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I. INTRODUCTION

The semiconductor industry is competitive with a dynamic
market characterized by time-intensive processes [9]. Espe-
cially in this highly competitive domain, semiconductor com-
panies strive to offer the highest quality to their customers
which implies sustaining delivery reliability. Reliable deliver-
ies are important as customers depend on the delivery promises
and their further production steps are based on this commit-
ment. To achieve planning dependability, it is important to
implement precise and reliable planning processes. The key
to better planning and to foresee delays is to examine Transit
Times (TTs). Transit time is the time taken to move goods
physically between different locations in a supply chain or
laterally to another facility [21].

Supply Chain (SC) integration, as well as the flow of infor-
mation SC are essential for carrying out effective exchanges
between parties [15], thus can enhance SC planning. Semantic
data integration enables combining SC data from disparate
sources and consolidating it into meaningful and valuable
information.

In this paper, we present Knowledge-Graph-based TT
matching (Knowgraph-TT), aligned with existing approaches
solution that matches transit times of different data sources
based on semantic data integration to minimize and prevent
delays. Knowgraph-TT leverages a well defined ontology to
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model TTs. Via KnowGraph-TT, delays are identified and data
is kept up to date through semantic transit time matching to
create more reliable planning processes within the SC.

The remainder of the paper is divided as follows: After
an introduction, section II covers the relevant background
knowledge and the need for TT matching. section III describes
related approaches for data integration in SC and the gap that
motivates the use of semantic data integration for TT matching.
section IV contains the implementation details i.e., the ontol-
ogy modelling, mapping to data sources. The semantic data
integration process is shown with an example of two tools that
store transit time based on different definitions. section V is
the evaluation of the implementation. We rely on competency
questions and SPARQL and we discuss the results. Finally, the
work is rounded off with section VI where we conclude and
discuss the next steps about further analysis in which external
factors like a pandemic are addressed.

II. BACKGROUND AND MOTIVATION

In this section, we present the necessary background knowl-
edge e.g., order management, transit time and the need for TT
matching.

A. Transit Time

Transit time is the time taken to move goods physically
between different locations in a supply chain or laterally to
another facility [21]. We distinguish between the actual and
the planned transit. The first is the time needed to deliver
particular products to the customer. While the planned transit
time on the other hand is the time that is expected and planned
for future deliveries to the customer. The planned transit time
is used to determine the Available To Promise (ATP) which is
important for daily order confirmation.

Figure 1 shows that the actual and the planned transit time
might be split into several small time intervals and might
be in different tools (e.g. one for measuring and one for
planning) and are measured and calculated differently. Despite
one definition of transit time, the actual and the planned transit
time might be in different tools as they reflect different parts
of the supply chain. The focus of the planning tool is to plan
transit times, while the focus of another tool, e.g., an internal
logistics monitoring tool, is to track actual transit times.
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Fig. 1. Definition of Actual and Planned Transit Time.

Namely, within the tools, transit time is measured differently
which leads to difficulties in matching the information and
keeping it up to date. One example is the divergent interpre-
tation of geographic data. In one tool, transit time is based on
facility level and is measured as actual transit time and in the
other tool, transit time is based on location level and measured
as planned transit time. Transit times need to be accurate and
therefore, a matching of the planned transit time and the actual
transit time is needed. The matching results in an avoidance
of order confirmations to unrealizable ATP’s.

B. Transit Time Matching

When a customer requests products from the order manage-
ment (OM), the divisional model (DM) checks whether and
when the request can be fulfilled. All involved parties rely on
the ATP and it is of special importance for the customer. [7].
Since the ATP is defined by the planned transit time at the time
when the goods are sent out by backend (BE), it is important
to detect deviations between actual and planned transit time
early on and keep plan transit time up-to-date. After creating

an ATP, the DF (Demand Fulfillment) confirms on a daily
base the Orders and Order Management (OM) sends an Order
Promise (OP) to the customer. Thus the OP is based on the
ATP which uses the planned transit time. With the OP, the
delivery date becomes binding. By then, the customer trusts
that the products will be delivered on time.

Figure 2 shows an example of the mismatch between the
actual transit time and the planned transit time. The x-axis is
the time course and on the y-axis are different blocks each
describing a scenario. The first block is the Plan (Weekly)
describing that 100 pieces are planned to be delivered to the
distribution centers (DC) every Sunday, i.e., on weekly basis.
The distribution center is a core part of a supply chain and
connects factories and retailers [10]. An Available To Promise
(ATP) of 100 pieces can be served from Sundays – it was
committed from the factory, the factory gets measured on it
and it has some buffer in it.

The second block is the plan at the point of shipment when
the weekly plan is broken down on a daily basis. Within a
planned transit time of three days, it is planned to transit
the products from the backend on Monday to the distribution
centers on Thursday. Backend is part of the chip production
process and involves the steps of assembly, test and shipment
to the DC. However, when it is shipped from backend the
commitment with buffer is replaced by a calculation being the
shipment date + planned transit time. So assuming that 50 are
shipped on Monday with a planned transit time of 2 days, the
ATP of 100 on Sunday is reduced by 50, which are expected
on Wednesday (Monday shipping date + 2 days planned transit
time). In the daily rerun of the order confirmation, these 50
are used and orders are brought forward.

Actual scenario in the third block shows, that the actual
transit time takes longer than the planned one and the planned
scenario is not fulfilled. Thus, the planned transit time does
not correspond to the actual transit time. Now when the actual
transit time is not 2 days but 4 days the brought forward orders
need to be delayed as the goods are not coming on Wednesday
but on Friday (= shipping date + 4 days actual transit time).

The fourth block is the Communication to Customer. The
order management creates an availability commitment to the
customers on Monday and communicates that the order will be
shipped on Thursday. Thus, the customers can expect, that they
will receive the products in three days. If the promises cannot
be kept, it potentially leads to customer dissatisfaction. A
deviation between the target and the actual transit time causes
planning difficulties for all parties involved. For example, the
production site or the customer has no planning certainty when
promises are postponed. Therefore, it is important to correlate
and match transit times.

III. SEMANTIC DATA INTEGRATION FOR TT
A. Related Work

1) Approaches for TT planning: There are various ap-
proaches to planning and optimizing transit times within a
supply chain. One example to improving supply chain per-
formance from the retail supply chain is the use of Radio
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Fig. 2. Transit time mismatch.

Frequency Identification (RFID) technology. The technology is
used to increase communication and information transparency
between an object and other systems or software (e.g. ERP sys-
tem) along the supply chain [17]. Methods like forecasting and
simulation are also options for the planning and optimization
process. The problem remains that the different information
provided by such technologies cannot be compared directly.
Data integration allows the alignment of data from different
data sources.

2) Traditional Data Integration: One of the popular ap-
proaches to data integration is Extract Transform and Load
(ETL). [20] provides a survey about traditional data integration
and ETL techniques. Authors identify that ETL tools show
limited ability is available to extract data from different
sources at the same time. Moreover, without this domain
knowledge, it is impossible to extract, transform and load.
Semantic technologies are used to further enhance definitions
of the ETL activities involved in the process [14]. Ontologies
provide a common vocabulary for the integrated data and
generate semantic data as part of the transformation phase of
ETL. Semantic data integration is aligned with traditional data
integration techniques. It can be referred to as Semantic ETL.

B. Semantic Data Integration
We rely on the ontology-based data access (OBDA) ap-

proach for semantic data integration. The schema is given in
terms of an ontology representing the formal and conceptual
view of the domain [8]. Also, we use ontology merging
to overcome challenges such as the various definitions of
location. A knowledge graph refers to a semantic network
of concepts, properties, individuals and links representing
and referencing foundational and domain knowledge relevant
for a domain [5]. By creating the knowledge graph that is
connecting different data sources, the data can be visualized

and analyzed without changing the original data sources.
Therefore, redundancies can be avoided and the data is con-
nected. Flexibility can be increased by having the possibility
to implement changes on the data or adding new data sources.
Semantic models are characterized with easy extendibility
which makes them significant to the agile supply chain do-
main. In addition, this method of data integration achieves
interoperability and information transparency. This type of
data integration is particularly relevant in domains where data
models are diverse and entity properties are heterogeneous
[13].

IV. IMPLEMENTATION

In this section, we show KnowGraph-TT: applying semantic
data to match the transit times of two tools of a multinational
semiconductors company.

A. Ontology Modeling

The basis for the process KnowGraph-TT is to acquire
different sources of transit time. Two different sources that
manage transit time are found and analyzed. In the following,
the sources are referred to as Tool A and Tool B. Tool A is
equivalent to the executing tool while Tool B corresponds to
the monitoring tool.

Firstly, Tool A stores the actual transit time on location
level. The transit takes place from one location to another.
Therefore, the location shipped from and the location shipped
to are important concepts for the matching process. The class
“TT Actual” represents the Actual Target Time to ship a
product from the location “ShipFrom Loc” to the location
“ShipTo Loc”.

Secondly, Tool B records the planned transit time on
a facility level. Here, the transit takes place between two
facilities. The planned transit time is the time it takes to



Knowgraph-TT: Knowledge-Graph-Based Transit  
Time Matching in Semiconductor Supply Chains

MARCH 2022 • VOLUME XIV • NUMBER 154

INFOCOMMUNICATIONS JOURNAL

ship the products from the finishing facility to the expecting
facility. It is similar to the structure of Tool A. The class
“FTRN TRANSIT TIME” is the planned transit time it takes
to ship products from “FAC FACILITY NAME FROM” to
“FAC FACILITY NAME TO”. Each facility is identified by
the class “FAC FACILITY NAME” which is important for
the matching of locations in the location ontology.

As transit times are provided in various ways and they can
not be matched directly, an additional intermediate ontology
is necessary. Therefore, the location ontology, Figure 3, aligns
the concepts of locations to be able to compare the different
transit times with each other. Here, one location can have
multiple facilities. Therefore, a location key is assigned to each
facility so facilities and locations can be compared with each
other.

Fig. 3. Single Location Ontology.

B. Ontology Merging

Figure 4 shows the individual ontologies and the merged
ontology. The output merged ontology is referred to as the
semantic abstraction layer, it represents the schema of the
domain. It contains the main concepts and relationships of
the transit time domain. We rely on this to map data from
different data sources and match TT.

The left side, is the ontology for the Actual Transit Time in
Tool A. While on the right is the ontology for the Planned
Transit Time in Tool B. Lastly, the Location Ontology is
depicted in the middle part in Figure 4. Each facility from
Tool A is uniquely identified by the class “LocationKey”. The
matching between facility and location is explained in more
detail in Figure 3. Figure 3 translates the facilities from Tool
A to the locations in Tool B.

C. Mapping

After generating the semantic abstraction layer, the next
step is to connect the data sources from the different tools
to the merged ontology. For this step, the tool Protégé plugin
“Cellfie” [19] is used. This is used because Protégé is an
open source tool and therefore a common used tool. It creates
instances out of the given data for every class contained in the
given data sources. The semantic abstraction layer contains
multiple triples. Each of those triples consists of a subject,

predicate and object. For the TT ontology one example triple
looks as follows:

V. EVALUATION

In this section we evaluate the implementation and show the
outcomes of the semantic data integration for TT matching.

A. Setup

The output of the implementation is a knowledge graph
that contains the ontology (Figure 4) along with the mate-
rialized triples as shown in the mapping. We rely on SPARQL
[18] queries to evaluate the knowledge-graph. We upload the
knowledge-graph on Apache Jena Fueski Server and execute
the queries.

The choice of this methodology for evaluation is driven by
the fact that SPARQL is a standard that allows to express
queries across diverse data sources. SPARQL can be used
to query external data sources e.g. weather reports to add
explainability and find a correlation between TT mismatch
and bad weather conditions. Also, in case we wanted to
attribute the mismatch to locations geospatial SPARQL allows
to represent geospatial data is using GeoSPARQL, which is an
RDF vocabulary and a set of extensions to SPARQL to support
spatial queries. The results of the queries are discussed below.
It is important to mention, that the transit times are given in
hours. Also, the transit time data is partially extracted from
the tools to illustrate the methodology.

B. Queries and Answers

For conciseness we show the Competency Questions (CQs),
representing the SPARQL queries but in natural language. We
refer to a GitHub repository for detailed queries. CQs are a
set of requirements on the content as well as a way of scoping
and delimiting the TT matching problem.

CQ1: What are the planned transit times and average
actual transit times for delivery routes between locations?

Firstly, all delivery routes that address the same location
are grouped. After summarizing the deliveries of the same
routes, the corresponding actual transit time is averaged. For
each route, the planned transit time is compared to the average
actual transit time. Possibly, different planned transit times are
assigned to an average actual time because several facilities
can be related to one location. Results in Figure 7(a) provide
an overview of the results from the query evaluation. For
example, the average actual transit time of 295 hours differs
from the planned transit time of 165 hours. It can be seen that
within the same delivery route, there are large deviations in
the average actual transit time and the planned transit time.

CQ2: What are the actual transit times and its planned
transit time for a certain delivery route between locations?

This query filters one delivery route between two locations.
Here, the planned TT is compared to the actual TT. Since
different facilities are assigned to one location, various facility
delivery routes exist within one location delivery route. This
means, that several actual transit times are related to one
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Fig. 4. Transit Time Ontology matching in the Measurement Tool for Actuals and in the Base Data Tool for Planning purposes.

Fig. 5. Triple City.

Fig. 6. Triple Facility.

planned transit time. Based on this delivery route, the actual
TT is compared to the planned TT.

The query result is represented in Figure 7(b). The resulting
planned transit times are 48 hours and 120 hours. Nevertheless,
the actual transit times for the delivery route vary from 51
hours to 82 hours. The interval from 51 to 82 hours of the
actual transit time shows, that there are large fluctuations
between transit times.

CQ3: What are the actual transit times and its planned
transit time for a certain delivery route between facilities?

This query only filters one shipping and one receiving
facility. The results in Figure 7(c) show, that the planned transit
time within this delivery route is 48 hours. Furthermore, the
actual transit time may vary from 51 to 82 hours. Figure 7(c)

shows, that the deviations between planned transit time and
actual transit time are not as large as in CQ2.

CQ4: What are the highest and lowest transit times of
certain delivery routes?

In this query, the plan transit time, average actual transit
time, and both the minimum and maximum actual transit
time are compared with each other. The results in Figure
7(d) show the big difference between the maximum and the
minimum actual transit time. One example for a query result
is a delivery route with a planned transit time of 72 hours,
an average actual transit time of 62 hours, a maximum of 71
hours with a minimum transit time of 45 hours. One reason
for the fluctuations is that several facilities are located in one
location. Thus, according to one plan transit time, there are
various actual transit times.

CQ5: For which transit route is the actual transit time
higher than the planned transit time?

In this query, the plan transit time is compared to the actual
transit time. Some deliveries are stated several times when
different planned transit times are given. Finally, the deliveries
are filtered which in reality took longer than planned. In Figure
7(e) the query results show, that in several cases the actual
transit time is higher than the planned transit time of the
delivery route.

CQ6: What location transits have the highest discrepancy
between planned and actual transit times? (Ordered by
discrepancy)

This query relies on the transits between locations. For each
transit, the actual transit time, maximum planned transit time,
and discrepancy obtained from the actual and planned transit
times are given. The result table in Figure 7(f) is ordered

Fig. 4. Transit Time Ontology matching in the Measurement Tool for Actuals and in the Base Data Tool for Planning purposes.
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hours and a maximum plan value of 108 hours. The large
discrepancy of 820 hours between the planned transit time and
the actual transit time shows how unreliable the key figures
can be sometimes.

C. Results & Discussion

The implemented approach combines the planned transit
time used in the execution system and the actual transit time
measured in the monitoring tool. The queries, which are
evaluated in section V highlight the gaps between planned
transit time from different viewpoints. The results show, that
the gaps of TT matching between location routes are larger
than the gaps between facilities. One possible explanation
is, that different facilities can be assigned to one location.
Therefore, different actual transit times are assigned to one
planned transit time. Based on the query results, it could
be shown that a timely update of planned transit times can

be enabled as well as unachievable order confirmations are
avoided.

In this paper, two tools were successfully connected using
semantic data integration to combine the distinct interpretation
of transit time and to enable the analysis of the consequences
of the mismatch. Semantic Data Integration is applicable in
other Supply Domains to integrate dispersed data sources.
We can rely on the proposed location ontologies to extend
to other domains e.g., Customer Relationship Management,
Revenue Management as per [16]. Also, the semantic abstrac-
tion layer secures a common understanding of the domain in
question, thus entails interoperability and extendibility. How-
ever, the approach has some limitations. First, KnowGraph-
TT provides a self-created location ontology, thus missing
the re-usability characteristic of ontologies. We did not re-use
standard ontologies representing the location. Moreover, for
the evaluation KnowGraph-TT is not evaluated versus other
existing approaches or related work. We only used CQs for the
evaluation to ensure that the output Knowledge Graph covers
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shows, that the deviations between planned transit time and
actual transit time are not as large as in CQ2.

CQ4: What are the highest and lowest transit times of
certain delivery routes?

In this query, the plan transit time, average actual transit
time, and both the minimum and maximum actual transit
time are compared with each other. The results in Figure
7(d) show the big difference between the maximum and the
minimum actual transit time. One example for a query result
is a delivery route with a planned transit time of 72 hours,
an average actual transit time of 62 hours, a maximum of 71
hours with a minimum transit time of 45 hours. One reason
for the fluctuations is that several facilities are located in one
location. Thus, according to one plan transit time, there are
various actual transit times.

CQ5: For which transit route is the actual transit time
higher than the planned transit time?

In this query, the plan transit time is compared to the actual
transit time. Some deliveries are stated several times when
different planned transit times are given. Finally, the deliveries
are filtered which in reality took longer than planned. In Figure
7(e) the query results show, that in several cases the actual
transit time is higher than the planned transit time of the
delivery route.

CQ6: What location transits have the highest discrepancy
between planned and actual transit times? (Ordered by
discrepancy)

This query relies on the transits between locations. For each
transit, the actual transit time, maximum planned transit time,
and discrepancy obtained from the actual and planned transit
times are given. The result table in Figure 7(f) is ordered
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descending by the discrepancy. The highest discrepancy for
this data is 820 hours with an actual transit time of 928
hours and a maximum plan value of 108 hours. The large
discrepancy of 820 hours between the planned transit time and
the actual transit time shows how unreliable the key figures
can be sometimes.

C. Results & Discussion

The implemented approach combines the planned transit
time used in the execution system and the actual transit time
measured in the monitoring tool. The queries, which are
evaluated in section V highlight the gaps between planned
transit time from different viewpoints. The results show, that
the gaps of TT matching between location routes are larger
than the gaps between facilities. One possible explanation
is, that different facilities can be assigned to one location.
Therefore, different actual transit times are assigned to one
planned transit time. Based on the query results, it could
be shown that a timely update of planned transit times can

be enabled as well as unachievable order confirmations are
avoided.

In this paper, two tools were successfully connected using
semantic data integration to combine the distinct interpretation
of transit time and to enable the analysis of the consequences
of the mismatch. Semantic Data Integration is applicable in
other Supply Domains to integrate dispersed data sources.
We can rely on the proposed location ontologies to extend
to other domains e.g., Customer Relationship Management,
Revenue Management as per [16]. Also, the semantic abstrac-
tion layer secures a common understanding of the domain in
question, thus entails interoperability and extendibility. How-
ever, the approach has some limitations. First, KnowGraph-
TT provides a self-created location ontology, thus missing
the re-usability characteristic of ontologies. We did not re-use
standard ontologies representing the location. Moreover, for
the evaluation KnowGraph-TT is not evaluated versus other
existing approaches or related work. We only used CQs for the
evaluation to ensure that the output Knowledge Graph covers
the domain in question, and enables the transit time mismatch
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ever, the approach has some limitations. First, KnowGraph-
TT provides a self-created location ontology, thus missing
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the evaluation KnowGraph-TT is not evaluated versus other
existing approaches or related work. We only used CQs for the
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the domain in question, and enables the transit time mismatch

analysis.

VI. CONCLUSION & OUTLOOK
In a competitive market, semiconductor manufacturers seek

to offer the highest quality to their customers and rely on
an accurate and reliable supply chain planning and commit-
ment. In this work, we propose KnowGraph-TT to connect
plan- and actual transit times on different definitions and
tools via semantic data integration. Based on this, we apply
this KnowGraph-TT to a use case of an international semi-
conductor manufacturing firm. The use case was evaluated
successfully via competency questions in highlighting actual-
versus plan transit time mismatches. Incorrectly planned transit
times are the cause of ATP postponements and negative Early
Warnings (a negative Early Warning is when a previously
committed delivery date is postponed), but by far not every
violation of a planned transit time in the internal supply
chain causes an Early Warning. Thus, we can examine now
the extent of the effect of time violations as a root cause
of ATP postponements and negative Early Warnings. Conse-
quently, we can study how to update the planned transit time
concerning actual transit times to create a non-conservative
and reliable demand fulfilment. In future work, we aim to
analyze the effect of external factors on the supply chain. We
intend to extend the knowledge graph capabilities to effects
like the pandemic, which strongly influences the supply chain
processes. This should enable us to correlate the transit time
mismatch with COVID-19 reports, to be able to proactively
change the plan transit times before violations happen.
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is, that different facilities can be assigned to one location.
Therefore, different actual transit times are assigned to one
planned transit time. Based on the query results, it could
be shown that a timely update of planned transit times can

be enabled as well as unachievable order confirmations are
avoided.

In this paper, two tools were successfully connected using
semantic data integration to combine the distinct interpretation
of transit time and to enable the analysis of the consequences
of the mismatch. Semantic Data Integration is applicable in
other Supply Domains to integrate dispersed data sources.
We can rely on the proposed location ontologies to extend
to other domains e.g., Customer Relationship Management,
Revenue Management as per [16]. Also, the semantic abstrac-
tion layer secures a common understanding of the domain in
question, thus entails interoperability and extendibility. How-
ever, the approach has some limitations. First, KnowGraph-
TT provides a self-created location ontology, thus missing
the re-usability characteristic of ontologies. We did not re-use
standard ontologies representing the location. Moreover, for
the evaluation KnowGraph-TT is not evaluated versus other
existing approaches or related work. We only used CQs for the
evaluation to ensure that the output Knowledge Graph covers
the domain in question, and enables the transit time mismatch
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Fig. 7. Chart visualization of the SPARQL query results for various Competency Questions (CQs).

descending by the discrepancy. The highest discrepancy for
this data is 820 hours with an actual transit time of 928
hours and a maximum plan value of 108 hours. The large
discrepancy of 820 hours between the planned transit time and
the actual transit time shows how unreliable the key figures
can be sometimes.

C. Results & Discussion

The implemented approach combines the planned transit
time used in the execution system and the actual transit time
measured in the monitoring tool. The queries, which are
evaluated in section V highlight the gaps between planned
transit time from different viewpoints. The results show, that
the gaps of TT matching between location routes are larger
than the gaps between facilities. One possible explanation
is, that different facilities can be assigned to one location.
Therefore, different actual transit times are assigned to one
planned transit time. Based on the query results, it could
be shown that a timely update of planned transit times can

be enabled as well as unachievable order confirmations are
avoided.

In this paper, two tools were successfully connected using
semantic data integration to combine the distinct interpretation
of transit time and to enable the analysis of the consequences
of the mismatch. Semantic Data Integration is applicable in
other Supply Domains to integrate dispersed data sources.
We can rely on the proposed location ontologies to extend
to other domains e.g., Customer Relationship Management,
Revenue Management as per [16]. Also, the semantic abstrac-
tion layer secures a common understanding of the domain in
question, thus entails interoperability and extendibility. How-
ever, the approach has some limitations. First, KnowGraph-
TT provides a self-created location ontology, thus missing
the re-usability characteristic of ontologies. We did not re-use
standard ontologies representing the location. Moreover, for
the evaluation KnowGraph-TT is not evaluated versus other
existing approaches or related work. We only used CQs for the
evaluation to ensure that the output Knowledge Graph covers
the domain in question, and enables the transit time mismatch

analysis.

VI. CONCLUSION & OUTLOOK
In a competitive market, semiconductor manufacturers seek

to offer the highest quality to their customers and rely on
an accurate and reliable supply chain planning and commit-
ment. In this work, we propose KnowGraph-TT to connect
plan- and actual transit times on different definitions and
tools via semantic data integration. Based on this, we apply
this KnowGraph-TT to a use case of an international semi-
conductor manufacturing firm. The use case was evaluated
successfully via competency questions in highlighting actual-
versus plan transit time mismatches. Incorrectly planned transit
times are the cause of ATP postponements and negative Early
Warnings (a negative Early Warning is when a previously
committed delivery date is postponed), but by far not every
violation of a planned transit time in the internal supply
chain causes an Early Warning. Thus, we can examine now
the extent of the effect of time violations as a root cause
of ATP postponements and negative Early Warnings. Conse-
quently, we can study how to update the planned transit time
concerning actual transit times to create a non-conservative
and reliable demand fulfilment. In future work, we aim to
analyze the effect of external factors on the supply chain. We
intend to extend the knowledge graph capabilities to effects
like the pandemic, which strongly influences the supply chain
processes. This should enable us to correlate the transit time
mismatch with COVID-19 reports, to be able to proactively
change the plan transit times before violations happen.
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plan-andactualtransittimesondifferentdefinitionsand
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thisKnowGraph-TTtoausecaseofaninternationalsemi-
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