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I. INTRODUCTION

IN recent years the techniques of big data have been
developing in industrial and commercial areas. Emerging

business requirements continually bring new challenges to
software and hardware architectures in the big data industry.
One of the most important fields is prediction which can
greatly help individuals and enterprises to make decisions.
Lambda architecture [1], [2], [3], [4] can help us achieve this
goal with its special construction. This architecture consists of
three layers: speed, service and batch layers. The speed layer
is responsible for real-time computation on streaming data and
the batch layer is in charge of batch computation on historical
big data. The service layer can provide services to users so one
can get computation results based on the latest and historical
data at the same time.

Lambda architecture has been deployed in various appli-
cations such as recommendation system [5], [6], anomaly
detection [7], [8], monitoring system [9] and so on. In this
paper it is used to predict the second-hand housing prices in
China where the second-hand housing transactions are usually
processed in trading agents. The sellers provide their housing
information to realtors of the agents who publish the second-
hand housing information on websites. The buyers can search
on websites to choose the interesting housings. The price
of the second-hand housing is a more attracting attribute
than other attributes. This paper designs and implements a
system to predict the second-hand housing price based on
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Lambda Architecture. The system can help realtors to publish
reasonable housing price and buyers to learn the current market
price. And it can also be used to study the price trend by
research institutions, and be used by bankers to evaluate the
price of mortgaged housing.

In [1] the similar problem has been studied and an architec-
ture named Alarea has been designed and applied successfully
in price prediction of real estate. In [1] the data of real estate
transactions on different categories from Spanish Ministry of
Development (2004-2016) is used in batch layer. And data
from Twitter real-time API is used in real-time layer. The
influence of sentiment(like tweets) on housing prediction has
been studied in [10], [11], [12]. In [13] and [14], real-time
sentiment analysis is particularly studied. Based on big data
technology, multiple data sources can be associated together,
and more accurate prediction can be provided from both
historical and real-time perspectives. Our research is very
similar to [1], but in the batch layer and real-time layer, our
system uses the same data source. In future research we will
consider to absorb other real-time factors and ingredients into
our existing system to improve the prediction effect.

The representative models of housing price prediction are
AVMs (Automated Valuation Models) [15]. The traditional
benchmark for AVMs is the hedonic model based on the theory
that the price of an asset is a function of its quantifiable
characteristics. Now instead of hedonic models most AVMs
use some type of ML technique [16], such as neural network,
decision tree, random forest, SVM regression and so on. In
this paper, kd(k dimensional) tree [17], [18] is used as the
prediction model in batch and real-time layers. Because kd
tree resides in memory after it is trained, it can also be used in
service layer to provide querying service. Compared to other
kNN(K Nearest Neighbor) related algorithms such as brute
kNN and ball tree [19], [20], kd tree has its advantages in
performance. Other models such as linear regression, neural
network, SVM and so on can also be used in in batch and real-
time layers. In experiment the performances of these models
are compared with kd tree.

Besides Lambda architecture, other architectures or systems
with reasonable techniques stack can achieve the same pre-
diction goal. Based on Kafka [21] and Flink [22], Kappa
architecture [23] can unify batch processing and real-time
computing. Alarea [1] can handle source data in different
formats. Compared with Lambda and Kappa architectures,
it has equivalent or better quality attributes, so it is very
attractive.

The rest of this paper is arranged by the following way.
In Section II the characteristics of Lambda architecture are
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described, and Kappa and Alarea architectures are briefly
introduced and analyzed. In Section III kNN-related models
are discussed and the housing data is briefly explored. In Sec-
tion IV-A the results of experiment are analyzed. It describes
the details of components in our system, discusses experiment
results and compares the performance and metrics of different
models. Lastly, the paper is concluded in Section VI.

II. RELATED ARCHITECTURES

A. Lambda architecture

Lambda Architecture is initiated by Nathan Marz [24].
There are three layers in this architecture. The names and
functions of the layers are described in Table I. The batch
layer is responsible for providing batch views based on the
master database. The speed layer executes fast and timely
computation that will compensate for high latency to serving
layer. This schema can also be depicted in Fig. 1 [24]. In
Fig. 1 the new data flows into two places. One direction is
to batch layer where the new data will be appended to the
master database so when next update the batch views will
contain the new data. The other direction is to speed layer
where the same new data will be accumulated in this layer
to produce real-time views before the next iteration of batch
views in serving layer. The functions of Lambda Architecture
in full can be summarized by these three equations:

batch view = function(all data)
real-time view = function(real-time view, new data)
query = function(batch view, real-time view)

TABLE I
THE NAMES AND FUNCTIONS OF LAYERS IN LAMBDA ARCHITECTURE.

Layers Function Descriptions

Speed layer

1. Compensate for high latency of updates to
serving layer.
2. Fast, incremental algorithms.
3. Batch layer eventually overrides speed.

Serving layer
1. Provide access services to batch views.
2. Updated by batch layers.

Batch layer
1. Store growing master dataset.
2. Compute functions on the dataset.
3. Provide batch views.

B. Kappa architecture

Kappa architecture [23] is a simplification of Lambda
architecture. Compared to Lambda architecture Kappa unifies
the batch and real-time layers. The structure of Kappa is shown
is Fig. 2. The main reason for the popularity of Kappa is the
Apache Kafka [21] and Apache Flink [22] frameworks. Kafka
not only acts as a message queue, but also can save historical
data for a longer time to replace the batch layer in Lambda
architecture. Flink takes an earlier time as the starting point
and plays the role of batch processing. At the same time, Flink
solves the problem of accuracy of calculation results under
the disorder of events. If batch processing is consistent with
real-time processing, Kappa is more appropriate. However,

Fig. 1. The illustration of Lambda Architecture.

in some other scenarios, the whole historical data set needs
to be processed in batch, so Lambda architecture is more
appropriate.

Fig. 2. The illustration of Kappa Architecture.

C. Alarea architecture

Alarea [1] is an architecture that combines batch processing
and real-time processing in two different layers and has been
deployed to deal with big data and real-time data in the real
estate domain. Compared with Lambda and Kappa, Alarea has
the following three advantages.

1. Alarea mixes and integrates heterogeneous data sources.
2. Alarea gives developers the opportunity to decide which

layer is better for their purposes.
3. Alarea copes with two kind of data processing and is

capable of treating it no matter the timing that they present.
In [1] Lambda, Kappa, and Alarea are also compared based

on the four quality attributes, including recoverability, fault
tolerance, new data gap and hardware consumption.

III. MODELS

A. KNN Models

The most effective method to evaluate the price of a house
in a building is to obverse the prices of the nearest floors
above or beneath it. So kNN(K Nearest Neighbors) model is
an intuitive approach to predict the housing price. Compared
to other prediction models kNN has two advantages in our
application scenario.
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The first advantage is that kNN can get more accurate result
when the number of sample data is few. KNN only needs to
find out the k nearest neighbors from the sample data but other
prediction models may have to get more data to execute the
training. If the dataset only contains two samples(k=2), for
example the housing information of the 4th and 6th floors.
If the task is to predict the price of housing on the 5th floor
that between 4th and 6th floors in the same building, then kNN
model will get the 4th and 6th floors as its 2 nearest neighbors
and predict the 5th housing price by averaging the prices of
the two neighbors. But for others models two samples are too
small to execute the training.

The second advantage is that kNN can also generate a
recommending housings list by the k nearest neighbors them-
selves besides predicting housing price.

Assume that the data set X = {x1, . . . , xm}, where m
represents the number of housing records. xi = (xi1, . . . , xin),
1 ≤ i ≤ m, where n is the number of fields in each record
and xin is the price field. Suppose the data of a house is
h = (h1, . . . , hn−1, hprice), where h1, . . . , hn−1 are known
and hprice is the targeting value that will be predicted by kNN.
The following steps describe the details of prediction by kNN
method.

Step 1. For each data record x in X, its 1st to (n-1)th fields
are used to calculate the Euclidean distance from h and the re-
sults are collected and sorted to find the k nearest data records.
Let Xk = (xs1 , . . . , xsk) be the vector representing the k
nearest data records by distance from near to far, and the cor-
responding distance vector is Distk = (dists1 , . . . , distsk).

Step 2. Use the nth field of the k data records to estimate
the value of hprice, as shown in (1).

hprice =

∑k
i=1 xsin

k
(1)

Where xsin is the nth field of record xsi , i.e., the price
field.

The variation of kNN is Weighted kNN that considers the
influences of different distances on hprice instead of directly
averaging the nth field of the k data records in (1). The
following (2) calculates the weight for each data record based
on the distance, where δ is the appropriate positive constant.

wsi = e−
distsi

2

2δ2 (2)

The value range of wsi is (0, 1]. The larger the value
of distsi , the smaller the value of wsi , and vice versa.
These characteristics determine that wsi is a better choice
for representing weight. After the introduction of weights, the
calculation of hprice is shown in (3).

hprice =

∑k
i=1 wsixsin∑k

i=1 wsi

(3)

B. Kd tree and ball tree

The naive or brute kNN is to choose the k nearest neighbors
from the n samples by sample-wise comparison. The time
complexity to predict price of one housing is O(n2). When

n is large the brute kNN is not a practicable method. Many
improved methods are designed to solve this problem such as
the kd tree [17], [18], ball tree [19], [20], Hybrid Spill Tree
[25], [26] and so on. The time complexity of these tree-based
methods are O(log(n)).

The process of building kd tree is recursive process that
includes two main steps shown in Fig. 3.

Step1. Computes the variance of the dimensions and splits
the data at median based on the dimension Root that has the
highest variance. Let the two split datasets be Left and Right.

Step2. Repeat the step 1 for Left and Right until Left and
Right cannot be split.

Fig. 3. The construction of kd tree.

The process of building ball tree is also a recursive process
that includes two main steps shown in Fig. 4.

Step1. All data is split into two almost equal sized balls
ballA and ballB .

Step2. Repeat the step 1 for ballA and ballB until ballA
and ballB cannot be split.

Fig. 4. The construction of ball tree.

In this paper the kd tree is used in both batch and speed
layers in Lambda architecture. The reason will be explained in
detail in Section V. After trained by data the kd tree will reside
in memory and provide prediction service until next iteration.
For instance, in batch layer the kd tree is trained every day
and in speed layer the training frequency is decided by the
size of time windows.

IV. EXPERIMENT

A. Data

Usually, the second-hand housing data is crawled from the
official websites on the Internet. A distributed crawling system
is designed and deployed on cloud to gather data. In such
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system each node has its IP address and crawlers on each node
run as daemons to crawl data from the websites that own large
real-time and historical housing information. By the research
purpose the second-hand housing data used in this paper is
from one public dataset [27]. This dataset includes 318851
housing information records in Beijing from 2011 to 2017.
The data in this dataset will be used as input to our system.
It means that the crawlers in our system can directly read
records in this dataset as if the data obtained from websites on
Internet. This way will save us the time to clean data and help
us focus on the system implementation itself. One notation is
that housing price in this dataset is the final price but we will
ignore this attribute. So the price can be used as the listing
price or final price. Each record in dataset consists of 26 fields
but only 11 fields are used. The names and meanings of these
fields are listed in Table II.

TABLE II
THE NAMES AND MEANINGS OF FIELDS IN DATASET.

Field names Meanings
bedroom the number of bedroom

living room the number of living room

bathroom the number of bathroom

kitchen the number of kitchen

floor the height of the house

ladder ratio the number of ladders a resident have on average

square the square of house

subway not near to subway(0) and near to subway(1)

lat the latitude of house

lng the longitude of house

price the average price by square

For example the list [3, 2, 2, 1, 6, 0.5, 102.66, 0, 39.873867,
116.66589] consists of data items corresponding to the fields
in table. For training kd tree the data must be processed further.
Firstly, the dataset should be split into X matrix and Y targeting
vector. The Y consists of all housing prices in price field and
the X matrix consists of data in other fields except for price
field. Secondly, the X matrix should be normalized before it is
used to train kd tree. For example the subway field should be
one-hot encoding and other nine fields in the X matrix should
be standardized by using max-min or std-dev methods. The
data is explored and the results are shown in Fig. 5.

The Fig. 6 shows the relationship between the price field and
the longitude and latitude fields. It can be seen that the closer
to the central urban area, the higher the average housing price,
the more housings for sale, and the more frequent transactions.

The Pearson correlation coefficient between data fields is
shown in the Fig. 7. It can be seen that the bedroom, living
room and bathroom fields are positively correlated and have
high correlation coefficients. At the same time, there are also
strong positive correlations between the square field and the
bedroom, living room and bathroom fields. The subway field
has a strong positive correlation with the price field. Because
the data comes from Beijing and it belongs to the economic
center, whether there is a subway has a great impact on the
housing price. The bedroom, living room and bathroom fields

have negative correlations with the price field, because usually
the total price of houses with large area is higher, which makes
it more difficult to sell, resulting in lower the price field.

B. System structure

In this experiment the main frameworks used in our system
are described in Table III. The concise experiment topology
is shown in Fig. 8. Both Apache Flume and Apache Kafka
are distributed, reliable, and available components. They are
widely used in big data processing. In this research they are
combined together to implement Lambda architecture. There
are four reasons for this combination.

1. In production environment because there are many real-
time data sources, it is not convenient to build many Kafka
clients to publish data to central topics with one topic per
activity type. So, usually in implementation the real-time data
is delivered to Flume firstly.

2. There are many interceptors in Flume that can be used
to filter and clean data. It is more convenient to process data
in Flume than in Kafka.

3. When Flume is connected to Spark streaming directly
without Kafka, if the speed of data flowing in is faster than
the speed of data processing in Spark streaming then the data
that cannot be processed in time will be lost. It can be solved
by using Kafka between Flume and Spark streaming. Kafka
likes a cache that can store data over a period of time.

4. Besides connecting Flume to Spark streaming, Kafka
can also provide data to Cassandra for persistent storage. So,
Kafka is the core component in our implementation of Lambda
architecture.

There are two crawlers c1 and c2 for housing data col-
lecting. As described in IV-A the c1 and c2 read records in
dataset as if they crawl them from websites on Internet. The
c1 and c2 put their data into f1 and f2 respectively. The f1 and
f2 put their data into f3. The f3 directly connects to Kafka.
Spark streaming system fetch data from Kafka based on the
time window. The fetched data flows into two directions. In
one direction the data is pushed to speed layer and in this
layer the kd tree model is trained by the data. In the other
direction the same data is appended to the existing distributed
Cassandra database and in the batch layer the kd tree is trained
by all or partial data in Cassandra. For speed layer the model
training frequency is decided by the size of time window which
can be set half an hour, one hour, or two hours and so on.
The model training frequency for batch layer can be set one
day, two days and so on. Based on speed layer the real-time
service can be built which can provide price prediction and
house recommending based on the coming data in the time
window. The batch service built on batch layer can do the
same task based on the historical data. The results from real-
time and batch services can support decision making from
different perspectives.

C. Experimental Results

We can test the effectiveness of price prediction and housing
recommendation by submitting some data to the real-time
and batch service respectively. For example, after running a
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Fig. 5. The exploration of all data fields.

Fig. 6. The housing price distribution of different latitude and longitude.

period of time, there are 153626 records in Cassandra and
the kd tree has been trained by data in batch layer. The time
window of Spark streaming is set to 30s and the kd tree in
speed layer has been trained by data in this time span. The
housing information [3, 2, 2, 1, 6, 0.5, 102.66, 0, 39.873867,
116.66589] is submitted to the real time and batch service

Fig. 7. The corralation of data fields.

respectively. Both services are deployed in Flask and the
housing information is post to corresponding service in JSON
format.

5

Fig. 5. The exploration of all data fields.

Fig. 6. The housing price distribution of different latitude and longitude.

period of time, there are 153626 records in Cassandra and
the kd tree has been trained by data in batch layer. The time
window of Spark streaming is set to 30s and the kd tree in
speed layer has been trained by data in this time span. The
housing information [3, 2, 2, 1, 6, 0.5, 102.66, 0, 39.873867,
116.66589] is submitted to the real time and batch service

Fig. 7. The corralation of data fields.

respectively. Both services are deployed in Flask and the
housing information is post to corresponding service in JSON
format.

5

Fig. 5. The exploration of all data fields.

Fig. 6. The housing price distribution of different latitude and longitude.

period of time, there are 153626 records in Cassandra and
the kd tree has been trained by data in batch layer. The time
window of Spark streaming is set to 30s and the kd tree in
speed layer has been trained by data in this time span. The
housing information [3, 2, 2, 1, 6, 0.5, 102.66, 0, 39.873867,
116.66589] is submitted to the real time and batch service

Fig. 7. The corralation of data fields.

respectively. Both services are deployed in Flask and the
housing information is post to corresponding service in JSON
format.

5

Fig. 5. The exploration of all data fields.

Fig. 6. The housing price distribution of different latitude and longitude.

period of time, there are 153626 records in Cassandra and
the kd tree has been trained by data in batch layer. The time
window of Spark streaming is set to 30s and the kd tree in
speed layer has been trained by data in this time span. The
housing information [3, 2, 2, 1, 6, 0.5, 102.66, 0, 39.873867,
116.66589] is submitted to the real time and batch service

Fig. 7. The corralation of data fields.

respectively. Both services are deployed in Flask and the
housing information is post to corresponding service in JSON
format.

5

Fig. 5. The exploration of all data fields.

Fig. 6. The housing price distribution of different latitude and longitude.

period of time, there are 153626 records in Cassandra and
the kd tree has been trained by data in batch layer. The time
window of Spark streaming is set to 30s and the kd tree in
speed layer has been trained by data in this time span. The
housing information [3, 2, 2, 1, 6, 0.5, 102.66, 0, 39.873867,
116.66589] is submitted to the real time and batch service

Fig. 7. The corralation of data fields.

respectively. Both services are deployed in Flask and the
housing information is post to corresponding service in JSON
format.

5

Fig. 5. The exploration of all data fields.

Fig. 6. The housing price distribution of different latitude and longitude.

period of time, there are 153626 records in Cassandra and
the kd tree has been trained by data in batch layer. The time
window of Spark streaming is set to 30s and the kd tree in
speed layer has been trained by data in this time span. The
housing information [3, 2, 2, 1, 6, 0.5, 102.66, 0, 39.873867,
116.66589] is submitted to the real time and batch service

Fig. 7. The corralation of data fields.

respectively. Both services are deployed in Flask and the
housing information is post to corresponding service in JSON
format.

5

Fig. 5. The exploration of all data fields.

Fig. 6. The housing price distribution of different latitude and longitude.

period of time, there are 153626 records in Cassandra and
the kd tree has been trained by data in batch layer. The time
window of Spark streaming is set to 30s and the kd tree in
speed layer has been trained by data in this time span. The
housing information [3, 2, 2, 1, 6, 0.5, 102.66, 0, 39.873867,
116.66589] is submitted to the real time and batch service

Fig. 7. The corralation of data fields.

respectively. Both services are deployed in Flask and the
housing information is post to corresponding service in JSON
format.

6

TABLE III
THE COMPONENTS AND FRAMEWORKS IN THE SYSTEM

Frameworks Functions Office websites
Flume Gather and redirect streaming data. http://flume.apache.org/

Kafka Cache the data flow from Flume and provide streaming data to Spark streaming system. http://kafka.apache.org/

Spark streaming
1. Be used in speed layer to get streaming data for real-time computation.
2. Store streaming data as real-time views.
3. Append streaming data to distributed Cassandra database.

https://spark.apache.org/streaming/

Cassandra Be used in batch layer to store the streaming data and provide batch views. https://cassandra.apache.org

Flask
1. Train kd trees based on real-time and batch views respectively.
2. Provide web interfaces for both real-time and batch services.

https://flask.palletsprojects.com/

Fig. 8. The structure of price prediction system.

Table IV shows the results returned by batch service when
k = 10. The predicted price is 33194.3 that is the average price
of the 10 nearest neighbors. We can also compute the price
by weighted kNN. The response time of service is 0.001753s
that is short enough. The id field gives the neighbor index in
the 153626 records. So one whole housing information with
26 fields can be obtained by each id.

Table V shows the results returned by real-time service
when k = 10. The predicted price is 34910.6 and the numbers
in id field are the housing indices in the records of the
corresponding time window.

For the same input data the batch and real-time services
give different price predictions. The reason is that the kd tree
in batch service is trained by the all or partial historical data,
but the kd tree in real-time service is trained by the data in
time window. In our example the more training data the greater
chance to find out the most nearest neighbors. It can be seen
from the distance values in the distance column in Table IV
and V. It is clear that the 10 neighbors got in batch service
are closer to input data than in the real-time service.

So in Lambda architecture we can get more accurate pre-
diction in batch service and get more timely prediction in real-
time service that can reflect the trend and fluctuation of price in
short term. These two kinds of prices can give us the different
perspectives to make decision.

V. RESULTS AND DISCUSSION

In this section the time and space performance of brute kNN,
kd tree and ball tree are compared. The results show that kd
tree is better than other two models in our application. We
also compare some other machine learning models with the
three kNN related models.

Figure 9 shows the memory space of different models after
training for different n, here n is the number of records in
training data. The values of n are set 20000, 50000, 100000
and 150000. It can be seen that with the growth of n the
memory space of different models increases accordingly. And
the memory space of kd tree and ball tree has more significant
increase than brute kNN. The reason is that besides the basic
data information both the kd tree and ball tree need additional
space to store tree structure information.

Figure 10 shows time cost of different models for different
n during the training process. It can be seen that the brute
kNN uses less training time than both kd tree and ball tree.
The time cost of kd tree and ball tree has significant increase
as the growth of n because both tree-based models need more
time to construct the tree structures.

So from Fig. 9 and 10 it can be seen that both kd tree and
ball tree need more memory space and training time. But after
trained, the tree-based models have shorter prediction time. It
can be proved by the following experiment. The testing dataset
includes 1000 samples and all models are trained by the same
training dataset. When k=3, 5, 10, 15, 20, 25 we compute the
averaging prediction time of 1000 samples on brute kNN, ball
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Table IV shows the results returned by batch service when
k = 10. The predicted price is 33194.3 that is the average price
of the 10 nearest neighbors. We can also compute the price
by weighted kNN. The response time of service is 0.001753s
that is short enough. The id field gives the neighbor index in
the 153626 records. So one whole housing information with
26 fields can be obtained by each id.

Table V shows the results returned by real-time service
when k = 10. The predicted price is 34910.6 and the numbers
in id field are the housing indices in the records of the
corresponding time window.

For the same input data the batch and real-time services
give different price predictions. The reason is that the kd tree
in batch service is trained by the all or partial historical data,
but the kd tree in real-time service is trained by the data in
time window. In our example the more training data the greater
chance to find out the most nearest neighbors. It can be seen
from the distance values in the distance column in Table IV
and V. It is clear that the 10 neighbors got in batch service
are closer to input data than in the real-time service.

So in Lambda architecture we can get more accurate pre-
diction in batch service and get more timely prediction in real-
time service that can reflect the trend and fluctuation of price in
short term. These two kinds of prices can give us the different
perspectives to make decision.

V. RESULTS AND DISCUSSION

In this section the time and space performance of brute kNN,
kd tree and ball tree are compared. The results show that kd
tree is better than other two models in our application. We
also compare some other machine learning models with the
three kNN related models.

Figure 9 shows the memory space of different models after
training for different n, here n is the number of records in
training data. The values of n are set 20000, 50000, 100000
and 150000. It can be seen that with the growth of n the
memory space of different models increases accordingly. And
the memory space of kd tree and ball tree has more significant
increase than brute kNN. The reason is that besides the basic
data information both the kd tree and ball tree need additional
space to store tree structure information.

Figure 10 shows time cost of different models for different
n during the training process. It can be seen that the brute
kNN uses less training time than both kd tree and ball tree.
The time cost of kd tree and ball tree has significant increase
as the growth of n because both tree-based models need more
time to construct the tree structures.

So from Fig. 9 and 10 it can be seen that both kd tree and
ball tree need more memory space and training time. But after
trained, the tree-based models have shorter prediction time. It
can be proved by the following experiment. The testing dataset
includes 1000 samples and all models are trained by the same
training dataset. When k=3, 5, 10, 15, 20, 25 we compute the
averaging prediction time of 1000 samples on brute kNN, ball
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TABLE IV
THE BATCH SERVICE RESULTS WHEN k = 10.

id bedroom livingroom bathroom kitchen floor ladderratio square subway lat lng distances
65707 3 2 2 1 6 0.5 105.97 0 39.879143 116.652458 0.158833

151840 3 2 2 1 6 0.5 108.38 0 39.882812 116.661682 0.186459

151820 3 2 2 1 6 0.5 108.70 0 39.882812 116.661682 0.193895

14604 3 2 2 1 6 0.5 110.00 0 39.876873 116.655457 0.222846

14596 3 2 2 1 6 0.333 110.00 0 39.876873 116.655457 0.222846

65726 3 2 2 1 6 0.333 109.92 0 39.879143 116.652458 0.237487

14603 3 2 2 1 6 0.5 110.81 0 39.876873 116.655457 0.242931

112687 3 2 2 1 6 0.5 111.62 0 39.882767 116.669685 0.264404

142464 3 2 2 1 6 0.5 111.65 0 39.883930 116.655563 0.282764

112650 3 2 2 1 6 0.5 92.90 0 39.882767 116.669685 0.284707

TABLE V
THE REAL-TIME SERVICE RESULTS WHEN k = 10.

id bedroom livingroom bathroom kitchen floor ladderratio square subway lat lng distances
91 3 2 2 1 15 0.3 114.60 0 39.910679 116.594887 1.666115

73 3 3 2 1 4 0.5 144.70 0 39.970848 116.552177 2.611373

59 2 2 1 1 6 0.5 79.88 0 39.934643 116.695198 2.942007

82 2 2 2 1 4 0.028 52.41 0 39.774361 116.512253 3.288918

78 3 2 2 1 6 0.5 129.56 0 40.092632 116.381378 3.437851

41 3 2 2 1 6 0.5 187.16 0 40.110054 116.560165 3.452464

64 3 1 1 1 9 0.5 95.00 0 39.971687 116.544952 3.491309

44 4 2 2 1 6 0.5 158.00 0 40.162060 116.555733 3.619236

84 3 2 2 1 13 0.5 158.93 1 40.082584 116.416153 3.679577

96 3 2 2 1 25 0.375 129.83 0 40.045547 116.430565 3.754350

Fig. 9. The memory space of brute kNN, kd tree and ball tree models.

tree and kd tree respectively. In Fig. 11 it can be seen that
kd tree have less prediction time than both ball tree and brute
kNN.

Besides the comparison of space and time cost the evalu-
ation metrics RMSE(Root Mean Squared Error), MAE(Mean
Absolute Error) ,R-Squared and MAPE(Mean Absolute Per-
centage Error) are chosen to evaluate the models. The smaller

Fig. 10. Training time of of brute kNN, kd tree and ball tree models.

these metrics the better performance of models. In this pa-
per the k-fold cross-validation technique is used in order to
compute the average values of RMSE, MAE, R-Squared and
MAPE. The k is set to 5. We compare these metrics between
the brute kNN, ball tree and kd tree. Table VI shows the
computed results of RMSE, MAE, R-Squared and MAPE of
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TABLE III
THE COMPONENTS AND FRAMEWORKS IN THE SYSTEM

Frameworks Functions Office websites
Flume Gather and redirect streaming data. http://flume.apache.org/

Kafka Cache the data flow from Flume and provide streaming data to Spark streaming system. http://kafka.apache.org/

Spark streaming
1. Be used in speed layer to get streaming data for real-time computation.
2. Store streaming data as real-time views.
3. Append streaming data to distributed Cassandra database.

https://spark.apache.org/streaming/

Cassandra Be used in batch layer to store the streaming data and provide batch views. https://cassandra.apache.org

Flask
1. Train kd trees based on real-time and batch views respectively.
2. Provide web interfaces for both real-time and batch services.

https://flask.palletsprojects.com/

Fig. 8. The structure of price prediction system.

Table IV shows the results returned by batch service when
k = 10. The predicted price is 33194.3 that is the average price
of the 10 nearest neighbors. We can also compute the price
by weighted kNN. The response time of service is 0.001753s
that is short enough. The id field gives the neighbor index in
the 153626 records. So one whole housing information with
26 fields can be obtained by each id.

Table V shows the results returned by real-time service
when k = 10. The predicted price is 34910.6 and the numbers
in id field are the housing indices in the records of the
corresponding time window.

For the same input data the batch and real-time services
give different price predictions. The reason is that the kd tree
in batch service is trained by the all or partial historical data,
but the kd tree in real-time service is trained by the data in
time window. In our example the more training data the greater
chance to find out the most nearest neighbors. It can be seen
from the distance values in the distance column in Table IV
and V. It is clear that the 10 neighbors got in batch service
are closer to input data than in the real-time service.

So in Lambda architecture we can get more accurate pre-
diction in batch service and get more timely prediction in real-
time service that can reflect the trend and fluctuation of price in
short term. These two kinds of prices can give us the different
perspectives to make decision.

V. RESULTS AND DISCUSSION

In this section the time and space performance of brute kNN,
kd tree and ball tree are compared. The results show that kd
tree is better than other two models in our application. We
also compare some other machine learning models with the
three kNN related models.

Figure 9 shows the memory space of different models after
training for different n, here n is the number of records in
training data. The values of n are set 20000, 50000, 100000
and 150000. It can be seen that with the growth of n the
memory space of different models increases accordingly. And
the memory space of kd tree and ball tree has more significant
increase than brute kNN. The reason is that besides the basic
data information both the kd tree and ball tree need additional
space to store tree structure information.

Figure 10 shows time cost of different models for different
n during the training process. It can be seen that the brute
kNN uses less training time than both kd tree and ball tree.
The time cost of kd tree and ball tree has significant increase
as the growth of n because both tree-based models need more
time to construct the tree structures.

So from Fig. 9 and 10 it can be seen that both kd tree and
ball tree need more memory space and training time. But after
trained, the tree-based models have shorter prediction time. It
can be proved by the following experiment. The testing dataset
includes 1000 samples and all models are trained by the same
training dataset. When k=3, 5, 10, 15, 20, 25 we compute the
averaging prediction time of 1000 samples on brute kNN, ball
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TABLE IV
THE BATCH SERVICE RESULTS WHEN k = 10.

id bedroom livingroom bathroom kitchen floor ladderratio square subway lat lng distances
65707 3 2 2 1 6 0.5 105.97 0 39.879143 116.652458 0.158833

151840 3 2 2 1 6 0.5 108.38 0 39.882812 116.661682 0.186459

151820 3 2 2 1 6 0.5 108.70 0 39.882812 116.661682 0.193895

14604 3 2 2 1 6 0.5 110.00 0 39.876873 116.655457 0.222846

14596 3 2 2 1 6 0.333 110.00 0 39.876873 116.655457 0.222846

65726 3 2 2 1 6 0.333 109.92 0 39.879143 116.652458 0.237487

14603 3 2 2 1 6 0.5 110.81 0 39.876873 116.655457 0.242931

112687 3 2 2 1 6 0.5 111.62 0 39.882767 116.669685 0.264404

142464 3 2 2 1 6 0.5 111.65 0 39.883930 116.655563 0.282764

112650 3 2 2 1 6 0.5 92.90 0 39.882767 116.669685 0.284707

TABLE V
THE REAL-TIME SERVICE RESULTS WHEN k = 10.

id bedroom livingroom bathroom kitchen floor ladderratio square subway lat lng distances
91 3 2 2 1 15 0.3 114.60 0 39.910679 116.594887 1.666115

73 3 3 2 1 4 0.5 144.70 0 39.970848 116.552177 2.611373

59 2 2 1 1 6 0.5 79.88 0 39.934643 116.695198 2.942007

82 2 2 2 1 4 0.028 52.41 0 39.774361 116.512253 3.288918

78 3 2 2 1 6 0.5 129.56 0 40.092632 116.381378 3.437851

41 3 2 2 1 6 0.5 187.16 0 40.110054 116.560165 3.452464

64 3 1 1 1 9 0.5 95.00 0 39.971687 116.544952 3.491309

44 4 2 2 1 6 0.5 158.00 0 40.162060 116.555733 3.619236

84 3 2 2 1 13 0.5 158.93 1 40.082584 116.416153 3.679577

96 3 2 2 1 25 0.375 129.83 0 40.045547 116.430565 3.754350

Fig. 9. The memory space of brute kNN, kd tree and ball tree models.

tree and kd tree respectively. In Fig. 11 it can be seen that
kd tree have less prediction time than both ball tree and brute
kNN.

Besides the comparison of space and time cost the evalu-
ation metrics RMSE(Root Mean Squared Error), MAE(Mean
Absolute Error) ,R-Squared and MAPE(Mean Absolute Per-
centage Error) are chosen to evaluate the models. The smaller

Fig. 10. Training time of of brute kNN, kd tree and ball tree models.

these metrics the better performance of models. In this pa-
per the k-fold cross-validation technique is used in order to
compute the average values of RMSE, MAE, R-Squared and
MAPE. The k is set to 5. We compare these metrics between
the brute kNN, ball tree and kd tree. Table VI shows the
computed results of RMSE, MAE, R-Squared and MAPE of
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Fig. 11. Predicting time of brute kNN, kd tree and ball tree models.

three kNN related models for k=3, 5, 10, 15, 20, 25. It can be
seen that there is no obvious difference of performance in all
cases.

TABLE VI
THE EVALUATION METRICS FOR DIFFERENT k ON THE brute kNN, ball tree

AND kd tree MODELS.

k Models RMSE MAE R-Squared MAPE
3 brute kNN 18206.3527 13926.4134 0.4257 364.7942

ball tree 18202.1706 13926.7102 0.4260 364.7693

kd tree 18200.8848 13926.0901 0.4260 358.1100

5 brute kNN 17562.3638 13584.7236 0.4656 350.8004

ball tree 17548.6531 13577.2199 0.4664 346.4767

kd tree 17553.8938 13579.8747 0.4661 346.4880

10 brute kNN 17129.0225 13382.8892 0.4916 337.2047

ball tree 17122.4624 13377.2459 0.4920 336.3491

kd tree 17126.3306 13377.2684 0.4918 335.6577

15 brute kNN 17062.6534 13373.7111 0.4956 347.9658

ball tree 17061.8768 13377.6418 0.4956 345.4252

kd tree 17064.7471 13376.5118 0.4955 345.9193

20 brute kNN 17062.9813 13407.4079 0.4956 351.2006

ball tree 17062.5500 13403.7100 0.4956 352.4062

kd tree 17067.8417 13410.3385 0.4953 352.5939

25 brute kNN 17086.2347 13437.6975 0.4942 364.1835

ball tree 17086.8381 13436.8339 0.4942 364.5805

kd tree 17086.4431 13437.4806 0.4942 364.1689

In the k-fold cross-validation above, other machine learning
models are chosen to complete the same prediction task,
including regression, neural network, decision tree, random
forest and SVM regression. The description and parameter
information and the average values of RMSE, MAE, R-
Squared and MAPE of these models are shown in Table VII.
From Table VI and VII we can see that kNN-related models
have better performance in our application.

From these experiments we can see:
1. The brute kNN, kd tree and ball tree have similar

evaluation metrics that are better than other machine learning
models in our system.

2. Although the ball tree and kd tree need more memory
space and training time than brute kNN, the prediction time is
less.

3. In our application the kd tree has less prediction time
than ball tree. So we choose kd tree as the final model.

VI. CONCLUSION

The accurate and timely housing price prediction can help
individuals and enterprises make reasonable decisions. In this
paper we design and implement a system for the prediction
of second-hand housing price based on Lambda Architecture.
This system can provide housing price prediction by both
historical and real-time data, so it can provide two different
perspectives on prediction. By analysis of the space and time
performance and metrics comparison with other models, the
kd tree is used as prediction model in both batch layer and
speed layer. Besides price prediction, the other benefit of using
the kd tree is that the nearest k neighbors can be used as a
housing recommending list. The system can also be used in
other applications to provide prediction services.

Other architectures, such as Kappa and Alarea, can also
complete the same task. In the future, we will consider porting
the existing system to these two frameworks and compare their
implementation performance with that of Lambda architecture.
Alarea is very attractive because its techniques stack is very
similar to that of our system, and it combines the advantages
of Lambda and Kappa architectures.
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TABLE IV
THE BATCH SERVICE RESULTS WHEN k = 10.

id bedroom livingroom bathroom kitchen floor ladderratio square subway lat lng distances
65707 3 2 2 1 6 0.5 105.97 0 39.879143 116.652458 0.158833

151840 3 2 2 1 6 0.5 108.38 0 39.882812 116.661682 0.186459

151820 3 2 2 1 6 0.5 108.70 0 39.882812 116.661682 0.193895

14604 3 2 2 1 6 0.5 110.00 0 39.876873 116.655457 0.222846

14596 3 2 2 1 6 0.333 110.00 0 39.876873 116.655457 0.222846

65726 3 2 2 1 6 0.333 109.92 0 39.879143 116.652458 0.237487

14603 3 2 2 1 6 0.5 110.81 0 39.876873 116.655457 0.242931

112687 3 2 2 1 6 0.5 111.62 0 39.882767 116.669685 0.264404

142464 3 2 2 1 6 0.5 111.65 0 39.883930 116.655563 0.282764

112650 3 2 2 1 6 0.5 92.90 0 39.882767 116.669685 0.284707

TABLE V
THE REAL-TIME SERVICE RESULTS WHEN k = 10.

id bedroom livingroom bathroom kitchen floor ladderratio square subway lat lng distances
91 3 2 2 1 15 0.3 114.60 0 39.910679 116.594887 1.666115

73 3 3 2 1 4 0.5 144.70 0 39.970848 116.552177 2.611373

59 2 2 1 1 6 0.5 79.88 0 39.934643 116.695198 2.942007

82 2 2 2 1 4 0.028 52.41 0 39.774361 116.512253 3.288918

78 3 2 2 1 6 0.5 129.56 0 40.092632 116.381378 3.437851

41 3 2 2 1 6 0.5 187.16 0 40.110054 116.560165 3.452464

64 3 1 1 1 9 0.5 95.00 0 39.971687 116.544952 3.491309

44 4 2 2 1 6 0.5 158.00 0 40.162060 116.555733 3.619236

84 3 2 2 1 13 0.5 158.93 1 40.082584 116.416153 3.679577

96 3 2 2 1 25 0.375 129.83 0 40.045547 116.430565 3.754350

Fig. 9. The memory space of brute kNN, kd tree and ball tree models.

tree and kd tree respectively. In Fig. 11 it can be seen that
kd tree have less prediction time than both ball tree and brute
kNN.

Besides the comparison of space and time cost the evalu-
ation metrics RMSE(Root Mean Squared Error), MAE(Mean
Absolute Error) ,R-Squared and MAPE(Mean Absolute Per-
centage Error) are chosen to evaluate the models. The smaller

Fig. 10. Training time of of brute kNN, kd tree and ball tree models.

these metrics the better performance of models. In this pa-
per the k-fold cross-validation technique is used in order to
compute the average values of RMSE, MAE, R-Squared and
MAPE. The k is set to 5. We compare these metrics between
the brute kNN, ball tree and kd tree. Table VI shows the
computed results of RMSE, MAE, R-Squared and MAPE of
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Fig. 11. Predicting time of brute kNN, kd tree and ball tree models.

three kNN related models for k=3, 5, 10, 15, 20, 25. It can be
seen that there is no obvious difference of performance in all
cases.

TABLE VI
THE EVALUATION METRICS FOR DIFFERENT k ON THE brute kNN, ball tree

AND kd tree MODELS.

k Models RMSE MAE R-Squared MAPE
3 brute kNN 18206.3527 13926.4134 0.4257 364.7942

ball tree 18202.1706 13926.7102 0.4260 364.7693

kd tree 18200.8848 13926.0901 0.4260 358.1100

5 brute kNN 17562.3638 13584.7236 0.4656 350.8004

ball tree 17548.6531 13577.2199 0.4664 346.4767

kd tree 17553.8938 13579.8747 0.4661 346.4880

10 brute kNN 17129.0225 13382.8892 0.4916 337.2047

ball tree 17122.4624 13377.2459 0.4920 336.3491

kd tree 17126.3306 13377.2684 0.4918 335.6577

15 brute kNN 17062.6534 13373.7111 0.4956 347.9658

ball tree 17061.8768 13377.6418 0.4956 345.4252

kd tree 17064.7471 13376.5118 0.4955 345.9193

20 brute kNN 17062.9813 13407.4079 0.4956 351.2006

ball tree 17062.5500 13403.7100 0.4956 352.4062

kd tree 17067.8417 13410.3385 0.4953 352.5939

25 brute kNN 17086.2347 13437.6975 0.4942 364.1835

ball tree 17086.8381 13436.8339 0.4942 364.5805

kd tree 17086.4431 13437.4806 0.4942 364.1689

In the k-fold cross-validation above, other machine learning
models are chosen to complete the same prediction task,
including regression, neural network, decision tree, random
forest and SVM regression. The description and parameter
information and the average values of RMSE, MAE, R-
Squared and MAPE of these models are shown in Table VII.
From Table VI and VII we can see that kNN-related models
have better performance in our application.

From these experiments we can see:
1. The brute kNN, kd tree and ball tree have similar

evaluation metrics that are better than other machine learning
models in our system.

2. Although the ball tree and kd tree need more memory
space and training time than brute kNN, the prediction time is
less.

3. In our application the kd tree has less prediction time
than ball tree. So we choose kd tree as the final model.

VI. CONCLUSION

The accurate and timely housing price prediction can help
individuals and enterprises make reasonable decisions. In this
paper we design and implement a system for the prediction
of second-hand housing price based on Lambda Architecture.
This system can provide housing price prediction by both
historical and real-time data, so it can provide two different
perspectives on prediction. By analysis of the space and time
performance and metrics comparison with other models, the
kd tree is used as prediction model in both batch layer and
speed layer. Besides price prediction, the other benefit of using
the kd tree is that the nearest k neighbors can be used as a
housing recommending list. The system can also be used in
other applications to provide prediction services.

Other architectures, such as Kappa and Alarea, can also
complete the same task. In the future, we will consider porting
the existing system to these two frameworks and compare their
implementation performance with that of Lambda architecture.
Alarea is very attractive because its techniques stack is very
similar to that of our system, and it combines the advantages
of Lambda and Kappa architectures.
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paper we design and implement a system for the prediction
of second-hand housing price based on Lambda Architecture.
This system can provide housing price prediction by both
historical and real-time data, so it can provide two different
perspectives on prediction. By analysis of the space and time
performance and metrics comparison with other models, the
kd tree is used as prediction model in both batch layer and
speed layer. Besides price prediction, the other benefit of using
the kd tree is that the nearest k neighbors can be used as a
housing recommending list. The system can also be used in
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complete the same task. In the future, we will consider porting
the existing system to these two frameworks and compare their
implementation performance with that of Lambda architecture.
Alarea is very attractive because its techniques stack is very
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3 brute kNN 18206.3527 13926.4134 0.4257 364.7942

ball tree 18202.1706 13926.7102 0.4260 364.7693

kd tree 18200.8848 13926.0901 0.4260 358.1100

5 brute kNN 17562.3638 13584.7236 0.4656 350.8004

ball tree 17548.6531 13577.2199 0.4664 346.4767

kd tree 17553.8938 13579.8747 0.4661 346.4880

10 brute kNN 17129.0225 13382.8892 0.4916 337.2047

ball tree 17122.4624 13377.2459 0.4920 336.3491

kd tree 17126.3306 13377.2684 0.4918 335.6577

15 brute kNN 17062.6534 13373.7111 0.4956 347.9658

ball tree 17061.8768 13377.6418 0.4956 345.4252

kd tree 17064.7471 13376.5118 0.4955 345.9193

20 brute kNN 17062.9813 13407.4079 0.4956 351.2006

ball tree 17062.5500 13403.7100 0.4956 352.4062

kd tree 17067.8417 13410.3385 0.4953 352.5939

25 brute kNN 17086.2347 13437.6975 0.4942 364.1835

ball tree 17086.8381 13436.8339 0.4942 364.5805

kd tree 17086.4431 13437.4806 0.4942 364.1689

In the k-fold cross-validation above, other machine learning
models are chosen to complete the same prediction task,
including regression, neural network, decision tree, random
forest and SVM regression. The description and parameter
information and the average values of RMSE, MAE, R-
Squared and MAPE of these models are shown in Table VII.
From Table VI and VII we can see that kNN-related models
have better performance in our application.

From these experiments we can see:
1. The brute kNN, kd tree and ball tree have similar

evaluation metrics that are better than other machine learning
models in our system.

2. Although the ball tree and kd tree need more memory
space and training time than brute kNN, the prediction time is
less.

3. In our application the kd tree has less prediction time
than ball tree. So we choose kd tree as the final model.

VI. CONCLUSION

The accurate and timely housing price prediction can help
individuals and enterprises make reasonable decisions. In this
paper we design and implement a system for the prediction
of second-hand housing price based on Lambda Architecture.
This system can provide housing price prediction by both
historical and real-time data, so it can provide two different
perspectives on prediction. By analysis of the space and time
performance and metrics comparison with other models, the
kd tree is used as prediction model in both batch layer and
speed layer. Besides price prediction, the other benefit of using
the kd tree is that the nearest k neighbors can be used as a
housing recommending list. The system can also be used in
other applications to provide prediction services.

Other architectures, such as Kappa and Alarea, can also
complete the same task. In the future, we will consider porting
the existing system to these two frameworks and compare their
implementation performance with that of Lambda architecture.
Alarea is very attractive because its techniques stack is very
similar to that of our system, and it combines the advantages
of Lambda and Kappa architectures.
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P. Ordóñez de Pablos, “Applying big data and stream processing to
the real estate domain,” Behaviour & Information Technology, vol. 38,
no. 9, pp. 950–958, 2019, DOI: 10.1109/TMC.2019.2944829.

[2] A. A. Munshi and Y. A.-R. I. Mohamed, “Data lake lambda architecture
for smart grids big data analytics,” IEEE Access, vol. 6, pp. 40 463–
40 471, 2018, DOI: 10.1109/access.2018.2858256.

[3] M. Gribaudo, M. Iacono, and M. Kiran, “A performance model-
ing framework for lambda architecture based applications,” Future
Generation Computer Systems, vol. 86, pp. 1032–1041, 2018, DOI:
10.1016/j.future.2017.07.033.

[4] O. Debauche, S. A. Mahmoudi, N. De Cock, S. Mahmoudi, P. Man-
neback, and F. Lebeau, “Cloud architecture for plant phenotyping
research,” Concurrency and Computation: Practice and Experience,
vol. 32, no. 17, p. e5661, 2020, DOI: 10.1002/cpe.5661.

[5] T. Numnonda, “A real-time recommendation engine using lambda archi-
tecture,” Artificial Life and Robotics, vol. 23, no. 2, pp. 249–254, 2018,
DOI: 10.1007/s10015-017-0424-8.

[6] I. Ganchev, Z. Ji, and M. O’Droma, “A conceptual framework for
building a mobile services’ recommendation engine,” in 2016 IEEE 8th
International Conference on Intelligent Systems (IS). IEEE, 2016, pp.
285–289, DOI: 10.1109/IS.2016.7737435.

8

Fig. 11. Predicting time of brute kNN, kd tree and ball tree models.

three kNN related models for k=3, 5, 10, 15, 20, 25. It can be
seen that there is no obvious difference of performance in all
cases.

TABLE VI
THE EVALUATION METRICS FOR DIFFERENT k ON THE brute kNN, ball tree

AND kd tree MODELS.

k Models RMSE MAE R-Squared MAPE
3 brute kNN 18206.3527 13926.4134 0.4257 364.7942

ball tree 18202.1706 13926.7102 0.4260 364.7693

kd tree 18200.8848 13926.0901 0.4260 358.1100

5 brute kNN 17562.3638 13584.7236 0.4656 350.8004

ball tree 17548.6531 13577.2199 0.4664 346.4767

kd tree 17553.8938 13579.8747 0.4661 346.4880

10 brute kNN 17129.0225 13382.8892 0.4916 337.2047

ball tree 17122.4624 13377.2459 0.4920 336.3491

kd tree 17126.3306 13377.2684 0.4918 335.6577

15 brute kNN 17062.6534 13373.7111 0.4956 347.9658

ball tree 17061.8768 13377.6418 0.4956 345.4252

kd tree 17064.7471 13376.5118 0.4955 345.9193

20 brute kNN 17062.9813 13407.4079 0.4956 351.2006

ball tree 17062.5500 13403.7100 0.4956 352.4062

kd tree 17067.8417 13410.3385 0.4953 352.5939

25 brute kNN 17086.2347 13437.6975 0.4942 364.1835

ball tree 17086.8381 13436.8339 0.4942 364.5805

kd tree 17086.4431 13437.4806 0.4942 364.1689

In the k-fold cross-validation above, other machine learning
models are chosen to complete the same prediction task,
including regression, neural network, decision tree, random
forest and SVM regression. The description and parameter
information and the average values of RMSE, MAE, R-
Squared and MAPE of these models are shown in Table VII.
From Table VI and VII we can see that kNN-related models
have better performance in our application.

From these experiments we can see:
1. The brute kNN, kd tree and ball tree have similar

evaluation metrics that are better than other machine learning
models in our system.

2. Although the ball tree and kd tree need more memory
space and training time than brute kNN, the prediction time is
less.

3. In our application the kd tree has less prediction time
than ball tree. So we choose kd tree as the final model.

VI. CONCLUSION

The accurate and timely housing price prediction can help
individuals and enterprises make reasonable decisions. In this
paper we design and implement a system for the prediction
of second-hand housing price based on Lambda Architecture.
This system can provide housing price prediction by both
historical and real-time data, so it can provide two different
perspectives on prediction. By analysis of the space and time
performance and metrics comparison with other models, the
kd tree is used as prediction model in both batch layer and
speed layer. Besides price prediction, the other benefit of using
the kd tree is that the nearest k neighbors can be used as a
housing recommending list. The system can also be used in
other applications to provide prediction services.

Other architectures, such as Kappa and Alarea, can also
complete the same task. In the future, we will consider porting
the existing system to these two frameworks and compare their
implementation performance with that of Lambda architecture.
Alarea is very attractive because its techniques stack is very
similar to that of our system, and it combines the advantages
of Lambda and Kappa architectures.

ACKNOWLEDGMENT

This research was funded by the School-level Scientific
Research Project of Harbin University of Commerce (grant
number 18XN021), the Heilongjiang Provincial Natural Sci-
ence Foundation of China (grant number LH2019F044) and
the Heilongjiang Provincial Key Laboratory of Electronic
Commerce and Information Processing.

REFERENCES
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Fig. 11. Predicting time of brute kNN, kd tree and ball tree models.

three kNN related models for k=3, 5, 10, 15, 20, 25. It can be
seen that there is no obvious difference of performance in all
cases.

TABLE VI
THE EVALUATION METRICS FOR DIFFERENT k ON THE brute kNN, ball tree

AND kd tree MODELS.

k Models RMSE MAE R-Squared MAPE
3 brute kNN 18206.3527 13926.4134 0.4257 364.7942

ball tree 18202.1706 13926.7102 0.4260 364.7693

kd tree 18200.8848 13926.0901 0.4260 358.1100

5 brute kNN 17562.3638 13584.7236 0.4656 350.8004

ball tree 17548.6531 13577.2199 0.4664 346.4767

kd tree 17553.8938 13579.8747 0.4661 346.4880

10 brute kNN 17129.0225 13382.8892 0.4916 337.2047

ball tree 17122.4624 13377.2459 0.4920 336.3491

kd tree 17126.3306 13377.2684 0.4918 335.6577

15 brute kNN 17062.6534 13373.7111 0.4956 347.9658

ball tree 17061.8768 13377.6418 0.4956 345.4252

kd tree 17064.7471 13376.5118 0.4955 345.9193

20 brute kNN 17062.9813 13407.4079 0.4956 351.2006

ball tree 17062.5500 13403.7100 0.4956 352.4062

kd tree 17067.8417 13410.3385 0.4953 352.5939

25 brute kNN 17086.2347 13437.6975 0.4942 364.1835

ball tree 17086.8381 13436.8339 0.4942 364.5805

kd tree 17086.4431 13437.4806 0.4942 364.1689

In the k-fold cross-validation above, other machine learning
models are chosen to complete the same prediction task,
including regression, neural network, decision tree, random
forest and SVM regression. The description and parameter
information and the average values of RMSE, MAE, R-
Squared and MAPE of these models are shown in Table VII.
From Table VI and VII we can see that kNN-related models
have better performance in our application.

From these experiments we can see:
1. The brute kNN, kd tree and ball tree have similar

evaluation metrics that are better than other machine learning
models in our system.

2. Although the ball tree and kd tree need more memory
space and training time than brute kNN, the prediction time is
less.

3. In our application the kd tree has less prediction time
than ball tree. So we choose kd tree as the final model.

VI. CONCLUSION

The accurate and timely housing price prediction can help
individuals and enterprises make reasonable decisions. In this
paper we design and implement a system for the prediction
of second-hand housing price based on Lambda Architecture.
This system can provide housing price prediction by both
historical and real-time data, so it can provide two different
perspectives on prediction. By analysis of the space and time
performance and metrics comparison with other models, the
kd tree is used as prediction model in both batch layer and
speed layer. Besides price prediction, the other benefit of using
the kd tree is that the nearest k neighbors can be used as a
housing recommending list. The system can also be used in
other applications to provide prediction services.

Other architectures, such as Kappa and Alarea, can also
complete the same task. In the future, we will consider porting
the existing system to these two frameworks and compare their
implementation performance with that of Lambda architecture.
Alarea is very attractive because its techniques stack is very
similar to that of our system, and it combines the advantages
of Lambda and Kappa architectures.
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P. Ordóñez de Pablos, “Applying big data and stream processing to
the real estate domain,” Behaviour & Information Technology, vol. 38,
no. 9, pp. 950–958, 2019, DOI: 10.1109/TMC.2019.2944829.

[2] A. A. Munshi and Y. A.-R. I. Mohamed, “Data lake lambda architecture
for smart grids big data analytics,” IEEE Access, vol. 6, pp. 40 463–
40 471, 2018, DOI: 10.1109/access.2018.2858256.

[3] M. Gribaudo, M. Iacono, and M. Kiran, “A performance model-
ing framework for lambda architecture based applications,” Future
Generation Computer Systems, vol. 86, pp. 1032–1041, 2018, DOI:
10.1016/j.future.2017.07.033.

[4] O. Debauche, S. A. Mahmoudi, N. De Cock, S. Mahmoudi, P. Man-
neback, and F. Lebeau, “Cloud architecture for plant phenotyping
research,” Concurrency and Computation: Practice and Experience,
vol. 32, no. 17, p. e5661, 2020, DOI: 10.1002/cpe.5661.

[5] T. Numnonda, “A real-time recommendation engine using lambda archi-
tecture,” Artificial Life and Robotics, vol. 23, no. 2, pp. 249–254, 2018,
DOI: 10.1007/s10015-017-0424-8.

[6] I. Ganchev, Z. Ji, and M. O’Droma, “A conceptual framework for
building a mobile services’ recommendation engine,” in 2016 IEEE 8th
International Conference on Intelligent Systems (IS). IEEE, 2016, pp.
285–289, DOI: 10.1109/IS.2016.7737435.

8

Fig. 11. Predicting time of brute kNN, kd tree and ball tree models.

three kNN related models for k=3, 5, 10, 15, 20, 25. It can be
seen that there is no obvious difference of performance in all
cases.

TABLE VI
THE EVALUATION METRICS FOR DIFFERENT k ON THE brute kNN, ball tree

AND kd tree MODELS.

k Models RMSE MAE R-Squared MAPE
3 brute kNN 18206.3527 13926.4134 0.4257 364.7942

ball tree 18202.1706 13926.7102 0.4260 364.7693

kd tree 18200.8848 13926.0901 0.4260 358.1100

5 brute kNN 17562.3638 13584.7236 0.4656 350.8004

ball tree 17548.6531 13577.2199 0.4664 346.4767

kd tree 17553.8938 13579.8747 0.4661 346.4880
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kd tree 17064.7471 13376.5118 0.4955 345.9193
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kd tree 17086.4431 13437.4806 0.4942 364.1689

In the k-fold cross-validation above, other machine learning
models are chosen to complete the same prediction task,
including regression, neural network, decision tree, random
forest and SVM regression. The description and parameter
information and the average values of RMSE, MAE, R-
Squared and MAPE of these models are shown in Table VII.
From Table VI and VII we can see that kNN-related models
have better performance in our application.

From these experiments we can see:
1. The brute kNN, kd tree and ball tree have similar

evaluation metrics that are better than other machine learning
models in our system.

2. Although the ball tree and kd tree need more memory
space and training time than brute kNN, the prediction time is
less.

3. In our application the kd tree has less prediction time
than ball tree. So we choose kd tree as the final model.

VI. CONCLUSION

The accurate and timely housing price prediction can help
individuals and enterprises make reasonable decisions. In this
paper we design and implement a system for the prediction
of second-hand housing price based on Lambda Architecture.
This system can provide housing price prediction by both
historical and real-time data, so it can provide two different
perspectives on prediction. By analysis of the space and time
performance and metrics comparison with other models, the
kd tree is used as prediction model in both batch layer and
speed layer. Besides price prediction, the other benefit of using
the kd tree is that the nearest k neighbors can be used as a
housing recommending list. The system can also be used in
other applications to provide prediction services.

Other architectures, such as Kappa and Alarea, can also
complete the same task. In the future, we will consider porting
the existing system to these two frameworks and compare their
implementation performance with that of Lambda architecture.
Alarea is very attractive because its techniques stack is very
similar to that of our system, and it combines the advantages
of Lambda and Kappa architectures.
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P. Ordóñez de Pablos, “Applying big data and stream processing to
the real estate domain,” Behaviour & Information Technology, vol. 38,
no. 9, pp. 950–958, 2019, DOI: 10.1109/TMC.2019.2944829.

[2] A. A. Munshi and Y. A.-R. I. Mohamed, “Data lake lambda architecture
for smart grids big data analytics,” IEEE Access, vol. 6, pp. 40 463–
40 471, 2018, DOI: 10.1109/access.2018.2858256.

[3] M. Gribaudo, M. Iacono, and M. Kiran, “A performance model-
ing framework for lambda architecture based applications,” Future
Generation Computer Systems, vol. 86, pp. 1032–1041, 2018, DOI:
10.1016/j.future.2017.07.033.

[4] O. Debauche, S. A. Mahmoudi, N. De Cock, S. Mahmoudi, P. Man-
neback, and F. Lebeau, “Cloud architecture for plant phenotyping
research,” Concurrency and Computation: Practice and Experience,
vol. 32, no. 17, p. e5661, 2020, DOI: 10.1002/cpe.5661.

[5] T. Numnonda, “A real-time recommendation engine using lambda archi-
tecture,” Artificial Life and Robotics, vol. 23, no. 2, pp. 249–254, 2018,
DOI: 10.1007/s10015-017-0424-8.

[6] I. Ganchev, Z. Ji, and M. O’Droma, “A conceptual framework for
building a mobile services’ recommendation engine,” in 2016 IEEE 8th
International Conference on Intelligent Systems (IS). IEEE, 2016, pp.
285–289, DOI: 10.1109/IS.2016.7737435.

8

Fig. 11. Predicting time of brute kNN, kd tree and ball tree models.

three kNN related models for k=3, 5, 10, 15, 20, 25. It can be
seen that there is no obvious difference of performance in all
cases.

TABLE VI
THE EVALUATION METRICS FOR DIFFERENT k ON THE brute kNN, ball tree

AND kd tree MODELS.

k Models RMSE MAE R-Squared MAPE
3 brute kNN 18206.3527 13926.4134 0.4257 364.7942

ball tree 18202.1706 13926.7102 0.4260 364.7693

kd tree 18200.8848 13926.0901 0.4260 358.1100

5 brute kNN 17562.3638 13584.7236 0.4656 350.8004

ball tree 17548.6531 13577.2199 0.4664 346.4767

kd tree 17553.8938 13579.8747 0.4661 346.4880

10 brute kNN 17129.0225 13382.8892 0.4916 337.2047

ball tree 17122.4624 13377.2459 0.4920 336.3491

kd tree 17126.3306 13377.2684 0.4918 335.6577

15 brute kNN 17062.6534 13373.7111 0.4956 347.9658

ball tree 17061.8768 13377.6418 0.4956 345.4252

kd tree 17064.7471 13376.5118 0.4955 345.9193

20 brute kNN 17062.9813 13407.4079 0.4956 351.2006

ball tree 17062.5500 13403.7100 0.4956 352.4062

kd tree 17067.8417 13410.3385 0.4953 352.5939

25 brute kNN 17086.2347 13437.6975 0.4942 364.1835

ball tree 17086.8381 13436.8339 0.4942 364.5805

kd tree 17086.4431 13437.4806 0.4942 364.1689

In the k-fold cross-validation above, other machine learning
models are chosen to complete the same prediction task,
including regression, neural network, decision tree, random
forest and SVM regression. The description and parameter
information and the average values of RMSE, MAE, R-
Squared and MAPE of these models are shown in Table VII.
From Table VI and VII we can see that kNN-related models
have better performance in our application.

From these experiments we can see:
1. The brute kNN, kd tree and ball tree have similar

evaluation metrics that are better than other machine learning
models in our system.

2. Although the ball tree and kd tree need more memory
space and training time than brute kNN, the prediction time is
less.

3. In our application the kd tree has less prediction time
than ball tree. So we choose kd tree as the final model.

VI. CONCLUSION

The accurate and timely housing price prediction can help
individuals and enterprises make reasonable decisions. In this
paper we design and implement a system for the prediction
of second-hand housing price based on Lambda Architecture.
This system can provide housing price prediction by both
historical and real-time data, so it can provide two different
perspectives on prediction. By analysis of the space and time
performance and metrics comparison with other models, the
kd tree is used as prediction model in both batch layer and
speed layer. Besides price prediction, the other benefit of using
the kd tree is that the nearest k neighbors can be used as a
housing recommending list. The system can also be used in
other applications to provide prediction services.

Other architectures, such as Kappa and Alarea, can also
complete the same task. In the future, we will consider porting
the existing system to these two frameworks and compare their
implementation performance with that of Lambda architecture.
Alarea is very attractive because its techniques stack is very
similar to that of our system, and it combines the advantages
of Lambda and Kappa architectures.

ACKNOWLEDGMENT

This research was funded by the School-level Scientific
Research Project of Harbin University of Commerce (grant
number 18XN021), the Heilongjiang Provincial Natural Sci-
ence Foundation of China (grant number LH2019F044) and
the Heilongjiang Provincial Key Laboratory of Electronic
Commerce and Information Processing.

REFERENCES
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P. Ordóñez de Pablos, “Applying big data and stream processing to
the real estate domain,” Behaviour & Information Technology, vol. 38,
no. 9, pp. 950–958, 2019, DOI: 10.1109/TMC.2019.2944829.

[2] A. A. Munshi and Y. A.-R. I. Mohamed, “Data lake lambda architecture
for smart grids big data analytics,” IEEE Access, vol. 6, pp. 40 463–
40 471, 2018, DOI: 10.1109/access.2018.2858256.

[3] M. Gribaudo, M. Iacono, and M. Kiran, “A performance model-
ing framework for lambda architecture based applications,” Future
Generation Computer Systems, vol. 86, pp. 1032–1041, 2018, DOI:
10.1016/j.future.2017.07.033.

[4] O. Debauche, S. A. Mahmoudi, N. De Cock, S. Mahmoudi, P. Man-
neback, and F. Lebeau, “Cloud architecture for plant phenotyping
research,” Concurrency and Computation: Practice and Experience,
vol. 32, no. 17, p. e5661, 2020, DOI: 10.1002/cpe.5661.

[5] T. Numnonda, “A real-time recommendation engine using lambda archi-
tecture,” Artificial Life and Robotics, vol. 23, no. 2, pp. 249–254, 2018,
DOI: 10.1007/s10015-017-0424-8.

[6] I. Ganchev, Z. Ji, and M. O’Droma, “A conceptual framework for
building a mobile services’ recommendation engine,” in 2016 IEEE 8th
International Conference on Intelligent Systems (IS). IEEE, 2016, pp.
285–289, DOI: 10.1109/IS.2016.7737435.

References
	 [1]	 H. García-González, D. Fernández-Álvarez, J. E. Labra-Gayo, and P. 

Ordóñez de Pablos, “Applying big data and stream processing to the 
real estate domain,” Behaviour & Information Technology, vol. 38, no. 
9, pp. 950–958, 2019, doi: 10.1109/TMC.2019.2944829.

	 [2]	 A. A. Munshi and Y. A.-R. I. Mohamed, “Data lake lambda architecture 
for smart grids big data analytics,” IEEE Access, vol. 6, pp. 40463– 40 
471, 2018, doi: 10.1109/access.2018.2858256.

https://doi.org/10.1109/TMC.2019.2944829
https://doi.org/10.1109/access.2018.2858256


Predicting the Price of Second-Hand Housing Based
on Lambda Architecture and KD Tree

MARCH 2022 • VOLUME XIV • NUMBER 110

INFOCOMMUNICATIONS JOURNAL

	[21]	 B. R. Hiraman et al., “A study of apache kafka in big data stream 
processing,” in 2018 International Conference on Information, 
Commu- nication, Engineering and Technology (ICICET). IEEE, 2018, 
pp. 1–3, doi: 10.1109/ICICET.2018.8533771.

	[22]	 D. García-Gil, S. Ramírez-Gallego, S. García, and F. Herrera, “A 
comparison on scalability for batch big data processing on apache spark 
and apache flink,” Big Data Analytics, vol. 2, no. 1, pp. 1–11, 2017,

		  doi: 10.1186/s41044-016-0020-2.
	[23]	 J. Kreps, “Questioning the lambda architecture.” 2014. [Online]. 

Available: https://www.oreilly.com/radar/questioning-the-lambda- 
architecture/

	[24]	 J. Warren and N. Marz, Big Data: Principles and best practices of 
scalable realtime data systems. Simon and Schuster, 2015.

	[25]	 J. Maillo, S. García, J. Luengo, F. Herrera, and I. Triguero, “Fast 
and scalable approaches to accelerate the fuzzy k-nearest neighbors 
classifier for big data,” IEEE Transactions on Fuzzy Systems, vol. 28, 
no. 5, pp. 874–886, 2019, doi: 10.1109/TFUZZ.2019.2936356.

	[26]	 J. Maillo, J. Luengo, S. García, F. Herrera, and I. Triguero, “A pre- 
liminary study on hybrid spill-tree fuzzy k-nearest neighbors for big 
data classification,” in 2018 IEEE international conference on fuzzy 
systems (fuzz-IEEE). IEEE, 2018, pp. 1–8,

		  doi: 10.1109/FUZZ-IEEE.2018.8491595.
	[27]	 Q. Qiu, “Housing price in beijing.” 2018. [Online]. Available:  

https://www.kaggle.com/ruiqurm/lianjia/version/2

	 [3]	 M. Gribaudo, M. Iacono, and M. Kiran, “A performance model- ing 
framework for lambda architecture based applications,” Future 
Generation Computer Systems, vol. 86, pp. 1032–1041, 2018,

		  doi: 10.1016/j.future.2017.07.033.
	 [4]	 O. Debauche, S. A. Mahmoudi, N. De Cock, S. Mahmoudi, P. Man- 

neback, and F. Lebeau, “Cloud architecture for plant phenotyping 
research,” Concurrency and Computation: Practice and Experience, 
vol. 32, no. 17, p. e5661, 2020, doi: 10.1002/cpe.5661.

	 [5]	 T. Numnonda, “Areal-time recommendation engine using lambda 
architecture,” Artificial Life and Robotics, vol. 23, no. 2, pp. 249–254, 
2018, doi: 10.1007/s10015-017-0424-8.

	 [6]	 I. Ganchev, Z. Ji, and M. O’Droma, “A conceptual framework for 
building a mobile services’ recommendation engine,” in 2016 IEEE 8th 
International Conference on Intelligent Systems (IS). IEEE, 2016, pp. 
285–289, doi: 10.1109/IS.2016.7737435.

	 [7]	 P. Krajsic and B. Franczyk, “Lambda architecture for anomaly detection 
in online process mining using autoencoders,” in International Confer- 
ence on Computational Collective Intelligence. Springer, 2020, pp. 
579–589, doi: 10.1007/978-3-030-63119-2-47.

	 [8]	 D. Vajda, A. Pekár, and K. Farkas, “Towards machine learning-based 
anomaly detection on time-series data,” INFOCOMMUNICATIONS 
JOURNAL, vol. 13, no. 1, pp. 35–44, 2021,

		  doi: 10.36244/ICJ.2021.1.5.
	 [9]	 U. Suthakar, L. Magnoni, D. R. Smith, and A. Khan, “Optimised 

lambda architecture for monitoring scientific infrastructure,” IEEE 
Transactions on Parallel and Distributed Systems, vol. 32, no. 6, pp. 
1395–1408, 2018, doi: 10.1109/tpds.2017.2772241.

	[10]	 R. M. Croce and D. R. Haurin, “Predicting turning points in the housing 
market,” Journal of Housing Economics, vol. 18, no. 4, pp. 281–293, 
2009, doi: 10.1016/j.jhe.2009.09.001.

	[11]	 P. Dua, “Analysis of consumers’ perceptions of buying conditions for 
houses,” The Journal of Real Estate Finance and Economics, vol. 37, 
no. 4, pp. 335–350, 2008, doi: 10.1007/s11146-007-9084-0.

	[12]	 C. Jin, G. Soydemir, and A. Tidwell, “The u.s. housing market and the 
pricing of risk: Fundamental analysis and market sentiment,” Journal 
of Real Estate Research, vol. 36, no. 2, pp. 187–220, 2014, 

		  doi: 10.1080/10835547.2014.12091390.
	[13]	 L. Zhang, J. Zhao, and K. Xu, “Emotion-based social computing plat- 

form for streaming big-data: Architecture and application,” in 2016 13th 
International Conference on Service Systems and Service Management 
(ICSSSM). IEEE, 2016, pp.1–6, doi: 10.1109/ICSSSM.2016.7538620.

	[14]	 J. Smailović, M. Grčar, N. Lavrač, and M. Žnidaršič, “Stream-based 
active learning for sentiment analysis in the financial domain,” 
Information sciences, vol. 285, pp. 181–203, 2014,

		  doi: 10.1016/j.ins.2014.04.034.
	[15]	 R. Schulz, M. Wersing, and A. Werwatz, “Automated valuation mod- 

elling: a specification exercise,” Journal of Property Research, vol. 31, 
no. 2, pp. 131–153, 2014, doi: 10.1080/09599916.2013.846930.

	[16]	 M. Steurer, R. J. Hill, and N. Pfeifer, “Metrics for evaluating the 
performance of machine learning based automated valuation models,” 
Journal of Property Research, pp. 1–31, 2021,

		  doi: 10.1080/09599916.2020.1858937 .
	[17]	 Y. Chen, L. Zhou, Y. Tang, J. P. Singh, N. Bouguila, C. Wang, H. Wang, 

and J. Du, “Fast neighbor search by using revised kd tree,” Information 
Sciences, vol. 472, pp. 145–162, 2019, doi: 10.1016/j.ins.2018.09.012.

	[18]	 L. Huand S. Nooshabadi, “High-dimensional image descript or matching 
using highly parallel kd-tree construction and approximate nearest 
neighbor search,” Journal of Parallel and Distributed Computing, vol. 
132, pp. 127–140, 2019, doi: 10.1016/j.jpdc.2019.06.003.

	[19]	 L. Wang, B. Yang, Y. Chen, X. Zhang, and J. Orchard, “Improving 
neural-network classifiers using nearest neighbor partitioning,” IEEE 
transactions on neural networks and learning systems, vol. 28, no. 10, 
pp. 2255–2267, 2016, doi: 10.1109/TNNLS.2016.2580570.

	[20]	 A. A. Neloy, M. S. Oshman, M. M. Islam, M. J. Hossain, and Z. B. 
Zahir, “Content-based health recommender system for icu patient,” 
in International Conference on Multi-disciplinary Trends in Artificial 
Intelligence. Springer, 2019, pp. 229–237,

		  doi: 10.1007/978-3-030-33709-4_20.

Qinghe Pan is currently an associate professor at the 
School of Computer and Information Engineering of 
Harbin University of Commerce. His current research 
interests focus on big data techniques, data mining and 
machine learning algorithms. He currently teaches in 
many areas such as Hadoop and Spark architectures, 
distributed systems and data mining methods.

Zeguo Qiu is currently a professor at Harbin Univer- 
sity of Commerce. He received PhD in Management 
Science and Engineering from the Dongbei Univer- 
sity of Finance and Economics, Liaoning, China, in 
2013. In 2015, he joined the Northeast Asia Service 
Outsourcing Postdoctoral Workstation and worked on 
the topic of management decision, information system 
re-engineering, enterprise technology innovation and 
e-commerce. His research interests include management 
decision making, information systems and e-commerce.

Yaoqun Xu received the B.S. degree in mathematics 
from Jilin University, Changchun, China, in 1993, the 
M.S. degree in mathematics from the Harbin Institute 
of Technology, Harbin, China, in 1997, and the Ph.D. 
degree in navigation, guidance, and control from 
Harbin Engineering University, Harbin, in 2002. He 
is currently a Professor with the College of Computer 
and Information Engineering, Harbin University of 
Commerce. His current research interests include 
chaotic dynamics, neural networks, and intelligent 
optimization and decision.

Guilin Yao is currently an associate professor in the 
School of Computer and Information Engineering, 
Harbin University of Commerce, Harbin, China. His 
research interests include image processing, computer 
vision, and machine learning.

https://doi.org/10.1109/ICICET.2018.8533771
https://doi.org/10.1186/s41044-016-0020-2
https://www.oreilly.com/radar/questioning-the-lambda-architecture/ 
https://www.oreilly.com/radar/questioning-the-lambda-architecture/ 
https://doi.org/10.1109/TFUZZ.2019.2936356
https://doi.org/10.1109/FUZZ-IEEE.2018.8491595
https://www.kaggle.com/ruiqurm/lianjia/version/2
https://doi.org/10.1016/j.future.2017.07.033
https://doi.org/10.1002/cpe.5661
https://doi.org/10.1007/s10015-017-0424-8
https://doi.org/10.1109/IS.2016.7737435
https://doi.org/10.1007/978-3-030-63119-2-47
https://doi.org/10.36244/ICJ.2021.1.5
https://doi.org/10.1109/tpds.2017.2772241
https://doi.org/10.1016/j.jhe.2009.09.001
https://doi.org/10.1007/s11146-007-9084-0
https://doi.org/10.1080/10835547.2014.12091390
https://doi.org/10.1109/ICSSSM.2016.7538620
https://doi.org/10.1016/j.ins.2014.04.034
https://doi.org/10.1080/09599916.2013.846930
https://doi.org/10.1080/09599916.2020.1858937
https://doi.org/10.1016/j.ins.2018.09.012
https://doi.org/10.1016/j.jpdc.2019.06.003
https://doi.org/10.1109/TNNLS.2016.2580570
https://doi.org/10.1007/978-3-030-33709-4_20



