
Optimizing Camera Stream Transport
in Cloud-Based Industrial Robotic Systems

MARCH 2022 • VOLUME XIV • NUMBER 136

INFOCOMMUNICATIONS JOURNAL

1

Optimizing Camera Stream Transport
in Cloud-Based Industrial Robotic Systems

Marcell Balogh, Attila Vidács

Abstract—Combining visual-guided robotics with cloud net-
working brought a new era into industrial robotic research and
development. New challenges have to be tackled with a focus
on providing proper communication and data processing setup:
sensor data processing as well as the control software should
be decoupled from the local robot hardware and should move
into the cloud. In the emerging field of cloud robotics, there are
trade-offs that have to be handled. More and more sensors such
as cameras are being integrated but it comes with a cost. All
sensory data have to be sent through often limited networking
resources, while latency must be kept as low as possible.

In this paper we propose a general solution for efficient camera
stream transportation in cloud robotic systems. After introducing
our test scenario with the used hardware and software elements, a
detailed overview of the architecture is presented with describing
each task of the components. The goal of this paper is to
examine the current stream transportation implementations in
ROS environment and implement a more efficient method.
The performance of the proposed method is investigated and
compared with other solutions evidenced by measurements.

Index Terms—cloud robotics; distributed systems; image pro-
cessing;

I. INTRODUCTION

CONTRARY to certain expectations that human workers
will be displaced by robots, the real trend is to utilize

collaborative robots beside humans to work with. This change
necessitates robots to be aware of their full surroundings real
time, that seems to be the real challenge.

Vision systems are widely used in industrial robotics for
various tasks and processes such as inspection and quality
control, robot guidance, safety of workers, assembly lines,
etc. As a result of the continuous improvement of camera
sensors, the size of the raw sensory information significantly
increased. It became a trade-off between the camera quality
and the latency of the transported image stream. In order to get
the best performance, modifications need to be tailor-made.

We expect these systems to examine their environment
through various sensors and act immediately to prevent human
injuries or collisions. Having applied the techniques of cloud
computing, image processing, robotics and distributed net-
works, we present an alternative stream transportation method
for vision aided real-time robotic systems. Our approach is to

Marcell Balogh is with the High Speed Networks Laboratory at the
Department of Telecommunications and Media Informatics, Faculty of Elec-
trical Engineering and Informatics, Budapest University of Technology and
Economics, Hungary, e-mail: balogh.marcell@edu.bme.hu

Attila Vidács is with the High Speed Networks Laboratory at the Depart-
ment of Telecommunications and Media Informatics, Faculty of Electrical
Engineering and Informatics, Budapest University of Technology and Eco-
nomics, Hungary, e-mail: vidacs.attila@vik.bme.hu

combine the existing methods in a more efficient way with
distributed systems.

Throughout this work we utilized the Robot Operating
System (ROS) [1] which became the de facto standard of
robotic development. ROS based systems fit well into the
concepts of cloud architecture. Sensors are providing real-time
information which are being sent over the network, while data
are processed in the cloud, and only the acting commands are
being sent back to the robot. In this scheme, complex sensor
networks can be easily managed, and data could be processed
off board.

The paper is outlined as follows. In Section II, the back-
ground of the applied technologies is introduced. Section III
presents an overview of the system including the hardware
devices and the software design. Section IV explains the
demonstration task, the steps of image processing alongside
with the network setup. In Section V the different measure-
ment methods are presented with their arrangements. This
is followed by the performance measurement in Section VI
which contains a detailed comparison of the different op-
tions. It contains the overall result and performance of the
implemented system. Finally, conclusions and considerations
regarding the improved solutions are presented in Section VII.

II. RELATED WORK

Industrial robots took a long way to reach their current form
and the new era of collaborative robots is currently rising. On
the contrary of what people believed with the appearance of
industrial robots, workers are still essential elements in the
factories thus a stronger human-robot cooperation has started
to emerge. Robots are able to cooperate even better with
humans, taking their presence into account and proceed with
caution.

To help robots look around and act within their environment,
visual servoing is a popular approach. Visual servoing is
an approved technology which was first proposed in 1996
by Hutchinson et al. [2], and was significantly improved by
F. Chaumette and S. Hutchinson [3]. Nowadays two popular
approaches were formalized: Position Based Visual Servoing
(PBVS) and Image Based Visual Servoing (IBVS). PVBS
seeks to calculate and minimize errors in the global reference
frame while IBVS minimizes errors in the image plane of the
camera.

Autonomous navigation for mobile robots is a prevailing
topic among robotic researchers. To tackle with challenges,
Kalman Filter-based solutions are the leading methods for
sensor fusion [4]. Nguyen et al. proposed a solution for

Marcell Balogh is with the High Speed Networks Laboratory at the Depart-
ment of Telecommunications and Media Informatics, Faculty of Electrical En-
gineering and Informatics, Budapest University of Technology and Economics,
Hungary, (e-mail: balogh.marcell@edu.bme.hu)

Attila Vidács is with the High Speed Networks Laboratory at the Department
of Telecommunications and Media Informatics, Faculty of Electrical Engineer-
ing and Informatics, Budapest University of Technology and Economics, Hun-
gary, (e-mail: vidacs.attila@vik.bme.hu)

Optimizing Camera Stream Transport
in Cloud-Based Industrial Robotic Systems

Marcell Balogh and Attila Vidács

Abstract—Combining visual-guided robotics with cloud net-
working brought a new era into industrial robotic research and
development. New challenges have to be tackled with a focus
on providing proper communication and data processing setup:
sensor data processing as well as the control software should
be decoupled from the local robot hardware and should move
into the cloud. In the emerging field of cloud robotics, there are
trade-offs that have to be handled. More and more sensors such
as cameras are being integrated but it comes with a cost. All
sensory data have to be sent through often limited networking
resources, while latency must be kept as low as possible.

In this paper we propose a general solution for efficient
camera stream transportation in cloud robotic systems. After
introducing our test scenario with the used hardware and
software elements, a detailed overview of the architecture is
presented with describing each task of the components. The goal
of this paper is to examine the current stream transportation
implementations in ROS environment and implement a more
efficient method. The performance of the proposed method is
investigated and compared with other solutions evidenced by
measurements.

Index Terms—cloud robotics; distributed systems; image pro-
cessing;

1

Optimizing Camera Stream Transport
in Cloud-Based Industrial Robotic Systems

Marcell Balogh, Attila Vidács

Abstract—Combining visual-guided robotics with cloud net-
working brought a new era into industrial robotic research and
development. New challenges have to be tackled with a focus
on providing proper communication and data processing setup:
sensor data processing as well as the control software should
be decoupled from the local robot hardware and should move
into the cloud. In the emerging field of cloud robotics, there are
trade-offs that have to be handled. More and more sensors such
as cameras are being integrated but it comes with a cost. All
sensory data have to be sent through often limited networking
resources, while latency must be kept as low as possible.

In this paper we propose a general solution for efficient camera
stream transportation in cloud robotic systems. After introducing
our test scenario with the used hardware and software elements, a
detailed overview of the architecture is presented with describing
each task of the components. The goal of this paper is to
examine the current stream transportation implementations in
ROS environment and implement a more efficient method.
The performance of the proposed method is investigated and
compared with other solutions evidenced by measurements.

Index Terms—cloud robotics; distributed systems; image pro-
cessing;

I. INTRODUCTION

CONTRARY to certain expectations that human workers
will be displaced by robots, the real trend is to utilize

collaborative robots beside humans to work with. This change
necessitates robots to be aware of their full surroundings real
time, that seems to be the real challenge.

Vision systems are widely used in industrial robotics for
various tasks and processes such as inspection and quality
control, robot guidance, safety of workers, assembly lines,
etc. As a result of the continuous improvement of camera
sensors, the size of the raw sensory information significantly
increased. It became a trade-off between the camera quality
and the latency of the transported image stream. In order to get
the best performance, modifications need to be tailor-made.

We expect these systems to examine their environment
through various sensors and act immediately to prevent human
injuries or collisions. Having applied the techniques of cloud
computing, image processing, robotics and distributed net-
works, we present an alternative stream transportation method
for vision aided real-time robotic systems. Our approach is to

Marcell Balogh is with the High Speed Networks Laboratory at the
Department of Telecommunications and Media Informatics, Faculty of Elec-
trical Engineering and Informatics, Budapest University of Technology and
Economics, Hungary, e-mail: balogh.marcell@edu.bme.hu

Attila Vidács is with the High Speed Networks Laboratory at the Depart-
ment of Telecommunications and Media Informatics, Faculty of Electrical
Engineering and Informatics, Budapest University of Technology and Eco-
nomics, Hungary, e-mail: vidacs.attila@vik.bme.hu

combine the existing methods in a more efficient way with
distributed systems.

Throughout this work we utilized the Robot Operating
System (ROS) [1] which became the de facto standard of
robotic development. ROS based systems fit well into the
concepts of cloud architecture. Sensors are providing real-time
information which are being sent over the network, while data
are processed in the cloud, and only the acting commands are
being sent back to the robot. In this scheme, complex sensor
networks can be easily managed, and data could be processed
off board.

The paper is outlined as follows. In Section II, the back-
ground of the applied technologies is introduced. Section III
presents an overview of the system including the hardware
devices and the software design. Section IV explains the
demonstration task, the steps of image processing alongside
with the network setup. In Section V the different measure-
ment methods are presented with their arrangements. This
is followed by the performance measurement in Section VI
which contains a detailed comparison of the different op-
tions. It contains the overall result and performance of the
implemented system. Finally, conclusions and considerations
regarding the improved solutions are presented in Section VII.

II. RELATED WORK

Industrial robots took a long way to reach their current form
and the new era of collaborative robots is currently rising. On
the contrary of what people believed with the appearance of
industrial robots, workers are still essential elements in the
factories thus a stronger human-robot cooperation has started
to emerge. Robots are able to cooperate even better with
humans, taking their presence into account and proceed with
caution.

To help robots look around and act within their environment,
visual servoing is a popular approach. Visual servoing is
an approved technology which was first proposed in 1996
by Hutchinson et al. [2], and was significantly improved by
F. Chaumette and S. Hutchinson [3]. Nowadays two popular
approaches were formalized: Position Based Visual Servoing
(PBVS) and Image Based Visual Servoing (IBVS). PVBS
seeks to calculate and minimize errors in the global reference
frame while IBVS minimizes errors in the image plane of the
camera.

Autonomous navigation for mobile robots is a prevailing
topic among robotic researchers. To tackle with challenges,
Kalman Filter-based solutions are the leading methods for
sensor fusion [4]. Nguyen et al. proposed a solution for

DOI: 10.36244/ICJ.2022.1.5

mailto:balogh.marcell%40edu.bme.hu?subject=
mailto:vidacs.attila%40vik.bme.hu?subject=
https://doi.org/10.36244/ICJ.2022.1.5

Optimizing Camera Stream Transport
in Cloud-Based Industrial Robotic Systems

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 37

2

autonomous navigation based on Robot Operating System and
Gazebo [5]. They used deep learning with simulation data to
improve real-world applications. Authors in [6] proposed an
improved algorithm with Extended Kalman Filter (EKF) to
estimate the state of an Unmanned Aerial Vehicle (UAV) in
real time.

To be able to select the optimal streaming method, a
comparison was carried out in [7]. After thoroughly comparing
H.264 Advanced Video Codec, Dirac, Theora and Motion
JPEG2000, the study clearly indicated the advantage of inter-
frame comparison in H.264.

Visual aided robots require a well-considered approach for
a proper real time stream forwarding. Video streaming over
cellular or wireless networks also appears in various fields.
A popular and versatile tool for stream forwarding is to
utilize GStreamer [8]. A typical use-case of GStreamer is real-
time video streaming but it is also useful for acoustic signal
processing [9] or even for detecting gravitational waves [10].

Examining the capabilities of a closed-loop control over
imperfect networks were investigated by Rácz et al. [11] They
worked with an Universal Robots UR5 manipulator to test
and measure the performance impact of Ultra Reliable Low
Latency Communication (URLLC) capability in 5G networks.
As a result, measurements showed that network delay lower
that 4 ms has no significant performance impact in case of the
robot arm.

III. SYSTEM OVERVIEW

The selected use case presents a visual guided robot arm
manipulation task, where the emphasis is on the near real
time control of the manipulator, based on visual information.
However, a large variety of different applications can be real-
ized using the same design patterns that the ROS ecosystem
provides.

Fig. 1. Realized robotic system: An UR3e industrial robotic arm equipped
with a RealSense D435i depth camera.

Our test scenario consists of an UR3e collaborative robotic
arm from Universal Robots [12], an Intel RealSense D435i

depth camera [13] and Raspberry Pi4B devices to host the
camera driver. As an end-effector for the robotic arm, an
OnRobot RG2-FT gripper [14] is applied for pick and place
tasks. As Fig. 1 shows, the depth camera is rigidly mounted
onto the last joint of the robot arm following the eye-in-hand
approach to be able to inspect both the surroundings and the
gripped object.

The software implementation is based on the Robot Op-
erating System and follows the cloud robotic aspects as Fig.
2 presents. It provides a framework with the most common
communication patterns for a distributed system like publish-
subscribe or request-response. The ROS structure consists of a
ROS Master running in the cloud, an image forwarding node
on a local hardware element (RPi4), and an image processing
node placed in the cloud.

Generally, ROS offers raw image transport but it can be
extended with plugins to support JPEG or PNG compression.
In case of the RealSense camera, an official ROS package
[15] is available for retrieving data through topics to work
with. Besides ROS, there is an open-source solution for
depth cameras to be networked over wired Ethernet or Wi-Fi
connection [16]. To help object detection, OpenCV library[17]
is used both for colour and depth image processing.

Fig. 2. System architecture.

IV. SYSTEM REALIZATION

In order to demonstrate the system capabilities, our robot
is programmed to build a tower from small identical wooden
blocks in a jenga tower style. The task for the robot is to
automatically detect jenga pieces on the table, then grab and
place them on top of the already built structure.

The detection task includes two different phases. First, when
a new jenga block is detected by the camera, its position is
acquired in order to be able to pick it up. To achieve this, only
the colour frame is used with filtering for colour ranges. The
other part that requires the camera is when the robot wants
to place the jenga onto the tower being built. It examines the

Optimizing Camera Stream Transport
in Cloud-Based Industrial Robotic Systems

MARCH 2022 • VOLUME XIV • NUMBER 138

INFOCOMMUNICATIONS JOURNAL

3

target area whether a previous element or elements have been
already placed using the depth camera image. Being conscious
of the 3D coordinates of the top tower elements will help the
actual block to be placed in the right position.

Note here, that neither the pick position nor the follow up
tower position is pre-programmed. It is up to the robot to
automatically detect and decide, even making it possible for
a human to join in and build the jenga tower together with
the robot in a cooperative manner. The robot will put its own
actual jenga piece on top of the structure, no matter whether
the user just placed a new piece atop, or even removed the
last one.

A. Image processing

Image processing has to provide reliable actual informa-
tion to achieve the introduced demonstration task. It requires
techniques handling both colour and depth information. The
current problem could be separated into two phases: working
with colour images and working with depth images.

1) Colour image: The task related to the colour image is
to find a black jenga block on the table, and if there are more,
choose one considering whether the robot can reach it or not.
It is based on a robust colour segmentation process in HSV
colour space. The black colour of the jenga block and its
non-reflecting surface makes accurate filtering for black colour
possible. It also excludes objects where there is a measurable
difference of the length of the sides and the area of the object
in sight. To prove its robustness, it has been successfully tested
with strong light sources and with different lighting conditions.
With OpenCV, the orientation and exact position have been
extracted from the detection image. These are then sent to the
robot to grip the object at the right pose.

2) Depth image: From the depth image, the goal is to
extract the accurate distance and provide an illustrative image
about the tower level measurement. Intel gives examples for
depth images processing [18]. Calculating the Z distance from
the depth image is helped by a function that returns the depth
distance from a 2D pixel coordinate. First, an edge-preserving
spatial filter is applied, which smooths the depth noise while
attempting to preserve edges. In a noisy measurement it will
smooth the data but could result in unwanted artifacts such as
rounded or elongated edges. It is followed by temporal filtering
and hole filling. It is also advised to do whenever possible,
making sure not to let holes—where the depth equals zero—
influence calculations. It is done by an exponential moving
average (EMA) filter which is also used for spatial filtering.
With an accurate parameter, we tried to reduce temporal
smoothing near edges and also exclude holes.

Fig. 3 presents the before and after phases of jenga depth
detection. It clearly shows that the holes were eliminated, and
the contours became more accurate.

3) Equalization: Because the gripper was too close to the
camera, it distracted the depth measurement. Thus, the task
was to equalize the histogram of the depth image, because
a 1 cm difference in a 16 bit image cannot be easily distin-
guished. To improve the detection, histogram equalization was
only applied to a region of interest, where jenga block could

Fig. 3. Depth images of two jenga pieces as seen from above, before (left)
and after (right) image processing.

occur. In Fig. 4 the distances of the tower corners are pre-
sented. Due to a shallow depth, histogram equalization results
in displaying small differences with significantly changing
colours. The distances are calculated as the median value of
the intersecting jenga block marked with the white dots.

Fig. 4. Depth histogram equalization: raw camera image (left) and equalized
depth image (right).

B. Network setup

All the components of the robotic system are prepared to
connect and communicate using a cloud architecture with
wireless radio access (such as 5G). Fig. 5 depicts the dis-
tributed software architecture of the system.

Fig. 5. Distributed software architecture with cloud elements.

1) Robot arm with cloud control: Although the UR3e
controller can be connected directly to the network, the
challenging part is to perform the low-level (servo-)control
the robot from the (edge-)cloud. Due to its ultra-low latency
requirement, it is not yet possible to run the low-level control

3

target area whether a previous element or elements have been
already placed using the depth camera image. Being conscious
of the 3D coordinates of the top tower elements will help the
actual block to be placed in the right position.

Note here, that neither the pick position nor the follow up
tower position is pre-programmed. It is up to the robot to
automatically detect and decide, even making it possible for
a human to join in and build the jenga tower together with
the robot in a cooperative manner. The robot will put its own
actual jenga piece on top of the structure, no matter whether
the user just placed a new piece atop, or even removed the
last one.

A. Image processing

Image processing has to provide reliable actual informa-
tion to achieve the introduced demonstration task. It requires
techniques handling both colour and depth information. The
current problem could be separated into two phases: working
with colour images and working with depth images.

1) Colour image: The task related to the colour image is
to find a black jenga block on the table, and if there are more,
choose one considering whether the robot can reach it or not.
It is based on a robust colour segmentation process in HSV
colour space. The black colour of the jenga block and its
non-reflecting surface makes accurate filtering for black colour
possible. It also excludes objects where there is a measurable
difference of the length of the sides and the area of the object
in sight. To prove its robustness, it has been successfully tested
with strong light sources and with different lighting conditions.
With OpenCV, the orientation and exact position have been
extracted from the detection image. These are then sent to the
robot to grip the object at the right pose.

2) Depth image: From the depth image, the goal is to
extract the accurate distance and provide an illustrative image
about the tower level measurement. Intel gives examples for
depth images processing [18]. Calculating the Z distance from
the depth image is helped by a function that returns the depth
distance from a 2D pixel coordinate. First, an edge-preserving
spatial filter is applied, which smooths the depth noise while
attempting to preserve edges. In a noisy measurement it will
smooth the data but could result in unwanted artifacts such as
rounded or elongated edges. It is followed by temporal filtering
and hole filling. It is also advised to do whenever possible,
making sure not to let holes—where the depth equals zero—
influence calculations. It is done by an exponential moving
average (EMA) filter which is also used for spatial filtering.
With an accurate parameter, we tried to reduce temporal
smoothing near edges and also exclude holes.

Fig. 3 presents the before and after phases of jenga depth
detection. It clearly shows that the holes were eliminated, and
the contours became more accurate.

3) Equalization: Because the gripper was too close to the
camera, it distracted the depth measurement. Thus, the task
was to equalize the histogram of the depth image, because
a 1 cm difference in a 16 bit image cannot be easily distin-
guished. To improve the detection, histogram equalization was
only applied to a region of interest, where jenga block could

Fig. 3. Depth images of two jenga pieces as seen from above, before (left)
and after (right) image processing.

occur. In Fig. 4 the distances of the tower corners are pre-
sented. Due to a shallow depth, histogram equalization results
in displaying small differences with significantly changing
colours. The distances are calculated as the median value of
the intersecting jenga block marked with the white dots.

Fig. 4. Depth histogram equalization: raw camera image (left) and equalized
depth image (right).

B. Network setup

All the components of the robotic system are prepared to
connect and communicate using a cloud architecture with
wireless radio access (such as 5G). Fig. 5 depicts the dis-
tributed software architecture of the system.

Fig. 5. Distributed software architecture with cloud elements.

1) Robot arm with cloud control: Although the UR3e
controller can be connected directly to the network, the
challenging part is to perform the low-level (servo-)control
the robot from the (edge-)cloud. Due to its ultra-low latency
requirement, it is not yet possible to run the low-level control

3

target area whether a previous element or elements have been
already placed using the depth camera image. Being conscious
of the 3D coordinates of the top tower elements will help the
actual block to be placed in the right position.

Note here, that neither the pick position nor the follow up
tower position is pre-programmed. It is up to the robot to
automatically detect and decide, even making it possible for
a human to join in and build the jenga tower together with
the robot in a cooperative manner. The robot will put its own
actual jenga piece on top of the structure, no matter whether
the user just placed a new piece atop, or even removed the
last one.

A. Image processing

Image processing has to provide reliable actual informa-
tion to achieve the introduced demonstration task. It requires
techniques handling both colour and depth information. The
current problem could be separated into two phases: working
with colour images and working with depth images.

1) Colour image: The task related to the colour image is
to find a black jenga block on the table, and if there are more,
choose one considering whether the robot can reach it or not.
It is based on a robust colour segmentation process in HSV
colour space. The black colour of the jenga block and its
non-reflecting surface makes accurate filtering for black colour
possible. It also excludes objects where there is a measurable
difference of the length of the sides and the area of the object
in sight. To prove its robustness, it has been successfully tested
with strong light sources and with different lighting conditions.
With OpenCV, the orientation and exact position have been
extracted from the detection image. These are then sent to the
robot to grip the object at the right pose.

2) Depth image: From the depth image, the goal is to
extract the accurate distance and provide an illustrative image
about the tower level measurement. Intel gives examples for
depth images processing [18]. Calculating the Z distance from
the depth image is helped by a function that returns the depth
distance from a 2D pixel coordinate. First, an edge-preserving
spatial filter is applied, which smooths the depth noise while
attempting to preserve edges. In a noisy measurement it will
smooth the data but could result in unwanted artifacts such as
rounded or elongated edges. It is followed by temporal filtering
and hole filling. It is also advised to do whenever possible,
making sure not to let holes—where the depth equals zero—
influence calculations. It is done by an exponential moving
average (EMA) filter which is also used for spatial filtering.
With an accurate parameter, we tried to reduce temporal
smoothing near edges and also exclude holes.

Fig. 3 presents the before and after phases of jenga depth
detection. It clearly shows that the holes were eliminated, and
the contours became more accurate.

3) Equalization: Because the gripper was too close to the
camera, it distracted the depth measurement. Thus, the task
was to equalize the histogram of the depth image, because
a 1 cm difference in a 16 bit image cannot be easily distin-
guished. To improve the detection, histogram equalization was
only applied to a region of interest, where jenga block could

Fig. 3. Depth images of two jenga pieces as seen from above, before (left)
and after (right) image processing.

occur. In Fig. 4 the distances of the tower corners are pre-
sented. Due to a shallow depth, histogram equalization results
in displaying small differences with significantly changing
colours. The distances are calculated as the median value of
the intersecting jenga block marked with the white dots.

Fig. 4. Depth histogram equalization: raw camera image (left) and equalized
depth image (right).

B. Network setup

All the components of the robotic system are prepared to
connect and communicate using a cloud architecture with
wireless radio access (such as 5G). Fig. 5 depicts the dis-
tributed software architecture of the system.

Fig. 5. Distributed software architecture with cloud elements.

1) Robot arm with cloud control: Although the UR3e
controller can be connected directly to the network, the
challenging part is to perform the low-level (servo-)control
the robot from the (edge-)cloud. Due to its ultra-low latency
requirement, it is not yet possible to run the low-level control

3

target area whether a previous element or elements have been
already placed using the depth camera image. Being conscious
of the 3D coordinates of the top tower elements will help the
actual block to be placed in the right position.

Note here, that neither the pick position nor the follow up
tower position is pre-programmed. It is up to the robot to
automatically detect and decide, even making it possible for
a human to join in and build the jenga tower together with
the robot in a cooperative manner. The robot will put its own
actual jenga piece on top of the structure, no matter whether
the user just placed a new piece atop, or even removed the
last one.

A. Image processing

Image processing has to provide reliable actual informa-
tion to achieve the introduced demonstration task. It requires
techniques handling both colour and depth information. The
current problem could be separated into two phases: working
with colour images and working with depth images.

1) Colour image: The task related to the colour image is
to find a black jenga block on the table, and if there are more,
choose one considering whether the robot can reach it or not.
It is based on a robust colour segmentation process in HSV
colour space. The black colour of the jenga block and its
non-reflecting surface makes accurate filtering for black colour
possible. It also excludes objects where there is a measurable
difference of the length of the sides and the area of the object
in sight. To prove its robustness, it has been successfully tested
with strong light sources and with different lighting conditions.
With OpenCV, the orientation and exact position have been
extracted from the detection image. These are then sent to the
robot to grip the object at the right pose.

2) Depth image: From the depth image, the goal is to
extract the accurate distance and provide an illustrative image
about the tower level measurement. Intel gives examples for
depth images processing [18]. Calculating the Z distance from
the depth image is helped by a function that returns the depth
distance from a 2D pixel coordinate. First, an edge-preserving
spatial filter is applied, which smooths the depth noise while
attempting to preserve edges. In a noisy measurement it will
smooth the data but could result in unwanted artifacts such as
rounded or elongated edges. It is followed by temporal filtering
and hole filling. It is also advised to do whenever possible,
making sure not to let holes—where the depth equals zero—
influence calculations. It is done by an exponential moving
average (EMA) filter which is also used for spatial filtering.
With an accurate parameter, we tried to reduce temporal
smoothing near edges and also exclude holes.

Fig. 3 presents the before and after phases of jenga depth
detection. It clearly shows that the holes were eliminated, and
the contours became more accurate.

3) Equalization: Because the gripper was too close to the
camera, it distracted the depth measurement. Thus, the task
was to equalize the histogram of the depth image, because
a 1 cm difference in a 16 bit image cannot be easily distin-
guished. To improve the detection, histogram equalization was
only applied to a region of interest, where jenga block could

Fig. 3. Depth images of two jenga pieces as seen from above, before (left)
and after (right) image processing.

occur. In Fig. 4 the distances of the tower corners are pre-
sented. Due to a shallow depth, histogram equalization results
in displaying small differences with significantly changing
colours. The distances are calculated as the median value of
the intersecting jenga block marked with the white dots.

Fig. 4. Depth histogram equalization: raw camera image (left) and equalized
depth image (right).

B. Network setup

All the components of the robotic system are prepared to
connect and communicate using a cloud architecture with
wireless radio access (such as 5G). Fig. 5 depicts the dis-
tributed software architecture of the system.

Fig. 5. Distributed software architecture with cloud elements.

1) Robot arm with cloud control: Although the UR3e
controller can be connected directly to the network, the
challenging part is to perform the low-level (servo-)control
the robot from the (edge-)cloud. Due to its ultra-low latency
requirement, it is not yet possible to run the low-level control

4

from the cloud. (Later, with the improvement of the experi-
mental 5G network parameters, it could also be moved to the
cloud.)

2) Camera and cloud image processing: A Raspberry Pi
device (RPi4) serves as a gateway and driver host for the
RealSense camera, since the camera hardware lacks any direct
network connectivity.

Note here, that although the publish-subscribe scheme pub-
lishes every camera frame, the image processing takes only
one frame from the stream to work on. hence, there is no
need to to transfer the camera stream to the cloud continuously.
Taking this into account, live streaming can be reduced to give
a frame only when it is required. Because of the camera has
a warm-up time, the idea is to combine the publish-subscribe
communication scheme with a service-based request-response
phase to fetch the image frame as Fig. 6 presents.

Fig. 6. Combined publish-subscribe and request-response (aka. client-server)
communication for acquiring an image from the camera for cloud processing.

According to this enhancement, the camera driver node
running in the background always provides the camera stream,
but it will not transfer the stream continuously over the
network but only forwards it to a local service server. This
server provides only one image by grabbing a frame from the
published camera stream in case of an incoming request from
the cloud. This frame is then processed in the cloud which
serve as a basis of further robot movement calculations.

V. STREAMING AND IMAGE TRANSPORT SOLUTIONS

Here we propose a custom method for image transportation
that offers low bandwidth and latency. A hybrid method is
also introduced with the combination of different network
schemes. Alongside with our implementation, popular image
transportation methods are introduced that are common in
robotic applications.

A. ROS streaming

To transmit data among nodes, ROS by default use seri-
alization and sends raw image objects as string which is a
less effective way of image transportation and streaming. As
measurements show, it takes 25 MB/s to transfer raw colour
and depth images with 30 FPS. ROS plugins offer compression
methods for a more effective image transport. It can be
configured for PNG or JPEG compression. The compression

range in case of the JPEG is [1, 100] where lower values trade
image quality for bandwidth savings. To find the appropriate
balance between image size and quality, parameters needs to
be fine-tuned according to the application’s needs.

B. Streaming via GStreamer

GStreamer is a current open-source multi-platform mul-
timedia framework with widespread API options like the
OpenCV library, OpenGL, RealSense or other community-
driven projects [19]. It became popular for streaming audiovi-
sual content and has been frequently used in studies relating to
video transmission for its utility and flexibility in the delivery
of audio and visual content. The multimedia pipelines of
GStreamer are completed through the use of plugins which
are assembled using so called pads to form an interconnected
framework, moving video from the sink pad of a plugin to act
as the source of another.

The common part in each image processing solution is the
utilization of OpenCV. To exploit its capabilities, OpenCV is
compiled on both sender and receiver side with GStreamer
integration. The goal of GStreamer in this project is to separate
the application (e.g., video player, video editor) from the
streaming media complexity (e.g., hardware acceleration, re-
moteness). In this case only the video transmission is relevant
without the audio track.

Fig. 7. Streaming and image transport solutions software architecture.

Regarding the restrictions and specialities, the streamer
pipeline looks as Fig. 7 presents. Because of the pipeline

Optimizing Camera Stream Transport
in Cloud-Based Industrial Robotic Systems

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 39

4

from the cloud. (Later, with the improvement of the experi-
mental 5G network parameters, it could also be moved to the
cloud.)

2) Camera and cloud image processing: A Raspberry Pi
device (RPi4) serves as a gateway and driver host for the
RealSense camera, since the camera hardware lacks any direct
network connectivity.

Note here, that although the publish-subscribe scheme pub-
lishes every camera frame, the image processing takes only
one frame from the stream to work on. hence, there is no
need to to transfer the camera stream to the cloud continuously.
Taking this into account, live streaming can be reduced to give
a frame only when it is required. Because of the camera has
a warm-up time, the idea is to combine the publish-subscribe
communication scheme with a service-based request-response
phase to fetch the image frame as Fig. 6 presents.

Fig. 6. Combined publish-subscribe and request-response (aka. client-server)
communication for acquiring an image from the camera for cloud processing.

According to this enhancement, the camera driver node
running in the background always provides the camera stream,
but it will not transfer the stream continuously over the
network but only forwards it to a local service server. This
server provides only one image by grabbing a frame from the
published camera stream in case of an incoming request from
the cloud. This frame is then processed in the cloud which
serve as a basis of further robot movement calculations.

V. STREAMING AND IMAGE TRANSPORT SOLUTIONS

Here we propose a custom method for image transportation
that offers low bandwidth and latency. A hybrid method is
also introduced with the combination of different network
schemes. Alongside with our implementation, popular image
transportation methods are introduced that are common in
robotic applications.

A. ROS streaming

To transmit data among nodes, ROS by default use seri-
alization and sends raw image objects as string which is a
less effective way of image transportation and streaming. As
measurements show, it takes 25 MB/s to transfer raw colour
and depth images with 30 FPS. ROS plugins offer compression
methods for a more effective image transport. It can be
configured for PNG or JPEG compression. The compression

range in case of the JPEG is [1, 100] where lower values trade
image quality for bandwidth savings. To find the appropriate
balance between image size and quality, parameters needs to
be fine-tuned according to the application’s needs.

B. Streaming via GStreamer

GStreamer is a current open-source multi-platform mul-
timedia framework with widespread API options like the
OpenCV library, OpenGL, RealSense or other community-
driven projects [19]. It became popular for streaming audiovi-
sual content and has been frequently used in studies relating to
video transmission for its utility and flexibility in the delivery
of audio and visual content. The multimedia pipelines of
GStreamer are completed through the use of plugins which
are assembled using so called pads to form an interconnected
framework, moving video from the sink pad of a plugin to act
as the source of another.

The common part in each image processing solution is the
utilization of OpenCV. To exploit its capabilities, OpenCV is
compiled on both sender and receiver side with GStreamer
integration. The goal of GStreamer in this project is to separate
the application (e.g., video player, video editor) from the
streaming media complexity (e.g., hardware acceleration, re-
moteness). In this case only the video transmission is relevant
without the audio track.

Fig. 7. Streaming and image transport solutions software architecture.

Regarding the restrictions and specialities, the streamer
pipeline looks as Fig. 7 presents. Because of the pipeline

4

from the cloud. (Later, with the improvement of the experi-
mental 5G network parameters, it could also be moved to the
cloud.)

2) Camera and cloud image processing: A Raspberry Pi
device (RPi4) serves as a gateway and driver host for the
RealSense camera, since the camera hardware lacks any direct
network connectivity.

Note here, that although the publish-subscribe scheme pub-
lishes every camera frame, the image processing takes only
one frame from the stream to work on. hence, there is no
need to to transfer the camera stream to the cloud continuously.
Taking this into account, live streaming can be reduced to give
a frame only when it is required. Because of the camera has
a warm-up time, the idea is to combine the publish-subscribe
communication scheme with a service-based request-response
phase to fetch the image frame as Fig. 6 presents.

Fig. 6. Combined publish-subscribe and request-response (aka. client-server)
communication for acquiring an image from the camera for cloud processing.

According to this enhancement, the camera driver node
running in the background always provides the camera stream,
but it will not transfer the stream continuously over the
network but only forwards it to a local service server. This
server provides only one image by grabbing a frame from the
published camera stream in case of an incoming request from
the cloud. This frame is then processed in the cloud which
serve as a basis of further robot movement calculations.

V. STREAMING AND IMAGE TRANSPORT SOLUTIONS

Here we propose a custom method for image transportation
that offers low bandwidth and latency. A hybrid method is
also introduced with the combination of different network
schemes. Alongside with our implementation, popular image
transportation methods are introduced that are common in
robotic applications.

A. ROS streaming

To transmit data among nodes, ROS by default use seri-
alization and sends raw image objects as string which is a
less effective way of image transportation and streaming. As
measurements show, it takes 25 MB/s to transfer raw colour
and depth images with 30 FPS. ROS plugins offer compression
methods for a more effective image transport. It can be
configured for PNG or JPEG compression. The compression

range in case of the JPEG is [1, 100] where lower values trade
image quality for bandwidth savings. To find the appropriate
balance between image size and quality, parameters needs to
be fine-tuned according to the application’s needs.

B. Streaming via GStreamer

GStreamer is a current open-source multi-platform mul-
timedia framework with widespread API options like the
OpenCV library, OpenGL, RealSense or other community-
driven projects [19]. It became popular for streaming audiovi-
sual content and has been frequently used in studies relating to
video transmission for its utility and flexibility in the delivery
of audio and visual content. The multimedia pipelines of
GStreamer are completed through the use of plugins which
are assembled using so called pads to form an interconnected
framework, moving video from the sink pad of a plugin to act
as the source of another.

The common part in each image processing solution is the
utilization of OpenCV. To exploit its capabilities, OpenCV is
compiled on both sender and receiver side with GStreamer
integration. The goal of GStreamer in this project is to separate
the application (e.g., video player, video editor) from the
streaming media complexity (e.g., hardware acceleration, re-
moteness). In this case only the video transmission is relevant
without the audio track.

Fig. 7. Streaming and image transport solutions software architecture.

Regarding the restrictions and specialities, the streamer
pipeline looks as Fig. 7 presents. Because of the pipeline

4

from the cloud. (Later, with the improvement of the experi-
mental 5G network parameters, it could also be moved to the
cloud.)

2) Camera and cloud image processing: A Raspberry Pi
device (RPi4) serves as a gateway and driver host for the
RealSense camera, since the camera hardware lacks any direct
network connectivity.

Note here, that although the publish-subscribe scheme pub-
lishes every camera frame, the image processing takes only
one frame from the stream to work on. hence, there is no
need to to transfer the camera stream to the cloud continuously.
Taking this into account, live streaming can be reduced to give
a frame only when it is required. Because of the camera has
a warm-up time, the idea is to combine the publish-subscribe
communication scheme with a service-based request-response
phase to fetch the image frame as Fig. 6 presents.

Fig. 6. Combined publish-subscribe and request-response (aka. client-server)
communication for acquiring an image from the camera for cloud processing.

According to this enhancement, the camera driver node
running in the background always provides the camera stream,
but it will not transfer the stream continuously over the
network but only forwards it to a local service server. This
server provides only one image by grabbing a frame from the
published camera stream in case of an incoming request from
the cloud. This frame is then processed in the cloud which
serve as a basis of further robot movement calculations.

V. STREAMING AND IMAGE TRANSPORT SOLUTIONS

Here we propose a custom method for image transportation
that offers low bandwidth and latency. A hybrid method is
also introduced with the combination of different network
schemes. Alongside with our implementation, popular image
transportation methods are introduced that are common in
robotic applications.

A. ROS streaming

To transmit data among nodes, ROS by default use seri-
alization and sends raw image objects as string which is a
less effective way of image transportation and streaming. As
measurements show, it takes 25 MB/s to transfer raw colour
and depth images with 30 FPS. ROS plugins offer compression
methods for a more effective image transport. It can be
configured for PNG or JPEG compression. The compression

range in case of the JPEG is [1, 100] where lower values trade
image quality for bandwidth savings. To find the appropriate
balance between image size and quality, parameters needs to
be fine-tuned according to the application’s needs.

B. Streaming via GStreamer

GStreamer is a current open-source multi-platform mul-
timedia framework with widespread API options like the
OpenCV library, OpenGL, RealSense or other community-
driven projects [19]. It became popular for streaming audiovi-
sual content and has been frequently used in studies relating to
video transmission for its utility and flexibility in the delivery
of audio and visual content. The multimedia pipelines of
GStreamer are completed through the use of plugins which
are assembled using so called pads to form an interconnected
framework, moving video from the sink pad of a plugin to act
as the source of another.

The common part in each image processing solution is the
utilization of OpenCV. To exploit its capabilities, OpenCV is
compiled on both sender and receiver side with GStreamer
integration. The goal of GStreamer in this project is to separate
the application (e.g., video player, video editor) from the
streaming media complexity (e.g., hardware acceleration, re-
moteness). In this case only the video transmission is relevant
without the audio track.

Fig. 7. Streaming and image transport solutions software architecture.

Regarding the restrictions and specialities, the streamer
pipeline looks as Fig. 7 presents. Because of the pipeline

4

from the cloud. (Later, with the improvement of the experi-
mental 5G network parameters, it could also be moved to the
cloud.)

2) Camera and cloud image processing: A Raspberry Pi
device (RPi4) serves as a gateway and driver host for the
RealSense camera, since the camera hardware lacks any direct
network connectivity.

Note here, that although the publish-subscribe scheme pub-
lishes every camera frame, the image processing takes only
one frame from the stream to work on. hence, there is no
need to to transfer the camera stream to the cloud continuously.
Taking this into account, live streaming can be reduced to give
a frame only when it is required. Because of the camera has
a warm-up time, the idea is to combine the publish-subscribe
communication scheme with a service-based request-response
phase to fetch the image frame as Fig. 6 presents.

Fig. 6. Combined publish-subscribe and request-response (aka. client-server)
communication for acquiring an image from the camera for cloud processing.

According to this enhancement, the camera driver node
running in the background always provides the camera stream,
but it will not transfer the stream continuously over the
network but only forwards it to a local service server. This
server provides only one image by grabbing a frame from the
published camera stream in case of an incoming request from
the cloud. This frame is then processed in the cloud which
serve as a basis of further robot movement calculations.

V. STREAMING AND IMAGE TRANSPORT SOLUTIONS

Here we propose a custom method for image transportation
that offers low bandwidth and latency. A hybrid method is
also introduced with the combination of different network
schemes. Alongside with our implementation, popular image
transportation methods are introduced that are common in
robotic applications.

A. ROS streaming

To transmit data among nodes, ROS by default use seri-
alization and sends raw image objects as string which is a
less effective way of image transportation and streaming. As
measurements show, it takes 25 MB/s to transfer raw colour
and depth images with 30 FPS. ROS plugins offer compression
methods for a more effective image transport. It can be
configured for PNG or JPEG compression. The compression

range in case of the JPEG is [1, 100] where lower values trade
image quality for bandwidth savings. To find the appropriate
balance between image size and quality, parameters needs to
be fine-tuned according to the application’s needs.

B. Streaming via GStreamer

GStreamer is a current open-source multi-platform mul-
timedia framework with widespread API options like the
OpenCV library, OpenGL, RealSense or other community-
driven projects [19]. It became popular for streaming audiovi-
sual content and has been frequently used in studies relating to
video transmission for its utility and flexibility in the delivery
of audio and visual content. The multimedia pipelines of
GStreamer are completed through the use of plugins which
are assembled using so called pads to form an interconnected
framework, moving video from the sink pad of a plugin to act
as the source of another.

The common part in each image processing solution is the
utilization of OpenCV. To exploit its capabilities, OpenCV is
compiled on both sender and receiver side with GStreamer
integration. The goal of GStreamer in this project is to separate
the application (e.g., video player, video editor) from the
streaming media complexity (e.g., hardware acceleration, re-
moteness). In this case only the video transmission is relevant
without the audio track.

Fig. 7. Streaming and image transport solutions software architecture.

Regarding the restrictions and specialities, the streamer
pipeline looks as Fig. 7 presents. Because of the pipeline

4

from the cloud. (Later, with the improvement of the experi-
mental 5G network parameters, it could also be moved to the
cloud.)

2) Camera and cloud image processing: A Raspberry Pi
device (RPi4) serves as a gateway and driver host for the
RealSense camera, since the camera hardware lacks any direct
network connectivity.

Note here, that although the publish-subscribe scheme pub-
lishes every camera frame, the image processing takes only
one frame from the stream to work on. hence, there is no
need to to transfer the camera stream to the cloud continuously.
Taking this into account, live streaming can be reduced to give
a frame only when it is required. Because of the camera has
a warm-up time, the idea is to combine the publish-subscribe
communication scheme with a service-based request-response
phase to fetch the image frame as Fig. 6 presents.

Fig. 6. Combined publish-subscribe and request-response (aka. client-server)
communication for acquiring an image from the camera for cloud processing.

According to this enhancement, the camera driver node
running in the background always provides the camera stream,
but it will not transfer the stream continuously over the
network but only forwards it to a local service server. This
server provides only one image by grabbing a frame from the
published camera stream in case of an incoming request from
the cloud. This frame is then processed in the cloud which
serve as a basis of further robot movement calculations.

V. STREAMING AND IMAGE TRANSPORT SOLUTIONS

Here we propose a custom method for image transportation
that offers low bandwidth and latency. A hybrid method is
also introduced with the combination of different network
schemes. Alongside with our implementation, popular image
transportation methods are introduced that are common in
robotic applications.

A. ROS streaming

To transmit data among nodes, ROS by default use seri-
alization and sends raw image objects as string which is a
less effective way of image transportation and streaming. As
measurements show, it takes 25 MB/s to transfer raw colour
and depth images with 30 FPS. ROS plugins offer compression
methods for a more effective image transport. It can be
configured for PNG or JPEG compression. The compression

range in case of the JPEG is [1, 100] where lower values trade
image quality for bandwidth savings. To find the appropriate
balance between image size and quality, parameters needs to
be fine-tuned according to the application’s needs.

B. Streaming via GStreamer

GStreamer is a current open-source multi-platform mul-
timedia framework with widespread API options like the
OpenCV library, OpenGL, RealSense or other community-
driven projects [19]. It became popular for streaming audiovi-
sual content and has been frequently used in studies relating to
video transmission for its utility and flexibility in the delivery
of audio and visual content. The multimedia pipelines of
GStreamer are completed through the use of plugins which
are assembled using so called pads to form an interconnected
framework, moving video from the sink pad of a plugin to act
as the source of another.

The common part in each image processing solution is the
utilization of OpenCV. To exploit its capabilities, OpenCV is
compiled on both sender and receiver side with GStreamer
integration. The goal of GStreamer in this project is to separate
the application (e.g., video player, video editor) from the
streaming media complexity (e.g., hardware acceleration, re-
moteness). In this case only the video transmission is relevant
without the audio track.

Fig. 7. Streaming and image transport solutions software architecture.

Regarding the restrictions and specialities, the streamer
pipeline looks as Fig. 7 presents. Because of the pipeline

4

from the cloud. (Later, with the improvement of the experi-
mental 5G network parameters, it could also be moved to the
cloud.)

2) Camera and cloud image processing: A Raspberry Pi
device (RPi4) serves as a gateway and driver host for the
RealSense camera, since the camera hardware lacks any direct
network connectivity.

Note here, that although the publish-subscribe scheme pub-
lishes every camera frame, the image processing takes only
one frame from the stream to work on. hence, there is no
need to to transfer the camera stream to the cloud continuously.
Taking this into account, live streaming can be reduced to give
a frame only when it is required. Because of the camera has
a warm-up time, the idea is to combine the publish-subscribe
communication scheme with a service-based request-response
phase to fetch the image frame as Fig. 6 presents.

Fig. 6. Combined publish-subscribe and request-response (aka. client-server)
communication for acquiring an image from the camera for cloud processing.

According to this enhancement, the camera driver node
running in the background always provides the camera stream,
but it will not transfer the stream continuously over the
network but only forwards it to a local service server. This
server provides only one image by grabbing a frame from the
published camera stream in case of an incoming request from
the cloud. This frame is then processed in the cloud which
serve as a basis of further robot movement calculations.

V. STREAMING AND IMAGE TRANSPORT SOLUTIONS

Here we propose a custom method for image transportation
that offers low bandwidth and latency. A hybrid method is
also introduced with the combination of different network
schemes. Alongside with our implementation, popular image
transportation methods are introduced that are common in
robotic applications.

A. ROS streaming

To transmit data among nodes, ROS by default use seri-
alization and sends raw image objects as string which is a
less effective way of image transportation and streaming. As
measurements show, it takes 25 MB/s to transfer raw colour
and depth images with 30 FPS. ROS plugins offer compression
methods for a more effective image transport. It can be
configured for PNG or JPEG compression. The compression

range in case of the JPEG is [1, 100] where lower values trade
image quality for bandwidth savings. To find the appropriate
balance between image size and quality, parameters needs to
be fine-tuned according to the application’s needs.

B. Streaming via GStreamer

GStreamer is a current open-source multi-platform mul-
timedia framework with widespread API options like the
OpenCV library, OpenGL, RealSense or other community-
driven projects [19]. It became popular for streaming audiovi-
sual content and has been frequently used in studies relating to
video transmission for its utility and flexibility in the delivery
of audio and visual content. The multimedia pipelines of
GStreamer are completed through the use of plugins which
are assembled using so called pads to form an interconnected
framework, moving video from the sink pad of a plugin to act
as the source of another.

The common part in each image processing solution is the
utilization of OpenCV. To exploit its capabilities, OpenCV is
compiled on both sender and receiver side with GStreamer
integration. The goal of GStreamer in this project is to separate
the application (e.g., video player, video editor) from the
streaming media complexity (e.g., hardware acceleration, re-
moteness). In this case only the video transmission is relevant
without the audio track.

Fig. 7. Streaming and image transport solutions software architecture.

Regarding the restrictions and specialities, the streamer
pipeline looks as Fig. 7 presents. Because of the pipeline

4

from the cloud. (Later, with the improvement of the experi-
mental 5G network parameters, it could also be moved to the
cloud.)

2) Camera and cloud image processing: A Raspberry Pi
device (RPi4) serves as a gateway and driver host for the
RealSense camera, since the camera hardware lacks any direct
network connectivity.

Note here, that although the publish-subscribe scheme pub-
lishes every camera frame, the image processing takes only
one frame from the stream to work on. hence, there is no
need to to transfer the camera stream to the cloud continuously.
Taking this into account, live streaming can be reduced to give
a frame only when it is required. Because of the camera has
a warm-up time, the idea is to combine the publish-subscribe
communication scheme with a service-based request-response
phase to fetch the image frame as Fig. 6 presents.

Fig. 6. Combined publish-subscribe and request-response (aka. client-server)
communication for acquiring an image from the camera for cloud processing.

According to this enhancement, the camera driver node
running in the background always provides the camera stream,
but it will not transfer the stream continuously over the
network but only forwards it to a local service server. This
server provides only one image by grabbing a frame from the
published camera stream in case of an incoming request from
the cloud. This frame is then processed in the cloud which
serve as a basis of further robot movement calculations.

V. STREAMING AND IMAGE TRANSPORT SOLUTIONS

Here we propose a custom method for image transportation
that offers low bandwidth and latency. A hybrid method is
also introduced with the combination of different network
schemes. Alongside with our implementation, popular image
transportation methods are introduced that are common in
robotic applications.

A. ROS streaming

To transmit data among nodes, ROS by default use seri-
alization and sends raw image objects as string which is a
less effective way of image transportation and streaming. As
measurements show, it takes 25 MB/s to transfer raw colour
and depth images with 30 FPS. ROS plugins offer compression
methods for a more effective image transport. It can be
configured for PNG or JPEG compression. The compression

range in case of the JPEG is [1, 100] where lower values trade
image quality for bandwidth savings. To find the appropriate
balance between image size and quality, parameters needs to
be fine-tuned according to the application’s needs.

B. Streaming via GStreamer

GStreamer is a current open-source multi-platform mul-
timedia framework with widespread API options like the
OpenCV library, OpenGL, RealSense or other community-
driven projects [19]. It became popular for streaming audiovi-
sual content and has been frequently used in studies relating to
video transmission for its utility and flexibility in the delivery
of audio and visual content. The multimedia pipelines of
GStreamer are completed through the use of plugins which
are assembled using so called pads to form an interconnected
framework, moving video from the sink pad of a plugin to act
as the source of another.

The common part in each image processing solution is the
utilization of OpenCV. To exploit its capabilities, OpenCV is
compiled on both sender and receiver side with GStreamer
integration. The goal of GStreamer in this project is to separate
the application (e.g., video player, video editor) from the
streaming media complexity (e.g., hardware acceleration, re-
moteness). In this case only the video transmission is relevant
without the audio track.

Fig. 7. Streaming and image transport solutions software architecture.

Regarding the restrictions and specialities, the streamer
pipeline looks as Fig. 7 presents. Because of the pipeline

5

forwards preprocessed images from OpenCV, the frames in-
serted directly from script to the GStreamer pipeline. To
encode camera stream, H.264 encoding is applied. Instead of
encoding frames individually, H.264 compress across frames.
This inter-frame compression significantly reduces bandwidth
consumption because most frames record only the changes
from the previous frame. In order to be able to send the H.264
stream over the network, it needs to be encapsulated into Real-
time Transport Protocol (RTP) packets [20]. After providing
the H.264 payload, it is combined with UDP, and is ready to
be sent through the network.

In receiver side the source is an UDP connection with
a related port number. Upon receiving the datagram, the
decoder extracts H.264 video from RTP packets and sends it to
another converter which creates a raw formatted stream with
the requested parameters (640x480 resolution, 8-bit grayscale)
which could be managed by OpenCV. After the stream is
handed over to OpenCV, it is ready for ROS integration. With
OpenCV, the image stream is then packed into a ROS compli-
ant sensor msgs/Image type message. After this conversion,
the image stream is being published on a ROS topic.

C. Streaming via EtherSense

Intel provides an open-source solution for its D435i depth
camera for connecting to the network by using a Raspberry
Pi device [21]. It applies industry standard RTP protocol for
streaming. Raspberry Pi only responsible for the transportation
part, meanwhile post-processing such as depth decimation or
spatial and temporal filtering could remain in the cloud.

According to the measurements, the bandwidth for both
colour and depth stream with 640x360 resolution and 30 FPS
requires 27.6 MB/s. By exploiting the full potential of the
camera, with 848x480 resolution and 90 FPS, the required
bandwidth reaches 146 MB/s. This option can easily saturate
the available networking bandwidth, thus it does not provide
a scalable solution for mass-robotic application of visual
guidance.

VI. MEASUREMENTS AND PERFORMANCE EVALUATION

Next, we present performance measurement results of our
system with the different camera image transport solutions.
Besides end-to-end latency as being perhaps the most impor-
tant transport performance parameter, the required transmis-
sion bandwidth is also measured and compared with different
network and image parameters, then the advantages and limi-
tations are evaluated.

A. Required bandwidth

An important performance indicator of the realized system
is the required bandwidth to operate with. First, the ROS
streaming solution is measured, then it is compared with our
GStreamer solution to present the results.

For traffic measurement purposes, we used the internal topic
bandwidth monitor on ROS side, while for Gstreamer traffic
the real time Linux network bandwidth tool called Interface
TOP (IFTOP) was used. To measure exclusively the image

transport, the actual port was filtered where GStreamer is
forwarding the stream. All the measurements reflect an average
of 10-minute data traffic.

The performance of ROS streaming is summarized in Fig. 8
where all the measurements were done with 640x480 resolu-
tion and 30 FPS. As expected, the raw image transport over
ROS has the highest bandwidth requirement. These results
are close to Intel’s official EtherSense realization, where for
example the depth streaming with similar parameters took
13.88 MB/s.

Fig. 8. ROS image streaming comparison.

Although compressed image transport could significantly
lower the data rate, the hybrid method could present an even
better solution. The idea of providing only one frame on
request could minimize the data transfer. However, the image
streaming is still running locally in the background, but does
not flow into the cloud unless it is requested.

The JPEG compression methods can also be applied to the
requested frame as well. This results in such a small image
size that could be easily transferred without any difficulties.
The size of only one colour frame with 15% JPEG quality is
approximately 215 kB, the corresponding depth frame size is
265 kB.

Fig. 9. Depth image streaming comparison.

Comparing these results with the ROS streaming options,
GStreamer could perform better up to more than an order
of magnitude. Rather than compressing images one by one
as ROS does, GStreamer uses H.264 encoding where the
inter-frame compression significantly reduces the bandwidth
consumption. (Note, that static scenes with mostly still frames
encoded with H.264 can result in very low data volumes,
therefore the measurements used contain both still scenes and
scenes in motion to collect more meaningful data.) GStreamer

Optimizing Camera Stream Transport
in Cloud-Based Industrial Robotic Systems

MARCH 2022 • VOLUME XIV • NUMBER 140

INFOCOMMUNICATIONS JOURNAL

5

forwards preprocessed images from OpenCV, the frames in-
serted directly from script to the GStreamer pipeline. To
encode camera stream, H.264 encoding is applied. Instead of
encoding frames individually, H.264 compress across frames.
This inter-frame compression significantly reduces bandwidth
consumption because most frames record only the changes
from the previous frame. In order to be able to send the H.264
stream over the network, it needs to be encapsulated into Real-
time Transport Protocol (RTP) packets [20]. After providing
the H.264 payload, it is combined with UDP, and is ready to
be sent through the network.

In receiver side the source is an UDP connection with
a related port number. Upon receiving the datagram, the
decoder extracts H.264 video from RTP packets and sends it to
another converter which creates a raw formatted stream with
the requested parameters (640x480 resolution, 8-bit grayscale)
which could be managed by OpenCV. After the stream is
handed over to OpenCV, it is ready for ROS integration. With
OpenCV, the image stream is then packed into a ROS compli-
ant sensor msgs/Image type message. After this conversion,
the image stream is being published on a ROS topic.

C. Streaming via EtherSense

Intel provides an open-source solution for its D435i depth
camera for connecting to the network by using a Raspberry
Pi device [21]. It applies industry standard RTP protocol for
streaming. Raspberry Pi only responsible for the transportation
part, meanwhile post-processing such as depth decimation or
spatial and temporal filtering could remain in the cloud.

According to the measurements, the bandwidth for both
colour and depth stream with 640x360 resolution and 30 FPS
requires 27.6 MB/s. By exploiting the full potential of the
camera, with 848x480 resolution and 90 FPS, the required
bandwidth reaches 146 MB/s. This option can easily saturate
the available networking bandwidth, thus it does not provide
a scalable solution for mass-robotic application of visual
guidance.

VI. MEASUREMENTS AND PERFORMANCE EVALUATION

Next, we present performance measurement results of our
system with the different camera image transport solutions.
Besides end-to-end latency as being perhaps the most impor-
tant transport performance parameter, the required transmis-
sion bandwidth is also measured and compared with different
network and image parameters, then the advantages and limi-
tations are evaluated.

A. Required bandwidth

An important performance indicator of the realized system
is the required bandwidth to operate with. First, the ROS
streaming solution is measured, then it is compared with our
GStreamer solution to present the results.

For traffic measurement purposes, we used the internal topic
bandwidth monitor on ROS side, while for Gstreamer traffic
the real time Linux network bandwidth tool called Interface
TOP (IFTOP) was used. To measure exclusively the image

transport, the actual port was filtered where GStreamer is
forwarding the stream. All the measurements reflect an average
of 10-minute data traffic.

The performance of ROS streaming is summarized in Fig. 8
where all the measurements were done with 640x480 resolu-
tion and 30 FPS. As expected, the raw image transport over
ROS has the highest bandwidth requirement. These results
are close to Intel’s official EtherSense realization, where for
example the depth streaming with similar parameters took
13.88 MB/s.

Fig. 8. ROS image streaming comparison.

Although compressed image transport could significantly
lower the data rate, the hybrid method could present an even
better solution. The idea of providing only one frame on
request could minimize the data transfer. However, the image
streaming is still running locally in the background, but does
not flow into the cloud unless it is requested.

The JPEG compression methods can also be applied to the
requested frame as well. This results in such a small image
size that could be easily transferred without any difficulties.
The size of only one colour frame with 15% JPEG quality is
approximately 215 kB, the corresponding depth frame size is
265 kB.

Fig. 9. Depth image streaming comparison.

Comparing these results with the ROS streaming options,
GStreamer could perform better up to more than an order
of magnitude. Rather than compressing images one by one
as ROS does, GStreamer uses H.264 encoding where the
inter-frame compression significantly reduces the bandwidth
consumption. (Note, that static scenes with mostly still frames
encoded with H.264 can result in very low data volumes,
therefore the measurements used contain both still scenes and
scenes in motion to collect more meaningful data.) GStreamer

5

forwards preprocessed images from OpenCV, the frames in-
serted directly from script to the GStreamer pipeline. To
encode camera stream, H.264 encoding is applied. Instead of
encoding frames individually, H.264 compress across frames.
This inter-frame compression significantly reduces bandwidth
consumption because most frames record only the changes
from the previous frame. In order to be able to send the H.264
stream over the network, it needs to be encapsulated into Real-
time Transport Protocol (RTP) packets [20]. After providing
the H.264 payload, it is combined with UDP, and is ready to
be sent through the network.

In receiver side the source is an UDP connection with
a related port number. Upon receiving the datagram, the
decoder extracts H.264 video from RTP packets and sends it to
another converter which creates a raw formatted stream with
the requested parameters (640x480 resolution, 8-bit grayscale)
which could be managed by OpenCV. After the stream is
handed over to OpenCV, it is ready for ROS integration. With
OpenCV, the image stream is then packed into a ROS compli-
ant sensor msgs/Image type message. After this conversion,
the image stream is being published on a ROS topic.

C. Streaming via EtherSense

Intel provides an open-source solution for its D435i depth
camera for connecting to the network by using a Raspberry
Pi device [21]. It applies industry standard RTP protocol for
streaming. Raspberry Pi only responsible for the transportation
part, meanwhile post-processing such as depth decimation or
spatial and temporal filtering could remain in the cloud.

According to the measurements, the bandwidth for both
colour and depth stream with 640x360 resolution and 30 FPS
requires 27.6 MB/s. By exploiting the full potential of the
camera, with 848x480 resolution and 90 FPS, the required
bandwidth reaches 146 MB/s. This option can easily saturate
the available networking bandwidth, thus it does not provide
a scalable solution for mass-robotic application of visual
guidance.

VI. MEASUREMENTS AND PERFORMANCE EVALUATION

Next, we present performance measurement results of our
system with the different camera image transport solutions.
Besides end-to-end latency as being perhaps the most impor-
tant transport performance parameter, the required transmis-
sion bandwidth is also measured and compared with different
network and image parameters, then the advantages and limi-
tations are evaluated.

A. Required bandwidth

An important performance indicator of the realized system
is the required bandwidth to operate with. First, the ROS
streaming solution is measured, then it is compared with our
GStreamer solution to present the results.

For traffic measurement purposes, we used the internal topic
bandwidth monitor on ROS side, while for Gstreamer traffic
the real time Linux network bandwidth tool called Interface
TOP (IFTOP) was used. To measure exclusively the image

transport, the actual port was filtered where GStreamer is
forwarding the stream. All the measurements reflect an average
of 10-minute data traffic.

The performance of ROS streaming is summarized in Fig. 8
where all the measurements were done with 640x480 resolu-
tion and 30 FPS. As expected, the raw image transport over
ROS has the highest bandwidth requirement. These results
are close to Intel’s official EtherSense realization, where for
example the depth streaming with similar parameters took
13.88 MB/s.

Fig. 8. ROS image streaming comparison.

Although compressed image transport could significantly
lower the data rate, the hybrid method could present an even
better solution. The idea of providing only one frame on
request could minimize the data transfer. However, the image
streaming is still running locally in the background, but does
not flow into the cloud unless it is requested.

The JPEG compression methods can also be applied to the
requested frame as well. This results in such a small image
size that could be easily transferred without any difficulties.
The size of only one colour frame with 15% JPEG quality is
approximately 215 kB, the corresponding depth frame size is
265 kB.

Fig. 9. Depth image streaming comparison.

Comparing these results with the ROS streaming options,
GStreamer could perform better up to more than an order
of magnitude. Rather than compressing images one by one
as ROS does, GStreamer uses H.264 encoding where the
inter-frame compression significantly reduces the bandwidth
consumption. (Note, that static scenes with mostly still frames
encoded with H.264 can result in very low data volumes,
therefore the measurements used contain both still scenes and
scenes in motion to collect more meaningful data.) GStreamer

5

forwards preprocessed images from OpenCV, the frames in-
serted directly from script to the GStreamer pipeline. To
encode camera stream, H.264 encoding is applied. Instead of
encoding frames individually, H.264 compress across frames.
This inter-frame compression significantly reduces bandwidth
consumption because most frames record only the changes
from the previous frame. In order to be able to send the H.264
stream over the network, it needs to be encapsulated into Real-
time Transport Protocol (RTP) packets [20]. After providing
the H.264 payload, it is combined with UDP, and is ready to
be sent through the network.

In receiver side the source is an UDP connection with
a related port number. Upon receiving the datagram, the
decoder extracts H.264 video from RTP packets and sends it to
another converter which creates a raw formatted stream with
the requested parameters (640x480 resolution, 8-bit grayscale)
which could be managed by OpenCV. After the stream is
handed over to OpenCV, it is ready for ROS integration. With
OpenCV, the image stream is then packed into a ROS compli-
ant sensor msgs/Image type message. After this conversion,
the image stream is being published on a ROS topic.

C. Streaming via EtherSense

Intel provides an open-source solution for its D435i depth
camera for connecting to the network by using a Raspberry
Pi device [21]. It applies industry standard RTP protocol for
streaming. Raspberry Pi only responsible for the transportation
part, meanwhile post-processing such as depth decimation or
spatial and temporal filtering could remain in the cloud.

According to the measurements, the bandwidth for both
colour and depth stream with 640x360 resolution and 30 FPS
requires 27.6 MB/s. By exploiting the full potential of the
camera, with 848x480 resolution and 90 FPS, the required
bandwidth reaches 146 MB/s. This option can easily saturate
the available networking bandwidth, thus it does not provide
a scalable solution for mass-robotic application of visual
guidance.

VI. MEASUREMENTS AND PERFORMANCE EVALUATION

Next, we present performance measurement results of our
system with the different camera image transport solutions.
Besides end-to-end latency as being perhaps the most impor-
tant transport performance parameter, the required transmis-
sion bandwidth is also measured and compared with different
network and image parameters, then the advantages and limi-
tations are evaluated.

A. Required bandwidth

An important performance indicator of the realized system
is the required bandwidth to operate with. First, the ROS
streaming solution is measured, then it is compared with our
GStreamer solution to present the results.

For traffic measurement purposes, we used the internal topic
bandwidth monitor on ROS side, while for Gstreamer traffic
the real time Linux network bandwidth tool called Interface
TOP (IFTOP) was used. To measure exclusively the image

transport, the actual port was filtered where GStreamer is
forwarding the stream. All the measurements reflect an average
of 10-minute data traffic.

The performance of ROS streaming is summarized in Fig. 8
where all the measurements were done with 640x480 resolu-
tion and 30 FPS. As expected, the raw image transport over
ROS has the highest bandwidth requirement. These results
are close to Intel’s official EtherSense realization, where for
example the depth streaming with similar parameters took
13.88 MB/s.

Fig. 8. ROS image streaming comparison.

Although compressed image transport could significantly
lower the data rate, the hybrid method could present an even
better solution. The idea of providing only one frame on
request could minimize the data transfer. However, the image
streaming is still running locally in the background, but does
not flow into the cloud unless it is requested.

The JPEG compression methods can also be applied to the
requested frame as well. This results in such a small image
size that could be easily transferred without any difficulties.
The size of only one colour frame with 15% JPEG quality is
approximately 215 kB, the corresponding depth frame size is
265 kB.

Fig. 9. Depth image streaming comparison.

Comparing these results with the ROS streaming options,
GStreamer could perform better up to more than an order
of magnitude. Rather than compressing images one by one
as ROS does, GStreamer uses H.264 encoding where the
inter-frame compression significantly reduces the bandwidth
consumption. (Note, that static scenes with mostly still frames
encoded with H.264 can result in very low data volumes,
therefore the measurements used contain both still scenes and
scenes in motion to collect more meaningful data.) GStreamer

6

was set up to forward with constant quality. To show a
more revealing chart and visualize the differences, logarithmic
scaling is applied in the figures.

Fig. 10. Colour image streaming comparison.

While examining the streaming of colour images, the pa-
rameters and measurement method remained unchanged. Here
the results (see Fig. 10) show the overhead of ROS streaming
against GStreamer.

Taking into account the image quality and the required
bandwidth, it is clearly a trade-off. According to our experi-
ences, among all the available ROS image transport methods,
the 15% JPEG option with 640x480 resolution turned out to
be the best trade-off between image quality and bandwidth
usage, when detecting a jenga block. Thus, the following
measurements were all carried out in 640x480 resolution.

B. End-to-end latency

For latency measurements, glass-to-glass method was ap-
plied: it measures the time it takes between the moment
of action happens in front of a camera (first glass), and
the moment that a viewer sees the result of this action on
the screen (second glass). To determine latency, an online
stopwatch were used meanwhile the camera was faced to
the notebook screen and forwarded the encoded stream for
cloud processing (see Fig. 11). This method makes end-to-
end latency measurement possible, including such elements
like the camera readout time, encoding and so on. On the
other hand, with this method a possible bottleneck is the 60 Hz
refreshing rate of the screen. Because of the camera relies on
the content of the screen, it could not be more accurate than
1/60 s (approx. 17 msec).

Fig. 11. Latency measurement setup and methodology (wireless connection:
blue dotted line, wired connection: straight line).

During the measurement, the camera detects an appearing
jenga (see step 1 on Fig. 11) from a pre-recorded video shown
on the laptop screen, which also displays a running stopwatch.
The camera stream is then forwarded into the cloud (step 2)
where the image processing takes place (step 3). Finally, the
result is sent back and displayed on the laptop screen (step 4).

The critical component of an end-to-end latency is the radio
transport delay over the wireless link. In order to be able to
examine this component, reference measurements were taken
where all wireless links were replaced by wired connections
(see Fig. 11). Table I presents results collected from 10 dif-
ferent measurements for both the wireless and wired options
where the average latency and its standard deviation are listed
for the two image transport methods.

TABLE I
END-TO-END LATENCY MEASUREMENT RESULTS

ROS transport GStreamer
wireless wired wireless wired

average 2286.9 ms 1123.7 ms 244 ms 222.3 ms
standard deviation 383.1 ms 120.2 ms 66.2 ms 32.3 ms

The highest average delay is measured for ROS transport
over wireless. Its value is two times higher that the experi-
enced wired transmission delay. The standard deviation for
the wireless ROS transport is also three times as high as for
its wired counterpart. However, the end-to-end delay for the
GStreamer solution does not show significant difference for
the two cases, although the standard deviation is doubled for
the wireless case. Note here, that the standard deviation of
end-to-end latency can be directly translated to delay jitter,
which is an important performance metric for video streaming.
The most important finding here is that the average delay for
the ROS transport is significantly higher than the GStreamer
option.

VII. CONCLUSION

In this paper, the standard ROS-based network image trans-
mission method was examined, and an efficient custom image
transport solution based on GStreamer was proposed and
evaluated through a demonstration use case. The trade-off be-
tween image quality and network transmission bandwidth was
highlighted. Comparing our streaming implementation with
the industry-standard ROS solution, our method showed better
performance by one order of magnitude. Even in wireless
systems our method showed significantly lower latency. When
continuous image transfer is not required, the bandwidth usage
can be even more reduced when—instead of forwarding the
whole stream over the network—only a single frame is sent
for image processing.

Visual-aided robotics is a rapidly emerging field in Industry
4.0 solutions, thus efficient video streaming and image trans-
mission techniques together with cloud-based image process-
ing will form the backbone of such applications.

ACKNOWLEDGMENT

This work has been supported by the Ericsson-BME 5G
Joint Research and Cooperation Project, partly funded by

Optimizing Camera Stream Transport
in Cloud-Based Industrial Robotic Systems

INFOCOMMUNICATIONS JOURNAL

MARCH 2022 • VOLUME XIV • NUMBER 1 41

6

was set up to forward with constant quality. To show a
more revealing chart and visualize the differences, logarithmic
scaling is applied in the figures.

Fig. 10. Colour image streaming comparison.

While examining the streaming of colour images, the pa-
rameters and measurement method remained unchanged. Here
the results (see Fig. 10) show the overhead of ROS streaming
against GStreamer.

Taking into account the image quality and the required
bandwidth, it is clearly a trade-off. According to our experi-
ences, among all the available ROS image transport methods,
the 15% JPEG option with 640x480 resolution turned out to
be the best trade-off between image quality and bandwidth
usage, when detecting a jenga block. Thus, the following
measurements were all carried out in 640x480 resolution.

B. End-to-end latency

For latency measurements, glass-to-glass method was ap-
plied: it measures the time it takes between the moment
of action happens in front of a camera (first glass), and
the moment that a viewer sees the result of this action on
the screen (second glass). To determine latency, an online
stopwatch were used meanwhile the camera was faced to
the notebook screen and forwarded the encoded stream for
cloud processing (see Fig. 11). This method makes end-to-
end latency measurement possible, including such elements
like the camera readout time, encoding and so on. On the
other hand, with this method a possible bottleneck is the 60 Hz
refreshing rate of the screen. Because of the camera relies on
the content of the screen, it could not be more accurate than
1/60 s (approx. 17 msec).

Fig. 11. Latency measurement setup and methodology (wireless connection:
blue dotted line, wired connection: straight line).

During the measurement, the camera detects an appearing
jenga (see step 1 on Fig. 11) from a pre-recorded video shown
on the laptop screen, which also displays a running stopwatch.
The camera stream is then forwarded into the cloud (step 2)
where the image processing takes place (step 3). Finally, the
result is sent back and displayed on the laptop screen (step 4).

The critical component of an end-to-end latency is the radio
transport delay over the wireless link. In order to be able to
examine this component, reference measurements were taken
where all wireless links were replaced by wired connections
(see Fig. 11). Table I presents results collected from 10 dif-
ferent measurements for both the wireless and wired options
where the average latency and its standard deviation are listed
for the two image transport methods.

TABLE I
END-TO-END LATENCY MEASUREMENT RESULTS

ROS transport GStreamer
wireless wired wireless wired

average 2286.9 ms 1123.7 ms 244 ms 222.3 ms
standard deviation 383.1 ms 120.2 ms 66.2 ms 32.3 ms

The highest average delay is measured for ROS transport
over wireless. Its value is two times higher that the experi-
enced wired transmission delay. The standard deviation for
the wireless ROS transport is also three times as high as for
its wired counterpart. However, the end-to-end delay for the
GStreamer solution does not show significant difference for
the two cases, although the standard deviation is doubled for
the wireless case. Note here, that the standard deviation of
end-to-end latency can be directly translated to delay jitter,
which is an important performance metric for video streaming.
The most important finding here is that the average delay for
the ROS transport is significantly higher than the GStreamer
option.

VII. CONCLUSION

In this paper, the standard ROS-based network image trans-
mission method was examined, and an efficient custom image
transport solution based on GStreamer was proposed and
evaluated through a demonstration use case. The trade-off be-
tween image quality and network transmission bandwidth was
highlighted. Comparing our streaming implementation with
the industry-standard ROS solution, our method showed better
performance by one order of magnitude. Even in wireless
systems our method showed significantly lower latency. When
continuous image transfer is not required, the bandwidth usage
can be even more reduced when—instead of forwarding the
whole stream over the network—only a single frame is sent
for image processing.

Visual-aided robotics is a rapidly emerging field in Industry
4.0 solutions, thus efficient video streaming and image trans-
mission techniques together with cloud-based image process-
ing will form the backbone of such applications.

ACKNOWLEDGMENT

This work has been supported by the Ericsson-BME 5G
Joint Research and Cooperation Project, partly funded by

6

was set up to forward with constant quality. To show a
more revealing chart and visualize the differences, logarithmic
scaling is applied in the figures.

Fig. 10. Colour image streaming comparison.

While examining the streaming of colour images, the pa-
rameters and measurement method remained unchanged. Here
the results (see Fig. 10) show the overhead of ROS streaming
against GStreamer.

Taking into account the image quality and the required
bandwidth, it is clearly a trade-off. According to our experi-
ences, among all the available ROS image transport methods,
the 15% JPEG option with 640x480 resolution turned out to
be the best trade-off between image quality and bandwidth
usage, when detecting a jenga block. Thus, the following
measurements were all carried out in 640x480 resolution.

B. End-to-end latency

For latency measurements, glass-to-glass method was ap-
plied: it measures the time it takes between the moment
of action happens in front of a camera (first glass), and
the moment that a viewer sees the result of this action on
the screen (second glass). To determine latency, an online
stopwatch were used meanwhile the camera was faced to
the notebook screen and forwarded the encoded stream for
cloud processing (see Fig. 11). This method makes end-to-
end latency measurement possible, including such elements
like the camera readout time, encoding and so on. On the
other hand, with this method a possible bottleneck is the 60 Hz
refreshing rate of the screen. Because of the camera relies on
the content of the screen, it could not be more accurate than
1/60 s (approx. 17 msec).

Fig. 11. Latency measurement setup and methodology (wireless connection:
blue dotted line, wired connection: straight line).

During the measurement, the camera detects an appearing
jenga (see step 1 on Fig. 11) from a pre-recorded video shown
on the laptop screen, which also displays a running stopwatch.
The camera stream is then forwarded into the cloud (step 2)
where the image processing takes place (step 3). Finally, the
result is sent back and displayed on the laptop screen (step 4).

The critical component of an end-to-end latency is the radio
transport delay over the wireless link. In order to be able to
examine this component, reference measurements were taken
where all wireless links were replaced by wired connections
(see Fig. 11). Table I presents results collected from 10 dif-
ferent measurements for both the wireless and wired options
where the average latency and its standard deviation are listed
for the two image transport methods.

TABLE I
END-TO-END LATENCY MEASUREMENT RESULTS

ROS transport GStreamer
wireless wired wireless wired

average 2286.9 ms 1123.7 ms 244 ms 222.3 ms
standard deviation 383.1 ms 120.2 ms 66.2 ms 32.3 ms

The highest average delay is measured for ROS transport
over wireless. Its value is two times higher that the experi-
enced wired transmission delay. The standard deviation for
the wireless ROS transport is also three times as high as for
its wired counterpart. However, the end-to-end delay for the
GStreamer solution does not show significant difference for
the two cases, although the standard deviation is doubled for
the wireless case. Note here, that the standard deviation of
end-to-end latency can be directly translated to delay jitter,
which is an important performance metric for video streaming.
The most important finding here is that the average delay for
the ROS transport is significantly higher than the GStreamer
option.

VII. CONCLUSION

In this paper, the standard ROS-based network image trans-
mission method was examined, and an efficient custom image
transport solution based on GStreamer was proposed and
evaluated through a demonstration use case. The trade-off be-
tween image quality and network transmission bandwidth was
highlighted. Comparing our streaming implementation with
the industry-standard ROS solution, our method showed better
performance by one order of magnitude. Even in wireless
systems our method showed significantly lower latency. When
continuous image transfer is not required, the bandwidth usage
can be even more reduced when—instead of forwarding the
whole stream over the network—only a single frame is sent
for image processing.

Visual-aided robotics is a rapidly emerging field in Industry
4.0 solutions, thus efficient video streaming and image trans-
mission techniques together with cloud-based image process-
ing will form the backbone of such applications.

ACKNOWLEDGMENT

This work has been supported by the Ericsson-BME 5G
Joint Research and Cooperation Project, partly funded by

6

was set up to forward with constant quality. To show a
more revealing chart and visualize the differences, logarithmic
scaling is applied in the figures.

Fig. 10. Colour image streaming comparison.

While examining the streaming of colour images, the pa-
rameters and measurement method remained unchanged. Here
the results (see Fig. 10) show the overhead of ROS streaming
against GStreamer.

Taking into account the image quality and the required
bandwidth, it is clearly a trade-off. According to our experi-
ences, among all the available ROS image transport methods,
the 15% JPEG option with 640x480 resolution turned out to
be the best trade-off between image quality and bandwidth
usage, when detecting a jenga block. Thus, the following
measurements were all carried out in 640x480 resolution.

B. End-to-end latency

For latency measurements, glass-to-glass method was ap-
plied: it measures the time it takes between the moment
of action happens in front of a camera (first glass), and
the moment that a viewer sees the result of this action on
the screen (second glass). To determine latency, an online
stopwatch were used meanwhile the camera was faced to
the notebook screen and forwarded the encoded stream for
cloud processing (see Fig. 11). This method makes end-to-
end latency measurement possible, including such elements
like the camera readout time, encoding and so on. On the
other hand, with this method a possible bottleneck is the 60 Hz
refreshing rate of the screen. Because of the camera relies on
the content of the screen, it could not be more accurate than
1/60 s (approx. 17 msec).

Fig. 11. Latency measurement setup and methodology (wireless connection:
blue dotted line, wired connection: straight line).

During the measurement, the camera detects an appearing
jenga (see step 1 on Fig. 11) from a pre-recorded video shown
on the laptop screen, which also displays a running stopwatch.
The camera stream is then forwarded into the cloud (step 2)
where the image processing takes place (step 3). Finally, the
result is sent back and displayed on the laptop screen (step 4).

The critical component of an end-to-end latency is the radio
transport delay over the wireless link. In order to be able to
examine this component, reference measurements were taken
where all wireless links were replaced by wired connections
(see Fig. 11). Table I presents results collected from 10 dif-
ferent measurements for both the wireless and wired options
where the average latency and its standard deviation are listed
for the two image transport methods.

TABLE I
END-TO-END LATENCY MEASUREMENT RESULTS

ROS transport GStreamer
wireless wired wireless wired

average 2286.9 ms 1123.7 ms 244 ms 222.3 ms
standard deviation 383.1 ms 120.2 ms 66.2 ms 32.3 ms

The highest average delay is measured for ROS transport
over wireless. Its value is two times higher that the experi-
enced wired transmission delay. The standard deviation for
the wireless ROS transport is also three times as high as for
its wired counterpart. However, the end-to-end delay for the
GStreamer solution does not show significant difference for
the two cases, although the standard deviation is doubled for
the wireless case. Note here, that the standard deviation of
end-to-end latency can be directly translated to delay jitter,
which is an important performance metric for video streaming.
The most important finding here is that the average delay for
the ROS transport is significantly higher than the GStreamer
option.

VII. CONCLUSION

In this paper, the standard ROS-based network image trans-
mission method was examined, and an efficient custom image
transport solution based on GStreamer was proposed and
evaluated through a demonstration use case. The trade-off be-
tween image quality and network transmission bandwidth was
highlighted. Comparing our streaming implementation with
the industry-standard ROS solution, our method showed better
performance by one order of magnitude. Even in wireless
systems our method showed significantly lower latency. When
continuous image transfer is not required, the bandwidth usage
can be even more reduced when—instead of forwarding the
whole stream over the network—only a single frame is sent
for image processing.

Visual-aided robotics is a rapidly emerging field in Industry
4.0 solutions, thus efficient video streaming and image trans-
mission techniques together with cloud-based image process-
ing will form the backbone of such applications.

ACKNOWLEDGMENT

This work has been supported by the Ericsson-BME 5G
Joint Research and Cooperation Project, partly funded by

6

was set up to forward with constant quality. To show a
more revealing chart and visualize the differences, logarithmic
scaling is applied in the figures.

Fig. 10. Colour image streaming comparison.

While examining the streaming of colour images, the pa-
rameters and measurement method remained unchanged. Here
the results (see Fig. 10) show the overhead of ROS streaming
against GStreamer.

Taking into account the image quality and the required
bandwidth, it is clearly a trade-off. According to our experi-
ences, among all the available ROS image transport methods,
the 15% JPEG option with 640x480 resolution turned out to
be the best trade-off between image quality and bandwidth
usage, when detecting a jenga block. Thus, the following
measurements were all carried out in 640x480 resolution.

B. End-to-end latency

For latency measurements, glass-to-glass method was ap-
plied: it measures the time it takes between the moment
of action happens in front of a camera (first glass), and
the moment that a viewer sees the result of this action on
the screen (second glass). To determine latency, an online
stopwatch were used meanwhile the camera was faced to
the notebook screen and forwarded the encoded stream for
cloud processing (see Fig. 11). This method makes end-to-
end latency measurement possible, including such elements
like the camera readout time, encoding and so on. On the
other hand, with this method a possible bottleneck is the 60 Hz
refreshing rate of the screen. Because of the camera relies on
the content of the screen, it could not be more accurate than
1/60 s (approx. 17 msec).

Fig. 11. Latency measurement setup and methodology (wireless connection:
blue dotted line, wired connection: straight line).

During the measurement, the camera detects an appearing
jenga (see step 1 on Fig. 11) from a pre-recorded video shown
on the laptop screen, which also displays a running stopwatch.
The camera stream is then forwarded into the cloud (step 2)
where the image processing takes place (step 3). Finally, the
result is sent back and displayed on the laptop screen (step 4).

The critical component of an end-to-end latency is the radio
transport delay over the wireless link. In order to be able to
examine this component, reference measurements were taken
where all wireless links were replaced by wired connections
(see Fig. 11). Table I presents results collected from 10 dif-
ferent measurements for both the wireless and wired options
where the average latency and its standard deviation are listed
for the two image transport methods.

TABLE I
END-TO-END LATENCY MEASUREMENT RESULTS

ROS transport GStreamer
wireless wired wireless wired

average 2286.9 ms 1123.7 ms 244 ms 222.3 ms
standard deviation 383.1 ms 120.2 ms 66.2 ms 32.3 ms

The highest average delay is measured for ROS transport
over wireless. Its value is two times higher that the experi-
enced wired transmission delay. The standard deviation for
the wireless ROS transport is also three times as high as for
its wired counterpart. However, the end-to-end delay for the
GStreamer solution does not show significant difference for
the two cases, although the standard deviation is doubled for
the wireless case. Note here, that the standard deviation of
end-to-end latency can be directly translated to delay jitter,
which is an important performance metric for video streaming.
The most important finding here is that the average delay for
the ROS transport is significantly higher than the GStreamer
option.

VII. CONCLUSION

In this paper, the standard ROS-based network image trans-
mission method was examined, and an efficient custom image
transport solution based on GStreamer was proposed and
evaluated through a demonstration use case. The trade-off be-
tween image quality and network transmission bandwidth was
highlighted. Comparing our streaming implementation with
the industry-standard ROS solution, our method showed better
performance by one order of magnitude. Even in wireless
systems our method showed significantly lower latency. When
continuous image transfer is not required, the bandwidth usage
can be even more reduced when—instead of forwarding the
whole stream over the network—only a single frame is sent
for image processing.

Visual-aided robotics is a rapidly emerging field in Industry
4.0 solutions, thus efficient video streaming and image trans-
mission techniques together with cloud-based image process-
ing will form the backbone of such applications.

ACKNOWLEDGMENT

This work has been supported by the Ericsson-BME 5G
Joint Research and Cooperation Project, partly funded by

7

the National Research, Development and Innovation Office,
Hungary, project number 2018-1.3.1-VKE-2018-00005.

Optimizing Camera Stream Transport
in Cloud-Based Industrial Robotic Systems

MARCH 2022 • VOLUME XIV • NUMBER 142

INFOCOMMUNICATIONS JOURNAL

 [1] Stanford Artificial Intelligence Laboratory et al. Robotic operating
system. 05 2018. URL https://www.ros.org.

 [2] S. Hutchinson, G. D. Hager, and P. I. Corke. A tutorial on visual servo
control. IEEE Transactions on Robotics and Automation, 12(5):651–
670, 1996. doi: 10.1109/70.538972.

 [3] Chaumette and Seth Hutchinson. Visual servo control, part i: Basic
approaches. IEEE Robotics and Automation Magazine, 13:82–90,
2006. doi: 10.1109/MRA.2006.250573.

 [4] Dobrev Yassen, Flores Sergio, and Vossiek Martin. Multi-modal
sensor fusion for indoor mobile robot pose estimation. Position,
Location and Navigation Symposium (PLANS), pages 553–556, 04
2016. doi: 10.1109/PLANS.2016.7479745.

 [5] Anh Nguyen, Ngoc Nguyen, Kim Tran, Erman Tjiputra, and Quang
D. Tran. Autonomous navigation in complex environments with deep
multimodal fusion network. International Conference on Intelligent
Robots and Systems (IROS), 07 2020.

 doi: 10.1109/IROS45743.2020.9341494.
 [6] Hao Du, Wei Wang, Chaowen Xu, Ran Xiao, and Changyin Sun. Real-

time onboard 3d state estimation of an unmanned aerial vehicle in
multi-environments using multi-sensor data fusion. Sensors, 20:919,
02 2020. doi: 10.3390/s20030919.

 [7] Till Halbach. Comparison of open and free video compression systems
- a performance evaluation. In Proceedings of the First International
Conference on Computer Imaging Theory and Applications - Volume 1:
IMAGAPP, (VISIGRAPP 2009), pages 74–80. IN-STICC, SciTePress,
2009. ISBN 978-989-8111-68-5. doi: 10.5220/0001809700740080.

 [8] S. Nimmi, V. Saranya, Theerthadas, and R. Gandhiraj. Real-time video
streaming using gstreamer in gnu radio platform. 2014 International
Conference on Green Computing Communication and Electrical
Engineering (ICGCCEE), pages 1–6, 2014.

 doi: 10.1109/ICGCCEE.2014.6922233.
 [9] Kipp Cannon, Sarah Caudill, Chiwai Chan, Bryce Cousins, Jolien

Creighton, Becca Ewing, Heather Fong, Patrick Godwin, Shaun
Hooper, Rachael Huxford, Ryan Magee, Duncan Meacher, Cody
Messick, Soichiro Morisaki, Debnandini Mukherjee, Hiroaki Ohta,
Alexander Pace, Stephen Privitera, and Madeline Wade. Gstlal: A
software framework for gravitational wave discovery. SoftwareX,
14:100680, 06 2021. doi: 10.1016/j.softx.2021.100680.

[10] Roald Otnes, Joachim Eastwood, and Mathieu E.G.D. Colin. Using
gstreamer for acoustic signal processing in deployable sensor nodes.
pages 1–6, 2015. doi: 10.1109/OCEANS-Genova.2015.7271567.

 [11] Géza Szabó, Sándor Rácz and József Petö. Performance evaluation
of closed-loop industrial applications over imperfect networks.
Infocommunications Journal, XI, 2019. doi: 10.36244/ICJ.2019.2.4.

RefeRences

Marcell Balogh received his BSc degree in Electrical
Engineering from the Budapest University of Tech-
nology and Economics (BME). He is specialized in
cloud-based autonomous systems. In his early studies,
he joined HSN Lab, a University Research Group at
the Department of Telecommunications and Media
Informatics, BME. Currently, he is pursuing his Mas-
ter’s degree on visual-aided robotic systems.

Attila Vidács received the MSc and PhD degrees
from the Budapest University of Technology and
Economics (BME) at the Faculty of Electrical Engi-
neering and Informatics, in 1996 and 2000, respec-
tively. His research interests are in the field of cloud
robotics, cooperative and modular robot systems,
IoT communication technologies, ad-hoc and wire-
less networking. Currently he is leading the Cloud
Robotics Group within HSN Lab.

 [12] Universal Robots UR3e. [Date accessed: 12-2021]
 http://design.ros2.org/articles/rosmiddlewareinterface.html.
 [13] Intel RealSense d435i Specification. [Date accessed: 12-2021]
 https://www.intelrealsense.com/depth-camera-d435i.
 [14] OnRobot RG2-FT gripper. [Date accessed: 12-2021]
 https://onrobot.com/en/products/rg2-ft-gripper.
 [15] ROS Wrapper for Intel® RealSenseTM Devices. [Date accessed: 12-2021]
 https://dev.intelrealsense.com/docs/ros-wrapper.
 [16] Alexey Puzhevich, Sergey Dorodnicov, Anders Grunnet-Jepsen and

Daniel Piro. Open-Source Ethernet Networking for Intel® RealSenseTM
Depth Cameras. 04 2020.

[17] OpenCV. Open source computer vision library, 2015.
[18] Dave Tong, Anders Grunnet-Jepsen. Depth postprocessing for Intel®

RealSenseTM D400 depth cameras. 2019. [Date accessed: 12-2021].
 [19] Wim Taymans, Steve Baker, Andy Wingo, Ronald S. Bultje, Stefan

Kost. Gstreamer application development manual, 2016.
 [20] Wenger Stephan, Miska Hannuksela, Thomas Stockhammer, Magnus

Westerlund, and D. Singer. Rtp payload format for h.264 video. 03
2005. doi: 10.17487/RFC3984.

[21] Anders Grunnet-Jepsen, Philip Krejov. Intel® RealSenseTM Depth
Camera over Ethernet. 02 2019.

https://www.ros.org
https://doi.org/10.1109/70.538972
https://doi.org/10.1109/MRA.2006.250573
https://doi.org/10.1109/PLANS.2016.7479745
https://doi.org/10.1109/IROS45743.2020.9341494
https://doi.org/10.3390/s20030919
https://doi.org/10.5220/0001809700740080
https://doi.org/10.1109/ICGCCEE.2014.6922233
https://doi.org/10.1016/j.softx.2021.100680
https://doi.org/10.36244/ICJ.2019.2.4
https://doi.org/10.36244/ICJ.2019.2.4
http://design.ros2.org/articles/rosmiddlewareinterface.html
https://www.intelrealsense.com/depth-camera-d435i
https://onrobot.com/en/products/rg2-ft-gripper
https://dev.intelrealsense.com/docs/ros-wrapper
https://doi.org/10.17487/RFC3984

