
Security and Autonomic Management
in System of Systems

SEPTEMBER 2021 • VOLUME XIII • NUMBER 366

INFOCOMMUNICATIONS JOURNAL

1

Security and Autonomic Management
in System of Systems

Silia Maksuti, Mario Zsilak, Markus Tauber and Jerker Delsing

Abstract—A system of systems integrates systems that function
independently but are networked together for a period of time
to achieve a higher goal. These systems evolve over time and
have emergent properties. Therefore, even with security controls
in place, it is difficult to maintain a required level of security
for the system of systems as a whole because uncertainties
may arise at runtime. Uncertainties can occur from internal
factors, such as malfunctions of a system, or from external
factors, such as malicious attacks. Self-adaptation is an approach
that allows a system to adapt in the face of such uncertainties
without human intervention. This work outlines the progress
made towards security mitigation in system of systems using
a generic autonomic management system to assist engineers
in developing self-adaptive systems. The manuscript describes
the proposed system design, its implementation as part of the
Eclipse Arrowhead framework, and its functionality in a smart
agriculture use case. The system is designed and implemented in
such a way that it can be reused and extended for a variety of
use cases without requiring major changes.

Index Terms—System of Systems, Security, Self-Adaptation,
Autonomic Management, Eclipse Arrowhead

I. INTRODUCTION

System of Systems (SoS) are large-scale integrated systems
that can operate independently but are networked together for
a period of time to achieve a higher goal, e.g., performance,
robustness, security, etc. [1]. One of the main characteristics of
SoS is the operational independence of the integrated systems.
A system with low security level can compromise a system
requiring high security level, and the compromise of such
systems can lead to the compromise of the whole SoS, so
security is an important concern.

Another characteristic of SoS is their distributed nature.
In this manuscript, we use a drone-based application as an
example of such a SoS. In [2], we proposed a use case
for smart agriculture to assist winemakers and minimize
travel time to remote and poorly connected infrastructures.
The drone acts as a gateway by collecting sensor data and
multispectral images of the vines and sending this data to a
base station for offline analysis. In some cases, the drone is
not always connected to the sensors and base station because
the infrastructures are remote and poorly connected. Thus, it
is a sporadically connected SoS where frequent changes may
occur. If the security of one system (e.g., a wireless sensor
network) is compromised, it may also affect the operation
of other systems (e.g., the drone). Attackers can exploit
these vulnerabilities to remotely control and disrupt the flow
of data to/from the sensors and the drone. The ability to
conduct a malicious attack on such systems can have serious

consequences, and a large-scale, coordinated attack can disrupt
national economies [3].

To establish a chain of trust between use case components,
the Eclipse Arrowhead framework is used [4]. The goal
of the framework is to efficiently support the development,
deployment, and operation of SoS based on the fundamentals
of service-oriented architecture (SoA): loose coupling, late
binding, and lookup. The sensor nodes, drone, and base station
are integrated into Arrowhead’s local cloud through an auto-
mated onboarding procedure to ensure mutual authentication
and thus secure communication [5]. A local cloud implements
a set of services potentially used by all SoS applications.

While ensuring secure communication, the SoS should
remain operational over a long period of time. To meet
these requirements, the sensor nodes, the drone, and the base
station must be optimally configured. However, due to the
evolutionary development of SoS and emergent behavioral
characteristics, ensuring these requirements can become a
complex task. Uncertainties can occur due to internal factors
(e.g., malfunction of a sensor node) or external factors (e.g.,
malicious attacks, weather conditions, etc.) that can affect
secure communication between use case components. Even
with mutual authentication, attackers can gain physical access
to a sensor node and replicate many clones that have the same
identity as the compromised node. The malicious node can
then send additional sensor data to the drone. Similar behavior
can occur when the sensor node malfunctions, such as when
the battery is low. In this case, the sensor node cannot send
enough data to the drone. To solve this problem, SoS must
have mechanisms that allow them to self-adapt in the face of
such uncertainties without human intervention.

In this manuscript, we propose to extend the smart agri-
culture use case with self-adaptation capabilities. We build on
our previous work on the Generic Autonomic Management
Framework [6, 7, 8] and extend it to support SoA-based frame-
works as well. We propose a Generic Autonomic Management
System (GAMS) to assist engineers in developing self-adaptive
systems. Due to its generic nature, the system can be reused
and extended for a variety of use cases without requiring major
changes. This reduces the software engineering effort since the
generic control mechanisms do not need to be (re)implemented
for different use cases. A first concept of such a system is
presented in [9]. In this manuscript, we present the design and
implementation of a proof-of-concept for the proposed system
and demonstrate its functionality in a smart agriculture use
case.

The reminder of this manuscript is structured as fol-
lows. Section II reviews existing work on security and self-

Security and Autonomic Management
in System of Systems

Silia Maksuti, Mario Zsilak, Markus Tauber and Jerker Delsing

Abstract—A system of systems integrates systems that function
independently but are networked together for a period of time to
achieve a higher goal. These systems evolve over time and have
emergent properties. Therefore, even with security controls in
place, it is difficult to maintain a required level of security for
the system of systems as a whole because uncertainties may
arise at runtime. Uncertainties can occur from internal factors,
such as malfunctions of a system, or from external factors,
such as malicious attacks. Self-adaptation is an approach
that allows a system to adapt in the face of such uncertainties
without human intervention. This work outlines the progress
made towards security mitigation in system of systems using
a generic autonomic management system to assist engineers
in developing self-adaptive systems. The manuscript describes
the proposed system design, its implementation as part of the
Eclipse Arrowhead framework, and its functionality in a smart
agriculture use case. The system is designed and implemented in
such a way that it can be reused and extended for a variety of use
cases without requiring major changes.

Index Terms—System of Systems, Security, Self-Adaptation,
Autonomic Management, Eclipse Arrowhead

1

Security and Autonomic Management
in System of Systems

Silia Maksuti, Mario Zsilak, Markus Tauber and Jerker Delsing

Abstract—A system of systems integrates systems that function
independently but are networked together for a period of time
to achieve a higher goal. These systems evolve over time and
have emergent properties. Therefore, even with security controls
in place, it is difficult to maintain a required level of security
for the system of systems as a whole because uncertainties
may arise at runtime. Uncertainties can occur from internal
factors, such as malfunctions of a system, or from external
factors, such as malicious attacks. Self-adaptation is an approach
that allows a system to adapt in the face of such uncertainties
without human intervention. This work outlines the progress
made towards security mitigation in system of systems using
a generic autonomic management system to assist engineers
in developing self-adaptive systems. The manuscript describes
the proposed system design, its implementation as part of the
Eclipse Arrowhead framework, and its functionality in a smart
agriculture use case. The system is designed and implemented in
such a way that it can be reused and extended for a variety of
use cases without requiring major changes.

Index Terms—System of Systems, Security, Self-Adaptation,
Autonomic Management, Eclipse Arrowhead

I. INTRODUCTION

System of Systems (SoS) are large-scale integrated systems
that can operate independently but are networked together for
a period of time to achieve a higher goal, e.g., performance,
robustness, security, etc. [1]. One of the main characteristics of
SoS is the operational independence of the integrated systems.
A system with low security level can compromise a system
requiring high security level, and the compromise of such
systems can lead to the compromise of the whole SoS, so
security is an important concern.

Another characteristic of SoS is their distributed nature.
In this manuscript, we use a drone-based application as an
example of such a SoS. In [2], we proposed a use case
for smart agriculture to assist winemakers and minimize
travel time to remote and poorly connected infrastructures.
The drone acts as a gateway by collecting sensor data and
multispectral images of the vines and sending this data to a
base station for offline analysis. In some cases, the drone is
not always connected to the sensors and base station because
the infrastructures are remote and poorly connected. Thus, it
is a sporadically connected SoS where frequent changes may
occur. If the security of one system (e.g., a wireless sensor
network) is compromised, it may also affect the operation
of other systems (e.g., the drone). Attackers can exploit
these vulnerabilities to remotely control and disrupt the flow
of data to/from the sensors and the drone. The ability to
conduct a malicious attack on such systems can have serious

consequences, and a large-scale, coordinated attack can disrupt
national economies [3].

To establish a chain of trust between use case components,
the Eclipse Arrowhead framework is used [4]. The goal
of the framework is to efficiently support the development,
deployment, and operation of SoS based on the fundamentals
of service-oriented architecture (SoA): loose coupling, late
binding, and lookup. The sensor nodes, drone, and base station
are integrated into Arrowhead’s local cloud through an auto-
mated onboarding procedure to ensure mutual authentication
and thus secure communication [5]. A local cloud implements
a set of services potentially used by all SoS applications.

While ensuring secure communication, the SoS should
remain operational over a long period of time. To meet
these requirements, the sensor nodes, the drone, and the base
station must be optimally configured. However, due to the
evolutionary development of SoS and emergent behavioral
characteristics, ensuring these requirements can become a
complex task. Uncertainties can occur due to internal factors
(e.g., malfunction of a sensor node) or external factors (e.g.,
malicious attacks, weather conditions, etc.) that can affect
secure communication between use case components. Even
with mutual authentication, attackers can gain physical access
to a sensor node and replicate many clones that have the same
identity as the compromised node. The malicious node can
then send additional sensor data to the drone. Similar behavior
can occur when the sensor node malfunctions, such as when
the battery is low. In this case, the sensor node cannot send
enough data to the drone. To solve this problem, SoS must
have mechanisms that allow them to self-adapt in the face of
such uncertainties without human intervention.

In this manuscript, we propose to extend the smart agri-
culture use case with self-adaptation capabilities. We build on
our previous work on the Generic Autonomic Management
Framework [6, 7, 8] and extend it to support SoA-based frame-
works as well. We propose a Generic Autonomic Management
System (GAMS) to assist engineers in developing self-adaptive
systems. Due to its generic nature, the system can be reused
and extended for a variety of use cases without requiring major
changes. This reduces the software engineering effort since the
generic control mechanisms do not need to be (re)implemented
for different use cases. A first concept of such a system is
presented in [9]. In this manuscript, we present the design and
implementation of a proof-of-concept for the proposed system
and demonstrate its functionality in a smart agriculture use
case.

The reminder of this manuscript is structured as fol-
lows. Section II reviews existing work on security and self-

DOI: 10.36244/ICJ.2021.3.7

Security and Autonomic Management
in System of Systems

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2021 • VOLUME XIII • NUMBER 3 67

2

adaptation in SoS. Section III provides the technical descrip-
tion of the smart agriculture SoS and motivates the need to
extend the use case to include self-adaptation capabilities.
Section IV describes the design and implementation of GAMS
as part of the Eclipse Arrowhead framework. Section V
presents the configuration of GAMS for the smart agriculture
use case and experimental results. Section VI provides an
overview of the results and future work.

II. RELATED WORK

SoSs have several characteristics that distinguish them from
traditional systems, such as the operational and managerial
independence of their integrated systems, evolutionary devel-
opment, emergent behavior, and geographic distribution. When
designing a SoS, it is of utmost importance to understand
the security implications of its features. For example, to
address security-related aspects of a SoS that evolves over
time and exhibits emergent characteristics, security mitigation
approaches should be integrated. One approach is to augment
the SoS with self-adaptive capabilities, as proposed in this
manuscript. Therefore, we examine existing work on this topic.

Existing frameworks such as SASSY [10], MOSES [11],
etc. have been developed to enable self-adaptation in service-
oriented systems. Compared to these frameworks, our pro-
posed system is intended to be generic so that it can be used
in different SoA frameworks by a wide range of application
systems without requiring a large amount of adjustments.

Ruz et.al. [12] have proposed a generic, self-adaptive
framework to support monitoring and management tasks of
component-based SoA applications. They separate the MAPE
phases (Monitor, Analyze, Plan, and Execute) and imple-
ment them as distinct components that interact and support
multiple sets of monitoring sources, conditions, policies, and
distributed actions. Their main focus is on high scalability.
Other works [13, 14, 15] justify the need for a generic
solution for building self-adaptive systems. However, none of
these works address security-related challenges that can be
addressed by their solution.

Vishwa et al [16] have studied the adaptability of wireless
sensor networks with the aim of highlighting the need for
protection against malicious activities in such networks. They
provide an evaluation of immune-based intrusion detection
systems to determine that the functional requirements of wire-
less sensor networks such as self-organization, adaptability,
fault tolerance, and self-healing are similar to human immune
system mechanisms. The authors discuss the applicability of
these theories to wireless sensor networks, and the paper ends
with recommendations for expanding the study in the future.

There are other works dealing with SoS security such
as [17], [18], [19], etc., which mainly focus on the engineering
process that allows systems to integrate security at the design
stage. They provide security artifacts (threats, attacks, as-
sumptions about security properties, etc.) about the interaction
with other elements or distributed systems to enable easy
integration. In comparison, our work considers the evolving
nature of SoS and its uncertainties that may arise at runtime,
and proposes to address this problem by extending SoS with
self-adaptation capabilities.

III. SMART AGRICULTURE SOS

In this section, we present a use case from the smart
agriculture domain, where the SoS approach is used to support
winemakers and minimize travel time to remote and poorly
connected infrastructures. In the following sections, we use
this use case as a running example to show the functionality
of the proposed system. An illustration of the use case is shown
in Figure 1.

Fig. 1: High level view of the smart agriculture SoS use case.

A. Technical Description

The proposed SoS consists of a collection of sensor nodes
connected via a wireless sensor network. These sensor nodes
are strategically placed over the vineyard to obtain accurate
measurements that can help detect diseases and conditions at
early stages. The results of the sensor positioning are docu-
mented in [2]. The sensor nodes are equipped with sensors that
collect environmental data such as air temperature, humidity
and pressure, precipitation, wind speed and direction, sunlight,
soil temperature and moisture, leaf wetness, etc. The sensor
data is relayed to a drone, which acts as a gateway. The sensor
nodes are constantly searching for the drone. When the drone
is in range, a protected communication channel is established
between the sensor nodes and the drone gateway. The drone
sends sensor data from all sensor nodes and multispectral
images of the vines to a base station for further analysis.
However, in some cases, because the vineyards are located in
harsh environments with poorly connected infrastructure, the
sensor nodes first send the data to a data collection unit (DCU)
located at the drone operator. Thus, this is a sporadically
connected SoS. After the connection with the sensor nodes
is established, the drone establishes a connection with the
DCU and starts data transmission. The Wireless Local Area
Network (WLAN) IEEE 802.11 is used for the communication
link.

We have used the SysML modelling language to create a
SysML block definition diagram for the smart agriculture use
case, as shown in Figure 2.

1) Sensor Node: The sensor node consists of a single
board computer, a Raspberry Pi, connected to several sensors,
e.g. an air temperature and humidity sensor, a leaf wetness
sensor, etc. The node has several Python3 scripts that read
the sensor data and write it to a comma-separated values
(csv) file. Another Python3 script continuously pings the drone
gateway and transfers the csv files to the drone gateway if the

Security and Autonomic Management
in System of Systems

SEPTEMBER 2021 • VOLUME XIII • NUMBER 368

INFOCOMMUNICATIONS JOURNAL

4

This still leaves one attack vector open: clone attacks. Even
with mutual authentication, attackers can gain physical access
to a sensor node and replicate many clones with the same
identity of the compromised node. The clones contain all
the data of the legitimate sensor node and can successfully
pass the onboarding procedure. Once the clones are on the
network, they can exploit network operations such as routing,
data collection, and key distribution, and even launch other
attacks. This problem can be solved either by integrating
secure elements into sensor nodes and drones (e.g., hardware
security modules) to store keys and certificates in protected
storage [21] or by extending the use case with self-adaptation
capabilities that allow the system to adapt itself to a changing
environment. The latter is described in the following sections.

IV. GENERIC AUTONOMIC MANAGEMENT SYSTEM

The Generic Autonomic Management System (GAMS) is
designed and implemented as an Arrowhead support core
system. A system is Arrowhead-compliant if it produces at
least one service and consumes at least the three mandatory
core services of the Eclipse Arrowhead framework, namely
ServiceDiscovery, AuthorizationControl and Orchestration [4].
The ServiceDiscovery service is used to register and unregister
services and to locate services among the registered services in
the ServiceRegistry system. The AuthorizationControl service
provides two different interfaces for retrieving authorization
rights: (i) intra-cloud authorization, which defines an autho-
rization right between a consumer and a provider system in
the same local cloud for a particular service and (ii) inter-cloud
authorization, which defines an authorization right for an ex-
ternal local cloud to consume a specific service from the local
cloud. The Orchestration service provides application systems
with orchestration information: where to connect. The output
of this service includes rules that tell the application system
which service provider systems to connect to and how (as a
service consumer). Such orchestration rules include informa-
tion about the reachability of a service provider (e.g., network
address and port), service instance details within the provider
system (e.g., base URL (Uniform Resource Locator), interface
design specification, and other metadata), authorization-related
information (e.g., access token and signature), etc.

The GenericAutonomicManagement service produced by
GAMS is designed and implemented as a REST web service
that can be invoked by different SoA-based frameworks.
REST stands for representational state transfer and is a set of
architectural constraints. Thus, a REST API is used for the
interaction with the GenericAutonomicManagement service.
A REST API is an application programming interface that
conforms to the constraints of REST architectural style and
enables interaction with REST web services [22]. The REST
API has the following methods: (i) GET to retrieve information
about the REST API resource, (ii) POST to create a REST API
resource, (iii) PUT to update a REST API resource, and (iv)
DELETE to delete a REST API resource. Compared to other
protocols e.g. SOAP (Simple Object Access Protocol), REST
APIs are faster and more lightweight for IoT applications [23].

A. System Description

We have used Systems Modeling Language (SysML) to
create an internal block definition diagram of GAMS, as
shown in Figure 3. The system enables autonomic control
loops using MAPE-K (Monitor, Analyze, Plan, Execute and
SharedKnowledge) as a reference feedback loop for self-
adaptive systems [24]. An example of such interaction is a
set of sensors and actuators (managed system), where GAMS
is the autonomic manager (management system).

Fig. 3: SysML internal block definition diagram showing the
internal structure of GAMS.

a) Monitor: The Monitor component continuously col-
lects monitoring data from the sensor. The component per-
forms a pre-analysis based on the incoming sensor data and
the requirements stored in the SharedKnowledge. In case of a
significant deviation, an event is generated and stored in the
SharedKnowledge. The functions in this phase can aggregate
the incoming data before passing it on to the next phase.
GAMS allows you to specify the number of events to be
considered for aggregation. If the specified number of events
is not yet present, processing in this phase is aborted. The
implemented functions are the following:

• Sum: creates a sum of sensor values.
• Average: creates an average of sensor values.
• Trend: indicates if the sensor values are increasing or

decreasing.
• Maximum: uses the highest value in the next phase.
• Minimum: uses the lowest value in the next phase.
• Count: counts the number of incoming data in a specified

time frame.
• None: does not aggregate the sensor value, but forwards

it without change.
The SysML activity diagram of Monitor component is

shown in Figure 4.
b) Analyze: The Analyze component evaluates the events

received from the Monitor component with regard to the
requirements and context data in the SharedKnowledge. If the
requirements cannot be met, a change request is sent to the
Plan component with a description of the metrics. Similar to
the Monitor component, processing can be stopped if the result
of the analysis shows that no action is required at this time.
The implemented functions are the following:

3

connection is successful. The data transfer from the sensor
nodes to the drone gateway is done using Hypertext Transfer
Protocol Secure (HTTPs). For HTTPs, the communication
protocol is encrypted using Transport Layer Security (TLS).
After a successful file transfer, the file is moved to the archives
and an entry is created in the log file.

Fig. 2: SysML block definition diagram showing the hierarchy
of the blocks composing the smart agriculture SoS use case.

2) Drone Gateway: The gateway mounted on the drone
is a Raspberry Pi. RaspAP1, a feature-rich wireless router
software that works on Debian-based devices, is installed on
the Raspberry Pi to configure the host access point daemon
(hostapd). A web server receives the files sent by the sensor
nodes. It also determines how the received files are handled,
such as where they are stored. The gateway also contains a data
transfer script similar to the script on the sensor node for post-
processing the csv files. To ensure reusability and keep runtime
resource costs low, both the web client on the sensor node and
the web server on the drone gateway are written in python. To
enhance the application with self-adaptation capabilities, the
proposed Arrowhead support system (GAMS) is installed on
the drone gateway. Details of its operation are described in
Section IV.

3) Data Collection Unit: The DCU is a Debian system
installed in a virtual machine. The supporting core systems of
the Eclipse Arrowhead framework, which are invoked during
the automated and secure onboarding procedure described later
in the manuscript, are all installed on the DCU. In addition, a
web server is installed to receive the files sent from the drone
gateway and a data transfer script that sends them to the base
station for further offline analysis.

4) Base Station: After the flight, the sensor data and the
multispectral images stored in the base station are used for
offline analysis. The LAYERS2 platform is used to build
a model and provide the necessary information about the
condition of the vineyard. LAYERS is a platform that com-
bines agronomic knowledge, earth observation remote sensing
(drones, satellites, etc.) and artificial intelligence to create a
proactive field monitoring system. It consists of a web tool
with a map viewer and dashboard for field analysis, and an
iOS and Android application for field sampling. However, the
offline data analysis that takes place at the base station is
beyond the scope of this manuscript.

1 https://raspap.com/ 2 https://hemav.com/en/services/digital-agriculture-en/

B. Security and Adaptation Problem

Smart agriculture improves conventional farming methods
by using sensors in vineyards to collect environmental data
and autonomous vehicles (e.g., drones) to collect multispectral
images of vineyards. These data are used for further offline
analysis to improve production by optimizing crop manage-
ment, such as accurate planting, irrigation, pesticide use, har-
vesting, etc. Despite the benefits, the use of internet-connected
SoS can expose the agricultural sector to potential cyberattacks
and vulnerabilities. Even if the vineyard is not connected to
the Internet, it is an insecure network because an attacker only
needs to be close enough to connect. These attacks can be used
to remotely control and exploit sensors, actuators, and drones
to destroy an entire field of standing crops, flood the vineyards,
use smart drones to spray pesticides, etc. [20].

Therefore, it is of utmost importance to ensure trustworthy
and secure communication of the drone with the sensor nodes
in the vineyards and the base station. This ensures that
only valid data is retrieved, damaged sensors are detected,
and only authenticated and authorized systems participate in
the communication. Even though all HTTP connections are
secured via TLS (HTTPs), clients must be authenticated to
ensure that sensor data is trusted.

To meet this security requirement, we use the automated
and secure onboarding procedure of the Eclipse Arrowhead
framework. An Arrowhead-compliant SoS is defined as a set of
systems managed by the mandatory Arrowhead core systems
that exchange information via services. Thus, a local cloud
becomes an SoS. Also, two systems located in different local
clouds and exchanging services form a SoS. The onboarding
procedure [5] enables secure and trusted communication
between such systems by using a chain of X.509 certificates
generated at runtime. When a new device (e.g., a sensor node,
drone, or base station) wants to interact with the Arrowhead
local cloud, it should first authenticate itself using a valid
preloaded Arrowhead certificate, manufacturer certificate, or
shared key through the Onboarding Controller system. Each
system hosted in this device will get a runtime certificate
issued by Arrowhead. In Arrowhead, each local cloud has its
own Certificate Authority (CA) system that issues and signs
the runtime certificates of the systems. The CA system is
the root of trust within the local cloud and can be signed
by a central Arrowhead consortium, creating a chain of
trust that allows different Arrowhead local clouds to be
interconnected. Securely onboarding sensor nodes, drones,
and base stations within the Arrowhead local cloud enables
mutual authentication, allowing not only a TLS client to
authenticate a server, but also a server to authenticate its
client via X.509 certificates. The Arrowhead systems that are
invoked during the onboarding procedure (ServiceRegistry,
SystemRegistry, DeviceRegistry, Onboarding Controller,
Orchestartor, Authorization, and Certificate Authority) are
all located in the DCU. The source code and description of
these systems can be found in the EclipseArrowhead GitHub3

repository.

3 https://github.com/eclipse-arrowhead/core-java-spring

Security and Autonomic Management
in System of Systems

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2021 • VOLUME XIII • NUMBER 3 69

4

This still leaves one attack vector open: clone attacks. Even
with mutual authentication, attackers can gain physical access
to a sensor node and replicate many clones with the same
identity of the compromised node. The clones contain all
the data of the legitimate sensor node and can successfully
pass the onboarding procedure. Once the clones are on the
network, they can exploit network operations such as routing,
data collection, and key distribution, and even launch other
attacks. This problem can be solved either by integrating
secure elements into sensor nodes and drones (e.g., hardware
security modules) to store keys and certificates in protected
storage [21] or by extending the use case with self-adaptation
capabilities that allow the system to adapt itself to a changing
environment. The latter is described in the following sections.

IV. GENERIC AUTONOMIC MANAGEMENT SYSTEM

The Generic Autonomic Management System (GAMS) is
designed and implemented as an Arrowhead support core
system. A system is Arrowhead-compliant if it produces at
least one service and consumes at least the three mandatory
core services of the Eclipse Arrowhead framework, namely
ServiceDiscovery, AuthorizationControl and Orchestration [4].
The ServiceDiscovery service is used to register and unregister
services and to locate services among the registered services in
the ServiceRegistry system. The AuthorizationControl service
provides two different interfaces for retrieving authorization
rights: (i) intra-cloud authorization, which defines an autho-
rization right between a consumer and a provider system in
the same local cloud for a particular service and (ii) inter-cloud
authorization, which defines an authorization right for an ex-
ternal local cloud to consume a specific service from the local
cloud. The Orchestration service provides application systems
with orchestration information: where to connect. The output
of this service includes rules that tell the application system
which service provider systems to connect to and how (as a
service consumer). Such orchestration rules include informa-
tion about the reachability of a service provider (e.g., network
address and port), service instance details within the provider
system (e.g., base URL (Uniform Resource Locator), interface
design specification, and other metadata), authorization-related
information (e.g., access token and signature), etc.

The GenericAutonomicManagement service produced by
GAMS is designed and implemented as a REST web service
that can be invoked by different SoA-based frameworks.
REST stands for representational state transfer and is a set of
architectural constraints. Thus, a REST API is used for the
interaction with the GenericAutonomicManagement service.
A REST API is an application programming interface that
conforms to the constraints of REST architectural style and
enables interaction with REST web services [22]. The REST
API has the following methods: (i) GET to retrieve information
about the REST API resource, (ii) POST to create a REST API
resource, (iii) PUT to update a REST API resource, and (iv)
DELETE to delete a REST API resource. Compared to other
protocols e.g. SOAP (Simple Object Access Protocol), REST
APIs are faster and more lightweight for IoT applications [23].

A. System Description

We have used Systems Modeling Language (SysML) to
create an internal block definition diagram of GAMS, as
shown in Figure 3. The system enables autonomic control
loops using MAPE-K (Monitor, Analyze, Plan, Execute and
SharedKnowledge) as a reference feedback loop for self-
adaptive systems [24]. An example of such interaction is a
set of sensors and actuators (managed system), where GAMS
is the autonomic manager (management system).

Fig. 3: SysML internal block definition diagram showing the
internal structure of GAMS.

a) Monitor: The Monitor component continuously col-
lects monitoring data from the sensor. The component per-
forms a pre-analysis based on the incoming sensor data and
the requirements stored in the SharedKnowledge. In case of a
significant deviation, an event is generated and stored in the
SharedKnowledge. The functions in this phase can aggregate
the incoming data before passing it on to the next phase.
GAMS allows you to specify the number of events to be
considered for aggregation. If the specified number of events
is not yet present, processing in this phase is aborted. The
implemented functions are the following:

• Sum: creates a sum of sensor values.
• Average: creates an average of sensor values.
• Trend: indicates if the sensor values are increasing or

decreasing.
• Maximum: uses the highest value in the next phase.
• Minimum: uses the lowest value in the next phase.
• Count: counts the number of incoming data in a specified

time frame.
• None: does not aggregate the sensor value, but forwards

it without change.
The SysML activity diagram of Monitor component is

shown in Figure 4.
b) Analyze: The Analyze component evaluates the events

received from the Monitor component with regard to the
requirements and context data in the SharedKnowledge. If the
requirements cannot be met, a change request is sent to the
Plan component with a description of the metrics. Similar to
the Monitor component, processing can be stopped if the result
of the analysis shows that no action is required at this time.
The implemented functions are the following:

3

connection is successful. The data transfer from the sensor
nodes to the drone gateway is done using Hypertext Transfer
Protocol Secure (HTTPs). For HTTPs, the communication
protocol is encrypted using Transport Layer Security (TLS).
After a successful file transfer, the file is moved to the archives
and an entry is created in the log file.

Fig. 2: SysML block definition diagram showing the hierarchy
of the blocks composing the smart agriculture SoS use case.

2) Drone Gateway: The gateway mounted on the drone
is a Raspberry Pi. RaspAP1, a feature-rich wireless router
software that works on Debian-based devices, is installed on
the Raspberry Pi to configure the host access point daemon
(hostapd). A web server receives the files sent by the sensor
nodes. It also determines how the received files are handled,
such as where they are stored. The gateway also contains a data
transfer script similar to the script on the sensor node for post-
processing the csv files. To ensure reusability and keep runtime
resource costs low, both the web client on the sensor node and
the web server on the drone gateway are written in python. To
enhance the application with self-adaptation capabilities, the
proposed Arrowhead support system (GAMS) is installed on
the drone gateway. Details of its operation are described in
Section IV.

3) Data Collection Unit: The DCU is a Debian system
installed in a virtual machine. The supporting core systems of
the Eclipse Arrowhead framework, which are invoked during
the automated and secure onboarding procedure described later
in the manuscript, are all installed on the DCU. In addition, a
web server is installed to receive the files sent from the drone
gateway and a data transfer script that sends them to the base
station for further offline analysis.

4) Base Station: After the flight, the sensor data and the
multispectral images stored in the base station are used for
offline analysis. The LAYERS2 platform is used to build
a model and provide the necessary information about the
condition of the vineyard. LAYERS is a platform that com-
bines agronomic knowledge, earth observation remote sensing
(drones, satellites, etc.) and artificial intelligence to create a
proactive field monitoring system. It consists of a web tool
with a map viewer and dashboard for field analysis, and an
iOS and Android application for field sampling. However, the
offline data analysis that takes place at the base station is
beyond the scope of this manuscript.

1 https://raspap.com/ 2 https://hemav.com/en/services/digital-agriculture-en/

B. Security and Adaptation Problem

Smart agriculture improves conventional farming methods
by using sensors in vineyards to collect environmental data
and autonomous vehicles (e.g., drones) to collect multispectral
images of vineyards. These data are used for further offline
analysis to improve production by optimizing crop manage-
ment, such as accurate planting, irrigation, pesticide use, har-
vesting, etc. Despite the benefits, the use of internet-connected
SoS can expose the agricultural sector to potential cyberattacks
and vulnerabilities. Even if the vineyard is not connected to
the Internet, it is an insecure network because an attacker only
needs to be close enough to connect. These attacks can be used
to remotely control and exploit sensors, actuators, and drones
to destroy an entire field of standing crops, flood the vineyards,
use smart drones to spray pesticides, etc. [20].

Therefore, it is of utmost importance to ensure trustworthy
and secure communication of the drone with the sensor nodes
in the vineyards and the base station. This ensures that
only valid data is retrieved, damaged sensors are detected,
and only authenticated and authorized systems participate in
the communication. Even though all HTTP connections are
secured via TLS (HTTPs), clients must be authenticated to
ensure that sensor data is trusted.

To meet this security requirement, we use the automated
and secure onboarding procedure of the Eclipse Arrowhead
framework. An Arrowhead-compliant SoS is defined as a set of
systems managed by the mandatory Arrowhead core systems
that exchange information via services. Thus, a local cloud
becomes an SoS. Also, two systems located in different local
clouds and exchanging services form a SoS. The onboarding
procedure [5] enables secure and trusted communication
between such systems by using a chain of X.509 certificates
generated at runtime. When a new device (e.g., a sensor node,
drone, or base station) wants to interact with the Arrowhead
local cloud, it should first authenticate itself using a valid
preloaded Arrowhead certificate, manufacturer certificate, or
shared key through the Onboarding Controller system. Each
system hosted in this device will get a runtime certificate
issued by Arrowhead. In Arrowhead, each local cloud has its
own Certificate Authority (CA) system that issues and signs
the runtime certificates of the systems. The CA system is
the root of trust within the local cloud and can be signed
by a central Arrowhead consortium, creating a chain of
trust that allows different Arrowhead local clouds to be
interconnected. Securely onboarding sensor nodes, drones,
and base stations within the Arrowhead local cloud enables
mutual authentication, allowing not only a TLS client to
authenticate a server, but also a server to authenticate its
client via X.509 certificates. The Arrowhead systems that are
invoked during the onboarding procedure (ServiceRegistry,
SystemRegistry, DeviceRegistry, Onboarding Controller,
Orchestartor, Authorization, and Certificate Authority) are
all located in the DCU. The source code and description of
these systems can be found in the EclipseArrowhead GitHub3

repository.

3 https://github.com/eclipse-arrowhead/core-java-spring

Security and Autonomic Management
in System of Systems

SEPTEMBER 2021 • VOLUME XIII • NUMBER 370

INFOCOMMUNICATIONS JOURNAL

5

Fig. 4: SysML activity diagram showing the sequence of
actions that are called as invocations of activities in the
Monitor component of GAMS.

• Count: counts the number of generated events in a
specified time frame.

• Set-Point: compares the incoming data with a configured
target value (set-point). The target value could be a range
with a lower and an upper set-point. In case both are used,
this function acts as a double set-point.

The SysML activity diagram of Analyze component is
shown in Figure 5.

Fig. 5: SysML activity diagram showing the sequence of
actions that are called as invocations of activities in the
Analyze component of GAMS.

c) Plan: The Plan component is able to understand the
metrics received from the Analyze component and to derive
adaptation policies. It sets a corrective action and mandatory
parameters for the autonomic element. An example of this
is the use case of room temperature. A thermometer would
be used as an input sensor and a heating or air conditioning
system as an actuator. The planning component converts the
incoming signal into a value that the actuator understands

using the accumulated knowledge from the previous phases.
The implemented functions are the following:

• Match: matches the incoming value as a key in a key-
value structure and forwards the value to the next phase.

• API Call: makes an API Call to determine the value for
the next phase.

• Transform: transforms the incoming value using a math-
ematical function.

• None: forwards the incoming value to the next phase
without changing it.

The SysML activity diagram of Plan component is shown
in Figure 6.

Fig. 6: SysML activity diagram showing the sequence of
actions that are called as invocations of activities in the Plan
component of GAMS.

d) Execute: The Execute component receives the policies
from the Plan component and executes the derived action
through the GenericAutonomicManagement service. The im-
plemented functions are the following:

• Composite Action: allows the execution of multiple
actions either in parallel or one after another.

• API Call: executes an API call as corrective action for
the autonomic element.

• Generate Event: creates a new event to feed into the
MAPE-K loop. This allows the re-evaluation of the sensor
values with updated information from previous loops.

• Logging Action: logs the outcome of the MAPE-K loop.

The SysML activity diagram of Execute component is
shown in Figure 7.

B. Service Interface Design Description

This section describes the HTTP/TLS/JSON GenericAuto-
nomicManagement service interface. When a client request is
made through a REST API, a representation of the state of the
resource is transmitted to the GAMS endpoint. This informa-
tion is transmitted in JSON format over HTTPs. Compared to
other formats, JSON is language agnostic and can be read by
both humans and machines [25].

Security and Autonomic Management
in System of Systems

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2021 • VOLUME XIII • NUMBER 3 71

6

Fig. 7: SysML activity diagram showing the sequence of
actions that are called as invocations of activities in the
Execute component of GAMS.

1) Service Operations: In the following, an overview of
the interface of the GenericAutonomicManagement service,
its operations, data models and implementation is given and
shown in Figure8. Both operations are described by their name
and by an input type (between parenthesis) and an output type
(at the end, preceded by a colon). Input and output types are
only specified if they are accepted or returned by the interface
in question.

Fig. 8: SysML block description diagram of the GenericAuto-
nomicManagement service interface and its operations.

Publish(PublishSensorDataRequest) The Publish oper-
ation is used to send new sensor readings to the ser-
vice, as exemplified in Listing 1. The sensor readings
could be either numeric (integer or floating point num-
ber) or textual (event based), depending on the configu-
ration. The sensor inputs feed the MAPE-K control loop
of GAMS and eventually trigger a change on an actua-
tor. The specific REST operation associated with this is:
POST/gams/{gams-uuid}/sensor/{sensor-uuid}

1

2 POST /gams/f8c3de3d-1fea-4d7c-a8b0-29f63c4c3454/sensor/123
e4567-e89b-42d3-a456-556642440000 HTTP/1.1

3

4 {
5 "timestamp": "2021-07-04 12:00:00",
6 "data": 1.2
7 }

Listing 1: An example of the Publish invocation for a floating
point number.

Echo():StatusCodeKind The Echo operation returns an
“is alive” response from the GenericAutonomicManagement

service, as exemplified in Listing 2, which can be used to
test the availability of the core service. The specific REST
operation associated with this is: GET/gams/echo

1

2 GET /gams/echo HTTP/1.1
3

4 Got it!

Listing 2: An Echo invocation response.

Both operations respond with the HTTP status code
201 Created when successfully invoked. The error codes
are: 400 Bad Request if request is incorrect, 401
Unauthorized if an improper client certificate was pro-
vided, and 500 Internal Server Error if GenericAu-
tonomicManagement service cannot process the request due to
an internal problem.

2) Information Model: The Publish operation has as input
type the PublishSensorDataRequest structure, which is used
to publish new sensor readings. The identification of the sensor
is possible in two ways:

• Uniform Resource Identifier (URI) path parameters de-
noting the GAMS instance and the sensor identification,

• URI path parameter denoting the GAMS instance and
using the source IP address to determine the sensor.

The POST request contains the parameters (data types)
described in Table I.

Field Type Description

timestamp DateTime The date and time of the sensor reading.
Pinpoints a specific moment in time.

data SensorData
The value of the sensor reading. May be
configured as integer number, floating-point
number, or text string.

TABLE I: POST request parameters of the Publish operation.

The activity diagram shown in Figure 9 describes the
process of publishing sensor data in GAMS.

Fig. 9: Information model as an activity diagram that describes
the process of publishing sensor data in GAMS.

Security and Autonomic Management
in System of Systems

SEPTEMBER 2021 • VOLUME XIII • NUMBER 372

INFOCOMMUNICATIONS JOURNAL

7

To interact with the Arrowhead local cloud, each client must
be authenticated and authorized through the onboarding proce-
dure and register its device, systems and services respectively
in the DeviceRegistry, SystemRegistry, and ServiceRegistry
systems. When the client is properly authenticated and autho-
rized, it receives the GAMS endpoint from the Orchestrator
system. The client sends a POST request to the provided
GAMS endpoint. If the POST request parameters are valid,
the GAMS instance is loaded and the Publish operation is
invoked.

V. GAMS INTEGRATED IN THE SMART AGRICULTURE SOS
In the smart agriculture use case described above, despite

mutual authentication through the Arrowhead automated on-
boarding procedure, attackers can gain physical access to a
sensor node and replicate many clones that have the same iden-
tity as the compromised node. The malicious node can spoof
the media access control (MAC) address of the legitimate node
to bypass possible security measures at the drone access point
(e.g., MAC address whitelist). In addition, the malicious node
can spoof the IP address of the legitimate node to bypass the
IP address restriction on the client certificate, allowing the
malicious node to send additional sensor data to the drone.
Another problem can be caused by a real malfunction of a
sensor node, such as a low battery. We propose to integrate
GAMS into the smart agriculture use case so that the SoS can
adapt itself in the face of such uncertainties.

Fig. 10: SysML activity diagram that describes the process of
invoking GAMS in the smart agriculture SoS use case.

The invocation of GAMS takes place in the drone gateway,
as shown in Figure 10. The SharedKnowledge of GAMS
contains information about traffic profiles, e.g., the expected
number of sensor data, which serve as a baseline for normal
traffic behavior. Such profiles may be provided by the indus-
trial partners or generated from historical data. GAMS uses
the sensor data as input for MAPE-K loop and compares the
actual traffic to the baseline. It sends API calls when suspi-
cious behaviors are detected that may indicate the following:
(i) possible malicious attacks or (ii) sensor node malfunctions.
An application-specific effector (or actuator) is then used to
execute the adaptation action decided by GAMS (management
system) in the drone and sensor nodes (managed system).

A. GAMS Configuration

GAMS is developed as a generic system; therefore, it should
be reusable and extensible so that it can be applied to a
variety of use cases without requiring major changes to the
solution. As described in Section IV-A, multiple functions are
implemented in each phase to cover a range of use cases.
Configuring GAMS for a particular use case means that one or
more functions from each phase will be selected and extended
as needed, based on adaptation requirements.

a) Monitor: We have used the Count function imple-
mented in the Monitor component. Each sensor node uses the
Publish operation of GenericAutonomicManagement service
interface to send sensor readings to GAMS. After receiving
the sensor data, GAMS counts the number of sensor data for
a configured time frame, in our use case it counts the number
of sensor data per day.

Fig. 11: The log file of the Monitor component.

The log file of the Monitor component is shown in Fig-
ure 11. In this example, it counts 234 SensorData/day and
stores this as an event in the SharedKnowledge.

b) Analyze: We have used the Set-Point function imple-
mented in the Analyze component. A Set-Point controller has
two set points to which it switches the output. For our use case,
the accepted range is between 180 and 220 SensorData/day.
The Analyze component returns a positive number when the
input exceeds the upper set point (POSITIVE METRIC) and
a negative number when the input is below the lower set point
(NEGATIVE METRIC). In all other cases, zero is returned
(ZERO METRIC). These metrics are forwarded to the Plan
component.

Fig. 12: The log file of the Analyze component.

The log file of the Analyze component is shown in Fig-
ure 12. In this example it returns a POSITIVE METRIC, since
the input exceeds the upper set point with 14 SensorData/day.

Security and Autonomic Management
in System of Systems

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2021 • VOLUME XIII • NUMBER 3 73

8

c) Plan: We have used the Match function implemented
in the Plan component. If an adaptation is required (POSI-
TIVE METRIC or NEGATIVE METRIC), the Plan compo-
nent selects a matching adaptation policy. If no adaptation is
required (ZERO METRIC), the operation is stopped.

Fig. 13: The log file of the Plan component.

The log file of the Plan component is shown in Figure 13.
In this example, it returns MALICIOUS ATTACK adaptation
policy since it matches with the POSITIVE METRIC.

d) Execute: We have used two functions implemented
in the Execute component. The API Call function is used to
trigger an effector, in our use case to invoke a service for
changing the WLAN password in the drone and all sensor
nodes, except the compromised node. The Logging Action
function is used to create a log entry when the number of
sensor data is below the lower set point.

Fig. 14: The log file of the Execute component.

The log file of the Execute component is shown in Fig-
ure 14. In this example, it executes a HttpCallWrapper adap-
tation action, which is the API call associated with MALI-
CIOUS ATTACK adaptation policy.

The log files presented in this section illustrate only one ex-
ample of suspicious behavior that can be detected by GAMS,
namely a possible malicious attack due to an increased number
of SensorData/day. Another example is a possible malfunction
of a sensor node due to a decreased number of SensorData/day.
In this case, GAMS would return a NEGATIVE METRIC
corresponding to the MALFUNCTION SENSOR adaptation
policy and create a log entry as an adaptation action.

B. Results

The experimental environment consists of a testDataset
generator script written in python3, a legitimate node contain-
ing valid sensor data readings (generated by the testDataset

script), and a clone containing invalid sensor data readings
(generated by the testDataset script). The invalid sensor data
readings typically shows a higher temperature (+10°C) and
contains more sensor data entries than the upper set point (220
SensorData/day) stored in the SharedKnowledge. The rest of
the environment uses the actual scripts from the use case as
described in Section III-A.

The measurements are simulated for 10 days. On the first
and second day, the legitimate node sends valid data. From the
third day, the clone with the same credentials as the legitimate
node sends invalid data. The drone flies every other day. When
GAMS is invoked, it receives the sensor data collected by
the drone and detects an increased number of sensor data
exceeding the upper limit defined in the SharedKnowledge
on the third and fourth day. According to the configuration
described in SectionV-A, GAMS sends an API call to the
drone and the legitimate node to change the WLAN password.
From this point on, the clone can no longer connect to the
drone, so only valid data is sent. For testing purposes, we used
only two nodes. However, in a real scenario, both the clone
and the compromised node do not receive the new password
to connect. The results are shown in Figure 15.

Fig. 15: The use case execution with/without GAMS invoked.

The results indicate that GAMS is able to detect unexpected
changes in a SoS and take adaptation actions without human
intervention, which can help maintain required security levels
for the use case even in the presence of uncertainty.

VI. CONCLUSION

SoSs evolve over time and exhibit new properties, such that
security controls introduced in the design phase to mitigate
potential attack vectors may not be appropriate or sufficient
later in operation. In this manuscript, we justify the need to
provide SoS with self-adaptive capabilities to address security
issues that may arise from uncertainties that are difficult to
predict before the system is deployed. Such uncertainties may
stem from factors internal or external to the SoS.

To address this challenge, we proposed a generic auto-
nomic management system (GAMS) that automatically tracks
runtime uncertainties and adapts SoS settings without human
intervention. The internal building blocks of GAMS (Monitor,
Analyze, Plan, Execute, and Shared-Knowledge) are designed
and implemented in such a way that they can be reused

Security and Autonomic Management
in System of Systems

SEPTEMBER 2021 • VOLUME XIII • NUMBER 374

INFOCOMMUNICATIONS JOURNAL

RefeRences

 [1] Mark W Maier. Architecting principles for systems-of-systems.
Systems Engineering: The Journal of the International Council on
Systems Engineering, 1(4):267– 284, 1998.

 doi: 10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D.
 [2] Silia Maksuti, Michael Pickem, Mario Zsilak, Anna Stummer, Markus

Tauber, Marcus Wieschhoff, Dominic Pirker, Christoph Schmittner,
and Jerker Delsing. Establishing a chain of trust in a sporadically
connected cyber-physical system. In 2021 IFIP/IEEE International
Symposium on Integrated Network Management (IM), pages 890–
895. IEEE, 2021.

 [3] Sina Sontowski, Maanak Gupta, Sai Sree Laya Chukkapalli,
Mahmoud Abdelsalam, Sudip Mittal, Anupam Joshi, and Ravi
Sandhu. Cyber attacks on smart farming infrastructure. In 2020
IEEE 6th International Conference on Collaboration and Internet
Computing (CIC), pages 135–143. IEEE, 2020.

 doi: 10.1109/CIC50333.2020.00025.
 [4] Jerker Delsing. Iot automation: Arrowhead framework. Crc Press, 2017.
 [5] Ani Bicaku, Silia Maksuti, Csaba Hegedűs, Markus Tauber, Jerker

Delsing, and Jens Eliasson. Interacting with the arrowhead local
cloud: On-boarding procedure. In 2018 IEEE industrial cyber-
physical systems (ICPS), pages 743–748. IEEE, 2018.

 doi: 10.1109/ICPHYS.2018.8390800.
 [6] Markus Tauber. Autonomic management in a distributed storage

system. arXiv preprint arXiv:1007.0328, 2010.
 [7] Silia Maksuti, Ani Bicaku, Markus Tauber, Silke Palkovits-Rauter,

Sarah Haas, and Jerker Delsing. Towards flexible and secure end-to-
end communication in industry 4.0. In 2017 IEEE 15th International
Conference on Industrial Informatics (INDIN), pages 883–888. IEEE,
2017. doi: 10.1109/INDIN.2017.8104888.

 [8] Silia Maksuti, Oliver Schluga, Giuseppe Settanni, Markus Tauber,
and Jerker Delsing. Self-adaptation applied to mqtt via a generic
autonomic management framework. In 2019 IEEE International
Conference on Industrial Technology (ICIT), pages 1179–1185. IEEE,
2019. doi: 10.1109/ICIT.2019.8754937.

 [9] Silia Maksuti, Markus Tauber, and Jerker Delsing. Generic autonomic
management as a service in a soa-based framework for industry 4.0.
In IECON 2019 – 45th Annual Conference of the IEEE Industrial
Electronics Society, volume 1, pages 5480–5485. IEEE, 2019.

 doi: 10.1109/IECON.2019.8927245.

9

and extended for a variety of use cases without requiring
major changes. This reduces the software engineering effort.
We integrated GAMS into a smart agriculture use case to
demonstrate its functionality. The results showed that GAMS
is able to detect a change in the environment and successfully
send an API call to the drone and sensor nodes to change
system settings to mitigate a potential malicious attack or
detect a sensor node malfunction.

As future work, we plan to improve the codebase of GAMS
to increase performance for resource-constrained systems, and
evaluate it in various use cases to show its generic property.

ACKNOWLEDGMENT

This work has received funding from ECSEL Joint Under-
taking (JU) under grant agreement No 826610 Comp4Drones
project. The JU receives support from EU’s Horizon 2020
research and innovation programme and Spain, Austria, Bel-
gium, Czech Republic, France, Italy, Latvia, Netherlands.

REFERENCES

[1] Mark W Maier. Architecting principles for systems-
of-systems. Systems Engineering: The Journal of the
International Council on Systems Engineering, 1(4):267–
284, 1998. doi:10.1002/(SICI)1520-6858.

[2] Silia Maksuti, Michael Pickem, Mario Zsilak, Anna
Stummer, Markus Tauber, Marcus Wieschhoff, Dominic
Pirker, Christoph Schmittner, and Jerker Delsing. Es-
tablishing a chain of trust in a sporadically connected
cyber-physical system. In 2021 IFIP/IEEE International
Symposium on Integrated Network Management (IM),
pages 890–895. IEEE, 2021.

[3] Sina Sontowski, Maanak Gupta, Sai Sree Laya Chukka-
palli, Mahmoud Abdelsalam, Sudip Mittal, Anupam
Joshi, and Ravi Sandhu. Cyber attacks on smart farm-
ing infrastructure. In 2020 IEEE 6th International
Conference on Collaboration and Internet Computing
(CIC), pages 135–143. IEEE, 2020. doi:10.1109/
CIC50333.2020.00025.

[4] Jerker Delsing. Iot automation: Arrowhead framework.
Crc Press, 2017.

[5] Ani Bicaku, Silia Maksuti, Csaba Hegedűs, Markus
Tauber, Jerker Delsing, and Jens Eliasson. Interacting
with the arrowhead local cloud: On-boarding proce-
dure. In 2018 IEEE industrial cyber-physical systems
(ICPS), pages 743–748. IEEE, 2018. doi:10.1109/
ICPHYS.2018.8390800.

[6] Markus Tauber. Autonomic management in a distributed
storage system. arXiv preprint arXiv:1007.0328, 2010.

[7] Silia Maksuti, Ani Bicaku, Markus Tauber, Silke
Palkovits-Rauter, Sarah Haas, and Jerker Delsing. To-
wards flexible and secure end-to-end communication
in industry 4.0. In 2017 IEEE 15th International
Conference on Industrial Informatics (INDIN), pages
883–888. IEEE, 2017. doi:10.1109/INDIN.2017.
8104888.

[8] Silia Maksuti, Oliver Schluga, Giuseppe Settanni,
Markus Tauber, and Jerker Delsing. Self-adaptation

applied to mqtt via a generic autonomic management
framework. In 2019 IEEE International Conference on
Industrial Technology (ICIT), pages 1179–1185. IEEE,
2019. doi:10.1109/ICIT.2019.8754937.

[9] Silia Maksuti, Markus Tauber, and Jerker Delsing.
Generic autonomic management as a service in a soa-
based framework for industry 4.0. In IECON 2019-
45th Annual Conference of the IEEE Industrial Electron-
ics Society, volume 1, pages 5480–5485. IEEE, 2019.
doi:10.1109/IECON.2019.8927245.

[10] Daniel Menasce, Hassan Gomaa, Joao Sousa, et al.
Sassy: A framework for self-architecting service-oriented
systems. IEEE software, 28(6):78–85, 2011. doi:
10.1109/MS.2011.22.

[11] Valeria Cardellini, Emiliano Casalicchio, Vincenzo
Grassi, Stefano Iannucci, Francesco Lo Presti, and Raf-
faela Mirandola. Moses: A framework for qos driven
runtime adaptation of service-oriented systems. IEEE
Transactions on Software Engineering, 38(5):1138–1159,
2011. doi:10.1109/TSE.2011.68.

[12] Cristian Ruz, Françoise Baude, and Bastien Sauvan.
Flexible adaptation loop for component-based soa appli-
cations. In Seven International Conference on Autonomic
and Autonomous Systems, 2011.

[13] Sylvain Frey, Ada Diaconescu, David Menga, and Is-
abelle Demeure. Towards a generic architecture and
methodology for multi-goal, highly-distributed and dy-
namic autonomic systems. In 10th International Con-
ference on Autonomic Computing ({ICAC} 13), pages
201–212, 2013.

[14] Mahdi Ben Alaya and Thierry Monteil. Frameself: an
ontology-based framework for the self-management of
machine-to-machine systems. Concurrency and Compu-
tation: Practice and Experience, 27(6):1412–1426, 2015.
doi:10.1002/cpe.3168.

[15] Svein Hallsteinsen, Kurt Geihs, Nearchos Paspallis,
Frank Eliassen, Geir Horn, Jorge Lorenzo, Alessandro
Mamelli, and George Angelos Papadopoulos. A develop-
ment framework and methodology for self-adapting ap-
plications in ubiquitous computing environments. Jour-
nal of Systems and Software, 85(12):2840–2859, 2012.

[16] Vishwa T Alaparthy, Amar Amouri, and Salvatore D
Morgera. A study on the adaptability of immune models
for wireless sensor network security. Procedia computer
science, 145:13–19, 2018. doi:10.1016/j.procs.
2018.11.003.

[17] Jose Fran Ruiz, Carsten Rudolph, Antonio Maña, and
Marcos Arjona. A security engineering process for
systems of systems using security patterns. In 2014 IEEE
International Systems Conference Proceedings, pages
8–11. IEEE, 2014. doi:10.1109/SysCon.2014.
6819228.

[18] J Dahmann, George Rebovich, Michael McEvilley, and
G Turner. Security engineering in a system of systems
environment. In 2013 IEEE International Systems Con-
ference (SysCon), pages 364–369. IEEE, 2013. doi:
10.1109/SysCon.2013.6549907.

[19] Larry B Rainey and Andreas Tolk. Modeling and

[10] Daniel Menasce, Hassan Gomaa, Joao Sousa, et al. Sassy: A
framework for self-architecting service-oriented systems. IEEE
software, 28(6):78–85, 2011. doi: 10.1109/MS.2011.22.

[11] Valeria Cardellini, Emiliano Casalicchio, Vincenzo Grassi, Stefano
Iannucci, Francesco Lo Presti, and Raffaela Mirandola. Moses: A
framework for qos driven runtime adaptation of service-oriented
systems. IEEE Transactions on Software Engineering, 38(5):1138–
1159, 2011. doi: 10.1109/TSE.2011.68.

[12] Cristian Ruz, Françoise Baude, and Bastien Sauvan. Flexible
adaptation loop for component-based soa applications. In Seven
International Conference on Autonomic and Autonomous Systems,
2011.

[13] Sylvain Frey, Ada Diaconescu, David Menga, and Isabelle Demeure.
Towards a generic architecture and methodology for multi-goal,
highly-distributed and dynamic autonomic systems. In 10th
International Conference on Autonomic Computing ({ICAC} 13),
pages 201–212, 2013.

[14] Mahdi Ben Alaya and Thierry Monteil. Frameself: an ontology-
based framework for the self-management of machine-to-machine
systems. Concurrency and Computation: Practice and Experience,
27(6):1412–1426, 2015. doi: 10.1002/cpe.3168.

[15] Svein Hallsteinsen, Kurt Geihs, Nearchos Paspallis, Frank Eliassen,
Geir Horn, Jorge Lorenzo, Alessandro Mamelli, and George Angelos
Papadopoulos. A development framework and methodology for self-
adapting applications in ubiquitous computing environments. Jour-
nal of Systems and Software, 85(12):2840–2859, 2012.

[16] Vishwa T Alaparthy, Amar Amouri, and Salvatore D Morgera. A study
on the adaptability of immune models for wireless sensor network
security. Procedia computer science, 145:13–19, 2018.

 doi: 10.1016/j.procs. 2018.11.003.
[17] Jose Fran Ruiz, Carsten Rudolph, Antonio Maña, and Marcos

Arjona. A security engineering process for systems of systems using
security patterns. In 2014 IEEE International Systems Conference
Proceedings, pages 8–11. IEEE, 2014.

 doi: 10.1109/SysCon.2014.6819228.
[18] J Dahmann, George Rebovich, Michael McEvilley, and G Turner.

Security engineering in a system of systems environment. In 2013
IEEE International Systems Conference (SysCon), pages 364–369.
IEEE, 2013. doi: 10.1109/SysCon.2013.6549907.

[19] Larry B Rainey and Andreas Tolk. Modeling and simulation support
for system of systems engineering applications. 2015.

 doi: 10.1002/9781118501757.
[20] Maanak Gupta, Mahmoud Abdelsalam, Sajad Khorsandroo, and

Sudip Mittal. Security and privacy in smart farming: Challenges and
opportunities. IEEE Access, 8:34564–34584, 2020.

 doi: 10.1109/ACCESS.2020.2975142.
[21] Dominic Pirker, Thomas Fischer, Christian Lesjak, and Christian

Steger. Global and secured uav authentication system based on
hardware-security. In 2020 8th IEEE International Conference on
Mobile Cloud Computing, Services, and Engineering (MobileCloud),
pages 84–89. IEEE, 2020.

 doi: 10.1109/MobileCloud48802.2020.00020.
[22] Mark Masse. REST API Design Rulebook: Designing Consistent

RESTful Web Service Interfaces. ” O’Reilly Media, Inc.”, 2011.
[23] Snehal Mumbaikar, Puja Padiya, et al. Web services based on soap

and rest principles. International Journal of Scientific and Research
Publications, 3(5):1–4, 2013.

[24] Jeffrey O Kephart and David M Chess. The vision of autonomic
computing. Computer, 36(1):41–50, 2003.

 doi: 10.1109/MC.2003.1160055.
[25] Nurzhan Nurseitov, Michael Paulson, Randall Reynolds, and

Clemente Izurieta. Comparison of json and xml data interchange
formats: a case study. Caine, 9:157–162, 2009.

Security and Autonomic Management
in System of Systems

INFOCOMMUNICATIONS JOURNAL

SEPTEMBER 2021 • VOLUME XIII • NUMBER 3 75

DI Silia Maksuti is a PhD student at Luleå University
of Technology, Sweden, and works as a researcher
at the University of Applied Sciences Burgenland,
Austria, in the research center ”Cloud and Cyber
Physical Systems Security”. Recently, she was working
at the Austrian Institute of Technology (AIT) in the
AIT’s ICT-Security Program. She received the Dipl-
Ing. degree in Communication Engineering from the
Carinthia University of Applied Sciences, Klagenfurt,
Austria, and her B.Sc. degree in Telecommunication

Engineering from the Polytechnic University of Tirana, Albania. She has been
part of several EU projects, e.g., SECCRIT, SEMI40, PRODUCTIVE4.0,
ArrowheadTools and Comp4Drones.

Mario Zsilak works as software engineer at the
Center for Cloud and CPS Security at the Forschung
Burgenland GmbH. He has contributed to Arrow-
head in a number of projects. He is currently
completing his Master in the MSc Program Business
Process Management and Engineering at the University
of Applied Sciences Burgenland. He completed his
BSc in Information and Communication Systems and
Services in 2017, at the University of Applied Sciences
Technikum Wien.

Prof. (FH) Dr. Markus Tauber works as Chief
Scientific Officer at Research Studios Austria
Forschungsgesellschaft. Between 2015 until 2021, he
worked as FH-Professor for the University of Applied
Sciences Burgenland, where he held the position:
director of the MSc program “Cloud Computing
Engineering” and led the research center “Cloud and
Cyber-Physical Systems Security”. From 2012 until
2015, he coordinated the “High Assurance Cloud”
research topic at the Austrian Institute of Technology

(AIT) part of AIT’s ICT-Security Program. Amongst other activities, he was
the coordinator of the FP7 Project “Secure Cloud computing for CRitical
infrastructure IT” - (www.seccrit.eu) and involved in the ARTEMIS Project
Arrowhead. From 2004 to 2012, he was working at the University of St
Andrews (UK), where he worked as a researcher on various topics in the
area of network and distributed systems and was awarded a PhD in Computer
Science for which he was working on “Autonomic Management in Distributed
Storage Systems”.

Prof. Jerker Delsing received the M.Sc. in
Engineering Physics at Lund Institute of Technology,
Sweden 1982. In 1988 he received the PhD. degree
in Electrical Measurement at the Lund University.
During 1985 - 1988 he worked part time at Alfa-Laval
- SattControl (now ABB) with development of sensors
and measurement technology. In 1994 he was promoted
to associate professor in Heat and Power Engineering
at Lund University. Early 1995 he was appointed full
professor in Industrial Electronics at Lulea University

of Technology where he currently is the scientific head of EISLAB, http://
www.ltu.se/eislab. His present research profile can be entitled IoT and SoS
Automation, with applications to automation in large and complex industry
and society systems. Prof. Delsing and his EISLAB group has been a partner of
several large EU projects in the field, e.g. Socrades, IMC-AESOP, Arrowhead,
FAR-EDGE, Productive4.0 and Arrowhead Tools. Delsing is a board member
of ARTEMIS, ProcessIT.EU and ProcessIT Innovations.

