with trajectories on other

Figure 1. Overview of the MTMC tracking process using one-phase single-camera tracking (A) or a two-phase one (B). The yellow trajectory
is an erroneous detection; thus, it is filtered out in the single-camera process.

Fig. 1.: Overview of the MTMC tracking process using one-phase single-camera tracking (A) or a two-phase one (B). The yellow trajectory is an
erroneous detection; thus, it is filtered out in the single-camera process.

86

2

following control directly affects vehicle performance. In
practical driving, drivers usually predict the behavior of
vehicles in the adjacent lane before modulating the driving
strategy of the host vehicle [6]. Prediction of lane change
maneuvers intended by the driver is solved by an artificial
neural network with fusing features modeling the
environmental situation [14]. The characterization of vehicles’
behavior based on their velocities can be modelled by
information theory [1]. A vehicle behavior analysis system can
be used in traffic jams and under complex weather conditions
[26]. To analyze the behavior of vehicles we need determine the
static and dynamic features of vehicles in videos, which belongs
to the discipline of computer vision.

B. Computer Vision
Most solutions for MOT can be categorized as either one-phase
or two-phase approaches. Two-phase methods first run object
detection to get the bounding boxes, then extract (re-id) features
of the detected objects. For the association step the SORT [2]
method uses Kalman filter [10] to predict object locations and
computes the overlap with detected objects. The matching is
performed with the Hungarian algorithm [13], with the nodes
of the graph being the bounding boxes on neighboring frames.
The IOU tracker [3], on the other hand, does the matching based
entirely on the overlaps of bounding boxes, without the use of
the Kalman filter, thus reaching a higher frame rate.

To improve tracking, some two-phase methods, such as
DeepSORT [37] - an improved version of SORT, use deep
learning to extract re-id features of the detected objects. The re-
id features and the IOU (intersection over union) of bounding
boxes are used to compute a cost matrix, which is utilized to do
the linking task using Kalman filter and the Hungarian
algorithm. This approach delivers decent performance in
MOTA (multi-object tracking accuracy), however, the two
different deep learning models (for object detection and re-id
embedding) do not share architecture and, as the networks are
run sequentially, the total inference time is the sum of the
individual execution times. Moreover, in crowded scenes, the
re-id network must be run separately for tens of bounding
boxes, further increasing the total running time.

One-phase approaches merge the object detection and re-id
embedding phases into a single network, thus, reaching real-
time or near real-time execution time. The JDE (Joint Detection

and Embedding) [34] tracker uses a FPN (Feature Pyramid
Network) [16] built on a Yolov3 [5] backbone. The prediction
heads on top of the FPN produce objectness scores, box offset
and box size for each anchor and location while also yielding
the re-id features. The recently proposed FairMOT [42] tracker
eliminates anchors and seeks to strike a balance between
accurate detection and re-id features. The prediction head is
built on a modified DLA (Deep Layer Aggregation) [41]
network on top of a ResNet-34 [7]. The network processes over
25 frames per second on multiple benchmarks [42].

The extraction of re-id features is a crucial part of MOT
methods [34], [37], [42]. On the one hand, one-phase trackers
such as JDE or FairMOT learn embeddings together with
detection by utilizing cross entropy loss or variations of triplet
loss [34], [42]. As video datasets with bounding box and
identity annotations are scarce, weakly supervised learning was
introduced, utilizing images with bounding box annotations,
and treating transformed variants of the same objects as the
same identity [42]. On the other hand, in a two-phase MOT
(scenario B in Figure 1), a separate re-id model is trained for
extracting accurate embeddings. Commonly used models for
this purpose are IBN-net variants with a ResNet [7] or ResNeXt
[38] backbone. Zhu et al trained three models for extracting
features describing the vehicle, camera, and orientation, then in
the final similarity, camera and orientation similarities are
subtracted from vehicle similarity to reduce the bias [45]. Given
the initial ranking based on similarities, several re-ranking
methods have been introduced to improve accuracy, such as the
K-reciprocal nearest neighbor method, that favors gallery
images having a similar set of k nearest neighbors to the query
image [43].

III. MTMC VEHICLE TRACKING
A high-level overview of MTMC process is shown in Fig. 1.
Video streams are fed into a one-phase (A) or a two-phase (B)
tracker, which both provide bounding boxes, re-id features, and
class confidence levels. Tracking algorithms (e.g. DeepSORT)
generate a trajectory when no more bounding boxes are
appended to it for a given interval of frames [37]. Trajectory
filtering is a camera-specific step, when stationary, too noisy,
or unnecessary trajectories, e.g. those containing pedestrians or
off-road vehicles, are discarded. When a single-camera
trajectory is finalized, it is matched with trajectories on other

Figure 1. Overview of the MTMC tracking process using one-phase single-camera tracking (A) or a two-phase one (B). The yellow trajectory
is an erroneous detection; thus, it is filtered out in the single-camera process. 86

3

cameras to create multi-camera tracklets. This step is usually
done by clustering the mean feature vectors of tracklets [17].

Multi-target multi-camera tracking has been mostly studied
as an offline task. For example, the test dataset on Track 3 of
the AI City challenge [22] contains 20 minutes of traffic videos
from 6 non-overlapping cameras. Many solutions first ran MOT
on all cameras, and when all trajectories were available, multi-
camera trajectory clustering was deployed [17], [40]. As the
locations of cameras were available, spatial-temporal
constraints were considered, which greatly reduced the number
of possible trajectory matchings. If such constraints are not
available, the inter-camera matching can only be done based on
vehicle appearance, which becomes increasingly difficult with
the growth of the dataset.

Commonly used MOT systems operate in an online manner
[3], [34], [37], [42]. In online MTMC, when a single-camera
trajectory is generated, it should be immediately connected to
an existing multi-camera tracklet or used to initialize a new one.
The exact details of this operation heavily depend on the spatial-
temporal constraints based on cameras. State-of-the-art single-
camera trackers (e.g. FairMOT) also achieve real-time tracking,
reaching 25-30 frames per second on the MOT15, MOT16, and
MOT17 benchmarks [42]. However, real-time MTMC would
require cameras to be well synchronized, and a new vehicle
appearing on a camera to be matched with trajectories (or even
newly appearing vehicles) from other cameras immediately as
it is detected, which would likely deteriorate MTMC accuracy.
However, we still consider the running time of the system,
including the extraction of static and dynamic features, as it is
preferable to be able to process video streams with at least the
same speed as they are generated (even if the tracking and
extraction do not run strictly in a real-time manner).

IV. MTMC VEHICLE TRACKING USING HYBRID RE-ID

A. Re-id model
For training re-id models, huge datasets, containing multiple
images of the same vehicle identities are available (see Table 1)
in contrast to the case of one-phase trackers described
previously. The VehicleX [39] rendering engine also comes
handy in training state-of-the-art re-id models. Firstly, for
training an orientation model in the commonly used VOC
approach, a dataset annotated with vehicle orientation labels is
generated using VehicleX, as creating a real-world dataset
containing such labels would require tremendous amount of
work. Moreover, extending the dataset with artificial images
from VehicleX can alone improve the quality of the features
[22].

Table 1. Vehicle re-identification datasets

Dataset #Bboxes #Identities
VRIC [11], [35] 60K 5622

CityFlow(v2) [33] 313K 880
VeRi-776 [19] 50K 776
VeRi-Wild [20] 416K 40K
VehicleID [18] 221K 26K
VehicleX [39] ∞ 1362

Figure 2. Hierarchy of static and dynamic attributes of vehicles; solid
line boxes represent the top level

B. Static and Dynamic attributes
Fig. 2 shows the set of dynamic and static attributes that are
associated with each detected object. Each of these attributes
could be calculated from the bounding box directly, or we could
exploit the re-id features, as those are already computed and
should be good representations of the objects.

Extracting static and dynamic characteristics of vehicles is
generally the output of the annotation process; however, we
propose to feed this information back into the MTMC system
in order to improve tracking and trajectory matching. Since
dynamic features are time dependent, it is required to extract
them for all bounding boxes of the object during their progress
in front of the camera. Overlapping and well synchronized
cameras allow to compensate for false negatives; otherwise,
they are replaced with the attributes extracted in neighboring
frames. In an ideal situation, static features are also calculated
for all bounding boxes, but this is not necessary, because they
are constant for the entire trajectory. There are essentially two
ways to determine static features:

• Weighted majority vote of frame-by-frame extraction
• Mean of best (high confidence, close to camera)

detections
Fig. 3 proposes multiple scenarios for extracting static

features. The features can be determined by reusing the re-id
features, either by feeding them into a single NN, that has a
divided prediction head for each task (C), or by training one
classifier for each static feature (E). These classifiers could be
NNs, SVMs, GBMs or even random forests. In scenarios D and
F, the region of interests (ROIs) from cropped bounding boxes
are fed into either a single CNN with a stacked prediction head
(D) or into separate CNNs (F). Most likely, scenario F provides

86

3

cameras to create multi-camera tracklets. This step is usually
done by clustering the mean feature vectors of tracklets [17].

Multi-target multi-camera tracking has been mostly studied
as an offline task. For example, the test dataset on Track 3 of
the AI City challenge [22] contains 20 minutes of traffic videos
from 6 non-overlapping cameras. Many solutions first ran MOT
on all cameras, and when all trajectories were available, multi-
camera trajectory clustering was deployed [17], [40]. As the
locations of cameras were available, spatial-temporal
constraints were considered, which greatly reduced the number
of possible trajectory matchings. If such constraints are not
available, the inter-camera matching can only be done based on
vehicle appearance, which becomes increasingly difficult with
the growth of the dataset.

Commonly used MOT systems operate in an online manner
[3], [34], [37], [42]. In online MTMC, when a single-camera
trajectory is generated, it should be immediately connected to
an existing multi-camera tracklet or used to initialize a new one.
The exact details of this operation heavily depend on the spatial-
temporal constraints based on cameras. State-of-the-art single-
camera trackers (e.g. FairMOT) also achieve real-time tracking,
reaching 25-30 frames per second on the MOT15, MOT16, and
MOT17 benchmarks [42]. However, real-time MTMC would
require cameras to be well synchronized, and a new vehicle
appearing on a camera to be matched with trajectories (or even
newly appearing vehicles) from other cameras immediately as
it is detected, which would likely deteriorate MTMC accuracy.
However, we still consider the running time of the system,
including the extraction of static and dynamic features, as it is
preferable to be able to process video streams with at least the
same speed as they are generated (even if the tracking and
extraction do not run strictly in a real-time manner).

IV. MTMC VEHICLE TRACKING USING HYBRID RE-ID

A. Re-id model
For training re-id models, huge datasets, containing multiple
images of the same vehicle identities are available (see Table 1)
in contrast to the case of one-phase trackers described
previously. The VehicleX [39] rendering engine also comes
handy in training state-of-the-art re-id models. Firstly, for
training an orientation model in the commonly used VOC
approach, a dataset annotated with vehicle orientation labels is
generated using VehicleX, as creating a real-world dataset
containing such labels would require tremendous amount of
work. Moreover, extending the dataset with artificial images
from VehicleX can alone improve the quality of the features
[22].

Table 1. Vehicle re-identification datasets

Dataset #Bboxes #Identities
VRIC [11], [35] 60K 5622

CityFlow(v2) [33] 313K 880
VeRi-776 [19] 50K 776
VeRi-Wild [20] 416K 40K
VehicleID [18] 221K 26K
VehicleX [39] ∞ 1362

Figure 2. Hierarchy of static and dynamic attributes of vehicles; solid
line boxes represent the top level

B. Static and Dynamic attributes
Fig. 2 shows the set of dynamic and static attributes that are
associated with each detected object. Each of these attributes
could be calculated from the bounding box directly, or we could
exploit the re-id features, as those are already computed and
should be good representations of the objects.

Extracting static and dynamic characteristics of vehicles is
generally the output of the annotation process; however, we
propose to feed this information back into the MTMC system
in order to improve tracking and trajectory matching. Since
dynamic features are time dependent, it is required to extract
them for all bounding boxes of the object during their progress
in front of the camera. Overlapping and well synchronized
cameras allow to compensate for false negatives; otherwise,
they are replaced with the attributes extracted in neighboring
frames. In an ideal situation, static features are also calculated
for all bounding boxes, but this is not necessary, because they
are constant for the entire trajectory. There are essentially two
ways to determine static features:

• Weighted majority vote of frame-by-frame extraction
• Mean of best (high confidence, close to camera)

detections
Fig. 3 proposes multiple scenarios for extracting static

features. The features can be determined by reusing the re-id
features, either by feeding them into a single NN, that has a
divided prediction head for each task (C), or by training one
classifier for each static feature (E). These classifiers could be
NNs, SVMs, GBMs or even random forests. In scenarios D and
F, the region of interests (ROIs) from cropped bounding boxes
are fed into either a single CNN with a stacked prediction head
(D) or into separate CNNs (F). Most likely, scenario F provides

86

2

following control directly affects vehicle performance. In
practical driving, drivers usually predict the behavior of
vehicles in the adjacent lane before modulating the driving
strategy of the host vehicle [6]. Prediction of lane change
maneuvers intended by the driver is solved by an artificial
neural network with fusing features modeling the
environmental situation [14]. The characterization of vehicles’
behavior based on their velocities can be modelled by
information theory [1]. A vehicle behavior analysis system can
be used in traffic jams and under complex weather conditions
[26]. To analyze the behavior of vehicles we need determine the
static and dynamic features of vehicles in videos, which belongs
to the discipline of computer vision.

B. Computer Vision
Most solutions for MOT can be categorized as either one-phase
or two-phase approaches. Two-phase methods first run object
detection to get the bounding boxes, then extract (re-id) features
of the detected objects. For the association step the SORT [2]
method uses Kalman filter [10] to predict object locations and
computes the overlap with detected objects. The matching is
performed with the Hungarian algorithm [13], with the nodes
of the graph being the bounding boxes on neighboring frames.
The IOU tracker [3], on the other hand, does the matching based
entirely on the overlaps of bounding boxes, without the use of
the Kalman filter, thus reaching a higher frame rate.

To improve tracking, some two-phase methods, such as
DeepSORT [37] - an improved version of SORT, use deep
learning to extract re-id features of the detected objects. The re-
id features and the IOU (intersection over union) of bounding
boxes are used to compute a cost matrix, which is utilized to do
the linking task using Kalman filter and the Hungarian
algorithm. This approach delivers decent performance in
MOTA (multi-object tracking accuracy), however, the two
different deep learning models (for object detection and re-id
embedding) do not share architecture and, as the networks are
run sequentially, the total inference time is the sum of the
individual execution times. Moreover, in crowded scenes, the
re-id network must be run separately for tens of bounding
boxes, further increasing the total running time.

One-phase approaches merge the object detection and re-id
embedding phases into a single network, thus, reaching real-
time or near real-time execution time. The JDE (Joint Detection

and Embedding) [34] tracker uses a FPN (Feature Pyramid
Network) [16] built on a Yolov3 [5] backbone. The prediction
heads on top of the FPN produce objectness scores, box offset
and box size for each anchor and location while also yielding
the re-id features. The recently proposed FairMOT [42] tracker
eliminates anchors and seeks to strike a balance between
accurate detection and re-id features. The prediction head is
built on a modified DLA (Deep Layer Aggregation) [41]
network on top of a ResNet-34 [7]. The network processes over
25 frames per second on multiple benchmarks [42].

The extraction of re-id features is a crucial part of MOT
methods [34], [37], [42]. On the one hand, one-phase trackers
such as JDE or FairMOT learn embeddings together with
detection by utilizing cross entropy loss or variations of triplet
loss [34], [42]. As video datasets with bounding box and
identity annotations are scarce, weakly supervised learning was
introduced, utilizing images with bounding box annotations,
and treating transformed variants of the same objects as the
same identity [42]. On the other hand, in a two-phase MOT
(scenario B in Figure 1), a separate re-id model is trained for
extracting accurate embeddings. Commonly used models for
this purpose are IBN-net variants with a ResNet [7] or ResNeXt
[38] backbone. Zhu et al trained three models for extracting
features describing the vehicle, camera, and orientation, then in
the final similarity, camera and orientation similarities are
subtracted from vehicle similarity to reduce the bias [45]. Given
the initial ranking based on similarities, several re-ranking
methods have been introduced to improve accuracy, such as the
K-reciprocal nearest neighbor method, that favors gallery
images having a similar set of k nearest neighbors to the query
image [43].

III. MTMC VEHICLE TRACKING
A high-level overview of MTMC process is shown in Fig. 1.
Video streams are fed into a one-phase (A) or a two-phase (B)
tracker, which both provide bounding boxes, re-id features, and
class confidence levels. Tracking algorithms (e.g. DeepSORT)
generate a trajectory when no more bounding boxes are
appended to it for a given interval of frames [37]. Trajectory
filtering is a camera-specific step, when stationary, too noisy,
or unnecessary trajectories, e.g. those containing pedestrians or
off-road vehicles, are discarded. When a single-camera
trajectory is finalized, it is matched with trajectories on other

Figure 1. Overview of the MTMC tracking process using one-phase single-camera tracking (A) or a two-phase one (B). The yellow trajectory
is an erroneous detection; thus, it is filtered out in the single-camera process.

Determining Hybrid Re-id Features of Vehicles
in Videos for Transport Analysis

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 19

86

3

cameras to create multi-camera tracklets. This step is usually
done by clustering the mean feature vectors of tracklets [17].

Multi-target multi-camera tracking has been mostly studied
as an offline task. For example, the test dataset on Track 3 of
the AI City challenge [22] contains 20 minutes of traffic videos
from 6 non-overlapping cameras. Many solutions first ran MOT
on all cameras, and when all trajectories were available, multi-
camera trajectory clustering was deployed [17], [40]. As the
locations of cameras were available, spatial-temporal
constraints were considered, which greatly reduced the number
of possible trajectory matchings. If such constraints are not
available, the inter-camera matching can only be done based on
vehicle appearance, which becomes increasingly difficult with
the growth of the dataset.

Commonly used MOT systems operate in an online manner
[3], [34], [37], [42]. In online MTMC, when a single-camera
trajectory is generated, it should be immediately connected to
an existing multi-camera tracklet or used to initialize a new one.
The exact details of this operation heavily depend on the spatial-
temporal constraints based on cameras. State-of-the-art single-
camera trackers (e.g. FairMOT) also achieve real-time tracking,
reaching 25-30 frames per second on the MOT15, MOT16, and
MOT17 benchmarks [42]. However, real-time MTMC would
require cameras to be well synchronized, and a new vehicle
appearing on a camera to be matched with trajectories (or even
newly appearing vehicles) from other cameras immediately as
it is detected, which would likely deteriorate MTMC accuracy.
However, we still consider the running time of the system,
including the extraction of static and dynamic features, as it is
preferable to be able to process video streams with at least the
same speed as they are generated (even if the tracking and
extraction do not run strictly in a real-time manner).

IV. MTMC VEHICLE TRACKING USING HYBRID RE-ID

A. Re-id model
For training re-id models, huge datasets, containing multiple
images of the same vehicle identities are available (see Table 1)
in contrast to the case of one-phase trackers described
previously. The VehicleX [39] rendering engine also comes
handy in training state-of-the-art re-id models. Firstly, for
training an orientation model in the commonly used VOC
approach, a dataset annotated with vehicle orientation labels is
generated using VehicleX, as creating a real-world dataset
containing such labels would require tremendous amount of
work. Moreover, extending the dataset with artificial images
from VehicleX can alone improve the quality of the features
[22].

Table 1. Vehicle re-identification datasets

Dataset #Bboxes #Identities
VRIC [11], [35] 60K 5622

CityFlow(v2) [33] 313K 880
VeRi-776 [19] 50K 776
VeRi-Wild [20] 416K 40K
VehicleID [18] 221K 26K
VehicleX [39] ∞ 1362

Figure 2. Hierarchy of static and dynamic attributes of vehicles; solid
line boxes represent the top level

B. Static and Dynamic attributes
Fig. 2 shows the set of dynamic and static attributes that are
associated with each detected object. Each of these attributes
could be calculated from the bounding box directly, or we could
exploit the re-id features, as those are already computed and
should be good representations of the objects.

Extracting static and dynamic characteristics of vehicles is
generally the output of the annotation process; however, we
propose to feed this information back into the MTMC system
in order to improve tracking and trajectory matching. Since
dynamic features are time dependent, it is required to extract
them for all bounding boxes of the object during their progress
in front of the camera. Overlapping and well synchronized
cameras allow to compensate for false negatives; otherwise,
they are replaced with the attributes extracted in neighboring
frames. In an ideal situation, static features are also calculated
for all bounding boxes, but this is not necessary, because they
are constant for the entire trajectory. There are essentially two
ways to determine static features:

• Weighted majority vote of frame-by-frame extraction
• Mean of best (high confidence, close to camera)

detections
Fig. 3 proposes multiple scenarios for extracting static

features. The features can be determined by reusing the re-id
features, either by feeding them into a single NN, that has a
divided prediction head for each task (C), or by training one
classifier for each static feature (E). These classifiers could be
NNs, SVMs, GBMs or even random forests. In scenarios D and
F, the region of interests (ROIs) from cropped bounding boxes
are fed into either a single CNN with a stacked prediction head
(D) or into separate CNNs (F). Most likely, scenario F provides

Fig. 2.: Hierarchy of static and dynamic attributes of vehicles; solid line
boxes represent the top level

86

3

cameras to create multi-camera tracklets. This step is usually
done by clustering the mean feature vectors of tracklets [17].

Multi-target multi-camera tracking has been mostly studied
as an offline task. For example, the test dataset on Track 3 of
the AI City challenge [22] contains 20 minutes of traffic videos
from 6 non-overlapping cameras. Many solutions first ran MOT
on all cameras, and when all trajectories were available, multi-
camera trajectory clustering was deployed [17], [40]. As the
locations of cameras were available, spatial-temporal
constraints were considered, which greatly reduced the number
of possible trajectory matchings. If such constraints are not
available, the inter-camera matching can only be done based on
vehicle appearance, which becomes increasingly difficult with
the growth of the dataset.

Commonly used MOT systems operate in an online manner
[3], [34], [37], [42]. In online MTMC, when a single-camera
trajectory is generated, it should be immediately connected to
an existing multi-camera tracklet or used to initialize a new one.
The exact details of this operation heavily depend on the spatial-
temporal constraints based on cameras. State-of-the-art single-
camera trackers (e.g. FairMOT) also achieve real-time tracking,
reaching 25-30 frames per second on the MOT15, MOT16, and
MOT17 benchmarks [42]. However, real-time MTMC would
require cameras to be well synchronized, and a new vehicle
appearing on a camera to be matched with trajectories (or even
newly appearing vehicles) from other cameras immediately as
it is detected, which would likely deteriorate MTMC accuracy.
However, we still consider the running time of the system,
including the extraction of static and dynamic features, as it is
preferable to be able to process video streams with at least the
same speed as they are generated (even if the tracking and
extraction do not run strictly in a real-time manner).

IV. MTMC VEHICLE TRACKING USING HYBRID RE-ID

A. Re-id model
For training re-id models, huge datasets, containing multiple
images of the same vehicle identities are available (see Table 1)
in contrast to the case of one-phase trackers described
previously. The VehicleX [39] rendering engine also comes
handy in training state-of-the-art re-id models. Firstly, for
training an orientation model in the commonly used VOC
approach, a dataset annotated with vehicle orientation labels is
generated using VehicleX, as creating a real-world dataset
containing such labels would require tremendous amount of
work. Moreover, extending the dataset with artificial images
from VehicleX can alone improve the quality of the features
[22].

Table 1. Vehicle re-identification datasets

Dataset #Bboxes #Identities
VRIC [11], [35] 60K 5622

CityFlow(v2) [33] 313K 880
VeRi-776 [19] 50K 776
VeRi-Wild [20] 416K 40K
VehicleID [18] 221K 26K
VehicleX [39] ∞ 1362

Figure 2. Hierarchy of static and dynamic attributes of vehicles; solid
line boxes represent the top level

B. Static and Dynamic attributes
Fig. 2 shows the set of dynamic and static attributes that are
associated with each detected object. Each of these attributes
could be calculated from the bounding box directly, or we could
exploit the re-id features, as those are already computed and
should be good representations of the objects.

Extracting static and dynamic characteristics of vehicles is
generally the output of the annotation process; however, we
propose to feed this information back into the MTMC system
in order to improve tracking and trajectory matching. Since
dynamic features are time dependent, it is required to extract
them for all bounding boxes of the object during their progress
in front of the camera. Overlapping and well synchronized
cameras allow to compensate for false negatives; otherwise,
they are replaced with the attributes extracted in neighboring
frames. In an ideal situation, static features are also calculated
for all bounding boxes, but this is not necessary, because they
are constant for the entire trajectory. There are essentially two
ways to determine static features:

• Weighted majority vote of frame-by-frame extraction
• Mean of best (high confidence, close to camera)

detections
Fig. 3 proposes multiple scenarios for extracting static

features. The features can be determined by reusing the re-id
features, either by feeding them into a single NN, that has a
divided prediction head for each task (C), or by training one
classifier for each static feature (E). These classifiers could be
NNs, SVMs, GBMs or even random forests. In scenarios D and
F, the region of interests (ROIs) from cropped bounding boxes
are fed into either a single CNN with a stacked prediction head
(D) or into separate CNNs (F). Most likely, scenario F provides

86

3

cameras to create multi-camera tracklets. This step is usually
done by clustering the mean feature vectors of tracklets [17].

Multi-target multi-camera tracking has been mostly studied
as an offline task. For example, the test dataset on Track 3 of
the AI City challenge [22] contains 20 minutes of traffic videos
from 6 non-overlapping cameras. Many solutions first ran MOT
on all cameras, and when all trajectories were available, multi-
camera trajectory clustering was deployed [17], [40]. As the
locations of cameras were available, spatial-temporal
constraints were considered, which greatly reduced the number
of possible trajectory matchings. If such constraints are not
available, the inter-camera matching can only be done based on
vehicle appearance, which becomes increasingly difficult with
the growth of the dataset.

Commonly used MOT systems operate in an online manner
[3], [34], [37], [42]. In online MTMC, when a single-camera
trajectory is generated, it should be immediately connected to
an existing multi-camera tracklet or used to initialize a new one.
The exact details of this operation heavily depend on the spatial-
temporal constraints based on cameras. State-of-the-art single-
camera trackers (e.g. FairMOT) also achieve real-time tracking,
reaching 25-30 frames per second on the MOT15, MOT16, and
MOT17 benchmarks [42]. However, real-time MTMC would
require cameras to be well synchronized, and a new vehicle
appearing on a camera to be matched with trajectories (or even
newly appearing vehicles) from other cameras immediately as
it is detected, which would likely deteriorate MTMC accuracy.
However, we still consider the running time of the system,
including the extraction of static and dynamic features, as it is
preferable to be able to process video streams with at least the
same speed as they are generated (even if the tracking and
extraction do not run strictly in a real-time manner).

IV. MTMC VEHICLE TRACKING USING HYBRID RE-ID

A. Re-id model
For training re-id models, huge datasets, containing multiple
images of the same vehicle identities are available (see Table 1)
in contrast to the case of one-phase trackers described
previously. The VehicleX [39] rendering engine also comes
handy in training state-of-the-art re-id models. Firstly, for
training an orientation model in the commonly used VOC
approach, a dataset annotated with vehicle orientation labels is
generated using VehicleX, as creating a real-world dataset
containing such labels would require tremendous amount of
work. Moreover, extending the dataset with artificial images
from VehicleX can alone improve the quality of the features
[22].

Table 1. Vehicle re-identification datasets

Dataset #Bboxes #Identities
VRIC [11], [35] 60K 5622

CityFlow(v2) [33] 313K 880
VeRi-776 [19] 50K 776
VeRi-Wild [20] 416K 40K
VehicleID [18] 221K 26K
VehicleX [39] ∞ 1362

Figure 2. Hierarchy of static and dynamic attributes of vehicles; solid
line boxes represent the top level

B. Static and Dynamic attributes
Fig. 2 shows the set of dynamic and static attributes that are
associated with each detected object. Each of these attributes
could be calculated from the bounding box directly, or we could
exploit the re-id features, as those are already computed and
should be good representations of the objects.

Extracting static and dynamic characteristics of vehicles is
generally the output of the annotation process; however, we
propose to feed this information back into the MTMC system
in order to improve tracking and trajectory matching. Since
dynamic features are time dependent, it is required to extract
them for all bounding boxes of the object during their progress
in front of the camera. Overlapping and well synchronized
cameras allow to compensate for false negatives; otherwise,
they are replaced with the attributes extracted in neighboring
frames. In an ideal situation, static features are also calculated
for all bounding boxes, but this is not necessary, because they
are constant for the entire trajectory. There are essentially two
ways to determine static features:

• Weighted majority vote of frame-by-frame extraction
• Mean of best (high confidence, close to camera)

detections
Fig. 3 proposes multiple scenarios for extracting static

features. The features can be determined by reusing the re-id
features, either by feeding them into a single NN, that has a
divided prediction head for each task (C), or by training one
classifier for each static feature (E). These classifiers could be
NNs, SVMs, GBMs or even random forests. In scenarios D and
F, the region of interests (ROIs) from cropped bounding boxes
are fed into either a single CNN with a stacked prediction head
(D) or into separate CNNs (F). Most likely, scenario F provides

86

3

cameras to create multi-camera tracklets. This step is usually
done by clustering the mean feature vectors of tracklets [17].

Multi-target multi-camera tracking has been mostly studied
as an offline task. For example, the test dataset on Track 3 of
the AI City challenge [22] contains 20 minutes of traffic videos
from 6 non-overlapping cameras. Many solutions first ran MOT
on all cameras, and when all trajectories were available, multi-
camera trajectory clustering was deployed [17], [40]. As the
locations of cameras were available, spatial-temporal
constraints were considered, which greatly reduced the number
of possible trajectory matchings. If such constraints are not
available, the inter-camera matching can only be done based on
vehicle appearance, which becomes increasingly difficult with
the growth of the dataset.

Commonly used MOT systems operate in an online manner
[3], [34], [37], [42]. In online MTMC, when a single-camera
trajectory is generated, it should be immediately connected to
an existing multi-camera tracklet or used to initialize a new one.
The exact details of this operation heavily depend on the spatial-
temporal constraints based on cameras. State-of-the-art single-
camera trackers (e.g. FairMOT) also achieve real-time tracking,
reaching 25-30 frames per second on the MOT15, MOT16, and
MOT17 benchmarks [42]. However, real-time MTMC would
require cameras to be well synchronized, and a new vehicle
appearing on a camera to be matched with trajectories (or even
newly appearing vehicles) from other cameras immediately as
it is detected, which would likely deteriorate MTMC accuracy.
However, we still consider the running time of the system,
including the extraction of static and dynamic features, as it is
preferable to be able to process video streams with at least the
same speed as they are generated (even if the tracking and
extraction do not run strictly in a real-time manner).

IV. MTMC VEHICLE TRACKING USING HYBRID RE-ID

A. Re-id model
For training re-id models, huge datasets, containing multiple
images of the same vehicle identities are available (see Table 1)
in contrast to the case of one-phase trackers described
previously. The VehicleX [39] rendering engine also comes
handy in training state-of-the-art re-id models. Firstly, for
training an orientation model in the commonly used VOC
approach, a dataset annotated with vehicle orientation labels is
generated using VehicleX, as creating a real-world dataset
containing such labels would require tremendous amount of
work. Moreover, extending the dataset with artificial images
from VehicleX can alone improve the quality of the features
[22].

Table 1. Vehicle re-identification datasets

Dataset #Bboxes #Identities
VRIC [11], [35] 60K 5622

CityFlow(v2) [33] 313K 880
VeRi-776 [19] 50K 776
VeRi-Wild [20] 416K 40K
VehicleID [18] 221K 26K
VehicleX [39] ∞ 1362

Figure 2. Hierarchy of static and dynamic attributes of vehicles; solid
line boxes represent the top level

B. Static and Dynamic attributes
Fig. 2 shows the set of dynamic and static attributes that are
associated with each detected object. Each of these attributes
could be calculated from the bounding box directly, or we could
exploit the re-id features, as those are already computed and
should be good representations of the objects.

Extracting static and dynamic characteristics of vehicles is
generally the output of the annotation process; however, we
propose to feed this information back into the MTMC system
in order to improve tracking and trajectory matching. Since
dynamic features are time dependent, it is required to extract
them for all bounding boxes of the object during their progress
in front of the camera. Overlapping and well synchronized
cameras allow to compensate for false negatives; otherwise,
they are replaced with the attributes extracted in neighboring
frames. In an ideal situation, static features are also calculated
for all bounding boxes, but this is not necessary, because they
are constant for the entire trajectory. There are essentially two
ways to determine static features:

• Weighted majority vote of frame-by-frame extraction
• Mean of best (high confidence, close to camera)

detections
Fig. 3 proposes multiple scenarios for extracting static

features. The features can be determined by reusing the re-id
features, either by feeding them into a single NN, that has a
divided prediction head for each task (C), or by training one
classifier for each static feature (E). These classifiers could be
NNs, SVMs, GBMs or even random forests. In scenarios D and
F, the region of interests (ROIs) from cropped bounding boxes
are fed into either a single CNN with a stacked prediction head
(D) or into separate CNNs (F). Most likely, scenario F provides

86

3

cameras to create multi-camera tracklets. This step is usually
done by clustering the mean feature vectors of tracklets [17].

Multi-target multi-camera tracking has been mostly studied
as an offline task. For example, the test dataset on Track 3 of
the AI City challenge [22] contains 20 minutes of traffic videos
from 6 non-overlapping cameras. Many solutions first ran MOT
on all cameras, and when all trajectories were available, multi-
camera trajectory clustering was deployed [17], [40]. As the
locations of cameras were available, spatial-temporal
constraints were considered, which greatly reduced the number
of possible trajectory matchings. If such constraints are not
available, the inter-camera matching can only be done based on
vehicle appearance, which becomes increasingly difficult with
the growth of the dataset.

Commonly used MOT systems operate in an online manner
[3], [34], [37], [42]. In online MTMC, when a single-camera
trajectory is generated, it should be immediately connected to
an existing multi-camera tracklet or used to initialize a new one.
The exact details of this operation heavily depend on the spatial-
temporal constraints based on cameras. State-of-the-art single-
camera trackers (e.g. FairMOT) also achieve real-time tracking,
reaching 25-30 frames per second on the MOT15, MOT16, and
MOT17 benchmarks [42]. However, real-time MTMC would
require cameras to be well synchronized, and a new vehicle
appearing on a camera to be matched with trajectories (or even
newly appearing vehicles) from other cameras immediately as
it is detected, which would likely deteriorate MTMC accuracy.
However, we still consider the running time of the system,
including the extraction of static and dynamic features, as it is
preferable to be able to process video streams with at least the
same speed as they are generated (even if the tracking and
extraction do not run strictly in a real-time manner).

IV. MTMC VEHICLE TRACKING USING HYBRID RE-ID

A. Re-id model
For training re-id models, huge datasets, containing multiple
images of the same vehicle identities are available (see Table 1)
in contrast to the case of one-phase trackers described
previously. The VehicleX [39] rendering engine also comes
handy in training state-of-the-art re-id models. Firstly, for
training an orientation model in the commonly used VOC
approach, a dataset annotated with vehicle orientation labels is
generated using VehicleX, as creating a real-world dataset
containing such labels would require tremendous amount of
work. Moreover, extending the dataset with artificial images
from VehicleX can alone improve the quality of the features
[22].

Table 1. Vehicle re-identification datasets

Dataset #Bboxes #Identities
VRIC [11], [35] 60K 5622

CityFlow(v2) [33] 313K 880
VeRi-776 [19] 50K 776
VeRi-Wild [20] 416K 40K
VehicleID [18] 221K 26K
VehicleX [39] ∞ 1362

Figure 2. Hierarchy of static and dynamic attributes of vehicles; solid
line boxes represent the top level

B. Static and Dynamic attributes
Fig. 2 shows the set of dynamic and static attributes that are
associated with each detected object. Each of these attributes
could be calculated from the bounding box directly, or we could
exploit the re-id features, as those are already computed and
should be good representations of the objects.

Extracting static and dynamic characteristics of vehicles is
generally the output of the annotation process; however, we
propose to feed this information back into the MTMC system
in order to improve tracking and trajectory matching. Since
dynamic features are time dependent, it is required to extract
them for all bounding boxes of the object during their progress
in front of the camera. Overlapping and well synchronized
cameras allow to compensate for false negatives; otherwise,
they are replaced with the attributes extracted in neighboring
frames. In an ideal situation, static features are also calculated
for all bounding boxes, but this is not necessary, because they
are constant for the entire trajectory. There are essentially two
ways to determine static features:

• Weighted majority vote of frame-by-frame extraction
• Mean of best (high confidence, close to camera)

detections
Fig. 3 proposes multiple scenarios for extracting static

features. The features can be determined by reusing the re-id
features, either by feeding them into a single NN, that has a
divided prediction head for each task (C), or by training one
classifier for each static feature (E). These classifiers could be
NNs, SVMs, GBMs or even random forests. In scenarios D and
F, the region of interests (ROIs) from cropped bounding boxes
are fed into either a single CNN with a stacked prediction head
(D) or into separate CNNs (F). Most likely, scenario F provides

TABLE I
Vehicle re-identification datasets.

86

4

the most accurate predictions, however, it requires multiple
networks to run for each cropped bounding box on all frames.
The process can be optimized by running the models on only
some designated Bboxes, after finalizing a single-camera
trajectory. In scenarios C and E, if the static features are
determined using the mean re-id features, the inference runs
once per trajectory, which is the most lightweight solution.

C. Fusion of features
Hybrid re-id features are created in two phases, first during
single-camera tracking, then during multi-camera trajectory
matching. In the former case, temporal static features are
merged with the re-id features of bounding boxes; while in the
latter, the finalized static features are merged with the mean re-
id features. In case of well synchronized cameras, dynamic
attributes could also be used in the trajectory matching, but we
do not consider this situation. Dynamic attributes such as brake
light on/off could help filtering out candidate bounding boxes
during the association step. In case of architectures D and F
(Fig. 3), dropping the prediction layers results in a feature
extractor network, whose features then can be merged with the
temporal re-id features. The same holds for trajectory matching,
as methods C and E deliver the interpretable static attributes
(e.g. license plate color, differentiating sign), which then can be
used for filtering purposes. Whereas following architectures D
or F gives latent attributes.
 Fig. 4 shows the multi-target multi-camera vehicle tracking
using hybrid re-id features. It is basically the same process as
shown in Fig. 1, and therefore we grayed the closely related but
less relevant elements (regarding hybrid re-id features), while
omitted the non-related ones. The first part of the process is a
two-phase single-camera tracking, which is followed by the
multi-camera trajectory filtering and matching. As it can be
seen in Fig. 4, hybrid re-id features are used in both; highlighted
with blue boxes. Furthermore, classification of basic re-id and
mean re-id features produces interpretable attributes that are
integrated into the filtering approach; highlighted with green
boxes. In case of multi-camera trajectory filtering, these
attributes are exclusively static attributes. What is more
interesting is that the matching step in single-camera tracking
could benefit from the dynamic attributes as well (as mentioned
above). We call the dynamic and static attributes on the
bounding box level together as temporal attributes.

D. Style transfer
Image properties like lighting conditions and color distribution
heavily depend on the camera, thus, when the images used for
training and testing a re-id network were captured by different
cameras, feature vector quality decreases. The domain bias is
even more obvious between images generated by VehicleX and
real-world images. For the domain adaptation of images
SPGAN [4] was used in practice, however SPGAN was
designed for images containing people, thus a new network,
VTGAN [24] was proposed for vehicles. MixStyle is another
domain generalization technique, which does not require to
modify training images (in contrast to GAN methods). It was
used for training a vehicle re-id baseline by Huyn et al [9].
MixStyle [44] mixes features at the bottom layers of a CNN
between instances from different domains, thus improving
domain generalization. MixStyle takes an input batch 𝑥𝑥 and
shuffles it to create 𝑥𝑥". Then standardizes 𝑥𝑥, and scales back
according to the mixed statistics:

MixStyle(𝑥𝑥) = γ!"# ⋅
𝑥𝑥 − µ(𝑥𝑥)
σ(𝑥𝑥) + β!"# (1)

where
γ!"# = λσ(𝑥𝑥) + (1 − λ)σ(𝑥𝑥") (2)
β!"# = λµ(x) + (1 − λ)µ(𝑥𝑥") (3)

and 𝜆𝜆 is a vector, whose elements are sampled from a
Beta(α, α) distribution. If possible, in 𝑥𝑥" and 𝑥𝑥, samples at the
same positions are from different domains, thus mixing their
feature distributions. Two viable options for re-using multiple
public re-id datasets are: inserting MixStyle into our network or
train a GAN variant (like VTGAN) for each foreign dataset and
transform its images into the style of our domain.

E. Loss function
Choosing appropriate loss functions is critical in training re-id
networks. A common technique is to use a weighted sum of two
types of losses: id loss and metric loss. The id loss is measured
at the classification layer of the network, while the metric loss
is at the feature extraction layer, and its goal is to make features
of the same id converge and those from different classes
diverge. Triplet loss [25], center loss [36], circle loss [27] and
supervised contrastive loss [12] are commonly used as metric
losses, while cross entropy is a typical id loss. The weight of id
loss and metric loss in the final loss formula can be adapted

Figure 3. Different scenarios for extracting static features: feeding re-id features into a single fully connected network (C), classifying
bounding boxes with a single CNN (D), using separate classifiers to extract features from re-id vectors (E), running separate classifiers for
cropped bounding boxes (F).

Determining Hybrid Re-id Features of Vehicles
in Videos for Transport Analysis

MARCH 2022 • VOLUME XIV • NUMBER 120

INFOCOMMUNICATIONS JOURNAL

86

4

the most accurate predictions, however, it requires multiple
networks to run for each cropped bounding box on all frames.
The process can be optimized by running the models on only
some designated Bboxes, after finalizing a single-camera
trajectory. In scenarios C and E, if the static features are
determined using the mean re-id features, the inference runs
once per trajectory, which is the most lightweight solution.

C. Fusion of features
Hybrid re-id features are created in two phases, first during
single-camera tracking, then during multi-camera trajectory
matching. In the former case, temporal static features are
merged with the re-id features of bounding boxes; while in the
latter, the finalized static features are merged with the mean re-
id features. In case of well synchronized cameras, dynamic
attributes could also be used in the trajectory matching, but we
do not consider this situation. Dynamic attributes such as brake
light on/off could help filtering out candidate bounding boxes
during the association step. In case of architectures D and F
(Fig. 3), dropping the prediction layers results in a feature
extractor network, whose features then can be merged with the
temporal re-id features. The same holds for trajectory matching,
as methods C and E deliver the interpretable static attributes
(e.g. license plate color, differentiating sign), which then can be
used for filtering purposes. Whereas following architectures D
or F gives latent attributes.
 Fig. 4 shows the multi-target multi-camera vehicle tracking
using hybrid re-id features. It is basically the same process as
shown in Fig. 1, and therefore we grayed the closely related but
less relevant elements (regarding hybrid re-id features), while
omitted the non-related ones. The first part of the process is a
two-phase single-camera tracking, which is followed by the
multi-camera trajectory filtering and matching. As it can be
seen in Fig. 4, hybrid re-id features are used in both; highlighted
with blue boxes. Furthermore, classification of basic re-id and
mean re-id features produces interpretable attributes that are
integrated into the filtering approach; highlighted with green
boxes. In case of multi-camera trajectory filtering, these
attributes are exclusively static attributes. What is more
interesting is that the matching step in single-camera tracking
could benefit from the dynamic attributes as well (as mentioned
above). We call the dynamic and static attributes on the
bounding box level together as temporal attributes.

D. Style transfer
Image properties like lighting conditions and color distribution
heavily depend on the camera, thus, when the images used for
training and testing a re-id network were captured by different
cameras, feature vector quality decreases. The domain bias is
even more obvious between images generated by VehicleX and
real-world images. For the domain adaptation of images
SPGAN [4] was used in practice, however SPGAN was
designed for images containing people, thus a new network,
VTGAN [24] was proposed for vehicles. MixStyle is another
domain generalization technique, which does not require to
modify training images (in contrast to GAN methods). It was
used for training a vehicle re-id baseline by Huyn et al [9].
MixStyle [44] mixes features at the bottom layers of a CNN
between instances from different domains, thus improving
domain generalization. MixStyle takes an input batch 𝑥𝑥 and
shuffles it to create 𝑥𝑥". Then standardizes 𝑥𝑥, and scales back
according to the mixed statistics:

MixStyle(𝑥𝑥) = γ!"# ⋅
𝑥𝑥 − µ(𝑥𝑥)
σ(𝑥𝑥) + β!"# (1)

where
γ!"# = λσ(𝑥𝑥) + (1 − λ)σ(𝑥𝑥") (2)
β!"# = λµ(x) + (1 − λ)µ(𝑥𝑥") (3)

and 𝜆𝜆 is a vector, whose elements are sampled from a
Beta(α, α) distribution. If possible, in 𝑥𝑥" and 𝑥𝑥, samples at the
same positions are from different domains, thus mixing their
feature distributions. Two viable options for re-using multiple
public re-id datasets are: inserting MixStyle into our network or
train a GAN variant (like VTGAN) for each foreign dataset and
transform its images into the style of our domain.

E. Loss function
Choosing appropriate loss functions is critical in training re-id
networks. A common technique is to use a weighted sum of two
types of losses: id loss and metric loss. The id loss is measured
at the classification layer of the network, while the metric loss
is at the feature extraction layer, and its goal is to make features
of the same id converge and those from different classes
diverge. Triplet loss [25], center loss [36], circle loss [27] and
supervised contrastive loss [12] are commonly used as metric
losses, while cross entropy is a typical id loss. The weight of id
loss and metric loss in the final loss formula can be adapted

Figure 3. Different scenarios for extracting static features: feeding re-id features into a single fully connected network (C), classifying
bounding boxes with a single CNN (D), using separate classifiers to extract features from re-id vectors (E), running separate classifiers for
cropped bounding boxes (F).

86

5

during the training (in contrast to using constant values), as
proposed in [9].

V. TRAJECTORY FILTERING AND MATCHING
The trajectory filtering step (applied to single-camera
trajectories) depends on the constellation of cameras. We
consider a crossroad with four cameras pointing inwards. Such
a scenario is shown in Fig. 5. We define zones as proposed by
Hsu et al. [8]. If a single-camera trajectory does not start and
end in one of the zones or is stationary for a long period (false
prediction), then it can be filtered out. When matching
trajectories across cameras, only those have to be considered
that start and end in the same zone. The constraints, of course,
need to be adjusted to the field of view of the cameras, because
it is possible that not all cameras have a view of all zones.
Another possible constellation is a series of cameras on a
highway, with two zones (one direction) or four (two
directional) and possible additional ones if the camera has a
view on a highway ramp.
 The multi-camera trajectory matching step has a strict
temporal constraint in the crossroad scenario. If the video
streams from cameras are synchronized, or the delays are
known, almost exact timestamps are available about vehicles
entering and leaving zones, thus the trajectory matching step
becomes a simple association step, like the single-camera
scenario.

Figure 5. Common camera constellation at a crossroad

VI. CONCLUSION
In this paper we elaborated an approach for multi-target multi-
camera tracking using hybrid re-id features. The hybrid re-id
features are created from static attributes and (basic) re-id
features. However, this requires a two-phase tracking method,
which is computationally more expensive than one-phase ones;
furthermore, the calculation of static attributes comes with
additional computation cost. We propose multiple scenarios to
calculate the static attributes, from which the most appropriate
one can be selected, based on the requirement of the task, i.e.
higher accuracy or higher frame rate.

Our research is currently at the stage of gathering real-world
data, which includes multi-camera scenes at crossroads and
highways. After the data is collected and cleaned, the proposed
methods will be thoroughly tested and evaluated.

ACKNOWLEDGMENT
The research was supported by the Institute of Transport
Sciences (KTI) within the Innovative Mobility Program.

The research was supported by the Ministry of Innovation
and Technology NRDI Office within the framework of the
Autonomous Systems National Laboratory Program.

REFERENCES

[1] Aquino, A. L., Cavalcante, T. S., Almeida, E. S., Frery, A. C.,
& Rosso, O. A. (2015). Characterization of vehicle behavior
with information theory. The European Physical Journal B,
88(10), 1-12.
doi: https://doi.org/10.1140/epjb/e2015-60384-x

[2] Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016,
September). Simple online and realtime tracking. In 2016
IEEE international conference on image processing (ICIP)
(pp. 3464-3468). IEEE.
doi: https://doi.org/10.1109/icip.2016.7533003

[3] Bochinski, E., Eiselein, V., & Sikora, T. (2017, August). High-
speed tracking-by-detection without using image information.
In 2017 14th IEEE International Conference on Advanced
Video and Signal Based Surveillance (AVSS) (pp. 1-6). IEEE.
doi: https://doi.org/10.1109/avss.2017.8078516

Figure 4. Overview of MTMC vehicle tracking using hybrid re-id features. Static attributes and basic re-id features are fused at two parts;
highlighted with blue boxes. Classification of basic re-id features gives interpretable attributes for filtering; highlighted with green boxes.

86

4

the most accurate predictions, however, it requires multiple
networks to run for each cropped bounding box on all frames.
The process can be optimized by running the models on only
some designated Bboxes, after finalizing a single-camera
trajectory. In scenarios C and E, if the static features are
determined using the mean re-id features, the inference runs
once per trajectory, which is the most lightweight solution.

C. Fusion of features
Hybrid re-id features are created in two phases, first during
single-camera tracking, then during multi-camera trajectory
matching. In the former case, temporal static features are
merged with the re-id features of bounding boxes; while in the
latter, the finalized static features are merged with the mean re-
id features. In case of well synchronized cameras, dynamic
attributes could also be used in the trajectory matching, but we
do not consider this situation. Dynamic attributes such as brake
light on/off could help filtering out candidate bounding boxes
during the association step. In case of architectures D and F
(Fig. 3), dropping the prediction layers results in a feature
extractor network, whose features then can be merged with the
temporal re-id features. The same holds for trajectory matching,
as methods C and E deliver the interpretable static attributes
(e.g. license plate color, differentiating sign), which then can be
used for filtering purposes. Whereas following architectures D
or F gives latent attributes.
 Fig. 4 shows the multi-target multi-camera vehicle tracking
using hybrid re-id features. It is basically the same process as
shown in Fig. 1, and therefore we grayed the closely related but
less relevant elements (regarding hybrid re-id features), while
omitted the non-related ones. The first part of the process is a
two-phase single-camera tracking, which is followed by the
multi-camera trajectory filtering and matching. As it can be
seen in Fig. 4, hybrid re-id features are used in both; highlighted
with blue boxes. Furthermore, classification of basic re-id and
mean re-id features produces interpretable attributes that are
integrated into the filtering approach; highlighted with green
boxes. In case of multi-camera trajectory filtering, these
attributes are exclusively static attributes. What is more
interesting is that the matching step in single-camera tracking
could benefit from the dynamic attributes as well (as mentioned
above). We call the dynamic and static attributes on the
bounding box level together as temporal attributes.

D. Style transfer
Image properties like lighting conditions and color distribution
heavily depend on the camera, thus, when the images used for
training and testing a re-id network were captured by different
cameras, feature vector quality decreases. The domain bias is
even more obvious between images generated by VehicleX and
real-world images. For the domain adaptation of images
SPGAN [4] was used in practice, however SPGAN was
designed for images containing people, thus a new network,
VTGAN [24] was proposed for vehicles. MixStyle is another
domain generalization technique, which does not require to
modify training images (in contrast to GAN methods). It was
used for training a vehicle re-id baseline by Huyn et al [9].
MixStyle [44] mixes features at the bottom layers of a CNN
between instances from different domains, thus improving
domain generalization. MixStyle takes an input batch 𝑥𝑥 and
shuffles it to create 𝑥𝑥". Then standardizes 𝑥𝑥, and scales back
according to the mixed statistics:

MixStyle(𝑥𝑥) = γ!"# ⋅
𝑥𝑥 − µ(𝑥𝑥)
σ(𝑥𝑥) + β!"# (1)

where
γ!"# = λσ(𝑥𝑥) + (1 − λ)σ(𝑥𝑥") (2)
β!"# = λµ(x) + (1 − λ)µ(𝑥𝑥") (3)

and 𝜆𝜆 is a vector, whose elements are sampled from a
Beta(α, α) distribution. If possible, in 𝑥𝑥" and 𝑥𝑥, samples at the
same positions are from different domains, thus mixing their
feature distributions. Two viable options for re-using multiple
public re-id datasets are: inserting MixStyle into our network or
train a GAN variant (like VTGAN) for each foreign dataset and
transform its images into the style of our domain.

E. Loss function
Choosing appropriate loss functions is critical in training re-id
networks. A common technique is to use a weighted sum of two
types of losses: id loss and metric loss. The id loss is measured
at the classification layer of the network, while the metric loss
is at the feature extraction layer, and its goal is to make features
of the same id converge and those from different classes
diverge. Triplet loss [25], center loss [36], circle loss [27] and
supervised contrastive loss [12] are commonly used as metric
losses, while cross entropy is a typical id loss. The weight of id
loss and metric loss in the final loss formula can be adapted

Figure 3. Different scenarios for extracting static features: feeding re-id features into a single fully connected network (C), classifying
bounding boxes with a single CNN (D), using separate classifiers to extract features from re-id vectors (E), running separate classifiers for
cropped bounding boxes (F).

Fig. 3.: Different scenarios for extracting static features: feeding re-id features into a single fully connected network (C), classifying bounding boxes with
a single CNN (D), using separate classifiers to extract features from re-id vectors (E), running separate classifiers for cropped bounding boxes (F).

86

4

the most accurate predictions, however, it requires multiple
networks to run for each cropped bounding box on all frames.
The process can be optimized by running the models on only
some designated Bboxes, after finalizing a single-camera
trajectory. In scenarios C and E, if the static features are
determined using the mean re-id features, the inference runs
once per trajectory, which is the most lightweight solution.

C. Fusion of features
Hybrid re-id features are created in two phases, first during
single-camera tracking, then during multi-camera trajectory
matching. In the former case, temporal static features are
merged with the re-id features of bounding boxes; while in the
latter, the finalized static features are merged with the mean re-
id features. In case of well synchronized cameras, dynamic
attributes could also be used in the trajectory matching, but we
do not consider this situation. Dynamic attributes such as brake
light on/off could help filtering out candidate bounding boxes
during the association step. In case of architectures D and F
(Fig. 3), dropping the prediction layers results in a feature
extractor network, whose features then can be merged with the
temporal re-id features. The same holds for trajectory matching,
as methods C and E deliver the interpretable static attributes
(e.g. license plate color, differentiating sign), which then can be
used for filtering purposes. Whereas following architectures D
or F gives latent attributes.
 Fig. 4 shows the multi-target multi-camera vehicle tracking
using hybrid re-id features. It is basically the same process as
shown in Fig. 1, and therefore we grayed the closely related but
less relevant elements (regarding hybrid re-id features), while
omitted the non-related ones. The first part of the process is a
two-phase single-camera tracking, which is followed by the
multi-camera trajectory filtering and matching. As it can be
seen in Fig. 4, hybrid re-id features are used in both; highlighted
with blue boxes. Furthermore, classification of basic re-id and
mean re-id features produces interpretable attributes that are
integrated into the filtering approach; highlighted with green
boxes. In case of multi-camera trajectory filtering, these
attributes are exclusively static attributes. What is more
interesting is that the matching step in single-camera tracking
could benefit from the dynamic attributes as well (as mentioned
above). We call the dynamic and static attributes on the
bounding box level together as temporal attributes.

D. Style transfer
Image properties like lighting conditions and color distribution
heavily depend on the camera, thus, when the images used for
training and testing a re-id network were captured by different
cameras, feature vector quality decreases. The domain bias is
even more obvious between images generated by VehicleX and
real-world images. For the domain adaptation of images
SPGAN [4] was used in practice, however SPGAN was
designed for images containing people, thus a new network,
VTGAN [24] was proposed for vehicles. MixStyle is another
domain generalization technique, which does not require to
modify training images (in contrast to GAN methods). It was
used for training a vehicle re-id baseline by Huyn et al [9].
MixStyle [44] mixes features at the bottom layers of a CNN
between instances from different domains, thus improving
domain generalization. MixStyle takes an input batch 𝑥𝑥 and
shuffles it to create 𝑥𝑥". Then standardizes 𝑥𝑥, and scales back
according to the mixed statistics:

MixStyle(𝑥𝑥) = γ!"# ⋅
𝑥𝑥 − µ(𝑥𝑥)
σ(𝑥𝑥) + β!"# (1)

where
γ!"# = λσ(𝑥𝑥) + (1 − λ)σ(𝑥𝑥") (2)
β!"# = λµ(x) + (1 − λ)µ(𝑥𝑥") (3)

and 𝜆𝜆 is a vector, whose elements are sampled from a
Beta(α, α) distribution. If possible, in 𝑥𝑥" and 𝑥𝑥, samples at the
same positions are from different domains, thus mixing their
feature distributions. Two viable options for re-using multiple
public re-id datasets are: inserting MixStyle into our network or
train a GAN variant (like VTGAN) for each foreign dataset and
transform its images into the style of our domain.

E. Loss function
Choosing appropriate loss functions is critical in training re-id
networks. A common technique is to use a weighted sum of two
types of losses: id loss and metric loss. The id loss is measured
at the classification layer of the network, while the metric loss
is at the feature extraction layer, and its goal is to make features
of the same id converge and those from different classes
diverge. Triplet loss [25], center loss [36], circle loss [27] and
supervised contrastive loss [12] are commonly used as metric
losses, while cross entropy is a typical id loss. The weight of id
loss and metric loss in the final loss formula can be adapted

Figure 3. Different scenarios for extracting static features: feeding re-id features into a single fully connected network (C), classifying
bounding boxes with a single CNN (D), using separate classifiers to extract features from re-id vectors (E), running separate classifiers for
cropped bounding boxes (F).

86

4

the most accurate predictions, however, it requires multiple
networks to run for each cropped bounding box on all frames.
The process can be optimized by running the models on only
some designated Bboxes, after finalizing a single-camera
trajectory. In scenarios C and E, if the static features are
determined using the mean re-id features, the inference runs
once per trajectory, which is the most lightweight solution.

C. Fusion of features
Hybrid re-id features are created in two phases, first during
single-camera tracking, then during multi-camera trajectory
matching. In the former case, temporal static features are
merged with the re-id features of bounding boxes; while in the
latter, the finalized static features are merged with the mean re-
id features. In case of well synchronized cameras, dynamic
attributes could also be used in the trajectory matching, but we
do not consider this situation. Dynamic attributes such as brake
light on/off could help filtering out candidate bounding boxes
during the association step. In case of architectures D and F
(Fig. 3), dropping the prediction layers results in a feature
extractor network, whose features then can be merged with the
temporal re-id features. The same holds for trajectory matching,
as methods C and E deliver the interpretable static attributes
(e.g. license plate color, differentiating sign), which then can be
used for filtering purposes. Whereas following architectures D
or F gives latent attributes.
 Fig. 4 shows the multi-target multi-camera vehicle tracking
using hybrid re-id features. It is basically the same process as
shown in Fig. 1, and therefore we grayed the closely related but
less relevant elements (regarding hybrid re-id features), while
omitted the non-related ones. The first part of the process is a
two-phase single-camera tracking, which is followed by the
multi-camera trajectory filtering and matching. As it can be
seen in Fig. 4, hybrid re-id features are used in both; highlighted
with blue boxes. Furthermore, classification of basic re-id and
mean re-id features produces interpretable attributes that are
integrated into the filtering approach; highlighted with green
boxes. In case of multi-camera trajectory filtering, these
attributes are exclusively static attributes. What is more
interesting is that the matching step in single-camera tracking
could benefit from the dynamic attributes as well (as mentioned
above). We call the dynamic and static attributes on the
bounding box level together as temporal attributes.

D. Style transfer
Image properties like lighting conditions and color distribution
heavily depend on the camera, thus, when the images used for
training and testing a re-id network were captured by different
cameras, feature vector quality decreases. The domain bias is
even more obvious between images generated by VehicleX and
real-world images. For the domain adaptation of images
SPGAN [4] was used in practice, however SPGAN was
designed for images containing people, thus a new network,
VTGAN [24] was proposed for vehicles. MixStyle is another
domain generalization technique, which does not require to
modify training images (in contrast to GAN methods). It was
used for training a vehicle re-id baseline by Huyn et al [9].
MixStyle [44] mixes features at the bottom layers of a CNN
between instances from different domains, thus improving
domain generalization. MixStyle takes an input batch 𝑥𝑥 and
shuffles it to create 𝑥𝑥". Then standardizes 𝑥𝑥, and scales back
according to the mixed statistics:

MixStyle(𝑥𝑥) = γ!"# ⋅
𝑥𝑥 − µ(𝑥𝑥)
σ(𝑥𝑥) + β!"# (1)

where
γ!"# = λσ(𝑥𝑥) + (1 − λ)σ(𝑥𝑥") (2)
β!"# = λµ(x) + (1 − λ)µ(𝑥𝑥") (3)

and 𝜆𝜆 is a vector, whose elements are sampled from a
Beta(α, α) distribution. If possible, in 𝑥𝑥" and 𝑥𝑥, samples at the
same positions are from different domains, thus mixing their
feature distributions. Two viable options for re-using multiple
public re-id datasets are: inserting MixStyle into our network or
train a GAN variant (like VTGAN) for each foreign dataset and
transform its images into the style of our domain.

E. Loss function
Choosing appropriate loss functions is critical in training re-id
networks. A common technique is to use a weighted sum of two
types of losses: id loss and metric loss. The id loss is measured
at the classification layer of the network, while the metric loss
is at the feature extraction layer, and its goal is to make features
of the same id converge and those from different classes
diverge. Triplet loss [25], center loss [36], circle loss [27] and
supervised contrastive loss [12] are commonly used as metric
losses, while cross entropy is a typical id loss. The weight of id
loss and metric loss in the final loss formula can be adapted

Figure 3. Different scenarios for extracting static features: feeding re-id features into a single fully connected network (C), classifying
bounding boxes with a single CNN (D), using separate classifiers to extract features from re-id vectors (E), running separate classifiers for
cropped bounding boxes (F).

86

4

the most accurate predictions, however, it requires multiple
networks to run for each cropped bounding box on all frames.
The process can be optimized by running the models on only
some designated Bboxes, after finalizing a single-camera
trajectory. In scenarios C and E, if the static features are
determined using the mean re-id features, the inference runs
once per trajectory, which is the most lightweight solution.

C. Fusion of features
Hybrid re-id features are created in two phases, first during
single-camera tracking, then during multi-camera trajectory
matching. In the former case, temporal static features are
merged with the re-id features of bounding boxes; while in the
latter, the finalized static features are merged with the mean re-
id features. In case of well synchronized cameras, dynamic
attributes could also be used in the trajectory matching, but we
do not consider this situation. Dynamic attributes such as brake
light on/off could help filtering out candidate bounding boxes
during the association step. In case of architectures D and F
(Fig. 3), dropping the prediction layers results in a feature
extractor network, whose features then can be merged with the
temporal re-id features. The same holds for trajectory matching,
as methods C and E deliver the interpretable static attributes
(e.g. license plate color, differentiating sign), which then can be
used for filtering purposes. Whereas following architectures D
or F gives latent attributes.
 Fig. 4 shows the multi-target multi-camera vehicle tracking
using hybrid re-id features. It is basically the same process as
shown in Fig. 1, and therefore we grayed the closely related but
less relevant elements (regarding hybrid re-id features), while
omitted the non-related ones. The first part of the process is a
two-phase single-camera tracking, which is followed by the
multi-camera trajectory filtering and matching. As it can be
seen in Fig. 4, hybrid re-id features are used in both; highlighted
with blue boxes. Furthermore, classification of basic re-id and
mean re-id features produces interpretable attributes that are
integrated into the filtering approach; highlighted with green
boxes. In case of multi-camera trajectory filtering, these
attributes are exclusively static attributes. What is more
interesting is that the matching step in single-camera tracking
could benefit from the dynamic attributes as well (as mentioned
above). We call the dynamic and static attributes on the
bounding box level together as temporal attributes.

D. Style transfer
Image properties like lighting conditions and color distribution
heavily depend on the camera, thus, when the images used for
training and testing a re-id network were captured by different
cameras, feature vector quality decreases. The domain bias is
even more obvious between images generated by VehicleX and
real-world images. For the domain adaptation of images
SPGAN [4] was used in practice, however SPGAN was
designed for images containing people, thus a new network,
VTGAN [24] was proposed for vehicles. MixStyle is another
domain generalization technique, which does not require to
modify training images (in contrast to GAN methods). It was
used for training a vehicle re-id baseline by Huyn et al [9].
MixStyle [44] mixes features at the bottom layers of a CNN
between instances from different domains, thus improving
domain generalization. MixStyle takes an input batch 𝑥𝑥 and
shuffles it to create 𝑥𝑥". Then standardizes 𝑥𝑥, and scales back
according to the mixed statistics:

MixStyle(𝑥𝑥) = γ!"# ⋅
𝑥𝑥 − µ(𝑥𝑥)
σ(𝑥𝑥) + β!"# (1)

where
γ!"# = λσ(𝑥𝑥) + (1 − λ)σ(𝑥𝑥") (2)
β!"# = λµ(x) + (1 − λ)µ(𝑥𝑥") (3)

and 𝜆𝜆 is a vector, whose elements are sampled from a
Beta(α, α) distribution. If possible, in 𝑥𝑥" and 𝑥𝑥, samples at the
same positions are from different domains, thus mixing their
feature distributions. Two viable options for re-using multiple
public re-id datasets are: inserting MixStyle into our network or
train a GAN variant (like VTGAN) for each foreign dataset and
transform its images into the style of our domain.

E. Loss function
Choosing appropriate loss functions is critical in training re-id
networks. A common technique is to use a weighted sum of two
types of losses: id loss and metric loss. The id loss is measured
at the classification layer of the network, while the metric loss
is at the feature extraction layer, and its goal is to make features
of the same id converge and those from different classes
diverge. Triplet loss [25], center loss [36], circle loss [27] and
supervised contrastive loss [12] are commonly used as metric
losses, while cross entropy is a typical id loss. The weight of id
loss and metric loss in the final loss formula can be adapted

Figure 3. Different scenarios for extracting static features: feeding re-id features into a single fully connected network (C), classifying
bounding boxes with a single CNN (D), using separate classifiers to extract features from re-id vectors (E), running separate classifiers for
cropped bounding boxes (F).

86

5

during the training (in contrast to using constant values), as
proposed in [9].

V. TRAJECTORY FILTERING AND MATCHING
The trajectory filtering step (applied to single-camera
trajectories) depends on the constellation of cameras. We
consider a crossroad with four cameras pointing inwards. Such
a scenario is shown in Fig. 5. We define zones as proposed by
Hsu et al. [8]. If a single-camera trajectory does not start and
end in one of the zones or is stationary for a long period (false
prediction), then it can be filtered out. When matching
trajectories across cameras, only those have to be considered
that start and end in the same zone. The constraints, of course,
need to be adjusted to the field of view of the cameras, because
it is possible that not all cameras have a view of all zones.
Another possible constellation is a series of cameras on a
highway, with two zones (one direction) or four (two
directional) and possible additional ones if the camera has a
view on a highway ramp.
 The multi-camera trajectory matching step has a strict
temporal constraint in the crossroad scenario. If the video
streams from cameras are synchronized, or the delays are
known, almost exact timestamps are available about vehicles
entering and leaving zones, thus the trajectory matching step
becomes a simple association step, like the single-camera
scenario.

Figure 5. Common camera constellation at a crossroad

VI. CONCLUSION
In this paper we elaborated an approach for multi-target multi-
camera tracking using hybrid re-id features. The hybrid re-id
features are created from static attributes and (basic) re-id
features. However, this requires a two-phase tracking method,
which is computationally more expensive than one-phase ones;
furthermore, the calculation of static attributes comes with
additional computation cost. We propose multiple scenarios to
calculate the static attributes, from which the most appropriate
one can be selected, based on the requirement of the task, i.e.
higher accuracy or higher frame rate.

Our research is currently at the stage of gathering real-world
data, which includes multi-camera scenes at crossroads and
highways. After the data is collected and cleaned, the proposed
methods will be thoroughly tested and evaluated.

ACKNOWLEDGMENT
The research was supported by the Institute of Transport
Sciences (KTI) within the Innovative Mobility Program.

The research was supported by the Ministry of Innovation
and Technology NRDI Office within the framework of the
Autonomous Systems National Laboratory Program.

REFERENCES

[1] Aquino, A. L., Cavalcante, T. S., Almeida, E. S., Frery, A. C.,
& Rosso, O. A. (2015). Characterization of vehicle behavior
with information theory. The European Physical Journal B,
88(10), 1-12.
doi: https://doi.org/10.1140/epjb/e2015-60384-x

[2] Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016,
September). Simple online and realtime tracking. In 2016
IEEE international conference on image processing (ICIP)
(pp. 3464-3468). IEEE.
doi: https://doi.org/10.1109/icip.2016.7533003

[3] Bochinski, E., Eiselein, V., & Sikora, T. (2017, August). High-
speed tracking-by-detection without using image information.
In 2017 14th IEEE International Conference on Advanced
Video and Signal Based Surveillance (AVSS) (pp. 1-6). IEEE.
doi: https://doi.org/10.1109/avss.2017.8078516

Figure 4. Overview of MTMC vehicle tracking using hybrid re-id features. Static attributes and basic re-id features are fused at two parts;
highlighted with blue boxes. Classification of basic re-id features gives interpretable attributes for filtering; highlighted with green boxes.

86

5

during the training (in contrast to using constant values), as
proposed in [9].

V. TRAJECTORY FILTERING AND MATCHING
The trajectory filtering step (applied to single-camera
trajectories) depends on the constellation of cameras. We
consider a crossroad with four cameras pointing inwards. Such
a scenario is shown in Fig. 5. We define zones as proposed by
Hsu et al. [8]. If a single-camera trajectory does not start and
end in one of the zones or is stationary for a long period (false
prediction), then it can be filtered out. When matching
trajectories across cameras, only those have to be considered
that start and end in the same zone. The constraints, of course,
need to be adjusted to the field of view of the cameras, because
it is possible that not all cameras have a view of all zones.
Another possible constellation is a series of cameras on a
highway, with two zones (one direction) or four (two
directional) and possible additional ones if the camera has a
view on a highway ramp.
 The multi-camera trajectory matching step has a strict
temporal constraint in the crossroad scenario. If the video
streams from cameras are synchronized, or the delays are
known, almost exact timestamps are available about vehicles
entering and leaving zones, thus the trajectory matching step
becomes a simple association step, like the single-camera
scenario.

Figure 5. Common camera constellation at a crossroad

VI. CONCLUSION
In this paper we elaborated an approach for multi-target multi-
camera tracking using hybrid re-id features. The hybrid re-id
features are created from static attributes and (basic) re-id
features. However, this requires a two-phase tracking method,
which is computationally more expensive than one-phase ones;
furthermore, the calculation of static attributes comes with
additional computation cost. We propose multiple scenarios to
calculate the static attributes, from which the most appropriate
one can be selected, based on the requirement of the task, i.e.
higher accuracy or higher frame rate.

Our research is currently at the stage of gathering real-world
data, which includes multi-camera scenes at crossroads and
highways. After the data is collected and cleaned, the proposed
methods will be thoroughly tested and evaluated.

ACKNOWLEDGMENT
The research was supported by the Institute of Transport
Sciences (KTI) within the Innovative Mobility Program.

The research was supported by the Ministry of Innovation
and Technology NRDI Office within the framework of the
Autonomous Systems National Laboratory Program.

REFERENCES

[1] Aquino, A. L., Cavalcante, T. S., Almeida, E. S., Frery, A. C.,
& Rosso, O. A. (2015). Characterization of vehicle behavior
with information theory. The European Physical Journal B,
88(10), 1-12.
doi: https://doi.org/10.1140/epjb/e2015-60384-x

[2] Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016,
September). Simple online and realtime tracking. In 2016
IEEE international conference on image processing (ICIP)
(pp. 3464-3468). IEEE.
doi: https://doi.org/10.1109/icip.2016.7533003

[3] Bochinski, E., Eiselein, V., & Sikora, T. (2017, August). High-
speed tracking-by-detection without using image information.
In 2017 14th IEEE International Conference on Advanced
Video and Signal Based Surveillance (AVSS) (pp. 1-6). IEEE.
doi: https://doi.org/10.1109/avss.2017.8078516

Figure 4. Overview of MTMC vehicle tracking using hybrid re-id features. Static attributes and basic re-id features are fused at two parts;
highlighted with blue boxes. Classification of basic re-id features gives interpretable attributes for filtering; highlighted with green boxes.

86

5

during the training (in contrast to using constant values), as
proposed in [9].

V. TRAJECTORY FILTERING AND MATCHING
The trajectory filtering step (applied to single-camera
trajectories) depends on the constellation of cameras. We
consider a crossroad with four cameras pointing inwards. Such
a scenario is shown in Fig. 5. We define zones as proposed by
Hsu et al. [8]. If a single-camera trajectory does not start and
end in one of the zones or is stationary for a long period (false
prediction), then it can be filtered out. When matching
trajectories across cameras, only those have to be considered
that start and end in the same zone. The constraints, of course,
need to be adjusted to the field of view of the cameras, because
it is possible that not all cameras have a view of all zones.
Another possible constellation is a series of cameras on a
highway, with two zones (one direction) or four (two
directional) and possible additional ones if the camera has a
view on a highway ramp.
 The multi-camera trajectory matching step has a strict
temporal constraint in the crossroad scenario. If the video
streams from cameras are synchronized, or the delays are
known, almost exact timestamps are available about vehicles
entering and leaving zones, thus the trajectory matching step
becomes a simple association step, like the single-camera
scenario.

Figure 5. Common camera constellation at a crossroad

VI. CONCLUSION
In this paper we elaborated an approach for multi-target multi-
camera tracking using hybrid re-id features. The hybrid re-id
features are created from static attributes and (basic) re-id
features. However, this requires a two-phase tracking method,
which is computationally more expensive than one-phase ones;
furthermore, the calculation of static attributes comes with
additional computation cost. We propose multiple scenarios to
calculate the static attributes, from which the most appropriate
one can be selected, based on the requirement of the task, i.e.
higher accuracy or higher frame rate.

Our research is currently at the stage of gathering real-world
data, which includes multi-camera scenes at crossroads and
highways. After the data is collected and cleaned, the proposed
methods will be thoroughly tested and evaluated.

ACKNOWLEDGMENT
The research was supported by the Institute of Transport
Sciences (KTI) within the Innovative Mobility Program.

The research was supported by the Ministry of Innovation
and Technology NRDI Office within the framework of the
Autonomous Systems National Laboratory Program.

REFERENCES

[1] Aquino, A. L., Cavalcante, T. S., Almeida, E. S., Frery, A. C.,
& Rosso, O. A. (2015). Characterization of vehicle behavior
with information theory. The European Physical Journal B,
88(10), 1-12.
doi: https://doi.org/10.1140/epjb/e2015-60384-x

[2] Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016,
September). Simple online and realtime tracking. In 2016
IEEE international conference on image processing (ICIP)
(pp. 3464-3468). IEEE.
doi: https://doi.org/10.1109/icip.2016.7533003

[3] Bochinski, E., Eiselein, V., & Sikora, T. (2017, August). High-
speed tracking-by-detection without using image information.
In 2017 14th IEEE International Conference on Advanced
Video and Signal Based Surveillance (AVSS) (pp. 1-6). IEEE.
doi: https://doi.org/10.1109/avss.2017.8078516

Figure 4. Overview of MTMC vehicle tracking using hybrid re-id features. Static attributes and basic re-id features are fused at two parts;
highlighted with blue boxes. Classification of basic re-id features gives interpretable attributes for filtering; highlighted with green boxes.

Determining Hybrid Re-id Features of Vehicles
in Videos for Transport Analysis

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 21

	 [1]	 Aquino, A. L., Cavalcante, T. S., Almeida, E. S., Frery, A. C., & Rosso,
O. A. (2015). Characterization of vehicle behavior with information
theory. The European Physical Journal B, 88(10), 1-12.

		 doi: 10.1140/epjb/e2015-60384-x
	 [2]	 Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016,

September). Simple online and realtime tracking. In 2016 IEEE
international conference on image processing (ICIP) (pp. 3464-
3468). IEEE. doi: 10.1109/icip.2016.7533003

	 [3]	 Bochinski, E., Eiselein, V., & Sikora, T. (2017, August). High-speed
tracking-by-detection without using image information. In 2017 14th
IEEE International Conference on Advanced Video and Signal Based
Surveillance (AVSS) (pp. 1-6). IEEE.

	 [4]	 Deng, W., Zheng, L., Ye, Q., Kang, G., Yang, Y., & Jiao, J. (2018).
Image-image domain adaptation with preserved self-similarity and
domain-dissimilarity for person re-identification. In Proceedings of
the IEEE conference on computer vision and pattern recognition (pp.
994-1003). doi: 10.1109/cvpr.2018.00110

	 [5]	 Farhadi, A., & Redmon, J. (2018, April). Yolov3: An incremental
improvement. In Computer Vision and Pattern Recognition (pp. 1804-
02767). Berlin/Heidelberg, Germany: Springer.

	 [6]	 Guo, Y., Sun, Q., Fu, R., & Wang, C. (2019). Improved car-following
strategy based on merging behavior prediction of adjacent vehicle
from naturalistic driving data. IEEE Access, 7, 44258-44268.

		 doi: 10.1109/access.2019.2908422
	 [7]	 He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning

for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 770-778).

		 doi: 10.1109/cvpr.2016.90

References

86

5

during the training (in contrast to using constant values), as
proposed in [9].

V. TRAJECTORY FILTERING AND MATCHING
The trajectory filtering step (applied to single-camera
trajectories) depends on the constellation of cameras. We
consider a crossroad with four cameras pointing inwards. Such
a scenario is shown in Fig. 5. We define zones as proposed by
Hsu et al. [8]. If a single-camera trajectory does not start and
end in one of the zones or is stationary for a long period (false
prediction), then it can be filtered out. When matching
trajectories across cameras, only those have to be considered
that start and end in the same zone. The constraints, of course,
need to be adjusted to the field of view of the cameras, because
it is possible that not all cameras have a view of all zones.
Another possible constellation is a series of cameras on a
highway, with two zones (one direction) or four (two
directional) and possible additional ones if the camera has a
view on a highway ramp.
 The multi-camera trajectory matching step has a strict
temporal constraint in the crossroad scenario. If the video
streams from cameras are synchronized, or the delays are
known, almost exact timestamps are available about vehicles
entering and leaving zones, thus the trajectory matching step
becomes a simple association step, like the single-camera
scenario.

Figure 5. Common camera constellation at a crossroad

VI. CONCLUSION
In this paper we elaborated an approach for multi-target multi-
camera tracking using hybrid re-id features. The hybrid re-id
features are created from static attributes and (basic) re-id
features. However, this requires a two-phase tracking method,
which is computationally more expensive than one-phase ones;
furthermore, the calculation of static attributes comes with
additional computation cost. We propose multiple scenarios to
calculate the static attributes, from which the most appropriate
one can be selected, based on the requirement of the task, i.e.
higher accuracy or higher frame rate.

Our research is currently at the stage of gathering real-world
data, which includes multi-camera scenes at crossroads and
highways. After the data is collected and cleaned, the proposed
methods will be thoroughly tested and evaluated.

ACKNOWLEDGMENT
The research was supported by the Institute of Transport
Sciences (KTI) within the Innovative Mobility Program.

The research was supported by the Ministry of Innovation
and Technology NRDI Office within the framework of the
Autonomous Systems National Laboratory Program.

REFERENCES

[1] Aquino, A. L., Cavalcante, T. S., Almeida, E. S., Frery, A. C.,
& Rosso, O. A. (2015). Characterization of vehicle behavior
with information theory. The European Physical Journal B,
88(10), 1-12.
doi: https://doi.org/10.1140/epjb/e2015-60384-x

[2] Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016,
September). Simple online and realtime tracking. In 2016
IEEE international conference on image processing (ICIP)
(pp. 3464-3468). IEEE.
doi: https://doi.org/10.1109/icip.2016.7533003

[3] Bochinski, E., Eiselein, V., & Sikora, T. (2017, August). High-
speed tracking-by-detection without using image information.
In 2017 14th IEEE International Conference on Advanced
Video and Signal Based Surveillance (AVSS) (pp. 1-6). IEEE.
doi: https://doi.org/10.1109/avss.2017.8078516

Figure 4. Overview of MTMC vehicle tracking using hybrid re-id features. Static attributes and basic re-id features are fused at two parts;
highlighted with blue boxes. Classification of basic re-id features gives interpretable attributes for filtering; highlighted with green boxes.

86

5

during the training (in contrast to using constant values), as
proposed in [9].

V. TRAJECTORY FILTERING AND MATCHING
The trajectory filtering step (applied to single-camera
trajectories) depends on the constellation of cameras. We
consider a crossroad with four cameras pointing inwards. Such
a scenario is shown in Fig. 5. We define zones as proposed by
Hsu et al. [8]. If a single-camera trajectory does not start and
end in one of the zones or is stationary for a long period (false
prediction), then it can be filtered out. When matching
trajectories across cameras, only those have to be considered
that start and end in the same zone. The constraints, of course,
need to be adjusted to the field of view of the cameras, because
it is possible that not all cameras have a view of all zones.
Another possible constellation is a series of cameras on a
highway, with two zones (one direction) or four (two
directional) and possible additional ones if the camera has a
view on a highway ramp.
 The multi-camera trajectory matching step has a strict
temporal constraint in the crossroad scenario. If the video
streams from cameras are synchronized, or the delays are
known, almost exact timestamps are available about vehicles
entering and leaving zones, thus the trajectory matching step
becomes a simple association step, like the single-camera
scenario.

Figure 5. Common camera constellation at a crossroad

VI. CONCLUSION
In this paper we elaborated an approach for multi-target multi-
camera tracking using hybrid re-id features. The hybrid re-id
features are created from static attributes and (basic) re-id
features. However, this requires a two-phase tracking method,
which is computationally more expensive than one-phase ones;
furthermore, the calculation of static attributes comes with
additional computation cost. We propose multiple scenarios to
calculate the static attributes, from which the most appropriate
one can be selected, based on the requirement of the task, i.e.
higher accuracy or higher frame rate.

Our research is currently at the stage of gathering real-world
data, which includes multi-camera scenes at crossroads and
highways. After the data is collected and cleaned, the proposed
methods will be thoroughly tested and evaluated.

ACKNOWLEDGMENT
The research was supported by the Institute of Transport
Sciences (KTI) within the Innovative Mobility Program.

The research was supported by the Ministry of Innovation
and Technology NRDI Office within the framework of the
Autonomous Systems National Laboratory Program.

REFERENCES

[1] Aquino, A. L., Cavalcante, T. S., Almeida, E. S., Frery, A. C.,
& Rosso, O. A. (2015). Characterization of vehicle behavior
with information theory. The European Physical Journal B,
88(10), 1-12.
doi: https://doi.org/10.1140/epjb/e2015-60384-x

[2] Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016,
September). Simple online and realtime tracking. In 2016
IEEE international conference on image processing (ICIP)
(pp. 3464-3468). IEEE.
doi: https://doi.org/10.1109/icip.2016.7533003

[3] Bochinski, E., Eiselein, V., & Sikora, T. (2017, August). High-
speed tracking-by-detection without using image information.
In 2017 14th IEEE International Conference on Advanced
Video and Signal Based Surveillance (AVSS) (pp. 1-6). IEEE.
doi: https://doi.org/10.1109/avss.2017.8078516

Figure 4. Overview of MTMC vehicle tracking using hybrid re-id features. Static attributes and basic re-id features are fused at two parts;
highlighted with blue boxes. Classification of basic re-id features gives interpretable attributes for filtering; highlighted with green boxes.

86

5

during the training (in contrast to using constant values), as
proposed in [9].

V. TRAJECTORY FILTERING AND MATCHING
The trajectory filtering step (applied to single-camera
trajectories) depends on the constellation of cameras. We
consider a crossroad with four cameras pointing inwards. Such
a scenario is shown in Fig. 5. We define zones as proposed by
Hsu et al. [8]. If a single-camera trajectory does not start and
end in one of the zones or is stationary for a long period (false
prediction), then it can be filtered out. When matching
trajectories across cameras, only those have to be considered
that start and end in the same zone. The constraints, of course,
need to be adjusted to the field of view of the cameras, because
it is possible that not all cameras have a view of all zones.
Another possible constellation is a series of cameras on a
highway, with two zones (one direction) or four (two
directional) and possible additional ones if the camera has a
view on a highway ramp.
 The multi-camera trajectory matching step has a strict
temporal constraint in the crossroad scenario. If the video
streams from cameras are synchronized, or the delays are
known, almost exact timestamps are available about vehicles
entering and leaving zones, thus the trajectory matching step
becomes a simple association step, like the single-camera
scenario.

Figure 5. Common camera constellation at a crossroad

VI. CONCLUSION
In this paper we elaborated an approach for multi-target multi-
camera tracking using hybrid re-id features. The hybrid re-id
features are created from static attributes and (basic) re-id
features. However, this requires a two-phase tracking method,
which is computationally more expensive than one-phase ones;
furthermore, the calculation of static attributes comes with
additional computation cost. We propose multiple scenarios to
calculate the static attributes, from which the most appropriate
one can be selected, based on the requirement of the task, i.e.
higher accuracy or higher frame rate.

Our research is currently at the stage of gathering real-world
data, which includes multi-camera scenes at crossroads and
highways. After the data is collected and cleaned, the proposed
methods will be thoroughly tested and evaluated.

ACKNOWLEDGMENT
The research was supported by the Institute of Transport
Sciences (KTI) within the Innovative Mobility Program.

The research was supported by the Ministry of Innovation
and Technology NRDI Office within the framework of the
Autonomous Systems National Laboratory Program.

REFERENCES

[1] Aquino, A. L., Cavalcante, T. S., Almeida, E. S., Frery, A. C.,
& Rosso, O. A. (2015). Characterization of vehicle behavior
with information theory. The European Physical Journal B,
88(10), 1-12.
doi: https://doi.org/10.1140/epjb/e2015-60384-x

[2] Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016,
September). Simple online and realtime tracking. In 2016
IEEE international conference on image processing (ICIP)
(pp. 3464-3468). IEEE.
doi: https://doi.org/10.1109/icip.2016.7533003

[3] Bochinski, E., Eiselein, V., & Sikora, T. (2017, August). High-
speed tracking-by-detection without using image information.
In 2017 14th IEEE International Conference on Advanced
Video and Signal Based Surveillance (AVSS) (pp. 1-6). IEEE.
doi: https://doi.org/10.1109/avss.2017.8078516

Figure 4. Overview of MTMC vehicle tracking using hybrid re-id features. Static attributes and basic re-id features are fused at two parts;
highlighted with blue boxes. Classification of basic re-id features gives interpretable attributes for filtering; highlighted with green boxes.

86

5

during the training (in contrast to using constant values), as
proposed in [9].

V. TRAJECTORY FILTERING AND MATCHING
The trajectory filtering step (applied to single-camera
trajectories) depends on the constellation of cameras. We
consider a crossroad with four cameras pointing inwards. Such
a scenario is shown in Fig. 5. We define zones as proposed by
Hsu et al. [8]. If a single-camera trajectory does not start and
end in one of the zones or is stationary for a long period (false
prediction), then it can be filtered out. When matching
trajectories across cameras, only those have to be considered
that start and end in the same zone. The constraints, of course,
need to be adjusted to the field of view of the cameras, because
it is possible that not all cameras have a view of all zones.
Another possible constellation is a series of cameras on a
highway, with two zones (one direction) or four (two
directional) and possible additional ones if the camera has a
view on a highway ramp.
 The multi-camera trajectory matching step has a strict
temporal constraint in the crossroad scenario. If the video
streams from cameras are synchronized, or the delays are
known, almost exact timestamps are available about vehicles
entering and leaving zones, thus the trajectory matching step
becomes a simple association step, like the single-camera
scenario.

Figure 5. Common camera constellation at a crossroad

VI. CONCLUSION
In this paper we elaborated an approach for multi-target multi-
camera tracking using hybrid re-id features. The hybrid re-id
features are created from static attributes and (basic) re-id
features. However, this requires a two-phase tracking method,
which is computationally more expensive than one-phase ones;
furthermore, the calculation of static attributes comes with
additional computation cost. We propose multiple scenarios to
calculate the static attributes, from which the most appropriate
one can be selected, based on the requirement of the task, i.e.
higher accuracy or higher frame rate.

Our research is currently at the stage of gathering real-world
data, which includes multi-camera scenes at crossroads and
highways. After the data is collected and cleaned, the proposed
methods will be thoroughly tested and evaluated.

ACKNOWLEDGMENT
The research was supported by the Institute of Transport
Sciences (KTI) within the Innovative Mobility Program.

The research was supported by the Ministry of Innovation
and Technology NRDI Office within the framework of the
Autonomous Systems National Laboratory Program.

REFERENCES

[1] Aquino, A. L., Cavalcante, T. S., Almeida, E. S., Frery, A. C.,
& Rosso, O. A. (2015). Characterization of vehicle behavior
with information theory. The European Physical Journal B,
88(10), 1-12.
doi: https://doi.org/10.1140/epjb/e2015-60384-x

[2] Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016,
September). Simple online and realtime tracking. In 2016
IEEE international conference on image processing (ICIP)
(pp. 3464-3468). IEEE.
doi: https://doi.org/10.1109/icip.2016.7533003

[3] Bochinski, E., Eiselein, V., & Sikora, T. (2017, August). High-
speed tracking-by-detection without using image information.
In 2017 14th IEEE International Conference on Advanced
Video and Signal Based Surveillance (AVSS) (pp. 1-6). IEEE.
doi: https://doi.org/10.1109/avss.2017.8078516

Figure 4. Overview of MTMC vehicle tracking using hybrid re-id features. Static attributes and basic re-id features are fused at two parts;
highlighted with blue boxes. Classification of basic re-id features gives interpretable attributes for filtering; highlighted with green boxes.

Fig. 4.: Overview of MTMC vehicle tracking using hybrid re-id features. Static attributes and basic re-id features are fused at two parts; highlighted with
blue boxes. Classification of basic re-id features gives interpretable attributes for filtering; highlighted with green boxes.

Fig. 5.: Common camera constellation at a crossroad

86

5

during the training (in contrast to using constant values), as
proposed in [9].

V. TRAJECTORY FILTERING AND MATCHING
The trajectory filtering step (applied to single-camera
trajectories) depends on the constellation of cameras. We
consider a crossroad with four cameras pointing inwards. Such
a scenario is shown in Fig. 5. We define zones as proposed by
Hsu et al. [8]. If a single-camera trajectory does not start and
end in one of the zones or is stationary for a long period (false
prediction), then it can be filtered out. When matching
trajectories across cameras, only those have to be considered
that start and end in the same zone. The constraints, of course,
need to be adjusted to the field of view of the cameras, because
it is possible that not all cameras have a view of all zones.
Another possible constellation is a series of cameras on a
highway, with two zones (one direction) or four (two
directional) and possible additional ones if the camera has a
view on a highway ramp.
 The multi-camera trajectory matching step has a strict
temporal constraint in the crossroad scenario. If the video
streams from cameras are synchronized, or the delays are
known, almost exact timestamps are available about vehicles
entering and leaving zones, thus the trajectory matching step
becomes a simple association step, like the single-camera
scenario.

Figure 5. Common camera constellation at a crossroad

VI. CONCLUSION
In this paper we elaborated an approach for multi-target multi-
camera tracking using hybrid re-id features. The hybrid re-id
features are created from static attributes and (basic) re-id
features. However, this requires a two-phase tracking method,
which is computationally more expensive than one-phase ones;
furthermore, the calculation of static attributes comes with
additional computation cost. We propose multiple scenarios to
calculate the static attributes, from which the most appropriate
one can be selected, based on the requirement of the task, i.e.
higher accuracy or higher frame rate.

Our research is currently at the stage of gathering real-world
data, which includes multi-camera scenes at crossroads and
highways. After the data is collected and cleaned, the proposed
methods will be thoroughly tested and evaluated.

ACKNOWLEDGMENT
The research was supported by the Institute of Transport
Sciences (KTI) within the Innovative Mobility Program.

The research was supported by the Ministry of Innovation
and Technology NRDI Office within the framework of the
Autonomous Systems National Laboratory Program.

REFERENCES

[1] Aquino, A. L., Cavalcante, T. S., Almeida, E. S., Frery, A. C.,
& Rosso, O. A. (2015). Characterization of vehicle behavior
with information theory. The European Physical Journal B,
88(10), 1-12.
doi: https://doi.org/10.1140/epjb/e2015-60384-x

[2] Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016,
September). Simple online and realtime tracking. In 2016
IEEE international conference on image processing (ICIP)
(pp. 3464-3468). IEEE.
doi: https://doi.org/10.1109/icip.2016.7533003

[3] Bochinski, E., Eiselein, V., & Sikora, T. (2017, August). High-
speed tracking-by-detection without using image information.
In 2017 14th IEEE International Conference on Advanced
Video and Signal Based Surveillance (AVSS) (pp. 1-6). IEEE.
doi: https://doi.org/10.1109/avss.2017.8078516

Figure 4. Overview of MTMC vehicle tracking using hybrid re-id features. Static attributes and basic re-id features are fused at two parts;
highlighted with blue boxes. Classification of basic re-id features gives interpretable attributes for filtering; highlighted with green boxes.

https://doi.org/10.1140/epjb/e2015-60384-x
https://doi.org/10.1109/icip.2016.7533003
https://doi.org/10.1109/cvpr.2018.00110
https://doi.org/10.1109/access.2019.2908422
https://doi.org/10.1109/cvpr.2016.90

Determining Hybrid Re-id Features of Vehicles
in Videos for Transport Analysis

MARCH 2022 • VOLUME XIV • NUMBER 122

INFOCOMMUNICATIONS JOURNAL

	 [8]	 Hsu, H. M., Huang, T. W., Wang, G., Cai, J., Lei, Z., & Hwang, J.
N. (2019, June). Multi-Camera Tracking of Vehicles based on Deep
Features Re-ID and Trajectory-Based Camera Link Models. In CVPR
Workshops (pp. 416-424). doi: 10.1109/tip.2021.3078124

	 [9]	 Huynh, S. V. (2021). A Strong Baseline for Vehicle Re-Identification.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (pp. 4147-4154).

		 doi: 10.1109/cvprw53098.2021.00468
	[10]	 Kalman, R. E. (1960). A new approach to linear filtering and prediction

problems. doi: 10.1115/1.3662552
	[11]	 Kanacı, A., Zhu, X., & Gong, S. (2018, October). Vehicle re-

identification in context. In German Conference on Pattern
Recognition (pp. 377-390). Springer, Cham.

		 doi: 10.1007/978-3-030-12939-2_26
	[12]	 Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola,

P., Maschinot, A., Liu, C. and Krishnan, D. (2020). Supervised
contrastive learning. arXiv preprint arXiv:2004.11362.

	[13]	 Kuhn, H. W. (1955). The Hungarian method for the assignment
problem. Naval research logistics quarterly, 2(1-2), 83-97.

		 doi: 10.1002/nav.3800020109
[14] Leonhardt, V., & Wanielik, G. (2018). Recognition of lane change

intentions fusing features of driving situation, driver behavior,
and vehicle movement by means of neural networks. In Advanced
Microsystems for Automotive Applications 2017 (pp. 59-69). Springer,
Cham. doi: 10.1007/978-3-319-66972-4_6

[15]	 Ligthart, J. A., Ploeg, J., Semsar-Kazerooni, E., Fusco, M., &
Nijmeijer, H. (2018). Safety analysis of a vehicle equipped with
Cooperative Adaptive Cruise Control. IFAC-PapersOnLine, 51(9),
367-372. doi: 10.1016/j.ifacol.2018.07.060

[16]	 Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie,
S. (2017). Feature pyramid networks for object detection. In
Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 2117-2125).

[17]	 Liu, C., Zhang, Y., Luo, H., Tang, J., Chen, W., Xu, X., Wang, F.,
Li, H. and Shen, Y.D. (2021). City-scale multi-camera vehicle
tracking guided by crossroad zones. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (pp. 4129-
4137). doi: 10.1109/cvprw53098.2021.00466

[18]	 Liu, H., Tian, Y., Yang, Y., Pang, L., & Huang, T. (2016). Deep relative
distance learning: Tell the difference between similar vehicles. In
Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 2167-2175). doi: 10.1109/cvpr.2016.238

[19]	 Liu, X., Liu, W., Mei, T., & Ma, H. (2016, October). A deep learning-
based approach to progressive vehicle re-identification for urban
surveillance. In European conference on computer vision (pp. 869-
884). Springer, Cham. doi: 10.1007/978-3-319-46475-6_53

[20]	 Lou, Y., Bai, Y., Liu, J., Wang, S., & Duan, L. (2019). Veri-wild: A
large dataset and a new method for vehicle re-identification in the
wild. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (pp. 3235-3243).

		 doi: 10.1109/cvpr.2019.00335
[21]	 Luo, H., Chen, W., Xu, X., Gu, J., Zhang, Y., Liu, C., Jiang, Y., He,

S., Wang, F. and Li, H. (2021). An empirical study of vehicle re-
identification on the AI City Challenge. In Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition (pp.
4095-4102). doi: 10.1109/cvprw53098.2021.00462

[22]	 Naphade, M., Wang, S., Anastasiu, D.C., Tang, Z., Chang, M.C., Yang,
X., Yao, Y., Zheng, L., Chakraborty, P., Lopez, C.E. and Sharma, A.
(2021). The 5th ai city challenge. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (pp. 4263-
4273). doi: 10.1109/cvprw53098.2021.00482

[23]	 Pan, X., Luo, P., Shi, J., & Tang, X. (2018). Two at once: Enhancing
learning and generalization capacities via ibn-net. In Proceedings of
the European Conference on Computer Vision (ECCV) (pp. 464-479).

		 doi: 10.1007/978-3-030-01225-0_29
[24]	 Peng, J., Wang, H., Zhao, T., & Fu, X. (2019, July). Cross domain

knowledge transfer for unsupervised vehicle re-identification. In 2019
IEEE International Conference on Multimedia & Expo Workshops
(ICMEW) (pp. 453-458). IEEE. doi: 10.1109/icmew.2019.00084

[25]	 Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified
embedding for face recognition and clustering. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp.
815-823). doi: 10.1109/cvpr.2015.7298682

[26]	 Song, H. S., Lu, S. N., Ma, X., Yang, Y., Liu, X. Q., & Zhang, P.
(2014). Vehicle behavior analysis using target motion trajectories.
IEEE Transactions on Vehicular Technology, 63(8), 3580-3591.

		 doi: 10.1109/tvt.2014.2307958
[27]	 Sun, Y., Cheng, C., Zhang, Y., Zhang, C., Zheng, L., Wang, Z., &

Wei, Y. (2020). Circle loss: A unified perspective of pair similarity
optimization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (pp. 6398-6407).

		 doi: 10.1109/cvpr42600.2020.00643
[28]	 Szűcs, G. (2009). Developing co-operative transport system and route

planning. Transport, 24(1), 21-25.
		 doi: 10.3846/1648-4142.2009.24.21-25
[29]	 Szűcs, G. (2011). Equilibrium estimation based on unreliable

information in transport networks by adaptive simulation. International
Journal of Advanced Intelligence Paradigms, 3(3-4), 273-285.

		 doi: 10.1504/ijaip.2011.043431
[30]	 Szűcs, G. (2012). Route planning based on uncertain information in

transport networks. Transport, 27(1), 79-85.
		 doi: 10.3846/16484142.2012.667835
[31]	 Szűcs, G. (2015). Decision support for route search and optimum

finding in transport networks under uncertainty. Journal of applied
research and technology, 13(1), 125-134.

		 doi: 10.1016/s1665-6423(15)30011-0
[32]	 Szűcs, G., & Sallai, G. (2009). Route planning with uncertain

information using Dempster-Shafer theory. In 2009 International
Conference on Management and Service Science (pp. 1-4). IEEE.

		 doi: 10.1109/icmss.2009.5302815
[33] Tang, Z., Naphade, M., Liu, M. Y., Yang, X., Birchfield, S., Wang,

S., ... & Hwang, J. N. (2019). Cityflow: A city-scale benchmark for
multi-target multi-camera vehicle tracking and re-identification. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (pp. 8797-8806).

		 doi: 10.1109/cvpr.2019.00900
[34]	 Wang, Z., Zheng, L., Liu, Y., Li, Y., & Wang, S. (2020). Towards

real-time multi-object tracking. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XI 16 (pp. 107-122). Springer International
Publishing.

[35]	 Wen, L., Du, D., Cai, Z., Lei, Z., Chang, M.C., Qi, H., Lim, J., Yang,
M.H. and Lyu, S. (2020). UA-DETRAC: A new benchmark and
protocol for multi-object detection and tracking. Computer Vision and
Image Understanding, 193, 102907.

		 doi: 10.1016/j.cviu.2020.102907
[36]	 Wen, Y., Zhang, K., Li, Z., & Qiao, Y. (2016, October). A

discriminative feature learning approach for deep face recognition.
In European conference on computer vision (pp. 499-515). Springer,
Cham.

[37]	 Wojke, N., Bewley, A., & Paulus, D. (2017, September). Simple
online and realtime tracking with a deep association metric. In 2017
IEEE international conference on image processing (ICIP) (pp. 3645-
3649). IEEE. doi: 10.1109/icip.2017.8296962

[38]	 Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated
residual transformations for deep neural networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition (pp.
1492-1500). doi: 10.1109/cvpr.2017.634

[39]	 Yao, Y., Zheng, L., Yang, X., Naphade, M., & Gedeon, T. (2020).
Simulating content consistent vehicle datasets with attribute descent.
In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part VI 16 (pp. 775-
791). Springer International Publishing.

		 doi: 10.1007/978-3-030-58539-6_46
[40]	 Ye, J., Yang, X., Kang, S., He, Y., Zhang, W., Huang, L., Jiang, M.,

Zhang, W., Shi, Y., Xia, M. and Tan, X. (2021). A robust MTMC
tracking system for AI-City Challenge 2021. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(pp. 4044-4053). doi: 10.1109/cvprw53098.2021.00456

https://doi.org/10.1109/tip.2021.3078124
https://doi.org/10.1109/cvprw53098.2021.00468
https://doi.org/10.1115/1.3662552
https://doi.org/10.1007/978-3-030-12939-2_26
https://arxiv.org/abs/2004.11362
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1007/978-3-319-66972-4_6
https://doi.org/10.1016/j.ifacol.2018.07.060
https://doi.org/10.1109/cvprw53098.2021.00466
https://doi.org/10.1109/cvpr.2016.238
https://doi.org/10.1007/978-3-319-46475-6_53
https://doi.org/10.1109/cvpr.2019.00335
https://doi.org/10.1109/cvprw53098.2021.00462
https://doi.org/10.1109/cvprw53098.2021.00482
https://doi.org/10.1007/978-3-030-01225-0_29
https://doi.org/10.1109/icmew.2019.00084
https://doi.org/10.1109/cvpr.2015.7298682
https://doi.org/10.1109/tvt.2014.2307958
https://doi.org/10.1109/cvpr42600.2020.00643
https://doi.org/10.3846/1648-4142.2009.24.21-25
https://doi.org/10.1504/ijaip.2011.043431
https://doi.org/10.3846/16484142.2012.667835
https://doi.org/10.1016/s1665-6423(15)30011-0
https://doi.org/10.1109/icmss.2009.5302815
https://doi.org/10.1109/cvpr.2019.00900
https://doi.org/10.1016/j.cviu.2020.102907
https://doi.org/10.1109/icip.2017.8296962
https://doi.org/10.1109/cvpr.2017.634
https://doi.org/10.1007/978-3-030-58539-6_46
https://doi.org/10.1109/cvprw53098.2021.00456

Determining Hybrid Re-id Features of Vehicles
in Videos for Transport Analysis

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 23

[41]	 Yu, F., Wang, D., Shelhamer, E., & Darrell, T. (2018). Deep layer
aggregation. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 2403-2412).

		 doi: 10.1109/cvpr.2018.00255
[42]	 Zhang, Y., Wang, C., Wang, X., Zeng, W., & Liu, W. (2021). Fairmot:

On the fairness of detection and re-identification in multiple object
tracking. International Journal of Computer Vision, 1-19.

		 doi: 10.1007/s11263-021-01513-4
[43]	 Zhong, Z., Zheng, L., Cao, D., & Li, S. (2017). Re-ranking person re-

identification with k-reciprocal encoding. In Proceedings of the IEEE
conference on computer vision and pattern recognition (pp. 1318-
1327). doi: 10.1109/cvpr.2017.389

[44]	 Zhou, K., Yang, Y., Qiao, Y., & Xiang, T. (2021). Domain
generalization with mixstyle. arXiv preprint arXiv:2104.02008.

[45]	 Zhu, X., Luo, Z., Fu, P., & Ji, X. (2020). VOC-ReID: Vehicle re-
identification based on vehicle-orientation-camera. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (pp. 602-603).

		 doi: 10.1109/cvprw50498.2020.00309

Dávid Papp was born in 1990 in Hungary and he has
received MSc in Computer Science (at specialization
of media informatics) from Budapest University of
Technology and Economics (BME) in 2016. He started
his PhD work in 2016 in the field of Computer Science
at the same university. His research topic includes
artificial intelligence, machine learning, computer
vision as well as development of algorithms on these
fields (e.g. query strategies for classification of visual
contents with active learning). He was awarded twice

with the scholarship of New National Excellence Program of the Ministry of
Human Capacities, in 2018 and 2019.

Regő Borsodi was born in 1997 in Hungary. He is
currently a MSc student at Budapest University of
Technology and Economics (BME) in Computer
Science.

https://doi.org/10.1109/cvpr.2018.00255
https://doi.org/10.1007/s11263-021-01513-4
https://doi.org/10.1109/cvpr.2017.389
https://arxiv.org/abs/2104.02008
https://doi.org/10.1109/cvprw50498.2020.00309

A comprehensive survey on the application of
blockchain/hash chain technologies in V2X communications

MARCH 2022 • VOLUME XIV • NUMBER 124

INFOCOMMUNICATIONS JOURNAL43 1

Abstract—The Vehicle-to-Everything (V2X) technology and
protocols are the main cornerstones for advanced transportation
and autonomous vehicle applications. V2X has several subsets,
including Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure
(V2I) communication contexts. The main benefit of applying V2X
technologies is increased safety by facilitating predicted warnings
supporting automated driving and traffic applications. Wirelessly
transmitted messages are the information sources; therefore,
security is critical in V2X systems. The V2X exchanged messages
are sent wirelessly and must fulfill the security requirements, such
as integrity, authenticity, and privacy support. The messaging
between vehicles and networks must be trusted. Lately, promising
and proliferating blockchain/hash chain technologies have been
introduced in V2X communications and cope with the cooperative
vehicular applications security and related efficiency aspects. This
paper provides a comprehensive survey about the V2X use-cases
based blockchain/hash chain and introduces the available
solutions and methods in this domain.

Index Terms— blockchain, hash chain, V2X/C-ITS
security/privacy

I. INTRODUCTION
OOPERATIVE Intelligent Transport Systems (C-ITS)
introduce a new ecosystem of linked vehicles, roadside

networks, and mobile connectivity valuable to the climate,
society, and economy. Vehicle-to-Everything (V2X) creates
infrastructures that ensure optimal transport facilities, decrease
traffic loads, environmental emissions, and increase road safety
and transport quality [1]. Specifically, C-ITS performance
relies on V2X communications since it is responsible for
sharing data between the underlying communication
technologies. This provides input and alerts from on-board
sensors, such as the vehicle's current location and speed. V2X
is a protocol family designed to exchange messages that include

vehicle information and sensor data from a vehicle to another
vehicle or any individual/infrastructure element capable of
influencing the vehicle and vice versa. Some of the applications
based on V2X are autonomous driving, improving road safety,
reducing fuel consumption, and traffic efficiency. V2X systems
will make the road safer in decreasing the number of accidents,
managing traffic flows, and providing environmental benefits.
V2X is a combination of different communication contexts. As
shown in Figure 1 below, V2X is based on a cooperative
exchange of data between vehicles, and anything else that is
Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I),
Vehicle-to-Network (V2N), Vehicle-to-Pedestrians (V2P) [2],
Vehicle-to-Device (V2D) [3], Vehicle-to-Cloud (V2C) [4],
Vehicle-to-Home (V2H) [5], or even Vehicle-to-Grid (V2G)
[6].

For example, a vehicle that uses a navigation system based
on GPS and other sensors can use V2V to indicate vehicle's
location, speed, and direction. By broadcasting this information
maximum of 10 times per second to the surrounding cars. When
a vehicle receives this information, it will calculate the
trajectories of the surrounding vehicles. Without entering into a
hazardous situation or crash, it will warn the driver by visual
alert to make them more aware of what is going around.

V2I is used, for example, as a communication protocol
between the vehicle and the traffic lights. It may advise the
driver to select the optimal speed to travel through a set of
intersections. Furthermore, V2G is an example of a game-
changing emerging technology that, along with smart charging,
could change the electricity grid. In the case of V2C the ability
to provide services from the vehicle maker and other suppliers
directly over the Internet is established. V2N is a
communication context used, e.g., for warning signs of
impending barriers or road jams; and implementing centralized
positioning systems [7]. V2D is applied, for example, as a
communication method to transmit information between the
vehicles and any electronic system to which the vehicle is
connected. V2H refers to the exchange of data between vehicles
and applications in the home. V2P establishes communication
that involves exchanging information between vehicles and
pedestrians, such as when the driver sends a message to a
pedestrian alerting them to their location and that they are close.

Independently of the applied communication context, the
application of V2X includes multiple facets, such as intelligen t
travel, intelligently linked vehicles, and autonomous driving.

A comprehensive survey on the application of
blockchain/hash chain technologies in V2X

communications
Hassan Farran1, David Khoury2, and László Bokor3

C

1 Department of Networked Systems and Services, Faculty of Electrical
Engineering and Informatics, Budapest University of Technology and
Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary. (e-mail:
hfarran@hit.bme.hu)
2 Department of Computer Science and information and communication
technology, American University of Science and Technology, Beirut,
Lebanon (e-mail: dkhoury@aust.edu.lb)
3 Department of Networked Systems and Services, Faculty of Electrical
Engineering and Informatics, Budapest University of Technology and
Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary. (e-mail:
bokorl@hit.bme.hu)

43 2

Various applications have various specifications for latency,
durability, throughput, user density, and protection in the V2X
environment; protection and autonomous driving system need
exceptionally low latency and a safe network environment;
therefore, security is the highest priority for V2X [8]. Any
vehicular network infrastructure requires comprehensive
security mechanisms to enable vehicles and other actors to
communicate securely and efficiently.

Fig. 1. Vehicle-to-Everything communication contexts.

Two types of V2X communication technologies are currently
available: the Wi-Fi-based and the mobile cellular-based
solutions (known as V2X and C-V2X, the latter using the 3G,
4G (LTE)/LTE-A, and 5G networks). The benefit of the short-
range Wi-Fi-based techniques is low latency compared to the
C-V2X networking systems [9]. The additional advantage is
that network complexity is significantly lower than mobile
cellular technology [10], and the cost is comparatively low [11].
However, the cellular-based system has advantages in targeting
far broader areas, pre-existing infrastructure networks,
deterministic security, QoS, and improved scalability
guarantees [11].

The existing standards for V2X communication are DSRC
(Dedicated Short-Range Communication) in the US, and ITS-
G5 in Europe (referencing the used 5.9 GHz frequency band)
[12].

In DSRC/ITS-G5, the vehicles use on-board units (OBUs)
that send messages known as (BSM) Basic Safety Messages in
the US that transmit the information about the vehicle,
including the speed and location, acceleration, etc. In Europe
the (CAM) Common Awareness Messages include similar
status and attribute information [13], which have latency less
than 100ms with a range of approximately 1600m.

In contrast, the Roadside Unit (RSU) is meant to be
wirelessly accessed by the OBUs and usually backhauled by
wired technologies. Among the ITS Facilities layer services,
RSUs send the Decentralized Environmental Notification
Messages (DENM) that include, e.g., alerts for road work.
However, DSRC/ITS-G5 could open the door for malicious
attacks or cause harm by sending or alerting false safety
messages, rendering vehicles unsafe [14]. Both DSRC and ITS-
G5 operate in the 5.9 GHz ITS band [15].
 Radio technology is a part of the IEEE 802.11 family of
standards [16]. IEEE 802.11p was the initial name of the ad hoc
Wi-Fi mode of operation IEEE 802.11-2016-OCB (Outside the
Context of a Basic Service Set) [17]. Network architectures and

security protocols are specified in IEEE 1609 WAVE [18], and
SCMS (Security Credential Management System) [19] on
which US DSRC is based, and ITS-G5 with CCMS (EU C-ITS
Credential Management System) specifications [20] in the EU.

Communication between vehicles is fundamental because
the sensors cannot detect all the risky situations. This makes
vehicle networks more vulnerable to various cyber threats that
are internal or external attacks. The cooperative system between
vehicles can only work when vehicles can trust the neighboring
car's messages and the network where it is connected. In order
to forge this trust, there are some privacy and security levels the
message should pass through.

This paper manifests a comprehensive survey on vehicular
communications relying on blockchain networks and
technology, which can be used to solve privacy and security
issues.

This paper is structured as follows. Section II gives an
overview of the types of security attacks in the V2X domain.
Section III introduces V2X security basics. Section IV presents
background information on blockchain/hash chain
technologies. Section V surveys the literature of different V2X
topics combined with blockchain/hash chain paradigm. Finally,
Section VI concludes the article.

II. TYPES OF V2X SECURITY ATTACKS IN A NUTSHELL
Protection of V2X communication is essential. Vehicular

networks are especially susceptible to attacks due to their
wireless communication properties. There are six main areas
where attention is required to ensure V2X security. These are
Validity, Non-Repudiation, Honesty, Confidentiality,
Affordability, and Real-time constraints [8].

• Validity: means that the recipient is guaranteed to
accept communications from a legitimate source [25].

• Honesty: all communications should be secured to
deter hackers from modifying them and ensure that
messages' content is trusted. This ensures that it is
protected if the communications' contents are not
edited or changed when the message is being sent [26].

• Affordability: The network must be affordable at all
times to transmit and receive messages [27].

• Real-time constraints: Vehicles drive at high speed,
which will demand real-time action in certain
situations; otherwise, the outcome will be catastrophic
[26].

• Confidentiality: Community messages sent to all
participants should not be decryptable by non-group
vehicles. A group message sent to a dedicated member
should only be decryptable by the dedicated recipient;
other vehicles should not be able to decipher the
message [27].

• Non-repudiation: A sender node can attempt to deny
that a message has been sent to escape responsibility
for its contents. Non-repudiation is especially useful
for the detection of corrupted nodes [27].

1. Attacks on Validity: Sybil attack, also known as Ghost
attack, is an intruder that generates several vehicles

A comprehensive survey on the application of
blockchain/hash chain technologies in V2X

communications
Hassan Farran1, David Khoury2, and László Bokor3

Abstract—The Vehicle-to-Everything (V2X) technology and
protocols are the main cornerstones for advanced transpor-
tation and autonomous vehicle applications. V2X has several
subsets, including Vehicle-to-Vehicle (V2V) and Vehicle-to-In-
frastructure (V2I) communication contexts. The main benefit
of applying V2X technologies is increased safety by facilitating
predicted warnings supporting automated driving and traffic
applications. Wirelessly transmitted messages are the informa-
tion sources; therefore, security is critical in V2X systems. The
V2X exchanged messages are sent wirelessly and must fulfill
the security requirements, such as integrity, authenticity, and
privacy support. The messaging between vehicles and networks
must be trusted. Lately, promising and proliferating block-
chain/hash chain technologies have been introduced in V2X
communications and cope with the cooperative vehicular appli-
cations security and related efficiency aspects. This paper pro-
vides a comprehensive survey about the V2X use-cases based
blockchain/hash chain and introduces the available solutions
and methods in this domain.

Index Terms—blockchain, hash chain, V2X/C-ITS security/
privacy

1 Department of Networked Systems and Services, Faculty of Electrical
Engineering and Informatics, Budapest University of Technology and Economics,
Műegyetem rkp. 3., H-1111 Budapest, Hungary. (e-mail: hfarran@hit.bme.hu)

2 Department of Computer Science and information and communication
technology, American University of Science and Technology, Beirut, Lebanon
(e-mail: dkhoury@aust.edu.lb)

3 Department of Networked Systems and Services, Faculty of Electrical
Engineering and Informatics, Budapest University of Technology and
Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary. (e-mail: bokorl@
hit.bme.hu)

43 1

Abstract—The Vehicle-to-Everything (V2X) technology and
protocols are the main cornerstones for advanced transportation
and autonomous vehicle applications. V2X has several subsets,
including Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure
(V2I) communication contexts. The main benefit of applying V2X
technologies is increased safety by facilitating predicted warnings
supporting automated driving and traffic applications. Wirelessly
transmitted messages are the information sources; therefore,
security is critical in V2X systems. The V2X exchanged messages
are sent wirelessly and must fulfill the security requirements, such
as integrity, authenticity, and privacy support. The messaging
between vehicles and networks must be trusted. Lately, promising
and proliferating blockchain/hash chain technologies have been
introduced in V2X communications and cope with the cooperative
vehicular applications security and related efficiency aspects. This
paper provides a comprehensive survey about the V2X use-cases
based blockchain/hash chain and introduces the available
solutions and methods in this domain.

Index Terms— blockchain, hash chain, V2X/C-ITS
security/privacy

I. INTRODUCTION
OOPERATIVE Intelligent Transport Systems (C-ITS)
introduce a new ecosystem of linked vehicles, roadside

networks, and mobile connectivity valuable to the climate,
society, and economy. Vehicle-to-Everything (V2X) creates
infrastructures that ensure optimal transport facilities, decrease
traffic loads, environmental emissions, and increase road safety
and transport quality [1]. Specifically, C-ITS performance
relies on V2X communications since it is responsible for
sharing data between the underlying communication
technologies. This provides input and alerts from on-board
sensors, such as the vehicle's current location and speed. V2X
is a protocol family designed to exchange messages that include

vehicle information and sensor data from a vehicle to another
vehicle or any individual/infrastructure element capable of
influencing the vehicle and vice versa. Some of the applications
based on V2X are autonomous driving, improving road safety,
reducing fuel consumption, and traffic efficiency. V2X systems
will make the road safer in decreasing the number of accidents,
managing traffic flows, and providing environmental benefits.
V2X is a combination of different communication contexts. As
shown in Figure 1 below, V2X is based on a cooperative
exchange of data between vehicles, and anything else that is
Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I),
Vehicle-to-Network (V2N), Vehicle-to-Pedestrians (V2P) [2],
Vehicle-to-Device (V2D) [3], Vehicle-to-Cloud (V2C) [4],
Vehicle-to-Home (V2H) [5], or even Vehicle-to-Grid (V2G)
[6].

For example, a vehicle that uses a navigation system based
on GPS and other sensors can use V2V to indicate vehicle's
location, speed, and direction. By broadcasting this information
maximum of 10 times per second to the surrounding cars. When
a vehicle receives this information, it will calculate the
trajectories of the surrounding vehicles. Without entering into a
hazardous situation or crash, it will warn the driver by visual
alert to make them more aware of what is going around.

V2I is used, for example, as a communication protocol
between the vehicle and the traffic lights. It may advise the
driver to select the optimal speed to travel through a set of
intersections. Furthermore, V2G is an example of a game-
changing emerging technology that, along with smart charging,
could change the electricity grid. In the case of V2C the ability
to provide services from the vehicle maker and other suppliers
directly over the Internet is established. V2N is a
communication context used, e.g., for warning signs of
impending barriers or road jams; and implementing centralized
positioning systems [7]. V2D is applied, for example, as a
communication method to transmit information between the
vehicles and any electronic system to which the vehicle is
connected. V2H refers to the exchange of data between vehicles
and applications in the home. V2P establishes communication
that involves exchanging information between vehicles and
pedestrians, such as when the driver sends a message to a
pedestrian alerting them to their location and that they are close.

Independently of the applied communication context, the
application of V2X includes multiple facets, such as intelligen t
travel, intelligently linked vehicles, and autonomous driving.

A comprehensive survey on the application of
blockchain/hash chain technologies in V2X

communications
Hassan Farran1, David Khoury2, and László Bokor3

C

1 Department of Networked Systems and Services, Faculty of Electrical
Engineering and Informatics, Budapest University of Technology and
Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary. (e-mail:
hfarran@hit.bme.hu)
2 Department of Computer Science and information and communication
technology, American University of Science and Technology, Beirut,
Lebanon (e-mail: dkhoury@aust.edu.lb)
3 Department of Networked Systems and Services, Faculty of Electrical
Engineering and Informatics, Budapest University of Technology and
Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary. (e-mail:
bokorl@hit.bme.hu)

DOI: 10.36244/ICJ.2022.1.4

mailto:hfarran%40hit.bme.hu?subject=
mailto:%20dkhoury%40aust.edu.lb?subject=
mailto:bokorl%40hit.bme.hu?subject=
mailto:bokorl%40hit.bme.hu?subject=
https://doi.org/10.36244/ICJ.2022.1.4

A comprehensive survey on the application of
blockchain/hash chain technologies in V2X communications

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 25

43 2

Various applications have various specifications for latency,
durability, throughput, user density, and protection in the V2X
environment; protection and autonomous driving system need
exceptionally low latency and a safe network environment;
therefore, security is the highest priority for V2X [8]. Any
vehicular network infrastructure requires comprehensive
security mechanisms to enable vehicles and other actors to
communicate securely and efficiently.

Fig. 1. Vehicle-to-Everything communication contexts.

Two types of V2X communication technologies are currently
available: the Wi-Fi-based and the mobile cellular-based
solutions (known as V2X and C-V2X, the latter using the 3G,
4G (LTE)/LTE-A, and 5G networks). The benefit of the short-
range Wi-Fi-based techniques is low latency compared to the
C-V2X networking systems [9]. The additional advantage is
that network complexity is significantly lower than mobile
cellular technology [10], and the cost is comparatively low [11].
However, the cellular-based system has advantages in targeting
far broader areas, pre-existing infrastructure networks,
deterministic security, QoS, and improved scalability
guarantees [11].

The existing standards for V2X communication are DSRC
(Dedicated Short-Range Communication) in the US, and ITS-
G5 in Europe (referencing the used 5.9 GHz frequency band)
[12].

In DSRC/ITS-G5, the vehicles use on-board units (OBUs)
that send messages known as (BSM) Basic Safety Messages in
the US that transmit the information about the vehicle,
including the speed and location, acceleration, etc. In Europe
the (CAM) Common Awareness Messages include similar
status and attribute information [13], which have latency less
than 100ms with a range of approximately 1600m.

In contrast, the Roadside Unit (RSU) is meant to be
wirelessly accessed by the OBUs and usually backhauled by
wired technologies. Among the ITS Facilities layer services,
RSUs send the Decentralized Environmental Notification
Messages (DENM) that include, e.g., alerts for road work.
However, DSRC/ITS-G5 could open the door for malicious
attacks or cause harm by sending or alerting false safety
messages, rendering vehicles unsafe [14]. Both DSRC and ITS-
G5 operate in the 5.9 GHz ITS band [15].
 Radio technology is a part of the IEEE 802.11 family of
standards [16]. IEEE 802.11p was the initial name of the ad hoc
Wi-Fi mode of operation IEEE 802.11-2016-OCB (Outside the
Context of a Basic Service Set) [17]. Network architectures and

security protocols are specified in IEEE 1609 WAVE [18], and
SCMS (Security Credential Management System) [19] on
which US DSRC is based, and ITS-G5 with CCMS (EU C-ITS
Credential Management System) specifications [20] in the EU.

Communication between vehicles is fundamental because
the sensors cannot detect all the risky situations. This makes
vehicle networks more vulnerable to various cyber threats that
are internal or external attacks. The cooperative system between
vehicles can only work when vehicles can trust the neighboring
car's messages and the network where it is connected. In order
to forge this trust, there are some privacy and security levels the
message should pass through.

This paper manifests a comprehensive survey on vehicular
communications relying on blockchain networks and
technology, which can be used to solve privacy and security
issues.

This paper is structured as follows. Section II gives an
overview of the types of security attacks in the V2X domain.
Section III introduces V2X security basics. Section IV presents
background information on blockchain/hash chain
technologies. Section V surveys the literature of different V2X
topics combined with blockchain/hash chain paradigm. Finally,
Section VI concludes the article.

II. TYPES OF V2X SECURITY ATTACKS IN A NUTSHELL
Protection of V2X communication is essential. Vehicular

networks are especially susceptible to attacks due to their
wireless communication properties. There are six main areas
where attention is required to ensure V2X security. These are
Validity, Non-Repudiation, Honesty, Confidentiality,
Affordability, and Real-time constraints [8].

• Validity: means that the recipient is guaranteed to
accept communications from a legitimate source [25].

• Honesty: all communications should be secured to
deter hackers from modifying them and ensure that
messages' content is trusted. This ensures that it is
protected if the communications' contents are not
edited or changed when the message is being sent [26].

• Affordability: The network must be affordable at all
times to transmit and receive messages [27].

• Real-time constraints: Vehicles drive at high speed,
which will demand real-time action in certain
situations; otherwise, the outcome will be catastrophic
[26].

• Confidentiality: Community messages sent to all
participants should not be decryptable by non-group
vehicles. A group message sent to a dedicated member
should only be decryptable by the dedicated recipient;
other vehicles should not be able to decipher the
message [27].

• Non-repudiation: A sender node can attempt to deny
that a message has been sent to escape responsibility
for its contents. Non-repudiation is especially useful
for the detection of corrupted nodes [27].

1. Attacks on Validity: Sybil attack, also known as Ghost
attack, is an intruder that generates several vehicles

A comprehensive survey on the application of
blockchain/hash chain technologies in V2X communications

MARCH 2022 • VOLUME XIV • NUMBER 126

INFOCOMMUNICATIONS JOURNAL

43 3

with the exact identification on the lane. It gives
delusions to other cars by sending out incorrect signals
to benefit this intruder [28].

2. Attacks on Non-Repudiation: Traceability lack of
incidents. When an attacker tries to tamper with the
database, it must access the majority of the nodes in
the network, which is very complex in realistic
application scenarios [29].

3. Attacks on Honesty: GPS spoofing by having nodes
that believe they are in various positions; attackers
easily trick nodes. This form of assault can be carried
out by having incorrect readings on GPS units. It
allows attackers to produce a stronger signal than the
signal produced by an actual satellite using a GPS
satellite emulator [30].

4. Attacks on Affordability: Denial of Service (DOS) is
the most common intrusive assault against
availability; an attacker attempts to make tools and
facilities inaccessible to users on the network. Either
by jamming a physical channel or by "Sleep
Deprivation" [31].

5. Attacks on confidentiality: This can be achieved by the
well-known Man in the Middle Attack (MiM), which
can intercept the conversation between two other
vehicles. This attack is feasible in a vehicle network in
various situations. The intruder positions himself
between the two pairs of nodes that communicate. The
intruder also assumes care of the communication
between the two cars. Honesty, validity, and non-
repudiation concerns in-vehicle networks and can be
violated by the MiM attack [25]. Moreover, it pretends
to be the answer of either of them and inserts fake
information between them [32].

6. Attack on Real-time constraints: e.g., period of assault,
timing attack [8], Real-time constraints should be
enforced since vehicles can travel in and out of a group
of a Vehicular Ad Hoc Network (VANET) at random
for a brief period of time [32].

To minimize all potential threats that could affect the protection
of V2X contact, we need to ensure the effective deployment of
adequate security services.

III. V2X SECURITY BASICS

A. V2X messages security
V2X security should operate to check the message's integrity,

test that the message's contents did not change, stay stable, and
authenticate the sender to check whether the constructed data
came from a trusted source. Current V2X standards use a
trusted Public Key Infrastructure (PKI) and a trustworthy third-
party Certificate Authority (CA) in the US, and a Certificate
Policy Authority (CPA) in Europe. PKI uses elliptic curve
cryptography (ECC) that facilitates message authentication and
integrity [21]. CA and CPA have the highest management
authority for issuing vehicle identification details and related
certificates, identity verification, and pseudonym management
of vehicles. Digital signatures are used to provide the
authenticity of the message sent by a vehicle. Both Security

Credentials Management System (SCMS) [22] and C-ITS
Credential Management System (CCMS) [20] rely on digital
signatures for authentication and validating V2X messages.

B. Security and privacy methodology
V2X message transmissions relay on asymmetric key pairs

[23]. These public key; private key pairs are used to
verify/encrypt and sign/decrypt messages (respectively) to
avoid malicious eavesdropping tampering[23]. The public key
is known by any user and is extracted and sent to CCMS.

 In contrast, the private key is stored securely inside the
vehicle and used exclusively for signing transactions and
messages. Signed transactions are needed to avoid surveillance,
shield the driver's identification, and conceal actual identities.
The private and public keys will be changed every short period
to achieve privacy [24]. On the other hand, CCMS uses this
public key, generates specific vehicle certificates, and signs the
certificate using the root CPA. The root CPA is the root of trust
for all certificates. Both the vehicle certificates and the root
CPA are then sent back to the vehicle. Information shall be
given to an accredited PKI auditor for auditing. After being
audited, the root CPA application form should be signed with
its authorized representative. The CPA a ppoints the Trust List
Manager (TLM), ensuring that all PKI participants have
confidence in the TLM's service. The CPA grants permission
for the root CA activity and agrees that the TLM will depend
on the root CA (s). The TLM generates the European Certificate
Trust List (ECTL), which provides all PKI participants with
confidence in the accepted root CA's [20] (Figure 2).

Fig. 2. The C-ITS Trust model architecture.

In the European C-ITS Platform's V2X security proposal
implementations [20], the root CA sends the application to the
sub-CA Enrolment Authority (EA) and Authorization
Authority (AA) entities. In EA and AA, they check the integrity
of the message since each message will contain the content,
hash, and hash of the previous block (Figure 3). The contents
are a set of transactions that could be information about the
Vehicle, ID, speed, direction, braking, and even intention, etc.
The hash part of the message is a string calculated based on the
content. This hash depends on the content, and any alteration in
a particular block or the content will eventually break the
chain's integrity. However, each part of the message hashed and
included the previous part, creating a hash chain for all these
parts. After this process, EA and AA transmit their signed
request electronically and deliver its application form to root

A comprehensive survey on the application of
blockchain/hash chain technologies in V2X communications

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 27

43 4

CA, verifying the request and the received documents. Suppose
all checks lead to a positive result. In that case, the root CA
issues the corresponding sub-CA certificate and then send the
certificate of conformity to C-ITS Point of Contact (CPOC) and
TLM. The main task of CPOC and TLM is to verify all
documents and the self-signed certificates and send them back
to CPA that transmit them to C-ITS (Figure 4). In system
management, both TLM and CPOC are a single agency sub-role
that operates in the EU CCMS and reports to the Operation
Regulatory Body and the Credential Decision Authority [19]
[20].

Fig. 3. The C-ITS PKI architecture.

Furthermore, communications between V2X devices are about
implemented messages being sent to and from vehicles or
Road-side Units (RSUs). After receiving the hash, the vehicle
can verify that the contents received from another vehicle have
not been modified in transit by calculating and comparing the
hash of the content with the one received by the vehicle. In the
hash chain, the only packet in the chain that is not integrity
protected is the first packet. Subsequently, we can use the
private key's role to provide the first packet's integrity and
protection to make the integrity safe. The signature calculation
involves computing the hash of the message and encrypting the
hash with the private key. Also, the benefit of the hash chain is
the lightweight computing power requirements compared to
other cryptographic algorithms.

Fig. 4. C-ITS Point of Contract.

IV. OVERVIEW OF THE BLOCKCHAIN TECHNOLOGY

A. Background on the hash chain
The hash chain is the sequential implementation of the hash

function encoded over a piece of data. Also, it is a transaction
that takes an input length that passes through a hashing
algorithm and then gives an output with a fixed length, as seen
in Figure 5. Moreover, the hash chain helps to protect the
security of sending any message against tampering. To be
considered as a secure hash chain, some requirements of the
hash function should be satisfied. The first case should be
deterministic, implying that the hash function's input gives the
same output every time. Second, a quick computation, the hash
function, should be able to return the hash's input quickly. The
thirdv is preimage resistance; after knowing the output of the
hash function H(x), it will be impossible to see the input of the
function (x). Furthermore, any change to the content data would
produce a different hash, as stated above. Finally, collision
resistance means that two different inputs will have two
different hash outputs with high probability.

Fig. 5. Digital signature based on cryptographic hash (digest).

The hash chain is a technology used in Bitcoin to transfer
digital coins from one individual to another and later the
blockchain network's cornerstone. Consequently, all the above
process is the key to creating the chain between messages that
are called the Blockchain.

One application of the hash chain was the DHT (Distributed
Hash Tables) network.

B. Basics of Blockchain
 For the first time, the Blockchain was introduced by Satoshi
Nakamoto as a peer-to-peer electronic cash system in 2008
[33]. When he published a paper entitled "Bitcoin": "A peer-to-
peer electronic cash system, " which introduced an innovative
and novel way to transfer (send and receive) digital money
(called crypto-currency) without the need of going through a
trusted third party.

 The Blockchain is based on an immutable digital ledger that
records all transactions verifiably and consistently. The ledger
is replicated across several nodes, which means that no single
authority owns or maintains it. The ledger's version validity is
established through consensus among the participating nodes,
also called miners. The transactions are stored in blocks linked

A comprehensive survey on the application of
blockchain/hash chain technologies in V2X communications

MARCH 2022 • VOLUME XIV • NUMBER 128

INFOCOMMUNICATIONS JOURNAL

43 5

using cryptography (hence the term Blockchain), explicitly
using hash functions: each block stores the previous block 's
hash, timestamp, and transactions data. Therefore, data on a
specific block cannot be altered without changing subsequent
blocks, which requires the network's consensus. Each block
holds a set of transactions and the previous block's hash, as seen
in Figure 6 [34] below.

Fig. 6. General Blockchain blocks sequence.

The transactions are stored after verification throughout the
network. The verification is via consensus between the nodes;
there are different methods to achieve consensus. Information
in Blockchain cannot be added or modified until the consensus
is reached, making it fraud-proof.

C. Ethereum and decentralized applications (DApps)
The exchange of digital currency was the primary purpose of

Bitcoin. Afterward, researchers started developing platforms
based on Blockchain technology for running distributed
software called decentralized applications (DApps)
development through "Smart Contracts". A smart contract is a
computer code running over Blockchain capable of exchanging
any value a third party needs. They offer the following
advantages over the existing computer programs: 1)
Autonomous: the network, 2) Manage their execution Trust-
less: the ledger's version is validated with consensus among
nodes, 3) Data safe: the application's data remain permanently
in the Blockchain, 4) Transparent: smart contract's code and
storage are publicly available. Ethereum is one example of a
DApps blockchain network [35].

V. V2X EXTENSIONS/MODIFICATIONS USING BLOCKCHAIN
Blockchain technology started to be considered in V2X

systems research areas. The Blockchain n etworks can be
applied in many use cases not limited listed briefly below. The
Blockchain offers information trust because event data is
maintained on a publicly achievable blockchain. It provides the
secure flow of data between network objects (Vehicle, RSU
servers). The Blockchain can solve the safety for the transfer
of important data and reliable information transmission, while
preventing deformation, which may result in negative
outcomes. To avoid these outcomes, Blockchain technology is
based on rules and principles. Because of the nature of
blockchain trust management, it can be successfully
implemented across nodes in decentralized networks. Using
blockchain could prevent harmful nodes from accessing the
network and disseminating misleading information on the
network, creating disruptions of the transportation network. In
some use cases, blockchain can be applied to rate a road user in
V2X system, taken against offenders. This will guarantee that

harmful messages that harm the V2X system or degrade its
efficiency are decreased. The use of trust management
algorithms and priority separation allows traffic users to assess
if a received message is credible with a high degree of certainty.

Blockchain could provide the flexibility to store and
distribute the public keys or the vehicle certificates without the
need of a 3rd party (trusted or not trusted) and, therefore, the
generation of secure sessions between devices. It enables
security between devices from different organizations. In some
use cases, the immutably shared data among many devices and
organizations. But on the other hand, Blockchain is not a mature
technology yet. The transaction cost is increasing with digital
currency prices and the scalability of the network should be also
considered.

There were some proposals to use blockchain technology to
ensure the security of V2X and mitigate the security issues
listed above. The main advantage of Blockchain technology's
application in V2X is the simple implementation of the trust
authentication between vehicles, including the messages'
integrity and confidentiality. The standard mechanism of
security and privacy of the messages described by, e.g., the
C-ITS could be simplified using the Blockchain.

Here we provide a summary of two existing survey papers on
V2X and Blockchain. The document [36] lists articles around
the integration of three technologies in one network: the 5G,
Edge Cloud nodes, and Blockchain, showing this approach's
advantages in Cellular V2X networks. The paper lists a
comparative study of Blockchain in advanced vehicular
networks with 5G-based edge computing and introduces the
open issues like the storage in Blockchain with a massive
volume of data transactions, the performance due to the limited
throughput in terms of the number of transactions per second,
delay, and network resource usage when blockchain and 5G-
based MEC are integrated. The survey lists papers indicating
that Blockchain consumes large network resources related to
the mining and emphasizes that the consensus mechanism could
result in high latency. The survey provides a future direction for
research which could be to develop an efficient and robust
incentive mechanism to encourage all parties and miners to
engage in the blockchain. In addition, it suggests penalty
systems to discourage any harmful activities. As a conclusion,
the paper states that the Blockchain has emerged as a promising
technology to solve most issues and challenges related to
privacy, security, and networking faced by the existing and
next-generation V2X technologies.

Whereas, survey document [37] lists research articles around
the processing power and efficient trust mechanisms for
information exchange in V2X communications and Intelligent
Transportation Systems (ITS). Traditional access to the remote
cloud may degrade the V2X services due to incurred latency.
This survey lists and examines important solutions written
around Edge solutions and Blockchain applied to V2X or what
is called Internet of Vehicles (IoV) and provides a related
technical classification from access technology, IoV
architecture layers, network layers including SDN and NFV,
blockchain layers execution and finally algorithm s and
applicability of machine learning through a comparative
summary. It highlights their main features, advantages, and
limitations to provide subsidies for further proposals.

A comprehensive survey on the application of
blockchain/hash chain technologies in V2X communications

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 29

43 6

Our actual survey includes the latest written papers onV2X
solutions where the Blockchain is also the main component.
Our survey is general, not limited to any specific technical
topics or feature areas within Blockchain applications in V2X.
On the contrary, the survey [36] covers only papers related to
V2X, 5G, edge computing, and Blockchain integration only.
After an exhaustive explanation of the V2X systems and their
issues, the security and V2X evolution are the main focus. They
list research papers related to this subject and do a comparative
study of Blockchain with 5G and edge computing from system
characteristics, considering the following parameters: the
Blockchain type / consensus algorithm / edge solution / cellular
technologies.

On the other hand, the survey [37] provides a taxonomy of
bockchain and edge computing technologies for papers written
in the context of IoV by analyzing the Blockchain type, the
Blockchain layer, the adopted consensus algorithm, and the
architectural approach.

Based on the identified gaps, we have reviewed several
recent works not covered by the above available surveys but
related to V2X systems and blockchain/hash chain
technologies. We highlight the proposals' main idea,
advantages, and weaknesses for each selected paper in the
below sections.

A. Traceable and Authenticated Key Negotiations via
Blockchain for Vehicular Communications:

In paper [38], authors analyze the communication between
vehicles and between vehicles and people, and analyze
requirements of low latency, high reliability, and traceability.
The paper gets the Master Key (MK) information on blockchain
and realize the master key negotiation. The proposed scheme
utilizes a transaction data structure to generate key pairs like the
Diffie–Hellman key-exchange process. This is achieved
through four algorithms where the system parameters are
generated and stored in blockchain, master key parameters in
blockchain, and one algorithm to generate from the master key
parameters the master key in the blockchain. This proposal can
resist MiM and packet dropping attacks, and others. The key
materials can be traced back by timestamps upon request and
can be confirmable to avoid decryption failure attacks. The
main issue is the long and unpredictable time to create secure
connectivity due to blockchain latency .

B. A Secure Priority Vehicle Movement based on Blockchain
Technology in Connected Vehicles:

A novel blockchain architecture was presented in paper [51],
which protects vehicles from any attack, isolates them from
other vehicles, and reduces the number of potential threats they
will encounter. Their proposal could be modified to
accommodate the priority vehicles' speeds to accommodate the
Blockchain architecture. According to the specified maximum
speed, the priority vehicle can travel through all the RSUs and
reach its destination without any information-sharing
mechanism between the RSUs and the priority vehicle. This is
what we consider the proposa l's vulnerability. On the other
hand, the system is based on an ideal security system that
exchanges information between priority vehicles and the RSUs
without allowing anyone to communicate with them.

This system builds the authenticity and integrity between the
RSU and the authentication center and the vehicles with the
RSU in another way. Also, the hash chain makes the
communication between the vehicle and the RSU secure.

C. A Tiered Blockchain Framework for Vehicular Forensics:

The authors of [52] developed a concept for vehicle forensics
using blockchain technology,. An analysis of the security levels
that a car should pass through in the aftermath of an accident
using blockchain technology and their resiliency to attack. The
authors have contrasted and studied their proposed blockchain
system (Block4Forensic) with other Blockchain systems for
conflict resolution and responsibility attribution, demonstrating
the strength of their proposed structure.

D. Block-VN: A Distributed Blockchain-Based Vehicular
Network Architecture in Smart City:

In paper [39], the authors Proposed a distributed system based
on blockchain for the ad hoc vehicle network. This modern
network was called Blockchain-Based Vehicular Network
(Block-VN) and allowed vehicles to explore and exchange their
resources to build a network of vehicles that work together to
deliver value-added services like forensics after a car accident
occurs. The car's security level passed through a blockchain and
analyzed. Furthermore, the authors discuss the architecture's
security and dependability.

E. A Novel Sender Authentication Scheme Based on Hash
Chain for Vehicular Ad-Hoc Networks:

The authors of paper [40] presented a hash chain scheme for
promoting VANET security and secure communication
between the vehicle, RSU, and authentication center. The
authors used the symmetric key in hash chaining. The
asymmetric keys were not considered because the symmetric
key provides faster encryption and decryption in a secure
network compared to the asymmetric keys.
The idea of this paper was to develop the symmetric hash chain
process to strengthen the authenticity and integrity between the
RSU and authentication center in one sense and the vehicles
with the RSU in another sense. As a result of the hash chain, the
communication between the Vehicle and RSU is secure and
resistant to various attacks.

F. Comparative Experiments of V2X Security Protocol Based
on Hash Chain Cryptography:

In paper [53], the authors proposed a lightweight message
authentication and privacy preservation protocol for V2X
communications. The proposed protocol achieves highly secure
message authentication by introducing a hash chain of secret
keys for a Message Authentication Code (MAC). The reason is
that V2X security protocols based on the Elliptic Curve Digita l
Signature Algorithm (ECDSA) provide a high-security level at
the cost of excessive communication and computation
overhead. The proposed protocol was tested in a stationary state
using their proposed test platform using commercial DSRC
devices (Cohda wireless MK5 (5th Generation Market) devices
that provide two types MK5-OBU that are installed on the
Vehicle and MK5-RSU installed on the road) [41]. By using the
well-known Wireshark utility, they measured the messaging
performance.

A comprehensive survey on the application of
blockchain/hash chain technologies in V2X communications

MARCH 2022 • VOLUME XIV • NUMBER 130

INFOCOMMUNICATIONS JOURNAL

43 7

Furthermore, they enabled security by using the
cryptographic Library (Aerolink Library) configuration that
uses the Hardware Security Model (HSM). Moreover, for
signing and verifying the messages, they used ECDSA National
Institute of Standards and Technology (NIST) P256 with SHA
256. Therefore, using IEEE 1609.2 and ETSI-103-097
standards, the result for the number of messages per second was
183 messages. In contrast, for non-standard protocol, the
number of messages per second was only 54 messages. The
authors conclude that the proposed protocol significantly
decreases the average end-to-end delay and proves its
performance advantages over the standard and non-standard
protocols.

G. Hash-Chain-Based Cross-Regional Safety Authentication
for Space-Air-Ground Integrated VANETs:

Authors of article [42] presented a new concept of
connectivity between vehicles, RSUs, and Certificate
Authorities (Cas), with drones or Security Manager (SM) acting
as intermediaries, sending information and data between them
through a space air-ground integrated network (SAGIN) which
establishes higher security standards. The authors developed a
consensus framework based on the Hash chain, combined with
the Radio Frequency (RF) fingerprint theory, simplifying the
Blockchain, introducing the Kafka distributed messages, and
Practical Byzantine Fault Tolerance Algorithm (PBFT).
According to the simulation-based on Hyperledger–Fabric
architecture, it shows that the average delay of the block
produced by a single transaction is approximately 0.9ms, which
achieves effective and low latency authentication.

H. A New-Type of Blockchain for Secure Message Exchange
in VANET:

A new Blockchain form is presented in this paper [54] to
address issues of critical message propagation in VANET
environments. This Blockchain doesn't use any crypto coins to
handle safety event messages. After determining the vehicle's
location with the aid of proof of location (POL), the VANET
messages don't have to go beyond the country's bounda ry. The
scheme depends on each geographical a rea isolated from the
other, which ensures that traffic information of one country is
unrelated to vehicles based in another country. Furthermore,
after the vehicle receives the message, it tests it against the
Blockchain. It then verifies the event messages to see if they are
trustworthy before broadcasting them to the surrounding
vehicles and storing the message in the local memory pool or
discarding them. The results of this paper's assessment and
review suggest that the proposed local Blockchain can be used
effectively in the VANET without the need for additional
storage.

I. Secure V2X environment using Blockchain Technology:
 In article [55], the authors' purpose is to provide a
hypothetical scenario that depicts the effect of challenging
factors on applying the Blockchain in the V2X paradigm.
However, the authors have discussed considerations that may
hurt the application of Blockchain in V2X context. A total of
10 of the most critical challenges are established using the
Systematic Literature Review (SLR) method, and their
corresponding hypothesis was also developed. Some studies

were considered for the data extraction process by applying the
tollgate method. They have explored in this study the factors
that could have a negative impact on the implementation of
blockchain in V2X environment. By considering both studies'
results (SLR and case study), the authors have created a
hypothetical model that helps practitioners revise their
strategies and create an efficient method for successfully
implementing Blockchain in the V2X context.

J. A Remote Attestation Security Model based on Privacy-
Preserving Blockchain for V2X:

Intelligent, V2X-based applications require the real-time
integration of all kinds of information on roads, pedestrians, the
environment, and vehicles themselves. This information also
needs to be shared and integrated privately with other vehicles.
The authors of paper [29] suggest a remote attestation
protection mechanism built on a privacy-preserving blockchain
called the remote attestation model (RASM). This scheme
entails two main stages. The first is the credible verification of
identification. The second uses estimation for decision-making
to classify the node trusted or malicious, for example.

K. BloCkEd: Blockchain-based Secure Data Processing
Framework in Edge Envisioned V2X Environment:

The authors of article [56]. proposed a Blockchain-based data
processing platform (BloCkEd) for the V2X environments,
where the V2X users are connected to the EDGE nodes. The
scheme allows V2X users' requests to be handled/processed by
nodes at the edge of the network; thus, reducing latency; and
preserving the privacy of user data/activities. BloCkEd
comprises an optimal container-based data processing scheme;
and a blockchain-based data integrity management scheme;
designed to minimize link breakage and reduce latency. The
program implementation of the proposed architecture was
tested against a plausible scenario in Chandigarh City, Punjab,
India. The results showed that the proposed solution promotes
less migration due to an efficient allocation strategy, decreasing
regular connection breaks and service disturbances.

L. Efficient Mining Cluster Selection for Blockchain-Based
Cellular V2X Communications:

Using game theory, paper [57] demonstrates how to balance
the load on mining clusters while ensuring unloading vehicles'
justice. As mining tasks are unloaded in cellular V2X networks,
they can cause congestion and disproportionate vehicle network
resources. Moreover, a short block length transmission design
was considered to meet the low-latency standards of safety
applications. The proposed solution guarantees decent
transmission speeds and preserves justice between the
unloading of vehicles. The findings show that the proposed
methodology's efficiency rises as the number of mining clusters
in the network increases.

M. A Blockchain Approach for Decentralized V2X (D-V2X)
As we introduced above, the current V2X solutions rely on

using a Public Key Infrastructure that enables secure
collaboration between the different entities in the V2X
ecosystem. However, managing such infrastructure requires
reaching agreements between ma ny parties with conflicts of
interest between automakers and telecommunication operators.

A comprehensive survey on the application of
blockchain/hash chain technologies in V2X communications

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 31

43 8

In paper [43], the authors propose a decentralized V2X
(D-V2X) solution based on Blockchain that does not need any
trusted authority and can be applied on top of any
communication protocol. The authors describe a proof-of-
concept to build the D-V2X on top of a low-cost and high-
security System-on-Chip (SoC) that could enable widespread
D-V2X adoption.

N. PF-BVM: A Privacy-aware Fog-enhanced Blockchain
Validation Mechanism

In paper [44], the authors suggested a Privacy-aware Fog-
enhanced Blockchain Validation Mechanism (PFBVM) to
reduce the load on the network by implementing a new
validation mechanism and equivalent consensus feature, where
trusted authenticated fog nodes can validate trans actions on
behalf of blockchain nodes. It integrates fog computing, the
Internet of Things, and Blockchain techniques. The PF-BVM
algorithm aims to reduce the approval of a transaction and, in
that way, to reduce the latency in Blockchain. PF-BVM allows
trusted rich fog nodes to perform transaction validation on
behalf of other blockchain nodes as a conceptual criterion. The
trust is gained by randomly running matching tests which adds
to the integration of fog computing. According to the findings,
the greater the number of transactions per block, the higher the
blockchain system 's un-reliability metric. The authors used a
specially formulated simulation code to analyze the proposed
mechanism. The experimental results demonstrated that
PF-BVM could significantly improve a blockchain system
validation in time consumption, energy efficiency, and storage
capacity.

O. Blockchain-based Service Sharing Via Roadside Unit-
Performance Evaluation:

Using Blockchain technology, the authors proposed a model
for services sharing via RSU [45], which has just one RSU that
receives and saves services on Blockchain, and vehicles interact
with each other via RSU. A simulation was implemented to
estimate the performance of the system using Python. There are
two forms of communication discussed: communication
between vehicles and communication between vehicles and
RSUs. When the vehicle agrees to share its services with a
requested vehicle, a smart contract will be established between
two vehicles, provided both agree to the smart contract
regulations.

P. Technological Aspects of Blockchain Application for
Vehicle-to-Network:

In paper [46], the authors suggested using Blockchain
technology in V2N to tackle the problem of maintaining
information security, which is very sensitive related to the
specifics of the operation of transport networks. Four
experiments were conducted to demonstrate the numerical
features for resource allocation on devices engaged in arranging
V2N communication. The findings show that the nodes' activity
determines the channel bandwidth consumed. During
blockchain operation, the latency of packets between nodes
decreased significantly, and there was almost no influence on
the delay with the nodes of another network. In comparison, the
latency variation in operating the blockchain failed nodes

simultaneously without synchronizing the mining interaction
did not occur significantly between the nodes.

Q. Blockchain Enhanced V2X Communication System and
Method:

In this patent application [47], the authors propose an
authentication system for V2X communication systems based
on a private blockchain. The system includes a blockchain-
based V2X decentralized Certificate Authority (CA) instead of
a third-party CA. A blockchain-based V2X CA provides an
open, distributed ledger that can efficiently record transactions
between multiple parties in a verifiable and permanent way.

R. Distributed Edge Computing with Blockchain Technology
to Enable Ultra-Reliable Low-Latency V2X Communications:

Paper [48] aims to solve the problem of building a vehicular
network for reliable delivery data according to the V2X
standard and improving road users' safety using blockchain
technology and Mobile Edge Computing (MEC). Again, here
the authors of this paper consider the four technology 5G, V2X,
MEC, and blockchain. The proposed work provides a
mathematical model of the system, considering the
interconnection of objects and V2X information channels and
an energy-efficient offloading algorithm to manage traffic
offloading to the MEC server.

The proposed system architecture consists of roadside
participants like vehicles, several RSUs, distributed MEC units,
and the application server. The blockchain technology can be
used to manage information trustworthiness, as event
information would be stored in a publicly accessible
blockchain. Blockchain can solve major problems faced by
V2X systems and provide security for the distribution of critical
information. One scenario is that Malicious nodes can infiltrate
the network and spread false information, causing the transport
network to fail. The blockchain can rate a road user is also an
effective solution for use in the V2X system. A rating facility
would allow action against offenders and encourage decent
users.

The paper provides a framework of V2X based on distributed
edge computing integrated with blockchain technologies. A
model for the interaction of blockchain technology in the
system was introduced to achieve the required level of security.
The developed Blockchain–MEC model was evaluated over an
NS-3 environment for various simulation scenarios, and the
results validate the system in terms of reliability, latency, and
energy efficiency. The results showed that Blockchain–MEC
V2X system achieved higher relia bility than existing V2X
models.

S. Blockchain for V2X: A Taxonomy of Design Use Cases
and System Requirements:

Article [49] provides an overview of V2X blockchain
architecture applications and examines them in order to define
the needs of a V2X blockchain. The study investigates possible
blockchain applications in the V2X space, identifying and
assessing use cases based on their underlying blockchain needs.
The authors classify blockchain into two categories:
permissionless and permissioned blockchains. According to the
authors, permissioned blockchains are the greatest solution for
enabling the largest range of applications while also ensuring

A comprehensive survey on the application of
blockchain/hash chain technologies in V2X communications

MARCH 2022 • VOLUME XIV • NUMBER 132

INFOCOMMUNICATIONS JOURNAL

43 9

that throughput, user privacy, and Know Your Costumer (KYC)
requirements are all satisfied.

T. A blockchain-based V2X communication system:
A new blockchain-based V2X secure communication

platform was proposed in this paper [50], which integrates
PKI/CA model aspects with blockchain technology. The
authors describe a typical PKI/CA-based alternative solution to

the European standard C-ITS' authentication. The solution
attempts to alleviate trust problems in the existing PKI/CA
infrastructure while also facilitating vehicle authentication and
security in the V2X network. The platform is based on the
Ethereum blockchain to store and retrieve the Public keys of the
roadside participants and RSU.

Table 1: A comparative analysis of the surveyed V2X papers related to Blockchain technologies.

Author Technology Use case Description Brief Summary of Results

Y. Chen et al.
[38], 2019

Blockchain/
Authenticated
key negotiations

Vehicular
communicati
on

A Blockchain to resolve the key negotiation
between two vehicles to be authenticated and
traceable.

The Key materials can be publicly
tracked back by timestamps and
confirmed to prevent decryption
failure attacks.

A. Saini et al.
[51], 2019

Blockchain/
Privacy and
security

Connected
Priority
vehicles

A novel blockchain architecture that protects
vehicles from many attacks and isolates them
from other vehicles.

The proposed scheme will efficiently
and safely address priority vehicle
movement.

M. C. Ugwu
et al. [52],
2018

Blockchain/
Watchdog entity

Vehicular
Forensics

A blockchain concept for vehicular forensics;
after an accident occurs, the car s security level
should pass through blockchain technology and
analyze them against attack.

Demonstrates the proposed
architecture effectiveness compared
to the current Blockchain-based
system.

Pradip Kumar
Sharma et al.
[39], 2017

Blockchain/
Block-VN

Ad hoc
Vehicle
network

An ad hoc network application and discovered
capabilities that the current infrastructure
cannot quickly provide.

The Block-VN paradigm encourages
vehicles to explore and exchange
their resources, resulting in a network
of vehicles cooperating to create
value-added services.

N. V.
Vighnesh et
al. [40], 2011

Blockchain/
Hash chain

Vehicular ad
hoc network
(VANET)

Hash chain scheme that promotes VANET
security and secure communication between
the vehicle, RSU, and authentication center.

Its widespread use in crypto-graphy
explains the popularity of the hash
function.

S. A. A.
Hakeem et al.
[53], 2020

Blockchain/
MAC algorithm

Vehicle-to-
Everything
(V2X)

Security protocols have been tested in a
stationary state using commercial DSRC
devices.

The proposed protocol significantly
decreases the average end-to-end
delay.

G. Luo et al.
[42], 2020

Hash chain/
space–air–
ground
integrated
network
(SAGIN)

VANETs A new idea of communication between
vehicles that plays the role of sending
information and data between them and use the
space-air-ground integrated network (SAGIN)
to set out higher security standards.

The average delay of the block
produced by a single transaction is
approximately 0.9ms to achieve
effective and low latency
authentication.

R. Shrestha et
al. [54], 2020

Blockchain/
Mobile Edge
Computing

VANET A new form of Blockchain to address issues of
critical message propagation in VANET.

The proposed local Blockchain can
be used effectively in the VANET
without the need for additional
storage.

Ms. Taiyaba
et al. [55],
2020

Blockchain/
Systematic
literature review
(SLR)

V2X Provides a hypothetical scenario that depicts
the effect of challenging factors on applying the
Blockchain in the V2X paradigm.

A hypothetical model was created
that helps practitioners revise their
strategies and develop efficient
methods for successfully
implementing Blockchain in the V2X
context.

C. Xu et al.
[29], 2018

Blockchain/
Remote
attestation
security
Model (RASM)

V2X A remote attestation protection mechanism
built on a privacy-preserving blockchain called
the remote attestation model RASM.

The findings demonstrate that a high
proportion of progress can be
attained with the scheme.

G. S. Aujla et
al. [56], 2020

Blockchain/
BlockED

V2X A blockchain-based protected data processing
system for an EDGE node of the V2X area
called BloCkEd.

The proposed solution promotes less
migration due to an efficient
allocation strategy, decreasing
regular connection breaks and service
disturbances.

F. Jameel et
al. [57], 2020

Blockchain/
Blocklength
transmission

V2X A game-theoretic approach to balance the load
on mining clusters while ensuring the justice of
unloading vehicles.

The findings show that the proposed
methodology s efficiency rises as the
number of mining clusters in the
network increases.

A comprehensive survey on the application of
blockchain/hash chain technologies in V2X communications

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 33

43 10

I. Agudo et
al. [43], 2020

Blockchain/
System-on-Chip
(SoC)

V2X Decentralized V2X (D-V2X) solution based on
Blockchain, that does not need any trusted
authority and can be applied on top of any
communication protocol.

The Current V2X solutions rely on
using a public key infrastructure that
enables secure collaboration between
the different entities in the V2X
ecosystem.

H. Baniata et
al. [44], 2020

Blockchain/
Internet of
things, Fog
computing

Vehicle Privacy-aware Fog-enhanced Blockchain
Validation Mechanism (PFBVM).

PF-BVM could significantly improve
a blockchain system validation in
terms of time consumption, energy
efficiency, and storage capacity.

I. Kiran et
al. [45], 2019

Blockchain/
Proof of Work
(PoW)

V2V, V2I They are examining the performance of the
vehicle to vehicle and vehicle to RSU
communication at the time of service sharing.
Its primary purpose is to minimize average time
delay.

RSU helps to minimize the average
delay time to achieve maximum
throughput.

V. Elagin et
al. [46],
2020

Blockchain V2N Blockchain is employed as a system platform
to serve the demands of transportation systems
for safe information sharing.

The usage of blockchain technology
is not an appropriate solution for
V2N.

Qi. Jimmy et
al. [47],
2020

Blockchain/
Certificate
Authority (CA),
PKI

V2X Patent Application for V2X decentralized CA
based on blockchain instead of third-party CA.

Authentication system for V2X
communication based on private
blockchain.

A. Vladyko
et al. [48],
2022

Blockchain/
mobile edge
computing
(MEC)/ 5G

V2X The simulation model consists of roadside
participants (vehicles, RSUs, distributed MEC
units, and application server). The model was
evaluated over an NS-3 environment for
various simulation scenarios.

Validation of the system in terms of
latency, reliability, and energy
efficiency. Blockchain-MEC V2X
system achieved higher reliability
than existing V2X models.

J. Meijers et
al. [49],
2021

Blockchain/ IoT V2X Investigating potential blockchain applications
in the V2X, finding and evaluating use cases
based on their underlying blockchain
requirements.

Permissioned blockchains are the
greatest solution for enabling the
largest range of applications.

H. Farran et
al. [50], 2021

Blockchain/
Public Key
Infrastructure
(PKI), CA

V2X A blockchain to resolve the existing PKI/CA
infrastructure's trust concerns and facilitate the
authentication and security of the vehicles in
the V2X network.

A platform based on Ethereum
blockchain to store and retrieve the
public keys of the roadside
participants and RSU.

II. CONCLUSION
By way of inference, safety is the primary issue for road

drivers using highly advanced applications in the future's highly
cooperative ITS environments. V2X has the potential to comply
with safety criteria providing updates to drivers on the road.
Hence, it is necessary to ensure the network's security and
establish confidence in V2X interactions. This paper provides a
comprehensive survey on different vehicular applications using
blockchain technologies to enhance the main message from the
studied articles is that the Blockchain offers reliability, trust,
and simplification in implementing security to V2X networks.
Blockchain-based solutions construct durability and reliability
in V2X, together with distributed operation and data storage.

Based on this survey, we conclude that blockchain networks
and technology can play an important role in V2X applications
from different aspects and resolve many technical issues. We
enumerate the following: 1) traceable key negotiation between
two vehicles; 2) protection of vehicles from many attacks and
isolates them from other vehicles; 3) security and secure
communication between the vehicle, RSU, and authentication
center; 4) ad hoc network application and discovered
capabilities; 5) vehicular forensics after an accident incidence;
6) security between devices from different organizations; 7) the

immutably shared data among ma ny devices and organization;
8) simplifying the distribution of the participants' CA in V2X;
9) improving the performance of the V2X system when
combined with EDGE node in terms of latency, reliability, and
energy efficiency; and 10) trust authentication between
vehicles, including the messages' integrity and confidentiality.
We expect that the list of functions will further improvse, and
implementation of V2X systems based on Blockchain will
increase in the coming years.

On the other hand, Blockchain is not mature technology yet
and requires a lot of improvements in scalability, transactions
latency, and cost.

Preparing this survey taught us that Blockchain quickly
became an important topic also in V2X communications. As a
part of our future work, we design a novel Blockchain-based
proof-of-concept V2X security solution to highligh t
possibilities and implement security on such new based in the
C-ITS domain. Our primary purpose is to increase awareness of
Blockcahin+V2X and to create a lightweight, distributed pilot
alternative to the PKI-based current schemes and the
complicated assignment of the CAs to the vehicles or IoT
devices in general by a more generic and simplified method
based on the Ethereum Blockchain.

A comprehensive survey on the application of
blockchain/hash chain technologies in V2X communications

MARCH 2022 • VOLUME XIV • NUMBER 134

INFOCOMMUNICATIONS JOURNAL

	 [1]	 5GAA, "White Paperon ITS spectrum utilization in the Asia Pacific
[22] Region White paper on ITS spectrum utilization in the Asia
Pacific Region," p. 20, 2018.

	 [2]	 5G American, "5G Americas White Paper: Cellular V2X
Communications Towards 5G," Http://Www.5Gamericas.Org, 2018.

	 [3]	 A. Boudguiga, A. Kaiser, and P. Cincilla, "Cooperative-ITS
Architecture and Security Challenges: a Survey," 22th ITS World
Congr., no. October, pp. 5–9, 2015.

	 [4]	 S. Rangarajan, M. Verma, A. Kannan, A. Sharma, and I. Schoen, "V2C:
A secure vehicle to cloud framework for virtualized and on-demand
service provisioning," in ACM International Conference Proceeding
Series, 2012, pp. 148–154, doi: 10.1145/2345396.2345422.

	 [5]	 D. P. Tuttle, R. L. Fares, R. Baldick, and M. E. Webber, "Plug-In
Vehicle to Home (V2H) duration and power output capability," in
2013 IEEE Transportation Electrification Conference and Expo: [26]
Components, Systems, and Power Electronics - From Technology to
Business and Public Policy, ITEC 2013, 2013,

		 doi: 10.1109/ITEC.2013.6574527.
	 [6]	 Alfonso Damiano, Gianluca Gatto, Ignazio Marongiu, Mario Porru,

and Alessandro Serpi, "Vehicle-to-Grid Technology: State-of-the-Art
and Future Scenarios," J. Energy Power Eng., vol. 8, no. 1, 2014,

		 doi: 10.17265/1934-8975/2014.01.018.
	 [7]	 I. S. Victor Sandonis and M. U., Maria Calderon, "Vehicle to Internet

communications using the ETSI ITS GeoNetworking protocol,"
Trans. Emerg. Telecommun. Technol., vol. 25, no. 3, pp. 294–307,
2016, doi: 10.1002/ett.

	 [8]	 J. Wang, Y. Shao, Y. Ge, and R. Yu, "A survey of vehicle to everything
(V2X) testing,"Sensors (Switzerland), vol.19, no. 2, pp. 1–20, 2019,
doi: 10.3390/s19020334.

	 [9]	 "Vehicle-to-everything-Wikipedia." [Online]. Available: https://en.
wikipedia.org/wiki/Vehicle-to-everything. [Accessed: 29-Apr-2020].

	[10]	 H. Leung, N. E. El Faouzi, and A. Kurian, "V2X Communication
Protocol in Vanet for Co-Operative Intelligent transportation system
(ITS)," Inf. Fusion, vol. 12, no. 1, pp. 2–3, 2011,

		 doi: 10.1016/j.inffus.2010.06.003.
	[11]	 C. R. Storck and F. Duarte-Figueiredo, "A Survey of 5G Technology

Evolution, Standards, and Infrastructure Associated with Vehicle-to-
Everything Communications by Internet of Vehicles," IEEE Access,
vol. 8, pp. 117593–117614, 2020,

		 doi: 10.1109/ACCESS.2020.3004779.
	[12]	 M. Lu, O. Turetken, O. E. Adali, J. Castells, R. Blokpoel, and P.

Grefen, "Cooperative Intelligent Transport Systems (C-ITS) [34]
deployment in Europe: Challenges and key findings," 25th ITS World

		 Congr., no. September, p. EU-TP1076, 2018.
	[13]	 J. Petit, F. Schaub, M. Feiri, and F. Kargl, "Pseudonym Schemes in

Vehicular Networks: A Survey," IEEE Commun. Surv. Tutorials, vol.
17, no. 1, pp. 228–255, 2015, doi: 10.1109/COMST.2014.2345420.

	[14]	 M. H. Eiza and Q. Ni, "Driving with Sharks: Rethinking Connected
Vehicles with Vehicle Cybersecurity," IEEE Veh. Technol. Mag., vol.
12, no. 2, pp. 45–51, Jun. 2017, doi: 10.1109/MVT.2017.2669348.

[15] J. B. Kenney, "Dedicated short-range communications (DSRC)
standards in the United States, "Proc. IEEE, vol. 99, no. 7, pp. 1162–
1182, 2011, doi: 10.1109/JPROC.2011.2132790.

[16] D. Jiang and L. Delgrossi, "IEEE 802.11p: Towards an international
standard for wireless access in vehicular environments," IEEE Veh.
Technol. Conf., no. June 2008, pp. 2036–2040, 2008,

		 doi: 10.1109/VETECS.2008.458.
	[17]	 F. Arena, G. Pau, and A. Severino, "A review on IEEE 802.11p for

intelligent transportation systems," J. Sens. Actuator Networks, vol. 9,
no. 2, pp. 1–11,2020, doi: 10.3390/jsan9020022.

[18] I. V. T. Society, IEEE Standard for Wireless Access in Vehicular
Environments - Security Services for Applications and Management
Messages, vol. 2017. 2016.

	[19]	 J. Kolleda et al., "National Security Credential Management System
(SCMS) Deployment Support : Literature Search Report," 2018.

[20]	 C-ITS Platform, "Certificate Policy for Deployment and Operation
of European Cooperative Intelligent Transport Systems (C-ITS)," no.
June, pp. 1–79, 2018.

References [21]	 T. Giannetsos et al. "Securing V2X Communications for the
Future: Can PKI Systems offer the answer?" [Online]. Available:
https//www.researchgate.net/publication/335089342_Securing_
V2X_Communications_for_the_Future_Can_PKI_Systems_offer_
the_answer. [Accessed: 19-Feb-2021].

[22]	 B. Brecht et al., "A Security Credential Managment System for V2X
Communications," vol. 19, no. 12, pp. 3850–3871, 2018,

		 doi: 10.1109/TITS.2018.2797529.
[23]	 "Public key encryption (article) | Khan Academy." [Online]. Available:

https://www.khanacademy.org/computing/computers-and-internet/
xcae6f4a7ff015e7d:online-data-security/xcae6f4a7ff015e7d:data-
encryption-techniques/a/public-key-encryption. [Accessed: 20-Feb-
2021].

[24]	 A. Sulaiman, S. V. Kasmir Raja, and S. H. Park, "Improving scalability
in vehicular communication using one-way hash chain method,"Ad
Hoc Networks, vol. 11, no. 8, pp. 2526–2540, 2013,

		 doi: 10.1016/j.adhoc.2013.05.017.
[25]	 A. Ghosal and M. Conti, "Security issues and challenges in V2X: A

Survey," Comput. Networks, vol. 169, no. March 2019, 2020,
		 doi: 10.1016/j.comnet.2019.107093.
[26]	 G. Samara, W. A. H. Al-Salihy, and R. Sures, "Security analysis of

Vehicular Ad Hoc Networks (VANET)," Proc. - 2nd Int. Conf. Netw.
Appl. Protoc. Serv. NETAPPS 2010, pp. 55–60, 2010,

		 doi: 10.1109/NETAPPS.2010.17.
[27]	 Xin Wang University of California, Santa Cruz, "Mobile Ad-Hoc

Network Applications". Iva Lipovic, 2011.
[28]	 T. Zhou, R. R. Choudhury,P. Ning, and K. Chakrabarty, "P2DAP -

Sybil attacks detection in vehicular ad hoc networks," IEEE J. Sel.
Areas Commun., vol. 29, no. 3, pp. 582–594, Mar. 2011,

		 doi: 10.1109/JSAC.2011.110308.
[29]	 C. Xu, H. Liu, P. Li, and P. Wang, "A remote attestation security model

based on privacy-preserving blockchain for V2X," IEEE Access, vol.
6, no. c, pp. 67809–67818, 2018,

		 doi: 10.1109/ACCESS.2018.2878995.
[30]	 M. A. Hezam Al Junaid, A. A. Syed, M. N. Mohd Warip, K. N. Fazira Ku

Azir, and N. H. Romli, "Classification of Security Attacks in VANET:
A Review of Requirements and Perspectives, "MATEC Web Conf.,
vol. 150, pp. 1–7, 2018, doi: 10.1051/matecconf/201815006038.

[31]	 M. Pirretti, S. Zhu, N. Vijaykrishnan, P. McDaniel, M. Kandemir, and
R. Brooks, "The sleep deprivation attack in sensor networks: Analysis
and methods of defense," Int. J. Distrib. Sens. Networks, vol. 2, no. 3,
pp. 267–287, 2006, doi: 10.1080/15501320600642718.

[32]	 V. Hoa La and A. Cavalli, "Security Attacks and Solutions in Vehicular
Ad Hoc Networks: A Survey," Int. J. AdHoc Netw. Syst., vol. 4, no. 2,
pp. 1–20,Apr.2014, doi: 10.5121/ijans.2014.4201.

[33]	 S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System,"
SSRN Electron. J., 2019, doi: 10.2139/ssrn.3440802.

[34]	 E. F. Kfoury, J. Gomez, J. Crichigno,E. Bou-Harb, and D. Khoury,
"Decentralized Distribution of PCP Mappings over Blockchain for
End-to-End Secure Direct Communications," IEEE Access, vol. 7,
no. August, pp. 110159–110173, 2019,

		 doi: 10.1109/ACCESS.2019.2934049.
[35]	 "Ethereum Whitepaper | ethereum.org." [Online]. Available: https://

ethereum.org/en/whitepaper/.[Accessed: 15-May-2021].
[36]	 R. Shrestha, S. Y. Nam, R. Bajracharya, and S. Kim, "Evolution

of V2X communication and integration of blockchain for security
enhancements," Electron., vol. 9, no. 9, pp. 1–33, 2020,

		 doi: 10.3390/electronics9091338.
[37]	 A. Queiroz, E. Oliveira, M. Barbosa, and K. Dias, "A Survey on

Blockchain and Edge Computing applied to the Internet of Vehicles,"
Int. Symp. Adv. Networks Telecommun. Syst. ANTS, vol. 2020-
December, 2020, doi: 10.1109/ANTS50601.2020.9342818.

[38]	 Y. Chen, X. Hao, W. Ren,andY. Ren,"TraceableandAuthenticated Key
Negotiations via Blockchain for Vehicular Communications," Mob.
Inf. Syst., vol. 2019, 2019, doi: 10.1155/2019/5627497.

[39]	 P. K. et al. Sharma, "Block-VN: A Distributed Blockchain Based
Vehicular Network Architecture in Smart City." .

[40]	 N. V. Vighnesh, N. Kavita, S. R. Urs, and S. Sampalli, "A novel sender
authentication scheme based on hash chain for Vehicular Ad-Hoc
Networks," ISWTA 2011 - 2011 IEEE Symp. Wirel. Technol. Appl., pp.
96–101, 2011, doi: 10.1109/ISWTA.2011.6089388.

https://doi.org/10.1145/2345396.2345422

A comprehensive survey on the application of
blockchain/hash chain technologies in V2X communications

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 35

Hassan Farran received a B.S. degree in Computerand
Communication Engineering from the American
University of Science and Technology (AUST) Beirut,
Lebanon in 2015 and an M.Sc. degree from the same
University in 2017. Currently, he is a Third-year Ph.D.
student at the Budapest University of Technology
and Economics (BME) Budapest, Hungary, at the
Department of Networked Systems and Services (HIT).
He has worked as a researcher and teaching assistant at
Budapest University of Technology and Economics for
the last three years. His research focuses on Networking

and Vehicular Communications (V2X).

David Khoury received the M.E. degree in telecom-
munications from ESIB, in 1983. He held different
positions at Ericsson mainly in France and Sweden in
Research and Development and Product and System
management. He was involved in early studies of them
GSM and the evolution toward an IP-based network
and the early studies of 3G/WCDMA, HSPA, and LTE.
In 2010, he has established his own start-up company
(Secumobi) developing advanced military grade secure
communications system and security solutions based
on hardware encryption and trusted execution environ-

ments (TEE) in Stockholm. For the past 8 years, Full-time Faculty member and
Research & Innovation fellow at AUST (American University of Science &
Technology) in Beirut. From 2018 he is Strategy consultant for Wone, a startup
located in Switzerland. He holds 5 US patents and has published many research
papers in international and local conferences. His research interests include the
IoT, information security, and blockchain technology.

[41]	 O. Unit, "MK5OBUCohda Wireless'5th generation market ready."
[42]	 G. Luo, M. Shi, C. Zhao, and Z. Shi, "Hash-chain-based cross- regional

safety authentication for space-air-ground integrated VANETs," Appl.
Sci., vol. 10, no. 12, p. 4206, 2020, doi: 10.3390/APP10124206.

[43]	 I. Agudo, M. Montenegro-Gomez, and J. Lopez, "A Blockchain
Approach for Decentralized V2X (D-V2X)," IEEE Trans. Veh.
Technol., 2020, doi: 10.1109/TVT.2020.3046640.

[44]	 H. et al. Baniata, "PF-BVM: A Privacy-aware Fog-enhanced
Blockchain Validation Mechanism." [Online]. Available: https://
www.researchgate.net/publication/341482783_PF-BVM_A_
Privacy-aware_Fog-enhanced_Blockchain_Validation_Mechanism.
[Accessed: 20-Mar-2021].

[45]	 I. Kiran and N. Javaid, "Blockchain-based Service Sharing Via
Roadside Unit-Performance Evaluation, "no. July, 2019.

[46]	 V. Elagin, A. Spirkina, M. Buinevich, and A. Vladyko, "Technological
aspects of blockchain application for vehicle-to-network," Inf., vol.
11, no. 10, pp. 1–19, 2020, doi: 10.3390/info11100465.

[47]	 Q. Jimmy et al. "Blockchain Enhanced V2x Communication System
And Method." [Online]. Available: https://uspto.report/patent/
app/20200145191.[Accessed:22-Feb-2022].

[48]	 A. Vladyko, V. Elagin, A. Spirkina, A. Muthanna,and A. A. Ateya,
"Distributed Edge Computing with Blockchain Technology to Enable
Ultra-Reliable Low-Latency V2X Communications," Electron., vol.
11, no. 2, pp. 1–18, 2022, doi: 10.3390/electronics11020173.

[49]	 J. Meijers et al., "Blockchain for V2X: A Taxonomy of Design Use
Cases and System Requirements," 2021 3rd Conf. Blockchain Res.
Appl. Innov. Networks Serv. BRAINS 2021, pp. 113–120, 2021,

		 doi: 10.1109/BRAINS52497.2021.9569796.
[50]	 H. Farran, D. Khoury, E. Kfoury, and L. Bokor, "A blockchain-based

V2X communication system," 2021 44th Int. Conf. Telecommun.
Signal Process. TSP 2021, pp. 208–213, 2021,

		 doi: 10.1109/TSP52935.2021.9522599 .

[51] A. Saini, S. Sharma, P. Jain, V. Sharma, and A. K. Khandelwal, "A
secure priority vehicle movement based on blockchain technology in
connected vehicles," ACM Int. Conf. Proceeding Ser., 2019,

		 doi: 10.1145/3357613.3357631.
[52]	 M. C. Ugwu, I. U. Okpala, C. I. Oham, and C. I. Nwakanma, "A

Tiered Blockchain Framework for Vehicular Forensics," Int. J. Netw.
Secur. Its Appl., vol. 10, no. 5, pp. 25–34, 2018,

		 doi: 10.5121/ijnsa.2018.10503.
[53] S. A. A. Hakeem, M. A. A. El-Gawad, and H. Kim, "Comparative

experiments of V2X security protocol based on hash chain
cryptography," Sensors (Switzerland), vol. 20, no. 19, pp. 1–23, 2020,
doi: 10.3390/s20195719.

[54] R. Shrestha, R. Bajracharya, A. P. Shrestha, and S. Y. Nam, "A new
type of blockchain for secure message exchange in VANET," Digit.
Commun. Networks, vol. 6, no. 2, pp. 177–186, 2020,

		 doi: 10.1016/j.dcan.2019.04.003.
[55] M. Taiyaba, M. A. Akbar, B. Qureshi, M. Shafiq, M. Hamza, and T.

Riaz, "Secure V2X Environment using Blockchain Technology,"
ACM Int. Conf. Proceeding Ser., no. April, pp. 469–474, 2020,

		 doi: 10.1145/3383219.3383287.
[56] G. S. Aujla et al., "BloCkEd: Blockchain-based secure data processing

framework in edge envisioned V2Xenvironment, "IEEE Trans. Veh.
Technol., vol. 69, no. 6, pp. 5850–5863, 2020,

		 doi: 10.1109/TVT.2020.2972278.
[57] F. Jameel, M. A. Javed, S. Zeadally, and R. Jäntti, "Efficient

Mining Cluster Selection for Blockchain-based Cellular V2X
Communications," arXiv, pp. 1–9, 2020,

		 doi: 10.1109/tits.2020.3006176.

László Bokor received the M.Sc. degree in compu-
terengineering from the Department of Telecommu-
nications, Budapest University of Technology and
Economics (BME) in 2004, informatics from the
Faculty of Economic Informatics, BME. He has
researched in multiple EU-funded and national
research and development projects for several
years. He is currently with the Department of Net-
worked Systems and Services (HIT) as an Associate
Professor and leads the Commsignia–BME HIT
Automotive Communications the M.Sc.+ degree in

bank and Social Sciences, BME, and the Ph.D. degree from the Doctoral
School of Research Group at BME and the Vehicle Communication Working
Group of the Mobility Platform at KTI Institute for Transport Sciences. He
is a member of the HTE (Scientific Association for Infocommunications
Hungary), the Hungarian Standards Institution's Technical Committee
for Intelligent Transport Systems (MSZT/MB 911), the TPE GoverC-ITS
Task Force within the TPEG Application Working Group of TISA, the ITS
Hungary Association (the Hungarian organization of ERTICO's Network of
National ITS Associations), a nd the BME' the UNKP-16-4-I. Post-Doctoral
Fellowship in 2016 from the New National Excellence Program of the Minis-
try of Human s Multimedia Networks and Services Laboratory, where he par-
ticipates in different R&D projects. In recognition of his professional work
and achievements in mobile telecommunications, he received the HTE Silver
Medal (2013), the HTE Pollák-Virág Award (2015), and the HTE Gold Medal
(2018). He was a recipient of Capacities of Hungary. In 2018 he was awarded
the Dean's Honor (BME VIK) for education and research achievements in
the field of communication of autonomous vehicles; in 2020, he received the
BME HIT Excellence in Education Award.

Optimizing Camera Stream Transport
in Cloud-Based Industrial Robotic Systems

MARCH 2022 • VOLUME XIV • NUMBER 136

INFOCOMMUNICATIONS JOURNAL

1

Optimizing Camera Stream Transport
in Cloud-Based Industrial Robotic Systems

Marcell Balogh, Attila Vidács

Abstract—Combining visual-guided robotics with cloud net-
working brought a new era into industrial robotic research and
development. New challenges have to be tackled with a focus
on providing proper communication and data processing setup:
sensor data processing as well as the control software should
be decoupled from the local robot hardware and should move
into the cloud. In the emerging field of cloud robotics, there are
trade-offs that have to be handled. More and more sensors such
as cameras are being integrated but it comes with a cost. All
sensory data have to be sent through often limited networking
resources, while latency must be kept as low as possible.

In this paper we propose a general solution for efficient camera
stream transportation in cloud robotic systems. After introducing
our test scenario with the used hardware and software elements, a
detailed overview of the architecture is presented with describing
each task of the components. The goal of this paper is to
examine the current stream transportation implementations in
ROS environment and implement a more efficient method.
The performance of the proposed method is investigated and
compared with other solutions evidenced by measurements.

Index Terms—cloud robotics; distributed systems; image pro-
cessing;

I. INTRODUCTION

CONTRARY to certain expectations that human workers
will be displaced by robots, the real trend is to utilize

collaborative robots beside humans to work with. This change
necessitates robots to be aware of their full surroundings real
time, that seems to be the real challenge.

Vision systems are widely used in industrial robotics for
various tasks and processes such as inspection and quality
control, robot guidance, safety of workers, assembly lines,
etc. As a result of the continuous improvement of camera
sensors, the size of the raw sensory information significantly
increased. It became a trade-off between the camera quality
and the latency of the transported image stream. In order to get
the best performance, modifications need to be tailor-made.

We expect these systems to examine their environment
through various sensors and act immediately to prevent human
injuries or collisions. Having applied the techniques of cloud
computing, image processing, robotics and distributed net-
works, we present an alternative stream transportation method
for vision aided real-time robotic systems. Our approach is to

Marcell Balogh is with the High Speed Networks Laboratory at the
Department of Telecommunications and Media Informatics, Faculty of Elec-
trical Engineering and Informatics, Budapest University of Technology and
Economics, Hungary, e-mail: balogh.marcell@edu.bme.hu

Attila Vidács is with the High Speed Networks Laboratory at the Depart-
ment of Telecommunications and Media Informatics, Faculty of Electrical
Engineering and Informatics, Budapest University of Technology and Eco-
nomics, Hungary, e-mail: vidacs.attila@vik.bme.hu

combine the existing methods in a more efficient way with
distributed systems.

Throughout this work we utilized the Robot Operating
System (ROS) [1] which became the de facto standard of
robotic development. ROS based systems fit well into the
concepts of cloud architecture. Sensors are providing real-time
information which are being sent over the network, while data
are processed in the cloud, and only the acting commands are
being sent back to the robot. In this scheme, complex sensor
networks can be easily managed, and data could be processed
off board.

The paper is outlined as follows. In Section II, the back-
ground of the applied technologies is introduced. Section III
presents an overview of the system including the hardware
devices and the software design. Section IV explains the
demonstration task, the steps of image processing alongside
with the network setup. In Section V the different measure-
ment methods are presented with their arrangements. This
is followed by the performance measurement in Section VI
which contains a detailed comparison of the different op-
tions. It contains the overall result and performance of the
implemented system. Finally, conclusions and considerations
regarding the improved solutions are presented in Section VII.

II. RELATED WORK

Industrial robots took a long way to reach their current form
and the new era of collaborative robots is currently rising. On
the contrary of what people believed with the appearance of
industrial robots, workers are still essential elements in the
factories thus a stronger human-robot cooperation has started
to emerge. Robots are able to cooperate even better with
humans, taking their presence into account and proceed with
caution.

To help robots look around and act within their environment,
visual servoing is a popular approach. Visual servoing is
an approved technology which was first proposed in 1996
by Hutchinson et al. [2], and was significantly improved by
F. Chaumette and S. Hutchinson [3]. Nowadays two popular
approaches were formalized: Position Based Visual Servoing
(PBVS) and Image Based Visual Servoing (IBVS). PVBS
seeks to calculate and minimize errors in the global reference
frame while IBVS minimizes errors in the image plane of the
camera.

Autonomous navigation for mobile robots is a prevailing
topic among robotic researchers. To tackle with challenges,
Kalman Filter-based solutions are the leading methods for
sensor fusion [4]. Nguyen et al. proposed a solution for

Marcell Balogh is with the High Speed Networks Laboratory at the Depart-
ment of Telecommunications and Media Informatics, Faculty of Electrical En-
gineering and Informatics, Budapest University of Technology and Economics,
Hungary, (e-mail: balogh.marcell@edu.bme.hu)

Attila Vidács is with the High Speed Networks Laboratory at the Department
of Telecommunications and Media Informatics, Faculty of Electrical Engineer-
ing and Informatics, Budapest University of Technology and Economics, Hun-
gary, (e-mail: vidacs.attila@vik.bme.hu)

Optimizing Camera Stream Transport
in Cloud-Based Industrial Robotic Systems

Marcell Balogh and Attila Vidács

Abstract—Combining visual-guided robotics with cloud net-
working brought a new era into industrial robotic research and
development. New challenges have to be tackled with a focus
on providing proper communication and data processing setup:
sensor data processing as well as the control software should
be decoupled from the local robot hardware and should move
into the cloud. In the emerging field of cloud robotics, there are
trade-offs that have to be handled. More and more sensors such
as cameras are being integrated but it comes with a cost. All
sensory data have to be sent through often limited networking
resources, while latency must be kept as low as possible.

In this paper we propose a general solution for efficient
camera stream transportation in cloud robotic systems. After
introducing our test scenario with the used hardware and
software elements, a detailed overview of the architecture is
presented with describing each task of the components. The goal
of this paper is to examine the current stream transportation
implementations in ROS environment and implement a more
efficient method. The performance of the proposed method is
investigated and compared with other solutions evidenced by
measurements.

Index Terms—cloud robotics; distributed systems; image pro-
cessing;

1

Optimizing Camera Stream Transport
in Cloud-Based Industrial Robotic Systems

Marcell Balogh, Attila Vidács

Abstract—Combining visual-guided robotics with cloud net-
working brought a new era into industrial robotic research and
development. New challenges have to be tackled with a focus
on providing proper communication and data processing setup:
sensor data processing as well as the control software should
be decoupled from the local robot hardware and should move
into the cloud. In the emerging field of cloud robotics, there are
trade-offs that have to be handled. More and more sensors such
as cameras are being integrated but it comes with a cost. All
sensory data have to be sent through often limited networking
resources, while latency must be kept as low as possible.

In this paper we propose a general solution for efficient camera
stream transportation in cloud robotic systems. After introducing
our test scenario with the used hardware and software elements, a
detailed overview of the architecture is presented with describing
each task of the components. The goal of this paper is to
examine the current stream transportation implementations in
ROS environment and implement a more efficient method.
The performance of the proposed method is investigated and
compared with other solutions evidenced by measurements.

Index Terms—cloud robotics; distributed systems; image pro-
cessing;

I. INTRODUCTION

CONTRARY to certain expectations that human workers
will be displaced by robots, the real trend is to utilize

collaborative robots beside humans to work with. This change
necessitates robots to be aware of their full surroundings real
time, that seems to be the real challenge.

Vision systems are widely used in industrial robotics for
various tasks and processes such as inspection and quality
control, robot guidance, safety of workers, assembly lines,
etc. As a result of the continuous improvement of camera
sensors, the size of the raw sensory information significantly
increased. It became a trade-off between the camera quality
and the latency of the transported image stream. In order to get
the best performance, modifications need to be tailor-made.

We expect these systems to examine their environment
through various sensors and act immediately to prevent human
injuries or collisions. Having applied the techniques of cloud
computing, image processing, robotics and distributed net-
works, we present an alternative stream transportation method
for vision aided real-time robotic systems. Our approach is to

Marcell Balogh is with the High Speed Networks Laboratory at the
Department of Telecommunications and Media Informatics, Faculty of Elec-
trical Engineering and Informatics, Budapest University of Technology and
Economics, Hungary, e-mail: balogh.marcell@edu.bme.hu

Attila Vidács is with the High Speed Networks Laboratory at the Depart-
ment of Telecommunications and Media Informatics, Faculty of Electrical
Engineering and Informatics, Budapest University of Technology and Eco-
nomics, Hungary, e-mail: vidacs.attila@vik.bme.hu

combine the existing methods in a more efficient way with
distributed systems.

Throughout this work we utilized the Robot Operating
System (ROS) [1] which became the de facto standard of
robotic development. ROS based systems fit well into the
concepts of cloud architecture. Sensors are providing real-time
information which are being sent over the network, while data
are processed in the cloud, and only the acting commands are
being sent back to the robot. In this scheme, complex sensor
networks can be easily managed, and data could be processed
off board.

The paper is outlined as follows. In Section II, the back-
ground of the applied technologies is introduced. Section III
presents an overview of the system including the hardware
devices and the software design. Section IV explains the
demonstration task, the steps of image processing alongside
with the network setup. In Section V the different measure-
ment methods are presented with their arrangements. This
is followed by the performance measurement in Section VI
which contains a detailed comparison of the different op-
tions. It contains the overall result and performance of the
implemented system. Finally, conclusions and considerations
regarding the improved solutions are presented in Section VII.

II. RELATED WORK

Industrial robots took a long way to reach their current form
and the new era of collaborative robots is currently rising. On
the contrary of what people believed with the appearance of
industrial robots, workers are still essential elements in the
factories thus a stronger human-robot cooperation has started
to emerge. Robots are able to cooperate even better with
humans, taking their presence into account and proceed with
caution.

To help robots look around and act within their environment,
visual servoing is a popular approach. Visual servoing is
an approved technology which was first proposed in 1996
by Hutchinson et al. [2], and was significantly improved by
F. Chaumette and S. Hutchinson [3]. Nowadays two popular
approaches were formalized: Position Based Visual Servoing
(PBVS) and Image Based Visual Servoing (IBVS). PVBS
seeks to calculate and minimize errors in the global reference
frame while IBVS minimizes errors in the image plane of the
camera.

Autonomous navigation for mobile robots is a prevailing
topic among robotic researchers. To tackle with challenges,
Kalman Filter-based solutions are the leading methods for
sensor fusion [4]. Nguyen et al. proposed a solution for

DOI: 10.36244/ICJ.2022.1.5

mailto:balogh.marcell%40edu.bme.hu?subject=
mailto:vidacs.attila%40vik.bme.hu?subject=
https://doi.org/10.36244/ICJ.2022.1.5

Optimizing Camera Stream Transport
in Cloud-Based Industrial Robotic Systems

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 37

2

autonomous navigation based on Robot Operating System and
Gazebo [5]. They used deep learning with simulation data to
improve real-world applications. Authors in [6] proposed an
improved algorithm with Extended Kalman Filter (EKF) to
estimate the state of an Unmanned Aerial Vehicle (UAV) in
real time.

To be able to select the optimal streaming method, a
comparison was carried out in [7]. After thoroughly comparing
H.264 Advanced Video Codec, Dirac, Theora and Motion
JPEG2000, the study clearly indicated the advantage of inter-
frame comparison in H.264.

Visual aided robots require a well-considered approach for
a proper real time stream forwarding. Video streaming over
cellular or wireless networks also appears in various fields.
A popular and versatile tool for stream forwarding is to
utilize GStreamer [8]. A typical use-case of GStreamer is real-
time video streaming but it is also useful for acoustic signal
processing [9] or even for detecting gravitational waves [10].

Examining the capabilities of a closed-loop control over
imperfect networks were investigated by Rácz et al. [11] They
worked with an Universal Robots UR5 manipulator to test
and measure the performance impact of Ultra Reliable Low
Latency Communication (URLLC) capability in 5G networks.
As a result, measurements showed that network delay lower
that 4 ms has no significant performance impact in case of the
robot arm.

III. SYSTEM OVERVIEW

The selected use case presents a visual guided robot arm
manipulation task, where the emphasis is on the near real
time control of the manipulator, based on visual information.
However, a large variety of different applications can be real-
ized using the same design patterns that the ROS ecosystem
provides.

Fig. 1. Realized robotic system: An UR3e industrial robotic arm equipped
with a RealSense D435i depth camera.

Our test scenario consists of an UR3e collaborative robotic
arm from Universal Robots [12], an Intel RealSense D435i

depth camera [13] and Raspberry Pi4B devices to host the
camera driver. As an end-effector for the robotic arm, an
OnRobot RG2-FT gripper [14] is applied for pick and place
tasks. As Fig. 1 shows, the depth camera is rigidly mounted
onto the last joint of the robot arm following the eye-in-hand
approach to be able to inspect both the surroundings and the
gripped object.

The software implementation is based on the Robot Op-
erating System and follows the cloud robotic aspects as Fig.
2 presents. It provides a framework with the most common
communication patterns for a distributed system like publish-
subscribe or request-response. The ROS structure consists of a
ROS Master running in the cloud, an image forwarding node
on a local hardware element (RPi4), and an image processing
node placed in the cloud.

Generally, ROS offers raw image transport but it can be
extended with plugins to support JPEG or PNG compression.
In case of the RealSense camera, an official ROS package
[15] is available for retrieving data through topics to work
with. Besides ROS, there is an open-source solution for
depth cameras to be networked over wired Ethernet or Wi-Fi
connection [16]. To help object detection, OpenCV library[17]
is used both for colour and depth image processing.

Fig. 2. System architecture.

IV. SYSTEM REALIZATION

In order to demonstrate the system capabilities, our robot
is programmed to build a tower from small identical wooden
blocks in a jenga tower style. The task for the robot is to
automatically detect jenga pieces on the table, then grab and
place them on top of the already built structure.

The detection task includes two different phases. First, when
a new jenga block is detected by the camera, its position is
acquired in order to be able to pick it up. To achieve this, only
the colour frame is used with filtering for colour ranges. The
other part that requires the camera is when the robot wants
to place the jenga onto the tower being built. It examines the

Optimizing Camera Stream Transport
in Cloud-Based Industrial Robotic Systems

MARCH 2022 • VOLUME XIV • NUMBER 138

INFOCOMMUNICATIONS JOURNAL

3

target area whether a previous element or elements have been
already placed using the depth camera image. Being conscious
of the 3D coordinates of the top tower elements will help the
actual block to be placed in the right position.

Note here, that neither the pick position nor the follow up
tower position is pre-programmed. It is up to the robot to
automatically detect and decide, even making it possible for
a human to join in and build the jenga tower together with
the robot in a cooperative manner. The robot will put its own
actual jenga piece on top of the structure, no matter whether
the user just placed a new piece atop, or even removed the
last one.

A. Image processing

Image processing has to provide reliable actual informa-
tion to achieve the introduced demonstration task. It requires
techniques handling both colour and depth information. The
current problem could be separated into two phases: working
with colour images and working with depth images.

1) Colour image: The task related to the colour image is
to find a black jenga block on the table, and if there are more,
choose one considering whether the robot can reach it or not.
It is based on a robust colour segmentation process in HSV
colour space. The black colour of the jenga block and its
non-reflecting surface makes accurate filtering for black colour
possible. It also excludes objects where there is a measurable
difference of the length of the sides and the area of the object
in sight. To prove its robustness, it has been successfully tested
with strong light sources and with different lighting conditions.
With OpenCV, the orientation and exact position have been
extracted from the detection image. These are then sent to the
robot to grip the object at the right pose.

2) Depth image: From the depth image, the goal is to
extract the accurate distance and provide an illustrative image
about the tower level measurement. Intel gives examples for
depth images processing [18]. Calculating the Z distance from
the depth image is helped by a function that returns the depth
distance from a 2D pixel coordinate. First, an edge-preserving
spatial filter is applied, which smooths the depth noise while
attempting to preserve edges. In a noisy measurement it will
smooth the data but could result in unwanted artifacts such as
rounded or elongated edges. It is followed by temporal filtering
and hole filling. It is also advised to do whenever possible,
making sure not to let holes—where the depth equals zero—
influence calculations. It is done by an exponential moving
average (EMA) filter which is also used for spatial filtering.
With an accurate parameter, we tried to reduce temporal
smoothing near edges and also exclude holes.

Fig. 3 presents the before and after phases of jenga depth
detection. It clearly shows that the holes were eliminated, and
the contours became more accurate.

3) Equalization: Because the gripper was too close to the
camera, it distracted the depth measurement. Thus, the task
was to equalize the histogram of the depth image, because
a 1 cm difference in a 16 bit image cannot be easily distin-
guished. To improve the detection, histogram equalization was
only applied to a region of interest, where jenga block could

Fig. 3. Depth images of two jenga pieces as seen from above, before (left)
and after (right) image processing.

occur. In Fig. 4 the distances of the tower corners are pre-
sented. Due to a shallow depth, histogram equalization results
in displaying small differences with significantly changing
colours. The distances are calculated as the median value of
the intersecting jenga block marked with the white dots.

Fig. 4. Depth histogram equalization: raw camera image (left) and equalized
depth image (right).

B. Network setup

All the components of the robotic system are prepared to
connect and communicate using a cloud architecture with
wireless radio access (such as 5G). Fig. 5 depicts the dis-
tributed software architecture of the system.

Fig. 5. Distributed software architecture with cloud elements.

1) Robot arm with cloud control: Although the UR3e
controller can be connected directly to the network, the
challenging part is to perform the low-level (servo-)control
the robot from the (edge-)cloud. Due to its ultra-low latency
requirement, it is not yet possible to run the low-level control

3

target area whether a previous element or elements have been
already placed using the depth camera image. Being conscious
of the 3D coordinates of the top tower elements will help the
actual block to be placed in the right position.

Note here, that neither the pick position nor the follow up
tower position is pre-programmed. It is up to the robot to
automatically detect and decide, even making it possible for
a human to join in and build the jenga tower together with
the robot in a cooperative manner. The robot will put its own
actual jenga piece on top of the structure, no matter whether
the user just placed a new piece atop, or even removed the
last one.

A. Image processing

Image processing has to provide reliable actual informa-
tion to achieve the introduced demonstration task. It requires
techniques handling both colour and depth information. The
current problem could be separated into two phases: working
with colour images and working with depth images.

1) Colour image: The task related to the colour image is
to find a black jenga block on the table, and if there are more,
choose one considering whether the robot can reach it or not.
It is based on a robust colour segmentation process in HSV
colour space. The black colour of the jenga block and its
non-reflecting surface makes accurate filtering for black colour
possible. It also excludes objects where there is a measurable
difference of the length of the sides and the area of the object
in sight. To prove its robustness, it has been successfully tested
with strong light sources and with different lighting conditions.
With OpenCV, the orientation and exact position have been
extracted from the detection image. These are then sent to the
robot to grip the object at the right pose.

2) Depth image: From the depth image, the goal is to
extract the accurate distance and provide an illustrative image
about the tower level measurement. Intel gives examples for
depth images processing [18]. Calculating the Z distance from
the depth image is helped by a function that returns the depth
distance from a 2D pixel coordinate. First, an edge-preserving
spatial filter is applied, which smooths the depth noise while
attempting to preserve edges. In a noisy measurement it will
smooth the data but could result in unwanted artifacts such as
rounded or elongated edges. It is followed by temporal filtering
and hole filling. It is also advised to do whenever possible,
making sure not to let holes—where the depth equals zero—
influence calculations. It is done by an exponential moving
average (EMA) filter which is also used for spatial filtering.
With an accurate parameter, we tried to reduce temporal
smoothing near edges and also exclude holes.

Fig. 3 presents the before and after phases of jenga depth
detection. It clearly shows that the holes were eliminated, and
the contours became more accurate.

3) Equalization: Because the gripper was too close to the
camera, it distracted the depth measurement. Thus, the task
was to equalize the histogram of the depth image, because
a 1 cm difference in a 16 bit image cannot be easily distin-
guished. To improve the detection, histogram equalization was
only applied to a region of interest, where jenga block could

Fig. 3. Depth images of two jenga pieces as seen from above, before (left)
and after (right) image processing.

occur. In Fig. 4 the distances of the tower corners are pre-
sented. Due to a shallow depth, histogram equalization results
in displaying small differences with significantly changing
colours. The distances are calculated as the median value of
the intersecting jenga block marked with the white dots.

Fig. 4. Depth histogram equalization: raw camera image (left) and equalized
depth image (right).

B. Network setup

All the components of the robotic system are prepared to
connect and communicate using a cloud architecture with
wireless radio access (such as 5G). Fig. 5 depicts the dis-
tributed software architecture of the system.

Fig. 5. Distributed software architecture with cloud elements.

1) Robot arm with cloud control: Although the UR3e
controller can be connected directly to the network, the
challenging part is to perform the low-level (servo-)control
the robot from the (edge-)cloud. Due to its ultra-low latency
requirement, it is not yet possible to run the low-level control

3

target area whether a previous element or elements have been
already placed using the depth camera image. Being conscious
of the 3D coordinates of the top tower elements will help the
actual block to be placed in the right position.

Note here, that neither the pick position nor the follow up
tower position is pre-programmed. It is up to the robot to
automatically detect and decide, even making it possible for
a human to join in and build the jenga tower together with
the robot in a cooperative manner. The robot will put its own
actual jenga piece on top of the structure, no matter whether
the user just placed a new piece atop, or even removed the
last one.

A. Image processing

Image processing has to provide reliable actual informa-
tion to achieve the introduced demonstration task. It requires
techniques handling both colour and depth information. The
current problem could be separated into two phases: working
with colour images and working with depth images.

1) Colour image: The task related to the colour image is
to find a black jenga block on the table, and if there are more,
choose one considering whether the robot can reach it or not.
It is based on a robust colour segmentation process in HSV
colour space. The black colour of the jenga block and its
non-reflecting surface makes accurate filtering for black colour
possible. It also excludes objects where there is a measurable
difference of the length of the sides and the area of the object
in sight. To prove its robustness, it has been successfully tested
with strong light sources and with different lighting conditions.
With OpenCV, the orientation and exact position have been
extracted from the detection image. These are then sent to the
robot to grip the object at the right pose.

2) Depth image: From the depth image, the goal is to
extract the accurate distance and provide an illustrative image
about the tower level measurement. Intel gives examples for
depth images processing [18]. Calculating the Z distance from
the depth image is helped by a function that returns the depth
distance from a 2D pixel coordinate. First, an edge-preserving
spatial filter is applied, which smooths the depth noise while
attempting to preserve edges. In a noisy measurement it will
smooth the data but could result in unwanted artifacts such as
rounded or elongated edges. It is followed by temporal filtering
and hole filling. It is also advised to do whenever possible,
making sure not to let holes—where the depth equals zero—
influence calculations. It is done by an exponential moving
average (EMA) filter which is also used for spatial filtering.
With an accurate parameter, we tried to reduce temporal
smoothing near edges and also exclude holes.

Fig. 3 presents the before and after phases of jenga depth
detection. It clearly shows that the holes were eliminated, and
the contours became more accurate.

3) Equalization: Because the gripper was too close to the
camera, it distracted the depth measurement. Thus, the task
was to equalize the histogram of the depth image, because
a 1 cm difference in a 16 bit image cannot be easily distin-
guished. To improve the detection, histogram equalization was
only applied to a region of interest, where jenga block could

Fig. 3. Depth images of two jenga pieces as seen from above, before (left)
and after (right) image processing.

occur. In Fig. 4 the distances of the tower corners are pre-
sented. Due to a shallow depth, histogram equalization results
in displaying small differences with significantly changing
colours. The distances are calculated as the median value of
the intersecting jenga block marked with the white dots.

Fig. 4. Depth histogram equalization: raw camera image (left) and equalized
depth image (right).

B. Network setup

All the components of the robotic system are prepared to
connect and communicate using a cloud architecture with
wireless radio access (such as 5G). Fig. 5 depicts the dis-
tributed software architecture of the system.

Fig. 5. Distributed software architecture with cloud elements.

1) Robot arm with cloud control: Although the UR3e
controller can be connected directly to the network, the
challenging part is to perform the low-level (servo-)control
the robot from the (edge-)cloud. Due to its ultra-low latency
requirement, it is not yet possible to run the low-level control

3

target area whether a previous element or elements have been
already placed using the depth camera image. Being conscious
of the 3D coordinates of the top tower elements will help the
actual block to be placed in the right position.

Note here, that neither the pick position nor the follow up
tower position is pre-programmed. It is up to the robot to
automatically detect and decide, even making it possible for
a human to join in and build the jenga tower together with
the robot in a cooperative manner. The robot will put its own
actual jenga piece on top of the structure, no matter whether
the user just placed a new piece atop, or even removed the
last one.

A. Image processing

Image processing has to provide reliable actual informa-
tion to achieve the introduced demonstration task. It requires
techniques handling both colour and depth information. The
current problem could be separated into two phases: working
with colour images and working with depth images.

1) Colour image: The task related to the colour image is
to find a black jenga block on the table, and if there are more,
choose one considering whether the robot can reach it or not.
It is based on a robust colour segmentation process in HSV
colour space. The black colour of the jenga block and its
non-reflecting surface makes accurate filtering for black colour
possible. It also excludes objects where there is a measurable
difference of the length of the sides and the area of the object
in sight. To prove its robustness, it has been successfully tested
with strong light sources and with different lighting conditions.
With OpenCV, the orientation and exact position have been
extracted from the detection image. These are then sent to the
robot to grip the object at the right pose.

2) Depth image: From the depth image, the goal is to
extract the accurate distance and provide an illustrative image
about the tower level measurement. Intel gives examples for
depth images processing [18]. Calculating the Z distance from
the depth image is helped by a function that returns the depth
distance from a 2D pixel coordinate. First, an edge-preserving
spatial filter is applied, which smooths the depth noise while
attempting to preserve edges. In a noisy measurement it will
smooth the data but could result in unwanted artifacts such as
rounded or elongated edges. It is followed by temporal filtering
and hole filling. It is also advised to do whenever possible,
making sure not to let holes—where the depth equals zero—
influence calculations. It is done by an exponential moving
average (EMA) filter which is also used for spatial filtering.
With an accurate parameter, we tried to reduce temporal
smoothing near edges and also exclude holes.

Fig. 3 presents the before and after phases of jenga depth
detection. It clearly shows that the holes were eliminated, and
the contours became more accurate.

3) Equalization: Because the gripper was too close to the
camera, it distracted the depth measurement. Thus, the task
was to equalize the histogram of the depth image, because
a 1 cm difference in a 16 bit image cannot be easily distin-
guished. To improve the detection, histogram equalization was
only applied to a region of interest, where jenga block could

Fig. 3. Depth images of two jenga pieces as seen from above, before (left)
and after (right) image processing.

occur. In Fig. 4 the distances of the tower corners are pre-
sented. Due to a shallow depth, histogram equalization results
in displaying small differences with significantly changing
colours. The distances are calculated as the median value of
the intersecting jenga block marked with the white dots.

Fig. 4. Depth histogram equalization: raw camera image (left) and equalized
depth image (right).

B. Network setup

All the components of the robotic system are prepared to
connect and communicate using a cloud architecture with
wireless radio access (such as 5G). Fig. 5 depicts the dis-
tributed software architecture of the system.

Fig. 5. Distributed software architecture with cloud elements.

1) Robot arm with cloud control: Although the UR3e
controller can be connected directly to the network, the
challenging part is to perform the low-level (servo-)control
the robot from the (edge-)cloud. Due to its ultra-low latency
requirement, it is not yet possible to run the low-level control

4

from the cloud. (Later, with the improvement of the experi-
mental 5G network parameters, it could also be moved to the
cloud.)

2) Camera and cloud image processing: A Raspberry Pi
device (RPi4) serves as a gateway and driver host for the
RealSense camera, since the camera hardware lacks any direct
network connectivity.

Note here, that although the publish-subscribe scheme pub-
lishes every camera frame, the image processing takes only
one frame from the stream to work on. hence, there is no
need to to transfer the camera stream to the cloud continuously.
Taking this into account, live streaming can be reduced to give
a frame only when it is required. Because of the camera has
a warm-up time, the idea is to combine the publish-subscribe
communication scheme with a service-based request-response
phase to fetch the image frame as Fig. 6 presents.

Fig. 6. Combined publish-subscribe and request-response (aka. client-server)
communication for acquiring an image from the camera for cloud processing.

According to this enhancement, the camera driver node
running in the background always provides the camera stream,
but it will not transfer the stream continuously over the
network but only forwards it to a local service server. This
server provides only one image by grabbing a frame from the
published camera stream in case of an incoming request from
the cloud. This frame is then processed in the cloud which
serve as a basis of further robot movement calculations.

V. STREAMING AND IMAGE TRANSPORT SOLUTIONS

Here we propose a custom method for image transportation
that offers low bandwidth and latency. A hybrid method is
also introduced with the combination of different network
schemes. Alongside with our implementation, popular image
transportation methods are introduced that are common in
robotic applications.

A. ROS streaming

To transmit data among nodes, ROS by default use seri-
alization and sends raw image objects as string which is a
less effective way of image transportation and streaming. As
measurements show, it takes 25 MB/s to transfer raw colour
and depth images with 30 FPS. ROS plugins offer compression
methods for a more effective image transport. It can be
configured for PNG or JPEG compression. The compression

range in case of the JPEG is [1, 100] where lower values trade
image quality for bandwidth savings. To find the appropriate
balance between image size and quality, parameters needs to
be fine-tuned according to the application’s needs.

B. Streaming via GStreamer

GStreamer is a current open-source multi-platform mul-
timedia framework with widespread API options like the
OpenCV library, OpenGL, RealSense or other community-
driven projects [19]. It became popular for streaming audiovi-
sual content and has been frequently used in studies relating to
video transmission for its utility and flexibility in the delivery
of audio and visual content. The multimedia pipelines of
GStreamer are completed through the use of plugins which
are assembled using so called pads to form an interconnected
framework, moving video from the sink pad of a plugin to act
as the source of another.

The common part in each image processing solution is the
utilization of OpenCV. To exploit its capabilities, OpenCV is
compiled on both sender and receiver side with GStreamer
integration. The goal of GStreamer in this project is to separate
the application (e.g., video player, video editor) from the
streaming media complexity (e.g., hardware acceleration, re-
moteness). In this case only the video transmission is relevant
without the audio track.

Fig. 7. Streaming and image transport solutions software architecture.

Regarding the restrictions and specialities, the streamer
pipeline looks as Fig. 7 presents. Because of the pipeline

Optimizing Camera Stream Transport
in Cloud-Based Industrial Robotic Systems

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 39

4

from the cloud. (Later, with the improvement of the experi-
mental 5G network parameters, it could also be moved to the
cloud.)

2) Camera and cloud image processing: A Raspberry Pi
device (RPi4) serves as a gateway and driver host for the
RealSense camera, since the camera hardware lacks any direct
network connectivity.

Note here, that although the publish-subscribe scheme pub-
lishes every camera frame, the image processing takes only
one frame from the stream to work on. hence, there is no
need to to transfer the camera stream to the cloud continuously.
Taking this into account, live streaming can be reduced to give
a frame only when it is required. Because of the camera has
a warm-up time, the idea is to combine the publish-subscribe
communication scheme with a service-based request-response
phase to fetch the image frame as Fig. 6 presents.

Fig. 6. Combined publish-subscribe and request-response (aka. client-server)
communication for acquiring an image from the camera for cloud processing.

According to this enhancement, the camera driver node
running in the background always provides the camera stream,
but it will not transfer the stream continuously over the
network but only forwards it to a local service server. This
server provides only one image by grabbing a frame from the
published camera stream in case of an incoming request from
the cloud. This frame is then processed in the cloud which
serve as a basis of further robot movement calculations.

V. STREAMING AND IMAGE TRANSPORT SOLUTIONS

Here we propose a custom method for image transportation
that offers low bandwidth and latency. A hybrid method is
also introduced with the combination of different network
schemes. Alongside with our implementation, popular image
transportation methods are introduced that are common in
robotic applications.

A. ROS streaming

To transmit data among nodes, ROS by default use seri-
alization and sends raw image objects as string which is a
less effective way of image transportation and streaming. As
measurements show, it takes 25 MB/s to transfer raw colour
and depth images with 30 FPS. ROS plugins offer compression
methods for a more effective image transport. It can be
configured for PNG or JPEG compression. The compression

range in case of the JPEG is [1, 100] where lower values trade
image quality for bandwidth savings. To find the appropriate
balance between image size and quality, parameters needs to
be fine-tuned according to the application’s needs.

B. Streaming via GStreamer

GStreamer is a current open-source multi-platform mul-
timedia framework with widespread API options like the
OpenCV library, OpenGL, RealSense or other community-
driven projects [19]. It became popular for streaming audiovi-
sual content and has been frequently used in studies relating to
video transmission for its utility and flexibility in the delivery
of audio and visual content. The multimedia pipelines of
GStreamer are completed through the use of plugins which
are assembled using so called pads to form an interconnected
framework, moving video from the sink pad of a plugin to act
as the source of another.

The common part in each image processing solution is the
utilization of OpenCV. To exploit its capabilities, OpenCV is
compiled on both sender and receiver side with GStreamer
integration. The goal of GStreamer in this project is to separate
the application (e.g., video player, video editor) from the
streaming media complexity (e.g., hardware acceleration, re-
moteness). In this case only the video transmission is relevant
without the audio track.

Fig. 7. Streaming and image transport solutions software architecture.

Regarding the restrictions and specialities, the streamer
pipeline looks as Fig. 7 presents. Because of the pipeline

4

from the cloud. (Later, with the improvement of the experi-
mental 5G network parameters, it could also be moved to the
cloud.)

2) Camera and cloud image processing: A Raspberry Pi
device (RPi4) serves as a gateway and driver host for the
RealSense camera, since the camera hardware lacks any direct
network connectivity.

Note here, that although the publish-subscribe scheme pub-
lishes every camera frame, the image processing takes only
one frame from the stream to work on. hence, there is no
need to to transfer the camera stream to the cloud continuously.
Taking this into account, live streaming can be reduced to give
a frame only when it is required. Because of the camera has
a warm-up time, the idea is to combine the publish-subscribe
communication scheme with a service-based request-response
phase to fetch the image frame as Fig. 6 presents.

Fig. 6. Combined publish-subscribe and request-response (aka. client-server)
communication for acquiring an image from the camera for cloud processing.

According to this enhancement, the camera driver node
running in the background always provides the camera stream,
but it will not transfer the stream continuously over the
network but only forwards it to a local service server. This
server provides only one image by grabbing a frame from the
published camera stream in case of an incoming request from
the cloud. This frame is then processed in the cloud which
serve as a basis of further robot movement calculations.

V. STREAMING AND IMAGE TRANSPORT SOLUTIONS

Here we propose a custom method for image transportation
that offers low bandwidth and latency. A hybrid method is
also introduced with the combination of different network
schemes. Alongside with our implementation, popular image
transportation methods are introduced that are common in
robotic applications.

A. ROS streaming

To transmit data among nodes, ROS by default use seri-
alization and sends raw image objects as string which is a
less effective way of image transportation and streaming. As
measurements show, it takes 25 MB/s to transfer raw colour
and depth images with 30 FPS. ROS plugins offer compression
methods for a more effective image transport. It can be
configured for PNG or JPEG compression. The compression

range in case of the JPEG is [1, 100] where lower values trade
image quality for bandwidth savings. To find the appropriate
balance between image size and quality, parameters needs to
be fine-tuned according to the application’s needs.

B. Streaming via GStreamer

GStreamer is a current open-source multi-platform mul-
timedia framework with widespread API options like the
OpenCV library, OpenGL, RealSense or other community-
driven projects [19]. It became popular for streaming audiovi-
sual content and has been frequently used in studies relating to
video transmission for its utility and flexibility in the delivery
of audio and visual content. The multimedia pipelines of
GStreamer are completed through the use of plugins which
are assembled using so called pads to form an interconnected
framework, moving video from the sink pad of a plugin to act
as the source of another.

The common part in each image processing solution is the
utilization of OpenCV. To exploit its capabilities, OpenCV is
compiled on both sender and receiver side with GStreamer
integration. The goal of GStreamer in this project is to separate
the application (e.g., video player, video editor) from the
streaming media complexity (e.g., hardware acceleration, re-
moteness). In this case only the video transmission is relevant
without the audio track.

Fig. 7. Streaming and image transport solutions software architecture.

Regarding the restrictions and specialities, the streamer
pipeline looks as Fig. 7 presents. Because of the pipeline

4

from the cloud. (Later, with the improvement of the experi-
mental 5G network parameters, it could also be moved to the
cloud.)

2) Camera and cloud image processing: A Raspberry Pi
device (RPi4) serves as a gateway and driver host for the
RealSense camera, since the camera hardware lacks any direct
network connectivity.

Note here, that although the publish-subscribe scheme pub-
lishes every camera frame, the image processing takes only
one frame from the stream to work on. hence, there is no
need to to transfer the camera stream to the cloud continuously.
Taking this into account, live streaming can be reduced to give
a frame only when it is required. Because of the camera has
a warm-up time, the idea is to combine the publish-subscribe
communication scheme with a service-based request-response
phase to fetch the image frame as Fig. 6 presents.

Fig. 6. Combined publish-subscribe and request-response (aka. client-server)
communication for acquiring an image from the camera for cloud processing.

According to this enhancement, the camera driver node
running in the background always provides the camera stream,
but it will not transfer the stream continuously over the
network but only forwards it to a local service server. This
server provides only one image by grabbing a frame from the
published camera stream in case of an incoming request from
the cloud. This frame is then processed in the cloud which
serve as a basis of further robot movement calculations.

V. STREAMING AND IMAGE TRANSPORT SOLUTIONS

Here we propose a custom method for image transportation
that offers low bandwidth and latency. A hybrid method is
also introduced with the combination of different network
schemes. Alongside with our implementation, popular image
transportation methods are introduced that are common in
robotic applications.

A. ROS streaming

To transmit data among nodes, ROS by default use seri-
alization and sends raw image objects as string which is a
less effective way of image transportation and streaming. As
measurements show, it takes 25 MB/s to transfer raw colour
and depth images with 30 FPS. ROS plugins offer compression
methods for a more effective image transport. It can be
configured for PNG or JPEG compression. The compression

range in case of the JPEG is [1, 100] where lower values trade
image quality for bandwidth savings. To find the appropriate
balance between image size and quality, parameters needs to
be fine-tuned according to the application’s needs.

B. Streaming via GStreamer

GStreamer is a current open-source multi-platform mul-
timedia framework with widespread API options like the
OpenCV library, OpenGL, RealSense or other community-
driven projects [19]. It became popular for streaming audiovi-
sual content and has been frequently used in studies relating to
video transmission for its utility and flexibility in the delivery
of audio and visual content. The multimedia pipelines of
GStreamer are completed through the use of plugins which
are assembled using so called pads to form an interconnected
framework, moving video from the sink pad of a plugin to act
as the source of another.

The common part in each image processing solution is the
utilization of OpenCV. To exploit its capabilities, OpenCV is
compiled on both sender and receiver side with GStreamer
integration. The goal of GStreamer in this project is to separate
the application (e.g., video player, video editor) from the
streaming media complexity (e.g., hardware acceleration, re-
moteness). In this case only the video transmission is relevant
without the audio track.

Fig. 7. Streaming and image transport solutions software architecture.

Regarding the restrictions and specialities, the streamer
pipeline looks as Fig. 7 presents. Because of the pipeline

4

from the cloud. (Later, with the improvement of the experi-
mental 5G network parameters, it could also be moved to the
cloud.)

2) Camera and cloud image processing: A Raspberry Pi
device (RPi4) serves as a gateway and driver host for the
RealSense camera, since the camera hardware lacks any direct
network connectivity.

Note here, that although the publish-subscribe scheme pub-
lishes every camera frame, the image processing takes only
one frame from the stream to work on. hence, there is no
need to to transfer the camera stream to the cloud continuously.
Taking this into account, live streaming can be reduced to give
a frame only when it is required. Because of the camera has
a warm-up time, the idea is to combine the publish-subscribe
communication scheme with a service-based request-response
phase to fetch the image frame as Fig. 6 presents.

Fig. 6. Combined publish-subscribe and request-response (aka. client-server)
communication for acquiring an image from the camera for cloud processing.

According to this enhancement, the camera driver node
running in the background always provides the camera stream,
but it will not transfer the stream continuously over the
network but only forwards it to a local service server. This
server provides only one image by grabbing a frame from the
published camera stream in case of an incoming request from
the cloud. This frame is then processed in the cloud which
serve as a basis of further robot movement calculations.

V. STREAMING AND IMAGE TRANSPORT SOLUTIONS

Here we propose a custom method for image transportation
that offers low bandwidth and latency. A hybrid method is
also introduced with the combination of different network
schemes. Alongside with our implementation, popular image
transportation methods are introduced that are common in
robotic applications.

A. ROS streaming

To transmit data among nodes, ROS by default use seri-
alization and sends raw image objects as string which is a
less effective way of image transportation and streaming. As
measurements show, it takes 25 MB/s to transfer raw colour
and depth images with 30 FPS. ROS plugins offer compression
methods for a more effective image transport. It can be
configured for PNG or JPEG compression. The compression

range in case of the JPEG is [1, 100] where lower values trade
image quality for bandwidth savings. To find the appropriate
balance between image size and quality, parameters needs to
be fine-tuned according to the application’s needs.

B. Streaming via GStreamer

GStreamer is a current open-source multi-platform mul-
timedia framework with widespread API options like the
OpenCV library, OpenGL, RealSense or other community-
driven projects [19]. It became popular for streaming audiovi-
sual content and has been frequently used in studies relating to
video transmission for its utility and flexibility in the delivery
of audio and visual content. The multimedia pipelines of
GStreamer are completed through the use of plugins which
are assembled using so called pads to form an interconnected
framework, moving video from the sink pad of a plugin to act
as the source of another.

The common part in each image processing solution is the
utilization of OpenCV. To exploit its capabilities, OpenCV is
compiled on both sender and receiver side with GStreamer
integration. The goal of GStreamer in this project is to separate
the application (e.g., video player, video editor) from the
streaming media complexity (e.g., hardware acceleration, re-
moteness). In this case only the video transmission is relevant
without the audio track.

Fig. 7. Streaming and image transport solutions software architecture.

Regarding the restrictions and specialities, the streamer
pipeline looks as Fig. 7 presents. Because of the pipeline

4

from the cloud. (Later, with the improvement of the experi-
mental 5G network parameters, it could also be moved to the
cloud.)

2) Camera and cloud image processing: A Raspberry Pi
device (RPi4) serves as a gateway and driver host for the
RealSense camera, since the camera hardware lacks any direct
network connectivity.

Note here, that although the publish-subscribe scheme pub-
lishes every camera frame, the image processing takes only
one frame from the stream to work on. hence, there is no
need to to transfer the camera stream to the cloud continuously.
Taking this into account, live streaming can be reduced to give
a frame only when it is required. Because of the camera has
a warm-up time, the idea is to combine the publish-subscribe
communication scheme with a service-based request-response
phase to fetch the image frame as Fig. 6 presents.

Fig. 6. Combined publish-subscribe and request-response (aka. client-server)
communication for acquiring an image from the camera for cloud processing.

According to this enhancement, the camera driver node
running in the background always provides the camera stream,
but it will not transfer the stream continuously over the
network but only forwards it to a local service server. This
server provides only one image by grabbing a frame from the
published camera stream in case of an incoming request from
the cloud. This frame is then processed in the cloud which
serve as a basis of further robot movement calculations.

V. STREAMING AND IMAGE TRANSPORT SOLUTIONS

Here we propose a custom method for image transportation
that offers low bandwidth and latency. A hybrid method is
also introduced with the combination of different network
schemes. Alongside with our implementation, popular image
transportation methods are introduced that are common in
robotic applications.

A. ROS streaming

To transmit data among nodes, ROS by default use seri-
alization and sends raw image objects as string which is a
less effective way of image transportation and streaming. As
measurements show, it takes 25 MB/s to transfer raw colour
and depth images with 30 FPS. ROS plugins offer compression
methods for a more effective image transport. It can be
configured for PNG or JPEG compression. The compression

range in case of the JPEG is [1, 100] where lower values trade
image quality for bandwidth savings. To find the appropriate
balance between image size and quality, parameters needs to
be fine-tuned according to the application’s needs.

B. Streaming via GStreamer

GStreamer is a current open-source multi-platform mul-
timedia framework with widespread API options like the
OpenCV library, OpenGL, RealSense or other community-
driven projects [19]. It became popular for streaming audiovi-
sual content and has been frequently used in studies relating to
video transmission for its utility and flexibility in the delivery
of audio and visual content. The multimedia pipelines of
GStreamer are completed through the use of plugins which
are assembled using so called pads to form an interconnected
framework, moving video from the sink pad of a plugin to act
as the source of another.

The common part in each image processing solution is the
utilization of OpenCV. To exploit its capabilities, OpenCV is
compiled on both sender and receiver side with GStreamer
integration. The goal of GStreamer in this project is to separate
the application (e.g., video player, video editor) from the
streaming media complexity (e.g., hardware acceleration, re-
moteness). In this case only the video transmission is relevant
without the audio track.

Fig. 7. Streaming and image transport solutions software architecture.

Regarding the restrictions and specialities, the streamer
pipeline looks as Fig. 7 presents. Because of the pipeline

4

from the cloud. (Later, with the improvement of the experi-
mental 5G network parameters, it could also be moved to the
cloud.)

2) Camera and cloud image processing: A Raspberry Pi
device (RPi4) serves as a gateway and driver host for the
RealSense camera, since the camera hardware lacks any direct
network connectivity.

Note here, that although the publish-subscribe scheme pub-
lishes every camera frame, the image processing takes only
one frame from the stream to work on. hence, there is no
need to to transfer the camera stream to the cloud continuously.
Taking this into account, live streaming can be reduced to give
a frame only when it is required. Because of the camera has
a warm-up time, the idea is to combine the publish-subscribe
communication scheme with a service-based request-response
phase to fetch the image frame as Fig. 6 presents.

Fig. 6. Combined publish-subscribe and request-response (aka. client-server)
communication for acquiring an image from the camera for cloud processing.

According to this enhancement, the camera driver node
running in the background always provides the camera stream,
but it will not transfer the stream continuously over the
network but only forwards it to a local service server. This
server provides only one image by grabbing a frame from the
published camera stream in case of an incoming request from
the cloud. This frame is then processed in the cloud which
serve as a basis of further robot movement calculations.

V. STREAMING AND IMAGE TRANSPORT SOLUTIONS

Here we propose a custom method for image transportation
that offers low bandwidth and latency. A hybrid method is
also introduced with the combination of different network
schemes. Alongside with our implementation, popular image
transportation methods are introduced that are common in
robotic applications.

A. ROS streaming

To transmit data among nodes, ROS by default use seri-
alization and sends raw image objects as string which is a
less effective way of image transportation and streaming. As
measurements show, it takes 25 MB/s to transfer raw colour
and depth images with 30 FPS. ROS plugins offer compression
methods for a more effective image transport. It can be
configured for PNG or JPEG compression. The compression

range in case of the JPEG is [1, 100] where lower values trade
image quality for bandwidth savings. To find the appropriate
balance between image size and quality, parameters needs to
be fine-tuned according to the application’s needs.

B. Streaming via GStreamer

GStreamer is a current open-source multi-platform mul-
timedia framework with widespread API options like the
OpenCV library, OpenGL, RealSense or other community-
driven projects [19]. It became popular for streaming audiovi-
sual content and has been frequently used in studies relating to
video transmission for its utility and flexibility in the delivery
of audio and visual content. The multimedia pipelines of
GStreamer are completed through the use of plugins which
are assembled using so called pads to form an interconnected
framework, moving video from the sink pad of a plugin to act
as the source of another.

The common part in each image processing solution is the
utilization of OpenCV. To exploit its capabilities, OpenCV is
compiled on both sender and receiver side with GStreamer
integration. The goal of GStreamer in this project is to separate
the application (e.g., video player, video editor) from the
streaming media complexity (e.g., hardware acceleration, re-
moteness). In this case only the video transmission is relevant
without the audio track.

Fig. 7. Streaming and image transport solutions software architecture.

Regarding the restrictions and specialities, the streamer
pipeline looks as Fig. 7 presents. Because of the pipeline

4

from the cloud. (Later, with the improvement of the experi-
mental 5G network parameters, it could also be moved to the
cloud.)

2) Camera and cloud image processing: A Raspberry Pi
device (RPi4) serves as a gateway and driver host for the
RealSense camera, since the camera hardware lacks any direct
network connectivity.

Note here, that although the publish-subscribe scheme pub-
lishes every camera frame, the image processing takes only
one frame from the stream to work on. hence, there is no
need to to transfer the camera stream to the cloud continuously.
Taking this into account, live streaming can be reduced to give
a frame only when it is required. Because of the camera has
a warm-up time, the idea is to combine the publish-subscribe
communication scheme with a service-based request-response
phase to fetch the image frame as Fig. 6 presents.

Fig. 6. Combined publish-subscribe and request-response (aka. client-server)
communication for acquiring an image from the camera for cloud processing.

According to this enhancement, the camera driver node
running in the background always provides the camera stream,
but it will not transfer the stream continuously over the
network but only forwards it to a local service server. This
server provides only one image by grabbing a frame from the
published camera stream in case of an incoming request from
the cloud. This frame is then processed in the cloud which
serve as a basis of further robot movement calculations.

V. STREAMING AND IMAGE TRANSPORT SOLUTIONS

Here we propose a custom method for image transportation
that offers low bandwidth and latency. A hybrid method is
also introduced with the combination of different network
schemes. Alongside with our implementation, popular image
transportation methods are introduced that are common in
robotic applications.

A. ROS streaming

To transmit data among nodes, ROS by default use seri-
alization and sends raw image objects as string which is a
less effective way of image transportation and streaming. As
measurements show, it takes 25 MB/s to transfer raw colour
and depth images with 30 FPS. ROS plugins offer compression
methods for a more effective image transport. It can be
configured for PNG or JPEG compression. The compression

range in case of the JPEG is [1, 100] where lower values trade
image quality for bandwidth savings. To find the appropriate
balance between image size and quality, parameters needs to
be fine-tuned according to the application’s needs.

B. Streaming via GStreamer

GStreamer is a current open-source multi-platform mul-
timedia framework with widespread API options like the
OpenCV library, OpenGL, RealSense or other community-
driven projects [19]. It became popular for streaming audiovi-
sual content and has been frequently used in studies relating to
video transmission for its utility and flexibility in the delivery
of audio and visual content. The multimedia pipelines of
GStreamer are completed through the use of plugins which
are assembled using so called pads to form an interconnected
framework, moving video from the sink pad of a plugin to act
as the source of another.

The common part in each image processing solution is the
utilization of OpenCV. To exploit its capabilities, OpenCV is
compiled on both sender and receiver side with GStreamer
integration. The goal of GStreamer in this project is to separate
the application (e.g., video player, video editor) from the
streaming media complexity (e.g., hardware acceleration, re-
moteness). In this case only the video transmission is relevant
without the audio track.

Fig. 7. Streaming and image transport solutions software architecture.

Regarding the restrictions and specialities, the streamer
pipeline looks as Fig. 7 presents. Because of the pipeline

5

forwards preprocessed images from OpenCV, the frames in-
serted directly from script to the GStreamer pipeline. To
encode camera stream, H.264 encoding is applied. Instead of
encoding frames individually, H.264 compress across frames.
This inter-frame compression significantly reduces bandwidth
consumption because most frames record only the changes
from the previous frame. In order to be able to send the H.264
stream over the network, it needs to be encapsulated into Real-
time Transport Protocol (RTP) packets [20]. After providing
the H.264 payload, it is combined with UDP, and is ready to
be sent through the network.

In receiver side the source is an UDP connection with
a related port number. Upon receiving the datagram, the
decoder extracts H.264 video from RTP packets and sends it to
another converter which creates a raw formatted stream with
the requested parameters (640x480 resolution, 8-bit grayscale)
which could be managed by OpenCV. After the stream is
handed over to OpenCV, it is ready for ROS integration. With
OpenCV, the image stream is then packed into a ROS compli-
ant sensor msgs/Image type message. After this conversion,
the image stream is being published on a ROS topic.

C. Streaming via EtherSense

Intel provides an open-source solution for its D435i depth
camera for connecting to the network by using a Raspberry
Pi device [21]. It applies industry standard RTP protocol for
streaming. Raspberry Pi only responsible for the transportation
part, meanwhile post-processing such as depth decimation or
spatial and temporal filtering could remain in the cloud.

According to the measurements, the bandwidth for both
colour and depth stream with 640x360 resolution and 30 FPS
requires 27.6 MB/s. By exploiting the full potential of the
camera, with 848x480 resolution and 90 FPS, the required
bandwidth reaches 146 MB/s. This option can easily saturate
the available networking bandwidth, thus it does not provide
a scalable solution for mass-robotic application of visual
guidance.

VI. MEASUREMENTS AND PERFORMANCE EVALUATION

Next, we present performance measurement results of our
system with the different camera image transport solutions.
Besides end-to-end latency as being perhaps the most impor-
tant transport performance parameter, the required transmis-
sion bandwidth is also measured and compared with different
network and image parameters, then the advantages and limi-
tations are evaluated.

A. Required bandwidth

An important performance indicator of the realized system
is the required bandwidth to operate with. First, the ROS
streaming solution is measured, then it is compared with our
GStreamer solution to present the results.

For traffic measurement purposes, we used the internal topic
bandwidth monitor on ROS side, while for Gstreamer traffic
the real time Linux network bandwidth tool called Interface
TOP (IFTOP) was used. To measure exclusively the image

transport, the actual port was filtered where GStreamer is
forwarding the stream. All the measurements reflect an average
of 10-minute data traffic.

The performance of ROS streaming is summarized in Fig. 8
where all the measurements were done with 640x480 resolu-
tion and 30 FPS. As expected, the raw image transport over
ROS has the highest bandwidth requirement. These results
are close to Intel’s official EtherSense realization, where for
example the depth streaming with similar parameters took
13.88 MB/s.

Fig. 8. ROS image streaming comparison.

Although compressed image transport could significantly
lower the data rate, the hybrid method could present an even
better solution. The idea of providing only one frame on
request could minimize the data transfer. However, the image
streaming is still running locally in the background, but does
not flow into the cloud unless it is requested.

The JPEG compression methods can also be applied to the
requested frame as well. This results in such a small image
size that could be easily transferred without any difficulties.
The size of only one colour frame with 15% JPEG quality is
approximately 215 kB, the corresponding depth frame size is
265 kB.

Fig. 9. Depth image streaming comparison.

Comparing these results with the ROS streaming options,
GStreamer could perform better up to more than an order
of magnitude. Rather than compressing images one by one
as ROS does, GStreamer uses H.264 encoding where the
inter-frame compression significantly reduces the bandwidth
consumption. (Note, that static scenes with mostly still frames
encoded with H.264 can result in very low data volumes,
therefore the measurements used contain both still scenes and
scenes in motion to collect more meaningful data.) GStreamer

Optimizing Camera Stream Transport
in Cloud-Based Industrial Robotic Systems

MARCH 2022 • VOLUME XIV • NUMBER 140

INFOCOMMUNICATIONS JOURNAL

5

forwards preprocessed images from OpenCV, the frames in-
serted directly from script to the GStreamer pipeline. To
encode camera stream, H.264 encoding is applied. Instead of
encoding frames individually, H.264 compress across frames.
This inter-frame compression significantly reduces bandwidth
consumption because most frames record only the changes
from the previous frame. In order to be able to send the H.264
stream over the network, it needs to be encapsulated into Real-
time Transport Protocol (RTP) packets [20]. After providing
the H.264 payload, it is combined with UDP, and is ready to
be sent through the network.

In receiver side the source is an UDP connection with
a related port number. Upon receiving the datagram, the
decoder extracts H.264 video from RTP packets and sends it to
another converter which creates a raw formatted stream with
the requested parameters (640x480 resolution, 8-bit grayscale)
which could be managed by OpenCV. After the stream is
handed over to OpenCV, it is ready for ROS integration. With
OpenCV, the image stream is then packed into a ROS compli-
ant sensor msgs/Image type message. After this conversion,
the image stream is being published on a ROS topic.

C. Streaming via EtherSense

Intel provides an open-source solution for its D435i depth
camera for connecting to the network by using a Raspberry
Pi device [21]. It applies industry standard RTP protocol for
streaming. Raspberry Pi only responsible for the transportation
part, meanwhile post-processing such as depth decimation or
spatial and temporal filtering could remain in the cloud.

According to the measurements, the bandwidth for both
colour and depth stream with 640x360 resolution and 30 FPS
requires 27.6 MB/s. By exploiting the full potential of the
camera, with 848x480 resolution and 90 FPS, the required
bandwidth reaches 146 MB/s. This option can easily saturate
the available networking bandwidth, thus it does not provide
a scalable solution for mass-robotic application of visual
guidance.

VI. MEASUREMENTS AND PERFORMANCE EVALUATION

Next, we present performance measurement results of our
system with the different camera image transport solutions.
Besides end-to-end latency as being perhaps the most impor-
tant transport performance parameter, the required transmis-
sion bandwidth is also measured and compared with different
network and image parameters, then the advantages and limi-
tations are evaluated.

A. Required bandwidth

An important performance indicator of the realized system
is the required bandwidth to operate with. First, the ROS
streaming solution is measured, then it is compared with our
GStreamer solution to present the results.

For traffic measurement purposes, we used the internal topic
bandwidth monitor on ROS side, while for Gstreamer traffic
the real time Linux network bandwidth tool called Interface
TOP (IFTOP) was used. To measure exclusively the image

transport, the actual port was filtered where GStreamer is
forwarding the stream. All the measurements reflect an average
of 10-minute data traffic.

The performance of ROS streaming is summarized in Fig. 8
where all the measurements were done with 640x480 resolu-
tion and 30 FPS. As expected, the raw image transport over
ROS has the highest bandwidth requirement. These results
are close to Intel’s official EtherSense realization, where for
example the depth streaming with similar parameters took
13.88 MB/s.

Fig. 8. ROS image streaming comparison.

Although compressed image transport could significantly
lower the data rate, the hybrid method could present an even
better solution. The idea of providing only one frame on
request could minimize the data transfer. However, the image
streaming is still running locally in the background, but does
not flow into the cloud unless it is requested.

The JPEG compression methods can also be applied to the
requested frame as well. This results in such a small image
size that could be easily transferred without any difficulties.
The size of only one colour frame with 15% JPEG quality is
approximately 215 kB, the corresponding depth frame size is
265 kB.

Fig. 9. Depth image streaming comparison.

Comparing these results with the ROS streaming options,
GStreamer could perform better up to more than an order
of magnitude. Rather than compressing images one by one
as ROS does, GStreamer uses H.264 encoding where the
inter-frame compression significantly reduces the bandwidth
consumption. (Note, that static scenes with mostly still frames
encoded with H.264 can result in very low data volumes,
therefore the measurements used contain both still scenes and
scenes in motion to collect more meaningful data.) GStreamer

5

forwards preprocessed images from OpenCV, the frames in-
serted directly from script to the GStreamer pipeline. To
encode camera stream, H.264 encoding is applied. Instead of
encoding frames individually, H.264 compress across frames.
This inter-frame compression significantly reduces bandwidth
consumption because most frames record only the changes
from the previous frame. In order to be able to send the H.264
stream over the network, it needs to be encapsulated into Real-
time Transport Protocol (RTP) packets [20]. After providing
the H.264 payload, it is combined with UDP, and is ready to
be sent through the network.

In receiver side the source is an UDP connection with
a related port number. Upon receiving the datagram, the
decoder extracts H.264 video from RTP packets and sends it to
another converter which creates a raw formatted stream with
the requested parameters (640x480 resolution, 8-bit grayscale)
which could be managed by OpenCV. After the stream is
handed over to OpenCV, it is ready for ROS integration. With
OpenCV, the image stream is then packed into a ROS compli-
ant sensor msgs/Image type message. After this conversion,
the image stream is being published on a ROS topic.

C. Streaming via EtherSense

Intel provides an open-source solution for its D435i depth
camera for connecting to the network by using a Raspberry
Pi device [21]. It applies industry standard RTP protocol for
streaming. Raspberry Pi only responsible for the transportation
part, meanwhile post-processing such as depth decimation or
spatial and temporal filtering could remain in the cloud.

According to the measurements, the bandwidth for both
colour and depth stream with 640x360 resolution and 30 FPS
requires 27.6 MB/s. By exploiting the full potential of the
camera, with 848x480 resolution and 90 FPS, the required
bandwidth reaches 146 MB/s. This option can easily saturate
the available networking bandwidth, thus it does not provide
a scalable solution for mass-robotic application of visual
guidance.

VI. MEASUREMENTS AND PERFORMANCE EVALUATION

Next, we present performance measurement results of our
system with the different camera image transport solutions.
Besides end-to-end latency as being perhaps the most impor-
tant transport performance parameter, the required transmis-
sion bandwidth is also measured and compared with different
network and image parameters, then the advantages and limi-
tations are evaluated.

A. Required bandwidth

An important performance indicator of the realized system
is the required bandwidth to operate with. First, the ROS
streaming solution is measured, then it is compared with our
GStreamer solution to present the results.

For traffic measurement purposes, we used the internal topic
bandwidth monitor on ROS side, while for Gstreamer traffic
the real time Linux network bandwidth tool called Interface
TOP (IFTOP) was used. To measure exclusively the image

transport, the actual port was filtered where GStreamer is
forwarding the stream. All the measurements reflect an average
of 10-minute data traffic.

The performance of ROS streaming is summarized in Fig. 8
where all the measurements were done with 640x480 resolu-
tion and 30 FPS. As expected, the raw image transport over
ROS has the highest bandwidth requirement. These results
are close to Intel’s official EtherSense realization, where for
example the depth streaming with similar parameters took
13.88 MB/s.

Fig. 8. ROS image streaming comparison.

Although compressed image transport could significantly
lower the data rate, the hybrid method could present an even
better solution. The idea of providing only one frame on
request could minimize the data transfer. However, the image
streaming is still running locally in the background, but does
not flow into the cloud unless it is requested.

The JPEG compression methods can also be applied to the
requested frame as well. This results in such a small image
size that could be easily transferred without any difficulties.
The size of only one colour frame with 15% JPEG quality is
approximately 215 kB, the corresponding depth frame size is
265 kB.

Fig. 9. Depth image streaming comparison.

Comparing these results with the ROS streaming options,
GStreamer could perform better up to more than an order
of magnitude. Rather than compressing images one by one
as ROS does, GStreamer uses H.264 encoding where the
inter-frame compression significantly reduces the bandwidth
consumption. (Note, that static scenes with mostly still frames
encoded with H.264 can result in very low data volumes,
therefore the measurements used contain both still scenes and
scenes in motion to collect more meaningful data.) GStreamer

5

forwards preprocessed images from OpenCV, the frames in-
serted directly from script to the GStreamer pipeline. To
encode camera stream, H.264 encoding is applied. Instead of
encoding frames individually, H.264 compress across frames.
This inter-frame compression significantly reduces bandwidth
consumption because most frames record only the changes
from the previous frame. In order to be able to send the H.264
stream over the network, it needs to be encapsulated into Real-
time Transport Protocol (RTP) packets [20]. After providing
the H.264 payload, it is combined with UDP, and is ready to
be sent through the network.

In receiver side the source is an UDP connection with
a related port number. Upon receiving the datagram, the
decoder extracts H.264 video from RTP packets and sends it to
another converter which creates a raw formatted stream with
the requested parameters (640x480 resolution, 8-bit grayscale)
which could be managed by OpenCV. After the stream is
handed over to OpenCV, it is ready for ROS integration. With
OpenCV, the image stream is then packed into a ROS compli-
ant sensor msgs/Image type message. After this conversion,
the image stream is being published on a ROS topic.

C. Streaming via EtherSense

Intel provides an open-source solution for its D435i depth
camera for connecting to the network by using a Raspberry
Pi device [21]. It applies industry standard RTP protocol for
streaming. Raspberry Pi only responsible for the transportation
part, meanwhile post-processing such as depth decimation or
spatial and temporal filtering could remain in the cloud.

According to the measurements, the bandwidth for both
colour and depth stream with 640x360 resolution and 30 FPS
requires 27.6 MB/s. By exploiting the full potential of the
camera, with 848x480 resolution and 90 FPS, the required
bandwidth reaches 146 MB/s. This option can easily saturate
the available networking bandwidth, thus it does not provide
a scalable solution for mass-robotic application of visual
guidance.

VI. MEASUREMENTS AND PERFORMANCE EVALUATION

Next, we present performance measurement results of our
system with the different camera image transport solutions.
Besides end-to-end latency as being perhaps the most impor-
tant transport performance parameter, the required transmis-
sion bandwidth is also measured and compared with different
network and image parameters, then the advantages and limi-
tations are evaluated.

A. Required bandwidth

An important performance indicator of the realized system
is the required bandwidth to operate with. First, the ROS
streaming solution is measured, then it is compared with our
GStreamer solution to present the results.

For traffic measurement purposes, we used the internal topic
bandwidth monitor on ROS side, while for Gstreamer traffic
the real time Linux network bandwidth tool called Interface
TOP (IFTOP) was used. To measure exclusively the image

transport, the actual port was filtered where GStreamer is
forwarding the stream. All the measurements reflect an average
of 10-minute data traffic.

The performance of ROS streaming is summarized in Fig. 8
where all the measurements were done with 640x480 resolu-
tion and 30 FPS. As expected, the raw image transport over
ROS has the highest bandwidth requirement. These results
are close to Intel’s official EtherSense realization, where for
example the depth streaming with similar parameters took
13.88 MB/s.

Fig. 8. ROS image streaming comparison.

Although compressed image transport could significantly
lower the data rate, the hybrid method could present an even
better solution. The idea of providing only one frame on
request could minimize the data transfer. However, the image
streaming is still running locally in the background, but does
not flow into the cloud unless it is requested.

The JPEG compression methods can also be applied to the
requested frame as well. This results in such a small image
size that could be easily transferred without any difficulties.
The size of only one colour frame with 15% JPEG quality is
approximately 215 kB, the corresponding depth frame size is
265 kB.

Fig. 9. Depth image streaming comparison.

Comparing these results with the ROS streaming options,
GStreamer could perform better up to more than an order
of magnitude. Rather than compressing images one by one
as ROS does, GStreamer uses H.264 encoding where the
inter-frame compression significantly reduces the bandwidth
consumption. (Note, that static scenes with mostly still frames
encoded with H.264 can result in very low data volumes,
therefore the measurements used contain both still scenes and
scenes in motion to collect more meaningful data.) GStreamer

6

was set up to forward with constant quality. To show a
more revealing chart and visualize the differences, logarithmic
scaling is applied in the figures.

Fig. 10. Colour image streaming comparison.

While examining the streaming of colour images, the pa-
rameters and measurement method remained unchanged. Here
the results (see Fig. 10) show the overhead of ROS streaming
against GStreamer.

Taking into account the image quality and the required
bandwidth, it is clearly a trade-off. According to our experi-
ences, among all the available ROS image transport methods,
the 15% JPEG option with 640x480 resolution turned out to
be the best trade-off between image quality and bandwidth
usage, when detecting a jenga block. Thus, the following
measurements were all carried out in 640x480 resolution.

B. End-to-end latency

For latency measurements, glass-to-glass method was ap-
plied: it measures the time it takes between the moment
of action happens in front of a camera (first glass), and
the moment that a viewer sees the result of this action on
the screen (second glass). To determine latency, an online
stopwatch were used meanwhile the camera was faced to
the notebook screen and forwarded the encoded stream for
cloud processing (see Fig. 11). This method makes end-to-
end latency measurement possible, including such elements
like the camera readout time, encoding and so on. On the
other hand, with this method a possible bottleneck is the 60 Hz
refreshing rate of the screen. Because of the camera relies on
the content of the screen, it could not be more accurate than
1/60 s (approx. 17 msec).

Fig. 11. Latency measurement setup and methodology (wireless connection:
blue dotted line, wired connection: straight line).

During the measurement, the camera detects an appearing
jenga (see step 1 on Fig. 11) from a pre-recorded video shown
on the laptop screen, which also displays a running stopwatch.
The camera stream is then forwarded into the cloud (step 2)
where the image processing takes place (step 3). Finally, the
result is sent back and displayed on the laptop screen (step 4).

The critical component of an end-to-end latency is the radio
transport delay over the wireless link. In order to be able to
examine this component, reference measurements were taken
where all wireless links were replaced by wired connections
(see Fig. 11). Table I presents results collected from 10 dif-
ferent measurements for both the wireless and wired options
where the average latency and its standard deviation are listed
for the two image transport methods.

TABLE I
END-TO-END LATENCY MEASUREMENT RESULTS

ROS transport GStreamer
wireless wired wireless wired

average 2286.9 ms 1123.7 ms 244 ms 222.3 ms
standard deviation 383.1 ms 120.2 ms 66.2 ms 32.3 ms

The highest average delay is measured for ROS transport
over wireless. Its value is two times higher that the experi-
enced wired transmission delay. The standard deviation for
the wireless ROS transport is also three times as high as for
its wired counterpart. However, the end-to-end delay for the
GStreamer solution does not show significant difference for
the two cases, although the standard deviation is doubled for
the wireless case. Note here, that the standard deviation of
end-to-end latency can be directly translated to delay jitter,
which is an important performance metric for video streaming.
The most important finding here is that the average delay for
the ROS transport is significantly higher than the GStreamer
option.

VII. CONCLUSION

In this paper, the standard ROS-based network image trans-
mission method was examined, and an efficient custom image
transport solution based on GStreamer was proposed and
evaluated through a demonstration use case. The trade-off be-
tween image quality and network transmission bandwidth was
highlighted. Comparing our streaming implementation with
the industry-standard ROS solution, our method showed better
performance by one order of magnitude. Even in wireless
systems our method showed significantly lower latency. When
continuous image transfer is not required, the bandwidth usage
can be even more reduced when—instead of forwarding the
whole stream over the network—only a single frame is sent
for image processing.

Visual-aided robotics is a rapidly emerging field in Industry
4.0 solutions, thus efficient video streaming and image trans-
mission techniques together with cloud-based image process-
ing will form the backbone of such applications.

ACKNOWLEDGMENT

This work has been supported by the Ericsson-BME 5G
Joint Research and Cooperation Project, partly funded by

Optimizing Camera Stream Transport
in Cloud-Based Industrial Robotic Systems

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 41

6

was set up to forward with constant quality. To show a
more revealing chart and visualize the differences, logarithmic
scaling is applied in the figures.

Fig. 10. Colour image streaming comparison.

While examining the streaming of colour images, the pa-
rameters and measurement method remained unchanged. Here
the results (see Fig. 10) show the overhead of ROS streaming
against GStreamer.

Taking into account the image quality and the required
bandwidth, it is clearly a trade-off. According to our experi-
ences, among all the available ROS image transport methods,
the 15% JPEG option with 640x480 resolution turned out to
be the best trade-off between image quality and bandwidth
usage, when detecting a jenga block. Thus, the following
measurements were all carried out in 640x480 resolution.

B. End-to-end latency

For latency measurements, glass-to-glass method was ap-
plied: it measures the time it takes between the moment
of action happens in front of a camera (first glass), and
the moment that a viewer sees the result of this action on
the screen (second glass). To determine latency, an online
stopwatch were used meanwhile the camera was faced to
the notebook screen and forwarded the encoded stream for
cloud processing (see Fig. 11). This method makes end-to-
end latency measurement possible, including such elements
like the camera readout time, encoding and so on. On the
other hand, with this method a possible bottleneck is the 60 Hz
refreshing rate of the screen. Because of the camera relies on
the content of the screen, it could not be more accurate than
1/60 s (approx. 17 msec).

Fig. 11. Latency measurement setup and methodology (wireless connection:
blue dotted line, wired connection: straight line).

During the measurement, the camera detects an appearing
jenga (see step 1 on Fig. 11) from a pre-recorded video shown
on the laptop screen, which also displays a running stopwatch.
The camera stream is then forwarded into the cloud (step 2)
where the image processing takes place (step 3). Finally, the
result is sent back and displayed on the laptop screen (step 4).

The critical component of an end-to-end latency is the radio
transport delay over the wireless link. In order to be able to
examine this component, reference measurements were taken
where all wireless links were replaced by wired connections
(see Fig. 11). Table I presents results collected from 10 dif-
ferent measurements for both the wireless and wired options
where the average latency and its standard deviation are listed
for the two image transport methods.

TABLE I
END-TO-END LATENCY MEASUREMENT RESULTS

ROS transport GStreamer
wireless wired wireless wired

average 2286.9 ms 1123.7 ms 244 ms 222.3 ms
standard deviation 383.1 ms 120.2 ms 66.2 ms 32.3 ms

The highest average delay is measured for ROS transport
over wireless. Its value is two times higher that the experi-
enced wired transmission delay. The standard deviation for
the wireless ROS transport is also three times as high as for
its wired counterpart. However, the end-to-end delay for the
GStreamer solution does not show significant difference for
the two cases, although the standard deviation is doubled for
the wireless case. Note here, that the standard deviation of
end-to-end latency can be directly translated to delay jitter,
which is an important performance metric for video streaming.
The most important finding here is that the average delay for
the ROS transport is significantly higher than the GStreamer
option.

VII. CONCLUSION

In this paper, the standard ROS-based network image trans-
mission method was examined, and an efficient custom image
transport solution based on GStreamer was proposed and
evaluated through a demonstration use case. The trade-off be-
tween image quality and network transmission bandwidth was
highlighted. Comparing our streaming implementation with
the industry-standard ROS solution, our method showed better
performance by one order of magnitude. Even in wireless
systems our method showed significantly lower latency. When
continuous image transfer is not required, the bandwidth usage
can be even more reduced when—instead of forwarding the
whole stream over the network—only a single frame is sent
for image processing.

Visual-aided robotics is a rapidly emerging field in Industry
4.0 solutions, thus efficient video streaming and image trans-
mission techniques together with cloud-based image process-
ing will form the backbone of such applications.

ACKNOWLEDGMENT

This work has been supported by the Ericsson-BME 5G
Joint Research and Cooperation Project, partly funded by

6

was set up to forward with constant quality. To show a
more revealing chart and visualize the differences, logarithmic
scaling is applied in the figures.

Fig. 10. Colour image streaming comparison.

While examining the streaming of colour images, the pa-
rameters and measurement method remained unchanged. Here
the results (see Fig. 10) show the overhead of ROS streaming
against GStreamer.

Taking into account the image quality and the required
bandwidth, it is clearly a trade-off. According to our experi-
ences, among all the available ROS image transport methods,
the 15% JPEG option with 640x480 resolution turned out to
be the best trade-off between image quality and bandwidth
usage, when detecting a jenga block. Thus, the following
measurements were all carried out in 640x480 resolution.

B. End-to-end latency

For latency measurements, glass-to-glass method was ap-
plied: it measures the time it takes between the moment
of action happens in front of a camera (first glass), and
the moment that a viewer sees the result of this action on
the screen (second glass). To determine latency, an online
stopwatch were used meanwhile the camera was faced to
the notebook screen and forwarded the encoded stream for
cloud processing (see Fig. 11). This method makes end-to-
end latency measurement possible, including such elements
like the camera readout time, encoding and so on. On the
other hand, with this method a possible bottleneck is the 60 Hz
refreshing rate of the screen. Because of the camera relies on
the content of the screen, it could not be more accurate than
1/60 s (approx. 17 msec).

Fig. 11. Latency measurement setup and methodology (wireless connection:
blue dotted line, wired connection: straight line).

During the measurement, the camera detects an appearing
jenga (see step 1 on Fig. 11) from a pre-recorded video shown
on the laptop screen, which also displays a running stopwatch.
The camera stream is then forwarded into the cloud (step 2)
where the image processing takes place (step 3). Finally, the
result is sent back and displayed on the laptop screen (step 4).

The critical component of an end-to-end latency is the radio
transport delay over the wireless link. In order to be able to
examine this component, reference measurements were taken
where all wireless links were replaced by wired connections
(see Fig. 11). Table I presents results collected from 10 dif-
ferent measurements for both the wireless and wired options
where the average latency and its standard deviation are listed
for the two image transport methods.

TABLE I
END-TO-END LATENCY MEASUREMENT RESULTS

ROS transport GStreamer
wireless wired wireless wired

average 2286.9 ms 1123.7 ms 244 ms 222.3 ms
standard deviation 383.1 ms 120.2 ms 66.2 ms 32.3 ms

The highest average delay is measured for ROS transport
over wireless. Its value is two times higher that the experi-
enced wired transmission delay. The standard deviation for
the wireless ROS transport is also three times as high as for
its wired counterpart. However, the end-to-end delay for the
GStreamer solution does not show significant difference for
the two cases, although the standard deviation is doubled for
the wireless case. Note here, that the standard deviation of
end-to-end latency can be directly translated to delay jitter,
which is an important performance metric for video streaming.
The most important finding here is that the average delay for
the ROS transport is significantly higher than the GStreamer
option.

VII. CONCLUSION

In this paper, the standard ROS-based network image trans-
mission method was examined, and an efficient custom image
transport solution based on GStreamer was proposed and
evaluated through a demonstration use case. The trade-off be-
tween image quality and network transmission bandwidth was
highlighted. Comparing our streaming implementation with
the industry-standard ROS solution, our method showed better
performance by one order of magnitude. Even in wireless
systems our method showed significantly lower latency. When
continuous image transfer is not required, the bandwidth usage
can be even more reduced when—instead of forwarding the
whole stream over the network—only a single frame is sent
for image processing.

Visual-aided robotics is a rapidly emerging field in Industry
4.0 solutions, thus efficient video streaming and image trans-
mission techniques together with cloud-based image process-
ing will form the backbone of such applications.

ACKNOWLEDGMENT

This work has been supported by the Ericsson-BME 5G
Joint Research and Cooperation Project, partly funded by

6

was set up to forward with constant quality. To show a
more revealing chart and visualize the differences, logarithmic
scaling is applied in the figures.

Fig. 10. Colour image streaming comparison.

While examining the streaming of colour images, the pa-
rameters and measurement method remained unchanged. Here
the results (see Fig. 10) show the overhead of ROS streaming
against GStreamer.

Taking into account the image quality and the required
bandwidth, it is clearly a trade-off. According to our experi-
ences, among all the available ROS image transport methods,
the 15% JPEG option with 640x480 resolution turned out to
be the best trade-off between image quality and bandwidth
usage, when detecting a jenga block. Thus, the following
measurements were all carried out in 640x480 resolution.

B. End-to-end latency

For latency measurements, glass-to-glass method was ap-
plied: it measures the time it takes between the moment
of action happens in front of a camera (first glass), and
the moment that a viewer sees the result of this action on
the screen (second glass). To determine latency, an online
stopwatch were used meanwhile the camera was faced to
the notebook screen and forwarded the encoded stream for
cloud processing (see Fig. 11). This method makes end-to-
end latency measurement possible, including such elements
like the camera readout time, encoding and so on. On the
other hand, with this method a possible bottleneck is the 60 Hz
refreshing rate of the screen. Because of the camera relies on
the content of the screen, it could not be more accurate than
1/60 s (approx. 17 msec).

Fig. 11. Latency measurement setup and methodology (wireless connection:
blue dotted line, wired connection: straight line).

During the measurement, the camera detects an appearing
jenga (see step 1 on Fig. 11) from a pre-recorded video shown
on the laptop screen, which also displays a running stopwatch.
The camera stream is then forwarded into the cloud (step 2)
where the image processing takes place (step 3). Finally, the
result is sent back and displayed on the laptop screen (step 4).

The critical component of an end-to-end latency is the radio
transport delay over the wireless link. In order to be able to
examine this component, reference measurements were taken
where all wireless links were replaced by wired connections
(see Fig. 11). Table I presents results collected from 10 dif-
ferent measurements for both the wireless and wired options
where the average latency and its standard deviation are listed
for the two image transport methods.

TABLE I
END-TO-END LATENCY MEASUREMENT RESULTS

ROS transport GStreamer
wireless wired wireless wired

average 2286.9 ms 1123.7 ms 244 ms 222.3 ms
standard deviation 383.1 ms 120.2 ms 66.2 ms 32.3 ms

The highest average delay is measured for ROS transport
over wireless. Its value is two times higher that the experi-
enced wired transmission delay. The standard deviation for
the wireless ROS transport is also three times as high as for
its wired counterpart. However, the end-to-end delay for the
GStreamer solution does not show significant difference for
the two cases, although the standard deviation is doubled for
the wireless case. Note here, that the standard deviation of
end-to-end latency can be directly translated to delay jitter,
which is an important performance metric for video streaming.
The most important finding here is that the average delay for
the ROS transport is significantly higher than the GStreamer
option.

VII. CONCLUSION

In this paper, the standard ROS-based network image trans-
mission method was examined, and an efficient custom image
transport solution based on GStreamer was proposed and
evaluated through a demonstration use case. The trade-off be-
tween image quality and network transmission bandwidth was
highlighted. Comparing our streaming implementation with
the industry-standard ROS solution, our method showed better
performance by one order of magnitude. Even in wireless
systems our method showed significantly lower latency. When
continuous image transfer is not required, the bandwidth usage
can be even more reduced when—instead of forwarding the
whole stream over the network—only a single frame is sent
for image processing.

Visual-aided robotics is a rapidly emerging field in Industry
4.0 solutions, thus efficient video streaming and image trans-
mission techniques together with cloud-based image process-
ing will form the backbone of such applications.

ACKNOWLEDGMENT

This work has been supported by the Ericsson-BME 5G
Joint Research and Cooperation Project, partly funded by

6

was set up to forward with constant quality. To show a
more revealing chart and visualize the differences, logarithmic
scaling is applied in the figures.

Fig. 10. Colour image streaming comparison.

While examining the streaming of colour images, the pa-
rameters and measurement method remained unchanged. Here
the results (see Fig. 10) show the overhead of ROS streaming
against GStreamer.

Taking into account the image quality and the required
bandwidth, it is clearly a trade-off. According to our experi-
ences, among all the available ROS image transport methods,
the 15% JPEG option with 640x480 resolution turned out to
be the best trade-off between image quality and bandwidth
usage, when detecting a jenga block. Thus, the following
measurements were all carried out in 640x480 resolution.

B. End-to-end latency

For latency measurements, glass-to-glass method was ap-
plied: it measures the time it takes between the moment
of action happens in front of a camera (first glass), and
the moment that a viewer sees the result of this action on
the screen (second glass). To determine latency, an online
stopwatch were used meanwhile the camera was faced to
the notebook screen and forwarded the encoded stream for
cloud processing (see Fig. 11). This method makes end-to-
end latency measurement possible, including such elements
like the camera readout time, encoding and so on. On the
other hand, with this method a possible bottleneck is the 60 Hz
refreshing rate of the screen. Because of the camera relies on
the content of the screen, it could not be more accurate than
1/60 s (approx. 17 msec).

Fig. 11. Latency measurement setup and methodology (wireless connection:
blue dotted line, wired connection: straight line).

During the measurement, the camera detects an appearing
jenga (see step 1 on Fig. 11) from a pre-recorded video shown
on the laptop screen, which also displays a running stopwatch.
The camera stream is then forwarded into the cloud (step 2)
where the image processing takes place (step 3). Finally, the
result is sent back and displayed on the laptop screen (step 4).

The critical component of an end-to-end latency is the radio
transport delay over the wireless link. In order to be able to
examine this component, reference measurements were taken
where all wireless links were replaced by wired connections
(see Fig. 11). Table I presents results collected from 10 dif-
ferent measurements for both the wireless and wired options
where the average latency and its standard deviation are listed
for the two image transport methods.

TABLE I
END-TO-END LATENCY MEASUREMENT RESULTS

ROS transport GStreamer
wireless wired wireless wired

average 2286.9 ms 1123.7 ms 244 ms 222.3 ms
standard deviation 383.1 ms 120.2 ms 66.2 ms 32.3 ms

The highest average delay is measured for ROS transport
over wireless. Its value is two times higher that the experi-
enced wired transmission delay. The standard deviation for
the wireless ROS transport is also three times as high as for
its wired counterpart. However, the end-to-end delay for the
GStreamer solution does not show significant difference for
the two cases, although the standard deviation is doubled for
the wireless case. Note here, that the standard deviation of
end-to-end latency can be directly translated to delay jitter,
which is an important performance metric for video streaming.
The most important finding here is that the average delay for
the ROS transport is significantly higher than the GStreamer
option.

VII. CONCLUSION

In this paper, the standard ROS-based network image trans-
mission method was examined, and an efficient custom image
transport solution based on GStreamer was proposed and
evaluated through a demonstration use case. The trade-off be-
tween image quality and network transmission bandwidth was
highlighted. Comparing our streaming implementation with
the industry-standard ROS solution, our method showed better
performance by one order of magnitude. Even in wireless
systems our method showed significantly lower latency. When
continuous image transfer is not required, the bandwidth usage
can be even more reduced when—instead of forwarding the
whole stream over the network—only a single frame is sent
for image processing.

Visual-aided robotics is a rapidly emerging field in Industry
4.0 solutions, thus efficient video streaming and image trans-
mission techniques together with cloud-based image process-
ing will form the backbone of such applications.

ACKNOWLEDGMENT

This work has been supported by the Ericsson-BME 5G
Joint Research and Cooperation Project, partly funded by

7

the National Research, Development and Innovation Office,
Hungary, project number 2018-1.3.1-VKE-2018-00005.

Optimizing Camera Stream Transport
in Cloud-Based Industrial Robotic Systems

MARCH 2022 • VOLUME XIV • NUMBER 142

INFOCOMMUNICATIONS JOURNAL

	 [1]	 Stanford Artificial Intelligence Laboratory et al. Robotic operating
system. 05 2018. URL https://www.ros.org.

	 [2]	 S. Hutchinson, G. D. Hager, and P. I. Corke. A tutorial on visual servo
control. IEEE Transactions on Robotics and Automation, 12(5):651–
670, 1996. doi: 10.1109/70.538972.

	 [3]	 Chaumette and Seth Hutchinson. Visual servo control, part i: Basic
approaches. IEEE Robotics and Automation Magazine, 13:82–90,
2006. doi: 10.1109/MRA.2006.250573.

	 [4]	 Dobrev Yassen, Flores Sergio, and Vossiek Martin. Multi-modal
sensor fusion for indoor mobile robot pose estimation. Position,
Location and Navigation Symposium (PLANS), pages 553–556, 04
2016. doi: 10.1109/PLANS.2016.7479745.

	 [5]	 Anh Nguyen, Ngoc Nguyen, Kim Tran, Erman Tjiputra, and Quang
D. Tran. Autonomous navigation in complex environments with deep
multimodal fusion network. International Conference on Intelligent
Robots and Systems (IROS), 07 2020.

		 doi: 10.1109/IROS45743.2020.9341494.
	 [6]	 Hao Du, Wei Wang, Chaowen Xu, Ran Xiao, and Changyin Sun. Real-

time onboard 3d state estimation of an unmanned aerial vehicle in
multi-environments using multi-sensor data fusion. Sensors, 20:919,
02 2020. doi: 10.3390/s20030919.

	 [7]	 Till Halbach. Comparison of open and free video compression systems
- a performance evaluation. In Proceedings of the First International
Conference on Computer Imaging Theory and Applications - Volume 1:
IMAGAPP, (VISIGRAPP 2009), pages 74–80. IN-STICC, SciTePress,
2009. ISBN 978-989-8111-68-5. doi: 10.5220/0001809700740080.

	 [8]	 S. Nimmi, V. Saranya, Theerthadas, and R. Gandhiraj. Real-time video
streaming using gstreamer in gnu radio platform. 2014 International
Conference on Green Computing Communication and Electrical
Engineering (ICGCCEE), pages 1–6, 2014.

		 doi: 10.1109/ICGCCEE.2014.6922233.
	 [9]	 Kipp Cannon, Sarah Caudill, Chiwai Chan, Bryce Cousins, Jolien

Creighton, Becca Ewing, Heather Fong, Patrick Godwin, Shaun
Hooper, Rachael Huxford, Ryan Magee, Duncan Meacher, Cody
Messick, Soichiro Morisaki, Debnandini Mukherjee, Hiroaki Ohta,
Alexander Pace, Stephen Privitera, and Madeline Wade. Gstlal: A
software framework for gravitational wave discovery. SoftwareX,
14:100680, 06 2021. doi: 10.1016/j.softx.2021.100680.

[10]	 Roald Otnes, Joachim Eastwood, and Mathieu E.G.D. Colin. Using
gstreamer for acoustic signal processing in deployable sensor nodes.
pages 1–6, 2015. doi: 10.1109/OCEANS-Genova.2015.7271567.

	[11]	 Géza Szabó, Sándor Rácz and József Petö. Performance evaluation
of closed-loop industrial applications over imperfect networks.
Infocommunications Journal, XI, 2019. doi: 10.36244/ICJ.2019.2.4.

References

Marcell Balogh received his BSc degree in Electrical
Engineering from the Budapest University of Tech-
nology and Economics (BME). He is specialized in
cloud-based autonomous systems. In his early studies,
he joined HSN Lab, a University Research Group at
the Department of Telecommunications and Media
Informatics, BME. Currently, he is pursuing his Mas-
ter’s degree on visual-aided robotic systems.

Attila Vidács received the MSc and PhD degrees
from the Budapest University of Technology and
Economics (BME) at the Faculty of Electrical Engi-
neering and Informatics, in 1996 and 2000, respec-
tively. His research interests are in the field of cloud
robotics, cooperative and modular robot systems,
IoT communication technologies, ad-hoc and wire-
less networking. Currently he is leading the Cloud
Robotics Group within HSN Lab.

	[12]	 Universal Robots UR3e. [Date accessed: 12-2021]
		 http://design.ros2.org/articles/rosmiddlewareinterface.html.
	[13]	 Intel RealSense d435i Specification. [Date accessed: 12-2021]
		 https://www.intelrealsense.com/depth-camera-d435i.
	[14]	 OnRobot RG2-FT gripper. [Date accessed: 12-2021]
		 https://onrobot.com/en/products/rg2-ft-gripper.
	[15]	 ROS Wrapper for Intel® RealSenseTM Devices. [Date accessed: 12-2021]
		 https://dev.intelrealsense.com/docs/ros-wrapper.
	[16]	 Alexey Puzhevich, Sergey Dorodnicov, Anders Grunnet-Jepsen and

Daniel Piro. Open-Source Ethernet Networking for Intel® RealSenseTM
Depth Cameras. 04 2020.

[17] OpenCV. Open source computer vision library, 2015.
[18]	 Dave Tong, Anders Grunnet-Jepsen. Depth postprocessing for Intel®

RealSenseTM D400 depth cameras. 2019. [Date accessed: 12-2021].
	[19]	 Wim Taymans, Steve Baker, Andy Wingo, Ronald S. Bultje, Stefan

Kost. Gstreamer application development manual, 2016.
	[20]	 Wenger Stephan, Miska Hannuksela, Thomas Stockhammer, Magnus

Westerlund, and D. Singer. Rtp payload format for h.264 video. 03
2005. doi: 10.17487/RFC3984.

[21] Anders Grunnet-Jepsen, Philip Krejov. Intel® RealSenseTM Depth
Camera over Ethernet. 02 2019.

https://www.ros.org
https://doi.org/10.1109/70.538972
https://doi.org/10.1109/MRA.2006.250573
https://doi.org/10.1109/PLANS.2016.7479745
https://doi.org/10.1109/IROS45743.2020.9341494
https://doi.org/10.3390/s20030919
https://doi.org/10.5220/0001809700740080
https://doi.org/10.1109/ICGCCEE.2014.6922233
https://doi.org/10.1016/j.softx.2021.100680
https://doi.org/10.36244/ICJ.2019.2.4
https://doi.org/10.36244/ICJ.2019.2.4
http://design.ros2.org/articles/rosmiddlewareinterface.html
https://www.intelrealsense.com/depth-camera-d435i
https://onrobot.com/en/products/rg2-ft-gripper
https://dev.intelrealsense.com/docs/ros-wrapper
https://doi.org/10.17487/RFC3984

Batch-scheduling Data Flow Graphs with
Service-level Objectives on Multicore Systems

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 43

INFOCOMMUNICATIONS JOURNAL 1

Batch-scheduling Data Flow Graphs with
Service-level Objectives on Multicore Systems

Tamás Lévai and Gábor Rétvári, Member, IEEE

Abstract—Data flow graphs are a popular program represen-
tation in machine learning, big data analytics, signal processing,
and, increasingly, networking, where graph nodes correspond to
processing primitives and graph edges describe control flow. To
improve CPU cache locality and exploit data-level parallelism,
nodes usually process data in batches. Batchy is a scheduler for
data flow graph based packet processing engines, which uses
controlled queuing to reconstruct fragmented batches inside
a data flow graph in accordance with strict Service-Level
Objectives (SLOs). Earlier work showed that Batchy yields up
to 10x performance improvement in real-life use cases, thanks to
maximally exploiting batch processing gains.

Batchy, however, is fundamentally restricted to single-threaded
execution. In this paper, we generalize Batchy to parallel execution
on multiple CPU cores. We extend the analytical model to the
parallel setting and present a primal decomposition framework,
where each core runs an unmodified Batchy controller to schedule
batch-processing on a subset of the data flow graph, orchestrated
by a master controller that distributes the delay-SLOs across the
cores using subgradient search. Evaluations on a real software
switch provide experimental evidence that our decomposition
framework produces 2.5x performance improvement while accu-
rately satisfying delay SLOs that are otherwise not feasible with
single-core Batchy.

Index Terms—data flow graph, decomposition, software switch,
SDN, NFV

I. INTRODUCTION

BATCH-SCHEDULING is a near-universal technique to im-
prove performance of software packet processing engines:

collect multiple packets into a single burst and perform the same
operation on all the packets in one shot. Processing packets
in batches is much more efficient than processing a single
packet at a time, thanks to amortizing one-time operational
overhead, optimizing CPU cache usage, and enabling loop
unrolling and SIMD optimizations [1], which often yields 2–5×
performance boost. Consequently, batching is used in essentially
all software switches (e.g., BESS [2], VPP [3], FastClick [4],
and ESwitch [5]), high-performance OS network stacks and
libraries [6], user-space I/O libraries [7], and Network Function
Virtualization (NFV) platforms [8], [9].

Batchy [10] is a state-of-the-art batch-scheduling framework
for high-end programmable software switches. Batchy abstracts
the software switch dataplane as a data flow graph; here, nodes
represent packet-processing primitives (e.g., L3 Lookup) and
arcs represent the control flow. This data flow graph is executed
in a run-to-completion fashion; when a packet-processing

T. Lévai is with the Department of Telecommunications and Media Infor-
matics at the Budapest University of Technology and Economics. G. Rétvári
is with the MTA-BME Information Systems Research Group and Ericsson
Research. This work was supported by the NKFIH/OTKA Project #135606.
E-mail: {levait, retvari}@tmit.bme.hu.

Controller

Idealized
system model

Gradient
opt.

Software Switch DataplaneRX TX

M
on

ito
r

gradient
𝑑𝑑 (𝐷𝐷 𝐷𝐷)/𝑑𝑑𝑑𝑑
𝑑𝑑 (𝑟𝑟 𝑟𝑟)/𝑑𝑑𝑑𝑑 C

ontrol

Figure 1. Batchy System Architecture.

node finishes work on a packet batch, execution proceeds
on the downstream nodes along all outgoing arcs of the node.
Unfortunately, run-to-completion tends to fragment batches
inside the data-flow graph, as each node may split the input
batch into multiple sub-batches to be passed to downstream
nodes; e.g., an L3 Lookup table or a round-robin LoadBalancer
may distribute the packets inside the batch across multiple
downstream processing chains, a network stack may split a
burst of mixed input packets per L3/L4 protocol to execute each
MPLS, IPv4 and IPv6 packet on a separate downstream protocol
engine, etc. Since the downstream modules are executed on
smaller batches we lose batch-efficiency, which inherently
curtails the available performance, often an order of magnitude
lower than with full batches [1].

Batchy attempts to recover some of the lost batch-efficiency
by artificially queuing up packets inside the data flow graph
to be able to execute the downstream processing nodes on
larger batches. Inspired by Nagle’s algorithm [11], Batchy uses
a model-predictive controller to regulate queue backlogs for
maximizing batch sizes across the pipeline in a way so that the
end-to-end queuing delay remains under a given requirement
(Fig. 1). This brings massive performance improvement, and
delay Service Level Objective (SLO) conformance in the
𝜇𝜇𝜇𝜇 range even at million-packet-per-second scale traffic [10].
Unfortunately, the model underlying Batchy assumes single-
core execution.

Motivated by the need to run software switches on multicore
systems to maximize performance [12], [13], in this paper we
extend Batchy to leverage parallel execution. As Fig. 2 shows,
this is not trivial. The task is two-fold: i) find an optimal batch-
schedule on each core, and ii) distribute delay budgets among
cores in a way so that the end-to-end delay remains under the
SLO. This is a two-level optimization problem: on per core
basis the goal is to find the optimal queue backlog sizes and
on a higher level to determine how long each core can process
a packet batch so to meet end-to-end delay SLOs. To solve
this complex multi-level problem, we propose a decomposition
technique [14].

The general idea of decomposition is to break a complex
problem into simpler subproblems, then solve the simple

Batch-scheduling Data Flow Graphs with
Service-level Objectives on Multicore Systems

Tamás Lévai and Gábor Rétvári, Member, IEEE

T. Lévai is with the Department of Telecommunications and Media Infor-
matics at the Budapest University of Technology and Economics. G. Rétvári
is with the MTA-BME Information Systems Research Group and Ericsson
Research. This work was supported by the NKFIH/OTKA Project #135606.
E-mail: {levait, retvari}@tmit.bme.hu.

Abstract—Data flow graphs are a popular program represen-
tation in machine learning, big data analytics, signal processing,
and, increasingly, networking, where graph nodes correspond to
processing primitives and graph edges describe control flow. To
improve CPU cache locality and exploit data-level parallelism,
nodes usually process data in batches. Batchy is a scheduler
for data flow graph based packet processing engines, which
uses controlled queuing to reconstruct fragmented batches
inside a data flow graph in accordance with strict Service-Level
Objectives (SLOs). Earlier work showed that Batchy yields up
to 10x performance improvement in real-life use cases, thanks to
maximally exploiting batch processing gains.

Batchy, however, is fundamentally restricted to single-threaded
execution. In this paper, we generalize Batchy to parallel execution
on multiple CPU cores. We extend the analytical model to the
parallel setting and present a primal decomposition framework,
where each core runs an unmodified Batchy controller to schedule
batch-processing on a subset of the data flow graph, orchestrated
by a master controller that distributes the delay-SLOs across the
cores using subgradient search. Evaluations on a real software
switch provide experimental evidence that our decomposition
framework produces 2.5x performance improvement while accu-
rately satisfying delay SLOs that are otherwise not feasible with
single-core Batchy.

Index Terms—data flow graph, decomposition, software
switch, SDN, NFV

DOI: 10.36244/ICJ.2022.1.6

INFOCOMMUNICATIONS JOURNAL 1

Batch-scheduling Data Flow Graphs with
Service-level Objectives on Multicore Systems

Tamás Lévai and Gábor Rétvári, Member, IEEE

Abstract—Data flow graphs are a popular program represen-
tation in machine learning, big data analytics, signal processing,
and, increasingly, networking, where graph nodes correspond to
processing primitives and graph edges describe control flow. To
improve CPU cache locality and exploit data-level parallelism,
nodes usually process data in batches. Batchy is a scheduler for
data flow graph based packet processing engines, which uses
controlled queuing to reconstruct fragmented batches inside
a data flow graph in accordance with strict Service-Level
Objectives (SLOs). Earlier work showed that Batchy yields up
to 10x performance improvement in real-life use cases, thanks to
maximally exploiting batch processing gains.

Batchy, however, is fundamentally restricted to single-threaded
execution. In this paper, we generalize Batchy to parallel execution
on multiple CPU cores. We extend the analytical model to the
parallel setting and present a primal decomposition framework,
where each core runs an unmodified Batchy controller to schedule
batch-processing on a subset of the data flow graph, orchestrated
by a master controller that distributes the delay-SLOs across the
cores using subgradient search. Evaluations on a real software
switch provide experimental evidence that our decomposition
framework produces 2.5x performance improvement while accu-
rately satisfying delay SLOs that are otherwise not feasible with
single-core Batchy.

Index Terms—data flow graph, decomposition, software switch,
SDN, NFV

I. INTRODUCTION

BATCH-SCHEDULING is a near-universal technique to im-
prove performance of software packet processing engines:

collect multiple packets into a single burst and perform the same
operation on all the packets in one shot. Processing packets
in batches is much more efficient than processing a single
packet at a time, thanks to amortizing one-time operational
overhead, optimizing CPU cache usage, and enabling loop
unrolling and SIMD optimizations [1], which often yields 2–5×
performance boost. Consequently, batching is used in essentially
all software switches (e.g., BESS [2], VPP [3], FastClick [4],
and ESwitch [5]), high-performance OS network stacks and
libraries [6], user-space I/O libraries [7], and Network Function
Virtualization (NFV) platforms [8], [9].

Batchy [10] is a state-of-the-art batch-scheduling framework
for high-end programmable software switches. Batchy abstracts
the software switch dataplane as a data flow graph; here, nodes
represent packet-processing primitives (e.g., L3 Lookup) and
arcs represent the control flow. This data flow graph is executed
in a run-to-completion fashion; when a packet-processing

T. Lévai is with the Department of Telecommunications and Media Infor-
matics at the Budapest University of Technology and Economics. G. Rétvári
is with the MTA-BME Information Systems Research Group and Ericsson
Research. This work was supported by the NKFIH/OTKA Project #135606.
E-mail: {levait, retvari}@tmit.bme.hu.

Controller

Idealized
system model

Gradient
opt.

Software Switch DataplaneRX TX

M
on

ito
r

gradient
𝑑𝑑 (𝐷𝐷 𝐷𝐷)/𝑑𝑑𝑑𝑑
𝑑𝑑 (𝑟𝑟 𝑟𝑟)/𝑑𝑑𝑑𝑑 C

ontrol

Figure 1. Batchy System Architecture.

node finishes work on a packet batch, execution proceeds
on the downstream nodes along all outgoing arcs of the node.
Unfortunately, run-to-completion tends to fragment batches
inside the data-flow graph, as each node may split the input
batch into multiple sub-batches to be passed to downstream
nodes; e.g., an L3 Lookup table or a round-robin LoadBalancer
may distribute the packets inside the batch across multiple
downstream processing chains, a network stack may split a
burst of mixed input packets per L3/L4 protocol to execute each
MPLS, IPv4 and IPv6 packet on a separate downstream protocol
engine, etc. Since the downstream modules are executed on
smaller batches we lose batch-efficiency, which inherently
curtails the available performance, often an order of magnitude
lower than with full batches [1].

Batchy attempts to recover some of the lost batch-efficiency
by artificially queuing up packets inside the data flow graph
to be able to execute the downstream processing nodes on
larger batches. Inspired by Nagle’s algorithm [11], Batchy uses
a model-predictive controller to regulate queue backlogs for
maximizing batch sizes across the pipeline in a way so that the
end-to-end queuing delay remains under a given requirement
(Fig. 1). This brings massive performance improvement, and
delay Service Level Objective (SLO) conformance in the
𝜇𝜇𝜇𝜇 range even at million-packet-per-second scale traffic [10].
Unfortunately, the model underlying Batchy assumes single-
core execution.

Motivated by the need to run software switches on multicore
systems to maximize performance [12], [13], in this paper we
extend Batchy to leverage parallel execution. As Fig. 2 shows,
this is not trivial. The task is two-fold: i) find an optimal batch-
schedule on each core, and ii) distribute delay budgets among
cores in a way so that the end-to-end delay remains under the
SLO. This is a two-level optimization problem: on per core
basis the goal is to find the optimal queue backlog sizes and
on a higher level to determine how long each core can process
a packet batch so to meet end-to-end delay SLOs. To solve
this complex multi-level problem, we propose a decomposition
technique [14].

The general idea of decomposition is to break a complex
problem into simpler subproblems, then solve the simple

INFOCOMMUNICATIONS JOURNAL 1

Batch-scheduling Data Flow Graphs with
Service-level Objectives on Multicore Systems

Tamás Lévai and Gábor Rétvári, Member, IEEE

Abstract—Data flow graphs are a popular program represen-
tation in machine learning, big data analytics, signal processing,
and, increasingly, networking, where graph nodes correspond to
processing primitives and graph edges describe control flow. To
improve CPU cache locality and exploit data-level parallelism,
nodes usually process data in batches. Batchy is a scheduler for
data flow graph based packet processing engines, which uses
controlled queuing to reconstruct fragmented batches inside
a data flow graph in accordance with strict Service-Level
Objectives (SLOs). Earlier work showed that Batchy yields up
to 10x performance improvement in real-life use cases, thanks to
maximally exploiting batch processing gains.

Batchy, however, is fundamentally restricted to single-threaded
execution. In this paper, we generalize Batchy to parallel execution
on multiple CPU cores. We extend the analytical model to the
parallel setting and present a primal decomposition framework,
where each core runs an unmodified Batchy controller to schedule
batch-processing on a subset of the data flow graph, orchestrated
by a master controller that distributes the delay-SLOs across the
cores using subgradient search. Evaluations on a real software
switch provide experimental evidence that our decomposition
framework produces 2.5x performance improvement while accu-
rately satisfying delay SLOs that are otherwise not feasible with
single-core Batchy.

Index Terms—data flow graph, decomposition, software switch,
SDN, NFV

I. INTRODUCTION

BATCH-SCHEDULING is a near-universal technique to im-
prove performance of software packet processing engines:

collect multiple packets into a single burst and perform the same
operation on all the packets in one shot. Processing packets
in batches is much more efficient than processing a single
packet at a time, thanks to amortizing one-time operational
overhead, optimizing CPU cache usage, and enabling loop
unrolling and SIMD optimizations [1], which often yields 2–5×
performance boost. Consequently, batching is used in essentially
all software switches (e.g., BESS [2], VPP [3], FastClick [4],
and ESwitch [5]), high-performance OS network stacks and
libraries [6], user-space I/O libraries [7], and Network Function
Virtualization (NFV) platforms [8], [9].

Batchy [10] is a state-of-the-art batch-scheduling framework
for high-end programmable software switches. Batchy abstracts
the software switch dataplane as a data flow graph; here, nodes
represent packet-processing primitives (e.g., L3 Lookup) and
arcs represent the control flow. This data flow graph is executed
in a run-to-completion fashion; when a packet-processing

T. Lévai is with the Department of Telecommunications and Media Infor-
matics at the Budapest University of Technology and Economics. G. Rétvári
is with the MTA-BME Information Systems Research Group and Ericsson
Research. This work was supported by the NKFIH/OTKA Project #135606.
E-mail: {levait, retvari}@tmit.bme.hu.

Controller

Idealized
system model

Gradient
opt.

Software Switch DataplaneRX TX

M
on

ito
r

gradient
𝑑𝑑 (𝐷𝐷 𝐷𝐷)/𝑑𝑑𝑑𝑑
𝑑𝑑 (𝑟𝑟 𝑟𝑟)/𝑑𝑑𝑑𝑑 C

ontrol

Figure 1. Batchy System Architecture.

node finishes work on a packet batch, execution proceeds
on the downstream nodes along all outgoing arcs of the node.
Unfortunately, run-to-completion tends to fragment batches
inside the data-flow graph, as each node may split the input
batch into multiple sub-batches to be passed to downstream
nodes; e.g., an L3 Lookup table or a round-robin LoadBalancer
may distribute the packets inside the batch across multiple
downstream processing chains, a network stack may split a
burst of mixed input packets per L3/L4 protocol to execute each
MPLS, IPv4 and IPv6 packet on a separate downstream protocol
engine, etc. Since the downstream modules are executed on
smaller batches we lose batch-efficiency, which inherently
curtails the available performance, often an order of magnitude
lower than with full batches [1].

Batchy attempts to recover some of the lost batch-efficiency
by artificially queuing up packets inside the data flow graph
to be able to execute the downstream processing nodes on
larger batches. Inspired by Nagle’s algorithm [11], Batchy uses
a model-predictive controller to regulate queue backlogs for
maximizing batch sizes across the pipeline in a way so that the
end-to-end queuing delay remains under a given requirement
(Fig. 1). This brings massive performance improvement, and
delay Service Level Objective (SLO) conformance in the
𝜇𝜇𝜇𝜇 range even at million-packet-per-second scale traffic [10].
Unfortunately, the model underlying Batchy assumes single-
core execution.

Motivated by the need to run software switches on multicore
systems to maximize performance [12], [13], in this paper we
extend Batchy to leverage parallel execution. As Fig. 2 shows,
this is not trivial. The task is two-fold: i) find an optimal batch-
schedule on each core, and ii) distribute delay budgets among
cores in a way so that the end-to-end delay remains under the
SLO. This is a two-level optimization problem: on per core
basis the goal is to find the optimal queue backlog sizes and
on a higher level to determine how long each core can process
a packet batch so to meet end-to-end delay SLOs. To solve
this complex multi-level problem, we propose a decomposition
technique [14].

The general idea of decomposition is to break a complex
problem into simpler subproblems, then solve the simple

mailto:levait%40tmit.bme.hu?subject=
mailto:retvari%40tmit.bme.hu?subject=
https://doi.org/10.36244/ICJ.2022.1.6

Batch-scheduling Data Flow Graphs with
Service-level Objectives on Multicore Systems

MARCH 2022 • VOLUME XIV • NUMBER 144

INFOCOMMUNICATIONS JOURNAL

INFOCOMMUNICATIONS JOURNAL 2

core1 core3

core1 core2 core3

A) naïve: equal delay bounds

B) optimal: adaptive delay bounds

core2

NFs NFsNFs

NFs NFsNFs

core1 core2 core3

flow delay budget (SLO)

flow delay budget (SLO)

/core delay budgets

core1 core2 core3

✓ ✓ ✓

✓ ✓ ✓

flow

flow

✓✓ ✗

✓ ✓ ✓
/core delay budgets

Figure 2. Motivating example for multicore Batchy [10]. The pipeline runs on
3 cores and serves a single flow. NFs on each core require a given amount of
time to process a full packet batch (core1: 1, core2: 1, and core3: 4 units). Note
that per-core delays add up, so that a flow’s end-to-end delay equals the sum
of the delay imposed on the flow’s packets at each core. a) Naïve approach:
no coordination between the CPU cores. This yields limited performance
since the delay on core3 always exceeds the per-core delay budget and hence
there is no room to reconstruct batches. b) Optimal adaptive per-core delay
budget distribution: core3 now gets a higher delay budget than the rest of
the cores. Per-core delay budgets are now satisfied and there is enough delay
budget to efficiently defragment batches on core3, which then yields significant
performance improvement.

subproblems separately under the control of a global prob-
lem that takes care of the “complicating constraints”. This
technique was already adapted to many networking domains,
such as network utility maximization [15], radio transceiver
design [16], and beamforming [17]. The goal of decomposition
in Batchy is to split the global scheduling problem among
the cores (i.e., CPUs) in a multicore system, so that each
core autonomously optimizes batch sizes across a subset of
the data flow graph subject to a per-core flow delay budget,
with minimal switch-level orchestration that adjusts the delay
budgets per each core to meet the global delay SLOs. The
per-core controller will be conveniently implemented by the
unmodified single-core Batchy algorithm. This setup reflects a
primal decomposition [14] structure.

Our contributions in this paper are as follows:
Analytical model. After a short recap 1 on Batchy (§II), we
introduce an expressive mathematical model for SLO-based
batch-scheduling on multicore software switches (§III). Our
framework allows to formally reason about the performance
and adaptively distribute end-to-end delay SLOs across cores
to maximize performance.
Control algorithms. We design control algorithms for effective
multicore batch-scheduling under delay SLOs (§IV).
Design, implementation, and evaluation. We present a
practical implementation of the multicore scheduling framework
by extending Batchy and using the BESS software switch [2]
(see §IV). We demonstrate the effectiveness of our control
algorithms in a realistic use case, VRF (Virtual Routing Func-
tion), taken from an official industry 5G NFV benchmarking
suite [13]. We show that our control algorithms increase total
packet rate by up to 2.5× beyond what is available with
single-core Batchy, while meeting delay SLO requirements
that are otherwise not feasible with single-core Batchy. Our
implementation is available for download at [18].

We close the paper discussing related work (§VI) and
deriving the main conclusions (§VII).

1In this paper we only introduce Batchy essentials due to space constraints.
For Batchy details, we kindly refer the reader to the Batchy paper [10].

Queue

Network
function

𝑥𝑥𝑣𝑣 , 𝑏𝑏𝑣𝑣
𝑟𝑟𝑣𝑣

𝑡𝑡𝑣𝑣 = 1/𝑥𝑥𝑣𝑣 + 𝑇𝑇𝑣𝑣𝑣0 + 𝑇𝑇𝑣𝑣𝑣1𝑏𝑏𝑣𝑣
𝑙𝑙𝑣𝑣 = 𝑥𝑥𝑣𝑣 (𝑇𝑇𝑣𝑣𝑣0 + 𝑇𝑇𝑣𝑣𝑣1𝑏𝑏𝑣𝑣)

𝑏𝑏𝑖𝑖𝑖𝑖𝑣𝑣

Figure 3. A Batchy Module.

II. BATCHY SYSTEM MODEL

Next, we introduce our analytical model. We mostly repro-
duce the main ideas from the single-core setting, highlighting
the extensions we introduce for the multicore setting.

A. Concepts

Data flow graph. We model the pipeline as a directed graph
G = (𝑉𝑉𝑉 𝑉𝑉), with modules 𝑣𝑣 ∈ 𝑉𝑉 and directed links (𝑢𝑢𝑢𝑢𝑢) ∈ 𝐸𝐸

representing the connections between modules. A module 𝑣𝑣 is a
combination of a (FIFO) ingress queue and a network function
at the egress connected back-to-back (see Fig. 3). Input gates
(or ingates) are represented as in-arcs (𝑢𝑢𝑢𝑢𝑢) ∈ 𝐸𝐸 : 𝑢𝑢 ∈ 𝑉𝑉

and output gates (or outgates) as out-arcs (𝑣𝑣𝑣𝑣𝑣) ∈ 𝐸𝐸 : 𝑢𝑢 ∈ 𝑉𝑉 .
A batch sent to an outgate (𝑣𝑣𝑣𝑣𝑣) of 𝑣𝑣 will appear at the
corresponding ingate of 𝑢𝑢 at the next execution of 𝑢𝑢. Modules
never drop packets; we assume that whenever a module (e.g.,
access control) would drop a packet it will rather send it to a
dedicated “drop” gate, so that we can account for lost packets.
Batch processing. Packets are injected into the ingress,
transmitted from the egress, and processed from outgates to
ingates along data flow graph arcs, in batches [2], [5], [7]. We
denote the maximum batch size by 𝐵𝐵, a system-wide parameter.
For the Linux kernel and DPDK 𝐵𝐵 = 32 or 𝐵𝐵 = 64 are usual
settings, while GPU/NIC offload often works with 𝐵𝐵 = 1024
or even larger to maximize I/O efficiency [8], [19].
Module service time profile. After extensive evaluation of
network functions on various software switches, we observe
two distinct execution time components. The per-batch cost
component, denoted by 𝑇𝑇𝑣𝑣𝑣0 [sec] for a module 𝑣𝑣, characterizes
the constant cost that is incurred just for calling the module
on a batch, independently from the number of packets in it.
The per-packet cost component 𝑇𝑇𝑣𝑣𝑣1, [sec/pkt], on the other
hand, models the execution cost of each individual packet in
the batch. Accordingly, we shall use the linear approximation
𝑇𝑇𝑣𝑣 = 𝑇𝑇𝑣𝑣𝑣0 + 𝑇𝑇𝑣𝑣𝑣1𝑏𝑏𝑣𝑣 [sec] to describe the execution cost of a
module 𝑣𝑣 where 𝑏𝑏𝑣𝑣 is the batch-size, i.e., the average number
of packets in the batches received by module 𝑣𝑣.
Module types. Any module may have multiple ingates (merger)
and/or multiple outgates (splitter), or may have no ingate
or outgate at all. An L3 Lookup module would distribute
packets to several downstream branches, each performing group
processing for a different next-hop (splitter); a NAT module
may multiplex traffic from multiple ingates (merger); and an
IP Checksum module would apply to a single datapath flow
(single-ingate–single-outgate). Certain modules are represented
without ingates, such as a NIC receive queue; we call these
ingress modules. Similarly, a module with no outgates (e.g., a
transmit queue) is an egress module.

Batch-scheduling Data Flow Graphs with
Service-level Objectives on Multicore Systems

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 45

INFOCOMMUNICATIONS JOURNAL 3

Compute resources. A task (𝑡𝑡 ∈ T) is our main compute
resource abstraction. Tasks are modeled as a connected sub-
graph G𝑡𝑡 = (𝑉𝑉𝑡𝑡 , 𝐸𝐸𝑡𝑡) of G, with strictly one ingress module
representing an ingress queue that buffers packets between
subsequent executions of the task. We assume that when a data
flow graph has multiple ingress modules then each ingress is
assigned to a separate task, with packets passing between tasks
over double-ended queues. Each task uses run-to-completion
scheduling, and there is a separate CPU core assigned per task.
Consequently, in a multicore scenario we have as many tasks
as there are cores.
Flows. A flow 𝑓𝑓 = (𝑝𝑝 𝑓𝑓 , 𝑅𝑅 𝑓𝑓 , 𝐷𝐷 𝑓𝑓), 𝑓𝑓 ∈ F is an abstraction
for a service chain, where 𝑝𝑝 𝑓𝑓 is a path through G from the
flow’s ingress module to the egress module, 𝑅𝑅 𝑓𝑓 denotes the
offered packet rate at the task ingress, and 𝐷𝐷 𝑓𝑓 is the delay
SLO, the maximum permitted latency for any packet of 𝑓𝑓

to reach the egress. What constitutes a flow, however, will
be use-case specific: in an L3 router a flow is comprised of
all traffic destined to a single next-hop or port; in a mobile
gateway a flow is a complex combination of a user selector
and a bearer selector; in a programmable software switch flows
are completely configuration-dependent and dynamic. In our
framework flow dispatching occurs intrinsically as part of the
data flow graph; accordingly, we presume that match-tables
(splitters) are set up correctly to ensure that the packets of
each flow 𝑓𝑓 will traverse the data flow graph along the path
𝑝𝑝 𝑓𝑓 associated with 𝑓𝑓 . During this traversal, flow goes through
tasks. A taskflow is a part of a flow that is executed on a single
task.

B. System Variables
We use a fluid model. Thus, variables are continuous and

differentiable, describing system statistics over a longer period
of time that we call the control period. We use the following
variables to describe the state of the data flow graph in a given
control period (dimensions indicated in brackets). The variables
needed for the multicore extension are marked by ☛.
Batch rate 𝑥𝑥𝑣𝑣 [1/𝑠𝑠]: the number of batches per second entering
the network function in module 𝑣𝑣 (see again Fig. 3).
Batch size 𝑏𝑏𝑣𝑣 [pkt]: the average number of packets per batch
at the input of the network function in module 𝑣𝑣, where 𝑏𝑏𝑣𝑣 ∈
[1, 𝐵𝐵] (recall 𝐵𝐵 is the maximum allowed batch size).
Packet rate 𝑟𝑟𝑣𝑣 [pkt/𝑠𝑠]: the number of packets per second
traversing module 𝑣𝑣: 𝑟𝑟𝑣𝑣 = 𝑥𝑥𝑣𝑣𝑏𝑏𝑣𝑣 .
Maximum delay 𝑡𝑡𝑣𝑣 [sec]: delay contribution of module 𝑣𝑣 to
the total delay of packets traversing it. We model 𝑡𝑡𝑣𝑣 as

𝑡𝑡𝑣𝑣 = 𝑡𝑡𝑣𝑣𝑣queue + 𝑡𝑡𝑣𝑣𝑣svc = 1/𝑥𝑥𝑣𝑣 +
�
𝑇𝑇𝑣𝑣𝑣0 + 𝑇𝑇𝑣𝑣𝑣1𝑏𝑏𝑣𝑣


, (1)

where 𝑡𝑡𝑣𝑣𝑣queue = 1/𝑥𝑥𝑣𝑣 is the queuing delay by Little’s law and
𝑡𝑡𝑣𝑣𝑣svc = 𝑇𝑇𝑣𝑣𝑣0 + 𝑇𝑇𝑣𝑣𝑣1𝑏𝑏𝑣𝑣 is the module service time profile.
System load 𝑙𝑙𝑣𝑣 (dimensionless): the network function in
module 𝑣𝑣 with service time 𝑡𝑡𝑣𝑣𝑣svc executed 𝑥𝑥𝑣𝑣 times per second
incurs 𝑙𝑙𝑣𝑣 = 𝑥𝑥𝑣𝑣𝑡𝑡𝑣𝑣𝑣svc = 𝑥𝑥𝑣𝑣 (𝑇𝑇𝑣𝑣𝑣0 +𝑇𝑇𝑣𝑣𝑣1𝑏𝑏𝑣𝑣) system load on its task.
☛ Task turnaround-time 𝜏𝜏𝑡𝑡 [sec]: Turnaround-time of task
𝑡𝑡 is the time while task 𝑡𝑡 processes a packet batch. This is
the multicore equivalent of the turnaround-time (see [10] for
details). We consider the time to execute all task modules on
maximum sized batches as an upper bound:

𝜏𝜏𝑡𝑡 ≤
∑︁
𝑣𝑣∈𝑉𝑉

(𝑇𝑇𝑣𝑣𝑣0 + 𝑇𝑇𝑣𝑣𝑣1𝐵𝐵) ∀𝑣𝑣 ∈ 𝑉𝑉𝑡𝑡 . (2)

☛ Taskflow 𝜋𝜋: For each flow 𝑓𝑓 ∈ F , 𝜋𝜋 𝑓𝑓 is a list of tasks the
packets of 𝑓𝑓 traverse in the data flow graph.
☛ Per-task flow delay budget Δ𝑡𝑡 𝑡𝑡𝑡 [sec]: delay allocated for
a taskflow of flow 𝑓𝑓 in task 𝑡𝑡; i.e., the maximum delay allowed
for a flow to traverse a task. A column vector representing
delay budgets for each flow of task 𝑡𝑡 is noted as Δ𝑡𝑡 .

C. Assumptions

Our aim is to define the simplest possible batch-processing
model that still allows us to reason about flows’ packet rate
and maximum delay, and modules’ batch-efficiency. The below
assumptions will help to keep the model at the minimum; see
[10] for a detailed justification and several ideas to overcome
them. New assumptions added for the multicore setting are
marked by ☛.
Feasibility. We assume that the pipeline runs on a single task
and this task has enough capacity to meet the delay SLOs.
Buffered modules. We assume that all modules contain an
ingress queue and all queues in the pipeline can hold up to at
most 𝐵𝐵 packets at any point in time.
Static flow rate. All flows are considered constant-bit-rate
during the control period (usually in the millisecond time
frame).
☛ Task-exclusive modules: Each module is assigned to exactly
one task. If a module needs to present in multiple tasks, it will
be replicated for each task.

III. BATCHY DECOMPOSITION

Decomposition is a general framework for breaking down
complex optimization problems into simple subproblems, which
are assumed to be easy to solve in separation, and a global
problem that orchestrates the subproblems and takes care of the
“complicating constraints” [14]. Each subproblem is defined in
terms of a set of private variables, which appear only in this
subproblem, and a set of public variables that are common
to multiple subproblems. The problem is solved iteratively:
first we fix the public variables and solve each subproblem
separately to find the optimal setting of the private variables
under the current setting of the public variables, and then in
a “master step” we update the public variables and start a
new iteration. The update drives the system in a direction
so that the global objective is improved, e.g., moving along
the objective function gradient with a pre-defined step size.
Depending on the type of the public variables, we distinguish
primal decomposition and dual decomposition frameworks. In
primal decomposition the public variables are primal variables,
while in dual decomposition the subsystems are manipulating
dual variables (i.e., prices) of the global problem.

To demonstrate the two methods, consider an example of a
printed circuit board, where the board is the global system and
the integrated circuits on the board are the subsystems. Suppose
we want to design a complex circuit from subcircuits (e.g.,
integrated circuits), and our goal is to minimize the overall
power usage. Subcircuits have properties, some of them are not

Batch-scheduling Data Flow Graphs with
Service-level Objectives on Multicore Systems

MARCH 2022 • VOLUME XIV • NUMBER 146

INFOCOMMUNICATIONS JOURNAL

INFOCOMMUNICATIONS JOURNAL 4

relevant to how they connect to each other (e.g., dimensions),
some are important in the interconnection (e.g., power usage).
In this case, we say dimension is a private variable, and power
usage is a public variable of the subcircuits. Then, in primal
decomposition we fix the amount of power usage available to
each subcircuit and design the subcircuits according to that
specification. Then, we update the public variables (i.e., the
subcircuits’ power budgets) in a way as to improve the overall
power usage and then we restart the iteration, by redesigning
the subcircuits (i.e., solving the subproblems) subject to the
new power budget. In dual decomposition, we allow subcircuits
to choose how much power they want to use, however, each
subcircuit has to “pay” a certain price for power usage. The
price depends on the system-wide power budget: when the
current power usage is low the prices are also low, but as the
system’s power constraints become more and more tight so do
the per-unit power usage price goes up. In the global step we
set the prices in a way to improve the design.

In general, if the global problem is optimized using the
subgradient method then decomposition methods are guaranteed
to converge “close” to the optimum, even for a constant step
size [14]. With a dimisihing step size rule, arbitrary close
convergence to the optimum is guaranteed in finite steps.

A. Batchy: Multicore System Model

We extend Batchy to the multicore setting by formulating
the global problem for multiple cores and then applying primal
decomposition to the system to obtain per-core controllers. The
global problem sets the per-core delay budgets so that end-to-
end delay SLOs are met and the total system load is minimized.
Subproblems in turn control the batch size over a partition
of the data flow graph, subject to the delay budgets set by
the global problem. Then, private variables are the per-module
queue sizes while the public variables are the per-task delay
budgets (i.e., the maximum time allowed for processing a flow
in a task). In the following sections we provide further detail.

First, we recap the original Batchy model implementing
single-core execution [10]. As (3) shows, we express system
load 𝐿𝐿 as a function of queue backlogs while conforming delay
requirements (4) and queue sizing limits (5) in a single task.

𝐿𝐿 = min
∑︁
𝑣𝑣∈𝑉𝑉

𝑅𝑅𝑣𝑣

𝑏𝑏𝑣𝑣
(𝑇𝑇0,𝑣𝑣 + 𝑇𝑇1,𝑣𝑣𝑏𝑏𝑣𝑣) (3)

s.t. 𝜏𝜏 +
∑︁
𝑣𝑣∈𝑃𝑃 𝑓𝑓

(𝑏𝑏𝑣𝑣
𝑅𝑅𝑣𝑣

+ 𝑇𝑇𝑣𝑣𝑣0 + 𝑇𝑇𝑣𝑣𝑣1𝑏𝑏𝑣𝑣) ≤ 𝐷𝐷 𝑓𝑓 𝑓𝑓 ∈ 𝐹𝐹 (4)

1 ≤ 𝑏𝑏𝑣𝑣 ≤ 𝐵𝐵 𝐵𝐵 ∈ 𝑉𝑉 (5)

Next, we extend the single-core model to the multicore
setting. For this purpose, we break up the data flow graph to
tasks, under the assumptions of §II-C. The problem decomposes
on a per-task basis as shown in (6)–(10).

𝐿𝐿 = min
∑︁
𝑡𝑡∈T

∑︁
𝑣𝑣∈𝑉𝑉𝑡𝑡

𝑅𝑅𝑣𝑣

𝑏𝑏𝑣𝑣
(𝑇𝑇0,𝑣𝑣 + 𝑇𝑇1,𝑣𝑣𝑏𝑏𝑣𝑣) (6)

s.t. 𝜏𝜏𝑡𝑡 +
∑︁

𝑣𝑣∈𝑃𝑃 𝑓𝑓 𝑓𝑓𝑓

(𝑏𝑏𝑣𝑣
𝑅𝑅𝑣𝑣

+ 𝑇𝑇𝑣𝑣𝑣0 + 𝑇𝑇𝑣𝑣𝑣1𝑏𝑏𝑣𝑣) ≤ Δ𝑡𝑡 𝑡𝑡𝑡 𝑓𝑓 ∈ 𝐹𝐹𝐹 𝐹𝐹 ∈ T

(7)

∑︁
𝑡𝑡∈T

Δ𝑡𝑡 𝑡𝑡𝑡 ≤ 𝐷𝐷 𝑓𝑓 𝑓𝑓 ∈ 𝐹𝐹 (8)

1 ≤ 𝑏𝑏𝑣𝑣 ≤ 𝐵𝐵 𝐵𝐵 ∈ T ,𝑣𝑣 ∈ 𝑉𝑉𝑡𝑡

(9)
Δ𝑡𝑡 𝑡𝑡𝑡 ≥ 0 𝑓𝑓 ∈ 𝐹𝐹𝐹 𝐹𝐹 ∈ T

(10)

Next, we show the global and subproblem objectives of our
decomposition. In this context, we use the term problem and
task interchangeably due to the per-task decomposition.

B. Global Problem

In our primal decomposition structure the global problem
is responsible for distributing the flow delay budgets among
tasks in a way to minimize system load (11). We also need to
ensure the sum of per-task delay budgets are not over the flow
delay budget (12) and each task will receive non-negative flow
delay budgets (13).

𝐿𝐿 = min
∑︁
𝑡𝑡∈T

𝐿𝐿𝑡𝑡 (Δ𝑡𝑡) (11)

s.t.
∑︁
𝑡𝑡∈T

Δ𝑡𝑡 𝑡𝑡𝑡 ≤ 𝐷𝐷 𝑓𝑓 𝑓𝑓 ∈ 𝐹𝐹 (12)

Δ𝑡𝑡 𝑡𝑡𝑡 ≥ 0 (13)

C. Subproblems

Subproblems optimize task performance, while keeping
delays under the per-task flow delay budgets assigned by the
global problem. We observe that the resultant control problem is
effectively the same as the single-core control problem (3)–(5).
Therefore, we will mostly reuse the original Batchy controller
from [10] with minimal changes to handle the private/public
variables and per-core delay budgets.

We need a framework to distribute the per-flow delay budgets
Δ𝑡𝑡 𝑡𝑡𝑡 across the tasks 𝑡𝑡 ∈ T traversed by 𝑓𝑓 . Correspondingly,
for every flow there is a dedicated leader task that sets the
per-task delay budgets, and zero or more follower tasks that
merely track the budgets assigned by the leader. Each task may
be a leader for any flow and follower for others. We categorize
tasks ∀𝑡𝑡 ∈ T in the system:

• Ω𝑡𝑡 = { 𝑓𝑓 : 𝑡𝑡 is the leader for 𝑓𝑓 },
• Ψ𝑡𝑡 = { 𝑓𝑓 : 𝑡𝑡 is a follower for 𝑓𝑓 }.
The fundamental difference between leaders and followers

is that a leader keeps track of the per-task flow delay budget
subgradients along the flow path: Θ𝑡𝑡 𝑡𝑡𝑡 : 𝑓𝑓 ∈ Ω𝑡𝑡 , 𝑠𝑠 ∈ T : 𝑓𝑓 ∈
Ψ𝑠𝑠. Leaders use both subgradients and queue size backlogs
𝑏𝑏𝑣𝑣 : 𝑣𝑣 ∈ 𝑉𝑉𝑡𝑡 as private variables. Likewise, followers use queue
backlog sizes as private variables, and per-task flow budgets
Δ𝑡𝑡 𝑡𝑡𝑡 as public variables.

Take the pipeline of Fig. 2 as an example; we have a single
flow 𝑓𝑓1 passing over 3 tasks T = 𝑡𝑡1,𝑡𝑡 2,𝑡𝑡 3. Select 𝑡𝑡3 as the
leader of 𝑓𝑓1, so Ω𝑡𝑡3 = { 𝑓𝑓 }. Consequently, 𝑡𝑡1 and 𝑡𝑡2 will be
followers of 𝑓𝑓1. Leader private variables are the delay budget
subgradients Θ𝑡𝑡1 , 𝑓𝑓1 and Θ𝑡𝑡2 , 𝑓𝑓1 , and the queue backlog sizes
𝑏𝑏𝑣𝑣 ,𝑣𝑣 ∈ 𝑉𝑉𝑡𝑡3 . Followers tasks optimize their private variables 𝑏𝑏𝑣𝑣
according to public variables: Δ𝑡𝑡1 , 𝑓𝑓1 or Δ𝑡𝑡2 , 𝑓𝑓1 .

The subproblem objective function (14) minimizes task load;
in this manner it is equivalent to the single-core objective

Batch-scheduling Data Flow Graphs with
Service-level Objectives on Multicore Systems

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 47

INFOCOMMUNICATIONS JOURNAL 5

function. Private delay budget variables Θ𝑡𝑡 𝑡 𝑡𝑡 are not effecting
the task load, therefore are omitted from the objective function.

𝐿𝐿𝑡𝑡 (Δ𝑡𝑡 𝑡 𝑡𝑡) = min 𝑙𝑙𝑡𝑡 = min
∑︁
𝑣𝑣∈𝑉𝑉𝑡𝑡

𝑅𝑅𝑣𝑣

𝑏𝑏𝑣𝑣
(𝑇𝑇0,𝑣𝑣 + 𝑇𝑇1,𝑣𝑣𝑏𝑏𝑣𝑣) (14)

The objective function is subject to the following constraints.
For both leader and follower problems, the batch size limiting
constraint (15) applies.

1 ≤ 𝑏𝑏𝑣𝑣 ≤ 𝐵𝐵 𝐵𝐵 ∈ 𝑉𝑉 (15)

Additionally, flows passing the task must meet their delay
SLO requirement. The constraints are slightly different for
leader and follower problems. As of follower problems, con-
straint (16) keeps per-task flow delays under the budget (Δ𝑡𝑡 𝑡 𝑡𝑡).
Recall, these budgets come from the global problem (11).

𝜏𝜏𝑡𝑡 +
∑︁

𝑣𝑣∈𝑃𝑃 𝑓𝑓 𝑓𝑓𝑓

(𝑏𝑏𝑣𝑣
𝑅𝑅𝑣𝑣

+ 𝑇𝑇𝑣𝑣𝑣0 + 𝑇𝑇𝑣𝑣𝑣1𝑏𝑏𝑣𝑣) ≤ Δ𝑡𝑡 𝑡 𝑡𝑡 𝑓𝑓 ∈ Ψ𝑡𝑡 (16)

Leader problems have multiple delay constraints. First,
constraint (17) ensures compliance with delay SLOs of both
taskflows and flows. This is doable since leader tasks have a
view on private delay variables (Θ𝑡𝑡 𝑡 𝑡𝑡). Second, constraint (18)
ensures equivalence between public and private delay variables.

𝜏𝜏𝑡𝑡 +
∑︁

𝑣𝑣∈𝑃𝑃 𝑓𝑓 𝑓𝑓𝑓

(𝑏𝑏𝑣𝑣
𝑅𝑅𝑣𝑣

+ 𝑇𝑇𝑣𝑣𝑣0 + 𝑇𝑇𝑣𝑣𝑣1𝑏𝑏𝑣𝑣) +
∑︁

𝑠𝑠∈T: 𝑓𝑓 ∈Ψ𝑠𝑠

Θ𝑡𝑡 𝑡 𝑡𝑡 ≤ 𝐷𝐷 𝑓𝑓 𝑓𝑓 ∈ Ω𝑡𝑡

(17)

Θ𝑡𝑡 𝑡 𝑡𝑡 = Δ𝑡𝑡 𝑡 𝑡𝑡 𝑓𝑓 ∈ Ω𝑡𝑡 , 𝑠𝑠 ∈ T : 𝑓𝑓 ∈ Ψ𝑠𝑠 (18)

IV. CONTROL ALGORITHMS

In this section we present efficient control algorithms to
solve both the global problem and the subproblems. These
algorithms are suitable for a real-life implementation.

A. Solving Subproblems

Batchy uses a controller based on the gradient projection
method of Rosen [21]. The Rosen method is compatible with
our decomposition: it handles equality-type constraints (18)
and generates gradients and dual variables for the subgradient
method, which are used in the subgradient step for solving the
global problem (see later in §IV-B).

Let us briefly recap the gradient projection method. The
method consists of three main steps: i) find an improving
direction; ii) find a suitable step size; iii) optimize along the
direction with the step size. In the first step, we obtain an
improving feasible direction by projecting the gradient of the
objective function into the feasible space using a projection
matrix. The projection matrix P ensures that the resultant update
will not violate the per-task delay budgets. For this end, we
show the construction of variable coefficients matrix M and
the projection matrix P:

• Let M1 = [𝐴𝐴𝐴𝐴] be a matrix where 𝐴𝐴 is a matrix in which
row 𝑖𝑖 reflects the effect of increasing queue backlog sizes
(𝑏𝑏𝑣𝑣) on 𝑖𝑖-th flow delay in F with tight delay constraints
from (16) and (17), and 𝐵𝐵 is a zero matrix corresponding
to the private variables Θ𝑡𝑡 𝑡 𝑡𝑡 : 𝑓𝑓 ∈ Ω𝑡𝑡 , 𝑠𝑠 ∈ T : 𝑓𝑓 ∈ Ψ𝑠𝑠 .

• Let M2 = [𝑍𝑍𝑍𝑍] where 𝑍𝑍 is a zero matrix with as many
rows as there are constraints in (18) and as many columns
as the number of task modules |𝑉𝑉𝑡𝑡 | (corresponding to 𝑏𝑏𝑣𝑣
variables). 𝑄𝑄 is a matrix with row 𝑖𝑖 set to 1 where Δ𝑡𝑡 𝑡 𝑡𝑡 is
the 𝑖𝑖-th taskflow in a list of taskflows 𝑡𝑡𝑡𝑡𝑡 : 𝑓𝑓 ∈ F , 𝑡𝑡 ∈ T .

• Let 𝑀𝑀𝑇𝑇 = [𝑀𝑀𝑇𝑇
1 𝑀𝑀𝑇𝑇

2].
• Then, we construct P as P = 𝐼𝐼 − 𝑀𝑀𝑇𝑇 (𝑀𝑀𝑀𝑀𝑇𝑇)−1𝑀𝑀 .
The subproblem control algorithm reuses the single-core

Batchy control algorithm with the new projection matrix P.
The control algorithm generates the duals of private delay
variables Θ𝑡𝑡 𝑡 𝑡𝑡 (𝜔𝜔) for the sugradient method by the leader task
of flow 𝑓𝑓 . We summarize the per-task projected gradient control
algorithm we use to solve the subproblems in Algorithm 1.

Unfortunately, the control algorithm cannot handle an infeasi-
ble state; i.e., a state where the SLOs cannot be met. To recover
the system from infeasibility we introduce a simple heuristic:
the subsystems reuse the feasibility-recovery mechanisms from
single-core Batchy [10], while multicore feasibility-recovery
is implemented in the global controller (§IV-B).

Algorithm 1 Projected Gradient Control Algorithm
procedure PROJECTEDGRADIENT(G, F ,Δ𝑡𝑡 , 𝑓𝑓)

⊲ Gradient projection
while 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 do

P = I − M𝑇𝑇 (MM𝑇𝑇)−1M
Δb = P∇𝑙𝑙𝑡𝑡 ⊲ Δb has useless coordinates corresponding to

private variables Θ𝑡𝑡 𝑡 𝑡𝑡

w = −(MM𝑇𝑇)−1M∇l = [𝑢𝑢𝑢𝑢𝑢] ⊲ 𝑢𝑢 corresponds to 𝑏𝑏𝑣𝑣 and
𝜔𝜔 corresponds to Θ𝑡𝑡 𝑡 𝑡𝑡

if Δb ≠ 0 then break
if u ≥ 0 then return ⊲ Optimal KKT point reached
delete row for 𝑓𝑓 from M for some 𝑓𝑓 ∈ F : 𝑤𝑤 𝑓𝑓 < 0

⊲ Line search
for 𝑣𝑣 ∈ 𝑉𝑉𝑉𝑉𝑉 ∈ 𝑝𝑝𝑣𝑣 do

if Δ𝑏𝑏𝑣𝑣 > 0 then

𝜆𝜆𝑣𝑣 = min
𝑓𝑓 ∈F:𝑣𝑣∈𝑝𝑝 𝑓𝑓


Δ𝑡𝑡 𝑡 𝑡𝑡 − 𝑡𝑡 𝑓𝑓

Δ𝑏𝑏𝑣𝑣



𝜆𝜆 = min𝑣𝑣∈𝑉𝑉 𝜆𝜆𝑣𝑣
for 𝑣𝑣 ∈ 𝑉𝑉 do SETTRIGGER(𝑣𝑣, 𝑏𝑏𝑣𝑣 + Δ𝑏𝑏𝑣𝑣𝜆𝜆)

B. Solving The Global Problem

Subproblems are handled by the Batchy projected gradient
controller at each control period. After every 𝑁𝑁 iteration, the
global problem controller kicks in to reallocate the per-task
delay budgets (i.e., the public variables Δ𝑡𝑡 𝑡 𝑡𝑡).

The global control algorithm relies on two types of inputs: the
duals 𝜔𝜔𝑛𝑛 of the subproblem constraints (16), and duals 𝜔𝜔𝑚𝑚 of
constraints corresponding to private variables in (18). Gradients
𝑔𝑔 are obtained by summing global and subproblem subgradients
pairwise: 𝑔𝑔𝑛𝑛𝑛𝑛𝑛 = 𝜔𝜔𝑚𝑚 + 𝜔𝜔𝑛𝑛 ∀ 𝑓𝑓 ∈ Ω𝑚𝑚, 𝑛𝑛 ∈ T : 𝑓𝑓 ∈ Ψ𝑛𝑛. Based
on these inputs, the global control algorithm (Algorithm 2)
first calculates a step size, then updates per-task delay budgets
for each flow. For simplicity, the algorithm uses a fix step size
calculated as a configurable percentage 𝛿𝛿 of flow delay 𝐷𝐷 𝑓𝑓 .

We apply a simple heuristics to prevent infeasible states
in the global problem. We collect taskflows that exceed their
delay budget and increase their budget with a configurable and
fixed percentage of flow delay, balancing this delay increment

Batch-scheduling Data Flow Graphs with
Service-level Objectives on Multicore Systems

MARCH 2022 • VOLUME XIV • NUMBER 148

INFOCOMMUNICATIONS JOURNAL

INFOCOMMUNICATIONS JOURNAL 7

8

16

24
32

C
on

tr
ol

0 10 20 30 40 50 60
36

48

72

Time [control period]

D
el

ay
B

ou
nd

[𝜇𝜇
𝜇𝜇]

Batchy Multicore
Naïve Multicore
Batchy Single-core

Figure 5. Control Parameters of the First Flow in VRF(2,4): control for ACL
module and per-task delay budget on the second core (recall Fig. 4).

4

11

Pa
ck

et
R

at
e

[M
pp

s]

Batchy Multicore
Naïve Multicore
Batchy Single-core

0 10 20 30 40 50 60

60

70

80
delay SLO

Time [control period]

D
el

ay
[𝜇𝜇
𝜇𝜇]

Figure 6. Key Performance Indicators of the VRF(2,4) pipeline: total packet
rate and delay of the first flow. Delay SLOs are set to 72𝜇𝜇𝜇𝜇.

budget to the processing-heavy per-VLAN traffic processing;
ii) this gives enough time to the per-VLAN task controller to
queue up larger packet batches. This coordinated optimization
improves the overall performance (Fig. 6). Over single-core
Batchy, packet rate increases 2.5× and flow delay reduces to
0.75×. More importantly, the delay is finally below the SLO!

As of the controller performance, we measured the per-
task and global controllers running time in each control
period during the measurement and found that the multicore
approaches result only a 7% increase on average due to extra
global control steps.

To conclude, we see that our multicore extension is an
enabler technology for Batchy, supporting use cases with
ultra-low delay SLOs. We see the decomposition improves
performance and its control overhead is negligible.

VI. RELATED WORK

A. Optimizing Resource Usage

Carefully execute an NF-chain on general-purpose hardware
is one way to achieve performance improvement. Shenango [22]
improves CPU utilization by bypassing the kernel and resched-
ule or scale up according to the occupancy of the packet ring
buffers. This technique results low latency and improved CPU
utilization Similarly, IX [6] utilizes adaptive batch control
to improve throughput and latency. Metron [20] improves

end-to-end performance in NF-chains by avoiding cross-CPU
issues in NF-scheduling. These works focus on optimizing
performance without controlling latency. In contrast, Batchy
not just improves performance but carefully controls latency
to meet SLOs.

B. Improving Performance by Offloading

Offloading some part of the processing to hardware compo-
nents such as SmartNICs [23], FPGAs [24], or GPUs [8], [25],
[26] is widely used to improve packet processing performance.
To mitigate the packet offloading cost and to maximize
GPU utilization, extensive batching [26] and careful load
balancing between the offload hardware and the CPU [25]
are required. Offloading works motivate the importance of
batching, however, they are orthogonal to our work since they
incorporate offloading to specific hardware elements.

C. Meeting Delay SLOs

Beside performance optimization, guaranteeing SLOs is
another highly-desired behavior of NFV systems. Grus [8]
an NFV framework with GPU offload introduces a multi-
layer system with admission control and latency prediction
model to guarantee delay SLOs. As opposed to our work,
Grus guarantees delay SLO only for single VNF deployments,
and the model is tailored for the GPU offloading scenario.
SLOMO [27] predicts potential performance of VNF colocation,
but does not provide SLO guarantees. In contrast to Grus,
ResQ [28] provides performance isolation at CPU last-level
cache solving the noisy neighbor problem of VNFs, and
enables enforcing SLOs. NFV-RT [29] provides soft real-
time guarantees for NF service chains deployed in data center
environment using a fat-tree topology.

As opposed to our controller framework running on general
hardware, these works are bound to a given NFV environment:
they require a certain CPU feature, or specific underlying
network topology. Our work focuses on a single host using
general CPUs. Moreover, our controller framework extends
previous work by providing a unique combination of dynamic
internal batch de-fragmentation instead of applying batching
only to packet I/O, analytic techniques for controlling queue
backlogs, and selective SLO-enforcement at the granularity of
individual flows in multicore systems.

VII. CONCLUSIONS

Batchy, a state-of-the-art batch-scheduling framework,
presents massive performance improvements while conforming
delay SLOs even at Mpps-scale traffic with SLOs at 𝜇𝜇𝜇𝜇 range.
Batchy focuses on single-core execution.

In this paper we introduce a multicore extension to Batchy.
To this end, we formulated a primal decomposition to find
the optimal run-to-completion batch-scheduling on multicore
systems. We developed and implemented effective control
algorithms to be used in practical data flow graph batch-
scheduling. Our evaluation on a real 5G use-case focusing
on latency-optimized network function virtualization shows
that the multicore Batchy provides better performance (2.5×

INFOCOMMUNICATIONS JOURNAL 6

Algorithm 2 Global Control Algorithm
procedure SUBGRADIENT GLOBAL STEP(G, F , 𝜋𝜋𝜋 𝜋𝜋𝜋 𝜋𝜋)

for 𝑓𝑓 ∈ F do
⊲ Calculate step size
𝛼𝛼 = 𝐷𝐷 𝑓𝑓 ∗ 𝛿𝛿
⊲ Update allocated per-task flow delays on 𝜋𝜋 𝑓𝑓

for 𝑡𝑡 ∈ 𝜋𝜋 𝑓𝑓 do
Δ𝑡𝑡 𝑡 𝑡𝑡 = Δ𝑡𝑡 𝑡 𝑡𝑡 + 𝛼𝛼 ∗ 𝑔𝑔𝑡𝑡 𝑡 𝑡𝑡

Table I
STEADY-STATE RESULTS (SIMPLE PIPELINE).

Rate [Mpps] Delay (p99) [𝜇𝜇𝜇𝜇]

No Batching 0.971 15.445
Static Delay Budgets 0.991 18.615

Multicore Batchy 1.348 11.255

by decreasing surplus budgets of the feasible taskflows. This
simple technique is sufficient to ensure flow delay SLOs (12)
and non-negative per-task flow delay budgets (13).

V. EVALUATION

In this section, we evaluate our Batchy multicore extension
on both synthetic example and real-life use-case. We reused
existing Batchy codebase [10] as a controller to solve the
per-task subproblems (Algorithm 1) and implemented the
subgradient controller to orchestrate the per-task Batchy
controllers (Algorithm 2). The source code is available on
GitHub [18]. The evaluation was running on a server with
6×2.4GHz CPU (power-saving disabled) and 64GB RAM
installed with Debian 11 GNU/Linux.

A. Concept Validation: A Simple Pipeline

The first evaluation scenario focuses on validating the
concept.
Evaluation setup. We use a simple pipeline of two tasks
connected back-to-back. Tasks run on different cores and
contain one module. The system has one flow that traverses
both tasks. The last module is a computation-heavy module
that requires significantly more per-batch processing time (tens
of thousands of CPU cycles) than the first module (hundreds of
CPU cycles). This pipeline is similar to the example in Fig. 2.

We compare multicore Batchy to two baselines. The first
baseline does no packet batching. The second baseline runs
Batchy, but does not adjust per-task delay budgets adaptively;
i.e., adopts the naïve approach of Fig. 2. The measurements
focus on steady state performance: the first 100 control periods
are considered as warmup time, and we focus on the next 100
control periods. The flow delay SLO is set to 12𝜇𝜇𝜇𝜇.
Results. Table V-A summarizes steady packet rate and 99th
percentile delays of the measurements. The two baselines
produce limited packet rate due to poor batch-scheduling
algorithms. Namely, baselines cannot mitigate the cost of
computation-heavy task by intensive batching. There is a slight
difference between the performance of the two baselines: in
case of static delay budgets, Batchy has enough room for
batching in the first task, yielding a slight overall improvement
of the packet rate at a 20% delay penalty. In contrast to

Queue
L2

lookup
VLAN
table

L3
Lookup

L3
Lookup

.
.
.

ACL

ACL

ACL

ACL

.
.
.

.
.
.

NAT

NAT

NAT

NAT

group proc

group proc

group proc

group proc

Queue

Core 1 Core 2 Core N

Figure 4. The Virtual Routing Function Pipeline on 𝑁𝑁 Cores.

baselines, multicore Batchy can distribute the global delay
bound across the tasks optimally, so that it assigns extra delay
budget surplus for the last task that enables it to execute the
computation-heavy module on larger batches. This optimization
improves throughput by 30% while decreases delay by 60%,
and makes multicore Batchy the only solution to meet the flow
delay SLO.

To sum up, this experiment highlights the importance of
batching in multicore scenarios. However, careful distribution
of delay budgets among processing cores is necessary to get
the most of batch-efficiency gains.

B. Case Study: Virtual Routing Function

We demonstrate the real-life applicability of multicore Batchy
on a sample use case, the Virtual Routing Function (VRF),
taken from an official 5G benchmarking suite [13]. In this
measurement we are focusing on the following questions: i) can
we decrease the delay compared to single-core Batchy; ii) how
efficient is the decomposition-based delay budget distribution
compared to a naïve approach; iii) how much extra processing
is required for the hierarchical control?
Evaluation setup. The VRF pipeline (Fig. 4) implements a
latency-optimized L2/L3 routing scenario often arising in the
context of network function virtualization. In addition to L2/L3
routing, the pipeline also performs access control and address
translation over multiple virtual LANs (VLANs). First, traffic
is split per VLANs, and then for each VLAN the next hop
is selected using longest-prefix matching (L3 Lookup). For
each next hop, traffic undergoes access control (ACL), address
translation (NAT), and group processing. The pipeline has two
parameters: the number of VLANs (𝑛𝑛), and the number of
next-hops per VLAN (𝑚𝑚). The pipeline is provisioned on 𝑛𝑛 + 1
cores: VLAN splitting is done on the first core, and per-VLAN
traffic is processed on the remaining 𝑛𝑛 cores.

For the evaluation, we use the VRF(2,4) pipeline (2 VLANs
and 4 next-hops/VLAN). We set a 72𝜇𝜇𝜇𝜇 delay SLO for all
flows. The system runs for 60 control periods, and each control
period takes 0.5s. The global controller kicks in at every 10th
period; this gives enough time to the per-core (subproblem)
controllers to adapt to new delay budgets. We compare single-
core Batchy, naïve multicore (static per-task delay budgets),
and full-fledged multicore Batchy.
Results. Fig. 6 shows the key performance indicators (i.e.,
rate and delay) in the system. Naïve and Batchy multicore
approaches start from the same initial state. Yet, the full-fledged
multicore Batchy is able to further improve the performance
by adjusting the per-task delay budgets. Fig. 5 shows the
underlying control loops: i) the global controller takes the
surplus delay budget of the VLAN splitting task and gives extra

Batch-scheduling Data Flow Graphs with
Service-level Objectives on Multicore Systems

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 49

INFOCOMMUNICATIONS JOURNAL 7

8

16

24
32

C
on

tr
ol

0 10 20 30 40 50 60
36

48

72

Time [control period]

D
el

ay
B

ou
nd

[𝜇𝜇
𝜇𝜇]

Batchy Multicore
Naïve Multicore
Batchy Single-core

Figure 5. Control Parameters of the First Flow in VRF(2,4): control for ACL
module and per-task delay budget on the second core (recall Fig. 4).

4

11

Pa
ck

et
R

at
e

[M
pp

s]

Batchy Multicore
Naïve Multicore
Batchy Single-core

0 10 20 30 40 50 60

60

70

80
delay SLO

Time [control period]

D
el

ay
[𝜇𝜇
𝜇𝜇]

Figure 6. Key Performance Indicators of the VRF(2,4) pipeline: total packet
rate and delay of the first flow. Delay SLOs are set to 72𝜇𝜇𝜇𝜇.

budget to the processing-heavy per-VLAN traffic processing;
ii) this gives enough time to the per-VLAN task controller to
queue up larger packet batches. This coordinated optimization
improves the overall performance (Fig. 6). Over single-core
Batchy, packet rate increases 2.5× and flow delay reduces to
0.75×. More importantly, the delay is finally below the SLO!

As of the controller performance, we measured the per-
task and global controllers running time in each control
period during the measurement and found that the multicore
approaches result only a 7% increase on average due to extra
global control steps.

To conclude, we see that our multicore extension is an
enabler technology for Batchy, supporting use cases with
ultra-low delay SLOs. We see the decomposition improves
performance and its control overhead is negligible.

VI. RELATED WORK

A. Optimizing Resource Usage

Carefully execute an NF-chain on general-purpose hardware
is one way to achieve performance improvement. Shenango [22]
improves CPU utilization by bypassing the kernel and resched-
ule or scale up according to the occupancy of the packet ring
buffers. This technique results low latency and improved CPU
utilization Similarly, IX [6] utilizes adaptive batch control
to improve throughput and latency. Metron [20] improves

end-to-end performance in NF-chains by avoiding cross-CPU
issues in NF-scheduling. These works focus on optimizing
performance without controlling latency. In contrast, Batchy
not just improves performance but carefully controls latency
to meet SLOs.

B. Improving Performance by Offloading

Offloading some part of the processing to hardware compo-
nents such as SmartNICs [23], FPGAs [24], or GPUs [8], [25],
[26] is widely used to improve packet processing performance.
To mitigate the packet offloading cost and to maximize
GPU utilization, extensive batching [26] and careful load
balancing between the offload hardware and the CPU [25]
are required. Offloading works motivate the importance of
batching, however, they are orthogonal to our work since they
incorporate offloading to specific hardware elements.

C. Meeting Delay SLOs

Beside performance optimization, guaranteeing SLOs is
another highly-desired behavior of NFV systems. Grus [8]
an NFV framework with GPU offload introduces a multi-
layer system with admission control and latency prediction
model to guarantee delay SLOs. As opposed to our work,
Grus guarantees delay SLO only for single VNF deployments,
and the model is tailored for the GPU offloading scenario.
SLOMO [27] predicts potential performance of VNF colocation,
but does not provide SLO guarantees. In contrast to Grus,
ResQ [28] provides performance isolation at CPU last-level
cache solving the noisy neighbor problem of VNFs, and
enables enforcing SLOs. NFV-RT [29] provides soft real-
time guarantees for NF service chains deployed in data center
environment using a fat-tree topology.

As opposed to our controller framework running on general
hardware, these works are bound to a given NFV environment:
they require a certain CPU feature, or specific underlying
network topology. Our work focuses on a single host using
general CPUs. Moreover, our controller framework extends
previous work by providing a unique combination of dynamic
internal batch de-fragmentation instead of applying batching
only to packet I/O, analytic techniques for controlling queue
backlogs, and selective SLO-enforcement at the granularity of
individual flows in multicore systems.

VII. CONCLUSIONS

Batchy, a state-of-the-art batch-scheduling framework,
presents massive performance improvements while conforming
delay SLOs even at Mpps-scale traffic with SLOs at 𝜇𝜇𝜇𝜇 range.
Batchy focuses on single-core execution.

In this paper we introduce a multicore extension to Batchy.
To this end, we formulated a primal decomposition to find
the optimal run-to-completion batch-scheduling on multicore
systems. We developed and implemented effective control
algorithms to be used in practical data flow graph batch-
scheduling. Our evaluation on a real 5G use-case focusing
on latency-optimized network function virtualization shows
that the multicore Batchy provides better performance (2.5×

INFOCOMMUNICATIONS JOURNAL 6

Algorithm 2 Global Control Algorithm
procedure SUBGRADIENT GLOBAL STEP(G, F , 𝜋𝜋𝜋 𝜋𝜋𝜋 𝜋𝜋)

for 𝑓𝑓 ∈ F do
⊲ Calculate step size
𝛼𝛼 = 𝐷𝐷 𝑓𝑓 ∗ 𝛿𝛿
⊲ Update allocated per-task flow delays on 𝜋𝜋 𝑓𝑓

for 𝑡𝑡 ∈ 𝜋𝜋 𝑓𝑓 do
Δ𝑡𝑡 𝑡 𝑡𝑡 = Δ𝑡𝑡 𝑡 𝑡𝑡 + 𝛼𝛼 ∗ 𝑔𝑔𝑡𝑡 𝑡 𝑡𝑡

Table I
STEADY-STATE RESULTS (SIMPLE PIPELINE).

Rate [Mpps] Delay (p99) [𝜇𝜇𝜇𝜇]

No Batching 0.971 15.445
Static Delay Budgets 0.991 18.615

Multicore Batchy 1.348 11.255

by decreasing surplus budgets of the feasible taskflows. This
simple technique is sufficient to ensure flow delay SLOs (12)
and non-negative per-task flow delay budgets (13).

V. EVALUATION

In this section, we evaluate our Batchy multicore extension
on both synthetic example and real-life use-case. We reused
existing Batchy codebase [10] as a controller to solve the
per-task subproblems (Algorithm 1) and implemented the
subgradient controller to orchestrate the per-task Batchy
controllers (Algorithm 2). The source code is available on
GitHub [18]. The evaluation was running on a server with
6×2.4GHz CPU (power-saving disabled) and 64GB RAM
installed with Debian 11 GNU/Linux.

A. Concept Validation: A Simple Pipeline

The first evaluation scenario focuses on validating the
concept.
Evaluation setup. We use a simple pipeline of two tasks
connected back-to-back. Tasks run on different cores and
contain one module. The system has one flow that traverses
both tasks. The last module is a computation-heavy module
that requires significantly more per-batch processing time (tens
of thousands of CPU cycles) than the first module (hundreds of
CPU cycles). This pipeline is similar to the example in Fig. 2.

We compare multicore Batchy to two baselines. The first
baseline does no packet batching. The second baseline runs
Batchy, but does not adjust per-task delay budgets adaptively;
i.e., adopts the naïve approach of Fig. 2. The measurements
focus on steady state performance: the first 100 control periods
are considered as warmup time, and we focus on the next 100
control periods. The flow delay SLO is set to 12𝜇𝜇𝜇𝜇.
Results. Table V-A summarizes steady packet rate and 99th
percentile delays of the measurements. The two baselines
produce limited packet rate due to poor batch-scheduling
algorithms. Namely, baselines cannot mitigate the cost of
computation-heavy task by intensive batching. There is a slight
difference between the performance of the two baselines: in
case of static delay budgets, Batchy has enough room for
batching in the first task, yielding a slight overall improvement
of the packet rate at a 20% delay penalty. In contrast to

Queue
L2

lookup
VLAN
table

L3
Lookup

L3
Lookup

.
.
.

ACL

ACL

ACL

ACL

.
.
.

.
.
.

NAT

NAT

NAT

NAT

group proc

group proc

group proc

group proc

Queue

Core 1 Core 2 Core N

Figure 4. The Virtual Routing Function Pipeline on 𝑁𝑁 Cores.

baselines, multicore Batchy can distribute the global delay
bound across the tasks optimally, so that it assigns extra delay
budget surplus for the last task that enables it to execute the
computation-heavy module on larger batches. This optimization
improves throughput by 30% while decreases delay by 60%,
and makes multicore Batchy the only solution to meet the flow
delay SLO.

To sum up, this experiment highlights the importance of
batching in multicore scenarios. However, careful distribution
of delay budgets among processing cores is necessary to get
the most of batch-efficiency gains.

B. Case Study: Virtual Routing Function

We demonstrate the real-life applicability of multicore Batchy
on a sample use case, the Virtual Routing Function (VRF),
taken from an official 5G benchmarking suite [13]. In this
measurement we are focusing on the following questions: i) can
we decrease the delay compared to single-core Batchy; ii) how
efficient is the decomposition-based delay budget distribution
compared to a naïve approach; iii) how much extra processing
is required for the hierarchical control?
Evaluation setup. The VRF pipeline (Fig. 4) implements a
latency-optimized L2/L3 routing scenario often arising in the
context of network function virtualization. In addition to L2/L3
routing, the pipeline also performs access control and address
translation over multiple virtual LANs (VLANs). First, traffic
is split per VLANs, and then for each VLAN the next hop
is selected using longest-prefix matching (L3 Lookup). For
each next hop, traffic undergoes access control (ACL), address
translation (NAT), and group processing. The pipeline has two
parameters: the number of VLANs (𝑛𝑛), and the number of
next-hops per VLAN (𝑚𝑚). The pipeline is provisioned on 𝑛𝑛 + 1
cores: VLAN splitting is done on the first core, and per-VLAN
traffic is processed on the remaining 𝑛𝑛 cores.

For the evaluation, we use the VRF(2,4) pipeline (2 VLANs
and 4 next-hops/VLAN). We set a 72𝜇𝜇𝜇𝜇 delay SLO for all
flows. The system runs for 60 control periods, and each control
period takes 0.5s. The global controller kicks in at every 10th
period; this gives enough time to the per-core (subproblem)
controllers to adapt to new delay budgets. We compare single-
core Batchy, naïve multicore (static per-task delay budgets),
and full-fledged multicore Batchy.
Results. Fig. 6 shows the key performance indicators (i.e.,
rate and delay) in the system. Naïve and Batchy multicore
approaches start from the same initial state. Yet, the full-fledged
multicore Batchy is able to further improve the performance
by adjusting the per-task delay budgets. Fig. 5 shows the
underlying control loops: i) the global controller takes the
surplus delay budget of the VLAN splitting task and gives extra

Batch-scheduling Data Flow Graphs with
Service-level Objectives on Multicore Systems

MARCH 2022 • VOLUME XIV • NUMBER 150

INFOCOMMUNICATIONS JOURNAL

	 [1]	 L. Linguaglossa, S. Lange, S. Pontarelli, G. Rétvári, D. Rossi, T. Zinner,
R. Bifulco, M. Jarschel, and G. Bianchi, “Survey of performance
acceleration techniques for Network Function Virtualization,”
Proceedings of the IEEE, vol. 107, no. 4, pp. 746–764, 2019.

	 [2]	 S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy,
“SoftNIC: A software NIC to augment hardware,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2015-155,
May 2015. [Online]. Available: http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2015/EECS-2015-155.html

	 [3]	 E. Warnicke, “Vector packet processing - one terabit router,” July 2017.
	 [4]	 T. Barbette, C. Soldani, and L. Mathy, “Fast userspace packet

processing,” in ACM/IEEE ANCS, 2015, pp. 5–16.
	 [5]	 L. Molnár, G. Pongrácz, G. Enyedi, Z. L. Kis, L. Csikor, F. Juhász,

A. Kőrösi, and G. Rétvári, “Dataplane specialization for high-
performance OpenFlow software switching,” in ACM SIGCOMM,
2016, pp. 539–552.

	 [6]	 A. Belay, G. Prekas, M. Primorac, A. Klimovic, S. Grossman, C.
Kozyrakis, and E. Bugnion, “The IX operating system: Combining low
latency, high throughput, and efficiency in a protected dataplane,” ACM
Transactions on Computer Systems (TOCS), vol. 34, no. 4, p. 11, 2017.

	 [7]	 Intel, “Data plane development kit,” http://dpdk.org.
	 [8]	 Z. Zheng, J. Bi, H. Wang, C. Sun, H. Yu, H. Hu, K. Gao, and J. Wu,

“Grus: Enabling latency SLOs for GPU-accelerated NFV systems,” in
IEEE ICNP, 2018, pp. 154–164.

	 [9]	 S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. K.
Ramakrishnan, T. Wood, M. Arumaithurai, and X. Fu, “NFVnice:
Dynamic Backpressure and Scheduling for NFV Service Chains,” in
ACM SIGCOMM, 2017, pp. 71–84.

[10]	 T. Lévai, F. Németh, B. Raghavan, and G. Rétvári, “Batchy:
Batch-scheduling data flow graphs with service-level objectives,”
in 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20). Santa Clara, CA: USENIX Association,
Feb. 2020, pp. 633–649. [Online]. Available: https://www.usenix.org/
conference/nsdi20/presentation/levai

[11] J. Nagle, “Congestion control in IP/TCP internetworks,” Internet
Requests for Comments, RFC Editor, RFC 896, January 1984.

[12]	 O. Michel, R. Bifulco, G. Rétvári, and S. Schmid, “The programmable
data plane: Abstractions, architectures, algorithms, and applications,”
ACM Comput. Surv., vol. 54, no. 4, May 2021. [Online]. Available:
doi: 10.1145/3447868

[13] T. Lévai, G. Pongrácz, P. Megyesi, P. Vörös, S. Laki, F. Németh,
and G. Rétvári, “The price for programmability in the software data
plane: The vendor perspective,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 12, pp. 2621–2630, Dec. 2018.

[14] S. Boyd, L. Xiao, A. Mutapcic, and J. Mattingley, “Notes on decompo-
sition methods,” Notes for EE364B, Stanford University, vol. 635, pp.
1–36, 2007.

References

Tamás Lévai received the M.Sc. degree in Computer
Engineering at the Budapest University of Technol-
ogy and Economics (BME) in 2016. Currently, he is a
Ph.D. candidate and assistant teacher at BME. His re-
search interest focuses on computer networks and dis-
tributed computing, mainly software-defined network-
ing, cloud native computing and high-performance
packet processing.

Gábor Rétvári received the M.Sc. and Ph.D. degrees
in electrical engineering from the Budapest University
of Technology and Economics in 1999 and 2007. He
is now a Senior Research Fellow at the Department of
Telecommunications and Media Informatics. His re-
search interests include all aspects of network routing
and switching, the programmable data plane, and the
networking applications of computational geometry
and information theory. He maintains several open
source scientific tools written in Perl, C, and Haskell.

[15]	 D. P. Palomar and M. Chiang, “A tutorial on decomposition methods
for network utility maximization,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 8, pp. 1439–1451, 2006.

[16] D. Palomar, “Convex primal decomposition for multicarrier linear
mimo transceivers,” IEEE Transactions on Signal Processing, vol. 53,
no. 12, pp. 4661–4674, 2005.

[17]	 H. Pennanen, A. Tolli, and M. Latva-Aho, “Decentralized coordinated
downlink beamforming via primal decomposition,” IEEE Signal
Processing Letters, vol. 18, no. 11, pp. 647–650, 2011.

[18] “Batchy,” https://github.com/hsnlab/batchy/tree/multicore.
[19]	 B. Stephens, A. Akella, and M. Swift, “Loom: Flexible and efficient

NIC packet scheduling,” in USENIX NSDI, Feb. 2019, pp. 33–46.
[20]		 G. P. Katsikas, T. Barbette, D. Kostić, R. Steinert, and G. Q. M. Jr.,

“Metron: NFV service chains at the true speed of the underlying
hardware,” in USENIX NSDI, 2018, pp. 171–186.

[21]		 M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear programming:
Theory and algorithms. John Wiley & Sons, 2013.

[22]		 A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakrishnan,
“Shenango: Achieving high CPU efficiency for latency-sensitive
datacenter workloads,” in USENIX NSDI, 2019, pp. 361–378.

[23]		 Y. Le, H. Chang, S. Mukherjee, L. Wang, A. Akella, M. M. Swift, and
T. V. Lakshman, “Uno: Uniflying host and smart nic offload for flexible
packet processing,” in Proceedings of the 2017 Symposium on Cloud
Computing, 2017, p. 506–519.

[24]		 B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng,
and E. Chen, “Clicknp: Highly flexible and high performance network
processing with reconfigurable hardware,” in Proceedings of the 2016
ACM SIGCOMM Conference, ser. SIGCOMM ’16. ACM, 2016, p.
1–14.

[25]		 J. Kim, K. Jang, K. Lee, S. Ma, J. Shim, and S. Moon, “NBA (Network
Balancing Act): A high-performance packet processing framework for
heterogeneous processors,” in EuroSys, 2015, pp. 22:1–22:14.

[26]		 S. Han, K. Jang, K. Park, and S. Moon, “Packetshader: A GPU-
accelerated software router,” in ACM SIGCOMM, 2010, pp. 195–206.

[27]		 A. Manousis, R. A. Sharma, V. Sekar, and J. Sherry, “Contention-
aware performance prediction for virtualized network functions,” in
SIGCOMM ’20, 2020, p. 270–282.

[28]		 A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. Argyraki, S.
Ratnasamy, and S. Shenker, “ResQ: Enabling SLOs in network function
virtualization,” in USENIX NSDI, 2018, pp. 283–297.

[29]		 Y. Li, L. T. Xuan Phan, and B. T. Loo, “Network functions virtualization
with soft real-time guarantees,” in IEEE INFOCOM 2016, 2016, pp.
1–9.

INFOCOMMUNICATIONS JOURNAL 8

packet rate) over the single-core algorithm and guarantees
delay SLOs that are otherwise not feasible with the single-core
algorithm.

Future work focuses on applying Batchy for ultra-low-latency
and real-time applications in 5G and beyond networks.

ACKNOWLEDGMENT

This work was supported by the ÚNKP-21-4 New National
Excellence Program of the Ministry of Innovation and Technol-
ogy from the source of the National Research, Development
and Innovation Fund, and NKFIH/OTKA Project #135606.

REFERENCES

[1] L. Linguaglossa, S. Lange, S. Pontarelli, G. Rétvári, D. Rossi, T. Zinner,
R. Bifulco, M. Jarschel, and G. Bianchi, “Survey of performance
acceleration techniques for Network Function Virtualization,” Proceedings
of the IEEE, vol. 107, no. 4, pp. 746–764, 2019.

[2] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy,
“SoftNIC: A software NIC to augment hardware,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2015-155,
May 2015. [Online]. Available: http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2015/EECS-2015-155.html

[3] E. Warnicke, “Vector packet processing - one terabit router,” July 2017.
[4] T. Barbette, C. Soldani, and L. Mathy, “Fast userspace packet processing,”

in ACM/IEEE ANCS, 2015, pp. 5–16.
[5] L. Molnár, G. Pongrácz, G. Enyedi, Z. L. Kis, L. Csikor, F. Juhász,

A. Kőrösi, and G. Rétvári, “Dataplane specialization for high-performance
OpenFlow software switching,” in ACM SIGCOMM, 2016, pp. 539–552.

[6] A. Belay, G. Prekas, M. Primorac, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion, “The IX operating system: Combining
low latency, high throughput, and efficiency in a protected dataplane,”
ACM Transactions on Computer Systems (TOCS), vol. 34, no. 4, p. 11,
2017.

[7] Intel, “Data plane development kit,” http://dpdk.org.
[8] Z. Zheng, J. Bi, H. Wang, C. Sun, H. Yu, H. Hu, K. Gao, and J. Wu,

“Grus: Enabling latency SLOs for GPU-accelerated NFV systems,” in
IEEE ICNP, 2018, pp. 154–164.

[9] S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. K. Ramakrishnan,
T. Wood, M. Arumaithurai, and X. Fu, “NFVnice: Dynamic Backpressure
and Scheduling for NFV Service Chains,” in ACM SIGCOMM, 2017,
pp. 71–84.

[10] T. Lévai, F. Németh, B. Raghavan, and G. Rétvári, “Batchy: Batch-
scheduling data flow graphs with service-level objectives,” in 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20). Santa Clara, CA: USENIX Association, Feb. 2020, pp.
633–649. [Online]. Available: https://www.usenix.org/conference/nsdi20/
presentation/levai

[11] J. Nagle, “Congestion control in IP/TCP internetworks,” Internet Requests
for Comments, RFC Editor, RFC 896, January 1984.

[12] O. Michel, R. Bifulco, G. Rétvári, and S. Schmid, “The programmable
data plane: Abstractions, architectures, algorithms, and applications,”
ACM Comput. Surv., vol. 54, no. 4, May 2021. [Online]. Available:
https://doi.org/10.1145/3447868

[13] T. Lévai, G. Pongrácz, P. Megyesi, P. Vörös, S. Laki, F. Németh, and
G. Rétvári, “The price for programmability in the software data plane: The
vendor perspective,” IEEE Journal on Selected Areas in Communications,
vol. 36, no. 12, pp. 2621–2630, Dec. 2018.

[14] S. Boyd, L. Xiao, A. Mutapcic, and J. Mattingley, “Notes on decompo-
sition methods,” Notes for EE364B, Stanford University, vol. 635, pp.
1–36, 2007.

[15] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods
for network utility maximization,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 8, pp. 1439–1451, 2006.

[16] D. Palomar, “Convex primal decomposition for multicarrier linear mimo
transceivers,” IEEE Transactions on Signal Processing, vol. 53, no. 12,
pp. 4661–4674, 2005.

[17] H. Pennanen, A. Tolli, and M. Latva-Aho, “Decentralized coordinated
downlink beamforming via primal decomposition,” IEEE Signal Process-
ing Letters, vol. 18, no. 11, pp. 647–650, 2011.

[18] “Batchy,” https://github.com/hsnlab/batchy/tree/multicore.
[19] B. Stephens, A. Akella, and M. Swift, “Loom: Flexible and efficient

NIC packet scheduling,” in USENIX NSDI, Feb. 2019, pp. 33–46.

[20] G. P. Katsikas, T. Barbette, D. Kostić, R. Steinert, and G. Q. M. Jr.,
“Metron: NFV service chains at the true speed of the underlying hardware,”
in USENIX NSDI, 2018, pp. 171–186.

[21] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear programming:
Theory and algorithms. John Wiley & Sons, 2013.

[22] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakrishnan,
“Shenango: Achieving high CPU efficiency for latency-sensitive datacenter
workloads,” in USENIX NSDI, 2019, pp. 361–378.

[23] Y. Le, H. Chang, S. Mukherjee, L. Wang, A. Akella, M. M. Swift, and
T. V. Lakshman, “Uno: Uniflying host and smart nic offload for flexible
packet processing,” in Proceedings of the 2017 Symposium on Cloud
Computing, 2017, p. 506–519.

[24] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng,
and E. Chen, “Clicknp: Highly flexible and high performance network
processing with reconfigurable hardware,” in Proceedings of the 2016
ACM SIGCOMM Conference, ser. SIGCOMM ’16. ACM, 2016, p.
1–14.

[25] J. Kim, K. Jang, K. Lee, S. Ma, J. Shim, and S. Moon, “NBA (Network
Balancing Act): A high-performance packet processing framework for
heterogeneous processors,” in EuroSys, 2015, pp. 22:1–22:14.

[26] S. Han, K. Jang, K. Park, and S. Moon, “Packetshader: A GPU-
accelerated software router,” in ACM SIGCOMM, 2010, pp. 195–206.

[27] A. Manousis, R. A. Sharma, V. Sekar, and J. Sherry, “Contention-aware
performance prediction for virtualized network functions,” in SIGCOMM

’20, 2020, p. 270–282.
[28] A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. Argyraki, S. Ratnasamy,

and S. Shenker, “ResQ: Enabling SLOs in network function virtualization,”
in USENIX NSDI, 2018, pp. 283–297.

[29] Y. Li, L. T. Xuan Phan, and B. T. Loo, “Network functions virtualization
with soft real-time guarantees,” in IEEE INFOCOM 2016, 2016, pp. 1–9.

Tamás Lévai received the M.Sc. degree in Computer
Engineering at the Budapest University of Tech-
nology and Economics (BME) in 2016. Currently,
he is a Ph.D. candidate and assistant teacher at
BME. His research interest focuses on computer
networks and distributed computing, mainly software-
defined networking, cloud native computing and high-
performance packet processing.

Gábor Rétvári received the M.Sc. and Ph.D. degrees
in electrical engineering from the Budapest University
of Technology and Economics in 1999 and 2007. He
is now a Senior Research Fellow at the Department
of Telecommunications and Media Informatics. His
research interests include all aspects of network
routing and switching, the programmable data plane,
and the networking applications of computational
geometry and information theory. He maintains
several open source scientific tools written in Perl,
C, and Haskell.

Knowgraph-TT: Knowledge-Graph-Based Transit
Time Matching in Semiconductor Supply Chains

Nour Ramzy 1, Hans Ehm 1, Sandra Durst 1, Konstanze Wibmer 1, Werner Bick 2

Abstract—The semiconductor supply chain is characterized
by a global and complex production network in a competitive
market. The time when work at one location ends and can be
resumed at another is defined as Transit Time (TT). Therefore,
planning Transit Time accurately and minimizing delays is
crucial as it is used in the execution system to determine the
Available to Promise (ATP) and thus important for daily order
confirmation. By determining the ATP, the customer receives
a response to the resource availability and a due date to the
customer requests. Due to tool inherent differences, we choose
semantic integration via Knowledge Graph (KG) to match the
planned TT used in the execution system and the actual TT
measured in the monitoring tool. KnowGraph-TT thereby serves
as a role model for further matching and alignment tasks using
KG. It connects actual and planned TT, highlights the gaps via
applied queries, and enables an optimized update of planned TT.
With our solution, deviations of actual and planned TT can be
minimized and confirmations of unrealizable deliverable times
are avoided.

Index Terms—knowledge graph, semiconductor, order man-
agement, transit time mismatch

I. INTRODUCTION

The semiconductor industry is competitive with a dynamic
market characterized by time-intensive processes [9]. Espe-
cially in this highly competitive domain, semiconductor com-
panies strive to offer the highest quality to their customers
which implies sustaining delivery reliability. Reliable deliver-
ies are important as customers depend on the delivery promises
and their further production steps are based on this commit-
ment. To achieve planning dependability, it is important to
implement precise and reliable planning processes. The key
to better planning and to foresee delays is to examine Transit
Times (TTs). Transit time is the time taken to move goods
physically between different locations in a supply chain or
laterally to another facility [21].

Supply Chain (SC) integration, as well as the flow of infor-
mation SC are essential for carrying out effective exchanges
between parties [15], thus can enhance SC planning. Semantic
data integration enables combining SC data from disparate
sources and consolidating it into meaningful and valuable
information.

In this paper, we present Knowledge-Graph-based TT
matching (Knowgraph-TT), aligned with existing approaches
solution that matches transit times of different data sources
based on semantic data integration to minimize and prevent
delays. Knowgraph-TT leverages a well defined ontology to

1Infineon Technologies AG, Munich, Germany
2Technical University of Applied Sciences Regensburg, Regensburg, Ger-

many

model TTs. Via KnowGraph-TT, delays are identified and data
is kept up to date through semantic transit time matching to
create more reliable planning processes within the SC.

The remainder of the paper is divided as follows: After
an introduction, section II covers the relevant background
knowledge and the need for TT matching. section III describes
related approaches for data integration in SC and the gap that
motivates the use of semantic data integration for TT matching.
section IV contains the implementation details i.e., the ontol-
ogy modelling, mapping to data sources. The semantic data
integration process is shown with an example of two tools that
store transit time based on different definitions. section V is
the evaluation of the implementation. We rely on competency
questions and SPARQL and we discuss the results. Finally, the
work is rounded off with section VI where we conclude and
discuss the next steps about further analysis in which external
factors like a pandemic are addressed.

II. BACKGROUND AND MOTIVATION

In this section, we present the necessary background knowl-
edge e.g., order management, transit time and the need for TT
matching.

A. Transit Time

Transit time is the time taken to move goods physically
between different locations in a supply chain or laterally to
another facility [21]. We distinguish between the actual and
the planned transit. The first is the time needed to deliver
particular products to the customer. While the planned transit
time on the other hand is the time that is expected and planned
for future deliveries to the customer. The planned transit time
is used to determine the Available To Promise (ATP) which is
important for daily order confirmation.

Figure 1 shows that the actual and the planned transit time
might be split into several small time intervals and might
be in different tools (e.g. one for measuring and one for
planning) and are measured and calculated differently. Despite
one definition of transit time, the actual and the planned transit
time might be in different tools as they reflect different parts
of the supply chain. The focus of the planning tool is to plan
transit times, while the focus of another tool, e.g., an internal
logistics monitoring tool, is to track actual transit times.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
http://dpdk.org
https://www.usenix.org/conference/nsdi20/presentation/levai
https://www.usenix.org/conference/nsdi20/presentation/levai
https://doi.org/10.1145/3447868
https://github.com/hsnlab/batchy/tree/multicore

Knowgraph-TT: Knowledge-Graph-Based Transit
Time Matching in Semiconductor Supply Chains

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 51

Knowgraph-TT: Knowledge-Graph-Based Transit
Time Matching in Semiconductor Supply Chains

Nour Ramzy1, Hans Ehm1, Sandra Durst1, Konstanze Wibmer1, and Werner Bick2

1 Infineon Technologies AG, Munich, Germany;
E-mail: {nour.ramzy, hans.ehm, sandra.durst, konstanze.wibmer}@infineon.com.

2 Technical University of Applied Sciences Regensburg, Regensburg,
Germany; E-mail: werner.bick@oth-regensburg.de.

Abstract—The semiconductor supply chain is characterized
by a global and complex production network in a competitive
market. The time when work at one location ends and can be
resumed at another is defined as Transit Time (TT). Therefore,
planning Transit Time accurately and minimizing delays is
crucial as it is used in the execution system to determine the
Available to Promise (ATP) and thus important for daily order
confirmation. By determining the ATP, the customer receives
a response to the resource availability and a due date to the
customer requests. Due to tool inherent differences, we choose
semantic integration via Knowledge Graph (KG) to match the
planned TT used in the execution system and the actual TT
measured in the monitoring tool. KnowGraph-TT thereby serves
as a role model for further matching and alignment tasks using
KG. It connects actual and planned TT, highlights the gaps via
applied queries, and enables an optimized update of planned TT.
With our solution, deviations of actual and planned TT can be
minimized and confirmations of unrealizable deliverable times
are avoided.

Index Terms—knowledge graph, semiconductor, order man-
agement, transit time mismatch

DOI: 10.36244/ICJ.2022.1.7

Knowgraph-TT: Knowledge-Graph-Based Transit
Time Matching in Semiconductor Supply Chains

Nour Ramzy 1, Hans Ehm 1, Sandra Durst 1, Konstanze Wibmer 1, Werner Bick 2

Abstract—The semiconductor supply chain is characterized
by a global and complex production network in a competitive
market. The time when work at one location ends and can be
resumed at another is defined as Transit Time (TT). Therefore,
planning Transit Time accurately and minimizing delays is
crucial as it is used in the execution system to determine the
Available to Promise (ATP) and thus important for daily order
confirmation. By determining the ATP, the customer receives
a response to the resource availability and a due date to the
customer requests. Due to tool inherent differences, we choose
semantic integration via Knowledge Graph (KG) to match the
planned TT used in the execution system and the actual TT
measured in the monitoring tool. KnowGraph-TT thereby serves
as a role model for further matching and alignment tasks using
KG. It connects actual and planned TT, highlights the gaps via
applied queries, and enables an optimized update of planned TT.
With our solution, deviations of actual and planned TT can be
minimized and confirmations of unrealizable deliverable times
are avoided.

Index Terms—knowledge graph, semiconductor, order man-
agement, transit time mismatch

I. INTRODUCTION

The semiconductor industry is competitive with a dynamic
market characterized by time-intensive processes [9]. Espe-
cially in this highly competitive domain, semiconductor com-
panies strive to offer the highest quality to their customers
which implies sustaining delivery reliability. Reliable deliver-
ies are important as customers depend on the delivery promises
and their further production steps are based on this commit-
ment. To achieve planning dependability, it is important to
implement precise and reliable planning processes. The key
to better planning and to foresee delays is to examine Transit
Times (TTs). Transit time is the time taken to move goods
physically between different locations in a supply chain or
laterally to another facility [21].

Supply Chain (SC) integration, as well as the flow of infor-
mation SC are essential for carrying out effective exchanges
between parties [15], thus can enhance SC planning. Semantic
data integration enables combining SC data from disparate
sources and consolidating it into meaningful and valuable
information.

In this paper, we present Knowledge-Graph-based TT
matching (Knowgraph-TT), aligned with existing approaches
solution that matches transit times of different data sources
based on semantic data integration to minimize and prevent
delays. Knowgraph-TT leverages a well defined ontology to

1Infineon Technologies AG, Munich, Germany
2Technical University of Applied Sciences Regensburg, Regensburg, Ger-

many

model TTs. Via KnowGraph-TT, delays are identified and data
is kept up to date through semantic transit time matching to
create more reliable planning processes within the SC.

The remainder of the paper is divided as follows: After
an introduction, section II covers the relevant background
knowledge and the need for TT matching. section III describes
related approaches for data integration in SC and the gap that
motivates the use of semantic data integration for TT matching.
section IV contains the implementation details i.e., the ontol-
ogy modelling, mapping to data sources. The semantic data
integration process is shown with an example of two tools that
store transit time based on different definitions. section V is
the evaluation of the implementation. We rely on competency
questions and SPARQL and we discuss the results. Finally, the
work is rounded off with section VI where we conclude and
discuss the next steps about further analysis in which external
factors like a pandemic are addressed.

II. BACKGROUND AND MOTIVATION

In this section, we present the necessary background knowl-
edge e.g., order management, transit time and the need for TT
matching.

A. Transit Time

Transit time is the time taken to move goods physically
between different locations in a supply chain or laterally to
another facility [21]. We distinguish between the actual and
the planned transit. The first is the time needed to deliver
particular products to the customer. While the planned transit
time on the other hand is the time that is expected and planned
for future deliveries to the customer. The planned transit time
is used to determine the Available To Promise (ATP) which is
important for daily order confirmation.

Figure 1 shows that the actual and the planned transit time
might be split into several small time intervals and might
be in different tools (e.g. one for measuring and one for
planning) and are measured and calculated differently. Despite
one definition of transit time, the actual and the planned transit
time might be in different tools as they reflect different parts
of the supply chain. The focus of the planning tool is to plan
transit times, while the focus of another tool, e.g., an internal
logistics monitoring tool, is to track actual transit times.

Knowgraph-TT: Knowledge-Graph-Based Transit
Time Matching in Semiconductor Supply Chains

Nour Ramzy 1, Hans Ehm 1, Sandra Durst 1, Konstanze Wibmer 1, Werner Bick 2

Abstract—The semiconductor supply chain is characterized
by a global and complex production network in a competitive
market. The time when work at one location ends and can be
resumed at another is defined as Transit Time (TT). Therefore,
planning Transit Time accurately and minimizing delays is
crucial as it is used in the execution system to determine the
Available to Promise (ATP) and thus important for daily order
confirmation. By determining the ATP, the customer receives
a response to the resource availability and a due date to the
customer requests. Due to tool inherent differences, we choose
semantic integration via Knowledge Graph (KG) to match the
planned TT used in the execution system and the actual TT
measured in the monitoring tool. KnowGraph-TT thereby serves
as a role model for further matching and alignment tasks using
KG. It connects actual and planned TT, highlights the gaps via
applied queries, and enables an optimized update of planned TT.
With our solution, deviations of actual and planned TT can be
minimized and confirmations of unrealizable deliverable times
are avoided.

Index Terms—knowledge graph, semiconductor, order man-
agement, transit time mismatch

I. INTRODUCTION

The semiconductor industry is competitive with a dynamic
market characterized by time-intensive processes [9]. Espe-
cially in this highly competitive domain, semiconductor com-
panies strive to offer the highest quality to their customers
which implies sustaining delivery reliability. Reliable deliver-
ies are important as customers depend on the delivery promises
and their further production steps are based on this commit-
ment. To achieve planning dependability, it is important to
implement precise and reliable planning processes. The key
to better planning and to foresee delays is to examine Transit
Times (TTs). Transit time is the time taken to move goods
physically between different locations in a supply chain or
laterally to another facility [21].

Supply Chain (SC) integration, as well as the flow of infor-
mation SC are essential for carrying out effective exchanges
between parties [15], thus can enhance SC planning. Semantic
data integration enables combining SC data from disparate
sources and consolidating it into meaningful and valuable
information.

In this paper, we present Knowledge-Graph-based TT
matching (Knowgraph-TT), aligned with existing approaches
solution that matches transit times of different data sources
based on semantic data integration to minimize and prevent
delays. Knowgraph-TT leverages a well defined ontology to

1Infineon Technologies AG, Munich, Germany
2Technical University of Applied Sciences Regensburg, Regensburg, Ger-

many

model TTs. Via KnowGraph-TT, delays are identified and data
is kept up to date through semantic transit time matching to
create more reliable planning processes within the SC.

The remainder of the paper is divided as follows: After
an introduction, section II covers the relevant background
knowledge and the need for TT matching. section III describes
related approaches for data integration in SC and the gap that
motivates the use of semantic data integration for TT matching.
section IV contains the implementation details i.e., the ontol-
ogy modelling, mapping to data sources. The semantic data
integration process is shown with an example of two tools that
store transit time based on different definitions. section V is
the evaluation of the implementation. We rely on competency
questions and SPARQL and we discuss the results. Finally, the
work is rounded off with section VI where we conclude and
discuss the next steps about further analysis in which external
factors like a pandemic are addressed.

II. BACKGROUND AND MOTIVATION

In this section, we present the necessary background knowl-
edge e.g., order management, transit time and the need for TT
matching.

A. Transit Time

Transit time is the time taken to move goods physically
between different locations in a supply chain or laterally to
another facility [21]. We distinguish between the actual and
the planned transit. The first is the time needed to deliver
particular products to the customer. While the planned transit
time on the other hand is the time that is expected and planned
for future deliveries to the customer. The planned transit time
is used to determine the Available To Promise (ATP) which is
important for daily order confirmation.

Figure 1 shows that the actual and the planned transit time
might be split into several small time intervals and might
be in different tools (e.g. one for measuring and one for
planning) and are measured and calculated differently. Despite
one definition of transit time, the actual and the planned transit
time might be in different tools as they reflect different parts
of the supply chain. The focus of the planning tool is to plan
transit times, while the focus of another tool, e.g., an internal
logistics monitoring tool, is to track actual transit times.

Knowgraph-TT: Knowledge-Graph-Based Transit
Time Matching in Semiconductor Supply Chains

Nour Ramzy 1, Hans Ehm 1, Sandra Durst 1, Konstanze Wibmer 1, Werner Bick 2

Abstract—The semiconductor supply chain is characterized
by a global and complex production network in a competitive
market. The time when work at one location ends and can be
resumed at another is defined as Transit Time (TT). Therefore,
planning Transit Time accurately and minimizing delays is
crucial as it is used in the execution system to determine the
Available to Promise (ATP) and thus important for daily order
confirmation. By determining the ATP, the customer receives
a response to the resource availability and a due date to the
customer requests. Due to tool inherent differences, we choose
semantic integration via Knowledge Graph (KG) to match the
planned TT used in the execution system and the actual TT
measured in the monitoring tool. KnowGraph-TT thereby serves
as a role model for further matching and alignment tasks using
KG. It connects actual and planned TT, highlights the gaps via
applied queries, and enables an optimized update of planned TT.
With our solution, deviations of actual and planned TT can be
minimized and confirmations of unrealizable deliverable times
are avoided.

Index Terms—knowledge graph, semiconductor, order man-
agement, transit time mismatch

I. INTRODUCTION

The semiconductor industry is competitive with a dynamic
market characterized by time-intensive processes [9]. Espe-
cially in this highly competitive domain, semiconductor com-
panies strive to offer the highest quality to their customers
which implies sustaining delivery reliability. Reliable deliver-
ies are important as customers depend on the delivery promises
and their further production steps are based on this commit-
ment. To achieve planning dependability, it is important to
implement precise and reliable planning processes. The key
to better planning and to foresee delays is to examine Transit
Times (TTs). Transit time is the time taken to move goods
physically between different locations in a supply chain or
laterally to another facility [21].

Supply Chain (SC) integration, as well as the flow of infor-
mation SC are essential for carrying out effective exchanges
between parties [15], thus can enhance SC planning. Semantic
data integration enables combining SC data from disparate
sources and consolidating it into meaningful and valuable
information.

In this paper, we present Knowledge-Graph-based TT
matching (Knowgraph-TT), aligned with existing approaches
solution that matches transit times of different data sources
based on semantic data integration to minimize and prevent
delays. Knowgraph-TT leverages a well defined ontology to

1Infineon Technologies AG, Munich, Germany
2Technical University of Applied Sciences Regensburg, Regensburg, Ger-

many

model TTs. Via KnowGraph-TT, delays are identified and data
is kept up to date through semantic transit time matching to
create more reliable planning processes within the SC.

The remainder of the paper is divided as follows: After
an introduction, section II covers the relevant background
knowledge and the need for TT matching. section III describes
related approaches for data integration in SC and the gap that
motivates the use of semantic data integration for TT matching.
section IV contains the implementation details i.e., the ontol-
ogy modelling, mapping to data sources. The semantic data
integration process is shown with an example of two tools that
store transit time based on different definitions. section V is
the evaluation of the implementation. We rely on competency
questions and SPARQL and we discuss the results. Finally, the
work is rounded off with section VI where we conclude and
discuss the next steps about further analysis in which external
factors like a pandemic are addressed.

II. BACKGROUND AND MOTIVATION

In this section, we present the necessary background knowl-
edge e.g., order management, transit time and the need for TT
matching.

A. Transit Time

Transit time is the time taken to move goods physically
between different locations in a supply chain or laterally to
another facility [21]. We distinguish between the actual and
the planned transit. The first is the time needed to deliver
particular products to the customer. While the planned transit
time on the other hand is the time that is expected and planned
for future deliveries to the customer. The planned transit time
is used to determine the Available To Promise (ATP) which is
important for daily order confirmation.

Figure 1 shows that the actual and the planned transit time
might be split into several small time intervals and might
be in different tools (e.g. one for measuring and one for
planning) and are measured and calculated differently. Despite
one definition of transit time, the actual and the planned transit
time might be in different tools as they reflect different parts
of the supply chain. The focus of the planning tool is to plan
transit times, while the focus of another tool, e.g., an internal
logistics monitoring tool, is to track actual transit times.

mailto:nour.ramzy%40infineon.com?subject=
mailto:hans.ehm%40infineon.com?subject=
mailto:sandra.durst%40infineon.com?subject=
mailto:konstanze.wibmer%40infineon.com?subject=
mailto:werner.bick%40oth-regensburg.de?subject=
https://doi.org/10.36244/ICJ.2022.1.7

Knowgraph-TT: Knowledge-Graph-Based Transit
Time Matching in Semiconductor Supply Chains

MARCH 2022 • VOLUME XIV • NUMBER 152

INFOCOMMUNICATIONS JOURNAL

Fig. 1. Definition of Actual and Planned Transit Time.

Namely, within the tools, transit time is measured differently
which leads to difficulties in matching the information and
keeping it up to date. One example is the divergent interpre-
tation of geographic data. In one tool, transit time is based on
facility level and is measured as actual transit time and in the
other tool, transit time is based on location level and measured
as planned transit time. Transit times need to be accurate and
therefore, a matching of the planned transit time and the actual
transit time is needed. The matching results in an avoidance
of order confirmations to unrealizable ATP’s.

B. Transit Time Matching

When a customer requests products from the order manage-
ment (OM), the divisional model (DM) checks whether and
when the request can be fulfilled. All involved parties rely on
the ATP and it is of special importance for the customer. [7].
Since the ATP is defined by the planned transit time at the time
when the goods are sent out by backend (BE), it is important
to detect deviations between actual and planned transit time
early on and keep plan transit time up-to-date. After creating

an ATP, the DF (Demand Fulfillment) confirms on a daily
base the Orders and Order Management (OM) sends an Order
Promise (OP) to the customer. Thus the OP is based on the
ATP which uses the planned transit time. With the OP, the
delivery date becomes binding. By then, the customer trusts
that the products will be delivered on time.

Figure 2 shows an example of the mismatch between the
actual transit time and the planned transit time. The x-axis is
the time course and on the y-axis are different blocks each
describing a scenario. The first block is the Plan (Weekly)
describing that 100 pieces are planned to be delivered to the
distribution centers (DC) every Sunday, i.e., on weekly basis.
The distribution center is a core part of a supply chain and
connects factories and retailers [10]. An Available To Promise
(ATP) of 100 pieces can be served from Sundays – it was
committed from the factory, the factory gets measured on it
and it has some buffer in it.

The second block is the plan at the point of shipment when
the weekly plan is broken down on a daily basis. Within a
planned transit time of three days, it is planned to transit
the products from the backend on Monday to the distribution
centers on Thursday. Backend is part of the chip production
process and involves the steps of assembly, test and shipment
to the DC. However, when it is shipped from backend the
commitment with buffer is replaced by a calculation being the
shipment date + planned transit time. So assuming that 50 are
shipped on Monday with a planned transit time of 2 days, the
ATP of 100 on Sunday is reduced by 50, which are expected
on Wednesday (Monday shipping date + 2 days planned transit
time). In the daily rerun of the order confirmation, these 50
are used and orders are brought forward.

Actual scenario in the third block shows, that the actual
transit time takes longer than the planned one and the planned
scenario is not fulfilled. Thus, the planned transit time does
not correspond to the actual transit time. Now when the actual
transit time is not 2 days but 4 days the brought forward orders
need to be delayed as the goods are not coming on Wednesday
but on Friday (= shipping date + 4 days actual transit time).

The fourth block is the Communication to Customer. The
order management creates an availability commitment to the
customers on Monday and communicates that the order will be
shipped on Thursday. Thus, the customers can expect, that they
will receive the products in three days. If the promises cannot
be kept, it potentially leads to customer dissatisfaction. A
deviation between the target and the actual transit time causes
planning difficulties for all parties involved. For example, the
production site or the customer has no planning certainty when
promises are postponed. Therefore, it is important to correlate
and match transit times.

III. SEMANTIC DATA INTEGRATION FOR TT
A. Related Work

1) Approaches for TT planning: There are various ap-
proaches to planning and optimizing transit times within a
supply chain. One example to improving supply chain per-
formance from the retail supply chain is the use of Radio

Knowgraph-TT: Knowledge-Graph-Based Transit
Time Matching in Semiconductor Supply Chains

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 53

Fig. 2. Transit time mismatch.

Frequency Identification (RFID) technology. The technology is
used to increase communication and information transparency
between an object and other systems or software (e.g. ERP sys-
tem) along the supply chain [17]. Methods like forecasting and
simulation are also options for the planning and optimization
process. The problem remains that the different information
provided by such technologies cannot be compared directly.
Data integration allows the alignment of data from different
data sources.

2) Traditional Data Integration: One of the popular ap-
proaches to data integration is Extract Transform and Load
(ETL). [20] provides a survey about traditional data integration
and ETL techniques. Authors identify that ETL tools show
limited ability is available to extract data from different
sources at the same time. Moreover, without this domain
knowledge, it is impossible to extract, transform and load.
Semantic technologies are used to further enhance definitions
of the ETL activities involved in the process [14]. Ontologies
provide a common vocabulary for the integrated data and
generate semantic data as part of the transformation phase of
ETL. Semantic data integration is aligned with traditional data
integration techniques. It can be referred to as Semantic ETL.

B. Semantic Data Integration
We rely on the ontology-based data access (OBDA) ap-

proach for semantic data integration. The schema is given in
terms of an ontology representing the formal and conceptual
view of the domain [8]. Also, we use ontology merging
to overcome challenges such as the various definitions of
location. A knowledge graph refers to a semantic network
of concepts, properties, individuals and links representing
and referencing foundational and domain knowledge relevant
for a domain [5]. By creating the knowledge graph that is
connecting different data sources, the data can be visualized

and analyzed without changing the original data sources.
Therefore, redundancies can be avoided and the data is con-
nected. Flexibility can be increased by having the possibility
to implement changes on the data or adding new data sources.
Semantic models are characterized with easy extendibility
which makes them significant to the agile supply chain do-
main. In addition, this method of data integration achieves
interoperability and information transparency. This type of
data integration is particularly relevant in domains where data
models are diverse and entity properties are heterogeneous
[13].

IV. IMPLEMENTATION

In this section, we show KnowGraph-TT: applying semantic
data to match the transit times of two tools of a multinational
semiconductors company.

A. Ontology Modeling

The basis for the process KnowGraph-TT is to acquire
different sources of transit time. Two different sources that
manage transit time are found and analyzed. In the following,
the sources are referred to as Tool A and Tool B. Tool A is
equivalent to the executing tool while Tool B corresponds to
the monitoring tool.

Firstly, Tool A stores the actual transit time on location
level. The transit takes place from one location to another.
Therefore, the location shipped from and the location shipped
to are important concepts for the matching process. The class
“TT Actual” represents the Actual Target Time to ship a
product from the location “ShipFrom Loc” to the location
“ShipTo Loc”.

Secondly, Tool B records the planned transit time on
a facility level. Here, the transit takes place between two
facilities. The planned transit time is the time it takes to

Knowgraph-TT: Knowledge-Graph-Based Transit
Time Matching in Semiconductor Supply Chains

MARCH 2022 • VOLUME XIV • NUMBER 154

INFOCOMMUNICATIONS JOURNAL

ship the products from the finishing facility to the expecting
facility. It is similar to the structure of Tool A. The class
“FTRN TRANSIT TIME” is the planned transit time it takes
to ship products from “FAC FACILITY NAME FROM” to
“FAC FACILITY NAME TO”. Each facility is identified by
the class “FAC FACILITY NAME” which is important for
the matching of locations in the location ontology.

As transit times are provided in various ways and they can
not be matched directly, an additional intermediate ontology
is necessary. Therefore, the location ontology, Figure 3, aligns
the concepts of locations to be able to compare the different
transit times with each other. Here, one location can have
multiple facilities. Therefore, a location key is assigned to each
facility so facilities and locations can be compared with each
other.

Fig. 3. Single Location Ontology.

B. Ontology Merging

Figure 4 shows the individual ontologies and the merged
ontology. The output merged ontology is referred to as the
semantic abstraction layer, it represents the schema of the
domain. It contains the main concepts and relationships of
the transit time domain. We rely on this to map data from
different data sources and match TT.

The left side, is the ontology for the Actual Transit Time in
Tool A. While on the right is the ontology for the Planned
Transit Time in Tool B. Lastly, the Location Ontology is
depicted in the middle part in Figure 4. Each facility from
Tool A is uniquely identified by the class “LocationKey”. The
matching between facility and location is explained in more
detail in Figure 3. Figure 3 translates the facilities from Tool
A to the locations in Tool B.

C. Mapping

After generating the semantic abstraction layer, the next
step is to connect the data sources from the different tools
to the merged ontology. For this step, the tool Protégé plugin
“Cellfie” [19] is used. This is used because Protégé is an
open source tool and therefore a common used tool. It creates
instances out of the given data for every class contained in the
given data sources. The semantic abstraction layer contains
multiple triples. Each of those triples consists of a subject,

predicate and object. For the TT ontology one example triple
looks as follows:

V. EVALUATION

In this section we evaluate the implementation and show the
outcomes of the semantic data integration for TT matching.

A. Setup

The output of the implementation is a knowledge graph
that contains the ontology (Figure 4) along with the mate-
rialized triples as shown in the mapping. We rely on SPARQL
[18] queries to evaluate the knowledge-graph. We upload the
knowledge-graph on Apache Jena Fueski Server and execute
the queries.

The choice of this methodology for evaluation is driven by
the fact that SPARQL is a standard that allows to express
queries across diverse data sources. SPARQL can be used
to query external data sources e.g. weather reports to add
explainability and find a correlation between TT mismatch
and bad weather conditions. Also, in case we wanted to
attribute the mismatch to locations geospatial SPARQL allows
to represent geospatial data is using GeoSPARQL, which is an
RDF vocabulary and a set of extensions to SPARQL to support
spatial queries. The results of the queries are discussed below.
It is important to mention, that the transit times are given in
hours. Also, the transit time data is partially extracted from
the tools to illustrate the methodology.

B. Queries and Answers

For conciseness we show the Competency Questions (CQs),
representing the SPARQL queries but in natural language. We
refer to a GitHub repository for detailed queries. CQs are a
set of requirements on the content as well as a way of scoping
and delimiting the TT matching problem.

CQ1: What are the planned transit times and average
actual transit times for delivery routes between locations?

Firstly, all delivery routes that address the same location
are grouped. After summarizing the deliveries of the same
routes, the corresponding actual transit time is averaged. For
each route, the planned transit time is compared to the average
actual transit time. Possibly, different planned transit times are
assigned to an average actual time because several facilities
can be related to one location. Results in Figure 7(a) provide
an overview of the results from the query evaluation. For
example, the average actual transit time of 295 hours differs
from the planned transit time of 165 hours. It can be seen that
within the same delivery route, there are large deviations in
the average actual transit time and the planned transit time.

CQ2: What are the actual transit times and its planned
transit time for a certain delivery route between locations?

This query filters one delivery route between two locations.
Here, the planned TT is compared to the actual TT. Since
different facilities are assigned to one location, various facility
delivery routes exist within one location delivery route. This
means, that several actual transit times are related to one

Knowgraph-TT: Knowledge-Graph-Based Transit
Time Matching in Semiconductor Supply Chains

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 55

Fig. 4. Transit Time Ontology matching in the Measurement Tool for Actuals and in the Base Data Tool for Planning purposes.

Fig. 5. Triple City.

Fig. 6. Triple Facility.

planned transit time. Based on this delivery route, the actual
TT is compared to the planned TT.

The query result is represented in Figure 7(b). The resulting
planned transit times are 48 hours and 120 hours. Nevertheless,
the actual transit times for the delivery route vary from 51
hours to 82 hours. The interval from 51 to 82 hours of the
actual transit time shows, that there are large fluctuations
between transit times.

CQ3: What are the actual transit times and its planned
transit time for a certain delivery route between facilities?

This query only filters one shipping and one receiving
facility. The results in Figure 7(c) show, that the planned transit
time within this delivery route is 48 hours. Furthermore, the
actual transit time may vary from 51 to 82 hours. Figure 7(c)

shows, that the deviations between planned transit time and
actual transit time are not as large as in CQ2.

CQ4: What are the highest and lowest transit times of
certain delivery routes?

In this query, the plan transit time, average actual transit
time, and both the minimum and maximum actual transit
time are compared with each other. The results in Figure
7(d) show the big difference between the maximum and the
minimum actual transit time. One example for a query result
is a delivery route with a planned transit time of 72 hours,
an average actual transit time of 62 hours, a maximum of 71
hours with a minimum transit time of 45 hours. One reason
for the fluctuations is that several facilities are located in one
location. Thus, according to one plan transit time, there are
various actual transit times.

CQ5: For which transit route is the actual transit time
higher than the planned transit time?

In this query, the plan transit time is compared to the actual
transit time. Some deliveries are stated several times when
different planned transit times are given. Finally, the deliveries
are filtered which in reality took longer than planned. In Figure
7(e) the query results show, that in several cases the actual
transit time is higher than the planned transit time of the
delivery route.

CQ6: What location transits have the highest discrepancy
between planned and actual transit times? (Ordered by
discrepancy)

This query relies on the transits between locations. For each
transit, the actual transit time, maximum planned transit time,
and discrepancy obtained from the actual and planned transit
times are given. The result table in Figure 7(f) is ordered

Fig. 4. Transit Time Ontology matching in the Measurement Tool for Actuals and in the Base Data Tool for Planning purposes.

Fig. 5. Triple City.

Fig. 6. Triple Facility.

planned transit time. Based on this delivery route, the actual
TT is compared to the planned TT.

The query result is represented in Figure 7(b). The resulting
planned transit times are 48 hours and 120 hours. Nevertheless,
the actual transit times for the delivery route vary from 51
hours to 82 hours. The interval from 51 to 82 hours of the
actual transit time shows, that there are large fluctuations
between transit times.

CQ3: What are the actual transit times and its planned
transit time for a certain delivery route between facilities?

This query only filters one shipping and one receiving
facility. The results in Figure 7(c) show, that the planned transit
time within this delivery route is 48 hours. Furthermore, the
actual transit time may vary from 51 to 82 hours. Figure 7(c)

shows, that the deviations between planned transit time and
actual transit time are not as large as in CQ2.

CQ4: What are the highest and lowest transit times of
certain delivery routes?

In this query, the plan transit time, average actual transit
time, and both the minimum and maximum actual transit
time are compared with each other. The results in Figure
7(d) show the big difference between the maximum and the
minimum actual transit time. One example for a query result
is a delivery route with a planned transit time of 72 hours,
an average actual transit time of 62 hours, a maximum of 71
hours with a minimum transit time of 45 hours. One reason
for the fluctuations is that several facilities are located in one
location. Thus, according to one plan transit time, there are
various actual transit times.

CQ5: For which transit route is the actual transit time
higher than the planned transit time?

In this query, the plan transit time is compared to the actual
transit time. Some deliveries are stated several times when
different planned transit times are given. Finally, the deliveries
are filtered which in reality took longer than planned. In Figure
7(e) the query results show, that in several cases the actual
transit time is higher than the planned transit time of the
delivery route.

CQ6: What location transits have the highest discrepancy
between planned and actual transit times? (Ordered by
discrepancy)

This query relies on the transits between locations. For each
transit, the actual transit time, maximum planned transit time,
and discrepancy obtained from the actual and planned transit
times are given. The result table in Figure 7(f) is ordered

Fig. 4. Transit Time Ontology matching in the Measurement Tool for Actuals and in the Base Data Tool for Planning purposes.

Fig. 5. Triple City.

Fig. 6. Triple Facility.

planned transit time. Based on this delivery route, the actual
TT is compared to the planned TT.

The query result is represented in Figure 7(b). The resulting
planned transit times are 48 hours and 120 hours. Nevertheless,
the actual transit times for the delivery route vary from 51
hours to 82 hours. The interval from 51 to 82 hours of the
actual transit time shows, that there are large fluctuations
between transit times.

CQ3: What are the actual transit times and its planned
transit time for a certain delivery route between facilities?

This query only filters one shipping and one receiving
facility. The results in Figure 7(c) show, that the planned transit
time within this delivery route is 48 hours. Furthermore, the
actual transit time may vary from 51 to 82 hours. Figure 7(c)

shows, that the deviations between planned transit time and
actual transit time are not as large as in CQ2.

CQ4: What are the highest and lowest transit times of
certain delivery routes?

In this query, the plan transit time, average actual transit
time, and both the minimum and maximum actual transit
time are compared with each other. The results in Figure
7(d) show the big difference between the maximum and the
minimum actual transit time. One example for a query result
is a delivery route with a planned transit time of 72 hours,
an average actual transit time of 62 hours, a maximum of 71
hours with a minimum transit time of 45 hours. One reason
for the fluctuations is that several facilities are located in one
location. Thus, according to one plan transit time, there are
various actual transit times.

CQ5: For which transit route is the actual transit time
higher than the planned transit time?

In this query, the plan transit time is compared to the actual
transit time. Some deliveries are stated several times when
different planned transit times are given. Finally, the deliveries
are filtered which in reality took longer than planned. In Figure
7(e) the query results show, that in several cases the actual
transit time is higher than the planned transit time of the
delivery route.

CQ6: What location transits have the highest discrepancy
between planned and actual transit times? (Ordered by
discrepancy)

This query relies on the transits between locations. For each
transit, the actual transit time, maximum planned transit time,
and discrepancy obtained from the actual and planned transit
times are given. The result table in Figure 7(f) is ordered

Fig. 4. Transit Time Ontology matching in the Measurement Tool for Actuals and in the Base Data Tool for Planning purposes.

Fig. 5. Triple City.

Fig. 6. Triple Facility.

planned transit time. Based on this delivery route, the actual
TT is compared to the planned TT.

The query result is represented in Figure 7(b). The resulting
planned transit times are 48 hours and 120 hours. Nevertheless,
the actual transit times for the delivery route vary from 51
hours to 82 hours. The interval from 51 to 82 hours of the
actual transit time shows, that there are large fluctuations
between transit times.

CQ3: What are the actual transit times and its planned
transit time for a certain delivery route between facilities?

This query only filters one shipping and one receiving
facility. The results in Figure 7(c) show, that the planned transit
time within this delivery route is 48 hours. Furthermore, the
actual transit time may vary from 51 to 82 hours. Figure 7(c)

shows, that the deviations between planned transit time and
actual transit time are not as large as in CQ2.

CQ4: What are the highest and lowest transit times of
certain delivery routes?

In this query, the plan transit time, average actual transit
time, and both the minimum and maximum actual transit
time are compared with each other. The results in Figure
7(d) show the big difference between the maximum and the
minimum actual transit time. One example for a query result
is a delivery route with a planned transit time of 72 hours,
an average actual transit time of 62 hours, a maximum of 71
hours with a minimum transit time of 45 hours. One reason
for the fluctuations is that several facilities are located in one
location. Thus, according to one plan transit time, there are
various actual transit times.

CQ5: For which transit route is the actual transit time
higher than the planned transit time?

In this query, the plan transit time is compared to the actual
transit time. Some deliveries are stated several times when
different planned transit times are given. Finally, the deliveries
are filtered which in reality took longer than planned. In Figure
7(e) the query results show, that in several cases the actual
transit time is higher than the planned transit time of the
delivery route.

CQ6: What location transits have the highest discrepancy
between planned and actual transit times? (Ordered by
discrepancy)

This query relies on the transits between locations. For each
transit, the actual transit time, maximum planned transit time,
and discrepancy obtained from the actual and planned transit
times are given. The result table in Figure 7(f) is ordered

Fig. 7. Chart visualization of the SPARQL query results for various Competency Questions (CQs).

descending by the discrepancy. The highest discrepancy for
this data is 820 hours with an actual transit time of 928
hours and a maximum plan value of 108 hours. The large
discrepancy of 820 hours between the planned transit time and
the actual transit time shows how unreliable the key figures
can be sometimes.

C. Results & Discussion

The implemented approach combines the planned transit
time used in the execution system and the actual transit time
measured in the monitoring tool. The queries, which are
evaluated in section V highlight the gaps between planned
transit time from different viewpoints. The results show, that
the gaps of TT matching between location routes are larger
than the gaps between facilities. One possible explanation
is, that different facilities can be assigned to one location.
Therefore, different actual transit times are assigned to one
planned transit time. Based on the query results, it could
be shown that a timely update of planned transit times can

be enabled as well as unachievable order confirmations are
avoided.

In this paper, two tools were successfully connected using
semantic data integration to combine the distinct interpretation
of transit time and to enable the analysis of the consequences
of the mismatch. Semantic Data Integration is applicable in
other Supply Domains to integrate dispersed data sources.
We can rely on the proposed location ontologies to extend
to other domains e.g., Customer Relationship Management,
Revenue Management as per [16]. Also, the semantic abstrac-
tion layer secures a common understanding of the domain in
question, thus entails interoperability and extendibility. How-
ever, the approach has some limitations. First, KnowGraph-
TT provides a self-created location ontology, thus missing
the re-usability characteristic of ontologies. We did not re-use
standard ontologies representing the location. Moreover, for
the evaluation KnowGraph-TT is not evaluated versus other
existing approaches or related work. We only used CQs for the
evaluation to ensure that the output Knowledge Graph covers
the domain in question, and enables the transit time mismatch

Fig. 4. Transit Time Ontology matching in the Measurement Tool for Actuals and in the Base Data Tool for Planning purposes.

Fig. 5. Triple City.

Fig. 6. Triple Facility.

planned transit time. Based on this delivery route, the actual
TT is compared to the planned TT.

The query result is represented in Figure 7(b). The resulting
planned transit times are 48 hours and 120 hours. Nevertheless,
the actual transit times for the delivery route vary from 51
hours to 82 hours. The interval from 51 to 82 hours of the
actual transit time shows, that there are large fluctuations
between transit times.

CQ3: What are the actual transit times and its planned
transit time for a certain delivery route between facilities?

This query only filters one shipping and one receiving
facility. The results in Figure 7(c) show, that the planned transit
time within this delivery route is 48 hours. Furthermore, the
actual transit time may vary from 51 to 82 hours. Figure 7(c)

shows, that the deviations between planned transit time and
actual transit time are not as large as in CQ2.

CQ4: What are the highest and lowest transit times of
certain delivery routes?

In this query, the plan transit time, average actual transit
time, and both the minimum and maximum actual transit
time are compared with each other. The results in Figure
7(d) show the big difference between the maximum and the
minimum actual transit time. One example for a query result
is a delivery route with a planned transit time of 72 hours,
an average actual transit time of 62 hours, a maximum of 71
hours with a minimum transit time of 45 hours. One reason
for the fluctuations is that several facilities are located in one
location. Thus, according to one plan transit time, there are
various actual transit times.

CQ5: For which transit route is the actual transit time
higher than the planned transit time?

In this query, the plan transit time is compared to the actual
transit time. Some deliveries are stated several times when
different planned transit times are given. Finally, the deliveries
are filtered which in reality took longer than planned. In Figure
7(e) the query results show, that in several cases the actual
transit time is higher than the planned transit time of the
delivery route.

CQ6: What location transits have the highest discrepancy
between planned and actual transit times? (Ordered by
discrepancy)

This query relies on the transits between locations. For each
transit, the actual transit time, maximum planned transit time,
and discrepancy obtained from the actual and planned transit
times are given. The result table in Figure 7(f) is ordered

Fig. 4. Transit Time Ontology matching in the Measurement Tool for Actuals and in the Base Data Tool for Planning purposes.

Fig. 5. Triple City.

Fig. 6. Triple Facility.

planned transit time. Based on this delivery route, the actual
TT is compared to the planned TT.

The query result is represented in Figure 7(b). The resulting
planned transit times are 48 hours and 120 hours. Nevertheless,
the actual transit times for the delivery route vary from 51
hours to 82 hours. The interval from 51 to 82 hours of the
actual transit time shows, that there are large fluctuations
between transit times.

CQ3: What are the actual transit times and its planned
transit time for a certain delivery route between facilities?

This query only filters one shipping and one receiving
facility. The results in Figure 7(c) show, that the planned transit
time within this delivery route is 48 hours. Furthermore, the
actual transit time may vary from 51 to 82 hours. Figure 7(c)

shows, that the deviations between planned transit time and
actual transit time are not as large as in CQ2.

CQ4: What are the highest and lowest transit times of
certain delivery routes?

In this query, the plan transit time, average actual transit
time, and both the minimum and maximum actual transit
time are compared with each other. The results in Figure
7(d) show the big difference between the maximum and the
minimum actual transit time. One example for a query result
is a delivery route with a planned transit time of 72 hours,
an average actual transit time of 62 hours, a maximum of 71
hours with a minimum transit time of 45 hours. One reason
for the fluctuations is that several facilities are located in one
location. Thus, according to one plan transit time, there are
various actual transit times.

CQ5: For which transit route is the actual transit time
higher than the planned transit time?

In this query, the plan transit time is compared to the actual
transit time. Some deliveries are stated several times when
different planned transit times are given. Finally, the deliveries
are filtered which in reality took longer than planned. In Figure
7(e) the query results show, that in several cases the actual
transit time is higher than the planned transit time of the
delivery route.

CQ6: What location transits have the highest discrepancy
between planned and actual transit times? (Ordered by
discrepancy)

This query relies on the transits between locations. For each
transit, the actual transit time, maximum planned transit time,
and discrepancy obtained from the actual and planned transit
times are given. The result table in Figure 7(f) is ordered

Fig. 4. Transit Time Ontology matching in the Measurement Tool for Actuals and in the Base Data Tool for Planning purposes.

Fig. 5. Triple City.

Fig. 6. Triple Facility.

planned transit time. Based on this delivery route, the actual
TT is compared to the planned TT.

The query result is represented in Figure 7(b). The resulting
planned transit times are 48 hours and 120 hours. Nevertheless,
the actual transit times for the delivery route vary from 51
hours to 82 hours. The interval from 51 to 82 hours of the
actual transit time shows, that there are large fluctuations
between transit times.

CQ3: What are the actual transit times and its planned
transit time for a certain delivery route between facilities?

This query only filters one shipping and one receiving
facility. The results in Figure 7(c) show, that the planned transit
time within this delivery route is 48 hours. Furthermore, the
actual transit time may vary from 51 to 82 hours. Figure 7(c)

shows, that the deviations between planned transit time and
actual transit time are not as large as in CQ2.

CQ4: What are the highest and lowest transit times of
certain delivery routes?

In this query, the plan transit time, average actual transit
time, and both the minimum and maximum actual transit
time are compared with each other. The results in Figure
7(d) show the big difference between the maximum and the
minimum actual transit time. One example for a query result
is a delivery route with a planned transit time of 72 hours,
an average actual transit time of 62 hours, a maximum of 71
hours with a minimum transit time of 45 hours. One reason
for the fluctuations is that several facilities are located in one
location. Thus, according to one plan transit time, there are
various actual transit times.

CQ5: For which transit route is the actual transit time
higher than the planned transit time?

In this query, the plan transit time is compared to the actual
transit time. Some deliveries are stated several times when
different planned transit times are given. Finally, the deliveries
are filtered which in reality took longer than planned. In Figure
7(e) the query results show, that in several cases the actual
transit time is higher than the planned transit time of the
delivery route.

CQ6: What location transits have the highest discrepancy
between planned and actual transit times? (Ordered by
discrepancy)

This query relies on the transits between locations. For each
transit, the actual transit time, maximum planned transit time,
and discrepancy obtained from the actual and planned transit
times are given. The result table in Figure 7(f) is ordered

Knowgraph-TT: Knowledge-Graph-Based Transit
Time Matching in Semiconductor Supply Chains

MARCH 2022 • VOLUME XIV • NUMBER 156

INFOCOMMUNICATIONS JOURNAL

Fig. 7. Chart visualization of the SPARQL query results for various Competency Questions (CQs).

descending by the discrepancy. The highest discrepancy for
this data is 820 hours with an actual transit time of 928
hours and a maximum plan value of 108 hours. The large
discrepancy of 820 hours between the planned transit time and
the actual transit time shows how unreliable the key figures
can be sometimes.

C. Results & Discussion

The implemented approach combines the planned transit
time used in the execution system and the actual transit time
measured in the monitoring tool. The queries, which are
evaluated in section V highlight the gaps between planned
transit time from different viewpoints. The results show, that
the gaps of TT matching between location routes are larger
than the gaps between facilities. One possible explanation
is, that different facilities can be assigned to one location.
Therefore, different actual transit times are assigned to one
planned transit time. Based on the query results, it could
be shown that a timely update of planned transit times can

be enabled as well as unachievable order confirmations are
avoided.

In this paper, two tools were successfully connected using
semantic data integration to combine the distinct interpretation
of transit time and to enable the analysis of the consequences
of the mismatch. Semantic Data Integration is applicable in
other Supply Domains to integrate dispersed data sources.
We can rely on the proposed location ontologies to extend
to other domains e.g., Customer Relationship Management,
Revenue Management as per [16]. Also, the semantic abstrac-
tion layer secures a common understanding of the domain in
question, thus entails interoperability and extendibility. How-
ever, the approach has some limitations. First, KnowGraph-
TT provides a self-created location ontology, thus missing
the re-usability characteristic of ontologies. We did not re-use
standard ontologies representing the location. Moreover, for
the evaluation KnowGraph-TT is not evaluated versus other
existing approaches or related work. We only used CQs for the
evaluation to ensure that the output Knowledge Graph covers
the domain in question, and enables the transit time mismatch

Fig. 7. Chart visualization of the SPARQL query results for various Competency Questions (CQs).

descending by the discrepancy. The highest discrepancy for
this data is 820 hours with an actual transit time of 928
hours and a maximum plan value of 108 hours. The large
discrepancy of 820 hours between the planned transit time and
the actual transit time shows how unreliable the key figures
can be sometimes.

C. Results & Discussion

The implemented approach combines the planned transit
time used in the execution system and the actual transit time
measured in the monitoring tool. The queries, which are
evaluated in section V highlight the gaps between planned
transit time from different viewpoints. The results show, that
the gaps of TT matching between location routes are larger
than the gaps between facilities. One possible explanation
is, that different facilities can be assigned to one location.
Therefore, different actual transit times are assigned to one
planned transit time. Based on the query results, it could
be shown that a timely update of planned transit times can

be enabled as well as unachievable order confirmations are
avoided.

In this paper, two tools were successfully connected using
semantic data integration to combine the distinct interpretation
of transit time and to enable the analysis of the consequences
of the mismatch. Semantic Data Integration is applicable in
other Supply Domains to integrate dispersed data sources.
We can rely on the proposed location ontologies to extend
to other domains e.g., Customer Relationship Management,
Revenue Management as per [16]. Also, the semantic abstrac-
tion layer secures a common understanding of the domain in
question, thus entails interoperability and extendibility. How-
ever, the approach has some limitations. First, KnowGraph-
TT provides a self-created location ontology, thus missing
the re-usability characteristic of ontologies. We did not re-use
standard ontologies representing the location. Moreover, for
the evaluation KnowGraph-TT is not evaluated versus other
existing approaches or related work. We only used CQs for the
evaluation to ensure that the output Knowledge Graph covers
the domain in question, and enables the transit time mismatch

Fig. 7. Chart visualization of the SPARQL query results for various Competency Questions (CQs).

descending by the discrepancy. The highest discrepancy for
this data is 820 hours with an actual transit time of 928
hours and a maximum plan value of 108 hours. The large
discrepancy of 820 hours between the planned transit time and
the actual transit time shows how unreliable the key figures
can be sometimes.

C. Results & Discussion

The implemented approach combines the planned transit
time used in the execution system and the actual transit time
measured in the monitoring tool. The queries, which are
evaluated in section V highlight the gaps between planned
transit time from different viewpoints. The results show, that
the gaps of TT matching between location routes are larger
than the gaps between facilities. One possible explanation
is, that different facilities can be assigned to one location.
Therefore, different actual transit times are assigned to one
planned transit time. Based on the query results, it could
be shown that a timely update of planned transit times can

be enabled as well as unachievable order confirmations are
avoided.

In this paper, two tools were successfully connected using
semantic data integration to combine the distinct interpretation
of transit time and to enable the analysis of the consequences
of the mismatch. Semantic Data Integration is applicable in
other Supply Domains to integrate dispersed data sources.
We can rely on the proposed location ontologies to extend
to other domains e.g., Customer Relationship Management,
Revenue Management as per [16]. Also, the semantic abstrac-
tion layer secures a common understanding of the domain in
question, thus entails interoperability and extendibility. How-
ever, the approach has some limitations. First, KnowGraph-
TT provides a self-created location ontology, thus missing
the re-usability characteristic of ontologies. We did not re-use
standard ontologies representing the location. Moreover, for
the evaluation KnowGraph-TT is not evaluated versus other
existing approaches or related work. We only used CQs for the
evaluation to ensure that the output Knowledge Graph covers
the domain in question, and enables the transit time mismatch

Fig. 7. Chart visualization of the SPARQL query results for various Competency Questions (CQs).

descending by the discrepancy. The highest discrepancy for
this data is 820 hours with an actual transit time of 928
hours and a maximum plan value of 108 hours. The large
discrepancy of 820 hours between the planned transit time and
the actual transit time shows how unreliable the key figures
can be sometimes.

C. Results & Discussion

The implemented approach combines the planned transit
time used in the execution system and the actual transit time
measured in the monitoring tool. The queries, which are
evaluated in section V highlight the gaps between planned
transit time from different viewpoints. The results show, that
the gaps of TT matching between location routes are larger
than the gaps between facilities. One possible explanation
is, that different facilities can be assigned to one location.
Therefore, different actual transit times are assigned to one
planned transit time. Based on the query results, it could
be shown that a timely update of planned transit times can

be enabled as well as unachievable order confirmations are
avoided.

In this paper, two tools were successfully connected using
semantic data integration to combine the distinct interpretation
of transit time and to enable the analysis of the consequences
of the mismatch. Semantic Data Integration is applicable in
other Supply Domains to integrate dispersed data sources.
We can rely on the proposed location ontologies to extend
to other domains e.g., Customer Relationship Management,
Revenue Management as per [16]. Also, the semantic abstrac-
tion layer secures a common understanding of the domain in
question, thus entails interoperability and extendibility. How-
ever, the approach has some limitations. First, KnowGraph-
TT provides a self-created location ontology, thus missing
the re-usability characteristic of ontologies. We did not re-use
standard ontologies representing the location. Moreover, for
the evaluation KnowGraph-TT is not evaluated versus other
existing approaches or related work. We only used CQs for the
evaluation to ensure that the output Knowledge Graph covers
the domain in question, and enables the transit time mismatch

analysis.

VI. CONCLUSION & OUTLOOK
In a competitive market, semiconductor manufacturers seek

to offer the highest quality to their customers and rely on
an accurate and reliable supply chain planning and commit-
ment. In this work, we propose KnowGraph-TT to connect
plan- and actual transit times on different definitions and
tools via semantic data integration. Based on this, we apply
this KnowGraph-TT to a use case of an international semi-
conductor manufacturing firm. The use case was evaluated
successfully via competency questions in highlighting actual-
versus plan transit time mismatches. Incorrectly planned transit
times are the cause of ATP postponements and negative Early
Warnings (a negative Early Warning is when a previously
committed delivery date is postponed), but by far not every
violation of a planned transit time in the internal supply
chain causes an Early Warning. Thus, we can examine now
the extent of the effect of time violations as a root cause
of ATP postponements and negative Early Warnings. Conse-
quently, we can study how to update the planned transit time
concerning actual transit times to create a non-conservative
and reliable demand fulfilment. In future work, we aim to
analyze the effect of external factors on the supply chain. We
intend to extend the knowledge graph capabilities to effects
like the pandemic, which strongly influences the supply chain
processes. This should enable us to correlate the transit time
mismatch with COVID-19 reports, to be able to proactively
change the plan transit times before violations happen.

REFERENCES

[1] H. Ehm, E. Schoitsch, J. W. van der Weit, N. Ramzy, L. Luo, and D.
L. Gruetzner, “Digital Reference: a quasi-standard for digitalization in
the domain of semiconductor supply chains,” 2020 IEEE Conference
on Industrial Cyberphysical Systems (ICPS). IEEE, Jun. 10, 2020. doi:
10.1109/icps48405.2020.9274750..

[2] Ramzy, N., Auer, S., Chamanara, J., Ehm, H. (2020). KnowGraph-
MDM: A Methodology forKnowledge-Graph-based Master DataMan-
agement, unpublished manuscript.

[3] D. Kozma and P. Varga, “Supporting Digital Supply Chains by IoT
Frameworks: Collaboration, Control, Combination,” Infocommunica-
tions journal, no. 4. Infocommunications Journal, pp. 22–32, 2020. doi:
10.36244/icj.2020.4.4.

[4] M. Grobe, “RDF, Jena, SparQL and the ‘Semantic Web,’” Proceedings
of the ACM SIGUCCS fall conference on User services conference -
SIGUCCS ’09. ACM Press, 2009. doi: 10.1145/1629501.1629525 .

[5] M. Galkin, S. Auer, M.-E. Vidal, and S. Scerri, “Enterprise Knowl-
edge Graphs: A Semantic Approach for Knowledge Management in
the Next Generation of Enterprise Information Systems,” Proceedings
of the 19th International Conference on Enterprise Information Sys-
tems. SCITEPRESS - Science and Technology Publications, 2017. doi:
10.5220/0006325200880098.

[6] Ramesh Jain, “Out-of-the-box data engineering events in hetero-
geneous data environments,” Proceedings 19th International Con-
ference on Data Engineering (Cat. No.03CH37405). IEEE. doi:
10.1109/icde.2003.1260778.

[7] B. A. Mousavi, R. Azzouz, C. Heavey, and H. Ehm, “A Survey
of Model-Based System Engineering Methods to Analyse Complex
Supply Chains: A Case Study in Semiconductor Supply Chain,” IFAC-
PapersOnLine, vol. 52, no. 13. Elsevier BV, pp. 1254–1259, 2019. doi:
10.1016/j.ifacol.2019.11.370.

[8] Giacomo, G. D., Lembo, D., Lenzerini, M., Poggi, A., & Rosati, R.
(2018). Using ontologies for semantic data integration. In A Compre-
hensive Guide Through the Italian Database Research Over the Last 25
Years (pp. 187-202). Springer, Cham.

[9] H. Ehm, “Managing complex global supply chains through scor process
and digitalizations,” Infineon AG, Tech. Rep., 2020.

[10] Feng Li, Tie Liu, Hao Zhang, Rongzeng Cao, Wei Ding, and J. P.
Fasano, “Distribution center location for green supply chain,” 2008
IEEE International Conference on Service Operations and Logistics, and
Informatics. IEEE, Oct. 2008. doi: 10.1109/soli.2008.4683040..

[11] Stonebraker, M., & Ilyas, I. F. (2018). Data Integration: The Current
Status and the Way Forward. IEEE Data Eng. Bull., 41(2), 3-9.

[12] Rabe, M., Dross, F., Wuttke, A., Duarte, A., Juan, A., & Lourenço, H. R.
(2017, July). Combining a discrete-event simulation model of a logistics
network with deep reinforcement learning. In Proceedings of the MIC
and MAEB 2017 Conferences (pp. 765-774).

[13] M. Cheatham and C. Pesquita, “Semantic Data Integration,” Hand-
book of Big Data Technologies. Springer International Publishing, pp.
263–305, 2017. doi: 10.1007/978-3-319-49340-4 8 .

[14] J. Chakraborty, A. Padki, and S. K. Bansal, “Semantic ETL — State-
of-the-Art and Open Research Challenges,” 2017 IEEE 11th Interna-
tional Conference on Semantic Computing (ICSC). IEEE, 2017. doi:
10.1109/icsc.2017.94.

[15] G. Stefansson, “Business-to-business data sharing: A source for in-
tegration of supply chains,” International Journal of Production Eco-
nomics, vol. 75, no. 1–2. Elsevier BV, pp. 135–146, Jan. 2002. doi:
10.1016/s0925-5273(01)00187-6.

[16] N. Ramzy, S. Auer, J. Chamanara, and H. Ehm, “KnowGraph-PM:
A Knowledge Graph Based Pricing Model for Semiconductor Supply
Chains,” Computer and Information Science 2021—Summer. Springer
International Publishing, pp. 61–75, 2021. doi: 10.1007/978-3-030-
79474-3 5.

[17] I. P. Vlachos, “A hierarchical model of the impact of RFID prac-
tices on retail supply chain performance,” Expert Systems with Ap-
plications, vol. 41, no. 1. Elsevier BV, pp. 5–15, Jan. 2014. doi:
10.1016/j.eswa.2013.07.006.

[18] D. Calvanese, M. Giese, D. Hovland, and M. Rezk, “Ontology-Based
Integration of Cross-Linked Datasets,” The Semantic Web - ISWC 2015.
Springer International Publishing, pp. 199–216, 2015. doi: 10.1007/978-
3-319-25007-6 12.

[19] Hardi, J. (2019), Cellfie Plugin, GitHub, GitHub Repository, https://
github.com/protegeproject/cellfie-plugin/wiki/User27s-Guide.

[20] J. Chakraborty, A. Padki, and S. K. Bansal, “Semantic ETL — State-
of-the-Art and Open Research Challenges,” 2017 IEEE 11th Interna-
tional Conference on Semantic Computing (ICSC). IEEE, 2017. doi:
10.1109/icsc.2017.94.

[21] R. O’Byrne. (2015) Supply chain glossary of terms. [Online]. Available:
https://www.logisticsbureau.com/supply-chain-glossary/ .

NOUR RAMZY is a PhD candidate at In-
fineon Technologies and Leibniz University
of Hannover with the research focus on
semantic data integration for supply chain
management. She is a Master of Science
in Information Technology from the Uni-
versity of Stuttgart. She wrote her Mas-
ter Thesis in collaboration with Infineon
Technologies in the supply chain innova-
tion department Her email is address is
nour.ramzy@infineon.com.

Fig. 7. Chart visualization of the SPARQL query results for various Competency Questions (CQs).

descending by the discrepancy. The highest discrepancy for
this data is 820 hours with an actual transit time of 928
hours and a maximum plan value of 108 hours. The large
discrepancy of 820 hours between the planned transit time and
the actual transit time shows how unreliable the key figures
can be sometimes.

C. Results & Discussion

The implemented approach combines the planned transit
time used in the execution system and the actual transit time
measured in the monitoring tool. The queries, which are
evaluated in section V highlight the gaps between planned
transit time from different viewpoints. The results show, that
the gaps of TT matching between location routes are larger
than the gaps between facilities. One possible explanation
is, that different facilities can be assigned to one location.
Therefore, different actual transit times are assigned to one
planned transit time. Based on the query results, it could
be shown that a timely update of planned transit times can

be enabled as well as unachievable order confirmations are
avoided.

In this paper, two tools were successfully connected using
semantic data integration to combine the distinct interpretation
of transit time and to enable the analysis of the consequences
of the mismatch. Semantic Data Integration is applicable in
other Supply Domains to integrate dispersed data sources.
We can rely on the proposed location ontologies to extend
to other domains e.g., Customer Relationship Management,
Revenue Management as per [16]. Also, the semantic abstrac-
tion layer secures a common understanding of the domain in
question, thus entails interoperability and extendibility. How-
ever, the approach has some limitations. First, KnowGraph-
TT provides a self-created location ontology, thus missing
the re-usability characteristic of ontologies. We did not re-use
standard ontologies representing the location. Moreover, for
the evaluation KnowGraph-TT is not evaluated versus other
existing approaches or related work. We only used CQs for the
evaluation to ensure that the output Knowledge Graph covers
the domain in question, and enables the transit time mismatch

Knowgraph-TT: Knowledge-Graph-Based Transit
Time Matching in Semiconductor Supply Chains

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 57

Fig. 7. Chart visualization of the SPARQL query results for various Competency Questions (CQs).

descending by the discrepancy. The highest discrepancy for
this data is 820 hours with an actual transit time of 928
hours and a maximum plan value of 108 hours. The large
discrepancy of 820 hours between the planned transit time and
the actual transit time shows how unreliable the key figures
can be sometimes.

C. Results & Discussion

The implemented approach combines the planned transit
time used in the execution system and the actual transit time
measured in the monitoring tool. The queries, which are
evaluated in section V highlight the gaps between planned
transit time from different viewpoints. The results show, that
the gaps of TT matching between location routes are larger
than the gaps between facilities. One possible explanation
is, that different facilities can be assigned to one location.
Therefore, different actual transit times are assigned to one
planned transit time. Based on the query results, it could
be shown that a timely update of planned transit times can

be enabled as well as unachievable order confirmations are
avoided.

In this paper, two tools were successfully connected using
semantic data integration to combine the distinct interpretation
of transit time and to enable the analysis of the consequences
of the mismatch. Semantic Data Integration is applicable in
other Supply Domains to integrate dispersed data sources.
We can rely on the proposed location ontologies to extend
to other domains e.g., Customer Relationship Management,
Revenue Management as per [16]. Also, the semantic abstrac-
tion layer secures a common understanding of the domain in
question, thus entails interoperability and extendibility. How-
ever, the approach has some limitations. First, KnowGraph-
TT provides a self-created location ontology, thus missing
the re-usability characteristic of ontologies. We did not re-use
standard ontologies representing the location. Moreover, for
the evaluation KnowGraph-TT is not evaluated versus other
existing approaches or related work. We only used CQs for the
evaluation to ensure that the output Knowledge Graph covers
the domain in question, and enables the transit time mismatch

analysis.

VI. CONCLUSION & OUTLOOK
In a competitive market, semiconductor manufacturers seek

to offer the highest quality to their customers and rely on
an accurate and reliable supply chain planning and commit-
ment. In this work, we propose KnowGraph-TT to connect
plan- and actual transit times on different definitions and
tools via semantic data integration. Based on this, we apply
this KnowGraph-TT to a use case of an international semi-
conductor manufacturing firm. The use case was evaluated
successfully via competency questions in highlighting actual-
versus plan transit time mismatches. Incorrectly planned transit
times are the cause of ATP postponements and negative Early
Warnings (a negative Early Warning is when a previously
committed delivery date is postponed), but by far not every
violation of a planned transit time in the internal supply
chain causes an Early Warning. Thus, we can examine now
the extent of the effect of time violations as a root cause
of ATP postponements and negative Early Warnings. Conse-
quently, we can study how to update the planned transit time
concerning actual transit times to create a non-conservative
and reliable demand fulfilment. In future work, we aim to
analyze the effect of external factors on the supply chain. We
intend to extend the knowledge graph capabilities to effects
like the pandemic, which strongly influences the supply chain
processes. This should enable us to correlate the transit time
mismatch with COVID-19 reports, to be able to proactively
change the plan transit times before violations happen.

REFERENCES

[1] H. Ehm, E. Schoitsch, J. W. van der Weit, N. Ramzy, L. Luo, and D.
L. Gruetzner, “Digital Reference: a quasi-standard for digitalization in
the domain of semiconductor supply chains,” 2020 IEEE Conference
on Industrial Cyberphysical Systems (ICPS). IEEE, Jun. 10, 2020. doi:
10.1109/icps48405.2020.9274750..

[2] Ramzy, N., Auer, S., Chamanara, J., Ehm, H. (2020). KnowGraph-
MDM: A Methodology forKnowledge-Graph-based Master DataMan-
agement, unpublished manuscript.

[3] D. Kozma and P. Varga, “Supporting Digital Supply Chains by IoT
Frameworks: Collaboration, Control, Combination,” Infocommunica-
tions journal, no. 4. Infocommunications Journal, pp. 22–32, 2020. doi:
10.36244/icj.2020.4.4.

[4] M. Grobe, “RDF, Jena, SparQL and the ‘Semantic Web,’” Proceedings
of the ACM SIGUCCS fall conference on User services conference -
SIGUCCS ’09. ACM Press, 2009. doi: 10.1145/1629501.1629525 .

[5] M. Galkin, S. Auer, M.-E. Vidal, and S. Scerri, “Enterprise Knowl-
edge Graphs: A Semantic Approach for Knowledge Management in
the Next Generation of Enterprise Information Systems,” Proceedings
of the 19th International Conference on Enterprise Information Sys-
tems. SCITEPRESS - Science and Technology Publications, 2017. doi:
10.5220/0006325200880098.

[6] Ramesh Jain, “Out-of-the-box data engineering events in hetero-
geneous data environments,” Proceedings 19th International Con-
ference on Data Engineering (Cat. No.03CH37405). IEEE. doi:
10.1109/icde.2003.1260778.

[7] B. A. Mousavi, R. Azzouz, C. Heavey, and H. Ehm, “A Survey
of Model-Based System Engineering Methods to Analyse Complex
Supply Chains: A Case Study in Semiconductor Supply Chain,” IFAC-
PapersOnLine, vol. 52, no. 13. Elsevier BV, pp. 1254–1259, 2019. doi:
10.1016/j.ifacol.2019.11.370.

[8] Giacomo, G. D., Lembo, D., Lenzerini, M., Poggi, A., & Rosati, R.
(2018). Using ontologies for semantic data integration. In A Compre-
hensive Guide Through the Italian Database Research Over the Last 25
Years (pp. 187-202). Springer, Cham.

[9] H. Ehm, “Managing complex global supply chains through scor process
and digitalizations,” Infineon AG, Tech. Rep., 2020.

[10] Feng Li, Tie Liu, Hao Zhang, Rongzeng Cao, Wei Ding, and J. P.
Fasano, “Distribution center location for green supply chain,” 2008
IEEE International Conference on Service Operations and Logistics, and
Informatics. IEEE, Oct. 2008. doi: 10.1109/soli.2008.4683040..

[11] Stonebraker, M., & Ilyas, I. F. (2018). Data Integration: The Current
Status and the Way Forward. IEEE Data Eng. Bull., 41(2), 3-9.

[12] Rabe, M., Dross, F., Wuttke, A., Duarte, A., Juan, A., & Lourenço, H. R.
(2017, July). Combining a discrete-event simulation model of a logistics
network with deep reinforcement learning. In Proceedings of the MIC
and MAEB 2017 Conferences (pp. 765-774).

[13] M. Cheatham and C. Pesquita, “Semantic Data Integration,” Hand-
book of Big Data Technologies. Springer International Publishing, pp.
263–305, 2017. doi: 10.1007/978-3-319-49340-4 8 .

[14] J. Chakraborty, A. Padki, and S. K. Bansal, “Semantic ETL — State-
of-the-Art and Open Research Challenges,” 2017 IEEE 11th Interna-
tional Conference on Semantic Computing (ICSC). IEEE, 2017. doi:
10.1109/icsc.2017.94.

[15] G. Stefansson, “Business-to-business data sharing: A source for in-
tegration of supply chains,” International Journal of Production Eco-
nomics, vol. 75, no. 1–2. Elsevier BV, pp. 135–146, Jan. 2002. doi:
10.1016/s0925-5273(01)00187-6.

[16] N. Ramzy, S. Auer, J. Chamanara, and H. Ehm, “KnowGraph-PM:
A Knowledge Graph Based Pricing Model for Semiconductor Supply
Chains,” Computer and Information Science 2021—Summer. Springer
International Publishing, pp. 61–75, 2021. doi: 10.1007/978-3-030-
79474-3 5.

[17] I. P. Vlachos, “A hierarchical model of the impact of RFID prac-
tices on retail supply chain performance,” Expert Systems with Ap-
plications, vol. 41, no. 1. Elsevier BV, pp. 5–15, Jan. 2014. doi:
10.1016/j.eswa.2013.07.006.

[18] D. Calvanese, M. Giese, D. Hovland, and M. Rezk, “Ontology-Based
Integration of Cross-Linked Datasets,” The Semantic Web - ISWC 2015.
Springer International Publishing, pp. 199–216, 2015. doi: 10.1007/978-
3-319-25007-6 12.

[19] Hardi, J. (2019), Cellfie Plugin, GitHub, GitHub Repository, https://
github.com/protegeproject/cellfie-plugin/wiki/User27s-Guide.

[20] J. Chakraborty, A. Padki, and S. K. Bansal, “Semantic ETL — State-
of-the-Art and Open Research Challenges,” 2017 IEEE 11th Interna-
tional Conference on Semantic Computing (ICSC). IEEE, 2017. doi:
10.1109/icsc.2017.94.

[21] R. O’Byrne. (2015) Supply chain glossary of terms. [Online]. Available:
https://www.logisticsbureau.com/supply-chain-glossary/ .

NOUR RAMZY is a PhD candidate at In-
fineon Technologies and Leibniz University
of Hannover with the research focus on
semantic data integration for supply chain
management. She is a Master of Science
in Information Technology from the Uni-
versity of Stuttgart. She wrote her Mas-
ter Thesis in collaboration with Infineon
Technologies in the supply chain innova-
tion department Her email is address is
nour.ramzy@infineon.com.

	 [1]	 H. Ehm, E. Schoitsch, J. W. van der Weit, N. Ramzy, L. Luo, and D.
L. Gruetzner, “Digital Reference: a quasi-standard for digitalization in
the domain of semiconductor supply chains,” 2020 IEEE Conference
on Industrial Cyberphysical Systems (ICPS). IEEE, Jun. 10, 2020.

		 doi: 10.1109/icps48405.2020.9274750.
	 [2]	 Ramzy, N., Auer, S., Chamanara, J., Ehm, H. (2020). KnowGraph-

MDM: A Methodology forKnowledge-Graph-based Master DataMan-
agement, unpublished manuscript.

	 [3]	 D. Kozma and P. Varga, “Supporting Digital Supply Chains by IoT
Frameworks: Collaboration, Control, Combination,” Infocommunica-
tions journal, no. 4. Infocommunications Journal, pp. 22–32, 2020.
doi: 10.36244/icj.2020.4.4.

	 [4]	 M. Grobe, “RDF, Jena, SparQL and the ‘Semantic Web,’” Proceedings
of the ACM SIGUCCS fall conference on User services conference -
SIGUCCS ’09. ACM Press, 2009. doi: 10.1145/1629501.1629525.

	 [5]	 M. Galkin, S. Auer, M.-E. Vidal, and S. Scerri, “Enterprise Knowl-
edge Graphs: A Semantic Approach for Knowledge Management in
the Next Generation of Enterprise Information Systems,” Proceedings
of the 19th International Conference on Enterprise Information Sys-
tems. SCITEPRESS - Science and Technology Publications, 2017.
doi: 10.5220/0006325200880098.

	 [6]	 Ramesh Jain, “Out-of-the-box data engineering events in hetero-
geneous data environments,” Proceedings 19th International Con-
ference on Data Engineering (Cat. No.03CH37405). IEEE.

		 doi: 10.1109/icde.2003.1260778.
	 [7]	 B. A. Mousavi, R. Azzouz, C. Heavey, and H. Ehm, “A Survey of

Model-Based System Engineering Methods to Analyse Complex
Supply Chains: A Case Study in Semiconductor Supply Chain,” IFAC-
PapersOnLine, vol. 52, no. 13. Elsevier BV, pp. 1254–1259, 2019.

		 doi: 10.1016/j.ifacol.2019.11.370.
	 [8]	 Giacomo, G. D., Lembo, D., Lenzerini, M., Poggi, A., & Rosati, R.

(2018). Using ontologies for semantic data integration. In A Compre-
hensive Guide Through the Italian Database Research Over the Last 25
Years (pp. 187-202). Springer, Cham.

References

analysis.

VI.CONCLUSION&OUTLOOK
Inacompetitivemarket,semiconductormanufacturersseek

toofferthehighestqualitytotheircustomersandrelyon
anaccurateandreliablesupplychainplanningandcommit-
ment.Inthiswork,weproposeKnowGraph-TTtoconnect
plan-andactualtransittimesondifferentdefinitionsand
toolsviasemanticdataintegration.Basedonthis,weapply
thisKnowGraph-TTtoausecaseofaninternationalsemi-
conductormanufacturingfirm.Theusecasewasevaluated
successfullyviacompetencyquestionsinhighlightingactual-
versusplantransittimemismatches.Incorrectlyplannedtransit
timesarethecauseofATPpostponementsandnegativeEarly
Warnings(anegativeEarlyWarningiswhenapreviously
committeddeliverydateispostponed),butbyfarnotevery
violationofaplannedtransittimeintheinternalsupply
chaincausesanEarlyWarning.Thus,wecanexaminenow
theextentoftheeffectoftimeviolationsasarootcause
ofATPpostponementsandnegativeEarlyWarnings.Conse-
quently,wecanstudyhowtoupdatetheplannedtransittime
concerningactualtransittimestocreateanon-conservative
andreliabledemandfulfilment.Infuturework,weaimto
analyzetheeffectofexternalfactorsonthesupplychain.We
intendtoextendtheknowledgegraphcapabilitiestoeffects
likethepandemic,whichstronglyinfluencesthesupplychain
processes.Thisshouldenableustocorrelatethetransittime
mismatchwithCOVID-19reports,tobeabletoproactively
changetheplantransittimesbeforeviolationshappen.

REFERENCES

[1]H.Ehm,E.Schoitsch,J.W.vanderWeit,N.Ramzy,L.Luo,andD.
L.Gruetzner,“DigitalReference:aquasi-standardfordigitalizationin
thedomainofsemiconductorsupplychains,”2020IEEEConference
onIndustrialCyberphysicalSystems(ICPS).IEEE,Jun.10,2020.doi:
10.1109/icps48405.2020.9274750..

[2]Ramzy,N.,Auer,S.,Chamanara,J.,Ehm,H.(2020).KnowGraph-
MDM:AMethodologyforKnowledge-Graph-basedMasterDataMan-
agement,unpublishedmanuscript.

[3]D.KozmaandP.Varga,“SupportingDigitalSupplyChainsbyIoT
Frameworks:Collaboration,Control,Combination,”Infocommunica-
tionsjournal,no.4.InfocommunicationsJournal,pp.22–32,2020.doi:
10.36244/icj.2020.4.4.

[4]M.Grobe,“RDF,Jena,SparQLandthe‘SemanticWeb,’”Proceedings
oftheACMSIGUCCSfallconferenceonUserservicesconference-
SIGUCCS’09.ACMPress,2009.doi:10.1145/1629501.1629525.

[5]M.Galkin,S.Auer,M.-E.Vidal,andS.Scerri,“EnterpriseKnowl-
edgeGraphs:ASemanticApproachforKnowledgeManagementin
theNextGenerationofEnterpriseInformationSystems,”Proceedings
ofthe19thInternationalConferenceonEnterpriseInformationSys-
tems.SCITEPRESS-ScienceandTechnologyPublications,2017.doi:
10.5220/0006325200880098.

[6]RameshJain,“Out-of-the-boxdataengineeringeventsinhetero-
geneousdataenvironments,”Proceedings19thInternationalCon-
ferenceonDataEngineering(Cat.No.03CH37405).IEEE.doi:
10.1109/icde.2003.1260778.

[7]B.A.Mousavi,R.Azzouz,C.Heavey,andH.Ehm,“ASurvey
ofModel-BasedSystemEngineeringMethodstoAnalyseComplex
SupplyChains:ACaseStudyinSemiconductorSupplyChain,”IFAC-
PapersOnLine,vol.52,no.13.ElsevierBV,pp.1254–1259,2019.doi:
10.1016/j.ifacol.2019.11.370.

[8]Giacomo,G.D.,Lembo,D.,Lenzerini,M.,Poggi,A.,&Rosati,R.
(2018).Usingontologiesforsemanticdataintegration.InACompre-
hensiveGuideThroughtheItalianDatabaseResearchOvertheLast25
Years(pp.187-202).Springer,Cham.

[9]H.Ehm,“Managingcomplexglobalsupplychainsthroughscorprocess
anddigitalizations,”InfineonAG,Tech.Rep.,2020.

[10]FengLi,TieLiu,HaoZhang,RongzengCao,WeiDing,andJ.P.
Fasano,“Distributioncenterlocationforgreensupplychain,”2008
IEEEInternationalConferenceonServiceOperationsandLogistics,and
Informatics.IEEE,Oct.2008.doi:10.1109/soli.2008.4683040..

[11]Stonebraker,M.,&Ilyas,I.F.(2018).DataIntegration:TheCurrent
StatusandtheWayForward.IEEEDataEng.Bull.,41(2),3-9.

[12]Rabe,M.,Dross,F.,Wuttke,A.,Duarte,A.,Juan,A.,&Lourenço,H.R.
(2017,July).Combiningadiscrete-eventsimulationmodelofalogistics
networkwithdeepreinforcementlearning.InProceedingsoftheMIC
andMAEB2017Conferences(pp.765-774).

[13]M.CheathamandC.Pesquita,“SemanticDataIntegration,”Hand-
bookofBigDataTechnologies.SpringerInternationalPublishing,pp.
263–305,2017.doi:10.1007/978-3-319-49340-48.

[14]J.Chakraborty,A.Padki,andS.K.Bansal,“SemanticETL—State-
of-the-ArtandOpenResearchChallenges,”2017IEEE11thInterna-
tionalConferenceonSemanticComputing(ICSC).IEEE,2017.doi:
10.1109/icsc.2017.94.

[15]G.Stefansson,“Business-to-businessdatasharing:Asourceforin-
tegrationofsupplychains,”InternationalJournalofProductionEco-
nomics,vol.75,no.1–2.ElsevierBV,pp.135–146,Jan.2002.doi:
10.1016/s0925-5273(01)00187-6.

[16]N.Ramzy,S.Auer,J.Chamanara,andH.Ehm,“KnowGraph-PM:
AKnowledgeGraphBasedPricingModelforSemiconductorSupply
Chains,”ComputerandInformationScience2021—Summer.Springer
InternationalPublishing,pp.61–75,2021.doi:10.1007/978-3-030-
79474-35.

[17]I.P.Vlachos,“AhierarchicalmodeloftheimpactofRFIDprac-
ticesonretailsupplychainperformance,”ExpertSystemswithAp-
plications,vol.41,no.1.ElsevierBV,pp.5–15,Jan.2014.doi:
10.1016/j.eswa.2013.07.006.

[18]D.Calvanese,M.Giese,D.Hovland,andM.Rezk,“Ontology-Based
IntegrationofCross-LinkedDatasets,”TheSemanticWeb-ISWC2015.
SpringerInternationalPublishing,pp.199–216,2015.doi:10.1007/978-
3-319-25007-612.

[19]Hardi,J.(2019),CellfiePlugin,GitHub,GitHubRepository,https://
github.com/protegeproject/cellfie-plugin/wiki/User27s-Guide.

[20]J.Chakraborty,A.Padki,andS.K.Bansal,“SemanticETL—State-
of-the-ArtandOpenResearchChallenges,”2017IEEE11thInterna-
tionalConferenceonSemanticComputing(ICSC).IEEE,2017.doi:
10.1109/icsc.2017.94.

[21]R.O’Byrne.(2015)Supplychainglossaryofterms.[Online].Available:
https://www.logisticsbureau.com/supply-chain-glossary/.

NOURRAMZYisaPhDcandidateatIn-
fineonTechnologiesandLeibnizUniversity
ofHannoverwiththeresearchfocuson
semanticdataintegrationforsupplychain
management.SheisaMasterofScience
inInformationTechnologyfromtheUni-
versityofStuttgart.ShewroteherMas-
terThesisincollaborationwithInfineon
Technologiesinthesupplychaininnova-
tiondepartmentHeremailisaddressis
nour.ramzy@infineon.com.

	 [9]	 H. Ehm, “Managing complex global supply chains through scor
process and digitalizations,” Infineon AG, Tech. Rep., 2020.

[10] Feng Li, Tie Liu, Hao Zhang, Rongzeng Cao, Wei Ding, and J. P.
Fasano, “Distribution center location for green supply chain,” 2008
IEEE International Conference on Service Operations and Logistics,
and Informatics. IEEE, Oct. 2008. doi: 10.1109/soli.2008.4683040.

	[11]	 Stonebraker, M., & Ilyas, I. F. (2018). Data Integration: The Current
Status and the Way Forward. IEEE Data Eng. Bull., 41(2), 3-9.

	[12]	 Rabe, M., Dross, F., Wuttke, A., Duarte, A., Juan, A., & Lourenço,
H. R. (2017, July). Combining a discrete-event simulation model of a
logistics network with deep reinforcement learning. In Proceedings of
the MIC and MAEB 2017 Conferences (pp. 765-774).

	[13]	 M. Cheatham and C. Pesquita, “Semantic Data Integration,” Hand-
book of Big Data Technologies. Springer International Publishing, pp.
263–305, 2017. doi: 10.1007/978-3-319-49340-4_8.

	[14]	 J. Chakraborty, A. Padki, and S. K. Bansal, “Semantic ETL — State-
of-the-Art and Open Research Challenges,” 2017 IEEE 11th Interna-
tional Conference on Semantic Computing (ICSC). IEEE, 2017.

		 doi: 10.1109/icsc.2017.94.
	[15]	 G. Stefansson, “Business-to-business data sharing: A source for in-

tegration of supply chains,” International Journal of Production Eco-
nomics, vol. 75, no. 1–2. Elsevier BV, pp. 135–146, Jan. 2002.

		 doi: 10.1016/s0925-5273(01)00187-6.
	[16]	 N. Ramzy, S. Auer, J. Chamanara, and H. Ehm, “KnowGraph-PM: A

Knowledge Graph Based Pricing Model for Semiconductor Supply
Chains,” Computer and Information Science 2021—Summer. Springer
International Publishing, pp. 61–75, 2021.

		 doi: 10.1007/978-3-030-79474-3_5.
	[17]	 I. P. Vlachos, “A hierarchical model of the impact of RFID prac-

tices on retail supply chain performance,” Expert Systems with Ap-
plications, vol. 41, no. 1. Elsevier BV, pp. 5–15, Jan. 2014.

		 doi: 10.1016/j.eswa.2013.07.006.
	[18]	 D. Calvanese, M. Giese, D. Hovland, and M. Rezk, “Ontology-Based

Integration of Cross-Linked Datasets,” The Semantic Web - ISWC
2015. Springer International Publishing, pp. 199–216, 2015.

		 doi: 10.1007/978-3-319-25007-6_12.
	[19]	 Hardi, J. (2019), Cellfie Plugin, GitHub, GitHub Repository,

https://github.com/protegeproject/cellfie-plugin/wiki/User27s-Guide.
	[20]	 J. Chakraborty, A. Padki, and S. K. Bansal, “Semantic ETL — State-

of-the-Art and Open Research Challenges,” 2017 IEEE 11th Interna-
tional Conference on Semantic Computing (ICSC). IEEE, 2017.

		 doi: 10.1109/icsc.2017.94.
	[21]	 R. O’Byrne. (2015) Supply chain glossary of terms. [Online].

Available: https://www.logisticsbureau.com/supply-chain-glossary/.

Nour Ramzy is a PhD candidate at Infineon Tech-
nologies and Leibniz University of Hannover with the
research focus on semantic data integration for sup-
ply chain management. She is a Master of Science
in Information Technology from the University of
Stuttgart. She wrote her Master Thesis in collabora-
tion with Infineon Technologies in the supply chain
innovation department.

Prof. Dr. Werner Bick is Professor of Supply Chain
Management and Logistics at the Technical University
of Applied Sciences Regensburg. He studied mechani-
cal engineering at the Technical University of Munich
and completed his doctorate there in robotics. In addi-
tion to classical logistics, his professional focus is on
digitalisation and Industry 4.0.

https://doi.org/10.1109/icps48405.2020.9274750
https://doi.org/10.36244/icj.2020.4.4
https://doi.org/10.1145/1629501.1629525
https://doi.org/10.5220/0006325200880098
https://doi.org/10.1109/icde.2003.1260778
https://doi.org/10.1016/j.ifacol.2019.11.370
https://doi.org/10.1109/soli.2008.4683040
https://doi.org/10.1007/978-3-319-49340-4_8
https://doi.org/10.1109/icsc.2017.94
https://doi.org/10.1016/s0925-5273(01)00187-6
https://doi.org/10.1007/978-3-030-79474-3_5
https://doi.org/10.1016/j.eswa.2013.07.006
https://doi.org/10.1007/978-3-319-25007-6_12
https://github.com/protegeproject/cellfie-plugin/wiki/User27s-Guide
https://doi.org/10.1109/icsc.2017.94
https://www.logisticsbureau.com/supply-chain-glossary/

Knowgraph-TT: Knowledge-Graph-Based Transit
Time Matching in Semiconductor Supply Chains

MARCH 2022 • VOLUME XIV • NUMBER 158

INFOCOMMUNICATIONS JOURNAL

Hans Ehm is Lead Principal Supply Chain heading
the Corporate Supply Chain Engineering Innovation
department at Infineon Technologies. He has a Master
of Science in Mechanical Engineering from Oregon
State University. His interest is on Supply Chain In-
novation with focus on capacity and demand planning,
deep learning, artificial intelligence, simulation, and
block chain applications for traceability.

Sandra Durst is an Intern at Supply Chain Innovation
and works on topics related to Semantic Web. She cur-
rently is a Bachelor of Science student in Management
and Technology with a major in Informatics at Techni-
cal University on Munich.

Konstanze Wibmer is a Master of Arts in Logistics
from the Technical University of Applied Sciences
Regensburg. She wrote her Master Thesis in collabo-
ration with Infineon Technologies in the supply chain
innovation department about transit time matching
using Semantic Web technologies.

Call for Paper
INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 59

18th International Conference on Network and Service Management
Intelligent Management of Disruptive Network Technologies and Services
31 October - 4 November 2022, Thessaloniki, Greece

CALL FOR PAPERS
The 18th International Conference on Network and Service Management (CNSM) is inviting
authors to submit original contributions in network and service management research. CNSM
2022 is a selective single-track conference, covering all aspects of the management of networks
and services, pervasive systems, enterprises, and cloud computing environments. The core track
will be accompanied by a series of workshops and poster sessions.
Papers accepted and presented at CNSM 2022 will be published as open access on the
conference website and will be submitted to IFIP Digital Library. Authors of selected papers,
accepted for publication in the CNSM 2022 proceedings, will be invited to submit an extended
version of their papers to the IEEE Transactions on Network and Service Management journal.

Topics of Interest (but not limited to)

Network Management
• IP Networks
• Wireless and Cellular

Networks
• Optical Networks
• Virtual Networks
• Home Networks
• Access Networks
• Fog and Edge Networks
• Wide Area Networks
• Enterprise and Campus

Networks
• Data Center Networks
• Industrial Networks
• Vehicular Networks
• Internet of Things and Sensor

Networks
• Information-Centric Networks

Technologies
• Communication Protocols
• Middleware
• Overlay Networks
• Peer-to-Peer Networks
• Cloud Computing and Cloud

Storage
• Data, Information, and

Semantic Models
• Information Visualization
• Software-Defined Networking
• Network Function

Virtualization
• Orchestration
• Operations and Business

Support Systems
• Control and Data Plane

Programmability
• Distributed Ledger

Technology

Service Management
• Multimedia Services
• Content Delivery Services
• Cloud Computing

Services
• Internet Connectivity and

Internet Access Services
• Internet of Things

Services
• Security Services
• Context-Aware Services
• Information Technology

Services
• Microservices-based

Applications
• Service Assurance

Methods
• Mathematical Logic and

Automated Reasoning
• Optimization Theories
• Control Theory
• Probability Theory,

Stochastic Processes,
and Queuing Theory

• Artificial Intelligence and
Machine Learning

• Evolutionary Algorithms
• Economic Theory and

Game Theory
• Monitoring and

Measurements
• Data Mining and (Big)

Data Analysis
• Computer Simulation

Experiments
• Testbed Experimentation

and Field Trials
• Software Engineering

Methodologies

Management Paradigms
• Centralized Management
• Hierarchical Management
• Distributed Management
• Federated Management
• Autonomic and Cognitive

Management
• Policy- and Intent-Based

Management
• Model-Driven

Management
• Pro-active Management
• Energy-aware

Management
• QoE-Centric Management

Business Management
• Economic Aspects
• Multi-Stakeholder Aspects
• Service Level Agreements
• Lifecycle Aspects
• Process and Workflow

Aspects
• Legal Perspective
• Regulatory Perspective
• Privacy Aspects
• Organizational Aspects

Functional Areas
• Fault Management
• Configuration

Management
• Accounting Management
• Performance Management
• Security Management

Authors are invited to submit original contributions that have not been published or submitted for
publication elsewhere. Papers should be prepared using the IEEE 2-column conference style and
are limited to 9 pages including references (full papers) or 5 pages including references (short
papers). Papers should be submitted electronically in PDF format through EDAS at
https://edas.info/index.php?c=29457.

For further information, please check http://www.cnsm-conf.org/2022/.

Important Dates
Paper Registration:
10 June 2022
Paper Submission:
17 June 2022
Acceptance Notification:
18 July 2022
Camera Ready due:
2 September 2022

Technical Program
Co-Chairs:
Walter Cerroni,
University of Bologna, Italy
Salil Kanhere,
University of New South
Wales, Australia
Lefteris Mamatas,
University of Macedonia,
Greece

General Co-Chairs:
Marinos Charalambides,
Huawei Technologies, Belgium
Panagiotis Papadimitriou,
University of Macedonia,
Greece

Guidelines for our Authors

MARCH 2022 • VOLUME XIV • NUMBER 160

INFOCOMMUNICATIONS JOURNAL

Format of the manuscripts

Original manuscripts and final versions of papers
should be submitted in IEEE format according to the
formatting instructions available on
 https://journals.ieeeauthorcenter.ieee.org/
 Then click: "IEEE Author Tools for Journals"
 - "Article Templates"
 - "Templates for Transactions".

Length of the manuscripts

The length of papers in the aforementioned format
should be 6-8 journal pages.
Wherever appropriate, include 1-2 figures or tables
per journal page.

Paper structure

Papers should follow the standard structure, consist-
ing of Introduction (the part of paper numbered by
“1”), and Conclusion (the last numbered part) and
several Sections in between.
The Introduction should introduce the topic, tell why
the subject of the paper is important, summarize the
state of the art with references to existing works and
underline the main innovative results of the paper.
The Introduction should conclude with outlining the
structure of the paper.

Accompanying parts

Papers should be accompanied by an Abstract and a
few Index Terms (Keywords). For the final version of
accepted papers, please send the short cvs and photos
of the authors as well.

Authors

In the title of the paper, authors are listed in the or-
der given in the submitted manuscript. Their full affili-
ations and e-mail addresses will be given in a footnote
on the first page as shown in the template. No
degrees or other titles of the authors are given. Mem-
berships of IEEE, HTE and other professional socie-
ties will be indicated so please supply this information.
When submitting the manuscript, one of the authors
should be indicated as corresponding author provid-
ing his/her postal address, fax number and telephone
number for eventual correspondence and communi-
cation with the Editorial Board.

References

References should be listed at the end of the paper
in the IEEE format, see below:

a) Last name of author or authors and first name or
	 initials, or name of organization
b) Title of article in quotation marks
c) Title of periodical in full and set in italics
d) Volume, number, and, if available, part
e) First and last pages of article
 f) Date of issue
g) Document Object Identifier (DOI)

[11] Boggs, S.A. and Fujimoto, N., “Techniques and
instrumentation for measurement of transients in
gas-insulated switchgear,” IEEE Transactions on
Electrical Installation, vol. ET-19, no. 2, pp.87–92,
April 1984. DOI: 10.1109/TEI.1984.298778
Format of a book reference:
[26] Peck, R.B., Hanson, W.E., and Thornburn,
T.H., Foundation Engineering, 2nd ed. New York:
McGraw-Hill, 1972, pp.230–292.
All references should be referred by the correspond-
ing numbers in the text.

Figures

Figures should be black-and-white, clear, and drawn
by the authors. Do not use figures or pictures down-
loaded from the Internet. Figures and pictures should
be submitted also as separate files. Captions are ob-
ligatory. Within the text, references should be made
by figure numbers, e.g. “see Fig. 2.”
When using figures from other printed materials, ex-
act references and note on copyright should be in-
cluded. Obtaining the copyright is the responsibility
of authors.

Contact address

Authors are requested to submit their papers elec-
tronically via the following portal address:
https://www.ojs.hte.hu/infocommunications_journal/
about/submissions
If you have any question about the journal or the
submission process, please do not hesitate to con-
tact us via e-mail:
Editor-in-Chief: Pál Varga – pvarga@tmit.bme.hu
Associate Editor-in-Chief:
Rolland Vida – vida@tmit.bme.hu
László Bacsárdi – bacsardi@hit.bme.hu

https://www.ojs.hte.hu/infocommunications_journal/about/submissions
https://www.ojs.hte.hu/infocommunications_journal/about/submissions
mailto:pvarga%40tmit.bme.hu?subject=
mailto:vida%40tmit.bme.hu?subject=
mailto:bacsardi%40hit.bme.hu?subject=

Bemutatjuk a Legrand megújult,
Linkeo C kábelezési rendszerét,
amellyel kimagasló minôségû helyi adatátviteli hálózat
hozható létre kis, közepes és nagyvállalati környezetben
egyaránt. Az egyedülálló és innovatív keystone csatlakozós
rendszert úgy tervezték, hogy optimális áron segítse a gyors
és hibamentes munkavégzést, legyen szó telepítésrôl vagy
karbantartásról. A termékek minôségi szintjét jól mutatja,
hogy a gyártó 25 év rendszergaranciát hajlandó vállalni
a szakszerûen kiépített hálózatokra.

A gyártó számos videót osztott meg a termékek részletes bemutatására, amelyek a Legrand hazai youtube
oldalán megtekinthetôk. A teljes kínálat megtalálható a Legrand legfrissebb LAN és adatközponti rendszerek
katalógusában.

További részletek a Legrand LAN és adatközponti megoldásairól: https://www.legrand.hu/HALOZAT

Fôbb termékelônyök:
	 •	 komplett Cat5e, Cat6 és Cat6A rendszer (patch panelek, portok, fali

csatlakozók, fali- és patch kábelek) kedvezô árszinten
	 •	 gyárilag feliratozott porthelyekkel valamint címketartóval

és egyedileg feliratozható címkével elláttot,
24 keystone port fogadására képes, fém kialakítású,
19” széles patch panelváz

	 •	 elôpozicionálásra és automatikus EPH csatlakozásra képes patchváz, mely
hátsó kábelrendezôvel rendelkezik a fali kábelek strukturált elrendezésére
és stabil megfogatásra (LCS3 rendszerhez hasonló kialakítás)

	 •	 betûzô szerszám nélküli kábelcsatlakoztatásra képes keystone rendszerû
RJ45 portok, amelyeknek egyedi kialakítása fájdalom mentes és gyors
munkavégzést tesz lehetôvé (áltagos csatlakoztatási idô 70 másodperc)

	 •	 magas minôségû RJ45 portok 5 alkalommal köthetôek (4 alkalommal
újraköthetô) anélkül, hogy az a mûszaki paraméterek romlását okozná

	 •	 portok kategóriája és árnyékolása ránézésre egyszerûen megállapítható
a különbözô színû és anyagú kialakításoknak köszönhetôen

	 •	 mûanyag nélküli, kizárólag kartonpapíros csomagolás,
amely költség és környezetvédelem szempontból
egyaránt optimális

ÚJ LINKEO C
RÉZ KÁBELEZÉSI RENDSZER

A LEGRANDTÓL

https://www.legrand.hu/HALOZAT

SCIENTIFIC ASSOCIATION FOR INFOCOMMUNICATIONS

Who we are
Founded in 1949, the Scientific Association for Info-
communications (formerly known as Scientific Society
for Telecommunications) is a voluntary and autono-
mous professional society of engineers and econo-
mists, researchers and businessmen, managers and
educational, regulatory and other professionals work-
ing in the fields of telecommunications, broadcast-
ing, electronics, information and media technologies
in Hungary.

Besides its 1000 individual members, the Scientific
Association for Infocommunications (in Hungarian:
HÍRKÖZLÉSI ÉS INFORMATIKAI TUDOMÁNYOS EGYESÜLET, HTE)
has more than 60 corporate members as well. Among
them there are large companies and small-and-medi-
um enterprises with industrial, trade, service-providing,
research and development activities, as well as educa-
tional institutions and research centers.

HTE is a Sister Society of the Institute of Electrical and
Electronics Engineers, Inc. (IEEE) and the IEEE Communi-
cations Society.

What we do
HTE has a broad range of activities that aim to pro-
mote the convergence of information and communi-
cation technologies and the deployment of synergic
applications and services, to broaden the knowledge
and skills of our members, to facilitate the exchange
of ideas and experiences, as well as to integrate and

harmonize the professional opinions and standpoints
derived from various group interests and market dy-
namics.

To achieve these goals, we…
•	 contribute to the analysis of technical, economic,

and social questions related to our field of compe-
tence, and forward the synthesized opinion of our
experts to scientific, legislative, industrial and edu-
cational organizations and institutions;

•	 follow the national and international trends and
results related to our field of competence, foster
the professional and business relations between
foreign and Hungarian companies and institutes;

•	 organize an extensive range of lectures, seminars,
debates, conferences, exhibitions, company pres-
entations, and club events in order to transfer and
deploy scientific, technical and economic knowl-
edge and skills;

•	 promote professional secondary and higher edu-
cation and take active part in the development of
professional education, teaching and training;

•	 establish and maintain relations with other domes-
tic and foreign fellow associations, IEEE sister soci-
eties;

•	 award prizes for outstanding scientific, education-
al, managerial, commercial and/or societal activities
and achievements in the fields of infocommunica-
tion.

Contact information
President: FERENC VÁGUJHELYI • elnok@hte.hu

Secretary-General: ISTVÁN MARADI • istvan.maradi@gmail.com
Operations Director: PÉTER NAGY • nagy.peter@hte.hu

International Affairs: ROLLAND VIDA, PhD • vida@tmit.bme.hu

Address: H-1051 Budapest, Bajcsy-Zsilinszky str. 12, HUNGARY, Room: 502
Phone: +36 1 353 1027

E-mail: info@hte.hu, Web: www.hte.hu

