
Batch-scheduling Data Flow Graphs with
Service-level Objectives on Multicore Systems

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 43

INFOCOMMUNICATIONS JOURNAL 1

Batch-scheduling Data Flow Graphs with
Service-level Objectives on Multicore Systems

Tamás Lévai and Gábor Rétvári, Member, IEEE

Abstract—Data flow graphs are a popular program represen-
tation in machine learning, big data analytics, signal processing,
and, increasingly, networking, where graph nodes correspond to
processing primitives and graph edges describe control flow. To
improve CPU cache locality and exploit data-level parallelism,
nodes usually process data in batches. Batchy is a scheduler for
data flow graph based packet processing engines, which uses
controlled queuing to reconstruct fragmented batches inside
a data flow graph in accordance with strict Service-Level
Objectives (SLOs). Earlier work showed that Batchy yields up
to 10x performance improvement in real-life use cases, thanks to
maximally exploiting batch processing gains.

Batchy, however, is fundamentally restricted to single-threaded
execution. In this paper, we generalize Batchy to parallel execution
on multiple CPU cores. We extend the analytical model to the
parallel setting and present a primal decomposition framework,
where each core runs an unmodified Batchy controller to schedule
batch-processing on a subset of the data flow graph, orchestrated
by a master controller that distributes the delay-SLOs across the
cores using subgradient search. Evaluations on a real software
switch provide experimental evidence that our decomposition
framework produces 2.5x performance improvement while accu-
rately satisfying delay SLOs that are otherwise not feasible with
single-core Batchy.

Index Terms—data flow graph, decomposition, software switch,
SDN, NFV

I. INTRODUCTION

BATCH-SCHEDULING is a near-universal technique to im-
prove performance of software packet processing engines:

collect multiple packets into a single burst and perform the same
operation on all the packets in one shot. Processing packets
in batches is much more efficient than processing a single
packet at a time, thanks to amortizing one-time operational
overhead, optimizing CPU cache usage, and enabling loop
unrolling and SIMD optimizations [1], which often yields 2–5×
performance boost. Consequently, batching is used in essentially
all software switches (e.g., BESS [2], VPP [3], FastClick [4],
and ESwitch [5]), high-performance OS network stacks and
libraries [6], user-space I/O libraries [7], and Network Function
Virtualization (NFV) platforms [8], [9].

Batchy [10] is a state-of-the-art batch-scheduling framework
for high-end programmable software switches. Batchy abstracts
the software switch dataplane as a data flow graph; here, nodes
represent packet-processing primitives (e.g., L3 Lookup) and
arcs represent the control flow. This data flow graph is executed
in a run-to-completion fashion; when a packet-processing

T. Lévai is with the Department of Telecommunications and Media Infor-
matics at the Budapest University of Technology and Economics. G. Rétvári
is with the MTA-BME Information Systems Research Group and Ericsson
Research. This work was supported by the NKFIH/OTKA Project #135606.
E-mail: {levait, retvari}@tmit.bme.hu.

Controller

Idealized
system model

Gradient
opt.

Software Switch DataplaneRX TX

M
on

ito
r

gradient
𝑑𝑑 (𝐷𝐷 𝐷𝐷)/𝑑𝑑𝑑𝑑
𝑑𝑑 (𝑟𝑟 𝐷𝐷)/𝑑𝑑𝑑𝑑 C

ontrol

Figure 1. Batchy System Architecture.

node finishes work on a packet batch, execution proceeds
on the downstream nodes along all outgoing arcs of the node.
Unfortunately, run-to-completion tends to fragment batches
inside the data-flow graph, as each node may split the input
batch into multiple sub-batches to be passed to downstream
nodes; e.g., an L3 Lookup table or a round-robin LoadBalancer
may distribute the packets inside the batch across multiple
downstream processing chains, a network stack may split a
burst of mixed input packets per L3/L4 protocol to execute each
MPLS, IPv4 and IPv6 packet on a separate downstream protocol
engine, etc. Since the downstream modules are executed on
smaller batches we lose batch-efficiency, which inherently
curtails the available performance, often an order of magnitude
lower than with full batches [1].

Batchy attempts to recover some of the lost batch-efficiency
by artificially queuing up packets inside the data flow graph
to be able to execute the downstream processing nodes on
larger batches. Inspired by Nagle’s algorithm [11], Batchy uses
a model-predictive controller to regulate queue backlogs for
maximizing batch sizes across the pipeline in a way so that the
end-to-end queuing delay remains under a given requirement
(Fig. 1). This brings massive performance improvement, and
delay Service Level Objective (SLO) conformance in the
𝜇𝜇𝜇𝜇 range even at million-packet-per-second scale traffic [10].
Unfortunately, the model underlying Batchy assumes single-
core execution.

Motivated by the need to run software switches on multicore
systems to maximize performance [12], [13], in this paper we
extend Batchy to leverage parallel execution. As Fig. 2 shows,
this is not trivial. The task is two-fold: i) find an optimal batch-
schedule on each core, and ii) distribute delay budgets among
cores in a way so that the end-to-end delay remains under the
SLO. This is a two-level optimization problem: on per core
basis the goal is to find the optimal queue backlog sizes and
on a higher level to determine how long each core can process
a packet batch so to meet end-to-end delay SLOs. To solve
this complex multi-level problem, we propose a decomposition
technique [14].

The general idea of decomposition is to break a complex
problem into simpler subproblems, then solve the simple

Batch-scheduling Data Flow Graphs with
Service-level Objectives on Multicore Systems

Tamás Lévai and Gábor Rétvári, Member, IEEE

T. Lévai is with the Department of Telecommunications and Media Infor-
matics at the Budapest University of Technology and Economics. G. Rétvári
is with the MTA-BME Information Systems Research Group and Ericsson
Research. This work was supported by the NKFIH/OTKA Project #135606.
E-mail: {levait, retvari}@tmit.bme.hu.

Abstract—Data flow graphs are a popular program represen-
tation in machine learning, big data analytics, signal processing,
and, increasingly, networking, where graph nodes correspond to
processing primitives and graph edges describe control flow. To
improve CPU cache locality and exploit data-level parallelism,
nodes usually process data in batches. Batchy is a scheduler
for data flow graph based packet processing engines, which
uses controlled queuing to reconstruct fragmented batches
inside a data flow graph in accordance with strict Service-Level
Objectives (SLOs). Earlier work showed that Batchy yields up
to 10x performance improvement in real-life use cases, thanks to
maximally exploiting batch processing gains.

Batchy, however, is fundamentally restricted to single-threaded
execution. In this paper, we generalize Batchy to parallel execution
on multiple CPU cores. We extend the analytical model to the
parallel setting and present a primal decomposition framework,
where each core runs an unmodified Batchy controller to schedule
batch-processing on a subset of the data flow graph, orchestrated
by a master controller that distributes the delay-SLOs across the
cores using subgradient search. Evaluations on a real software
switch provide experimental evidence that our decomposition
framework produces 2.5x performance improvement while accu-
rately satisfying delay SLOs that are otherwise not feasible with
single-core Batchy.

Index Terms—data flow graph, decomposition, software
switch, SDN, NFV

DOI: 10.36244/ICJ.2022.1.6

INFOCOMMUNICATIONS JOURNAL 1

Batch-scheduling Data Flow Graphs with
Service-level Objectives on Multicore Systems

Tamás Lévai and Gábor Rétvári, Member, IEEE

Abstract—Data flow graphs are a popular program represen-
tation in machine learning, big data analytics, signal processing,
and, increasingly, networking, where graph nodes correspond to
processing primitives and graph edges describe control flow. To
improve CPU cache locality and exploit data-level parallelism,
nodes usually process data in batches. Batchy is a scheduler for
data flow graph based packet processing engines, which uses
controlled queuing to reconstruct fragmented batches inside
a data flow graph in accordance with strict Service-Level
Objectives (SLOs). Earlier work showed that Batchy yields up
to 10x performance improvement in real-life use cases, thanks to
maximally exploiting batch processing gains.

Batchy, however, is fundamentally restricted to single-threaded
execution. In this paper, we generalize Batchy to parallel execution
on multiple CPU cores. We extend the analytical model to the
parallel setting and present a primal decomposition framework,
where each core runs an unmodified Batchy controller to schedule
batch-processing on a subset of the data flow graph, orchestrated
by a master controller that distributes the delay-SLOs across the
cores using subgradient search. Evaluations on a real software
switch provide experimental evidence that our decomposition
framework produces 2.5x performance improvement while accu-
rately satisfying delay SLOs that are otherwise not feasible with
single-core Batchy.

Index Terms—data flow graph, decomposition, software switch,
SDN, NFV

I. INTRODUCTION

BATCH-SCHEDULING is a near-universal technique to im-
prove performance of software packet processing engines:

collect multiple packets into a single burst and perform the same
operation on all the packets in one shot. Processing packets
in batches is much more efficient than processing a single
packet at a time, thanks to amortizing one-time operational
overhead, optimizing CPU cache usage, and enabling loop
unrolling and SIMD optimizations [1], which often yields 2–5×
performance boost. Consequently, batching is used in essentially
all software switches (e.g., BESS [2], VPP [3], FastClick [4],
and ESwitch [5]), high-performance OS network stacks and
libraries [6], user-space I/O libraries [7], and Network Function
Virtualization (NFV) platforms [8], [9].

Batchy [10] is a state-of-the-art batch-scheduling framework
for high-end programmable software switches. Batchy abstracts
the software switch dataplane as a data flow graph; here, nodes
represent packet-processing primitives (e.g., L3 Lookup) and
arcs represent the control flow. This data flow graph is executed
in a run-to-completion fashion; when a packet-processing

T. Lévai is with the Department of Telecommunications and Media Infor-
matics at the Budapest University of Technology and Economics. G. Rétvári
is with the MTA-BME Information Systems Research Group and Ericsson
Research. This work was supported by the NKFIH/OTKA Project #135606.
E-mail: {levait, retvari}@tmit.bme.hu.

Controller

Idealized
system model

Gradient
opt.

Software Switch DataplaneRX TX

M
on

ito
r

gradient
𝑑𝑑 (𝐷𝐷 𝐷𝐷)/𝑑𝑑𝑑𝑑
𝑑𝑑 (𝑟𝑟 𝐷𝐷)/𝑑𝑑𝑑𝑑 C

ontrol

Figure 1. Batchy System Architecture.

node finishes work on a packet batch, execution proceeds
on the downstream nodes along all outgoing arcs of the node.
Unfortunately, run-to-completion tends to fragment batches
inside the data-flow graph, as each node may split the input
batch into multiple sub-batches to be passed to downstream
nodes; e.g., an L3 Lookup table or a round-robin LoadBalancer
may distribute the packets inside the batch across multiple
downstream processing chains, a network stack may split a
burst of mixed input packets per L3/L4 protocol to execute each
MPLS, IPv4 and IPv6 packet on a separate downstream protocol
engine, etc. Since the downstream modules are executed on
smaller batches we lose batch-efficiency, which inherently
curtails the available performance, often an order of magnitude
lower than with full batches [1].

Batchy attempts to recover some of the lost batch-efficiency
by artificially queuing up packets inside the data flow graph
to be able to execute the downstream processing nodes on
larger batches. Inspired by Nagle’s algorithm [11], Batchy uses
a model-predictive controller to regulate queue backlogs for
maximizing batch sizes across the pipeline in a way so that the
end-to-end queuing delay remains under a given requirement
(Fig. 1). This brings massive performance improvement, and
delay Service Level Objective (SLO) conformance in the
𝜇𝜇𝜇𝜇 range even at million-packet-per-second scale traffic [10].
Unfortunately, the model underlying Batchy assumes single-
core execution.

Motivated by the need to run software switches on multicore
systems to maximize performance [12], [13], in this paper we
extend Batchy to leverage parallel execution. As Fig. 2 shows,
this is not trivial. The task is two-fold: i) find an optimal batch-
schedule on each core, and ii) distribute delay budgets among
cores in a way so that the end-to-end delay remains under the
SLO. This is a two-level optimization problem: on per core
basis the goal is to find the optimal queue backlog sizes and
on a higher level to determine how long each core can process
a packet batch so to meet end-to-end delay SLOs. To solve
this complex multi-level problem, we propose a decomposition
technique [14].

The general idea of decomposition is to break a complex
problem into simpler subproblems, then solve the simple

INFOCOMMUNICATIONS JOURNAL 1

Batch-scheduling Data Flow Graphs with
Service-level Objectives on Multicore Systems

Tamás Lévai and Gábor Rétvári, Member, IEEE

Abstract—Data flow graphs are a popular program represen-
tation in machine learning, big data analytics, signal processing,
and, increasingly, networking, where graph nodes correspond to
processing primitives and graph edges describe control flow. To
improve CPU cache locality and exploit data-level parallelism,
nodes usually process data in batches. Batchy is a scheduler for
data flow graph based packet processing engines, which uses
controlled queuing to reconstruct fragmented batches inside
a data flow graph in accordance with strict Service-Level
Objectives (SLOs). Earlier work showed that Batchy yields up
to 10x performance improvement in real-life use cases, thanks to
maximally exploiting batch processing gains.

Batchy, however, is fundamentally restricted to single-threaded
execution. In this paper, we generalize Batchy to parallel execution
on multiple CPU cores. We extend the analytical model to the
parallel setting and present a primal decomposition framework,
where each core runs an unmodified Batchy controller to schedule
batch-processing on a subset of the data flow graph, orchestrated
by a master controller that distributes the delay-SLOs across the
cores using subgradient search. Evaluations on a real software
switch provide experimental evidence that our decomposition
framework produces 2.5x performance improvement while accu-
rately satisfying delay SLOs that are otherwise not feasible with
single-core Batchy.

Index Terms—data flow graph, decomposition, software switch,
SDN, NFV

I. INTRODUCTION

BATCH-SCHEDULING is a near-universal technique to im-
prove performance of software packet processing engines:

collect multiple packets into a single burst and perform the same
operation on all the packets in one shot. Processing packets
in batches is much more efficient than processing a single
packet at a time, thanks to amortizing one-time operational
overhead, optimizing CPU cache usage, and enabling loop
unrolling and SIMD optimizations [1], which often yields 2–5×
performance boost. Consequently, batching is used in essentially
all software switches (e.g., BESS [2], VPP [3], FastClick [4],
and ESwitch [5]), high-performance OS network stacks and
libraries [6], user-space I/O libraries [7], and Network Function
Virtualization (NFV) platforms [8], [9].

Batchy [10] is a state-of-the-art batch-scheduling framework
for high-end programmable software switches. Batchy abstracts
the software switch dataplane as a data flow graph; here, nodes
represent packet-processing primitives (e.g., L3 Lookup) and
arcs represent the control flow. This data flow graph is executed
in a run-to-completion fashion; when a packet-processing

T. Lévai is with the Department of Telecommunications and Media Infor-
matics at the Budapest University of Technology and Economics. G. Rétvári
is with the MTA-BME Information Systems Research Group and Ericsson
Research. This work was supported by the NKFIH/OTKA Project #135606.
E-mail: {levait, retvari}@tmit.bme.hu.

Controller

Idealized
system model

Gradient
opt.

Software Switch DataplaneRX TX

M
on

ito
r

gradient
𝑑𝑑 (𝐷𝐷 𝐷𝐷)/𝑑𝑑𝑑𝑑
𝑑𝑑 (𝑟𝑟 𝐷𝐷)/𝑑𝑑𝑑𝑑 C

ontrol

Figure 1. Batchy System Architecture.

node finishes work on a packet batch, execution proceeds
on the downstream nodes along all outgoing arcs of the node.
Unfortunately, run-to-completion tends to fragment batches
inside the data-flow graph, as each node may split the input
batch into multiple sub-batches to be passed to downstream
nodes; e.g., an L3 Lookup table or a round-robin LoadBalancer
may distribute the packets inside the batch across multiple
downstream processing chains, a network stack may split a
burst of mixed input packets per L3/L4 protocol to execute each
MPLS, IPv4 and IPv6 packet on a separate downstream protocol
engine, etc. Since the downstream modules are executed on
smaller batches we lose batch-efficiency, which inherently
curtails the available performance, often an order of magnitude
lower than with full batches [1].

Batchy attempts to recover some of the lost batch-efficiency
by artificially queuing up packets inside the data flow graph
to be able to execute the downstream processing nodes on
larger batches. Inspired by Nagle’s algorithm [11], Batchy uses
a model-predictive controller to regulate queue backlogs for
maximizing batch sizes across the pipeline in a way so that the
end-to-end queuing delay remains under a given requirement
(Fig. 1). This brings massive performance improvement, and
delay Service Level Objective (SLO) conformance in the
𝜇𝜇𝜇𝜇 range even at million-packet-per-second scale traffic [10].
Unfortunately, the model underlying Batchy assumes single-
core execution.

Motivated by the need to run software switches on multicore
systems to maximize performance [12], [13], in this paper we
extend Batchy to leverage parallel execution. As Fig. 2 shows,
this is not trivial. The task is two-fold: i) find an optimal batch-
schedule on each core, and ii) distribute delay budgets among
cores in a way so that the end-to-end delay remains under the
SLO. This is a two-level optimization problem: on per core
basis the goal is to find the optimal queue backlog sizes and
on a higher level to determine how long each core can process
a packet batch so to meet end-to-end delay SLOs. To solve
this complex multi-level problem, we propose a decomposition
technique [14].

The general idea of decomposition is to break a complex
problem into simpler subproblems, then solve the simple

mailto:levait%40tmit.bme.hu?subject=
mailto:retvari%40tmit.bme.hu?subject=
https://doi.org/10.36244/ICJ.2022.1.6

Batch-scheduling Data Flow Graphs with
Service-level Objectives on Multicore Systems

MARCH 2022 • VOLUME XIV • NUMBER 144

INFOCOMMUNICATIONS JOURNAL

INFOCOMMUNICATIONS JOURNAL 2

core1 core3

core1 core2 core3

A) naïve: equal delay bounds

B) optimal: adaptive delay bounds

core2

NFs NFsNFs

NFs NFsNFs

core1 core2 core3

flow delay budget (SLO)

flow delay budget (SLO)

/core delay budgets

core1 core2 core3

✓ ✓ ✓

✓ ✓ ✓

flow

flow

✓✓ ✗

✓ ✓ ✓
/core delay budgets

Figure 2. Motivating example for multicore Batchy [10]. The pipeline runs on
3 cores and serves a single flow. NFs on each core require a given amount of
time to process a full packet batch (core1: 1, core2: 1, and core3: 4 units). Note
that per-core delays add up, so that a flow’s end-to-end delay equals the sum
of the delay imposed on the flow’s packets at each core. a) Naïve approach:
no coordination between the CPU cores. This yields limited performance
since the delay on core3 always exceeds the per-core delay budget and hence
there is no room to reconstruct batches. b) Optimal adaptive per-core delay
budget distribution: core3 now gets a higher delay budget than the rest of
the cores. Per-core delay budgets are now satisfied and there is enough delay
budget to efficiently defragment batches on core3, which then yields significant
performance improvement.

subproblems separately under the control of a global prob-
lem that takes care of the “complicating constraints”. This
technique was already adapted to many networking domains,
such as network utility maximization [15], radio transceiver
design [16], and beamforming [17]. The goal of decomposition
in Batchy is to split the global scheduling problem among
the cores (i.e., CPUs) in a multicore system, so that each
core autonomously optimizes batch sizes across a subset of
the data flow graph subject to a per-core flow delay budget,
with minimal switch-level orchestration that adjusts the delay
budgets per each core to meet the global delay SLOs. The
per-core controller will be conveniently implemented by the
unmodified single-core Batchy algorithm. This setup reflects a
primal decomposition [14] structure.

Our contributions in this paper are as follows:
Analytical model. After a short recap 1 on Batchy (§II), we
introduce an expressive mathematical model for SLO-based
batch-scheduling on multicore software switches (§III). Our
framework allows to formally reason about the performance
and adaptively distribute end-to-end delay SLOs across cores
to maximize performance.
Control algorithms. We design control algorithms for effective
multicore batch-scheduling under delay SLOs (§IV).
Design, implementation, and evaluation. We present a
practical implementation of the multicore scheduling framework
by extending Batchy and using the BESS software switch [2]
(see §IV). We demonstrate the effectiveness of our control
algorithms in a realistic use case, VRF (Virtual Routing Func-
tion), taken from an official industry 5G NFV benchmarking
suite [13]. We show that our control algorithms increase total
packet rate by up to 2.5× beyond what is available with
single-core Batchy, while meeting delay SLO requirements
that are otherwise not feasible with single-core Batchy. Our
implementation is available for download at [18].

We close the paper discussing related work (§VI) and
deriving the main conclusions (§VII).

1In this paper we only introduce Batchy essentials due to space constraints.
For Batchy details, we kindly refer the reader to the Batchy paper [10].

Queue

Network
function

𝑥𝑥𝑣𝑣 , 𝑏𝑏𝑣𝑣
𝑟𝑟𝑣𝑣

𝑡𝑡𝑣𝑣 = 1/𝑥𝑥𝑣𝑣 + 𝑇𝑇𝑣𝑣𝑣0 + 𝑇𝑇𝑣𝑣𝑣1𝑏𝑏𝑣𝑣
𝑙𝑙𝑣𝑣 = 𝑥𝑥𝑣𝑣 (𝑇𝑇𝑣𝑣𝑣0 + 𝑇𝑇𝑣𝑣𝑣1𝑏𝑏𝑣𝑣)

𝑏𝑏𝑖𝑖𝑖𝑖𝑣𝑣

Figure 3. A Batchy Module.

II. BATCHY SYSTEM MODEL

Next, we introduce our analytical model. We mostly repro-
duce the main ideas from the single-core setting, highlighting
the extensions we introduce for the multicore setting.

A. Concepts

Data flow graph. We model the pipeline as a directed graph
G = (𝑉𝑉𝑉 𝑉𝑉), with modules 𝑣𝑣 ∈ 𝑉𝑉 and directed links (𝑢𝑢𝑉 𝑣𝑣) ∈ 𝑉𝑉

representing the connections between modules. A module 𝑣𝑣 is a
combination of a (FIFO) ingress queue and a network function
at the egress connected back-to-back (see Fig. 3). Input gates
(or ingates) are represented as in-arcs (𝑢𝑢𝑉 𝑣𝑣) ∈ 𝑉𝑉 : 𝑢𝑢 ∈ 𝑉𝑉

and output gates (or outgates) as out-arcs (𝑣𝑣𝑉 𝑢𝑢) ∈ 𝑉𝑉 : 𝑢𝑢 ∈ 𝑉𝑉 .
A batch sent to an outgate (𝑣𝑣𝑉 𝑢𝑢) of 𝑣𝑣 will appear at the
corresponding ingate of 𝑢𝑢 at the next execution of 𝑢𝑢. Modules
never drop packets; we assume that whenever a module (e.g.,
access control) would drop a packet it will rather send it to a
dedicated “drop” gate, so that we can account for lost packets.
Batch processing. Packets are injected into the ingress,
transmitted from the egress, and processed from outgates to
ingates along data flow graph arcs, in batches [2], [5], [7]. We
denote the maximum batch size by 𝐵𝐵, a system-wide parameter.
For the Linux kernel and DPDK 𝐵𝐵 = 32 or 𝐵𝐵 = 64 are usual
settings, while GPU/NIC offload often works with 𝐵𝐵 = 1024
or even larger to maximize I/O efficiency [8], [19].
Module service time profile. After extensive evaluation of
network functions on various software switches, we observe
two distinct execution time components. The per-batch cost
component, denoted by 𝑇𝑇𝑣𝑣𝑣0 [sec] for a module 𝑣𝑣, characterizes
the constant cost that is incurred just for calling the module
on a batch, independently from the number of packets in it.
The per-packet cost component 𝑇𝑇𝑣𝑣𝑣1, [sec/pkt], on the other
hand, models the execution cost of each individual packet in
the batch. Accordingly, we shall use the linear approximation
𝑇𝑇𝑣𝑣 = 𝑇𝑇𝑣𝑣𝑣0 + 𝑇𝑇𝑣𝑣𝑣1𝑏𝑏𝑣𝑣 [sec] to describe the execution cost of a
module 𝑣𝑣 where 𝑏𝑏𝑣𝑣 is the batch-size, i.e., the average number
of packets in the batches received by module 𝑣𝑣.
Module types. Any module may have multiple ingates (merger)
and/or multiple outgates (splitter), or may have no ingate
or outgate at all. An L3 Lookup module would distribute
packets to several downstream branches, each performing group
processing for a different next-hop (splitter); a NAT module
may multiplex traffic from multiple ingates (merger); and an
IP Checksum module would apply to a single datapath flow
(single-ingate–single-outgate). Certain modules are represented
without ingates, such as a NIC receive queue; we call these
ingress modules. Similarly, a module with no outgates (e.g., a
transmit queue) is an egress module.

Batch-scheduling Data Flow Graphs with
Service-level Objectives on Multicore Systems

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 45

INFOCOMMUNICATIONS JOURNAL 3

Compute resources. A task (𝑡𝑡 ∈ T) is our main compute
resource abstraction. Tasks are modeled as a connected sub-
graph G𝑡𝑡 = (𝑉𝑉𝑡𝑡 , 𝐸𝐸𝑡𝑡) of G, with strictly one ingress module
representing an ingress queue that buffers packets between
subsequent executions of the task. We assume that when a data
flow graph has multiple ingress modules then each ingress is
assigned to a separate task, with packets passing between tasks
over double-ended queues. Each task uses run-to-completion
scheduling, and there is a separate CPU core assigned per task.
Consequently, in a multicore scenario we have as many tasks
as there are cores.
Flows. A flow 𝑓𝑓 = (𝑝𝑝 𝑓𝑓 , 𝑅𝑅 𝑓𝑓 , 𝐷𝐷 𝑓𝑓), 𝑓𝑓 ∈ F is an abstraction
for a service chain, where 𝑝𝑝 𝑓𝑓 is a path through G from the
flow’s ingress module to the egress module, 𝑅𝑅 𝑓𝑓 denotes the
offered packet rate at the task ingress, and 𝐷𝐷 𝑓𝑓 is the delay
SLO, the maximum permitted latency for any packet of 𝑓𝑓

to reach the egress. What constitutes a flow, however, will
be use-case specific: in an L3 router a flow is comprised of
all traffic destined to a single next-hop or port; in a mobile
gateway a flow is a complex combination of a user selector
and a bearer selector; in a programmable software switch flows
are completely configuration-dependent and dynamic. In our
framework flow dispatching occurs intrinsically as part of the
data flow graph; accordingly, we presume that match-tables
(splitters) are set up correctly to ensure that the packets of
each flow 𝑓𝑓 will traverse the data flow graph along the path
𝑝𝑝 𝑓𝑓 associated with 𝑓𝑓 . During this traversal, flow goes through
tasks. A taskflow is a part of a flow that is executed on a single
task.

B. System Variables
We use a fluid model. Thus, variables are continuous and

differentiable, describing system statistics over a longer period
of time that we call the control period. We use the following
variables to describe the state of the data flow graph in a given
control period (dimensions indicated in brackets). The variables
needed for the multicore extension are marked by ☛.
Batch rate 𝑥𝑥𝑣𝑣 [1/𝑠𝑠]: the number of batches per second entering
the network function in module 𝑣𝑣 (see again Fig. 3).
Batch size 𝑏𝑏𝑣𝑣 [pkt]: the average number of packets per batch
at the input of the network function in module 𝑣𝑣, where 𝑏𝑏𝑣𝑣 ∈
[1, 𝐵𝐵] (recall 𝐵𝐵 is the maximum allowed batch size).
Packet rate 𝑟𝑟𝑣𝑣 [pkt/𝑠𝑠]: the number of packets per second
traversing module 𝑣𝑣: 𝑟𝑟𝑣𝑣 = 𝑥𝑥𝑣𝑣𝑏𝑏𝑣𝑣 .
Maximum delay 𝑡𝑡𝑣𝑣 [sec]: delay contribution of module 𝑣𝑣 to
the total delay of packets traversing it. We model 𝑡𝑡𝑣𝑣 as

𝑡𝑡𝑣𝑣 = 𝑡𝑡𝑣𝑣𝑣queue + 𝑡𝑡𝑣𝑣𝑣svc = 1/𝑥𝑥𝑣𝑣 +
�
𝑇𝑇𝑣𝑣𝑣0 + 𝑇𝑇𝑣𝑣𝑣1𝑏𝑏𝑣𝑣

, (1)

where 𝑡𝑡𝑣𝑣𝑣queue = 1/𝑥𝑥𝑣𝑣 is the queuing delay by Little’s law and
𝑡𝑡𝑣𝑣𝑣svc = 𝑇𝑇𝑣𝑣𝑣0 + 𝑇𝑇𝑣𝑣𝑣1𝑏𝑏𝑣𝑣 is the module service time profile.
System load 𝑙𝑙𝑣𝑣 (dimensionless): the network function in
module 𝑣𝑣 with service time 𝑡𝑡𝑣𝑣𝑣svc executed 𝑥𝑥𝑣𝑣 times per second
incurs 𝑙𝑙𝑣𝑣 = 𝑥𝑥𝑣𝑣𝑡𝑡𝑣𝑣𝑣svc = 𝑥𝑥𝑣𝑣 (𝑇𝑇𝑣𝑣𝑣0 +𝑇𝑇𝑣𝑣𝑣1𝑏𝑏𝑣𝑣) system load on its task.
☛ Task turnaround-time 𝜏𝜏𝑡𝑡 [sec]: Turnaround-time of task
𝑡𝑡 is the time while task 𝑡𝑡 processes a packet batch. This is
the multicore equivalent of the turnaround-time (see [10] for
details). We consider the time to execute all task modules on
maximum sized batches as an upper bound:

𝜏𝜏𝑡𝑡 ≤
∑︁
𝑣𝑣∈𝑉𝑉

(𝑇𝑇𝑣𝑣𝑣0 + 𝑇𝑇𝑣𝑣𝑣1𝐵𝐵) ∀𝑣𝑣 ∈ 𝑉𝑉𝑡𝑡 . (2)

☛ Taskflow 𝜋𝜋: For each flow 𝑓𝑓 ∈ F , 𝜋𝜋 𝑓𝑓 is a list of tasks the
packets of 𝑓𝑓 traverse in the data flow graph.
☛ Per-task flow delay budget Δ𝑡𝑡 𝑣 𝑓𝑓 [sec]: delay allocated for
a taskflow of flow 𝑓𝑓 in task 𝑡𝑡; i.e., the maximum delay allowed
for a flow to traverse a task. A column vector representing
delay budgets for each flow of task 𝑡𝑡 is noted as Δ𝑡𝑡 .

C. Assumptions

Our aim is to define the simplest possible batch-processing
model that still allows us to reason about flows’ packet rate
and maximum delay, and modules’ batch-efficiency. The below
assumptions will help to keep the model at the minimum; see
[10] for a detailed justification and several ideas to overcome
them. New assumptions added for the multicore setting are
marked by ☛.
Feasibility. We assume that the pipeline runs on a single task
and this task has enough capacity to meet the delay SLOs.
Buffered modules. We assume that all modules contain an
ingress queue and all queues in the pipeline can hold up to at
most 𝐵𝐵 packets at any point in time.
Static flow rate. All flows are considered constant-bit-rate
during the control period (usually in the millisecond time
frame).
☛ Task-exclusive modules: Each module is assigned to exactly
one task. If a module needs to present in multiple tasks, it will
be replicated for each task.

III. BATCHY DECOMPOSITION

Decomposition is a general framework for breaking down
complex optimization problems into simple subproblems, which
are assumed to be easy to solve in separation, and a global
problem that orchestrates the subproblems and takes care of the
“complicating constraints” [14]. Each subproblem is defined in
terms of a set of private variables, which appear only in this
subproblem, and a set of public variables that are common
to multiple subproblems. The problem is solved iteratively:
first we fix the public variables and solve each subproblem
separately to find the optimal setting of the private variables
under the current setting of the public variables, and then in
a “master step” we update the public variables and start a
new iteration. The update drives the system in a direction
so that the global objective is improved, e.g., moving along
the objective function gradient with a pre-defined step size.
Depending on the type of the public variables, we distinguish
primal decomposition and dual decomposition frameworks. In
primal decomposition the public variables are primal variables,
while in dual decomposition the subsystems are manipulating
dual variables (i.e., prices) of the global problem.

To demonstrate the two methods, consider an example of a
printed circuit board, where the board is the global system and
the integrated circuits on the board are the subsystems. Suppose
we want to design a complex circuit from subcircuits (e.g.,
integrated circuits), and our goal is to minimize the overall
power usage. Subcircuits have properties, some of them are not

Batch-scheduling Data Flow Graphs with
Service-level Objectives on Multicore Systems

MARCH 2022 • VOLUME XIV • NUMBER 146

INFOCOMMUNICATIONS JOURNAL

INFOCOMMUNICATIONS JOURNAL 4

relevant to how they connect to each other (e.g., dimensions),
some are important in the interconnection (e.g., power usage).
In this case, we say dimension is a private variable, and power
usage is a public variable of the subcircuits. Then, in primal
decomposition we fix the amount of power usage available to
each subcircuit and design the subcircuits according to that
specification. Then, we update the public variables (i.e., the
subcircuits’ power budgets) in a way as to improve the overall
power usage and then we restart the iteration, by redesigning
the subcircuits (i.e., solving the subproblems) subject to the
new power budget. In dual decomposition, we allow subcircuits
to choose how much power they want to use, however, each
subcircuit has to “pay” a certain price for power usage. The
price depends on the system-wide power budget: when the
current power usage is low the prices are also low, but as the
system’s power constraints become more and more tight so do
the per-unit power usage price goes up. In the global step we
set the prices in a way to improve the design.

In general, if the global problem is optimized using the
subgradient method then decomposition methods are guaranteed
to converge “close” to the optimum, even for a constant step
size [14]. With a dimisihing step size rule, arbitrary close
convergence to the optimum is guaranteed in finite steps.

A. Batchy: Multicore System Model

We extend Batchy to the multicore setting by formulating
the global problem for multiple cores and then applying primal
decomposition to the system to obtain per-core controllers. The
global problem sets the per-core delay budgets so that end-to-
end delay SLOs are met and the total system load is minimized.
Subproblems in turn control the batch size over a partition
of the data flow graph, subject to the delay budgets set by
the global problem. Then, private variables are the per-module
queue sizes while the public variables are the per-task delay
budgets (i.e., the maximum time allowed for processing a flow
in a task). In the following sections we provide further detail.

First, we recap the original Batchy model implementing
single-core execution [10]. As (3) shows, we express system
load 𝐿𝐿 as a function of queue backlogs while conforming delay
requirements (4) and queue sizing limits (5) in a single task.

𝐿𝐿 = min
∑︁
𝑣𝑣∈𝑉𝑉

𝑅𝑅𝑣𝑣

𝑏𝑏𝑣𝑣
(𝑇𝑇0,𝑣𝑣 + 𝑇𝑇1,𝑣𝑣𝑏𝑏𝑣𝑣) (3)

s.t. 𝜏𝜏 +
∑︁
𝑣𝑣∈𝑃𝑃 𝑓𝑓

(𝑏𝑏𝑣𝑣
𝑅𝑅𝑣𝑣

+ 𝑇𝑇𝑣𝑣,0 + 𝑇𝑇𝑣𝑣,1𝑏𝑏𝑣𝑣) ≤ 𝐷𝐷 𝑓𝑓 𝑓𝑓 ∈ 𝐹𝐹 (4)

1 ≤ 𝑏𝑏𝑣𝑣 ≤ 𝐵𝐵 𝐵𝐵 ∈ 𝑉𝑉 (5)

Next, we extend the single-core model to the multicore
setting. For this purpose, we break up the data flow graph to
tasks, under the assumptions of §II-C. The problem decomposes
on a per-task basis as shown in (6)–(10).

𝐿𝐿 = min
∑︁
𝑡𝑡∈T

∑︁
𝑣𝑣∈𝑉𝑉𝑡𝑡

𝑅𝑅𝑣𝑣

𝑏𝑏𝑣𝑣
(𝑇𝑇0,𝑣𝑣 + 𝑇𝑇1,𝑣𝑣𝑏𝑏𝑣𝑣) (6)

s.t. 𝜏𝜏𝑡𝑡 +
∑︁

𝑣𝑣∈𝑃𝑃 𝑓𝑓 𝑓𝑡𝑡

(𝑏𝑏𝑣𝑣
𝑅𝑅𝑣𝑣

+ 𝑇𝑇𝑣𝑣,0 + 𝑇𝑇𝑣𝑣,1𝑏𝑏𝑣𝑣) ≤ Δ𝑡𝑡 , 𝑓𝑓 𝑓𝑓 ∈ 𝐹𝐹𝐹 𝐹𝐹 ∈ T

(7)

∑︁
𝑡𝑡∈T

Δ𝑡𝑡 , 𝑓𝑓 ≤ 𝐷𝐷 𝑓𝑓 𝑓𝑓 ∈ 𝐹𝐹 (8)

1 ≤ 𝑏𝑏𝑣𝑣 ≤ 𝐵𝐵 𝐹𝐹 ∈ T 𝐹 𝐵𝐵 ∈ 𝑉𝑉𝑡𝑡

(9)
Δ𝑡𝑡 , 𝑓𝑓 ≥ 0 𝑓𝑓 ∈ 𝐹𝐹𝐹 𝐹𝐹 ∈ T

(10)

Next, we show the global and subproblem objectives of our
decomposition. In this context, we use the term problem and
task interchangeably due to the per-task decomposition.

B. Global Problem

In our primal decomposition structure the global problem
is responsible for distributing the flow delay budgets among
tasks in a way to minimize system load (11). We also need to
ensure the sum of per-task delay budgets are not over the flow
delay budget (12) and each task will receive non-negative flow
delay budgets (13).

𝐿𝐿 = min
∑︁
𝑡𝑡∈T

𝐿𝐿𝑡𝑡 (Δ𝑡𝑡) (11)

s.t.
∑︁
𝑡𝑡∈T

Δ𝑡𝑡 , 𝑓𝑓 ≤ 𝐷𝐷 𝑓𝑓 𝑓𝑓 ∈ 𝐹𝐹 (12)

Δ𝑡𝑡 , 𝑓𝑓 ≥ 0 (13)

C. Subproblems

Subproblems optimize task performance, while keeping
delays under the per-task flow delay budgets assigned by the
global problem. We observe that the resultant control problem is
effectively the same as the single-core control problem (3)–(5).
Therefore, we will mostly reuse the original Batchy controller
from [10] with minimal changes to handle the private/public
variables and per-core delay budgets.

We need a framework to distribute the per-flow delay budgets
Δ𝑡𝑡 , 𝑓𝑓 across the tasks 𝐹𝐹 ∈ T traversed by 𝑓𝑓 . Correspondingly,
for every flow there is a dedicated leader task that sets the
per-task delay budgets, and zero or more follower tasks that
merely track the budgets assigned by the leader. Each task may
be a leader for any flow and follower for others. We categorize
tasks ∀𝐹𝐹 ∈ T in the system:

• Ω𝑡𝑡 = { 𝑓𝑓 : 𝐹𝐹 is the leader for 𝑓𝑓 },
• Ψ𝑡𝑡 = { 𝑓𝑓 : 𝐹𝐹 is a follower for 𝑓𝑓 }.
The fundamental difference between leaders and followers

is that a leader keeps track of the per-task flow delay budget
subgradients along the flow path: Θ𝑡𝑡 , 𝑓𝑓 : 𝑓𝑓 ∈ Ω𝑡𝑡 𝐹 𝑠𝑠 ∈ T : 𝑓𝑓 ∈
Ψ𝑠𝑠. Leaders use both subgradients and queue size backlogs
𝑏𝑏𝑣𝑣 : 𝐵𝐵 ∈ 𝑉𝑉𝑡𝑡 as private variables. Likewise, followers use queue
backlog sizes as private variables, and per-task flow budgets
Δ𝑡𝑡 , 𝑓𝑓 as public variables.

Take the pipeline of Fig. 2 as an example; we have a single
flow 𝑓𝑓1 passing over 3 tasks T = 𝐹𝐹1𝐹 𝐹𝐹2𝐹 𝐹𝐹3. Select 𝐹𝐹3 as the
leader of 𝑓𝑓1, so Ω𝑡𝑡3 = { 𝑓𝑓 }. Consequently, 𝐹𝐹1 and 𝐹𝐹2 will be
followers of 𝑓𝑓1. Leader private variables are the delay budget
subgradients Θ𝑡𝑡1 , 𝑓𝑓1 and Θ𝑡𝑡2 , 𝑓𝑓1 , and the queue backlog sizes
𝑏𝑏𝑣𝑣 𝐹 𝐵𝐵 ∈ 𝑉𝑉𝑡𝑡3 . Followers tasks optimize their private variables 𝑏𝑏𝑣𝑣
according to public variables: Δ𝑡𝑡1 , 𝑓𝑓1 or Δ𝑡𝑡2 , 𝑓𝑓1 .

The subproblem objective function (14) minimizes task load;
in this manner it is equivalent to the single-core objective

Batch-scheduling Data Flow Graphs with
Service-level Objectives on Multicore Systems

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 47

INFOCOMMUNICATIONS JOURNAL 5

function. Private delay budget variables Θ𝑡𝑡 𝑡 𝑡𝑡 are not effecting
the task load, therefore are omitted from the objective function.

𝐿𝐿𝑡𝑡 (Δ𝑡𝑡 𝑡 𝑡𝑡) = min 𝑙𝑙𝑡𝑡 = min
∑︁
𝑣𝑣∈𝑉𝑉𝑡𝑡

𝑅𝑅𝑣𝑣

𝑏𝑏𝑣𝑣
(𝑇𝑇0𝑡𝑣𝑣 + 𝑇𝑇1𝑡𝑣𝑣𝑏𝑏𝑣𝑣) (14)

The objective function is subject to the following constraints.
For both leader and follower problems, the batch size limiting
constraint (15) applies.

1 ≤ 𝑏𝑏𝑣𝑣 ≤ 𝐵𝐵 𝐵𝐵 ∈ 𝑉𝑉 (15)

Additionally, flows passing the task must meet their delay
SLO requirement. The constraints are slightly different for
leader and follower problems. As of follower problems, con-
straint (16) keeps per-task flow delays under the budget (Δ𝑡𝑡 𝑡 𝑡𝑡).
Recall, these budgets come from the global problem (11).

𝜏𝜏𝑡𝑡 +
∑︁

𝑣𝑣∈𝑃𝑃 𝑓𝑓 𝑓𝑡𝑡

(𝑏𝑏𝑣𝑣
𝑅𝑅𝑣𝑣

+ 𝑇𝑇𝑣𝑣𝑡0 + 𝑇𝑇𝑣𝑣𝑡1𝑏𝑏𝑣𝑣) ≤ Δ𝑡𝑡 𝑡 𝑡𝑡 𝑓𝑓 ∈ Ψ𝑡𝑡 (16)

Leader problems have multiple delay constraints. First,
constraint (17) ensures compliance with delay SLOs of both
taskflows and flows. This is doable since leader tasks have a
view on private delay variables (Θ𝑡𝑡 𝑡 𝑡𝑡). Second, constraint (18)
ensures equivalence between public and private delay variables.

𝜏𝜏𝑡𝑡 +
∑︁

𝑣𝑣∈𝑃𝑃 𝑓𝑓 𝑓𝑡𝑡

(𝑏𝑏𝑣𝑣
𝑅𝑅𝑣𝑣

+ 𝑇𝑇𝑣𝑣𝑡0 + 𝑇𝑇𝑣𝑣𝑡1𝑏𝑏𝑣𝑣) +
∑︁

𝑠𝑠∈T: 𝑡𝑡 ∈Ψ𝑠𝑠

Θ𝑡𝑡 𝑡 𝑡𝑡 ≤ 𝐷𝐷 𝑡𝑡 𝑓𝑓 ∈ Ω𝑡𝑡

(17)

Θ𝑡𝑡 𝑡 𝑡𝑡 = Δ𝑡𝑡 𝑡 𝑡𝑡 𝑓𝑓 ∈ Ω𝑡𝑡 , 𝑠𝑠 ∈ T : 𝑓𝑓 ∈ Ψ𝑠𝑠 (18)

IV. CONTROL ALGORITHMS

In this section we present efficient control algorithms to
solve both the global problem and the subproblems. These
algorithms are suitable for a real-life implementation.

A. Solving Subproblems

Batchy uses a controller based on the gradient projection
method of Rosen [21]. The Rosen method is compatible with
our decomposition: it handles equality-type constraints (18)
and generates gradients and dual variables for the subgradient
method, which are used in the subgradient step for solving the
global problem (see later in §IV-B).

Let us briefly recap the gradient projection method. The
method consists of three main steps: i) find an improving
direction; ii) find a suitable step size; iii) optimize along the
direction with the step size. In the first step, we obtain an
improving feasible direction by projecting the gradient of the
objective function into the feasible space using a projection
matrix. The projection matrix P ensures that the resultant update
will not violate the per-task delay budgets. For this end, we
show the construction of variable coefficients matrix M and
the projection matrix P:

• Let M1 = [𝐴𝐴𝐵𝐵] be a matrix where 𝐴𝐴 is a matrix in which
row 𝑖𝑖 reflects the effect of increasing queue backlog sizes
(𝑏𝑏𝑣𝑣) on 𝑖𝑖-th flow delay in F with tight delay constraints
from (16) and (17), and 𝐵𝐵 is a zero matrix corresponding
to the private variables Θ𝑡𝑡 𝑡 𝑡𝑡 : 𝑓𝑓 ∈ Ω𝑡𝑡 , 𝑠𝑠 ∈ T : 𝑓𝑓 ∈ Ψ𝑠𝑠 .

• Let M2 = [𝑍𝑍𝑍𝑍] where 𝑍𝑍 is a zero matrix with as many
rows as there are constraints in (18) and as many columns
as the number of task modules |𝑉𝑉𝑡𝑡 | (corresponding to 𝑏𝑏𝑣𝑣
variables). 𝑍𝑍 is a matrix with row 𝑖𝑖 set to 1 where Δ𝑡𝑡 𝑡 𝑡𝑡 is
the 𝑖𝑖-th taskflow in a list of taskflows 𝑡𝑡, 𝑓𝑓 : 𝑓𝑓 ∈ F , 𝑡𝑡 ∈ T .

• Let 𝑀𝑀𝑇𝑇 = [𝑀𝑀𝑇𝑇
1 𝑀𝑀𝑇𝑇

2].
• Then, we construct P as P = 𝐼𝐼 − 𝑀𝑀𝑇𝑇 (𝑀𝑀𝑀𝑀𝑇𝑇)−1𝑀𝑀 .
The subproblem control algorithm reuses the single-core

Batchy control algorithm with the new projection matrix P.
The control algorithm generates the duals of private delay
variables Θ𝑡𝑡 𝑡 𝑡𝑡 (𝜔𝜔) for the sugradient method by the leader task
of flow 𝑓𝑓 . We summarize the per-task projected gradient control
algorithm we use to solve the subproblems in Algorithm 1.

Unfortunately, the control algorithm cannot handle an infeasi-
ble state; i.e., a state where the SLOs cannot be met. To recover
the system from infeasibility we introduce a simple heuristic:
the subsystems reuse the feasibility-recovery mechanisms from
single-core Batchy [10], while multicore feasibility-recovery
is implemented in the global controller (§IV-B).

Algorithm 1 Projected Gradient Control Algorithm
procedure PROJECTEDGRADIENT(G, F ,Δ𝑡𝑡 , 𝑓𝑓)

⊲ Gradient projection
while 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 do

P = I − M𝑇𝑇 (MM𝑇𝑇)−1M
Δb = P∇𝑙𝑙𝑡𝑡 ⊲ Δb has useless coordinates corresponding to

private variables Θ𝑡𝑡 𝑡 𝑡𝑡

w = −(MM𝑇𝑇)−1M∇l = [𝑇𝑇, 𝜔𝜔] ⊲ 𝑇𝑇 corresponds to 𝑏𝑏𝑣𝑣 and
𝜔𝜔 corresponds to Θ𝑡𝑡 𝑡 𝑡𝑡

if Δb ≠ 0 then break
if u ≥ 0 then return ⊲ Optimal KKT point reached
delete row for 𝑓𝑓 from M for some 𝑓𝑓 ∈ F : 𝑤𝑤 𝑡𝑡 < 0

⊲ Line search
for 𝐵𝐵 ∈ 𝑉𝑉, 𝑓𝑓 ∈ 𝑝𝑝𝑣𝑣 do

if Δ𝑏𝑏𝑣𝑣 > 0 then

𝜆𝜆𝑣𝑣 = min
𝑡𝑡 ∈F:𝑣𝑣∈𝑝𝑝 𝑓𝑓

Δ𝑡𝑡 𝑡 𝑡𝑡 − 𝑡𝑡 𝑡𝑡

Δ𝑏𝑏𝑣𝑣

𝜆𝜆 = min𝑣𝑣∈𝑉𝑉 𝜆𝜆𝑣𝑣
for 𝐵𝐵 ∈ 𝑉𝑉 do SETTRIGGER(𝐵𝐵, 𝑏𝑏𝑣𝑣 + Δ𝑏𝑏𝑣𝑣𝜆𝜆)

B. Solving The Global Problem

Subproblems are handled by the Batchy projected gradient
controller at each control period. After every 𝑁𝑁 iteration, the
global problem controller kicks in to reallocate the per-task
delay budgets (i.e., the public variables Δ𝑡𝑡 𝑡 𝑡𝑡).

The global control algorithm relies on two types of inputs: the
duals 𝜔𝜔𝑛𝑛 of the subproblem constraints (16), and duals 𝜔𝜔𝑚𝑚 of
constraints corresponding to private variables in (18). Gradients
𝑔𝑔 are obtained by summing global and subproblem subgradients
pairwise: 𝑔𝑔𝑛𝑛𝑡 𝑡𝑡 = 𝜔𝜔𝑚𝑚 + 𝜔𝜔𝑛𝑛 ∀ 𝑓𝑓 ∈ Ω𝑚𝑚, 𝑛𝑛 ∈ T : 𝑓𝑓 ∈ Ψ𝑛𝑛. Based
on these inputs, the global control algorithm (Algorithm 2)
first calculates a step size, then updates per-task delay budgets
for each flow. For simplicity, the algorithm uses a fix step size
calculated as a configurable percentage 𝛿𝛿 of flow delay 𝐷𝐷 𝑡𝑡 .

We apply a simple heuristics to prevent infeasible states
in the global problem. We collect taskflows that exceed their
delay budget and increase their budget with a configurable and
fixed percentage of flow delay, balancing this delay increment

Batch-scheduling Data Flow Graphs with
Service-level Objectives on Multicore Systems

MARCH 2022 • VOLUME XIV • NUMBER 148

INFOCOMMUNICATIONS JOURNAL

INFOCOMMUNICATIONS JOURNAL 7

8

16

24
32

C
on

tr
ol

0 10 20 30 40 50 60
36

48

72

Time [control period]

D
el

ay
B

ou
nd

[𝜇𝜇
𝜇𝜇]

Batchy Multicore
Naïve Multicore
Batchy Single-core

Figure 5. Control Parameters of the First Flow in VRF(2,4): control for ACL
module and per-task delay budget on the second core (recall Fig. 4).

4

11

Pa
ck

et
R

at
e

[M
pp

s]

Batchy Multicore
Naïve Multicore
Batchy Single-core

0 10 20 30 40 50 60

60

70

80
delay SLO

Time [control period]

D
el

ay
[𝜇𝜇
𝜇𝜇]

Figure 6. Key Performance Indicators of the VRF(2,4) pipeline: total packet
rate and delay of the first flow. Delay SLOs are set to 72𝜇𝜇𝜇𝜇.

budget to the processing-heavy per-VLAN traffic processing;
ii) this gives enough time to the per-VLAN task controller to
queue up larger packet batches. This coordinated optimization
improves the overall performance (Fig. 6). Over single-core
Batchy, packet rate increases 2.5× and flow delay reduces to
0.75×. More importantly, the delay is finally below the SLO!

As of the controller performance, we measured the per-
task and global controllers running time in each control
period during the measurement and found that the multicore
approaches result only a 7% increase on average due to extra
global control steps.

To conclude, we see that our multicore extension is an
enabler technology for Batchy, supporting use cases with
ultra-low delay SLOs. We see the decomposition improves
performance and its control overhead is negligible.

VI. RELATED WORK

A. Optimizing Resource Usage

Carefully execute an NF-chain on general-purpose hardware
is one way to achieve performance improvement. Shenango [22]
improves CPU utilization by bypassing the kernel and resched-
ule or scale up according to the occupancy of the packet ring
buffers. This technique results low latency and improved CPU
utilization Similarly, IX [6] utilizes adaptive batch control
to improve throughput and latency. Metron [20] improves

end-to-end performance in NF-chains by avoiding cross-CPU
issues in NF-scheduling. These works focus on optimizing
performance without controlling latency. In contrast, Batchy
not just improves performance but carefully controls latency
to meet SLOs.

B. Improving Performance by Offloading

Offloading some part of the processing to hardware compo-
nents such as SmartNICs [23], FPGAs [24], or GPUs [8], [25],
[26] is widely used to improve packet processing performance.
To mitigate the packet offloading cost and to maximize
GPU utilization, extensive batching [26] and careful load
balancing between the offload hardware and the CPU [25]
are required. Offloading works motivate the importance of
batching, however, they are orthogonal to our work since they
incorporate offloading to specific hardware elements.

C. Meeting Delay SLOs

Beside performance optimization, guaranteeing SLOs is
another highly-desired behavior of NFV systems. Grus [8]
an NFV framework with GPU offload introduces a multi-
layer system with admission control and latency prediction
model to guarantee delay SLOs. As opposed to our work,
Grus guarantees delay SLO only for single VNF deployments,
and the model is tailored for the GPU offloading scenario.
SLOMO [27] predicts potential performance of VNF colocation,
but does not provide SLO guarantees. In contrast to Grus,
ResQ [28] provides performance isolation at CPU last-level
cache solving the noisy neighbor problem of VNFs, and
enables enforcing SLOs. NFV-RT [29] provides soft real-
time guarantees for NF service chains deployed in data center
environment using a fat-tree topology.

As opposed to our controller framework running on general
hardware, these works are bound to a given NFV environment:
they require a certain CPU feature, or specific underlying
network topology. Our work focuses on a single host using
general CPUs. Moreover, our controller framework extends
previous work by providing a unique combination of dynamic
internal batch de-fragmentation instead of applying batching
only to packet I/O, analytic techniques for controlling queue
backlogs, and selective SLO-enforcement at the granularity of
individual flows in multicore systems.

VII. CONCLUSIONS

Batchy, a state-of-the-art batch-scheduling framework,
presents massive performance improvements while conforming
delay SLOs even at Mpps-scale traffic with SLOs at 𝜇𝜇𝜇𝜇 range.
Batchy focuses on single-core execution.

In this paper we introduce a multicore extension to Batchy.
To this end, we formulated a primal decomposition to find
the optimal run-to-completion batch-scheduling on multicore
systems. We developed and implemented effective control
algorithms to be used in practical data flow graph batch-
scheduling. Our evaluation on a real 5G use-case focusing
on latency-optimized network function virtualization shows
that the multicore Batchy provides better performance (2.5×

INFOCOMMUNICATIONS JOURNAL 6

Algorithm 2 Global Control Algorithm
procedure SUBGRADIENT GLOBAL STEP(G, F , 𝜋𝜋, 𝜋𝜋, 𝜋𝜋)

for 𝑓𝑓 ∈ F do
⊲ Calculate step size
𝛼𝛼 = 𝐷𝐷 𝑓𝑓 ∗ 𝜋𝜋
⊲ Update allocated per-task flow delays on 𝜋𝜋 𝑓𝑓

for 𝑡𝑡 ∈ 𝜋𝜋 𝑓𝑓 do
Δ𝑡𝑡 𝑡 𝑓𝑓 = Δ𝑡𝑡 𝑡 𝑓𝑓 + 𝛼𝛼 ∗ 𝜋𝜋𝑡𝑡 𝑡 𝑓𝑓

Table I
STEADY-STATE RESULTS (SIMPLE PIPELINE).

Rate [Mpps] Delay (p99) [𝜇𝜇𝜇𝜇]

No Batching 0.971 15.445
Static Delay Budgets 0.991 18.615

Multicore Batchy 1.348 11.255

by decreasing surplus budgets of the feasible taskflows. This
simple technique is sufficient to ensure flow delay SLOs (12)
and non-negative per-task flow delay budgets (13).

V. EVALUATION

In this section, we evaluate our Batchy multicore extension
on both synthetic example and real-life use-case. We reused
existing Batchy codebase [10] as a controller to solve the
per-task subproblems (Algorithm 1) and implemented the
subgradient controller to orchestrate the per-task Batchy
controllers (Algorithm 2). The source code is available on
GitHub [18]. The evaluation was running on a server with
6×2.4GHz CPU (power-saving disabled) and 64GB RAM
installed with Debian 11 GNU/Linux.

A. Concept Validation: A Simple Pipeline

The first evaluation scenario focuses on validating the
concept.
Evaluation setup. We use a simple pipeline of two tasks
connected back-to-back. Tasks run on different cores and
contain one module. The system has one flow that traverses
both tasks. The last module is a computation-heavy module
that requires significantly more per-batch processing time (tens
of thousands of CPU cycles) than the first module (hundreds of
CPU cycles). This pipeline is similar to the example in Fig. 2.

We compare multicore Batchy to two baselines. The first
baseline does no packet batching. The second baseline runs
Batchy, but does not adjust per-task delay budgets adaptively;
i.e., adopts the naïve approach of Fig. 2. The measurements
focus on steady state performance: the first 100 control periods
are considered as warmup time, and we focus on the next 100
control periods. The flow delay SLO is set to 12𝜇𝜇𝜇𝜇.
Results. Table V-A summarizes steady packet rate and 99th
percentile delays of the measurements. The two baselines
produce limited packet rate due to poor batch-scheduling
algorithms. Namely, baselines cannot mitigate the cost of
computation-heavy task by intensive batching. There is a slight
difference between the performance of the two baselines: in
case of static delay budgets, Batchy has enough room for
batching in the first task, yielding a slight overall improvement
of the packet rate at a 20% delay penalty. In contrast to

Queue
L2

lookup
VLAN
table

L3
Lookup

L3
Lookup

.
.
.

ACL

ACL

ACL

ACL

.
.
.

.
.
.

NAT

NAT

NAT

NAT

group proc

group proc

group proc

group proc

Queue

Core 1 Core 2 Core N

Figure 4. The Virtual Routing Function Pipeline on 𝑁𝑁 Cores.

baselines, multicore Batchy can distribute the global delay
bound across the tasks optimally, so that it assigns extra delay
budget surplus for the last task that enables it to execute the
computation-heavy module on larger batches. This optimization
improves throughput by 30% while decreases delay by 60%,
and makes multicore Batchy the only solution to meet the flow
delay SLO.

To sum up, this experiment highlights the importance of
batching in multicore scenarios. However, careful distribution
of delay budgets among processing cores is necessary to get
the most of batch-efficiency gains.

B. Case Study: Virtual Routing Function

We demonstrate the real-life applicability of multicore Batchy
on a sample use case, the Virtual Routing Function (VRF),
taken from an official 5G benchmarking suite [13]. In this
measurement we are focusing on the following questions: i) can
we decrease the delay compared to single-core Batchy; ii) how
efficient is the decomposition-based delay budget distribution
compared to a naïve approach; iii) how much extra processing
is required for the hierarchical control?
Evaluation setup. The VRF pipeline (Fig. 4) implements a
latency-optimized L2/L3 routing scenario often arising in the
context of network function virtualization. In addition to L2/L3
routing, the pipeline also performs access control and address
translation over multiple virtual LANs (VLANs). First, traffic
is split per VLANs, and then for each VLAN the next hop
is selected using longest-prefix matching (L3 Lookup). For
each next hop, traffic undergoes access control (ACL), address
translation (NAT), and group processing. The pipeline has two
parameters: the number of VLANs (𝑛𝑛), and the number of
next-hops per VLAN (𝑚𝑚). The pipeline is provisioned on 𝑛𝑛 + 1
cores: VLAN splitting is done on the first core, and per-VLAN
traffic is processed on the remaining 𝑛𝑛 cores.

For the evaluation, we use the VRF(2,4) pipeline (2 VLANs
and 4 next-hops/VLAN). We set a 72𝜇𝜇𝜇𝜇 delay SLO for all
flows. The system runs for 60 control periods, and each control
period takes 0.5s. The global controller kicks in at every 10th
period; this gives enough time to the per-core (subproblem)
controllers to adapt to new delay budgets. We compare single-
core Batchy, naïve multicore (static per-task delay budgets),
and full-fledged multicore Batchy.
Results. Fig. 6 shows the key performance indicators (i.e.,
rate and delay) in the system. Naïve and Batchy multicore
approaches start from the same initial state. Yet, the full-fledged
multicore Batchy is able to further improve the performance
by adjusting the per-task delay budgets. Fig. 5 shows the
underlying control loops: i) the global controller takes the
surplus delay budget of the VLAN splitting task and gives extra

Batch-scheduling Data Flow Graphs with
Service-level Objectives on Multicore Systems

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 49

INFOCOMMUNICATIONS JOURNAL 7

8

16

24
32

C
on

tr
ol

0 10 20 30 40 50 60
36

48

72

Time [control period]

D
el

ay
B

ou
nd

[𝜇𝜇
𝜇𝜇]

Batchy Multicore
Naïve Multicore
Batchy Single-core

Figure 5. Control Parameters of the First Flow in VRF(2,4): control for ACL
module and per-task delay budget on the second core (recall Fig. 4).

4

11

Pa
ck

et
R

at
e

[M
pp

s]

Batchy Multicore
Naïve Multicore
Batchy Single-core

0 10 20 30 40 50 60

60

70

80
delay SLO

Time [control period]

D
el

ay
[𝜇𝜇
𝜇𝜇]

Figure 6. Key Performance Indicators of the VRF(2,4) pipeline: total packet
rate and delay of the first flow. Delay SLOs are set to 72𝜇𝜇𝜇𝜇.

budget to the processing-heavy per-VLAN traffic processing;
ii) this gives enough time to the per-VLAN task controller to
queue up larger packet batches. This coordinated optimization
improves the overall performance (Fig. 6). Over single-core
Batchy, packet rate increases 2.5× and flow delay reduces to
0.75×. More importantly, the delay is finally below the SLO!

As of the controller performance, we measured the per-
task and global controllers running time in each control
period during the measurement and found that the multicore
approaches result only a 7% increase on average due to extra
global control steps.

To conclude, we see that our multicore extension is an
enabler technology for Batchy, supporting use cases with
ultra-low delay SLOs. We see the decomposition improves
performance and its control overhead is negligible.

VI. RELATED WORK

A. Optimizing Resource Usage

Carefully execute an NF-chain on general-purpose hardware
is one way to achieve performance improvement. Shenango [22]
improves CPU utilization by bypassing the kernel and resched-
ule or scale up according to the occupancy of the packet ring
buffers. This technique results low latency and improved CPU
utilization Similarly, IX [6] utilizes adaptive batch control
to improve throughput and latency. Metron [20] improves

end-to-end performance in NF-chains by avoiding cross-CPU
issues in NF-scheduling. These works focus on optimizing
performance without controlling latency. In contrast, Batchy
not just improves performance but carefully controls latency
to meet SLOs.

B. Improving Performance by Offloading

Offloading some part of the processing to hardware compo-
nents such as SmartNICs [23], FPGAs [24], or GPUs [8], [25],
[26] is widely used to improve packet processing performance.
To mitigate the packet offloading cost and to maximize
GPU utilization, extensive batching [26] and careful load
balancing between the offload hardware and the CPU [25]
are required. Offloading works motivate the importance of
batching, however, they are orthogonal to our work since they
incorporate offloading to specific hardware elements.

C. Meeting Delay SLOs

Beside performance optimization, guaranteeing SLOs is
another highly-desired behavior of NFV systems. Grus [8]
an NFV framework with GPU offload introduces a multi-
layer system with admission control and latency prediction
model to guarantee delay SLOs. As opposed to our work,
Grus guarantees delay SLO only for single VNF deployments,
and the model is tailored for the GPU offloading scenario.
SLOMO [27] predicts potential performance of VNF colocation,
but does not provide SLO guarantees. In contrast to Grus,
ResQ [28] provides performance isolation at CPU last-level
cache solving the noisy neighbor problem of VNFs, and
enables enforcing SLOs. NFV-RT [29] provides soft real-
time guarantees for NF service chains deployed in data center
environment using a fat-tree topology.

As opposed to our controller framework running on general
hardware, these works are bound to a given NFV environment:
they require a certain CPU feature, or specific underlying
network topology. Our work focuses on a single host using
general CPUs. Moreover, our controller framework extends
previous work by providing a unique combination of dynamic
internal batch de-fragmentation instead of applying batching
only to packet I/O, analytic techniques for controlling queue
backlogs, and selective SLO-enforcement at the granularity of
individual flows in multicore systems.

VII. CONCLUSIONS

Batchy, a state-of-the-art batch-scheduling framework,
presents massive performance improvements while conforming
delay SLOs even at Mpps-scale traffic with SLOs at 𝜇𝜇𝜇𝜇 range.
Batchy focuses on single-core execution.

In this paper we introduce a multicore extension to Batchy.
To this end, we formulated a primal decomposition to find
the optimal run-to-completion batch-scheduling on multicore
systems. We developed and implemented effective control
algorithms to be used in practical data flow graph batch-
scheduling. Our evaluation on a real 5G use-case focusing
on latency-optimized network function virtualization shows
that the multicore Batchy provides better performance (2.5×

INFOCOMMUNICATIONS JOURNAL 6

Algorithm 2 Global Control Algorithm
procedure SUBGRADIENT GLOBAL STEP(G, F , 𝜋𝜋, 𝜋𝜋, 𝜋𝜋)

for 𝑓𝑓 ∈ F do
⊲ Calculate step size
𝛼𝛼 = 𝐷𝐷 𝑓𝑓 ∗ 𝜋𝜋
⊲ Update allocated per-task flow delays on 𝜋𝜋 𝑓𝑓

for 𝑡𝑡 ∈ 𝜋𝜋 𝑓𝑓 do
Δ𝑡𝑡 𝑡 𝑓𝑓 = Δ𝑡𝑡 𝑡 𝑓𝑓 + 𝛼𝛼 ∗ 𝜋𝜋𝑡𝑡 𝑡 𝑓𝑓

Table I
STEADY-STATE RESULTS (SIMPLE PIPELINE).

Rate [Mpps] Delay (p99) [𝜇𝜇𝜇𝜇]

No Batching 0.971 15.445
Static Delay Budgets 0.991 18.615

Multicore Batchy 1.348 11.255

by decreasing surplus budgets of the feasible taskflows. This
simple technique is sufficient to ensure flow delay SLOs (12)
and non-negative per-task flow delay budgets (13).

V. EVALUATION

In this section, we evaluate our Batchy multicore extension
on both synthetic example and real-life use-case. We reused
existing Batchy codebase [10] as a controller to solve the
per-task subproblems (Algorithm 1) and implemented the
subgradient controller to orchestrate the per-task Batchy
controllers (Algorithm 2). The source code is available on
GitHub [18]. The evaluation was running on a server with
6×2.4GHz CPU (power-saving disabled) and 64GB RAM
installed with Debian 11 GNU/Linux.

A. Concept Validation: A Simple Pipeline

The first evaluation scenario focuses on validating the
concept.
Evaluation setup. We use a simple pipeline of two tasks
connected back-to-back. Tasks run on different cores and
contain one module. The system has one flow that traverses
both tasks. The last module is a computation-heavy module
that requires significantly more per-batch processing time (tens
of thousands of CPU cycles) than the first module (hundreds of
CPU cycles). This pipeline is similar to the example in Fig. 2.

We compare multicore Batchy to two baselines. The first
baseline does no packet batching. The second baseline runs
Batchy, but does not adjust per-task delay budgets adaptively;
i.e., adopts the naïve approach of Fig. 2. The measurements
focus on steady state performance: the first 100 control periods
are considered as warmup time, and we focus on the next 100
control periods. The flow delay SLO is set to 12𝜇𝜇𝜇𝜇.
Results. Table V-A summarizes steady packet rate and 99th
percentile delays of the measurements. The two baselines
produce limited packet rate due to poor batch-scheduling
algorithms. Namely, baselines cannot mitigate the cost of
computation-heavy task by intensive batching. There is a slight
difference between the performance of the two baselines: in
case of static delay budgets, Batchy has enough room for
batching in the first task, yielding a slight overall improvement
of the packet rate at a 20% delay penalty. In contrast to

Queue
L2

lookup
VLAN
table

L3
Lookup

L3
Lookup

.
.
.

ACL

ACL

ACL

ACL

.
.
.

.
.
.

NAT

NAT

NAT

NAT

group proc

group proc

group proc

group proc

Queue

Core 1 Core 2 Core N

Figure 4. The Virtual Routing Function Pipeline on 𝑁𝑁 Cores.

baselines, multicore Batchy can distribute the global delay
bound across the tasks optimally, so that it assigns extra delay
budget surplus for the last task that enables it to execute the
computation-heavy module on larger batches. This optimization
improves throughput by 30% while decreases delay by 60%,
and makes multicore Batchy the only solution to meet the flow
delay SLO.

To sum up, this experiment highlights the importance of
batching in multicore scenarios. However, careful distribution
of delay budgets among processing cores is necessary to get
the most of batch-efficiency gains.

B. Case Study: Virtual Routing Function

We demonstrate the real-life applicability of multicore Batchy
on a sample use case, the Virtual Routing Function (VRF),
taken from an official 5G benchmarking suite [13]. In this
measurement we are focusing on the following questions: i) can
we decrease the delay compared to single-core Batchy; ii) how
efficient is the decomposition-based delay budget distribution
compared to a naïve approach; iii) how much extra processing
is required for the hierarchical control?
Evaluation setup. The VRF pipeline (Fig. 4) implements a
latency-optimized L2/L3 routing scenario often arising in the
context of network function virtualization. In addition to L2/L3
routing, the pipeline also performs access control and address
translation over multiple virtual LANs (VLANs). First, traffic
is split per VLANs, and then for each VLAN the next hop
is selected using longest-prefix matching (L3 Lookup). For
each next hop, traffic undergoes access control (ACL), address
translation (NAT), and group processing. The pipeline has two
parameters: the number of VLANs (𝑛𝑛), and the number of
next-hops per VLAN (𝑚𝑚). The pipeline is provisioned on 𝑛𝑛 + 1
cores: VLAN splitting is done on the first core, and per-VLAN
traffic is processed on the remaining 𝑛𝑛 cores.

For the evaluation, we use the VRF(2,4) pipeline (2 VLANs
and 4 next-hops/VLAN). We set a 72𝜇𝜇𝜇𝜇 delay SLO for all
flows. The system runs for 60 control periods, and each control
period takes 0.5s. The global controller kicks in at every 10th
period; this gives enough time to the per-core (subproblem)
controllers to adapt to new delay budgets. We compare single-
core Batchy, naïve multicore (static per-task delay budgets),
and full-fledged multicore Batchy.
Results. Fig. 6 shows the key performance indicators (i.e.,
rate and delay) in the system. Naïve and Batchy multicore
approaches start from the same initial state. Yet, the full-fledged
multicore Batchy is able to further improve the performance
by adjusting the per-task delay budgets. Fig. 5 shows the
underlying control loops: i) the global controller takes the
surplus delay budget of the VLAN splitting task and gives extra

Batch-scheduling Data Flow Graphs with
Service-level Objectives on Multicore Systems

MARCH 2022 • VOLUME XIV • NUMBER 150

INFOCOMMUNICATIONS JOURNAL

 [1] L. Linguaglossa, S. Lange, S. Pontarelli, G. Rétvári, D. Rossi, T. Zinner,
R. Bifulco, M. Jarschel, and G. Bianchi, “Survey of performance
acceleration techniques for Network Function Virtualization,”
Proceedings of the IEEE, vol. 107, no. 4, pp. 746–764, 2019.

 [2] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy,
“SoftNIC: A software NIC to augment hardware,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2015-155,
May 2015. [Online]. Available: http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2015/EECS-2015-155.html

 [3] E. Warnicke, “Vector packet processing - one terabit router,” July 2017.
 [4] T. Barbette, C. Soldani, and L. Mathy, “Fast userspace packet

processing,” in ACM/IEEE ANCS, 2015, pp. 5–16.
 [5] L. Molnár, G. Pongrácz, G. Enyedi, Z. L. Kis, L. Csikor, F. Juhász,

A. Kőrösi, and G. Rétvári, “Dataplane specialization for high-
performance OpenFlow software switching,” in ACM SIGCOMM,
2016, pp. 539–552.

 [6] A. Belay, G. Prekas, M. Primorac, A. Klimovic, S. Grossman, C.
Kozyrakis, and E. Bugnion, “The IX operating system: Combining low
latency, high throughput, and efficiency in a protected dataplane,” ACM
Transactions on Computer Systems (TOCS), vol. 34, no. 4, p. 11, 2017.

 [7] Intel, “Data plane development kit,” http://dpdk.org.
 [8] Z. Zheng, J. Bi, H. Wang, C. Sun, H. Yu, H. Hu, K. Gao, and J. Wu,

“Grus: Enabling latency SLOs for GPU-accelerated NFV systems,” in
IEEE ICNP, 2018, pp. 154–164.

 [9] S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. K.
Ramakrishnan, T. Wood, M. Arumaithurai, and X. Fu, “NFVnice:
Dynamic Backpressure and Scheduling for NFV Service Chains,” in
ACM SIGCOMM, 2017, pp. 71–84.

[10] T. Lévai, F. Németh, B. Raghavan, and G. Rétvári, “Batchy:
Batch-scheduling data flow graphs with service-level objectives,”
in 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20). Santa Clara, CA: USENIX Association,
Feb. 2020, pp. 633–649. [Online]. Available: https://www.usenix.org/
conference/nsdi20/presentation/levai

[11] J. Nagle, “Congestion control in IP/TCP internetworks,” Internet
Requests for Comments, RFC Editor, RFC 896, January 1984.

[12] O. Michel, R. Bifulco, G. Rétvári, and S. Schmid, “The programmable
data plane: Abstractions, architectures, algorithms, and applications,”
ACM Comput. Surv., vol. 54, no. 4, May 2021. [Online]. Available:
doi: 10.1145/3447868

[13] T. Lévai, G. Pongrácz, P. Megyesi, P. Vörös, S. Laki, F. Németh,
and G. Rétvári, “The price for programmability in the software data
plane: The vendor perspective,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 12, pp. 2621–2630, Dec. 2018.

[14] S. Boyd, L. Xiao, A. Mutapcic, and J. Mattingley, “Notes on decompo-
sition methods,” Notes for EE364B, Stanford University, vol. 635, pp.
1–36, 2007.

RefeRences

Tamás Lévai received the M.Sc. degree in Computer
Engineering at the Budapest University of Technol-
ogy and Economics (BME) in 2016. Currently, he is a
Ph.D. candidate and assistant teacher at BME. His re-
search interest focuses on computer networks and dis-
tributed computing, mainly software-defined network-
ing, cloud native computing and high-performance
packet processing.

Gábor Rétvári received the M.Sc. and Ph.D. degrees
in electrical engineering from the Budapest University
of Technology and Economics in 1999 and 2007. He
is now a Senior Research Fellow at the Department of
Telecommunications and Media Informatics. His re-
search interests include all aspects of network routing
and switching, the programmable data plane, and the
networking applications of computational geometry
and information theory. He maintains several open
source scientific tools written in Perl, C, and Haskell.

[15] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods
for network utility maximization,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 8, pp. 1439–1451, 2006.

[16] D. Palomar, “Convex primal decomposition for multicarrier linear
mimo transceivers,” IEEE Transactions on Signal Processing, vol. 53,
no. 12, pp. 4661–4674, 2005.

[17] H. Pennanen, A. Tolli, and M. Latva-Aho, “Decentralized coordinated
downlink beamforming via primal decomposition,” IEEE Signal
Processing Letters, vol. 18, no. 11, pp. 647–650, 2011.

[18] “Batchy,” https://github.com/hsnlab/batchy/tree/multicore.
[19] B. Stephens, A. Akella, and M. Swift, “Loom: Flexible and efficient

NIC packet scheduling,” in USENIX NSDI, Feb. 2019, pp. 33–46.
[20] G. P. Katsikas, T. Barbette, D. Kostić, R. Steinert, and G. Q. M. Jr.,

“Metron: NFV service chains at the true speed of the underlying
hardware,” in USENIX NSDI, 2018, pp. 171–186.

[21] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear programming:
Theory and algorithms. John Wiley & Sons, 2013.

[22] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakrishnan,
“Shenango: Achieving high CPU efficiency for latency-sensitive
datacenter workloads,” in USENIX NSDI, 2019, pp. 361–378.

[23] Y. Le, H. Chang, S. Mukherjee, L. Wang, A. Akella, M. M. Swift, and
T. V. Lakshman, “Uno: Uniflying host and smart nic offload for flexible
packet processing,” in Proceedings of the 2017 Symposium on Cloud
Computing, 2017, p. 506–519.

[24] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng,
and E. Chen, “Clicknp: Highly flexible and high performance network
processing with reconfigurable hardware,” in Proceedings of the 2016
ACM SIGCOMM Conference, ser. SIGCOMM ’16. ACM, 2016, p.
1–14.

[25] J. Kim, K. Jang, K. Lee, S. Ma, J. Shim, and S. Moon, “NBA (Network
Balancing Act): A high-performance packet processing framework for
heterogeneous processors,” in EuroSys, 2015, pp. 22:1–22:14.

[26] S. Han, K. Jang, K. Park, and S. Moon, “Packetshader: A GPU-
accelerated software router,” in ACM SIGCOMM, 2010, pp. 195–206.

[27] A. Manousis, R. A. Sharma, V. Sekar, and J. Sherry, “Contention-
aware performance prediction for virtualized network functions,” in
SIGCOMM ’20, 2020, p. 270–282.

[28] A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. Argyraki, S.
Ratnasamy, and S. Shenker, “ResQ: Enabling SLOs in network function
virtualization,” in USENIX NSDI, 2018, pp. 283–297.

[29] Y. Li, L. T. Xuan Phan, and B. T. Loo, “Network functions virtualization
with soft real-time guarantees,” in IEEE INFOCOM 2016, 2016, pp.
1–9.

INFOCOMMUNICATIONS JOURNAL 8

packet rate) over the single-core algorithm and guarantees
delay SLOs that are otherwise not feasible with the single-core
algorithm.

Future work focuses on applying Batchy for ultra-low-latency
and real-time applications in 5G and beyond networks.

ACKNOWLEDGMENT

This work was supported by the ÚNKP-21-4 New National
Excellence Program of the Ministry of Innovation and Technol-
ogy from the source of the National Research, Development
and Innovation Fund, and NKFIH/OTKA Project #135606.

REFERENCES

[1] L. Linguaglossa, S. Lange, S. Pontarelli, G. Rétvári, D. Rossi, T. Zinner,
R. Bifulco, M. Jarschel, and G. Bianchi, “Survey of performance
acceleration techniques for Network Function Virtualization,” Proceedings
of the IEEE, vol. 107, no. 4, pp. 746–764, 2019.

[2] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy,
“SoftNIC: A software NIC to augment hardware,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2015-155,
May 2015. [Online]. Available: http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2015/EECS-2015-155.html

[3] E. Warnicke, “Vector packet processing - one terabit router,” July 2017.
[4] T. Barbette, C. Soldani, and L. Mathy, “Fast userspace packet processing,”

in ACM/IEEE ANCS, 2015, pp. 5–16.
[5] L. Molnár, G. Pongrácz, G. Enyedi, Z. L. Kis, L. Csikor, F. Juhász,

A. Kőrösi, and G. Rétvári, “Dataplane specialization for high-performance
OpenFlow software switching,” in ACM SIGCOMM, 2016, pp. 539–552.

[6] A. Belay, G. Prekas, M. Primorac, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion, “The IX operating system: Combining
low latency, high throughput, and efficiency in a protected dataplane,”
ACM Transactions on Computer Systems (TOCS), vol. 34, no. 4, p. 11,
2017.

[7] Intel, “Data plane development kit,” http://dpdk.org.
[8] Z. Zheng, J. Bi, H. Wang, C. Sun, H. Yu, H. Hu, K. Gao, and J. Wu,

“Grus: Enabling latency SLOs for GPU-accelerated NFV systems,” in
IEEE ICNP, 2018, pp. 154–164.

[9] S. G. Kulkarni, W. Zhang, J. Hwang, S. Rajagopalan, K. K. Ramakrishnan,
T. Wood, M. Arumaithurai, and X. Fu, “NFVnice: Dynamic Backpressure
and Scheduling for NFV Service Chains,” in ACM SIGCOMM, 2017,
pp. 71–84.

[10] T. Lévai, F. Németh, B. Raghavan, and G. Rétvári, “Batchy: Batch-
scheduling data flow graphs with service-level objectives,” in 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20). Santa Clara, CA: USENIX Association, Feb. 2020, pp.
633–649. [Online]. Available: https://www.usenix.org/conference/nsdi20/
presentation/levai

[11] J. Nagle, “Congestion control in IP/TCP internetworks,” Internet Requests
for Comments, RFC Editor, RFC 896, January 1984.

[12] O. Michel, R. Bifulco, G. Rétvári, and S. Schmid, “The programmable
data plane: Abstractions, architectures, algorithms, and applications,”
ACM Comput. Surv., vol. 54, no. 4, May 2021. [Online]. Available:
https://doi.org/10.1145/3447868

[13] T. Lévai, G. Pongrácz, P. Megyesi, P. Vörös, S. Laki, F. Németh, and
G. Rétvári, “The price for programmability in the software data plane: The
vendor perspective,” IEEE Journal on Selected Areas in Communications,
vol. 36, no. 12, pp. 2621–2630, Dec. 2018.

[14] S. Boyd, L. Xiao, A. Mutapcic, and J. Mattingley, “Notes on decompo-
sition methods,” Notes for EE364B, Stanford University, vol. 635, pp.
1–36, 2007.

[15] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods
for network utility maximization,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 8, pp. 1439–1451, 2006.

[16] D. Palomar, “Convex primal decomposition for multicarrier linear mimo
transceivers,” IEEE Transactions on Signal Processing, vol. 53, no. 12,
pp. 4661–4674, 2005.

[17] H. Pennanen, A. Tolli, and M. Latva-Aho, “Decentralized coordinated
downlink beamforming via primal decomposition,” IEEE Signal Process-
ing Letters, vol. 18, no. 11, pp. 647–650, 2011.

[18] “Batchy,” https://github.com/hsnlab/batchy/tree/multicore.
[19] B. Stephens, A. Akella, and M. Swift, “Loom: Flexible and efficient

NIC packet scheduling,” in USENIX NSDI, Feb. 2019, pp. 33–46.

[20] G. P. Katsikas, T. Barbette, D. Kostić, R. Steinert, and G. Q. M. Jr.,
“Metron: NFV service chains at the true speed of the underlying hardware,”
in USENIX NSDI, 2018, pp. 171–186.

[21] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear programming:
Theory and algorithms. John Wiley & Sons, 2013.

[22] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakrishnan,
“Shenango: Achieving high CPU efficiency for latency-sensitive datacenter
workloads,” in USENIX NSDI, 2019, pp. 361–378.

[23] Y. Le, H. Chang, S. Mukherjee, L. Wang, A. Akella, M. M. Swift, and
T. V. Lakshman, “Uno: Uniflying host and smart nic offload for flexible
packet processing,” in Proceedings of the 2017 Symposium on Cloud
Computing, 2017, p. 506–519.

[24] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong, P. Cheng,
and E. Chen, “Clicknp: Highly flexible and high performance network
processing with reconfigurable hardware,” in Proceedings of the 2016
ACM SIGCOMM Conference, ser. SIGCOMM ’16. ACM, 2016, p.
1–14.

[25] J. Kim, K. Jang, K. Lee, S. Ma, J. Shim, and S. Moon, “NBA (Network
Balancing Act): A high-performance packet processing framework for
heterogeneous processors,” in EuroSys, 2015, pp. 22:1–22:14.

[26] S. Han, K. Jang, K. Park, and S. Moon, “Packetshader: A GPU-
accelerated software router,” in ACM SIGCOMM, 2010, pp. 195–206.

[27] A. Manousis, R. A. Sharma, V. Sekar, and J. Sherry, “Contention-aware
performance prediction for virtualized network functions,” in SIGCOMM

’20, 2020, p. 270–282.
[28] A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. Argyraki, S. Ratnasamy,

and S. Shenker, “ResQ: Enabling SLOs in network function virtualization,”
in USENIX NSDI, 2018, pp. 283–297.

[29] Y. Li, L. T. Xuan Phan, and B. T. Loo, “Network functions virtualization
with soft real-time guarantees,” in IEEE INFOCOM 2016, 2016, pp. 1–9.

Tamás Lévai received the M.Sc. degree in Computer
Engineering at the Budapest University of Tech-
nology and Economics (BME) in 2016. Currently,
he is a Ph.D. candidate and assistant teacher at
BME. His research interest focuses on computer
networks and distributed computing, mainly software-
defined networking, cloud native computing and high-
performance packet processing.

Gábor Rétvári received the M.Sc. and Ph.D. degrees
in electrical engineering from the Budapest University
of Technology and Economics in 1999 and 2007. He
is now a Senior Research Fellow at the Department
of Telecommunications and Media Informatics. His
research interests include all aspects of network
routing and switching, the programmable data plane,
and the networking applications of computational
geometry and information theory. He maintains
several open source scientific tools written in Perl,
C, and Haskell.

Knowgraph-TT: Knowledge-Graph-Based Transit
Time Matching in Semiconductor Supply Chains

Nour Ramzy 1, Hans Ehm 1, Sandra Durst 1, Konstanze Wibmer 1, Werner Bick 2

Abstract—The semiconductor supply chain is characterized
by a global and complex production network in a competitive
market. The time when work at one location ends and can be
resumed at another is defined as Transit Time (TT). Therefore,
planning Transit Time accurately and minimizing delays is
crucial as it is used in the execution system to determine the
Available to Promise (ATP) and thus important for daily order
confirmation. By determining the ATP, the customer receives
a response to the resource availability and a due date to the
customer requests. Due to tool inherent differences, we choose
semantic integration via Knowledge Graph (KG) to match the
planned TT used in the execution system and the actual TT
measured in the monitoring tool. KnowGraph-TT thereby serves
as a role model for further matching and alignment tasks using
KG. It connects actual and planned TT, highlights the gaps via
applied queries, and enables an optimized update of planned TT.
With our solution, deviations of actual and planned TT can be
minimized and confirmations of unrealizable deliverable times
are avoided.

Index Terms—knowledge graph, semiconductor, order man-
agement, transit time mismatch

I. INTRODUCTION

The semiconductor industry is competitive with a dynamic
market characterized by time-intensive processes [9]. Espe-
cially in this highly competitive domain, semiconductor com-
panies strive to offer the highest quality to their customers
which implies sustaining delivery reliability. Reliable deliver-
ies are important as customers depend on the delivery promises
and their further production steps are based on this commit-
ment. To achieve planning dependability, it is important to
implement precise and reliable planning processes. The key
to better planning and to foresee delays is to examine Transit
Times (TTs). Transit time is the time taken to move goods
physically between different locations in a supply chain or
laterally to another facility [21].

Supply Chain (SC) integration, as well as the flow of infor-
mation SC are essential for carrying out effective exchanges
between parties [15], thus can enhance SC planning. Semantic
data integration enables combining SC data from disparate
sources and consolidating it into meaningful and valuable
information.

In this paper, we present Knowledge-Graph-based TT
matching (Knowgraph-TT), aligned with existing approaches
solution that matches transit times of different data sources
based on semantic data integration to minimize and prevent
delays. Knowgraph-TT leverages a well defined ontology to

1Infineon Technologies AG, Munich, Germany
2Technical University of Applied Sciences Regensburg, Regensburg, Ger-

many

model TTs. Via KnowGraph-TT, delays are identified and data
is kept up to date through semantic transit time matching to
create more reliable planning processes within the SC.

The remainder of the paper is divided as follows: After
an introduction, section II covers the relevant background
knowledge and the need for TT matching. section III describes
related approaches for data integration in SC and the gap that
motivates the use of semantic data integration for TT matching.
section IV contains the implementation details i.e., the ontol-
ogy modelling, mapping to data sources. The semantic data
integration process is shown with an example of two tools that
store transit time based on different definitions. section V is
the evaluation of the implementation. We rely on competency
questions and SPARQL and we discuss the results. Finally, the
work is rounded off with section VI where we conclude and
discuss the next steps about further analysis in which external
factors like a pandemic are addressed.

II. BACKGROUND AND MOTIVATION

In this section, we present the necessary background knowl-
edge e.g., order management, transit time and the need for TT
matching.

A. Transit Time

Transit time is the time taken to move goods physically
between different locations in a supply chain or laterally to
another facility [21]. We distinguish between the actual and
the planned transit. The first is the time needed to deliver
particular products to the customer. While the planned transit
time on the other hand is the time that is expected and planned
for future deliveries to the customer. The planned transit time
is used to determine the Available To Promise (ATP) which is
important for daily order confirmation.

Figure 1 shows that the actual and the planned transit time
might be split into several small time intervals and might
be in different tools (e.g. one for measuring and one for
planning) and are measured and calculated differently. Despite
one definition of transit time, the actual and the planned transit
time might be in different tools as they reflect different parts
of the supply chain. The focus of the planning tool is to plan
transit times, while the focus of another tool, e.g., an internal
logistics monitoring tool, is to track actual transit times.

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
http://dpdk.org
https://www.usenix.org/conference/nsdi20/presentation/levai
https://www.usenix.org/conference/nsdi20/presentation/levai
https://doi.org/10.1145/3447868
https://github.com/hsnlab/batchy/tree/multicore

