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Abstract—Machine learning aided tasks and processes have
key roles in smart manufacturing, especially in controlling pro-
duction and assembly lines, as well as smart maintenance and
intelligent quality control. The last two ones are those tasks that
nowadays are still performed manually by employees; however,
there are numerous machine learning-based solutions that can
automate these fields to optimize cost and performance. In this
paper, we present an overview of smart manufacturing ecosys-
tem and define the roles of maintenance and quality control in it.
Up-to-date machine learning-based smart solutions will also be
detailed while addressing current challenges and identifying hot
research topics and possible gaps.

Index Terms—machine learning, smart maintenance, intelli-
gent quality control, diagnostics, health management, computer
vision

I. INTRODUCTION

Over the last decade, the number of artificial intelligence
(AI) based applications significantly raised, as certain emerg-
ing machine learning algorithms and technologies, such as
deep learning (DL), gained popularity. Since then, machine
learning has matured enough to enable its usage in various
fields, from computer vision to machine-type communications.
Its ability to solve complex, high-dimensional problems in a
wide range made it one of the major drivers of the Industry
4.0 [1] movement besides industrial Internet of Things. As
digitalization efforts are increasing within the industry to
transform traditional manufacturing into highly automated
smart factories, machine learning methods become the pillar
of automating, not only manufacturing products within shop
floors but maintenance tasks, logistical processes across the
whole supply chain, warehouse management, automated qual-
ity management, production control — to mention the most
popular ones [2].

Several global companies with sufficient technical and fi-
nancial background have already applied machine learning-
based solutions with success to automate certain tasks within
warehouses or shop-floors, e.g., autonomous vehicles that can
relocate assets without any manual interactions by operators.

Regardless of that, this area is still considered to be rela-
tively new because of two factors: first, many areas within this
field — such as automating the aforementioned processes and
tasks — are not considered hot topics, despite that few of them
(e.g. self-driving vehicles) dominate current research trends.
Second, most market players — predominantly Small and
Medium-sized Enterprises (SMEs) — have not adopted such
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state-of-the-art solutions (e.g., robots for logistical tasks) yet,
since it would not be beneficial financially in the short term
currently. Nonetheless, SMEs can implement new technolo-
gies more rapidly than bigger enterprises, therefore they will
remain as the backbone of manufacturing supply chains after
the digital transition too. Nonetheless, it is more challanging to
adopt Industry 4.0 technologies for SMEs often due to finan-
cial reasons, therefore it is crucial to choose strategy, since an
effective implementation can offer tremendous benefits [3] [4]
[5]. Numerous researches investigated methods, strategies and
roadmaps for adopting industry 4.0 technologies efficiently
for SMEs, thus each related work — including this current
article — can relevant for SMEs too [6] [7]. Due to this, there
are ongoing researches that investigate the opportunities of
utilizing machine learning in smart factories.

These researches mainly focus on (i) automating and opti-
mizing maintenance tasks by monitoring machinery to provide
intelligent fault detection and root cause analysis, (ii) predict-
ing remaining useful life of a piece of equipment or tool, and
(iii) automating quality management supported by computer
vision and machine learning-based classification, creating au-
tomated production lines. This paper aims to compile a state-
of-the-art survey on machine learning-based methods and
solutions regarding smart maintenance and intelligent quality
control as core tasks of smart manufacturing. It also describes
potential challenges and research gaps of these fields to be
solved, as well as challenges that are already addressed and
hot research topics.

The paper is organized as follows: Section II gives a
general overview of the role of machine learning in smart
manufacturing and introduces maintenance and quality control
as important tasks within this ecosystem. Section III and
section IV investigate machine learning approaches, methods
and algorithms regarding smart maintenance (diagnostics and
prognostics) and intelligent quality control (non-visual and
computer vision aided), respectively. Section V concludes the

paper.

II. OVERVIEW OF SMART MANUFACTURING ECOSYSTEM

Manufacturing operations include numerous processes and
tasks which have always been critical in terms of safety,
reliability, and cost-efficiency. Hence, increasing control over
these operations is a focal point in industrial digitization
trends. Traditionally there are few fields considered the targets
of industrial automation — such as assembly or manufacturing
generally [8] — but nowadays, as smart factories emerging,
these traditional automation targets have been started to share
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the spotlight with other fields such as maintenance, quality
control, and many others. In this paper, the focus is on
maintenance and quality control applications, however, these
two fields cannot be fully discussed without mentioning related
fields, which provide the input for these tasks, and which
digitalization also has a significant impact on.

In the last few years, machine learning applications, espe-
cially deep learning for smart manufacturing, were investigated
in order to discover the areas well-worth improving [10].
Generally, machine learning offers great potentials due to the
intense presence of big data and thus opens new ways to
develop advanced, data-driven applications [11]. Moreover,
machine learning methods such as convolutional and recurrent
neural networks, auto encoder, etc. [12] [13] allow us (i) to
model complex systems with limited domain knowledge due
to the feature extraction and also (ii) to optimize specific
processes and tasks based on this model. It is often required to
estimate performance and make decisions based on available
input data. Authors of [14] presented the concept of a ma-
chine learning-based Design Support System (DSS) to address
some sort of optimization problems in design processes re-
garding manufacturing, logistics, and warehouse management.
Nonetheless, deep expert knowledge is still required since
manufacturing data cannot be utilized in its raw form due to
its high dimensions [15], thus regarding smart planning and
design, the usage of knowledge-based models is still one of
the most important methodologies.

As it is shown in Figure 1, both maintenance and quality
control has strong connections with related subfields and
tasks within smart manufacturing, such as the aforementioned
Smart design and Smart planning. Due to being versatile,
machine learning is commonly used within smart industry;
therefore, the general research gaps and challenges are the
same for these smart tasks. However, specific applications
raise new problem sets as well as new solutions; thus, there
are unique challenges and research gaps the can be identified.
In the following chapters, machine learning applications will
be investigated from the aspect of maintenance and quality
control to give a comprehensive overview of the identified
challenges, gaps, and hot research topics. The figure lists
energy optimization or energy efficiency management as one
of the goals of maintenance. However, it is a focal point of
smart manufacturing; it is a specific task, therefore; in this
article, this concept is not presented.

III. MACHINE LEARNING IN SMART MAINTENANCE

One of the most important tasks in each segment of the
industry is maintenance. Unexpected malfunctions can lead
to undesirable consequences such as stopping assembly lines
or reschedule logistical processes, which cause economic loss
directly or indirectly e.g., due to delays in operations.

The mechanism of maintenance seems to be simple; how-
ever, smart and efficient maintenance involves numerous tasks
and each of them improves the efficiency of the overall
mechanism. In its purest form, maintenance is reactive; thus,
keeping certain tools, machines, or pieces of equipment in
good condition is not a part of maintenance. So, in the case
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of reactive maintenance, these machines and tools will be
repaired only after a breakdown and not earlier. Nevertheless,
in certain cases, the occurrence of malfunctions is not obvious;
therefore, the condition of machinery continues to deteriorate;
thus, fault detection techniques are required to indicate the
need for maintenance. Additionally, applying diagnostics and
root cause analysis can enhance the quality of maintenance,
especially when the source of failure is unknown and must be
investigated.

Modern maintenance paradigms such as preventive, pre-
dictive, and proactive maintenance use different approaches
than the reactive one. Preventive maintenance — as its name
suggests — focuses on keeping the tools and machinery in
good condition, which requires frequent examination of wear-
out level. Optimizing the efficiency of this paradigm by
eliminating unnecessary examination and repairing is achieved
by using telemetry, external sensors, and other condition mon-
itoring techniques to collect data for diagnostics. Predictive
maintenance also utilizes the tools above; however, it has a
different purpose: to estimate the date of a breakdown so
the whole process can be planned. For precise estimations,
certain models of the monitored asset are used to calculate its
remaining useful life (RUL) [17]. As proactive maintenance
unified these two paradigms — predictive and preventive —the
used toolsets were combined too, and with the rise of machine
learning and Industrial Internet of Things (IloT), it became a
dynamic, data-driven approach.

Being data-driven also means that a massive amount of data
is required, often provided by related smart tasks, processes,
systems or even logs [18]. For example, the growing tendency
in adapting technologies such MES as Plant floor automation
and information systems (PES) can give prognostics-based
maintenance a boost by generating a huge amount of data [19].
As an essential concept of smart manufacturing, the Digital
Twin as a high-level, data-driven, abstract model of systems
also eases data aggregation and analytics. It also improves the
overall effectiveness of proactive maintenance, thus reducing
the potential of failure [20].

A. Diagnostics

Diagnostics in smart maintenance usually consist of two
main parts: fault detection (FD) and root cause analysis (RCA).
Fault detection aims to monitor the machinery and indicate that
if components or parts of the machine wear out or deteriorate,
RCA investigates the malfunction to find the root cause.

Fault detection has always been a difficult task for learning
systems due to the overly biased training data. Moreover,
despite the numerous available high-performance learning
algorithms, prior domain knowledge is required to implement
effective fault detection and diagnosis (FDD) systems [21]. In
this case, the aim of learning is to make the learning system
detect anomalies successfully, and the obvious bottleneck is
not having a sufficient number of samples that represent faults
and malfunctions, since, in a well-maintained environment,
such things are avoided as much as possible. In [22] Fathy et
al. presented a comprehensive analysis of different techniques
to deal with imbalanced data. Although their results showed
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Fig. 1. The role of smart maintenance and smart quality control in a data-driven smart manufacturing ecosystem [9].

no one-solution-fits-all in binary classification, applying syn-
thetic oversampling or generative adversarial networks (GAN)
highly improves fault detection performance. Authors of [23]
presented a deep learning-based FDD method that utilizes
GAN to generate fake samples in order to balance and expand
the training dataset and showed the performance of different
methods for especially rotating machinery as a common type
of equipment in manufacturing. Authors of [24] also sucess-
fully utilized a customzied GAN to handle imbalanced-class
problem for fault detection diagnosis of chillers. In [25] an
FDD method was introduced towards imbalanced data as well.
However, the proposed new WMODA technique — based on
synthetic oversampling — is limited to binary-class imbalanced
data problems; it was demonstrated that WMODA performs
better than several other imbalanced data learning methods and
the traditional data-driven methods.

Another major drawback of ML-based fault detection ap-
plications is that a trained system can be used only for
one specific machine, which is represented by the collected
dataset [21]. It would be promising if similar systems with the
same properties and characteristics by default could be trained
by a common, unified dataset consisting of each collected
sample from all involved systems. Transfer learning aims to
solve this problem set. Lei et al. [26] address transfer learning
as one of the most important research topics within ML-
based, and big data enabled fault detection in the future.

30

It also highlights the importance of deep transfer learning,
GAN, and Transfer factor analysis as methodologies capable
of being used in transfer scenarios where data is collected
from identical machines (TIM) as well as from different
machines (TDM). In [27], authors propose a deep generative
transfer learning system for fault diagnostics on new hard disk,
and showed that this method outperfomed other ones in this
application due to the low number of real faulty samples.

The other important task in diagnostics is the aforemen-
tioned root cause analysis, which is more of a collection of
models and techniques that share the same basic principles
and workflow as one straight algorithm or method. The chosen
model depends on the problem set and the observed system
since domain, or system knowledge may be required. Authors
of [28] presented an exhaustive and detailed survey of applied
RCA approaches, methods, and technologies, and a broad set
of these can be seen in Figure 2. In [29] address two major
issues regarding RCA, (i) the lack of supervised datasets and
(i1) the need for interpretability to foster trust are addressed
as major obstacles of intensive use of machine learning in
anomaly detection; therefore, the authors propose random
forest technique to enable using unlabeled data in root cause
analysis.

However, there is much ongoing research in this field; these
works mainly discuss topics from a general perspective rather
than presenting actual applications — in contrast to the previous
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Fig. 2. Classification of models and methods that are used in Root Cause Analysis. Directed arrows indicate possible conversions between different models [16].

decade. Nonetheless the number of articles that utilize the
aforementioned methods such as GANs or transfer learning
in industrial use-cases is increasing as it is shown in table I.

Citation Application Used method
) transfer learning
[30] Power plant thermal system (HDDA)
. . . . transfer learning
[31] Rolling element bearings (train bogie) (many)
. . transfer learning
[32] Laboratory/Locomotive bearings (deep generative)
[33] rolling bearings GAN
[34] Wind Turbines Gearbox GAN

TABLE 1
CUTTING-EDGE SMART MAINTENANCE APPLICATIONS

B. Prognostics, predictions and health management

Prognostics and predictions — or as often called: predictions
and health management (PHM) — play essential roles in
smart maintenance since they enable precise and accurate
scheduling maintenance tasks in an optimal manner. The basic
concept includes constructing a model of the machine based
on historical data and monitoring it in real-time, and predicting
its future behavior by using real-time data as the input of the
established model. This concept’s main goal is to estimate the
remaining useful life (RUL) of a tool or machinery as precisely
as possible.

Making predictions is beneficial in such a field where ma-
chine learning techniques perform very well traditionally [35],
since most predictions include different hidden factors that
are challenging or impossible to investigate by other methods.
Certain applications and researches involving prognostics to
calculate RUL are related to medical sciences, healthcare, or
health management, where the main targets of the estimation
are patients or course of disease. Nevertheless, these results
also come in handy for smart maintenance and often directly
applicable in such systems.

Traditionally, there are three approaches that are widely
used in a prognostic manner: physics/model-based, data-
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driven, and hybrid approaches [36]. In the last decade, the
data-driven approach obviously dominated this field [37] [38]
with mostly stochastic algorithms — most notably Bayesian
networks — which and are still efficient in related fields or in
safety use-case where the uncertainty of a solution has to be
known [39] [40].

Regarding the applied technologies that are shown in Fig-
ure 3, it is safe to say that a wide range of machine learning
techniques and algorithms are used in prognostics that cover
specific use-cases [41], depending on the environment, the
input data, the level of domain or expert knowledge. Therefore
in this topic, the main challenges of machine learning-based
techniques are usually related to these aspects, such as data ac-
quisition and handling big data in terms of scalability, latency,
and network bandwidth, moreover finding machine learning
applications that are suitable for multiple use-cases [42].

It is also worth mentioning that some of the issues addressed
in other sections of this paper, such as dealing with unlabeled
data [43] or flexibility of a solution [44] are also valid
challenges for prognostics and health management. It goes
for the same for future researches regarding transfer learning,
generative algorithms, and physics-induced machine learning
as well [45] [46].

IV. INTELLIGENT QUALITY CONTROL

While proper maintenance ensures that the production line
behaves and works as it should, quality control ensures that the
final product meets different (inner and outer) standards. Qual-
ity control is as important, if not more so, than maintenance,
since if quality control fails, poor or inadequate products will
be shipped for the customers.

The first big, revolutionary step in quality control was
when the application of statistical methods, such as control
charts and acceptance sampling, had begun. Since then, the
theory of quality management and quality control has been
evolving by creating new approaches and paradigms that
fuel the automating intentions within the industry towards
quality control processes. In this topic, the machine learning
applications are very heterogenous since they include regular
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Fig. 3. Taxonomy of predictive maintenance including the applied technolo-
gies and models [47]

classification based on collected data, but also computer vision
and image recognition.

As Cyber-physical production systems (CPPS) and IloT
became prevalent paradigms within the industry, they enabled
such data-intensive applications like the aforementioned digital
twin concept. In [48] the authors proposed a new Digital
Twin modeling method based on Multi-agent System (MAS)
and semantic models that provide improved quality control
during the manufacturing phase of the product. Authors of [49]
also introduced a digital twin-based quality control solution
while emphasizing that it is strongly coupled to assembly and
production line optimization.

From the technical aspect, smart maintenance and smart
quality control might seem analogous, so in most cases,
problems can be formulated in the same way: e.g., monitoring
and quality inspection of machinery can be implemented by
using the same approach and technologies that would be
used in quality insurance or quality control of products. This
would imply that all the solutions above for smart maintenance
could be applied for quality control; however, these tasks have
different requirements and characteristics than maintenance
tasks.

While smart maintenance deals mostly with inspecting
and monitoring a static, single piece of equipment, quality
inspection covers the investigation and classification of great
quantities of products that change dynamically. Consequently,
the cited smart maintenance design approaches and technolo-
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gies are also frequently used for quality control applications,
but this field must be discussed separately since its unique
requirements. Moreover, it is worth noting that quality control
applications usually rely upon domain knowledge-based defect
detection architectures, design approaches, and solutions.

A. Non-visual quality control applications

This approach of quality control, which involves machine
learning applications — mostly deep neural networks, but not
computer vision — relies upon telemetry data and datasets
that are measured and gathered by sensors across the whole
assembly or production line [50]. As with all similar machine
learning solutions, this one also requires a huge amount of
data in the training phase; therefore, the implemented system
will be rigid since each time the production line changes,
the model has to be retrained again. While computer vision-
based solutions offer more flexibility, this approach is fast,
reliable, and considered lightweight. Moreover, techniques like
Lifelong Learning with Deep neural networks (L-DNN) [51]
can enhance the flexibility of such a quality control system,
creating an alternative to image recognition-based solutions
that can be considered lightweight.

Most of the quality control application that uses machine
learning formalize the problem as binary classification, e.g.,
pass or deny. However, certain cases require more complex
formalization; therefore, the designed architecture, the applied
learning algorithms, and pattern recognition strategies often
vary. In [52] an [; regularized logistic regression is used as
a learning algorithm in order to create a system that can
successfully detect rare quality events to achieve defect-free
processes. Authors of [52] also presented two use-cases, where
different model selection criteria were applied to find the
optimal one among multiple ones, which were created as a
result of manually defining features. It has to be emphasized
that regarding machine learning-based quality control applica-
tions, there are no one-size-fits-all approaches, algorithms, or
technologies because the characteristics of the production line
have a huge impact on the system to be implemented.

The properties and characteristics of the proposed solutions
can be very diverse depending on the applied architecture,
algorithm, approaches, and other building blocks of such
systems. However, the accuracy of classification is one of
the most important properties; availability, reliability, perfor-
mance, response time, and resource requirements play key
roles in choosing the appropriate solution for a specific task,
as always.

Authors of [53] investigate several binary classification
models for quality control of Multistage Manufacturing Pro-
cess (MMP) and measured the performance of different al-
gorithms, namely: Gaussian Naive Bayes (GNB), K-Nearest
Neighbours (KNN), XGBOOST, Random Forest, and Support
Vector Machine (SVM). Since in MMP an early stage defect
or failure will propagate, it is essential to detect these defects
as soon and fast as possible, however; the quality inspection
problem of each stage is less complex than the final one. In
[53] it was shown, the aforementioned algorithms performed
very well in an MMP; while they are considered lightweight
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in contrast to any neural networks, therefore they can be
efficiently applied at each stage of MMP to inspect production
quality.

In [54] a Bi-LSTM (Long-Short Term Memory) based
solution was proposed, where the implemented system uses
control charts and histograms as input data to find patterns;
therefore, it is an indirect approach, which uses statistical
learning. In this case, it is easier to define feature sets for
recognizing histogram and control chart patterns than using
raw data as input; therefore, this solution can be considered
lightweight.

When it comes to performance — and scalability in most
cases — where lightweight solutions can not be utilized, cloud
computing is an effective and usually cost-efficient way to deal
with heavy resource issues [55]. Nowadays, almost every cloud
provider offers services for machine learning applications;
moreover, these can be connected to other cloud-based appli-
cations such as warehouse management, etc. [56]. It can often
be the optimal solution if the performance must be improved,
although in this case, the quality of the connection will be
the bottleneck. Authors of [57] introduce a combined edge-
cloud-based quality inspection system that trains the model in
the cloud to enable high-performance in training phase, but it
deploys the model in the edge; thus, the response time will be
much faster compared to an only cloud-based one.

B. Computer vision-aided quality control

Another technique regarding machine learning-aided quality
control is the computer vision (CV) based quality inspection.
However, CV-enabled feature extraction is not a fresh field;
it is still a hot topic since it has not been adopted by
industrial players as fast as it was expected. Nevertheless, this
technology is used more widely than the one mentioned above
since it is suitable for quality control of non-manufactured
products (e.g., food) that can not be monitored one by one via
Sensors.

This method is much more flexible than the previous one
since it can handle complex, complicated, non-binary clas-
sification problems while being robust. Moreover, it can be
applied in dynamic environments that often change because
it is contactless; while numerous methods based on sensing
require some sort of physical interaction, therefore they are
less flexible or not flexible at all. Nonetheless, image process-
ing is almost always slower than applying binary classification
(including inference and training time) purely based on sensor
or telemetric data; therefore, the applicability of this technique
in the case of fast, high-throughput assembly or production
lines is limited [58], [59].

The flexibility and performance of such a system depend
on the applied technology and the followed approaches while
designing the architecture. The most important factors are
usually the features that will be examined during the in-
vestigation of an object to find defects; therefore, defining
features is a crucial task of designing an optical quality control
(0OQC) system. Another approach to design fast and reliable
OQC systems is applying Convolutional Neural Networks
(CNN) that provide automatic feature extraction instead of the
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aforementioned manual one. In [58] Weimer et al. showed that
CNN-based architectures are capable of identifying defects
with high accuracy; therefore, it is possible to create reliable
OQC systems with limited prior knowledge on the problem
domain. Authors of [60] presented a CNN-based OQC system
with unique architecture to find the optimal accuracy and
training time. Therefore they limited the number of the used
convolutional layer. They showed that an optimum exists for
this specific task, which has better (or similar) accuracy than
other CNN architecture while its training time is considerably
faster.

However, image processing is usually a computation heavy
task; therefore, in certain cases, it can be beneficial to apply
prior knowledge to increase the system’s performance. The
authors of [59] designed and implemented a Convolutional
Neural Network-based quality control system for PET bottle
caps, which system is supported by image calibration to enable
using a custom, lightweight architecture. In spite of that, not
so customizable CV frameworks that enable fast prototyping
are extremely popular in OQC systems: e.g., a well-known
one is the ”You only look once” (YOLOv3) [61]. YOLOv3
provides impressive performance with appropriate detection
accuracy and very fast inference time, although it is not the
best-performing choice compared to the previous one.

V. CONCLUSION

In this paper, we investigated machine learning-based ap-
plications within smart maintenance and intelligent quality
control that are core tasks of smart manufacturing while
identifying the most important application-specific challenges
and research gaps.

Regarding smart maintenance applications: (i) synthetic
oversampling, generative adversarial networks, and (ii) transfer
learning have been identified as hot research topics that address
the problem of (i) imbalanced, overly biased data and (ii) using
the same dataset for other different or identical machines. The
lack of supervised datasets is a common issue for RCA, IDF,
prognostics, and many fields, which may lose its importance
as smart manufacturing becomes more mature. However, right
now, the best practice is using such an approach the can
easily deal with unlabeled data, e.g., random forest. So, the
field of applications with unlabeled data is identified as a hot
topic as well, since in this early-mid phase of smart factory
development, using unlabeled data set is a common scenario.

In the field of quality control, both non-visual and computer
vision-aided applications have a great reputation. Non-visual
solutions are lightweight CV-based solutions that are much
more flexible, while both of them perform very well. The
main challenges for non-visual quality control applications
are: enabling high-data-rate and enhance flexibility to enable
quality control in the ever-changing smart factories. The main
challenges for CV-based applications are: improve the infer-
ence time and decrease the required computational capacity
to enable image recognition-based quality inspection in high-
throughput assembly and production lines.
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