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I. INTRODUCTION

THE use of transport vehicles has become a part of every-
day life for most people. Consequently, in recent decades,

the volume and nature of traffic has changed dramatically.
It is clear that traffic has become increasingly congested
these days, especially on highways and also on the streets of
crowded cities. Various vehicles, such as cars, trucks, cyclists,
pedestrians, and novel vehicles are competing for the resources
of public roads.

In this changing environment, traditional solutions can pro-
vide limited results. It is not necessarily economical to increase
the amount of resources by building new routes or expanding
roads by new lanes. Against this approach, it is necessary
to study the more economic exploitation of the existing road
resources. As the complexity of transport increases, so does
the demand for safer transportation. To ensure safety on roads,
a much deeper understanding of traffic situations must be
achieved. Soon, with the spreading of higher level automation
(or full self-driving capabilities) of vehicles, the predictability
of mixed-traffic interactions is necessary to provide safe and
efficient algorithms. Besides, an innovative and state-of-the-
art solution must also meet the needs of comfortably and
predictability requirements.

From the perspective of this paper, interactions between
vehicles result in actions taken by vehicle drivers. Actions
are controlled by behaviour which in turn is influenced by
the driver’s personality (see Fig. 1). Behaviour is also highly
dependent on the context. The same person with a specific
personality can behave differently in the same situation but in
a different context. Basically, behaviour and personality are
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Fig. 1: The relation of personality, behaviour and action.
A specific personality produces an actual behaviour in a
peculiar context. The observable actions are derivable from
the behaviour.

not observable, so we need to find ways to infer them from
actions in specific contexts. For this, two main principles can
be identified while analysing traffic behaviour (see Fig. 1).
From the point of personality, the behaviour of the driver
can be simulated or modelled in common situations; then the
behaviour itself or the actions and its consequences can be
analysed. This aspect is called decision analysis. In terms
of actions, the actual behaviour can be deduced by various
techniques, which are called behaviour recognition or identi-
fication.

The main goal of this paper is to review and survey
research concerning vehicle driver behaviour, especially the
ones that describe the behaviour of a vehicle groups called
as traffic swarm in this paper. First, in the next section,
traffic swarm concept is presented to define the term traffic
swarm behaviour. The sections after present the state-of-the-
art methods of behaviour identification and decision analysis
in the literature. The taxonomy of the discussed methods is
presented on Figure 2. Finally, the topic is concluded by some
important observation and recommendation about future work.

II. TRAFFIC SWARM

Social swarms, such as ant colonies, birds, bee hives, flocks,
herds, shape group’s behaviour through simple decisions of
individuals and interactions among them. In recent decades,
the research community put focus on researching social
swarms in order to understand their collaborative behaviour
[1], [2], [3], [4], [5]. As a result of continuous evolution, these
swarms have developed intelligent behaviours for survival. The
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Fig. 2: Overview of the applicable methods of traffic behaviour
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found in the text.

basis of emerging behaviour is formed from the behaviour
of individuals and from the communication that takes place
among them. The method of communication is different for
each species, e.g ants use pheromones to mark their path
and alert others [2]. This type of communication was first
introduced as the concept of stigmergy by Grassé [6]. It was
an important step towards understanding the mechanisms of
emergence, regulation, and control of collective activities in
social insects [6], [7].

On public roads, public transport is also based on collab-
orative group behaviour. In traditional behaviour modelling,
one models an approaching car’s breaking as a single event,
but in reality this action results in other actions done by the
nearby drivers who react to the approaching car. In fact, even
the drivers’ simplest actions can be described as actions and
reactions to each other. This interaction, as stigmergy, relies
not only on the distance and the speed of the neighbouring
cars, but also affected by the car’s movements within the lane,
or the observable personal reactions of the driver. Also the
resulting action induces reactions of others. This collaborative
behaviour is consistent with the behavioural patterns of social
swarms.

III. BEHAVIOUR IDENTIFICATION AND DESCRIPTION

A. Psychology based models

The most common and classic way of analysing traffic be-
haviour is based on psychological behaviour models originally
developed in psychological research. These models usually a
priori determine a couple of behaviour categories by which
the drivers can be characterised and classified. The categories
are well known to the human perception, e.g. aggressiveness
or cautiousness. Such categories result in a multi-axis (multi-
dimension) space of behaviour patterns, where the dimensions
can be described by continuous values, or – typically – by
discrete values. For example, [8] uses a 7-point scale to each
of the six behaviour categories to express the weight of that
behaviour characteristic.

Fig. 3: The Hierarchical Driver Model (HDM). A vehicle
driver has different levels of mental models and decision
makers. The driver can be described as a couple of mental
model running parallel, where each mental model runs at
different level. HDM indicates that behaviour is determined
not only by tactical decisions but by higher-level strategical
decisions. For details, refer to [9].

One of the early but exciting development of the cooperation
between traffic theory and psychology is the Hierarchical Men-
tal Model (HMM) of the driver [9], which states that the driver
behaviour is composed of decision-makers communicating
with mental models (see Fig. 3). It divides decision-making
into the strategy selection level (e.g. reaching the destination,
required travel time, etc.), the tactical level (which selects the
next manoeuvre or task to perform), and the operational level
(common tasks like car following or lane keeping).

The main point is that the observed behaviour can originate
from either the tactical (e.g. emergency situation) or strategy
selection (e.g. being in a hurry) level. However, in practical
scenarios, identifying the mental source is not necessarily, one
can readily observe and analyse the behaviour itself.

The usual way of analysing traffic behaviour in psycholog-
ical models are as follows: first, one defines the behaviour
dimensions or latent space axes, then identifies the features
that can be observed, maps the features into behavioural
latent space and finally, analyses the latent space with various
methods or provides future predictions to unseen data.

The most important and also the most studied behavioural
characteristic is the degree of aggression which is believed
to principally determine the safety of driving [8], [10], [11].
E.g. in [12], aggressiveness is the only dimension studied,
and a fuzzy logic method is applied to the observed accel-
eration to predict the level of aggressiveness on a four-level
scale. However, not only aggressiveness can be considered in
safety, but the carefulness of the driver is also an important
category [13]. Attentive and distracted categories were used
by [14], where a couple of observed features (driver pose
and environmental factors) were used to predict the near-
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and a fuzzy logic method is applied to the observed accel-
eration to predict the level of aggressiveness on a four-level
scale. However, not only aggressiveness can be considered in
safety, but the carefulness of the driver is also an important
category [13]. Attentive and distracted categories were used
by [14], where a couple of observed features (driver pose
and environmental factors) were used to predict the near-
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basis of emerging behaviour is formed from the behaviour
of individuals and from the communication that takes place
among them. The method of communication is different for
each species, e.g ants use pheromones to mark their path
and alert others [2]. This type of communication was first
introduced as the concept of stigmergy by Grassé [6]. It was
an important step towards understanding the mechanisms of
emergence, regulation, and control of collective activities in
social insects [6], [7].

On public roads, public transport is also based on collab-
orative group behaviour. In traditional behaviour modelling,
one models an approaching car’s breaking as a single event,
but in reality this action results in other actions done by the
nearby drivers who react to the approaching car. In fact, even
the drivers’ simplest actions can be described as actions and
reactions to each other. This interaction, as stigmergy, relies
not only on the distance and the speed of the neighbouring
cars, but also affected by the car’s movements within the lane,
or the observable personal reactions of the driver. Also the
resulting action induces reactions of others. This collaborative
behaviour is consistent with the behavioural patterns of social
swarms.

III. BEHAVIOUR IDENTIFICATION AND DESCRIPTION

A. Psychology based models

The most common and classic way of analysing traffic be-
haviour is based on psychological behaviour models originally
developed in psychological research. These models usually a
priori determine a couple of behaviour categories by which
the drivers can be characterised and classified. The categories
are well known to the human perception, e.g. aggressiveness
or cautiousness. Such categories result in a multi-axis (multi-
dimension) space of behaviour patterns, where the dimensions
can be described by continuous values, or – typically – by
discrete values. For example, [8] uses a 7-point scale to each
of the six behaviour categories to express the weight of that
behaviour characteristic.

Fig. 3: The Hierarchical Driver Model (HDM). A vehicle
driver has different levels of mental models and decision
makers. The driver can be described as a couple of mental
model running parallel, where each mental model runs at
different level. HDM indicates that behaviour is determined
not only by tactical decisions but by higher-level strategical
decisions. For details, refer to [9].

One of the early but exciting development of the cooperation
between traffic theory and psychology is the Hierarchical Men-
tal Model (HMM) of the driver [9], which states that the driver
behaviour is composed of decision-makers communicating
with mental models (see Fig. 3). It divides decision-making
into the strategy selection level (e.g. reaching the destination,
required travel time, etc.), the tactical level (which selects the
next manoeuvre or task to perform), and the operational level
(common tasks like car following or lane keeping).

The main point is that the observed behaviour can originate
from either the tactical (e.g. emergency situation) or strategy
selection (e.g. being in a hurry) level. However, in practical
scenarios, identifying the mental source is not necessarily, one
can readily observe and analyse the behaviour itself.

The usual way of analysing traffic behaviour in psycholog-
ical models are as follows: first, one defines the behaviour
dimensions or latent space axes, then identifies the features
that can be observed, maps the features into behavioural
latent space and finally, analyses the latent space with various
methods or provides future predictions to unseen data.

The most important and also the most studied behavioural
characteristic is the degree of aggression which is believed
to principally determine the safety of driving [8], [10], [11].
E.g. in [12], aggressiveness is the only dimension studied,
and a fuzzy logic method is applied to the observed accel-
eration to predict the level of aggressiveness on a four-level
scale. However, not only aggressiveness can be considered in
safety, but the carefulness of the driver is also an important
category [13]. Attentive and distracted categories were used
by [14], where a couple of observed features (driver pose
and environmental factors) were used to predict the near-
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basis of emerging behaviour is formed from the behaviour
of individuals and from the communication that takes place
among them. The method of communication is different for
each species, e.g ants use pheromones to mark their path
and alert others [2]. This type of communication was first
introduced as the concept of stigmergy by Grassé [6]. It was
an important step towards understanding the mechanisms of
emergence, regulation, and control of collective activities in
social insects [6], [7].

On public roads, public transport is also based on collab-
orative group behaviour. In traditional behaviour modelling,
one models an approaching car’s breaking as a single event,
but in reality this action results in other actions done by the
nearby drivers who react to the approaching car. In fact, even
the drivers’ simplest actions can be described as actions and
reactions to each other. This interaction, as stigmergy, relies
not only on the distance and the speed of the neighbouring
cars, but also affected by the car’s movements within the lane,
or the observable personal reactions of the driver. Also the
resulting action induces reactions of others. This collaborative
behaviour is consistent with the behavioural patterns of social
swarms.

III. BEHAVIOUR IDENTIFICATION AND DESCRIPTION

A. Psychology based models

The most common and classic way of analysing traffic be-
haviour is based on psychological behaviour models originally
developed in psychological research. These models usually a
priori determine a couple of behaviour categories by which
the drivers can be characterised and classified. The categories
are well known to the human perception, e.g. aggressiveness
or cautiousness. Such categories result in a multi-axis (multi-
dimension) space of behaviour patterns, where the dimensions
can be described by continuous values, or – typically – by
discrete values. For example, [8] uses a 7-point scale to each
of the six behaviour categories to express the weight of that
behaviour characteristic.

Fig. 3: The Hierarchical Driver Model (HDM). A vehicle
driver has different levels of mental models and decision
makers. The driver can be described as a couple of mental
model running parallel, where each mental model runs at
different level. HDM indicates that behaviour is determined
not only by tactical decisions but by higher-level strategical
decisions. For details, refer to [9].

One of the early but exciting development of the cooperation
between traffic theory and psychology is the Hierarchical Men-
tal Model (HMM) of the driver [9], which states that the driver
behaviour is composed of decision-makers communicating
with mental models (see Fig. 3). It divides decision-making
into the strategy selection level (e.g. reaching the destination,
required travel time, etc.), the tactical level (which selects the
next manoeuvre or task to perform), and the operational level
(common tasks like car following or lane keeping).

The main point is that the observed behaviour can originate
from either the tactical (e.g. emergency situation) or strategy
selection (e.g. being in a hurry) level. However, in practical
scenarios, identifying the mental source is not necessarily, one
can readily observe and analyse the behaviour itself.

The usual way of analysing traffic behaviour in psycholog-
ical models are as follows: first, one defines the behaviour
dimensions or latent space axes, then identifies the features
that can be observed, maps the features into behavioural
latent space and finally, analyses the latent space with various
methods or provides future predictions to unseen data.

The most important and also the most studied behavioural
characteristic is the degree of aggression which is believed
to principally determine the safety of driving [8], [10], [11].
E.g. in [12], aggressiveness is the only dimension studied,
and a fuzzy logic method is applied to the observed accel-
eration to predict the level of aggressiveness on a four-level
scale. However, not only aggressiveness can be considered in
safety, but the carefulness of the driver is also an important
category [13]. Attentive and distracted categories were used
by [14], where a couple of observed features (driver pose
and environmental factors) were used to predict the near-

2

Traffic behaviour
analysis

Behaviour
identification

and description

Psychology
models

Parametric
traffic

models

Non
parametric

models

Mesoscopic
analysis

Personality
and decision

analysis

Cooperative
models

Dynamic
game

models

Fig. 2: Overview of the applicable methods of traffic behaviour
analysis. The description of the groups and subgroups can be
found in the text.

basis of emerging behaviour is formed from the behaviour
of individuals and from the communication that takes place
among them. The method of communication is different for
each species, e.g ants use pheromones to mark their path
and alert others [2]. This type of communication was first
introduced as the concept of stigmergy by Grassé [6]. It was
an important step towards understanding the mechanisms of
emergence, regulation, and control of collective activities in
social insects [6], [7].

On public roads, public transport is also based on collab-
orative group behaviour. In traditional behaviour modelling,
one models an approaching car’s breaking as a single event,
but in reality this action results in other actions done by the
nearby drivers who react to the approaching car. In fact, even
the drivers’ simplest actions can be described as actions and
reactions to each other. This interaction, as stigmergy, relies
not only on the distance and the speed of the neighbouring
cars, but also affected by the car’s movements within the lane,
or the observable personal reactions of the driver. Also the
resulting action induces reactions of others. This collaborative
behaviour is consistent with the behavioural patterns of social
swarms.

III. BEHAVIOUR IDENTIFICATION AND DESCRIPTION

A. Psychology based models

The most common and classic way of analysing traffic be-
haviour is based on psychological behaviour models originally
developed in psychological research. These models usually a
priori determine a couple of behaviour categories by which
the drivers can be characterised and classified. The categories
are well known to the human perception, e.g. aggressiveness
or cautiousness. Such categories result in a multi-axis (multi-
dimension) space of behaviour patterns, where the dimensions
can be described by continuous values, or – typically – by
discrete values. For example, [8] uses a 7-point scale to each
of the six behaviour categories to express the weight of that
behaviour characteristic.

Fig. 3: The Hierarchical Driver Model (HDM). A vehicle
driver has different levels of mental models and decision
makers. The driver can be described as a couple of mental
model running parallel, where each mental model runs at
different level. HDM indicates that behaviour is determined
not only by tactical decisions but by higher-level strategical
decisions. For details, refer to [9].

One of the early but exciting development of the cooperation
between traffic theory and psychology is the Hierarchical Men-
tal Model (HMM) of the driver [9], which states that the driver
behaviour is composed of decision-makers communicating
with mental models (see Fig. 3). It divides decision-making
into the strategy selection level (e.g. reaching the destination,
required travel time, etc.), the tactical level (which selects the
next manoeuvre or task to perform), and the operational level
(common tasks like car following or lane keeping).

The main point is that the observed behaviour can originate
from either the tactical (e.g. emergency situation) or strategy
selection (e.g. being in a hurry) level. However, in practical
scenarios, identifying the mental source is not necessarily, one
can readily observe and analyse the behaviour itself.

The usual way of analysing traffic behaviour in psycholog-
ical models are as follows: first, one defines the behaviour
dimensions or latent space axes, then identifies the features
that can be observed, maps the features into behavioural
latent space and finally, analyses the latent space with various
methods or provides future predictions to unseen data.

The most important and also the most studied behavioural
characteristic is the degree of aggression which is believed
to principally determine the safety of driving [8], [10], [11].
E.g. in [12], aggressiveness is the only dimension studied,
and a fuzzy logic method is applied to the observed accel-
eration to predict the level of aggressiveness on a four-level
scale. However, not only aggressiveness can be considered in
safety, but the carefulness of the driver is also an important
category [13]. Attentive and distracted categories were used
by [14], where a couple of observed features (driver pose
and environmental factors) were used to predict the near-
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future trajectory of the car by using Convex Markov Chains.
The features were processed in a non-supervised manner
using k-means algorithm to identify the modes labelled with
predefined categories. The DriveSafe application [15] also
considers attentiveness and distraction behaviours.

A multidimensional behavioural latent space is defined
in [16], [8]. They selected six behaviour dimensions (e.g.
aggressiveness, carefulness, etc.) and nine different features;
then they conducted surveys to map real-world data onto the
six behaviour axes on a 7-point scale. On the latent space,
principal component analysis was applied, resulting in the
conclusion that aggressiveness and carefulness are the main
factors behind all the characteristics.

It is worth mentioning that even classic traffic simulation
models use psychological categories implicitly or explicitly.
For example, the well-known MOBIL [17] lane-changing
model uses the politeness factor when making decisions.
Car-following models also have hyperparameters that can be
described using psychological correspondences. However, the
human aspects of the traffic simulation models remain to be
researched extensively [18].

B. Parametric traffic models

The most common methods for analysing microscopic traf-
fic behaviour are based on various parametric models. These
representations determine physical, measurable parameters
which influence the drivers’ behaviour and decision-making
process in certain traffic situations. The most common models
were developed to describe behaviour in highway traffic, e.g.
changing the car’s acceleration based on the speed and distance
of the vehicle ahead (car-following models, [19], [20], [21]),
or the event of lane changing based on the relative speed and
available space in the overtaking lane (lane-changing models,
[22]). However, more complex models are being developed to
describe more complicated events, such as driver behaviour
during unexpected lane closures [23].

Almost all parametric models require the specification of
some hyperparameters which describe certain driver proper-
ties. For example, in the case of the most well-known car-
following model, namely the Intelligent Driver Model (IDM)
[21], a couple of hyperparameters are needed to be defined
as inputs of simulations, like desired velocity in free driving,
maximum acceleration or comfortable braking deceleration.

The correct setting of these hyperparameters is critical for
making the simulation models realistic. This can be done
using real traffic data during model calibration, when the
input hyperparameters are adjusted in a way that each car’s
behaviour and trajectory mirrors the real-life data as closely as
possible. This optimisation process can be done using analytic
calculations [24]; however, newer methods also use artificial
intelligence and neural networks [25], [26].

As the IDM example shows, the hyperparameters that
describe a chosen vehicle’s motion dynamics are constants
and can be used to determine the response to different events.
However, the value of these hyperparameters also bear useful
information and, when they are suited for real-life data, can
be used for describing real driver traits [27].

As such, the examination of hyperparameter statistics can
be promising. The distribution of these properties can provide
useful information about the expectable behaviour of drivers
in a given situations, as well as the probability and nature
of irregular behaviours [28], which can lead to more accurate
predictions [28], [27].

Although these models describe certain driver actions in
a realistic and comprehensible way, the understanding of
intensive, complex and heterogeneous traffic requires more
elaborated methodologies. For example, it may be worth
comparing the results of these parametric model analyses
with the aforementioned psychological models and finding
correlations between the psychological driver traits and the
hyperparameters of the trajectories. This can lead to more
accurate descriptions of how different types of drivers behave
on the road.

C. Non-parametric machine learning models
There is a wide literature on the application of non-

parametric models to describe driver behaviour in different
traffic scenarios. Non-parametric behaviour analysis uses a
black-box model. In this machine learning principle, the model
learns the driver behaviour from real input and output data.
The behaviour itself is the relation between input feature data
and the related output response.

The emergence of ADAS (Advanced Driver Assistance
System) has emphasised the need and viability of this kind
of modelling. In order to provide relevant information to the
driver, a system must be capable of understanding what is
currently happening at a certain traffic scene. This problem
is known as situation assessment [29]. To address this prob-
lem, conditional probabilistic Bayesian networks are used to
estimate driver intention in road intersections in [30] and [31].

Besides these approaches, machine learning principles are
widely used to build non-parametric behaviour models to
describe ego driver behaviour. The model input basically is
the ego driver measurable relations to its surroundings, the
ambient cars, or even static and dynamic signals, signs and
lane rules. The common output is the real trajectory of the
ego driver’s vehicle.

In a typical approach, inputs come from the eight surround-
ing vehicles, which concept in [32] is extended by the preced-
ing vehicle of the front vehicle resulting in the most reliable
behaviour modelling and prediction. Most of the approaches
use a full set of input and output data; however, [33] exploited
sparse floating car data to predict vehicle trajectories with
penetration rate between 2 and 8 percent.

As in many machine learning applications, existing tech-
niques can be split between classification or regression. When
applied to motion prediction, classification problems intend
to determine a high-level intention, such as lane changing to
left or right, lane-keeping or braking during highway driving,
turning left, turning right, or going straight in an intersection.

On the other hand, regression problems aim at directly ob-
taining a predicted future positions of the considered vehicle,
which can then be even used for motion planning of target
vehicle. Trajectory prediction hypothesises can be used as an
input during decision process. ([34])
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basis of emerging behaviour is formed from the behaviour
of individuals and from the communication that takes place
among them. The method of communication is different for
each species, e.g ants use pheromones to mark their path
and alert others [2]. This type of communication was first
introduced as the concept of stigmergy by Grassé [6]. It was
an important step towards understanding the mechanisms of
emergence, regulation, and control of collective activities in
social insects [6], [7].

On public roads, public transport is also based on collab-
orative group behaviour. In traditional behaviour modelling,
one models an approaching car’s breaking as a single event,
but in reality this action results in other actions done by the
nearby drivers who react to the approaching car. In fact, even
the drivers’ simplest actions can be described as actions and
reactions to each other. This interaction, as stigmergy, relies
not only on the distance and the speed of the neighbouring
cars, but also affected by the car’s movements within the lane,
or the observable personal reactions of the driver. Also the
resulting action induces reactions of others. This collaborative
behaviour is consistent with the behavioural patterns of social
swarms.

III. BEHAVIOUR IDENTIFICATION AND DESCRIPTION

A. Psychology based models

The most common and classic way of analysing traffic be-
haviour is based on psychological behaviour models originally
developed in psychological research. These models usually a
priori determine a couple of behaviour categories by which
the drivers can be characterised and classified. The categories
are well known to the human perception, e.g. aggressiveness
or cautiousness. Such categories result in a multi-axis (multi-
dimension) space of behaviour patterns, where the dimensions
can be described by continuous values, or – typically – by
discrete values. For example, [8] uses a 7-point scale to each
of the six behaviour categories to express the weight of that
behaviour characteristic.

Fig. 3: The Hierarchical Driver Model (HDM). A vehicle
driver has different levels of mental models and decision
makers. The driver can be described as a couple of mental
model running parallel, where each mental model runs at
different level. HDM indicates that behaviour is determined
not only by tactical decisions but by higher-level strategical
decisions. For details, refer to [9].

One of the early but exciting development of the cooperation
between traffic theory and psychology is the Hierarchical Men-
tal Model (HMM) of the driver [9], which states that the driver
behaviour is composed of decision-makers communicating
with mental models (see Fig. 3). It divides decision-making
into the strategy selection level (e.g. reaching the destination,
required travel time, etc.), the tactical level (which selects the
next manoeuvre or task to perform), and the operational level
(common tasks like car following or lane keeping).

The main point is that the observed behaviour can originate
from either the tactical (e.g. emergency situation) or strategy
selection (e.g. being in a hurry) level. However, in practical
scenarios, identifying the mental source is not necessarily, one
can readily observe and analyse the behaviour itself.

The usual way of analysing traffic behaviour in psycholog-
ical models are as follows: first, one defines the behaviour
dimensions or latent space axes, then identifies the features
that can be observed, maps the features into behavioural
latent space and finally, analyses the latent space with various
methods or provides future predictions to unseen data.

The most important and also the most studied behavioural
characteristic is the degree of aggression which is believed
to principally determine the safety of driving [8], [10], [11].
E.g. in [12], aggressiveness is the only dimension studied,
and a fuzzy logic method is applied to the observed accel-
eration to predict the level of aggressiveness on a four-level
scale. However, not only aggressiveness can be considered in
safety, but the carefulness of the driver is also an important
category [13]. Attentive and distracted categories were used
by [14], where a couple of observed features (driver pose
and environmental factors) were used to predict the near-
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future trajectory of the car by using Convex Markov Chains.
The features were processed in a non-supervised manner
using k-means algorithm to identify the modes labelled with
predefined categories. The DriveSafe application [15] also
considers attentiveness and distraction behaviours.

A multidimensional behavioural latent space is defined
in [16], [8]. They selected six behaviour dimensions (e.g.
aggressiveness, carefulness, etc.) and nine different features;
then they conducted surveys to map real-world data onto the
six behaviour axes on a 7-point scale. On the latent space,
principal component analysis was applied, resulting in the
conclusion that aggressiveness and carefulness are the main
factors behind all the characteristics.

It is worth mentioning that even classic traffic simulation
models use psychological categories implicitly or explicitly.
For example, the well-known MOBIL [17] lane-changing
model uses the politeness factor when making decisions.
Car-following models also have hyperparameters that can be
described using psychological correspondences. However, the
human aspects of the traffic simulation models remain to be
researched extensively [18].

B. Parametric traffic models

The most common methods for analysing microscopic traf-
fic behaviour are based on various parametric models. These
representations determine physical, measurable parameters
which influence the drivers’ behaviour and decision-making
process in certain traffic situations. The most common models
were developed to describe behaviour in highway traffic, e.g.
changing the car’s acceleration based on the speed and distance
of the vehicle ahead (car-following models, [19], [20], [21]),
or the event of lane changing based on the relative speed and
available space in the overtaking lane (lane-changing models,
[22]). However, more complex models are being developed to
describe more complicated events, such as driver behaviour
during unexpected lane closures [23].

Almost all parametric models require the specification of
some hyperparameters which describe certain driver proper-
ties. For example, in the case of the most well-known car-
following model, namely the Intelligent Driver Model (IDM)
[21], a couple of hyperparameters are needed to be defined
as inputs of simulations, like desired velocity in free driving,
maximum acceleration or comfortable braking deceleration.

The correct setting of these hyperparameters is critical for
making the simulation models realistic. This can be done
using real traffic data during model calibration, when the
input hyperparameters are adjusted in a way that each car’s
behaviour and trajectory mirrors the real-life data as closely as
possible. This optimisation process can be done using analytic
calculations [24]; however, newer methods also use artificial
intelligence and neural networks [25], [26].

As the IDM example shows, the hyperparameters that
describe a chosen vehicle’s motion dynamics are constants
and can be used to determine the response to different events.
However, the value of these hyperparameters also bear useful
information and, when they are suited for real-life data, can
be used for describing real driver traits [27].

As such, the examination of hyperparameter statistics can
be promising. The distribution of these properties can provide
useful information about the expectable behaviour of drivers
in a given situations, as well as the probability and nature
of irregular behaviours [28], which can lead to more accurate
predictions [28], [27].

Although these models describe certain driver actions in
a realistic and comprehensible way, the understanding of
intensive, complex and heterogeneous traffic requires more
elaborated methodologies. For example, it may be worth
comparing the results of these parametric model analyses
with the aforementioned psychological models and finding
correlations between the psychological driver traits and the
hyperparameters of the trajectories. This can lead to more
accurate descriptions of how different types of drivers behave
on the road.

C. Non-parametric machine learning models
There is a wide literature on the application of non-

parametric models to describe driver behaviour in different
traffic scenarios. Non-parametric behaviour analysis uses a
black-box model. In this machine learning principle, the model
learns the driver behaviour from real input and output data.
The behaviour itself is the relation between input feature data
and the related output response.

The emergence of ADAS (Advanced Driver Assistance
System) has emphasised the need and viability of this kind
of modelling. In order to provide relevant information to the
driver, a system must be capable of understanding what is
currently happening at a certain traffic scene. This problem
is known as situation assessment [29]. To address this prob-
lem, conditional probabilistic Bayesian networks are used to
estimate driver intention in road intersections in [30] and [31].

Besides these approaches, machine learning principles are
widely used to build non-parametric behaviour models to
describe ego driver behaviour. The model input basically is
the ego driver measurable relations to its surroundings, the
ambient cars, or even static and dynamic signals, signs and
lane rules. The common output is the real trajectory of the
ego driver’s vehicle.

In a typical approach, inputs come from the eight surround-
ing vehicles, which concept in [32] is extended by the preced-
ing vehicle of the front vehicle resulting in the most reliable
behaviour modelling and prediction. Most of the approaches
use a full set of input and output data; however, [33] exploited
sparse floating car data to predict vehicle trajectories with
penetration rate between 2 and 8 percent.

As in many machine learning applications, existing tech-
niques can be split between classification or regression. When
applied to motion prediction, classification problems intend
to determine a high-level intention, such as lane changing to
left or right, lane-keeping or braking during highway driving,
turning left, turning right, or going straight in an intersection.

On the other hand, regression problems aim at directly ob-
taining a predicted future positions of the considered vehicle,
which can then be even used for motion planning of target
vehicle. Trajectory prediction hypothesises can be used as an
input during decision process. ([34])
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future trajectory of the car by using Convex Markov Chains.
The features were processed in a non-supervised manner
using k-means algorithm to identify the modes labelled with
predefined categories. The DriveSafe application [15] also
considers attentiveness and distraction behaviours.

A multidimensional behavioural latent space is defined
in [16], [8]. They selected six behaviour dimensions (e.g.
aggressiveness, carefulness, etc.) and nine different features;
then they conducted surveys to map real-world data onto the
six behaviour axes on a 7-point scale. On the latent space,
principal component analysis was applied, resulting in the
conclusion that aggressiveness and carefulness are the main
factors behind all the characteristics.

It is worth mentioning that even classic traffic simulation
models use psychological categories implicitly or explicitly.
For example, the well-known MOBIL [17] lane-changing
model uses the politeness factor when making decisions.
Car-following models also have hyperparameters that can be
described using psychological correspondences. However, the
human aspects of the traffic simulation models remain to be
researched extensively [18].

B. Parametric traffic models

The most common methods for analysing microscopic traf-
fic behaviour are based on various parametric models. These
representations determine physical, measurable parameters
which influence the drivers’ behaviour and decision-making
process in certain traffic situations. The most common models
were developed to describe behaviour in highway traffic, e.g.
changing the car’s acceleration based on the speed and distance
of the vehicle ahead (car-following models, [19], [20], [21]),
or the event of lane changing based on the relative speed and
available space in the overtaking lane (lane-changing models,
[22]). However, more complex models are being developed to
describe more complicated events, such as driver behaviour
during unexpected lane closures [23].

Almost all parametric models require the specification of
some hyperparameters which describe certain driver proper-
ties. For example, in the case of the most well-known car-
following model, namely the Intelligent Driver Model (IDM)
[21], a couple of hyperparameters are needed to be defined
as inputs of simulations, like desired velocity in free driving,
maximum acceleration or comfortable braking deceleration.

The correct setting of these hyperparameters is critical for
making the simulation models realistic. This can be done
using real traffic data during model calibration, when the
input hyperparameters are adjusted in a way that each car’s
behaviour and trajectory mirrors the real-life data as closely as
possible. This optimisation process can be done using analytic
calculations [24]; however, newer methods also use artificial
intelligence and neural networks [25], [26].

As the IDM example shows, the hyperparameters that
describe a chosen vehicle’s motion dynamics are constants
and can be used to determine the response to different events.
However, the value of these hyperparameters also bear useful
information and, when they are suited for real-life data, can
be used for describing real driver traits [27].

As such, the examination of hyperparameter statistics can
be promising. The distribution of these properties can provide
useful information about the expectable behaviour of drivers
in a given situations, as well as the probability and nature
of irregular behaviours [28], which can lead to more accurate
predictions [28], [27].

Although these models describe certain driver actions in
a realistic and comprehensible way, the understanding of
intensive, complex and heterogeneous traffic requires more
elaborated methodologies. For example, it may be worth
comparing the results of these parametric model analyses
with the aforementioned psychological models and finding
correlations between the psychological driver traits and the
hyperparameters of the trajectories. This can lead to more
accurate descriptions of how different types of drivers behave
on the road.

C. Non-parametric machine learning models
There is a wide literature on the application of non-

parametric models to describe driver behaviour in different
traffic scenarios. Non-parametric behaviour analysis uses a
black-box model. In this machine learning principle, the model
learns the driver behaviour from real input and output data.
The behaviour itself is the relation between input feature data
and the related output response.

The emergence of ADAS (Advanced Driver Assistance
System) has emphasised the need and viability of this kind
of modelling. In order to provide relevant information to the
driver, a system must be capable of understanding what is
currently happening at a certain traffic scene. This problem
is known as situation assessment [29]. To address this prob-
lem, conditional probabilistic Bayesian networks are used to
estimate driver intention in road intersections in [30] and [31].

Besides these approaches, machine learning principles are
widely used to build non-parametric behaviour models to
describe ego driver behaviour. The model input basically is
the ego driver measurable relations to its surroundings, the
ambient cars, or even static and dynamic signals, signs and
lane rules. The common output is the real trajectory of the
ego driver’s vehicle.

In a typical approach, inputs come from the eight surround-
ing vehicles, which concept in [32] is extended by the preced-
ing vehicle of the front vehicle resulting in the most reliable
behaviour modelling and prediction. Most of the approaches
use a full set of input and output data; however, [33] exploited
sparse floating car data to predict vehicle trajectories with
penetration rate between 2 and 8 percent.

As in many machine learning applications, existing tech-
niques can be split between classification or regression. When
applied to motion prediction, classification problems intend
to determine a high-level intention, such as lane changing to
left or right, lane-keeping or braking during highway driving,
turning left, turning right, or going straight in an intersection.

On the other hand, regression problems aim at directly ob-
taining a predicted future positions of the considered vehicle,
which can then be even used for motion planning of target
vehicle. Trajectory prediction hypothesises can be used as an
input during decision process. ([34])
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future trajectory of the car by using Convex Markov Chains.
The features were processed in a non-supervised manner
using k-means algorithm to identify the modes labelled with
predefined categories. The DriveSafe application [15] also
considers attentiveness and distraction behaviours.

A multidimensional behavioural latent space is defined
in [16], [8]. They selected six behaviour dimensions (e.g.
aggressiveness, carefulness, etc.) and nine different features;
then they conducted surveys to map real-world data onto the
six behaviour axes on a 7-point scale. On the latent space,
principal component analysis was applied, resulting in the
conclusion that aggressiveness and carefulness are the main
factors behind all the characteristics.

It is worth mentioning that even classic traffic simulation
models use psychological categories implicitly or explicitly.
For example, the well-known MOBIL [17] lane-changing
model uses the politeness factor when making decisions.
Car-following models also have hyperparameters that can be
described using psychological correspondences. However, the
human aspects of the traffic simulation models remain to be
researched extensively [18].

B. Parametric traffic models

The most common methods for analysing microscopic traf-
fic behaviour are based on various parametric models. These
representations determine physical, measurable parameters
which influence the drivers’ behaviour and decision-making
process in certain traffic situations. The most common models
were developed to describe behaviour in highway traffic, e.g.
changing the car’s acceleration based on the speed and distance
of the vehicle ahead (car-following models, [19], [20], [21]),
or the event of lane changing based on the relative speed and
available space in the overtaking lane (lane-changing models,
[22]). However, more complex models are being developed to
describe more complicated events, such as driver behaviour
during unexpected lane closures [23].

Almost all parametric models require the specification of
some hyperparameters which describe certain driver proper-
ties. For example, in the case of the most well-known car-
following model, namely the Intelligent Driver Model (IDM)
[21], a couple of hyperparameters are needed to be defined
as inputs of simulations, like desired velocity in free driving,
maximum acceleration or comfortable braking deceleration.

The correct setting of these hyperparameters is critical for
making the simulation models realistic. This can be done
using real traffic data during model calibration, when the
input hyperparameters are adjusted in a way that each car’s
behaviour and trajectory mirrors the real-life data as closely as
possible. This optimisation process can be done using analytic
calculations [24]; however, newer methods also use artificial
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As the IDM example shows, the hyperparameters that
describe a chosen vehicle’s motion dynamics are constants
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However, the value of these hyperparameters also bear useful
information and, when they are suited for real-life data, can
be used for describing real driver traits [27].

As such, the examination of hyperparameter statistics can
be promising. The distribution of these properties can provide
useful information about the expectable behaviour of drivers
in a given situations, as well as the probability and nature
of irregular behaviours [28], which can lead to more accurate
predictions [28], [27].

Although these models describe certain driver actions in
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More recently, the most used approaches for traffic flow
prediction are based on deep learning algorithms. The most
used methods for traffic prediction are the Long Short-Time
Memory (LSTM) and the Generative Adversarial Network
(GAN). Because LSTM neural networks are able to keep
previous inputs in the memory, they are considered particularly
efficient for problems that require learning of patterns in a time
series. In [32], authors described a unimodal vehicle trajectory
prediction in highway scenes for ADAS systems proposing a
Keras framework based LSTM neural network.

However, predicting one manoeuvre is not the best solution.
Yuexin et al. [35] showed while studying pedestrian move-
ments that a person has, couple of choices in a given situation
is socially acceptable. This is called multimodal behaviour.
Multimodality is highly important: if an algorithm predicts one
trajectory only, it can be the average of possible trajectories
resulting in a mode collapse. Based on this result, a couple of
multimodal solutions were introduced for vehicle manoeuvre
prediction, like in [36], [37].

Through intensive analysis [33] proved that, although
LSTM-based models are superior in unimodal scenarios, gen-
erative models perform best in those where the effects of
multimodality are higher. Luca et al. [33] shows that the
difference between using an LSTM and a GAN for prediction
lies in the objective function. The LSTM learns an average
behaviour because it minimizes the average error between
all the predictions, while GANs learn to produce plausible
samples corresponding to specific behaviours as a result of
competition between generator and discriminator networks.

The training phase is essential in machine learning mod-
els. Under-represented data usually leads to poor prediction,
invalid or unseen situations. This problem of cascading er-
rors [38] is well-known in expert knowledge-based Imitation
Learning (IL). Motivated by working on alternative IL meth-
ods, [39] proposed Inverse Reinforcement Learning (IRL),
implemented with Generative Adversarial Imitation Learning
(GAIL) [40]. The model assumes that the expert follows an
optimal policy with respect to an unknown reward function.
When the reward function is discovered, the model can follow
the Reinforcement Learning (RL) method and acts identically
as the expert. The proposed imitation even extends the model
to unseen scenarios.

In order to estimate the influence of various vehicles near
the target vehicle, there is a need to jointly reason and predict
the future trajectories of all the vehicles involved in a traffic
scene, especially in intersections. In the literature, in most
of the scenarios, homogeneous traffic is considered, where
although the behaviour can be different, each vehicle or driver
follows the same rule. A more demanding situation happens
when traffic is heterogeneous. In a heterogeneous scenario,
different types of vehicles interact with each other with dif-
ferent behaviour and action sets. This scenario is particularly
demanding if the traffic is predominated by smaller vehicles
that do not follow lane rules, such as scooters, motorcycles,
or bicycles, or dominant vehicles that regulate traffic, such as
buses.

To handle heterogeneous traffic, mapping different vehicle
types to equivalent homogeneous flow is available in [41],

[42]. A more sophisticated solution is proposed in [43].
The authors proposed a conditional GAN model to generate
multiple trajectory predictions for vehicles at either signalised
or non-signalised intersections.

As a result of building predictive models, latent space is
built, which represents the driver behaviour. The explanation
of latent space is a fundamental task to understand the learned
behaviour. The understanding is based on the traffic scene clas-
sification, which traditionally is defined by expert knowledge.

In the literature, different approaches are available for
automatic latent space exploration. The goal of [44] was to
explain the behaviour of any given black-box classifier instead
of just reasoning about its individual predictions. Their expla-
nation relies on the small number of compact decision sets.
The authors of [45] introduced human-readable instance-wise
feature selection as a methodology for model interpretation.
The proposed method learns a function to extract a subset of
the most informative features for each given example.

[46] introduced two different unsupervised deep learning
approaches to understand and classify real traffic scenes from
ADAC ego driver point of view. Authors proved that proposed
approaches are capable of learning an expressive latent space
for a real-world highway dataset and making scene classifica-
tion from real datasets.

As a result of explanation, we lose information available in
latent space, which is the cost of easier interpretation. Various
methods have recently been proposed to help users interpret
the predictions of complex models, but it is often unclear how
these methods are related to each other and when one method
is preferable over another. To address this problem, the authors
of [47] present a unified framework for interpreting predic-
tions. Based on the proposed unification, the authors present
new methods that show improved computational performance
and better consistency with human intuition than previous
approaches. Extending the above work, authors show in [44]
that a good explanation must follow properties of fidelity,
unambiguity, interpretability, and interactivity.

The predictive models’ increasing complexity makes it
harder to explain or reason the driver behaviour represented
in the latent space [48]. It emphasises the need for tools that
can explain predictive models’ complex behaviour in a faithful
and interpretable manner.

D. Mesoscopic analysis

There are two common, well-known description strategies
for traffic situations: microscopic and macroscopic descrip-
tions. While the latter assigns aggregated measures to the
traffic flow, the former describes each vehicle’s behaviour
individually. However, microscopic description is egoistic,
meaning that it views traffic from the point of one vehicle
at a time. The interaction between agents (vehicles) is usually
simplified to the followed car, and a couple of neighbours
defined a priori. The behaviour of the vehicle does not depend
directly on the manoeuvres of nearby cars, e.g. the lane change
in MOBIL model depends only on the car ahead and the
space in the target lane [17]. However, the dependency of
the participants is much wider than in the classic microscopic
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as the expert. The proposed imitation even extends the model
to unseen scenarios.

In order to estimate the influence of various vehicles near
the target vehicle, there is a need to jointly reason and predict
the future trajectories of all the vehicles involved in a traffic
scene, especially in intersections. In the literature, in most
of the scenarios, homogeneous traffic is considered, where
although the behaviour can be different, each vehicle or driver
follows the same rule. A more demanding situation happens
when traffic is heterogeneous. In a heterogeneous scenario,
different types of vehicles interact with each other with dif-
ferent behaviour and action sets. This scenario is particularly
demanding if the traffic is predominated by smaller vehicles
that do not follow lane rules, such as scooters, motorcycles,
or bicycles, or dominant vehicles that regulate traffic, such as
buses.

To handle heterogeneous traffic, mapping different vehicle
types to equivalent homogeneous flow is available in [41],

[42]. A more sophisticated solution is proposed in [43].
The authors proposed a conditional GAN model to generate
multiple trajectory predictions for vehicles at either signalised
or non-signalised intersections.

As a result of building predictive models, latent space is
built, which represents the driver behaviour. The explanation
of latent space is a fundamental task to understand the learned
behaviour. The understanding is based on the traffic scene clas-
sification, which traditionally is defined by expert knowledge.

In the literature, different approaches are available for
automatic latent space exploration. The goal of [44] was to
explain the behaviour of any given black-box classifier instead
of just reasoning about its individual predictions. Their expla-
nation relies on the small number of compact decision sets.
The authors of [45] introduced human-readable instance-wise
feature selection as a methodology for model interpretation.
The proposed method learns a function to extract a subset of
the most informative features for each given example.

[46] introduced two different unsupervised deep learning
approaches to understand and classify real traffic scenes from
ADAC ego driver point of view. Authors proved that proposed
approaches are capable of learning an expressive latent space
for a real-world highway dataset and making scene classifica-
tion from real datasets.

As a result of explanation, we lose information available in
latent space, which is the cost of easier interpretation. Various
methods have recently been proposed to help users interpret
the predictions of complex models, but it is often unclear how
these methods are related to each other and when one method
is preferable over another. To address this problem, the authors
of [47] present a unified framework for interpreting predic-
tions. Based on the proposed unification, the authors present
new methods that show improved computational performance
and better consistency with human intuition than previous
approaches. Extending the above work, authors show in [44]
that a good explanation must follow properties of fidelity,
unambiguity, interpretability, and interactivity.

The predictive models’ increasing complexity makes it
harder to explain or reason the driver behaviour represented
in the latent space [48]. It emphasises the need for tools that
can explain predictive models’ complex behaviour in a faithful
and interpretable manner.

D. Mesoscopic analysis

There are two common, well-known description strategies
for traffic situations: microscopic and macroscopic descrip-
tions. While the latter assigns aggregated measures to the
traffic flow, the former describes each vehicle’s behaviour
individually. However, microscopic description is egoistic,
meaning that it views traffic from the point of one vehicle
at a time. The interaction between agents (vehicles) is usually
simplified to the followed car, and a couple of neighbours
defined a priori. The behaviour of the vehicle does not depend
directly on the manoeuvres of nearby cars, e.g. the lane change
in MOBIL model depends only on the car ahead and the
space in the target lane [17]. However, the dependency of
the participants is much wider than in the classic microscopic
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models; in fact, there are a number of vehicles affected by
each other mutually. So, we can handle a group of vehicles
as a mesoscopic model of traffic situations, where a couple
of nearby participants interact with each other continuously.
This way, we can analyse the behaviour of this group together,
highlighting a deeper relationship between the behaviour of
distinct vehicles.

A couple of early works analysed the nature of vehicle
groups. In [49] the author found a type of collective behaviour
(called ,,solid block”) in the case of increasing density of
vehicles resulting in a highly coherent state, in which all the
vehicles have the same average velocity with little deviation.
Besides, [50] showed the closed stability conditions of vehicle
formations. In contrast, [51] searched for the answer to the
question: what characterises a ,,free vehicle”? Based on a large
number of recorded vehicle movements, she found that time
separation is a better measure of freedom than distance-based
metrics. There were attempts to discover the conditions of
forming and splitting vehicles into groups. In [52], a Bayesian
estimator estimated the state of individual vehicles then a
density-based clustering approach was applied to identify
vehicle groups and group boundaries. They found that the
probability of collision is an applicable metric for the closeness
of two vehicles.

The latest and most common research in mesoscopic anal-
ysis also tries to solve the task of multimodal trajectory and
manoeuvre prediction, meaning that not only one trajectory
but a couple of possible trajectories are predicted. The topic
is extensively researched in automated driving because the be-
haviour prediction and possible movements of nearby vehicles
is a serious safety issue.

After realising that independent traffic models are not
successful enough in trajectory and manoeuvre prediction
[30], [31], a new theory called ,,social force” was taken over
from the analysis of pedestrian behaviour. [53] introduced
the term ,,social force” measuring the internal motivations of
the individuals to perform certain actions. The social force
works like a force in the force field, and is actually a vector,
which attracts and distracts: attracts to the desired velocity
of motion and keeps a certain distance to other pedestrians.
The social force model was improved in order to ,,learn” the
social force from real trajectories which leaded to a so called
,,social pooling” layer in LSTM networks [54]. Based on these
results, [55] introduced the convolutional social pooling term
to consider the social context during trajectory prediction. The
social pooling basically learns the spatial interdependencies of
the tracks based on the output of LSTM encoders, which we
call manoeuvre prediction. The same method was applied in
[35], using different participant classes like pedestrians, cars
and bicycles. It is worth noting that the behaviour prediction
model can be static or dynamic: some works predict fixed
manoeuvre classes, others predict graph embeddings or other
encodings.

The latest research involves state-of-the-art graph neural
networks representing traffic situation as an interaction graph.
Interestingly enough, these solutions usually employ the same
method: they use a behaviour or manoeuvre prediction model
and a trajectory prediction model (see e.g. Fig. 4).

Fig. 4: A typical graph based on trajectory prediction method
[56]. These models consist of an interaction prediction part
creating features to describe interaction between participants
and a trajectory prediction part estimating the trajectories of
the participants based on the interaction features. The interac-
tion prediction part on this model is readily identifiable which
potentially provides internal features to analyse behaviour.

For example, [57], [58] applies a graph convolutional model
to extract the dynamic graph features from a graph formed by
nearby cars. An LSTM network is then used to generate the
trajectory predictions. In [59], the authors use same method,
but estimate all the movements of every considered car, and
use interaction model based on collision estimates. There are
a couple of other methods, using attentive graph networks
[60], [61], or joint estimations [56]. Not just vehicle-only
interactions, but vehicle-pedestrian interactions were analysed
in [62].

These results aim at the topic of trajectory prediction.
However, the methods can be made suitable to realise traffic
behaviour analysis. Unfortunately, this topic has been rarely
studied, although reasoning in machine learning systems is
well-known and widely practiced.

The analysis of the characteristics of traffic behaviour
requests the interpretation of the presented machine learning
models. A couple of proposed methods can be found in the
literature. The main goal is to interpret the behaviour predic-
tion model, which is a graph neural network. Analysing the
graph helps to discover the reasons for a selected manoeuvre
as a dependence of the neighbouring vehicles. To understand
which parts of the graph are contributing to a prediction, [63]
proposed an edge classifier that predicts if an edge can be
dropped. This way, the most influential interacting parties can
be found effectively. Similarly, [64] finds a smaller subgraph
and a subset of features that have a crucial role in predictions.

IV. PERSONALITY AND DECISION ANALYSIS

While identifying and predicting behaviour from obser-
vations are widely studied topics, analysing the effect of
different personalities and drivers’ decisions on traffic is also
promising. Personality and decision analysis deals with the
interaction of vehicle drivers trying to solve traffic situations
mutually. Practical methods apply traffic simulations to resolve
the issues of a selected situation; however, they sometimes
lack behaviour or personality aspects. Fortunately, we can
find game theory models developed to analyse these aspects
and select the proper behaviour or action to solve the traffic
situation effectively.
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[30], [31], a new theory called ,,social force” was taken over
from the analysis of pedestrian behaviour. [53] introduced
the term ,,social force” measuring the internal motivations of
the individuals to perform certain actions. The social force
works like a force in the force field, and is actually a vector,
which attracts and distracts: attracts to the desired velocity
of motion and keeps a certain distance to other pedestrians.
The social force model was improved in order to ,,learn” the
social force from real trajectories which leaded to a so called
,,social pooling” layer in LSTM networks [54]. Based on these
results, [55] introduced the convolutional social pooling term
to consider the social context during trajectory prediction. The
social pooling basically learns the spatial interdependencies of
the tracks based on the output of LSTM encoders, which we
call manoeuvre prediction. The same method was applied in
[35], using different participant classes like pedestrians, cars
and bicycles. It is worth noting that the behaviour prediction
model can be static or dynamic: some works predict fixed
manoeuvre classes, others predict graph embeddings or other
encodings.

The latest research involves state-of-the-art graph neural
networks representing traffic situation as an interaction graph.
Interestingly enough, these solutions usually employ the same
method: they use a behaviour or manoeuvre prediction model
and a trajectory prediction model (see e.g. Fig. 4).

Fig. 4: A typical graph based on trajectory prediction method
[56]. These models consist of an interaction prediction part
creating features to describe interaction between participants
and a trajectory prediction part estimating the trajectories of
the participants based on the interaction features. The interac-
tion prediction part on this model is readily identifiable which
potentially provides internal features to analyse behaviour.

For example, [57], [58] applies a graph convolutional model
to extract the dynamic graph features from a graph formed by
nearby cars. An LSTM network is then used to generate the
trajectory predictions. In [59], the authors use same method,
but estimate all the movements of every considered car, and
use interaction model based on collision estimates. There are
a couple of other methods, using attentive graph networks
[60], [61], or joint estimations [56]. Not just vehicle-only
interactions, but vehicle-pedestrian interactions were analysed
in [62].

These results aim at the topic of trajectory prediction.
However, the methods can be made suitable to realise traffic
behaviour analysis. Unfortunately, this topic has been rarely
studied, although reasoning in machine learning systems is
well-known and widely practiced.

The analysis of the characteristics of traffic behaviour
requests the interpretation of the presented machine learning
models. A couple of proposed methods can be found in the
literature. The main goal is to interpret the behaviour predic-
tion model, which is a graph neural network. Analysing the
graph helps to discover the reasons for a selected manoeuvre
as a dependence of the neighbouring vehicles. To understand
which parts of the graph are contributing to a prediction, [63]
proposed an edge classifier that predicts if an edge can be
dropped. This way, the most influential interacting parties can
be found effectively. Similarly, [64] finds a smaller subgraph
and a subset of features that have a crucial role in predictions.

IV. PERSONALITY AND DECISION ANALYSIS

While identifying and predicting behaviour from obser-
vations are widely studied topics, analysing the effect of
different personalities and drivers’ decisions on traffic is also
promising. Personality and decision analysis deals with the
interaction of vehicle drivers trying to solve traffic situations
mutually. Practical methods apply traffic simulations to resolve
the issues of a selected situation; however, they sometimes
lack behaviour or personality aspects. Fortunately, we can
find game theory models developed to analyse these aspects
and select the proper behaviour or action to solve the traffic
situation effectively.
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behaviour patterns. The traffic interactions have a couple
of safety, sociological, and communication perspectives. The
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,,situation where the behaviour of at least two road users can
be interpreted as being influenced by the possibility that they
are both intending to occupy the same region of space at the
same time in the near future”. These interactions include not
only interactions between vehicle drivers but also, for example,
between a vehicle driver and a pedestrian.

Game-theoretic models are widely used in traffic theory, not
only in behaviour analysis. For instance, several methods can
be found for planning the traffic infrastructure in urban spaces
[66] or to optimise traffic throughput [67], [68], [69]. However,
the first mention of the game theory applied to traffic behaviour
analysis dates back to 1984, when Fisk applied Nash non-
cooperative and Stackelberg games in transportation problems
like intercity passenger travel optimisation and traffic signal
optimisation [70]. A huge family of game-theoretic traffic
behavioural models analyses the traffic behaviour in the aspect
of cooperation. Cooperation seems to contradict evolution and
natural selection; however, Nowak showed that evolution could
actually lead to cooperation [71]. The main point in these kinds
of analysis is that a group of players (called cooperators) take
joint actions resulting in collective payoffs, while defectors do
not attach to these groups. The methods are commonly based
on the cellular automata paradigm. It is worth to point out that
the validation of game theory models is not always provided,
i.e. the game theory model may not describe an observable
behaviour in reality.

Modelling freeway traffic, [72] investigated the evolution of
cooperative and defective behaviour in lane change situations.
They showed that as the difference between the velocity of co-
operators and defectors decreases, the fraction of cooperators
increases, i.e. in high-density traffic the drivers start to behave
as cooperators. At a non-signalised crossing, it was shown
that cooperative drivers improve traffic quality, while defective
drivers worsen it [73]. It was also presented that there is some
relationship between the density of cars on the road and the
desire for drivers to go defective. However, defectiveness is not
always a bad thing: using Weibull distribution for describing
the generation of defectors, it can be shown that while the
existence of defectors reduces the safety of the crossing, it
is also beneficial for the capacity of the side road [74]. An
interesting defective-cooperative model was developed in [75],
where the non-ego vehicles switch between cooperative and
defective behaviour in the process of interaction. The main
idea is that while the non-ego vehicles’ core behaviour is
cooperative, they have a short duration of defective behaviour
(so-called adversarial time), making the ego vehicle behave
carefully, e.g. the driver becomes attentive when sees a pedes-
trian at the edge of the road. Other interesting methods in this
topic can be found in [76], [77], [78], [79].

Of course, there are game-theoretic models beyond cooper-

ative games. For example, [80] presents the Game-Theoretic
Social Force Model based on the well-known social model
of pedestrians or [81] models 2-to-1 lane junctions as an N
prisoner’s dilemma game. The [82] review cites 10 game-
theoretic models showing why informal norms of behaviour
develop, e.g. giving way to cyclists who do not have priority.
There is also some criticism regarding the application of game-
theoretic models, e.g. that the Nash equilibrium is not always
properly applicable in traffic behaviour [83].

While it is a benefit for a human driver to identify the
behaviour of other participants, nowadays, even autonomous
vehicles (AV) need to be able to predict the behaviour of
human drivers. In the near future, mixed traffic situations are
going to be widespread, so action planning in AVs requires
behaviour prediction to be executed for safety and efficiency.
The main framework of the behaviour analysis of AV game
theory models is the dynamic game model, which essentially
is a dynamic model of the steps of the game. The model’s
state is typically composed of the position, the velocity,
and the vehicle’s heading [84]. These models’ most notable
decision policy is the so-called level-k reasoning, where all
level-k players make strategic decisions by assuming that
all of the other players are level-(k − 1). A level-0 player
makes no strategic decision, e.g. she reflexively brakes if the
followed vehicle is breaking. These models commonly handle
a colossal state space and make complex optimisations to
produce decisions. Level-k models were successfully applied
to freeway situations [85] and also to uncontrolled intersec-
tions [86]. However, [87] showed on two large naturalistic
datasets that even level-0 behaviour can capture most human
driving behaviour. Finally, it is worth mentioning that to
help behaviour planning research, [88] created a taxonomy
of human interactions in traffic conflicts, including vehicle-
vehicle and vehicle-pedestrian conflicts.

V. CONCLUSION

The current paper outlined different methods for driver
behaviour analysis, even in traffic situations with complex in-
teractions (see Table I.). However, classical behaviour analysis
– which finds reasons and motivations behind actions – is
committed by only psychological models while most research
topics target trajectory and interaction prediction. While state-
of-the-art machine learning models, latent space exploration
techniques and game theory methods are successfully applied
to numerous problems (e.g. image processing), it is hard to
find a solution which addresses entirely the traffic behaviour
analysis. It is tempting to improve the presented methods to be
applicable for exploring the behaviour behind visible actions,
moreover, to reason the behaviour of groups of vehicles.

The consideration of traffic swarms is really promising,
where the interactions among drivers are not limited to the
surrounding vehicles and are not bound to kinematic proper-
ties, so one can analyse the actions as a result of complex
behaviour instead of only trajectories or visible interactions
of the vehicles. However, mesoscopic modelling provides
a reasonable starting point to this research. Beyond that,
further research on behaviour interpretation is a promising
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graph helps to discover the reasons for a selected manoeuvre
as a dependence of the neighbouring vehicles. To understand
which parts of the graph are contributing to a prediction, [63]
proposed an edge classifier that predicts if an edge can be
dropped. This way, the most influential interacting parties can
be found effectively. Similarly, [64] finds a smaller subgraph
and a subset of features that have a crucial role in predictions.
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interaction of vehicle drivers trying to solve traffic situations
mutually. Practical methods apply traffic simulations to resolve
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find game theory models developed to analyse these aspects
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typically examined define some traffic situation (e.g. a lane
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are both intending to occupy the same region of space at the
same time in the near future”. These interactions include not
only interactions between vehicle drivers but also, for example,
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optimisation [70]. A huge family of game-theoretic traffic
behavioural models analyses the traffic behaviour in the aspect
of cooperation. Cooperation seems to contradict evolution and
natural selection; however, Nowak showed that evolution could
actually lead to cooperation [71]. The main point in these kinds
of analysis is that a group of players (called cooperators) take
joint actions resulting in collective payoffs, while defectors do
not attach to these groups. The methods are commonly based
on the cellular automata paradigm. It is worth to point out that
the validation of game theory models is not always provided,
i.e. the game theory model may not describe an observable
behaviour in reality.

Modelling freeway traffic, [72] investigated the evolution of
cooperative and defective behaviour in lane change situations.
They showed that as the difference between the velocity of co-
operators and defectors decreases, the fraction of cooperators
increases, i.e. in high-density traffic the drivers start to behave
as cooperators. At a non-signalised crossing, it was shown
that cooperative drivers improve traffic quality, while defective
drivers worsen it [73]. It was also presented that there is some
relationship between the density of cars on the road and the
desire for drivers to go defective. However, defectiveness is not
always a bad thing: using Weibull distribution for describing
the generation of defectors, it can be shown that while the
existence of defectors reduces the safety of the crossing, it
is also beneficial for the capacity of the side road [74]. An
interesting defective-cooperative model was developed in [75],
where the non-ego vehicles switch between cooperative and
defective behaviour in the process of interaction. The main
idea is that while the non-ego vehicles’ core behaviour is
cooperative, they have a short duration of defective behaviour
(so-called adversarial time), making the ego vehicle behave
carefully, e.g. the driver becomes attentive when sees a pedes-
trian at the edge of the road. Other interesting methods in this
topic can be found in [76], [77], [78], [79].

Of course, there are game-theoretic models beyond cooper-

ative games. For example, [80] presents the Game-Theoretic
Social Force Model based on the well-known social model
of pedestrians or [81] models 2-to-1 lane junctions as an N
prisoner’s dilemma game. The [82] review cites 10 game-
theoretic models showing why informal norms of behaviour
develop, e.g. giving way to cyclists who do not have priority.
There is also some criticism regarding the application of game-
theoretic models, e.g. that the Nash equilibrium is not always
properly applicable in traffic behaviour [83].

While it is a benefit for a human driver to identify the
behaviour of other participants, nowadays, even autonomous
vehicles (AV) need to be able to predict the behaviour of
human drivers. In the near future, mixed traffic situations are
going to be widespread, so action planning in AVs requires
behaviour prediction to be executed for safety and efficiency.
The main framework of the behaviour analysis of AV game
theory models is the dynamic game model, which essentially
is a dynamic model of the steps of the game. The model’s
state is typically composed of the position, the velocity,
and the vehicle’s heading [84]. These models’ most notable
decision policy is the so-called level-k reasoning, where all
level-k players make strategic decisions by assuming that
all of the other players are level-(k − 1). A level-0 player
makes no strategic decision, e.g. she reflexively brakes if the
followed vehicle is breaking. These models commonly handle
a colossal state space and make complex optimisations to
produce decisions. Level-k models were successfully applied
to freeway situations [85] and also to uncontrolled intersec-
tions [86]. However, [87] showed on two large naturalistic
datasets that even level-0 behaviour can capture most human
driving behaviour. Finally, it is worth mentioning that to
help behaviour planning research, [88] created a taxonomy
of human interactions in traffic conflicts, including vehicle-
vehicle and vehicle-pedestrian conflicts.
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behaviour analysis, even in traffic situations with complex in-
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topics target trajectory and interaction prediction. While state-
of-the-art machine learning models, latent space exploration
techniques and game theory methods are successfully applied
to numerous problems (e.g. image processing), it is hard to
find a solution which addresses entirely the traffic behaviour
analysis. It is tempting to improve the presented methods to be
applicable for exploring the behaviour behind visible actions,
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of-the-art machine learning models, latent space exploration
techniques and game theory methods are successfully applied
to numerous problems (e.g. image processing), it is hard to
find a solution which addresses entirely the traffic behaviour
analysis. It is tempting to improve the presented methods to be
applicable for exploring the behaviour behind visible actions,
moreover, to reason the behaviour of groups of vehicles.

The consideration of traffic swarms is really promising,
where the interactions among drivers are not limited to the
surrounding vehicles and are not bound to kinematic proper-
ties, so one can analyse the actions as a result of complex
behaviour instead of only trajectories or visible interactions
of the vehicles. However, mesoscopic modelling provides
a reasonable starting point to this research. Beyond that,
further research on behaviour interpretation is a promising
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Personality
and
decision
analysis

Dynamic
game
models

The models define the states of the game and the
state transition functions and analyse the dynamic
progression of the states.

dynamic game theory models,
level-k model

[84] [85] [86] [87] [88]

Cooperative
models

Cooperative models find the consequences of some
discrete behaviours in actual traffic situations using
game theory methods.

game theory, cooperative and
non-cooperative games (zero-sum
games, Stackelberg games)

[65] [66] [67] [68] [69] [70]
[71] [72] [73] [74] [75] [76]
[77] [78] [79] [80] [81] [82]
[83]

Behaviour
identifica-
tion and
description

Psychology
models

Psychology models determine a priori behaviour cat-
egories and maps visible actions to these categories.

psychology categories, surveys,
latent space analysis (e.g. PCA)

[8] [9] [10] [11] [12] [13] [14]
[15] [16] [17] [18]

Parametric
traffic
models

Parametric traffic models are simulation models used
by traffic engineers. The latent space of hyperparam-
eters can be analysed as a behaviour space.

traffic simulation models (e.g.
Wiedemann, IDM), latent
(hyperparameter) space analysis

[19] [20] [21] [22] [23] [89]
[24] [25] [26] [28] [27]

Non
parametric
models

Non parametric models are machine learning models
which are mapping visible actions to latent behaviour
spaces. The methodologies are typically based on
generative deep learning methods or non-supervised
learning methods.

trajectory prediction, machine
learning models, deep learning
models (GAN, LSTM),
reinforcement learning, model
explanation

[29] [30] [31] [32] [33] [34]
[35] [38] [39] [40] [43] [44]
[45] [46] [47] [48]

Mesoscopic
models

Mesoscopic models are between microscopic and
macroscopic models. They are commonly using
graph based solutions to analyse complex interac-
tions among participants.

interaction prediction, social force
models, social pooling, graph
neural networks, model
explanation

[17] [49] [50] [51] [52] [30]
[31] [54] [55] [35] [53] [57]
[58] [59] [60] [61] [56] [62]
[63] [64] [44] [90] [45]

TABLE I: The summary of methods for traffic behaviour analysis. The ,,methodologies” column shows a couple of keywords
(theories, technologies, methods, etc.) which mostly, but not exclusively, describe the method.

direction, but modelling, analysing, and extracting the latent
space requires more elaborated measures for driver behaviour
evaluation.
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direction, but modelling, analysing, and extracting the latent
space requires more elaborated measures for driver behaviour
evaluation.
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direction, but modelling, analysing, and extracting the latent
space requires more elaborated measures for driver behaviour
evaluation.
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