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Abstract — The research topic presented in this paper belongs 
to computer vision problems in the transport application area, 
where the statistical data of the results give the input for the 
transport analysis. Although object tracking in a controlled 
environment could be performed with good results in general, 
accurate and detailed annotation of vehicles is a common problem 
in traffic analysis. Such annotation includes static and dynamic 
attributes of numerous vehicles. Most recent object trackers 
employ CNNs to compute the so-called re-identification features of 
the bounding boxes. In this paper we introduce hybrid re-
identification features, which combine latent, static, and dynamic 
attributes to improve tracking. Furthermore, we propose a 
lightweight solution that could be integrated in a real-time multi-
camera tracking system. 
 

Index Terms — transport analysis, deep learning, feature 
extraction, re-identification, multiple object tracking, multi-target 
multi-camera tracking 

I. INTRODUCTION 
The subset of Intelligent Transport Systems allows cooperation 
[15] among the vehicles and infrastructure, which is called Co‐
operative Transport System (CTS). CTS systems are designed 
for cooperative sensing and predicting flow, infrastructure and 
environmental conditions surrounding traffic, with a goal of 
improving the safety and efficiency of road transport operations 
[28]. The efficiency depends on the individual vehicles as well, 
for example their route planning, as an optimization problem. 
The uncertainty influences the route; however, a sophisticated 
model with an appropriate algorithm can handle this uncertainty 
to find the best route [31]. Finding a good solution for route 
planning in a transport network is a general problem with 
arbitrary network type, like a network of buses, a network of 
tram rails, or any other type of a transport network [30].  

Video-based vehicle behavior analysis is done by following 
and annotating the vehicles across multiple cameras. This 
requires accurate multi-target multi-camera tracking (MTMC) 
that must be built upon information coming from single 
cameras. The detection and tracking of multiple vehicles on a 
single-camera is frequently referred to as MTSC (multi-target 
single-camera tracking) or MOT (multiple object tracking). 
These methods first run an object detector network to detect all 
object instances, whose bounding boxes are then matched with 
the trajectories based on previous frames. A critical part of 
fusing MOTs into MTMC is matching the individual 
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trajectories. This could be done by vehicle re-identification, that 
aims to retrieve images from a gallery that contain the object of 
the same identity as a provided query image. Recent solutions 
for MOT extract feature vectors (so called re-id features) using 
special CNNs (for example ResNet-IBN variants [23]) and rank 
gallery images based on their cosine similarity to the query [9], 
[21], [45]. To improve single-camera tracking, some MOT 
methods employ the re-id features to help the association 
between bounding boxes. 

Static and dynamic attributes (such as axle number, 
differentiating signs or velocity) of the vehicles could aid 
MTMC trajectory matching. Determining these attributes 
require frame by frame analysis. Passing vehicles usually 
appear in several, most frequently (but not necessarily) 
neighboring, frames. Thus, to determine dynamic features, it is 
required to correctly identify their trajectories including all 
bounding boxes of the object during their progress in front of 
the camera. For calculating static features this is not necessary 
in general, but it could enhance accuracy by using an ensemble 
decision. The same reasoning holds for a system of multiple 
cameras, where vehicle re-identification and tracking is 
preferable. 

In this paper we introduce hybrid re-id features, which 
combines latent features, static and dynamic attributes of the 
vehicle, and ordinary re-id features. We examine different 
scenarios to calculate the hybrid re-id feature, from most 
accurate to most lightweight, that could even be used in a real-
time MTMC system. 

II. RELATED WORKS 

A. Transport Analysis 
In transport networks different situations can be analyzed, one 
of which is equilibrium at the case of uncertainty situations, 
where the uncertainty comes from lack of information. The 
uncertainty can be represented by Dempster-Shafer theory, an 
interval-based solution has been developed for handling this 
situation [29]. In transport analysis different influencing factors 
of the traffic congestion can be investigated on the roads using 
uncertain probabilities described by probability intervals [32].  

Vehicle behavior analysis consists of some parts, like car-
following, lane change maneuvers, velocities of the cars, etc. 
As the fundamental control strategy of intelligent vehicles, car-
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trajectories. This could be done by vehicle re-identification, that 
aims to retrieve images from a gallery that contain the object of 
the same identity as a provided query image. Recent solutions 
for MOT extract feature vectors (so called re-id features) using 
special CNNs (for example ResNet-IBN variants [23]) and rank 
gallery images based on their cosine similarity to the query [9], 
[21], [45]. To improve single-camera tracking, some MOT 
methods employ the re-id features to help the association 
between bounding boxes. 

Static and dynamic attributes (such as axle number, 
differentiating signs or velocity) of the vehicles could aid 
MTMC trajectory matching. Determining these attributes 
require frame by frame analysis. Passing vehicles usually 
appear in several, most frequently (but not necessarily) 
neighboring, frames. Thus, to determine dynamic features, it is 
required to correctly identify their trajectories including all 
bounding boxes of the object during their progress in front of 
the camera. For calculating static features this is not necessary 
in general, but it could enhance accuracy by using an ensemble 
decision. The same reasoning holds for a system of multiple 
cameras, where vehicle re-identification and tracking is 
preferable. 

In this paper we introduce hybrid re-id features, which 
combines latent features, static and dynamic attributes of the 
vehicle, and ordinary re-id features. We examine different 
scenarios to calculate the hybrid re-id feature, from most 
accurate to most lightweight, that could even be used in a real-
time MTMC system. 

II. RELATED WORKS 

A. Transport Analysis 
In transport networks different situations can be analyzed, one 
of which is equilibrium at the case of uncertainty situations, 
where the uncertainty comes from lack of information. The 
uncertainty can be represented by Dempster-Shafer theory, an 
interval-based solution has been developed for handling this 
situation [29]. In transport analysis different influencing factors 
of the traffic congestion can be investigated on the roads using 
uncertain probabilities described by probability intervals [32].  

Vehicle behavior analysis consists of some parts, like car-
following, lane change maneuvers, velocities of the cars, etc. 
As the fundamental control strategy of intelligent vehicles, car-
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following control directly affects vehicle performance. In 
practical driving, drivers usually predict the behavior of 
vehicles in the adjacent lane before modulating the driving 
strategy of the host vehicle [6]. Prediction of lane change 
maneuvers intended by the driver is solved by an artificial 
neural network with fusing features modeling the 
environmental situation [14]. The characterization of vehicles’ 
behavior based on their velocities can be modelled by 
information theory [1]. A vehicle behavior analysis system can 
be used in traffic jams and under complex weather conditions 
[26]. To analyze the behavior of vehicles we need determine the 
static and dynamic features of vehicles in videos, which belongs 
to the discipline of computer vision. 

B. Computer Vision 
Most solutions for MOT can be categorized as either one-phase 
or two-phase approaches. Two-phase methods first run object 
detection to get the bounding boxes, then extract (re-id) features 
of the detected objects. For the association step the SORT [2] 
method uses Kalman filter [10] to predict object locations and 
computes the overlap with detected objects. The matching is 
performed with the Hungarian algorithm [13], with the nodes 
of the graph being the bounding boxes on neighboring frames. 
The IOU tracker [3], on the other hand, does the matching based 
entirely on the overlaps of bounding boxes, without the use of 
the Kalman filter, thus reaching a higher frame rate. 

To improve tracking, some two-phase methods, such as 
DeepSORT [37] - an improved version of SORT, use deep 
learning to extract re-id features of the detected objects. The re-
id features and the IOU (intersection over union) of bounding 
boxes are used to compute a cost matrix, which is utilized to do 
the linking task using Kalman filter and the Hungarian 
algorithm. This approach delivers decent performance in 
MOTA (multi-object tracking accuracy), however, the two 
different deep learning models (for object detection and re-id 
embedding) do not share architecture and, as the networks are 
run sequentially, the total inference time is the sum of the 
individual execution times. Moreover, in crowded scenes, the 
re-id network must be run separately for tens of bounding 
boxes, further increasing the total running time. 

One-phase approaches merge the object detection and re-id 
embedding phases into a single network, thus, reaching real-
time or near real-time execution time. The JDE (Joint Detection 

and Embedding) [34] tracker uses a FPN (Feature Pyramid 
Network) [16] built on a Yolov3 [5] backbone. The prediction 
heads on top of the FPN produce objectness scores, box offset 
and box size for each anchor and location while also yielding 
the re-id features. The recently proposed FairMOT [42] tracker 
eliminates anchors and seeks to strike a balance between 
accurate detection and re-id features. The prediction head is 
built on a modified DLA (Deep Layer Aggregation) [41] 
network on top of a ResNet-34 [7]. The network processes over 
25 frames per second on multiple benchmarks [42]. 

The extraction of re-id features is a crucial part of MOT 
methods [34], [37], [42]. On the one hand, one-phase trackers 
such as JDE or FairMOT learn embeddings together with 
detection by utilizing cross entropy loss or variations of triplet 
loss [34], [42]. As video datasets with bounding box and 
identity annotations are scarce, weakly supervised learning was 
introduced, utilizing images with bounding box annotations, 
and treating transformed variants of the same objects as the 
same identity [42]. On the other hand, in a two-phase MOT 
(scenario B in Figure 1), a separate re-id model is trained for 
extracting accurate embeddings. Commonly used models for 
this purpose are IBN-net variants with a ResNet [7] or ResNeXt 
[38] backbone. Zhu et al trained three models for extracting 
features describing the vehicle, camera, and orientation, then in 
the final similarity, camera and orientation similarities are 
subtracted from vehicle similarity to reduce the bias [45]. Given 
the initial ranking based on similarities, several re-ranking 
methods have been introduced to improve accuracy, such as the 
K-reciprocal nearest neighbor method, that favors gallery 
images having a similar set of k nearest neighbors to the query 
image [43]. 

III. MTMC VEHICLE TRACKING 
A high-level overview of MTMC process is shown in Fig. 1. 
Video streams are fed into a one-phase (A) or a two-phase (B) 
tracker, which both provide bounding boxes, re-id features, and 
class confidence levels. Tracking algorithms (e.g. DeepSORT) 
generate a trajectory when no more bounding boxes are 
appended to it for a given interval of frames [37]. Trajectory 
filtering is a camera-specific step, when stationary, too noisy, 
or unnecessary trajectories, e.g. those containing pedestrians or 
off-road vehicles, are discarded. When a single-camera 
trajectory is finalized, it is matched with trajectories on other 

Figure 1. Overview of the MTMC tracking process using one-phase single-camera tracking (A) or a two-phase one (B). The yellow trajectory 
is an erroneous detection; thus, it is filtered out in the single-camera process. 
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trajectories. This could be done by vehicle re-identification, that 
aims to retrieve images from a gallery that contain the object of 
the same identity as a provided query image. Recent solutions 
for MOT extract feature vectors (so called re-id features) using 
special CNNs (for example ResNet-IBN variants [23]) and rank 
gallery images based on their cosine similarity to the query [9], 
[21], [45]. To improve single-camera tracking, some MOT 
methods employ the re-id features to help the association 
between bounding boxes. 

Static and dynamic attributes (such as axle number, 
differentiating signs or velocity) of the vehicles could aid 
MTMC trajectory matching. Determining these attributes 
require frame by frame analysis. Passing vehicles usually 
appear in several, most frequently (but not necessarily) 
neighboring, frames. Thus, to determine dynamic features, it is 
required to correctly identify their trajectories including all 
bounding boxes of the object during their progress in front of 
the camera. For calculating static features this is not necessary 
in general, but it could enhance accuracy by using an ensemble 
decision. The same reasoning holds for a system of multiple 
cameras, where vehicle re-identification and tracking is 
preferable. 

In this paper we introduce hybrid re-id features, which 
combines latent features, static and dynamic attributes of the 
vehicle, and ordinary re-id features. We examine different 
scenarios to calculate the hybrid re-id feature, from most 
accurate to most lightweight, that could even be used in a real-
time MTMC system. 
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In transport networks different situations can be analyzed, one 
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where the uncertainty comes from lack of information. The 
uncertainty can be represented by Dempster-Shafer theory, an 
interval-based solution has been developed for handling this 
situation [29]. In transport analysis different influencing factors 
of the traffic congestion can be investigated on the roads using 
uncertain probabilities described by probability intervals [32].  

Vehicle behavior analysis consists of some parts, like car-
following, lane change maneuvers, velocities of the cars, etc. 
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following control directly affects vehicle performance. In 
practical driving, drivers usually predict the behavior of 
vehicles in the adjacent lane before modulating the driving 
strategy of the host vehicle [6]. Prediction of lane change 
maneuvers intended by the driver is solved by an artificial 
neural network with fusing features modeling the 
environmental situation [14]. The characterization of vehicles’ 
behavior based on their velocities can be modelled by 
information theory [1]. A vehicle behavior analysis system can 
be used in traffic jams and under complex weather conditions 
[26]. To analyze the behavior of vehicles we need determine the 
static and dynamic features of vehicles in videos, which belongs 
to the discipline of computer vision. 

B. Computer Vision 
Most solutions for MOT can be categorized as either one-phase 
or two-phase approaches. Two-phase methods first run object 
detection to get the bounding boxes, then extract (re-id) features 
of the detected objects. For the association step the SORT [2] 
method uses Kalman filter [10] to predict object locations and 
computes the overlap with detected objects. The matching is 
performed with the Hungarian algorithm [13], with the nodes 
of the graph being the bounding boxes on neighboring frames. 
The IOU tracker [3], on the other hand, does the matching based 
entirely on the overlaps of bounding boxes, without the use of 
the Kalman filter, thus reaching a higher frame rate. 

To improve tracking, some two-phase methods, such as 
DeepSORT [37] - an improved version of SORT, use deep 
learning to extract re-id features of the detected objects. The re-
id features and the IOU (intersection over union) of bounding 
boxes are used to compute a cost matrix, which is utilized to do 
the linking task using Kalman filter and the Hungarian 
algorithm. This approach delivers decent performance in 
MOTA (multi-object tracking accuracy), however, the two 
different deep learning models (for object detection and re-id 
embedding) do not share architecture and, as the networks are 
run sequentially, the total inference time is the sum of the 
individual execution times. Moreover, in crowded scenes, the 
re-id network must be run separately for tens of bounding 
boxes, further increasing the total running time. 

One-phase approaches merge the object detection and re-id 
embedding phases into a single network, thus, reaching real-
time or near real-time execution time. The JDE (Joint Detection 

and Embedding) [34] tracker uses a FPN (Feature Pyramid 
Network) [16] built on a Yolov3 [5] backbone. The prediction 
heads on top of the FPN produce objectness scores, box offset 
and box size for each anchor and location while also yielding 
the re-id features. The recently proposed FairMOT [42] tracker 
eliminates anchors and seeks to strike a balance between 
accurate detection and re-id features. The prediction head is 
built on a modified DLA (Deep Layer Aggregation) [41] 
network on top of a ResNet-34 [7]. The network processes over 
25 frames per second on multiple benchmarks [42]. 

The extraction of re-id features is a crucial part of MOT 
methods [34], [37], [42]. On the one hand, one-phase trackers 
such as JDE or FairMOT learn embeddings together with 
detection by utilizing cross entropy loss or variations of triplet 
loss [34], [42]. As video datasets with bounding box and 
identity annotations are scarce, weakly supervised learning was 
introduced, utilizing images with bounding box annotations, 
and treating transformed variants of the same objects as the 
same identity [42]. On the other hand, in a two-phase MOT 
(scenario B in Figure 1), a separate re-id model is trained for 
extracting accurate embeddings. Commonly used models for 
this purpose are IBN-net variants with a ResNet [7] or ResNeXt 
[38] backbone. Zhu et al trained three models for extracting 
features describing the vehicle, camera, and orientation, then in 
the final similarity, camera and orientation similarities are 
subtracted from vehicle similarity to reduce the bias [45]. Given 
the initial ranking based on similarities, several re-ranking 
methods have been introduced to improve accuracy, such as the 
K-reciprocal nearest neighbor method, that favors gallery 
images having a similar set of k nearest neighbors to the query 
image [43]. 

III. MTMC VEHICLE TRACKING 
A high-level overview of MTMC process is shown in Fig. 1. 
Video streams are fed into a one-phase (A) or a two-phase (B) 
tracker, which both provide bounding boxes, re-id features, and 
class confidence levels. Tracking algorithms (e.g. DeepSORT) 
generate a trajectory when no more bounding boxes are 
appended to it for a given interval of frames [37]. Trajectory 
filtering is a camera-specific step, when stationary, too noisy, 
or unnecessary trajectories, e.g. those containing pedestrians or 
off-road vehicles, are discarded. When a single-camera 
trajectory is finalized, it is matched with trajectories on other 

Figure 1. Overview of the MTMC tracking process using one-phase single-camera tracking (A) or a two-phase one (B). The yellow trajectory 
is an erroneous detection; thus, it is filtered out in the single-camera process. 
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to the discipline of computer vision. 

B. Computer Vision 
Most solutions for MOT can be categorized as either one-phase 
or two-phase approaches. Two-phase methods first run object 
detection to get the bounding boxes, then extract (re-id) features 
of the detected objects. For the association step the SORT [2] 
method uses Kalman filter [10] to predict object locations and 
computes the overlap with detected objects. The matching is 
performed with the Hungarian algorithm [13], with the nodes 
of the graph being the bounding boxes on neighboring frames. 
The IOU tracker [3], on the other hand, does the matching based 
entirely on the overlaps of bounding boxes, without the use of 
the Kalman filter, thus reaching a higher frame rate. 

To improve tracking, some two-phase methods, such as 
DeepSORT [37] - an improved version of SORT, use deep 
learning to extract re-id features of the detected objects. The re-
id features and the IOU (intersection over union) of bounding 
boxes are used to compute a cost matrix, which is utilized to do 
the linking task using Kalman filter and the Hungarian 
algorithm. This approach delivers decent performance in 
MOTA (multi-object tracking accuracy), however, the two 
different deep learning models (for object detection and re-id 
embedding) do not share architecture and, as the networks are 
run sequentially, the total inference time is the sum of the 
individual execution times. Moreover, in crowded scenes, the 
re-id network must be run separately for tens of bounding 
boxes, further increasing the total running time. 

One-phase approaches merge the object detection and re-id 
embedding phases into a single network, thus, reaching real-
time or near real-time execution time. The JDE (Joint Detection 

and Embedding) [34] tracker uses a FPN (Feature Pyramid 
Network) [16] built on a Yolov3 [5] backbone. The prediction 
heads on top of the FPN produce objectness scores, box offset 
and box size for each anchor and location while also yielding 
the re-id features. The recently proposed FairMOT [42] tracker 
eliminates anchors and seeks to strike a balance between 
accurate detection and re-id features. The prediction head is 
built on a modified DLA (Deep Layer Aggregation) [41] 
network on top of a ResNet-34 [7]. The network processes over 
25 frames per second on multiple benchmarks [42]. 

The extraction of re-id features is a crucial part of MOT 
methods [34], [37], [42]. On the one hand, one-phase trackers 
such as JDE or FairMOT learn embeddings together with 
detection by utilizing cross entropy loss or variations of triplet 
loss [34], [42]. As video datasets with bounding box and 
identity annotations are scarce, weakly supervised learning was 
introduced, utilizing images with bounding box annotations, 
and treating transformed variants of the same objects as the 
same identity [42]. On the other hand, in a two-phase MOT 
(scenario B in Figure 1), a separate re-id model is trained for 
extracting accurate embeddings. Commonly used models for 
this purpose are IBN-net variants with a ResNet [7] or ResNeXt 
[38] backbone. Zhu et al trained three models for extracting 
features describing the vehicle, camera, and orientation, then in 
the final similarity, camera and orientation similarities are 
subtracted from vehicle similarity to reduce the bias [45]. Given 
the initial ranking based on similarities, several re-ranking 
methods have been introduced to improve accuracy, such as the 
K-reciprocal nearest neighbor method, that favors gallery 
images having a similar set of k nearest neighbors to the query 
image [43]. 

III. MTMC VEHICLE TRACKING 
A high-level overview of MTMC process is shown in Fig. 1. 
Video streams are fed into a one-phase (A) or a two-phase (B) 
tracker, which both provide bounding boxes, re-id features, and 
class confidence levels. Tracking algorithms (e.g. DeepSORT) 
generate a trajectory when no more bounding boxes are 
appended to it for a given interval of frames [37]. Trajectory 
filtering is a camera-specific step, when stationary, too noisy, 
or unnecessary trajectories, e.g. those containing pedestrians or 
off-road vehicles, are discarded. When a single-camera 
trajectory is finalized, it is matched with trajectories on other 

Figure 1. Overview of the MTMC tracking process using one-phase single-camera tracking (A) or a two-phase one (B). The yellow trajectory 
is an erroneous detection; thus, it is filtered out in the single-camera process. 

Fig. 1.: Overview of the MTMC tracking process using one-phase single-camera tracking (A) or a two-phase one (B). The yellow trajectory is an 
erroneous detection; thus, it is filtered out in the single-camera process.
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following control directly affects vehicle performance. In 
practical driving, drivers usually predict the behavior of 
vehicles in the adjacent lane before modulating the driving 
strategy of the host vehicle [6]. Prediction of lane change 
maneuvers intended by the driver is solved by an artificial 
neural network with fusing features modeling the 
environmental situation [14]. The characterization of vehicles’ 
behavior based on their velocities can be modelled by 
information theory [1]. A vehicle behavior analysis system can 
be used in traffic jams and under complex weather conditions 
[26]. To analyze the behavior of vehicles we need determine the 
static and dynamic features of vehicles in videos, which belongs 
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time or near real-time execution time. The JDE (Joint Detection 

and Embedding) [34] tracker uses a FPN (Feature Pyramid 
Network) [16] built on a Yolov3 [5] backbone. The prediction 
heads on top of the FPN produce objectness scores, box offset 
and box size for each anchor and location while also yielding 
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eliminates anchors and seeks to strike a balance between 
accurate detection and re-id features. The prediction head is 
built on a modified DLA (Deep Layer Aggregation) [41] 
network on top of a ResNet-34 [7]. The network processes over 
25 frames per second on multiple benchmarks [42]. 
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and treating transformed variants of the same objects as the 
same identity [42]. On the other hand, in a two-phase MOT 
(scenario B in Figure 1), a separate re-id model is trained for 
extracting accurate embeddings. Commonly used models for 
this purpose are IBN-net variants with a ResNet [7] or ResNeXt 
[38] backbone. Zhu et al trained three models for extracting 
features describing the vehicle, camera, and orientation, then in 
the final similarity, camera and orientation similarities are 
subtracted from vehicle similarity to reduce the bias [45]. Given 
the initial ranking based on similarities, several re-ranking 
methods have been introduced to improve accuracy, such as the 
K-reciprocal nearest neighbor method, that favors gallery 
images having a similar set of k nearest neighbors to the query 
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A high-level overview of MTMC process is shown in Fig. 1. 
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tracker, which both provide bounding boxes, re-id features, and 
class confidence levels. Tracking algorithms (e.g. DeepSORT) 
generate a trajectory when no more bounding boxes are 
appended to it for a given interval of frames [37]. Trajectory 
filtering is a camera-specific step, when stationary, too noisy, 
or unnecessary trajectories, e.g. those containing pedestrians or 
off-road vehicles, are discarded. When a single-camera 
trajectory is finalized, it is matched with trajectories on other 

Figure 1. Overview of the MTMC tracking process using one-phase single-camera tracking (A) or a two-phase one (B). The yellow trajectory 
is an erroneous detection; thus, it is filtered out in the single-camera process. 86 
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cameras to create multi-camera tracklets. This step is usually 
done by clustering the mean feature vectors of tracklets [17]. 

Multi-target multi-camera tracking has been mostly studied 
as an offline task. For example, the test dataset on Track 3 of 
the AI City challenge [22] contains 20 minutes of traffic videos 
from 6 non-overlapping cameras. Many solutions first ran MOT 
on all cameras, and when all trajectories were available, multi-
camera trajectory clustering was deployed [17], [40]. As the 
locations of cameras were available, spatial-temporal 
constraints were considered, which greatly reduced the number 
of possible trajectory matchings. If such constraints are not 
available, the inter-camera matching can only be done based on 
vehicle appearance, which becomes increasingly difficult with 
the growth of the dataset.  

Commonly used MOT systems operate in an online manner  
[3], [34], [37], [42]. In online MTMC, when a single-camera 
trajectory is generated, it should be immediately connected to 
an existing multi-camera tracklet or used to initialize a new one. 
The exact details of this operation heavily depend on the spatial-
temporal constraints based on cameras. State-of-the-art single-
camera trackers (e.g. FairMOT) also achieve real-time tracking, 
reaching 25-30 frames per second on the MOT15, MOT16, and 
MOT17 benchmarks [42]. However, real-time MTMC would 
require cameras to be well synchronized, and a new vehicle 
appearing on a camera to be matched with trajectories (or even 
newly appearing vehicles) from other cameras immediately as 
it is detected, which would likely deteriorate MTMC accuracy. 
However, we still consider the running time of the system, 
including the extraction of static and dynamic features, as it is 
preferable to be able to process video streams with at least the 
same speed as they are generated (even if the tracking and 
extraction do not run strictly in a real-time manner). 

IV. MTMC VEHICLE TRACKING USING HYBRID RE-ID 

A. Re-id model 
For training re-id models, huge datasets, containing multiple 
images of the same vehicle identities are available (see Table 1) 
in contrast to the case of one-phase trackers described 
previously. The VehicleX [39] rendering engine also comes 
handy in training state-of-the-art re-id models. Firstly, for 
training an orientation model in the commonly used VOC 
approach, a dataset annotated with vehicle orientation labels is 
generated using VehicleX, as creating a real-world dataset 
containing such labels would require tremendous amount of 
work. Moreover, extending the dataset with artificial images 
from VehicleX can alone improve the quality of the features 
[22]. 

 
Table 1. Vehicle re-identification datasets 

Dataset #Bboxes #Identities 
VRIC [11], [35]  60K 5622 

CityFlow(v2) [33] 313K 880 
VeRi-776 [19] 50K 776 
VeRi-Wild [20] 416K 40K 
VehicleID [18] 221K 26K 
VehicleX [39] ∞ 1362 

 

Figure 2. Hierarchy of static and dynamic attributes of vehicles; solid 
line boxes represent the top level 

B. Static and Dynamic attributes 
Fig. 2 shows the set of dynamic and static attributes that are 
associated with each detected object. Each of these attributes 
could be calculated from the bounding box directly, or we could 
exploit the re-id features, as those are already computed and 
should be good representations of the objects. 

Extracting static and dynamic characteristics of vehicles is 
generally the output of the annotation process; however, we 
propose to feed this information back into the MTMC system 
in order to improve tracking and trajectory matching. Since 
dynamic features are time dependent, it is required to extract 
them for all bounding boxes of the object during their progress 
in front of the camera. Overlapping and well synchronized 
cameras allow to compensate for false negatives; otherwise, 
they are replaced with the attributes extracted in neighboring 
frames. In an ideal situation, static features are also calculated 
for all bounding boxes, but this is not necessary, because they 
are constant for the entire trajectory. There are essentially two 
ways to determine static features: 

• Weighted majority vote of frame-by-frame extraction 
• Mean of best (high confidence, close to camera) 

detections 
Fig. 3 proposes multiple scenarios for extracting static 

features. The features can be determined by reusing the re-id 
features, either by feeding them into a single NN, that has a 
divided prediction head for each task (C), or by training one 
classifier for each static feature (E). These classifiers could be 
NNs, SVMs, GBMs or even random forests. In scenarios D and 
F, the region of interests (ROIs) from cropped bounding boxes 
are fed into either a single CNN with a stacked prediction head 
(D) or into separate CNNs (F). Most likely, scenario F provides 

86 
 

3 

cameras to create multi-camera tracklets. This step is usually 
done by clustering the mean feature vectors of tracklets [17]. 

Multi-target multi-camera tracking has been mostly studied 
as an offline task. For example, the test dataset on Track 3 of 
the AI City challenge [22] contains 20 minutes of traffic videos 
from 6 non-overlapping cameras. Many solutions first ran MOT 
on all cameras, and when all trajectories were available, multi-
camera trajectory clustering was deployed [17], [40]. As the 
locations of cameras were available, spatial-temporal 
constraints were considered, which greatly reduced the number 
of possible trajectory matchings. If such constraints are not 
available, the inter-camera matching can only be done based on 
vehicle appearance, which becomes increasingly difficult with 
the growth of the dataset.  

Commonly used MOT systems operate in an online manner  
[3], [34], [37], [42]. In online MTMC, when a single-camera 
trajectory is generated, it should be immediately connected to 
an existing multi-camera tracklet or used to initialize a new one. 
The exact details of this operation heavily depend on the spatial-
temporal constraints based on cameras. State-of-the-art single-
camera trackers (e.g. FairMOT) also achieve real-time tracking, 
reaching 25-30 frames per second on the MOT15, MOT16, and 
MOT17 benchmarks [42]. However, real-time MTMC would 
require cameras to be well synchronized, and a new vehicle 
appearing on a camera to be matched with trajectories (or even 
newly appearing vehicles) from other cameras immediately as 
it is detected, which would likely deteriorate MTMC accuracy. 
However, we still consider the running time of the system, 
including the extraction of static and dynamic features, as it is 
preferable to be able to process video streams with at least the 
same speed as they are generated (even if the tracking and 
extraction do not run strictly in a real-time manner). 
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For training re-id models, huge datasets, containing multiple 
images of the same vehicle identities are available (see Table 1) 
in contrast to the case of one-phase trackers described 
previously. The VehicleX [39] rendering engine also comes 
handy in training state-of-the-art re-id models. Firstly, for 
training an orientation model in the commonly used VOC 
approach, a dataset annotated with vehicle orientation labels is 
generated using VehicleX, as creating a real-world dataset 
containing such labels would require tremendous amount of 
work. Moreover, extending the dataset with artificial images 
from VehicleX can alone improve the quality of the features 
[22]. 
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could be calculated from the bounding box directly, or we could 
exploit the re-id features, as those are already computed and 
should be good representations of the objects. 

Extracting static and dynamic characteristics of vehicles is 
generally the output of the annotation process; however, we 
propose to feed this information back into the MTMC system 
in order to improve tracking and trajectory matching. Since 
dynamic features are time dependent, it is required to extract 
them for all bounding boxes of the object during their progress 
in front of the camera. Overlapping and well synchronized 
cameras allow to compensate for false negatives; otherwise, 
they are replaced with the attributes extracted in neighboring 
frames. In an ideal situation, static features are also calculated 
for all bounding boxes, but this is not necessary, because they 
are constant for the entire trajectory. There are essentially two 
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features, either by feeding them into a single NN, that has a 
divided prediction head for each task (C), or by training one 
classifier for each static feature (E). These classifiers could be 
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F, the region of interests (ROIs) from cropped bounding boxes 
are fed into either a single CNN with a stacked prediction head 
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following control directly affects vehicle performance. In 
practical driving, drivers usually predict the behavior of 
vehicles in the adjacent lane before modulating the driving 
strategy of the host vehicle [6]. Prediction of lane change 
maneuvers intended by the driver is solved by an artificial 
neural network with fusing features modeling the 
environmental situation [14]. The characterization of vehicles’ 
behavior based on their velocities can be modelled by 
information theory [1]. A vehicle behavior analysis system can 
be used in traffic jams and under complex weather conditions 
[26]. To analyze the behavior of vehicles we need determine the 
static and dynamic features of vehicles in videos, which belongs 
to the discipline of computer vision. 

B. Computer Vision 
Most solutions for MOT can be categorized as either one-phase 
or two-phase approaches. Two-phase methods first run object 
detection to get the bounding boxes, then extract (re-id) features 
of the detected objects. For the association step the SORT [2] 
method uses Kalman filter [10] to predict object locations and 
computes the overlap with detected objects. The matching is 
performed with the Hungarian algorithm [13], with the nodes 
of the graph being the bounding boxes on neighboring frames. 
The IOU tracker [3], on the other hand, does the matching based 
entirely on the overlaps of bounding boxes, without the use of 
the Kalman filter, thus reaching a higher frame rate. 

To improve tracking, some two-phase methods, such as 
DeepSORT [37] - an improved version of SORT, use deep 
learning to extract re-id features of the detected objects. The re-
id features and the IOU (intersection over union) of bounding 
boxes are used to compute a cost matrix, which is utilized to do 
the linking task using Kalman filter and the Hungarian 
algorithm. This approach delivers decent performance in 
MOTA (multi-object tracking accuracy), however, the two 
different deep learning models (for object detection and re-id 
embedding) do not share architecture and, as the networks are 
run sequentially, the total inference time is the sum of the 
individual execution times. Moreover, in crowded scenes, the 
re-id network must be run separately for tens of bounding 
boxes, further increasing the total running time. 

One-phase approaches merge the object detection and re-id 
embedding phases into a single network, thus, reaching real-
time or near real-time execution time. The JDE (Joint Detection 

and Embedding) [34] tracker uses a FPN (Feature Pyramid 
Network) [16] built on a Yolov3 [5] backbone. The prediction 
heads on top of the FPN produce objectness scores, box offset 
and box size for each anchor and location while also yielding 
the re-id features. The recently proposed FairMOT [42] tracker 
eliminates anchors and seeks to strike a balance between 
accurate detection and re-id features. The prediction head is 
built on a modified DLA (Deep Layer Aggregation) [41] 
network on top of a ResNet-34 [7]. The network processes over 
25 frames per second on multiple benchmarks [42]. 

The extraction of re-id features is a crucial part of MOT 
methods [34], [37], [42]. On the one hand, one-phase trackers 
such as JDE or FairMOT learn embeddings together with 
detection by utilizing cross entropy loss or variations of triplet 
loss [34], [42]. As video datasets with bounding box and 
identity annotations are scarce, weakly supervised learning was 
introduced, utilizing images with bounding box annotations, 
and treating transformed variants of the same objects as the 
same identity [42]. On the other hand, in a two-phase MOT 
(scenario B in Figure 1), a separate re-id model is trained for 
extracting accurate embeddings. Commonly used models for 
this purpose are IBN-net variants with a ResNet [7] or ResNeXt 
[38] backbone. Zhu et al trained three models for extracting 
features describing the vehicle, camera, and orientation, then in 
the final similarity, camera and orientation similarities are 
subtracted from vehicle similarity to reduce the bias [45]. Given 
the initial ranking based on similarities, several re-ranking 
methods have been introduced to improve accuracy, such as the 
K-reciprocal nearest neighbor method, that favors gallery 
images having a similar set of k nearest neighbors to the query 
image [43]. 

III. MTMC VEHICLE TRACKING 
A high-level overview of MTMC process is shown in Fig. 1. 
Video streams are fed into a one-phase (A) or a two-phase (B) 
tracker, which both provide bounding boxes, re-id features, and 
class confidence levels. Tracking algorithms (e.g. DeepSORT) 
generate a trajectory when no more bounding boxes are 
appended to it for a given interval of frames [37]. Trajectory 
filtering is a camera-specific step, when stationary, too noisy, 
or unnecessary trajectories, e.g. those containing pedestrians or 
off-road vehicles, are discarded. When a single-camera 
trajectory is finalized, it is matched with trajectories on other 

Figure 1. Overview of the MTMC tracking process using one-phase single-camera tracking (A) or a two-phase one (B). The yellow trajectory 
is an erroneous detection; thus, it is filtered out in the single-camera process. 
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cameras to create multi-camera tracklets. This step is usually 
done by clustering the mean feature vectors of tracklets [17]. 

Multi-target multi-camera tracking has been mostly studied 
as an offline task. For example, the test dataset on Track 3 of 
the AI City challenge [22] contains 20 minutes of traffic videos 
from 6 non-overlapping cameras. Many solutions first ran MOT 
on all cameras, and when all trajectories were available, multi-
camera trajectory clustering was deployed [17], [40]. As the 
locations of cameras were available, spatial-temporal 
constraints were considered, which greatly reduced the number 
of possible trajectory matchings. If such constraints are not 
available, the inter-camera matching can only be done based on 
vehicle appearance, which becomes increasingly difficult with 
the growth of the dataset.  

Commonly used MOT systems operate in an online manner  
[3], [34], [37], [42]. In online MTMC, when a single-camera 
trajectory is generated, it should be immediately connected to 
an existing multi-camera tracklet or used to initialize a new one. 
The exact details of this operation heavily depend on the spatial-
temporal constraints based on cameras. State-of-the-art single-
camera trackers (e.g. FairMOT) also achieve real-time tracking, 
reaching 25-30 frames per second on the MOT15, MOT16, and 
MOT17 benchmarks [42]. However, real-time MTMC would 
require cameras to be well synchronized, and a new vehicle 
appearing on a camera to be matched with trajectories (or even 
newly appearing vehicles) from other cameras immediately as 
it is detected, which would likely deteriorate MTMC accuracy. 
However, we still consider the running time of the system, 
including the extraction of static and dynamic features, as it is 
preferable to be able to process video streams with at least the 
same speed as they are generated (even if the tracking and 
extraction do not run strictly in a real-time manner). 

IV. MTMC VEHICLE TRACKING USING HYBRID RE-ID 

A. Re-id model 
For training re-id models, huge datasets, containing multiple 
images of the same vehicle identities are available (see Table 1) 
in contrast to the case of one-phase trackers described 
previously. The VehicleX [39] rendering engine also comes 
handy in training state-of-the-art re-id models. Firstly, for 
training an orientation model in the commonly used VOC 
approach, a dataset annotated with vehicle orientation labels is 
generated using VehicleX, as creating a real-world dataset 
containing such labels would require tremendous amount of 
work. Moreover, extending the dataset with artificial images 
from VehicleX can alone improve the quality of the features 
[22]. 
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B. Static and Dynamic attributes 
Fig. 2 shows the set of dynamic and static attributes that are 
associated with each detected object. Each of these attributes 
could be calculated from the bounding box directly, or we could 
exploit the re-id features, as those are already computed and 
should be good representations of the objects. 

Extracting static and dynamic characteristics of vehicles is 
generally the output of the annotation process; however, we 
propose to feed this information back into the MTMC system 
in order to improve tracking and trajectory matching. Since 
dynamic features are time dependent, it is required to extract 
them for all bounding boxes of the object during their progress 
in front of the camera. Overlapping and well synchronized 
cameras allow to compensate for false negatives; otherwise, 
they are replaced with the attributes extracted in neighboring 
frames. In an ideal situation, static features are also calculated 
for all bounding boxes, but this is not necessary, because they 
are constant for the entire trajectory. There are essentially two 
ways to determine static features: 

• Weighted majority vote of frame-by-frame extraction 
• Mean of best (high confidence, close to camera) 

detections 
Fig. 3 proposes multiple scenarios for extracting static 

features. The features can be determined by reusing the re-id 
features, either by feeding them into a single NN, that has a 
divided prediction head for each task (C), or by training one 
classifier for each static feature (E). These classifiers could be 
NNs, SVMs, GBMs or even random forests. In scenarios D and 
F, the region of interests (ROIs) from cropped bounding boxes 
are fed into either a single CNN with a stacked prediction head 
(D) or into separate CNNs (F). Most likely, scenario F provides 
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boxes represent the top level
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cameras to create multi-camera tracklets. This step is usually 
done by clustering the mean feature vectors of tracklets [17]. 

Multi-target multi-camera tracking has been mostly studied 
as an offline task. For example, the test dataset on Track 3 of 
the AI City challenge [22] contains 20 minutes of traffic videos 
from 6 non-overlapping cameras. Many solutions first ran MOT 
on all cameras, and when all trajectories were available, multi-
camera trajectory clustering was deployed [17], [40]. As the 
locations of cameras were available, spatial-temporal 
constraints were considered, which greatly reduced the number 
of possible trajectory matchings. If such constraints are not 
available, the inter-camera matching can only be done based on 
vehicle appearance, which becomes increasingly difficult with 
the growth of the dataset.  

Commonly used MOT systems operate in an online manner  
[3], [34], [37], [42]. In online MTMC, when a single-camera 
trajectory is generated, it should be immediately connected to 
an existing multi-camera tracklet or used to initialize a new one. 
The exact details of this operation heavily depend on the spatial-
temporal constraints based on cameras. State-of-the-art single-
camera trackers (e.g. FairMOT) also achieve real-time tracking, 
reaching 25-30 frames per second on the MOT15, MOT16, and 
MOT17 benchmarks [42]. However, real-time MTMC would 
require cameras to be well synchronized, and a new vehicle 
appearing on a camera to be matched with trajectories (or even 
newly appearing vehicles) from other cameras immediately as 
it is detected, which would likely deteriorate MTMC accuracy. 
However, we still consider the running time of the system, 
including the extraction of static and dynamic features, as it is 
preferable to be able to process video streams with at least the 
same speed as they are generated (even if the tracking and 
extraction do not run strictly in a real-time manner). 
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features. The features can be determined by reusing the re-id 
features, either by feeding them into a single NN, that has a 
divided prediction head for each task (C), or by training one 
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F, the region of interests (ROIs) from cropped bounding boxes 
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constraints were considered, which greatly reduced the number 
of possible trajectory matchings. If such constraints are not 
available, the inter-camera matching can only be done based on 
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the most accurate predictions, however, it requires multiple 
networks to run for each cropped bounding box on all frames. 
The process can be optimized by running the models on only 
some designated Bboxes, after finalizing a single-camera 
trajectory. In scenarios C and E, if the static features are 
determined using the mean re-id features, the inference runs 
once per trajectory, which is the most lightweight solution. 

C. Fusion of features 
Hybrid re-id features are created in two phases, first during 
single-camera tracking, then during multi-camera trajectory 
matching. In the former case, temporal static features are 
merged with the re-id features of bounding boxes; while in the 
latter, the finalized static features are merged with the mean re-
id features. In case of well synchronized cameras, dynamic 
attributes could also be used in the trajectory matching, but we 
do not consider this situation. Dynamic attributes such as brake 
light on/off could help filtering out candidate bounding boxes 
during the association step. In case of architectures D and F 
(Fig. 3), dropping the prediction layers results in a feature 
extractor network, whose features then can be merged with the 
temporal re-id features. The same holds for trajectory matching, 
as methods C and E deliver the interpretable static attributes 
(e.g. license plate color, differentiating sign), which then can be 
used for filtering purposes. Whereas following architectures D 
or F gives latent attributes. 
 Fig. 4 shows the multi-target multi-camera vehicle tracking 
using hybrid re-id features. It is basically the same process as 
shown in Fig. 1, and therefore we grayed the closely related but 
less relevant elements (regarding hybrid re-id features), while 
omitted the non-related ones. The first part of the process is a 
two-phase single-camera tracking, which is followed by the  
multi-camera trajectory filtering and matching. As it can be 
seen in Fig. 4, hybrid re-id features are used in both; highlighted 
with blue boxes. Furthermore, classification of basic re-id and 
mean re-id features produces interpretable attributes that are 
integrated into the filtering approach; highlighted with green 
boxes. In case of multi-camera trajectory filtering, these 
attributes are exclusively static attributes. What is more 
interesting is that the matching step in single-camera tracking 
could benefit from the dynamic attributes as well (as mentioned 
above). We call the dynamic and static attributes on the 
bounding box level together as temporal attributes. 
 

D. Style transfer 
Image properties like lighting conditions and color distribution 
heavily depend on the camera, thus, when the images used for 
training and testing a re-id network were captured by different 
cameras, feature vector quality decreases. The domain bias is 
even more obvious between images generated by VehicleX and 
real-world images. For the domain adaptation of images 
SPGAN [4] was used in practice, however SPGAN was 
designed for images containing people, thus a new network, 
VTGAN [24] was proposed for vehicles. MixStyle is another 
domain generalization technique, which does not require to 
modify training images (in contrast to GAN methods). It was 
used for training a vehicle re-id baseline by Huyn et al [9]. 
MixStyle [44] mixes features at the bottom layers of a CNN 
between instances from different domains, thus improving 
domain generalization. MixStyle takes an input batch 𝑥𝑥 and 
shuffles it to create 𝑥𝑥". Then standardizes 𝑥𝑥, and scales back 
according to the mixed statistics: 

MixStyle(𝑥𝑥) = γ!"# ⋅
𝑥𝑥 − µ(𝑥𝑥)
σ(𝑥𝑥) + β!"# (1) 

where 
γ!"# = λσ(𝑥𝑥) + (1 − λ)σ(𝑥𝑥") (2) 
β!"# = λµ(x) + (1 − λ)µ(𝑥𝑥") (3) 

and 𝜆𝜆 is a vector, whose elements are sampled from a 
Beta(α, α) distribution. If possible, in 𝑥𝑥" and 𝑥𝑥, samples at the 
same positions are from different domains, thus mixing their 
feature distributions. Two viable options for re-using multiple 
public re-id datasets are: inserting MixStyle into our network or 
train a GAN variant (like VTGAN) for each foreign dataset and 
transform its images into the style of our domain. 

E. Loss function 
Choosing appropriate loss functions is critical in training re-id 
networks. A common technique is to use a weighted sum of two 
types of losses: id loss and metric loss. The id loss is measured 
at the classification layer of the network, while the metric loss 
is at the feature extraction layer, and its goal is to make features 
of the same id converge and those from different classes 
diverge. Triplet loss [25], center loss [36], circle loss [27] and 
supervised contrastive loss [12] are commonly used as metric 
losses, while cross entropy is a typical id loss. The weight of id 
loss and metric loss in the final loss formula can be adapted 

Figure 3. Different scenarios for extracting static features: feeding re-id features into a single fully connected network (C), classifying 
bounding boxes with a single CNN (D), using separate classifiers to extract features from re-id vectors (E), running separate classifiers for 
cropped bounding boxes (F). 
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during the training (in contrast to using constant values), as 
proposed in [9]. 

V. TRAJECTORY FILTERING AND MATCHING 
The trajectory filtering step (applied to single-camera 
trajectories) depends on the constellation of cameras. We 
consider a crossroad with four cameras pointing inwards. Such 
a scenario is shown in Fig. 5. We define zones as proposed by 
Hsu et al. [8]. If a single-camera trajectory does not start and 
end in one of the zones or is stationary for a long period (false 
prediction), then it can be filtered out. When matching 
trajectories across cameras, only those have to be considered 
that start and end in the same zone. The constraints, of course, 
need to be adjusted to the field of view of the cameras, because 
it is possible that not all cameras have a view of all zones. 
Another possible constellation is a series of cameras on a 
highway, with two zones (one direction) or four (two 
directional) and possible additional ones if the camera has a 
view on a highway ramp. 
 The multi-camera trajectory matching step has a strict 
temporal constraint in the crossroad scenario. If the video 
streams from cameras are synchronized, or the delays are 
known, almost exact timestamps are available about vehicles 
entering and leaving zones, thus the trajectory matching step 
becomes a simple association step, like the single-camera 
scenario. 

 

Figure 5. Common camera constellation at a crossroad 

VI. CONCLUSION 
In this paper we elaborated an approach for multi-target multi-
camera tracking using hybrid re-id features. The hybrid re-id 
features are created from static attributes and (basic) re-id 
features. However, this requires a two-phase tracking method, 
which is computationally more expensive than one-phase ones; 
furthermore, the calculation of static attributes comes with 
additional computation cost. We propose multiple scenarios to 
calculate the static attributes, from which the most appropriate 
one can be selected, based on the requirement of the task, i.e. 
higher accuracy or higher frame rate. 

Our research is currently at the stage of gathering real-world 
data, which includes multi-camera scenes at crossroads and 
highways. After the data is collected and cleaned, the proposed 
methods will be thoroughly tested and evaluated. 

ACKNOWLEDGMENT 
The research was supported by the Institute of Transport 
Sciences (KTI) within the Innovative Mobility Program. 

The research was supported by the Ministry of Innovation 
and Technology NRDI Office within the framework of the 
Autonomous Systems National Laboratory Program. 

REFERENCES 

[1] Aquino, A. L., Cavalcante, T. S., Almeida, E. S., Frery, A. C., 
& Rosso, O. A. (2015). Characterization of vehicle behavior 
with information theory. The European Physical Journal B, 
88(10), 1-12.  
doi: https://doi.org/10.1140/epjb/e2015-60384-x 

[2] Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016, 
September). Simple online and realtime tracking. In 2016 
IEEE international conference on image processing (ICIP) 
(pp. 3464-3468). IEEE.  
doi: https://doi.org/10.1109/icip.2016.7533003 

[3] Bochinski, E., Eiselein, V., & Sikora, T. (2017, August). High-
speed tracking-by-detection without using image information. 
In 2017 14th IEEE International Conference on Advanced 
Video and Signal Based Surveillance (AVSS) (pp. 1-6). IEEE. 
doi: https://doi.org/10.1109/avss.2017.8078516 

Figure 4. Overview of MTMC vehicle tracking using hybrid re-id features. Static attributes and basic re-id features are fused at two parts; 
highlighted with blue boxes. Classification of basic re-id features gives interpretable attributes for filtering; highlighted with green boxes. 
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the most accurate predictions, however, it requires multiple 
networks to run for each cropped bounding box on all frames. 
The process can be optimized by running the models on only 
some designated Bboxes, after finalizing a single-camera 
trajectory. In scenarios C and E, if the static features are 
determined using the mean re-id features, the inference runs 
once per trajectory, which is the most lightweight solution. 

C. Fusion of features 
Hybrid re-id features are created in two phases, first during 
single-camera tracking, then during multi-camera trajectory 
matching. In the former case, temporal static features are 
merged with the re-id features of bounding boxes; while in the 
latter, the finalized static features are merged with the mean re-
id features. In case of well synchronized cameras, dynamic 
attributes could also be used in the trajectory matching, but we 
do not consider this situation. Dynamic attributes such as brake 
light on/off could help filtering out candidate bounding boxes 
during the association step. In case of architectures D and F 
(Fig. 3), dropping the prediction layers results in a feature 
extractor network, whose features then can be merged with the 
temporal re-id features. The same holds for trajectory matching, 
as methods C and E deliver the interpretable static attributes 
(e.g. license plate color, differentiating sign), which then can be 
used for filtering purposes. Whereas following architectures D 
or F gives latent attributes. 
 Fig. 4 shows the multi-target multi-camera vehicle tracking 
using hybrid re-id features. It is basically the same process as 
shown in Fig. 1, and therefore we grayed the closely related but 
less relevant elements (regarding hybrid re-id features), while 
omitted the non-related ones. The first part of the process is a 
two-phase single-camera tracking, which is followed by the  
multi-camera trajectory filtering and matching. As it can be 
seen in Fig. 4, hybrid re-id features are used in both; highlighted 
with blue boxes. Furthermore, classification of basic re-id and 
mean re-id features produces interpretable attributes that are 
integrated into the filtering approach; highlighted with green 
boxes. In case of multi-camera trajectory filtering, these 
attributes are exclusively static attributes. What is more 
interesting is that the matching step in single-camera tracking 
could benefit from the dynamic attributes as well (as mentioned 
above). We call the dynamic and static attributes on the 
bounding box level together as temporal attributes. 
 

D. Style transfer 
Image properties like lighting conditions and color distribution 
heavily depend on the camera, thus, when the images used for 
training and testing a re-id network were captured by different 
cameras, feature vector quality decreases. The domain bias is 
even more obvious between images generated by VehicleX and 
real-world images. For the domain adaptation of images 
SPGAN [4] was used in practice, however SPGAN was 
designed for images containing people, thus a new network, 
VTGAN [24] was proposed for vehicles. MixStyle is another 
domain generalization technique, which does not require to 
modify training images (in contrast to GAN methods). It was 
used for training a vehicle re-id baseline by Huyn et al [9]. 
MixStyle [44] mixes features at the bottom layers of a CNN 
between instances from different domains, thus improving 
domain generalization. MixStyle takes an input batch 𝑥𝑥 and 
shuffles it to create 𝑥𝑥". Then standardizes 𝑥𝑥, and scales back 
according to the mixed statistics: 

MixStyle(𝑥𝑥) = γ!"# ⋅
𝑥𝑥 − µ(𝑥𝑥)
σ(𝑥𝑥) + β!"# (1) 

where 
γ!"# = λσ(𝑥𝑥) + (1 − λ)σ(𝑥𝑥") (2) 
β!"# = λµ(x) + (1 − λ)µ(𝑥𝑥") (3) 

and 𝜆𝜆 is a vector, whose elements are sampled from a 
Beta(α, α) distribution. If possible, in 𝑥𝑥" and 𝑥𝑥, samples at the 
same positions are from different domains, thus mixing their 
feature distributions. Two viable options for re-using multiple 
public re-id datasets are: inserting MixStyle into our network or 
train a GAN variant (like VTGAN) for each foreign dataset and 
transform its images into the style of our domain. 

E. Loss function 
Choosing appropriate loss functions is critical in training re-id 
networks. A common technique is to use a weighted sum of two 
types of losses: id loss and metric loss. The id loss is measured 
at the classification layer of the network, while the metric loss 
is at the feature extraction layer, and its goal is to make features 
of the same id converge and those from different classes 
diverge. Triplet loss [25], center loss [36], circle loss [27] and 
supervised contrastive loss [12] are commonly used as metric 
losses, while cross entropy is a typical id loss. The weight of id 
loss and metric loss in the final loss formula can be adapted 

Figure 3. Different scenarios for extracting static features: feeding re-id features into a single fully connected network (C), classifying 
bounding boxes with a single CNN (D), using separate classifiers to extract features from re-id vectors (E), running separate classifiers for 
cropped bounding boxes (F). 

Fig. 3.: Different scenarios for extracting static features: feeding re-id features into a single fully connected network (C), classifying bounding boxes with 
a single CNN (D), using separate classifiers to extract features from re-id vectors (E), running separate classifiers for cropped bounding boxes (F).
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the most accurate predictions, however, it requires multiple 
networks to run for each cropped bounding box on all frames. 
The process can be optimized by running the models on only 
some designated Bboxes, after finalizing a single-camera 
trajectory. In scenarios C and E, if the static features are 
determined using the mean re-id features, the inference runs 
once per trajectory, which is the most lightweight solution. 

C. Fusion of features 
Hybrid re-id features are created in two phases, first during 
single-camera tracking, then during multi-camera trajectory 
matching. In the former case, temporal static features are 
merged with the re-id features of bounding boxes; while in the 
latter, the finalized static features are merged with the mean re-
id features. In case of well synchronized cameras, dynamic 
attributes could also be used in the trajectory matching, but we 
do not consider this situation. Dynamic attributes such as brake 
light on/off could help filtering out candidate bounding boxes 
during the association step. In case of architectures D and F 
(Fig. 3), dropping the prediction layers results in a feature 
extractor network, whose features then can be merged with the 
temporal re-id features. The same holds for trajectory matching, 
as methods C and E deliver the interpretable static attributes 
(e.g. license plate color, differentiating sign), which then can be 
used for filtering purposes. Whereas following architectures D 
or F gives latent attributes. 
 Fig. 4 shows the multi-target multi-camera vehicle tracking 
using hybrid re-id features. It is basically the same process as 
shown in Fig. 1, and therefore we grayed the closely related but 
less relevant elements (regarding hybrid re-id features), while 
omitted the non-related ones. The first part of the process is a 
two-phase single-camera tracking, which is followed by the  
multi-camera trajectory filtering and matching. As it can be 
seen in Fig. 4, hybrid re-id features are used in both; highlighted 
with blue boxes. Furthermore, classification of basic re-id and 
mean re-id features produces interpretable attributes that are 
integrated into the filtering approach; highlighted with green 
boxes. In case of multi-camera trajectory filtering, these 
attributes are exclusively static attributes. What is more 
interesting is that the matching step in single-camera tracking 
could benefit from the dynamic attributes as well (as mentioned 
above). We call the dynamic and static attributes on the 
bounding box level together as temporal attributes. 
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Image properties like lighting conditions and color distribution 
heavily depend on the camera, thus, when the images used for 
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same positions are from different domains, thus mixing their 
feature distributions. Two viable options for re-using multiple 
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train a GAN variant (like VTGAN) for each foreign dataset and 
transform its images into the style of our domain. 

E. Loss function 
Choosing appropriate loss functions is critical in training re-id 
networks. A common technique is to use a weighted sum of two 
types of losses: id loss and metric loss. The id loss is measured 
at the classification layer of the network, while the metric loss 
is at the feature extraction layer, and its goal is to make features 
of the same id converge and those from different classes 
diverge. Triplet loss [25], center loss [36], circle loss [27] and 
supervised contrastive loss [12] are commonly used as metric 
losses, while cross entropy is a typical id loss. The weight of id 
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86 
 

4 

the most accurate predictions, however, it requires multiple 
networks to run for each cropped bounding box on all frames. 
The process can be optimized by running the models on only 
some designated Bboxes, after finalizing a single-camera 
trajectory. In scenarios C and E, if the static features are 
determined using the mean re-id features, the inference runs 
once per trajectory, which is the most lightweight solution. 

C. Fusion of features 
Hybrid re-id features are created in two phases, first during 
single-camera tracking, then during multi-camera trajectory 
matching. In the former case, temporal static features are 
merged with the re-id features of bounding boxes; while in the 
latter, the finalized static features are merged with the mean re-
id features. In case of well synchronized cameras, dynamic 
attributes could also be used in the trajectory matching, but we 
do not consider this situation. Dynamic attributes such as brake 
light on/off could help filtering out candidate bounding boxes 
during the association step. In case of architectures D and F 
(Fig. 3), dropping the prediction layers results in a feature 
extractor network, whose features then can be merged with the 
temporal re-id features. The same holds for trajectory matching, 
as methods C and E deliver the interpretable static attributes 
(e.g. license plate color, differentiating sign), which then can be 
used for filtering purposes. Whereas following architectures D 
or F gives latent attributes. 
 Fig. 4 shows the multi-target multi-camera vehicle tracking 
using hybrid re-id features. It is basically the same process as 
shown in Fig. 1, and therefore we grayed the closely related but 
less relevant elements (regarding hybrid re-id features), while 
omitted the non-related ones. The first part of the process is a 
two-phase single-camera tracking, which is followed by the  
multi-camera trajectory filtering and matching. As it can be 
seen in Fig. 4, hybrid re-id features are used in both; highlighted 
with blue boxes. Furthermore, classification of basic re-id and 
mean re-id features produces interpretable attributes that are 
integrated into the filtering approach; highlighted with green 
boxes. In case of multi-camera trajectory filtering, these 
attributes are exclusively static attributes. What is more 
interesting is that the matching step in single-camera tracking 
could benefit from the dynamic attributes as well (as mentioned 
above). We call the dynamic and static attributes on the 
bounding box level together as temporal attributes. 
 

D. Style transfer 
Image properties like lighting conditions and color distribution 
heavily depend on the camera, thus, when the images used for 
training and testing a re-id network were captured by different 
cameras, feature vector quality decreases. The domain bias is 
even more obvious between images generated by VehicleX and 
real-world images. For the domain adaptation of images 
SPGAN [4] was used in practice, however SPGAN was 
designed for images containing people, thus a new network, 
VTGAN [24] was proposed for vehicles. MixStyle is another 
domain generalization technique, which does not require to 
modify training images (in contrast to GAN methods). It was 
used for training a vehicle re-id baseline by Huyn et al [9]. 
MixStyle [44] mixes features at the bottom layers of a CNN 
between instances from different domains, thus improving 
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Beta(α, α) distribution. If possible, in 𝑥𝑥" and 𝑥𝑥, samples at the 
same positions are from different domains, thus mixing their 
feature distributions. Two viable options for re-using multiple 
public re-id datasets are: inserting MixStyle into our network or 
train a GAN variant (like VTGAN) for each foreign dataset and 
transform its images into the style of our domain. 

E. Loss function 
Choosing appropriate loss functions is critical in training re-id 
networks. A common technique is to use a weighted sum of two 
types of losses: id loss and metric loss. The id loss is measured 
at the classification layer of the network, while the metric loss 
is at the feature extraction layer, and its goal is to make features 
of the same id converge and those from different classes 
diverge. Triplet loss [25], center loss [36], circle loss [27] and 
supervised contrastive loss [12] are commonly used as metric 
losses, while cross entropy is a typical id loss. The weight of id 
loss and metric loss in the final loss formula can be adapted 
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bounding boxes with a single CNN (D), using separate classifiers to extract features from re-id vectors (E), running separate classifiers for 
cropped bounding boxes (F). 
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the most accurate predictions, however, it requires multiple 
networks to run for each cropped bounding box on all frames. 
The process can be optimized by running the models on only 
some designated Bboxes, after finalizing a single-camera 
trajectory. In scenarios C and E, if the static features are 
determined using the mean re-id features, the inference runs 
once per trajectory, which is the most lightweight solution. 

C. Fusion of features 
Hybrid re-id features are created in two phases, first during 
single-camera tracking, then during multi-camera trajectory 
matching. In the former case, temporal static features are 
merged with the re-id features of bounding boxes; while in the 
latter, the finalized static features are merged with the mean re-
id features. In case of well synchronized cameras, dynamic 
attributes could also be used in the trajectory matching, but we 
do not consider this situation. Dynamic attributes such as brake 
light on/off could help filtering out candidate bounding boxes 
during the association step. In case of architectures D and F 
(Fig. 3), dropping the prediction layers results in a feature 
extractor network, whose features then can be merged with the 
temporal re-id features. The same holds for trajectory matching, 
as methods C and E deliver the interpretable static attributes 
(e.g. license plate color, differentiating sign), which then can be 
used for filtering purposes. Whereas following architectures D 
or F gives latent attributes. 
 Fig. 4 shows the multi-target multi-camera vehicle tracking 
using hybrid re-id features. It is basically the same process as 
shown in Fig. 1, and therefore we grayed the closely related but 
less relevant elements (regarding hybrid re-id features), while 
omitted the non-related ones. The first part of the process is a 
two-phase single-camera tracking, which is followed by the  
multi-camera trajectory filtering and matching. As it can be 
seen in Fig. 4, hybrid re-id features are used in both; highlighted 
with blue boxes. Furthermore, classification of basic re-id and 
mean re-id features produces interpretable attributes that are 
integrated into the filtering approach; highlighted with green 
boxes. In case of multi-camera trajectory filtering, these 
attributes are exclusively static attributes. What is more 
interesting is that the matching step in single-camera tracking 
could benefit from the dynamic attributes as well (as mentioned 
above). We call the dynamic and static attributes on the 
bounding box level together as temporal attributes. 
 

D. Style transfer 
Image properties like lighting conditions and color distribution 
heavily depend on the camera, thus, when the images used for 
training and testing a re-id network were captured by different 
cameras, feature vector quality decreases. The domain bias is 
even more obvious between images generated by VehicleX and 
real-world images. For the domain adaptation of images 
SPGAN [4] was used in practice, however SPGAN was 
designed for images containing people, thus a new network, 
VTGAN [24] was proposed for vehicles. MixStyle is another 
domain generalization technique, which does not require to 
modify training images (in contrast to GAN methods). It was 
used for training a vehicle re-id baseline by Huyn et al [9]. 
MixStyle [44] mixes features at the bottom layers of a CNN 
between instances from different domains, thus improving 
domain generalization. MixStyle takes an input batch 𝑥𝑥 and 
shuffles it to create 𝑥𝑥". Then standardizes 𝑥𝑥, and scales back 
according to the mixed statistics: 
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and 𝜆𝜆 is a vector, whose elements are sampled from a 
Beta(α, α) distribution. If possible, in 𝑥𝑥" and 𝑥𝑥, samples at the 
same positions are from different domains, thus mixing their 
feature distributions. Two viable options for re-using multiple 
public re-id datasets are: inserting MixStyle into our network or 
train a GAN variant (like VTGAN) for each foreign dataset and 
transform its images into the style of our domain. 

E. Loss function 
Choosing appropriate loss functions is critical in training re-id 
networks. A common technique is to use a weighted sum of two 
types of losses: id loss and metric loss. The id loss is measured 
at the classification layer of the network, while the metric loss 
is at the feature extraction layer, and its goal is to make features 
of the same id converge and those from different classes 
diverge. Triplet loss [25], center loss [36], circle loss [27] and 
supervised contrastive loss [12] are commonly used as metric 
losses, while cross entropy is a typical id loss. The weight of id 
loss and metric loss in the final loss formula can be adapted 

Figure 3. Different scenarios for extracting static features: feeding re-id features into a single fully connected network (C), classifying 
bounding boxes with a single CNN (D), using separate classifiers to extract features from re-id vectors (E), running separate classifiers for 
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86 
 

5 

during the training (in contrast to using constant values), as 
proposed in [9]. 

V. TRAJECTORY FILTERING AND MATCHING 
The trajectory filtering step (applied to single-camera 
trajectories) depends on the constellation of cameras. We 
consider a crossroad with four cameras pointing inwards. Such 
a scenario is shown in Fig. 5. We define zones as proposed by 
Hsu et al. [8]. If a single-camera trajectory does not start and 
end in one of the zones or is stationary for a long period (false 
prediction), then it can be filtered out. When matching 
trajectories across cameras, only those have to be considered 
that start and end in the same zone. The constraints, of course, 
need to be adjusted to the field of view of the cameras, because 
it is possible that not all cameras have a view of all zones. 
Another possible constellation is a series of cameras on a 
highway, with two zones (one direction) or four (two 
directional) and possible additional ones if the camera has a 
view on a highway ramp. 
 The multi-camera trajectory matching step has a strict 
temporal constraint in the crossroad scenario. If the video 
streams from cameras are synchronized, or the delays are 
known, almost exact timestamps are available about vehicles 
entering and leaving zones, thus the trajectory matching step 
becomes a simple association step, like the single-camera 
scenario. 

 

Figure 5. Common camera constellation at a crossroad 

VI. CONCLUSION 
In this paper we elaborated an approach for multi-target multi-
camera tracking using hybrid re-id features. The hybrid re-id 
features are created from static attributes and (basic) re-id 
features. However, this requires a two-phase tracking method, 
which is computationally more expensive than one-phase ones; 
furthermore, the calculation of static attributes comes with 
additional computation cost. We propose multiple scenarios to 
calculate the static attributes, from which the most appropriate 
one can be selected, based on the requirement of the task, i.e. 
higher accuracy or higher frame rate. 

Our research is currently at the stage of gathering real-world 
data, which includes multi-camera scenes at crossroads and 
highways. After the data is collected and cleaned, the proposed 
methods will be thoroughly tested and evaluated. 
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