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Abstract—In the current article a novel test generation al-
gorithm is presented for deterministic finite state machine
specifications based on the recently introduced All-Transition-
State criteria. The size of the resulting test suite and the
time required for test suite generation are investigated through
analytical and practical analyses and are also compared to
the Transition Tour, Harmonized State Identifiers and random
walk test generation methods. The fault detection capabilities of
the different approaches are also investigated with simulations
applying randomly injected transfer faults.
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I. INTRODUCTION

Testing plays a vital role in the software development life
cycle. The complexity of software is continuously increas-
ing, whereas nowadays the time frame between two releases
becomes shorter, raising the probability of faults. Compared
to the complexity of the problem, only limited resources are
allocated for testing to provide adequate quality for the end
product. Although the execution of test cases are automated
in most big software companies, test design is typically still
done manually, which is a very time consuming process. To
cope with this challenge, one can raise the level of automation
for the design of test cases as well. If the requirements of the
product are described in a formal model specification, then the
test cases can be generated automatically from this model to
fulfill given testing goals. This area of testing is called model-
based testing (MBT).

Several formal models exist for system specifications, such
as behaviour trees [8], Finite State Machines (FSMs) [6],
[15], [18] and labelled transition systems [6]. This article
focuses on FSM formal models, which have been extensively
used in diverse areas such as telecommunication software and
protocols [13], [14], software related to lexical analysis and
pattern matching [3], hardware design [24] and embedded
systems [5].

In this article we present a novel test generation algorithm
for finite state machine specifications. Our approach is based
on the All-Transition-State (ATS) criteria introduced in [10]
and uses elements of the Chinese Postman Tour algorithms
[9].

The body of the article is organized as follows. Section II
discusses related terms regarding graphs, FSMs and confor-
mance testing. The most relevant FSM-based test generation
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algorithms that are used as a reference point when evaluating
our algorithm are also discussed here. Section III introduces
our new test generation algorithm for the All-Transition-State
criteria, demonstrates it through an example and provides an
analysis of its complexity. Section IV presents simulations
investigating the test generation time, the overall length of
the test sequences and the fault coverage of our algorithm
compared to existing methods. The main results of the paper
are concluded in Section V with possible future directions.

II. PRELIMINARIES

A. Graphs
A directed graph is a G = (V,E) (possibly with loop and

parallel arcs), where V = {s1, . . . , sn} denotes the set of
nodes and E = {e1, . . . , em} denotes the set of ordered pairs
of nodes (sk, sl) called directed edges or arcs. In a weighted
directed graph a number – called weight – is assigned to each
arc.

A directed walk is a finite and alternative sequence of
nodes and arcs, (s1, e1, s2, ...en−1, sn), where each sk, sk+1

consecutive nodes are the end points of an intermediate edge
ek. A directed trail is a directed walk in which all arcs are
distinct, a directed path is a directed trail in which all nodes
are distinct.

A directed cycle is a directed trail where the first node is
the same as the last node of the sequence. A directed graph is
acyclic if it does not contain any directed cycles. A spanning
forest of a G is an acyclic subgraph of G. A spanning tree
ST of G is an acyclic subgraph of G which includes all of
the nodes of G and exactly |V | − 1 arcs which are directed
away from root node s0, so that there is exactly one path from
s0 to any other node. An inverse spanning tree TS of G is
an acyclic subgraph of G which includes all of the nodes of
G and exactly |V | − 1 arcs which are directed toward a root
node s0, such a way that from every node sk ∈ V there exists
exactly one directed path to s0.

A directed graph is strongly connected if there exists a
directed path between any two given nodes. The strongly
connected components (SCCs) of graph G are the maximal
strongly connected subgraphs of graph G.

Let the number of arcs originating from node sj be denoted
by deg+(sj) (outdegree), and the number of arcs that lead
to node sj by deg−(sj) (indegree). We say that node sj is
balanced iff deg−(sj) = deg+(sj), otherwise unbalanced. We
say that a directed graph is Eulerian, if it is strongly connected
and balanced for every node.

A bipartite graph GB = (V −, V +, E) is a graph whose
nodes can be divided into two disjoint and non-empty sets
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denoted with V − and V + and every edge in E connects a
node in V − to one in V +. A matching in GB is a Em ⊆ E
subset of its edges, where none of them share the same node.
If sets V − and V + cover the same number of nodes, then
a minimum weighted perfect matching of GB may exist, that
covers all nodes of sets V − and V + and the overall weights
of its edges are minimal.

B. Finite State Machines

A Mealy Finite State Machine (abbreviated as ’FSM’ in the
rest of the article) M is a quadruple M = (I, O, S, T ) where
I , O, and S are the finite and non-empty sets of input symbols,
output symbols and states, respectively. T is the finite and non-
empty set of transitions between states. Each transition t ∈ T
is a quadruple t = (sj , i, o, sk), where sj ∈ S is the start
state, i ∈ I is an input symbol, o ∈ O is an output symbol
and sk ∈ S is the next state. The number of states, inputs and
transitions of an FSM are denoted by n = |S|, p = |I| and
m = |T |, respectively.

An FSM can be represented with a state transition graph,
which is a directed labelled graph whose nodes and arcs
correspond to the states and transitions, respectively. Each
arc is labeled with the input and the output, written as i/o,
associated with the transition.

FSM M is deterministic, if for each (sj , i) state-input pair
there exists at most one transition in T , otherwise it is non-
deterministic. If there is at least one transition t ∈ T for all
state-input pairs, the machine is said to be completely specified,
otherwise it is partially specified.

In case of deterministic FSMs the output and the next state
of a transition can be given as a function of the start state
and the input of a transition, where λ: S × I → O denotes
the output function and δ: S × I → S denotes the next state
function. Let us extend δ and λ from input symbols to finite
input sequences I∗ as follows: for a state s1, an input sequence
x = i1, . . . , ik takes the machine successively to states sj+1 =
δ(sj , ij), j = 1, . . . , k with the final state δ(s1, x) = sk+1,
and produces an output sequence λ(s1, x) = o1, . . . , ok, where
oj = λ(sj , ij), j = 1, . . . , k. The string concatenation operator
is denoted by “.”.

Two states, sj and sl of FSM M are distinguishable, iff
there exists an x ∈ I∗ input sequence – called a separating
sequence – that produces different output for these states, i.e.:
λ(sj , x) �= λ(sl, x). Otherwise states sj and sl are equivalent.
A machine is reduced, if no two states are equivalent.

An FSM M has a reset message, if there exists a special
input symbol r ∈ I that takes the machine from any state
back to the s0 initial state: ∃r ∈ I : ∀sj : δ(sj , r) = s0. The
reset is reliable if it is guaranteed to work properly in any
implementation machine Impl of M .

C. Conformance testing

The structure of FSM model-based test generation is shown
in Figure 1(a): A formal specification model denoted by
FSM M is derived from the requirements. From FSM M
– according to some preset test criteria – test cases can be
automatically generated; these are the pairs of input sequences
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Figure 1. Model-based testing

and expected output sequences of M . A set of test cases
form a test suite. This test suite then can be applied to
the System Under Test (SUT) that can be considered as an
Impl implementation machine of specification M – see Figure
1(b). Note that machine Impl can be considered as a black
box with unknown internal structure, one can only observe
its output responses upon a given input sequence. The role
of conformance testing is to check if the observed output
sequences of Impl are equivalent to the expected results
derived from M – i.e. to check if Impl conforms to M .

D. FSM Fault Models

FSM fault models describe the assumptions of the test
engineer about implementation machine Impl as SUT. A usual
approach is that the faults do not increase the number of the
states specified in FSM M [15], thus the fault model of [7]
and [4] are typically restricted to the following two types of
faults [15]:

I. Output fault: for a given state-input pair FSM Impl
produces an output that is different from the one that
is specified in FSM M .

II. Transfer fault: for a given state-input pair FSM Impl goes
into a state that differs from the state specified in FSM
M .

E. Test generation methods

In the following we discuss relevant FSM-based test
generation methods that are used as reference points when
comparing the performance of our new algorithm. Note that
the Transition Tour is discussed in more detail because its
elements are reused in our method.

1) Random walk: Starting from the initial state, in each step
a transition leading from the current state is chosen randomly
and traversed entering a new state until a given stop condition
is fulfilled. Various stop conditions – such as a percentage
of input/output symbols, visited states or transitions – can be
selected based on testing goals.

Although this approach can be useful for exploratory
testing, it is impractical for the functional testing of a
large-scale software as the length of the test sequence can be
much longer than the optimal solution.
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Gábor Árpád Németh and Máté István Lugosi
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I. INTRODUCTION

Testing plays a vital role in the software development life
cycle. The complexity of software is continuously increas-
ing, whereas nowadays the time frame between two releases
becomes shorter, raising the probability of faults. Compared
to the complexity of the problem, only limited resources are
allocated for testing to provide adequate quality for the end
product. Although the execution of test cases are automated
in most big software companies, test design is typically still
done manually, which is a very time consuming process. To
cope with this challenge, one can raise the level of automation
for the design of test cases as well. If the requirements of the
product are described in a formal model specification, then the
test cases can be generated automatically from this model to
fulfill given testing goals. This area of testing is called model-
based testing (MBT).

Several formal models exist for system specifications, such
as behaviour trees [8], Finite State Machines (FSMs) [6],
[15], [18] and labelled transition systems [6]. This article
focuses on FSM formal models, which have been extensively
used in diverse areas such as telecommunication software and
protocols [13], [14], software related to lexical analysis and
pattern matching [3], hardware design [24] and embedded
systems [5].

In this article we present a novel test generation algorithm
for finite state machine specifications. Our approach is based
on the All-Transition-State (ATS) criteria introduced in [10]
and uses elements of the Chinese Postman Tour algorithms
[9].

The body of the article is organized as follows. Section II
discusses related terms regarding graphs, FSMs and confor-
mance testing. The most relevant FSM-based test generation
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algorithms that are used as a reference point when evaluating
our algorithm are also discussed here. Section III introduces
our new test generation algorithm for the All-Transition-State
criteria, demonstrates it through an example and provides an
analysis of its complexity. Section IV presents simulations
investigating the test generation time, the overall length of
the test sequences and the fault coverage of our algorithm
compared to existing methods. The main results of the paper
are concluded in Section V with possible future directions.

II. PRELIMINARIES

A. Graphs
A directed graph is a G = (V,E) (possibly with loop and

parallel arcs), where V = {s1, . . . , sn} denotes the set of
nodes and E = {e1, . . . , em} denotes the set of ordered pairs
of nodes (sk, sl) called directed edges or arcs. In a weighted
directed graph a number – called weight – is assigned to each
arc.

A directed walk is a finite and alternative sequence of
nodes and arcs, (s1, e1, s2, ...en−1, sn), where each sk, sk+1

consecutive nodes are the end points of an intermediate edge
ek. A directed trail is a directed walk in which all arcs are
distinct, a directed path is a directed trail in which all nodes
are distinct.

A directed cycle is a directed trail where the first node is
the same as the last node of the sequence. A directed graph is
acyclic if it does not contain any directed cycles. A spanning
forest of a G is an acyclic subgraph of G. A spanning tree
ST of G is an acyclic subgraph of G which includes all of
the nodes of G and exactly |V | − 1 arcs which are directed
away from root node s0, so that there is exactly one path from
s0 to any other node. An inverse spanning tree TS of G is
an acyclic subgraph of G which includes all of the nodes of
G and exactly |V | − 1 arcs which are directed toward a root
node s0, such a way that from every node sk ∈ V there exists
exactly one directed path to s0.

A directed graph is strongly connected if there exists a
directed path between any two given nodes. The strongly
connected components (SCCs) of graph G are the maximal
strongly connected subgraphs of graph G.

Let the number of arcs originating from node sj be denoted
by deg+(sj) (outdegree), and the number of arcs that lead
to node sj by deg−(sj) (indegree). We say that node sj is
balanced iff deg−(sj) = deg+(sj), otherwise unbalanced. We
say that a directed graph is Eulerian, if it is strongly connected
and balanced for every node.

A bipartite graph GB = (V −, V +, E) is a graph whose
nodes can be divided into two disjoint and non-empty sets
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criteria, demonstrates it through an example and provides an
analysis of its complexity. Section IV presents simulations
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the test sequences and the fault coverage of our algorithm
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of nodes (sk, sl) called directed edges or arcs. In a weighted
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arc.

A directed walk is a finite and alternative sequence of
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consecutive nodes are the end points of an intermediate edge
ek. A directed trail is a directed walk in which all arcs are
distinct, a directed path is a directed trail in which all nodes
are distinct.

A directed cycle is a directed trail where the first node is
the same as the last node of the sequence. A directed graph is
acyclic if it does not contain any directed cycles. A spanning
forest of a G is an acyclic subgraph of G. A spanning tree
ST of G is an acyclic subgraph of G which includes all of
the nodes of G and exactly |V | − 1 arcs which are directed
away from root node s0, so that there is exactly one path from
s0 to any other node. An inverse spanning tree TS of G is
an acyclic subgraph of G which includes all of the nodes of
G and exactly |V | − 1 arcs which are directed toward a root
node s0, such a way that from every node sk ∈ V there exists
exactly one directed path to s0.

A directed graph is strongly connected if there exists a
directed path between any two given nodes. The strongly
connected components (SCCs) of graph G are the maximal
strongly connected subgraphs of graph G.

Let the number of arcs originating from node sj be denoted
by deg+(sj) (outdegree), and the number of arcs that lead
to node sj by deg−(sj) (indegree). We say that node sj is
balanced iff deg−(sj) = deg+(sj), otherwise unbalanced. We
say that a directed graph is Eulerian, if it is strongly connected
and balanced for every node.

A bipartite graph GB = (V −, V +, E) is a graph whose
nodes can be divided into two disjoint and non-empty sets
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denoted with V − and V + and every edge in E connects a
node in V − to one in V +. A matching in GB is a Em ⊆ E
subset of its edges, where none of them share the same node.
If sets V − and V + cover the same number of nodes, then
a minimum weighted perfect matching of GB may exist, that
covers all nodes of sets V − and V + and the overall weights
of its edges are minimal.

B. Finite State Machines

A Mealy Finite State Machine (abbreviated as ’FSM’ in the
rest of the article) M is a quadruple M = (I,O, S, T ) where
I , O, and S are the finite and non-empty sets of input symbols,
output symbols and states, respectively. T is the finite and non-
empty set of transitions between states. Each transition t ∈ T
is a quadruple t = (sj , i, o, sk), where sj ∈ S is the start
state, i ∈ I is an input symbol, o ∈ O is an output symbol
and sk ∈ S is the next state. The number of states, inputs and
transitions of an FSM are denoted by n = |S|, p = |I| and
m = |T |, respectively.

An FSM can be represented with a state transition graph,
which is a directed labelled graph whose nodes and arcs
correspond to the states and transitions, respectively. Each
arc is labeled with the input and the output, written as i/o,
associated with the transition.

FSM M is deterministic, if for each (sj , i) state-input pair
there exists at most one transition in T , otherwise it is non-
deterministic. If there is at least one transition t ∈ T for all
state-input pairs, the machine is said to be completely specified,
otherwise it is partially specified.

In case of deterministic FSMs the output and the next state
of a transition can be given as a function of the start state
and the input of a transition, where λ: S × I → O denotes
the output function and δ: S × I → S denotes the next state
function. Let us extend δ and λ from input symbols to finite
input sequences I∗ as follows: for a state s1, an input sequence
x = i1, . . . , ik takes the machine successively to states sj+1 =
δ(sj , ij), j = 1, . . . , k with the final state δ(s1, x) = sk+1,
and produces an output sequence λ(s1, x) = o1, . . . , ok, where
oj = λ(sj , ij), j = 1, . . . , k. The string concatenation operator
is denoted by “.”.

Two states, sj and sl of FSM M are distinguishable, iff
there exists an x ∈ I∗ input sequence – called a separating
sequence – that produces different output for these states, i.e.:
λ(sj , x) �= λ(sl, x). Otherwise states sj and sl are equivalent.
A machine is reduced, if no two states are equivalent.

An FSM M has a reset message, if there exists a special
input symbol r ∈ I that takes the machine from any state
back to the s0 initial state: ∃r ∈ I : ∀sj : δ(sj , r) = s0. The
reset is reliable if it is guaranteed to work properly in any
implementation machine Impl of M .

C. Conformance testing

The structure of FSM model-based test generation is shown
in Figure 1(a): A formal specification model denoted by
FSM M is derived from the requirements. From FSM M
– according to some preset test criteria – test cases can be
automatically generated; these are the pairs of input sequences
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Figure 1. Model-based testing

and expected output sequences of M . A set of test cases
form a test suite. This test suite then can be applied to
the System Under Test (SUT) that can be considered as an
Impl implementation machine of specification M – see Figure
1(b). Note that machine Impl can be considered as a black
box with unknown internal structure, one can only observe
its output responses upon a given input sequence. The role
of conformance testing is to check if the observed output
sequences of Impl are equivalent to the expected results
derived from M – i.e. to check if Impl conforms to M .

D. FSM Fault Models

FSM fault models describe the assumptions of the test
engineer about implementation machine Impl as SUT. A usual
approach is that the faults do not increase the number of the
states specified in FSM M [15], thus the fault model of [7]
and [4] are typically restricted to the following two types of
faults [15]:

I. Output fault: for a given state-input pair FSM Impl
produces an output that is different from the one that
is specified in FSM M .

II. Transfer fault: for a given state-input pair FSM Impl goes
into a state that differs from the state specified in FSM
M .

E. Test generation methods

In the following we discuss relevant FSM-based test
generation methods that are used as reference points when
comparing the performance of our new algorithm. Note that
the Transition Tour is discussed in more detail because its
elements are reused in our method.

1) Random walk: Starting from the initial state, in each step
a transition leading from the current state is chosen randomly
and traversed entering a new state until a given stop condition
is fulfilled. Various stop conditions – such as a percentage
of input/output symbols, visited states or transitions – can be
selected based on testing goals.

Although this approach can be useful for exploratory
testing, it is impractical for the functional testing of a
large-scale software as the length of the test sequence can be
much longer than the optimal solution.
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2) Harmonized State Identifiers: The Harmonized State
Identifiers (HSI) [17], [25] state verification method can be
used to create a structured test suite for reduced, deterministic,
strongly connected FSMs with reliable reset capability [28].
The resulting algorithm is the generalization of the W [7] and
Wp [11] methods and it guarantees to discover all output and
transfer faults of FSM Impl. According to simulations of [27]
this is the most efficient of the W/Wp/HSI triple.

Each test case of HSI consists of the following parts:
• A state cover set Q = {q1, . . . , qn} responsible for

reaching all states; the problem can be reduced to creating
a spanning tree ST from initial state s0.

• A separating family of sequences of Z responsible for
verifying end states. The Z set is a collection of sets
Zi, i = 1, . . . , n of sequences (one set for each state)
where for every non-identical pair of states si, sj there
exists a separating sequence. The Z set can be represented
with a spanning forest over a state pair graph, the arcs
of which are directed to state pairs that have a separating
input [23].

Based on the parts discussed above, the algorithm consists
of two stages, one responsible for identifying all states of the
machine and the other for checking all remaining transitions.

The resulting test suite consists of no more than p · n2 test
sequences, each one with a length less than 2 · n interposed
with the reset symbol [28]. Thus, the total length of the
resulting test suite and the complexity of test generation is
O(p · n3).

3) Transition Tour: The Transition Tour (TT) [19] algo-
rithm produces a test sequence that visits every transition of a
reduced, deterministic, strongly connected specification FSM
M at least once and returns to the initial state. This is the
shortest tour that provides 100% state- and transition coverage
of the specification. It guarantees to discover all output faults,
but does not guarantee to find transfer faults.

The problem of generating the TT test sequence can be
reduced to the Directed Chinese Postman Problem (DCPP) [9]
with unit costs for the arcs of graph G (where G corresponds
to FSM M ). There are multiple algorithms [9], [16], [22] that
solve this problem, typically consisting of two major parts:

I. Augmenting the original graph G by duplicating some
arcs to make it Eulerian.

II. Finding an Euler tour over an Eulerian graph GE .
I. Augmenting the original graph to make it Eulerian: Since

the goal is to generate the shortest possible test sequence,
minimal additional arcs should be added. This is achieved by
finding a minimum weighted perfect matching on a bipartite
graph GB , with group V − representing the deg+ < deg−

negative balanced nodes and group V + representing the
deg+ > deg− positive balanced ones. The weight on edges
represents the shortest directed paths from V − to V + nodes
of the original graph G in the following way: As the arcs
of G are considered to have unit costs, the lengths of the
shortest paths are measured as the number of arcs they contain.
Every unbalanced node sk of graph G is represented by
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II. There has to be at least one walk to all states which does
not include transition t (if feasible).

The motivation behind applying these conditions are the
following: (1) Condition I guarantees to find all output faults
(as it covers all transitions of the FSM); (2) Condition II
requires arc disjoint sequences for all transitions (if feasible)
and both condition I and II require to visit all states after
transition traversals; thus conditions I and II together are
expected to discover most of the transfer faults (the actual
fault coverage is investigated later in Section IV).

Building blocks of test sequences: In a nutshell, our
algorithm uses a preamble part responsible for traversing
all transitions of the FSM first, and then a postamble part
responsible for traversing all states of the FSM to fulfill both
conditions, but on different graphs. For condition I the original
graph G (that corresponds to FSM M ) will be used, for
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some t transitions are filtered out.

• All Transition (AT): This part specifies that all transitions
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• All State (AS): This part specifies that all states of a
given model should be covered at least once. To find
the shortest such sequence one can use a solution to the
Traveling Salesperson problem [26], without the need to
return to the initial state. Since the TSP problem is an NP
hard problem, the Nearest Neighbour (NN) heuristic [12]
is selected, which searches in each step for the closest
unvisited state until such state exists.

ATS algorithm (high level view): To fulfill condition
I, the AT and AS parts are generated in step 1 on graph
G, respectively, then concatenated. The resulting sequence is
called main sequence and it covers all transitions of the FSM
and then visits all of its states.

For condition II, the AT and AS parts are created on
different filtered subgraphs of G and then concatenated to gen-
erate appropriate alternative sequences. Then, these alternative
sequences are applied one after the other. The standard version
of our algorithm (denoted by ATS0) generates 2 alternative
sequences in step 2 that are as arc disjoint as possible. Note
that as these 2 alternative sequences do not necessarily meet
condition II, an optional, iterative part is also presented in step
2.3 to provide additional alternative sequences. This iterative
part terminates, if for all t transitions an arc disjoint sequence
has been found (where it is feasible; ATSa version) or if
a predefined iteration limit is reached (ATSx version). The
output of the algorithm is a test suite that is the concatenation
of the generated main sequence and the alternative sequences.
The different versions of the ATS algorithm are summarized
in Table I.

ID notes input used graphs output: test suite

ATS0 standard
version

FSM M
original: G
filtered: GT , GACT

1 main sequence
+ 2 alternative seqs.

ATSa version
without
iteration
limit

FSM M
original: G
filtered:
GT , GACT , GACk

1 main sequence
+ max. 2n
alternative seqs.

ATSx version
with
iteration
limit

FSM M ,
depth

original: G
filtered:
GT , GACT , GACk

1 main sequence
+ max. depth + 2
alternative seqs.

Table I
THE SUMMARY OF DIFFERENT ATS ALGORITHM VERSIONS

The 3 different versions (ATS0, ATSa, ATSx) of our algo-
rithm allow the test engineer to find an appropriate trade-off
between coverage and the length of the entire test suite. Note
that after the detailed description a small scale example is
presented to show step-by-step, how the algorithm works.

ATS algorithm (standard version, ATS0) :
STEP 1. Use AT and AS to create preamble and postamble

subsequences, respectively on graph G. The con-
catenated preamble.postamble main sequence will
guarantee that the test suite covers at least one walk
from each transition to every state.

STEP 2. Create alternative sequences by concatenating the
AT preamble and AS postamble subsequences gen-
erated on different subgraphs of G. To maintain

the continuity of the entire sequence, each of the
alternative sequences should start from the last state
reached by the previous one.

STEP 2.1. For the first alternative sequence take the TS
inverse spanning tree used in the Eulerian graph
GE during the execution of the AT part of step
1. Then, extend it with randomly selected shortest
paths in G from the root node to each of the leaves
of TS using breadth-first-search. This results in a
strongly connected subgraph of G called GT . The
Eulerian augmentation of GT is denoted with GT

E

used in AT preamble sequence generation. Then
the postamble part is generated using AS on GT .

STEP 2.2. For a second alternative sequence apply a filter
on G that masks out the transitions belonging to
GT . This will be the complement graph of GT ,
called GCT . If GCT is not strongly connected,
then some transitions have to be reused from GT ,
resulting in a graph GACT . The number of re-
enabled transitions should be minimal in order to
maintain the highest level of disjointedness using
the following method:

STEP 2.2.1. GACT := GCT . Let c denote the number
of SCCs of GACT . Create a directed graph
GSCC with c number of nodes, each repre-
senting a distinct SCC of GCT . Also create a
c× c zero matrix A that denotes that each of
the nodes of GSCC are isolated at this stage.

STEP 2.2.2. For all i components of GSCC check each out-
going arc of G from the nodes of component
i and if it leads to component j (where j �= i)
and Ai,j = 0, then add an arc to GSCC from
the node representing component i to the node
representing component j. Also set Ai,j := 1.

STEP 2.2.3. While c > 1:
STEP 2.2.4.1. Re-enable a random transition in the filter

of G that connects two separate, previ-
ously unconnected components of GSCC

and add the corresponding arc to the fil-
tered graph GACT .

STEP 2.2.4.2. Check for cycles in GSCC , using depth-
first search, if there is one, then merge the
nodes that belong to the cycle into a single
node representing a new larger SCC. Sim-
ilarly, shrink the size of the corresponding
A matrix. If h nodes were merged, then
c := c− (h− 1).

STEP 2.2.4. Once GACT is strongly connected again, gen-
erate preamble and postamble sequences using
AT and AS, respectively.

Optional, iterative extensions for ATS (ATSa, ATSx):
If transitions had to be re-enabled in step 2.2 to make GACT

strongly connected, the alternative sequences generated for
criterion II won’t be entirely arc disjoint, i.e. criterion II is
not met. In this case the following recursive part of graph
filtering can be enabled:
STEP 2.3. The arcs that were both re-enabled in step 2.2
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• All State (AS): This part specifies that all states of a
given model should be covered at least once. To find
the shortest such sequence one can use a solution to the
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return to the initial state. Since the TSP problem is an NP
hard problem, the Nearest Neighbour (NN) heuristic [12]
is selected, which searches in each step for the closest
unvisited state until such state exists.

ATS algorithm (high level view): To fulfill condition
I, the AT and AS parts are generated in step 1 on graph
G, respectively, then concatenated. The resulting sequence is
called main sequence and it covers all transitions of the FSM
and then visits all of its states.

For condition II, the AT and AS parts are created on
different filtered subgraphs of G and then concatenated to gen-
erate appropriate alternative sequences. Then, these alternative
sequences are applied one after the other. The standard version
of our algorithm (denoted by ATS0) generates 2 alternative
sequences in step 2 that are as arc disjoint as possible. Note
that as these 2 alternative sequences do not necessarily meet
condition II, an optional, iterative part is also presented in step
2.3 to provide additional alternative sequences. This iterative
part terminates, if for all t transitions an arc disjoint sequence
has been found (where it is feasible; ATSa version) or if
a predefined iteration limit is reached (ATSx version). The
output of the algorithm is a test suite that is the concatenation
of the generated main sequence and the alternative sequences.
The different versions of the ATS algorithm are summarized
in Table I.

ID notes input used graphs output: test suite

ATS0 standard
version

FSM M
original: G
filtered: GT , GACT

1 main sequence
+ 2 alternative seqs.

ATSa version
without
iteration
limit

FSM M
original: G
filtered:
GT , GACT , GACk

1 main sequence
+ max. 2n
alternative seqs.

ATSx version
with
iteration
limit

FSM M ,
depth

original: G
filtered:
GT , GACT , GACk

1 main sequence
+ max. depth + 2
alternative seqs.

Table I
THE SUMMARY OF DIFFERENT ATS ALGORITHM VERSIONS

The 3 different versions (ATS0, ATSa, ATSx) of our algo-
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that after the detailed description a small scale example is
presented to show step-by-step, how the algorithm works.

ATS algorithm (standard version, ATS0) :
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catenated preamble.postamble main sequence will
guarantee that the test suite covers at least one walk
from each transition to every state.

STEP 2. Create alternative sequences by concatenating the
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inverse spanning tree used in the Eulerian graph
GE during the execution of the AT part of step
1. Then, extend it with randomly selected shortest
paths in G from the root node to each of the leaves
of TS using breadth-first-search. This results in a
strongly connected subgraph of G called GT . The
Eulerian augmentation of GT is denoted with GT

E

used in AT preamble sequence generation. Then
the postamble part is generated using AS on GT .

STEP 2.2. For a second alternative sequence apply a filter
on G that masks out the transitions belonging to
GT . This will be the complement graph of GT ,
called GCT . If GCT is not strongly connected,
then some transitions have to be reused from GT ,
resulting in a graph GACT . The number of re-
enabled transitions should be minimal in order to
maintain the highest level of disjointedness using
the following method:

STEP 2.2.1. GACT := GCT . Let c denote the number
of SCCs of GACT . Create a directed graph
GSCC with c number of nodes, each repre-
senting a distinct SCC of GCT . Also create a
c× c zero matrix A that denotes that each of
the nodes of GSCC are isolated at this stage.

STEP 2.2.2. For all i components of GSCC check each out-
going arc of G from the nodes of component
i and if it leads to component j (where j �= i)
and Ai,j = 0, then add an arc to GSCC from
the node representing component i to the node
representing component j. Also set Ai,j := 1.

STEP 2.2.3. While c > 1:
STEP 2.2.4.1. Re-enable a random transition in the filter

of G that connects two separate, previ-
ously unconnected components of GSCC

and add the corresponding arc to the fil-
tered graph GACT .

STEP 2.2.4.2. Check for cycles in GSCC , using depth-
first search, if there is one, then merge the
nodes that belong to the cycle into a single
node representing a new larger SCC. Sim-
ilarly, shrink the size of the corresponding
A matrix. If h nodes were merged, then
c := c− (h− 1).

STEP 2.2.4. Once GACT is strongly connected again, gen-
erate preamble and postamble sequences using
AT and AS, respectively.

Optional, iterative extensions for ATS (ATSa, ATSx):
If transitions had to be re-enabled in step 2.2 to make GACT

strongly connected, the alternative sequences generated for
criterion II won’t be entirely arc disjoint, i.e. criterion II is
not met. In this case the following recursive part of graph
filtering can be enabled:
STEP 2.3. The arcs that were both re-enabled in step 2.2
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• All State (AS): This part specifies that all states of a
given model should be covered at least once. To find
the shortest such sequence one can use a solution to the
Traveling Salesperson problem [26], without the need to
return to the initial state. Since the TSP problem is an NP
hard problem, the Nearest Neighbour (NN) heuristic [12]
is selected, which searches in each step for the closest
unvisited state until such state exists.

ATS algorithm (high level view): To fulfill condition
I, the AT and AS parts are generated in step 1 on graph
G, respectively, then concatenated. The resulting sequence is
called main sequence and it covers all transitions of the FSM
and then visits all of its states.

For condition II, the AT and AS parts are created on
different filtered subgraphs of G and then concatenated to gen-
erate appropriate alternative sequences. Then, these alternative
sequences are applied one after the other. The standard version
of our algorithm (denoted by ATS0) generates 2 alternative
sequences in step 2 that are as arc disjoint as possible. Note
that as these 2 alternative sequences do not necessarily meet
condition II, an optional, iterative part is also presented in step
2.3 to provide additional alternative sequences. This iterative
part terminates, if for all t transitions an arc disjoint sequence
has been found (where it is feasible; ATSa version) or if
a predefined iteration limit is reached (ATSx version). The
output of the algorithm is a test suite that is the concatenation
of the generated main sequence and the alternative sequences.
The different versions of the ATS algorithm are summarized
in Table I.
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GT . This will be the complement graph of GT ,
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resulting in a graph GACT . The number of re-
enabled transitions should be minimal in order to
maintain the highest level of disjointedness using
the following method:
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GSCC with c number of nodes, each repre-
senting a distinct SCC of GCT . Also create a
c× c zero matrix A that denotes that each of
the nodes of GSCC are isolated at this stage.

STEP 2.2.2. For all i components of GSCC check each out-
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i and if it leads to component j (where j �= i)
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the node representing component i to the node
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STEP 2.2.3. While c > 1:
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of G that connects two separate, previ-
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and add the corresponding arc to the fil-
tered graph GACT .

STEP 2.2.4.2. Check for cycles in GSCC , using depth-
first search, if there is one, then merge the
nodes that belong to the cycle into a single
node representing a new larger SCC. Sim-
ilarly, shrink the size of the corresponding
A matrix. If h nodes were merged, then
c := c− (h− 1).

STEP 2.2.4. Once GACT is strongly connected again, gen-
erate preamble and postamble sequences using
AT and AS, respectively.

Optional, iterative extensions for ATS (ATSa, ATSx):
If transitions had to be re-enabled in step 2.2 to make GACT

strongly connected, the alternative sequences generated for
criterion II won’t be entirely arc disjoint, i.e. criterion II is
not met. In this case the following recursive part of graph
filtering can be enabled:
STEP 2.3. The arcs that were both re-enabled in step 2.2
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first search, if there is one, then merge the
nodes that belong to the cycle into a single
node representing a new larger SCC. Sim-
ilarly, shrink the size of the corresponding
A matrix. If h nodes were merged, then
c := c− (h− 1).

STEP 2.2.4. Once GACT is strongly connected again, gen-
erate preamble and postamble sequences using
AT and AS, respectively.

Optional, iterative extensions for ATS (ATSa, ATSx):
If transitions had to be re-enabled in step 2.2 to make GACT

strongly connected, the alternative sequences generated for
criterion II won’t be entirely arc disjoint, i.e. criterion II is
not met. In this case the following recursive part of graph
filtering can be enabled:
STEP 2.3. The arcs that were both re-enabled in step 2.2
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and in all previous iterations of step 2.3 (if there
were previous iterations) are collected in the list
arc rem. Then, the arc rem arcs are filtered
out from G resulting in a graph GCk in the
kth iteration. Some of these arcs need to be re-
enabled again to connect SCCs (similarly as in
step 2.2) resulting in a subgraph GACk . These re-
enabled arcs remain in arc rem list, the others
are removed. Create an alternative sequence (by
concatenating the appropriate AT preamble and
AS postamble subsequences) on graph GCk . Run
the function described above recursively until...
• no transitions remain in the list arc rem or if

the number of elements in arc rem has not
decreased since the previous step (ATSa).

• an iteration limit depth is reached or the stop
condition of ATSa is met (ATSx).
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Figure 2. ATS example

ATS example: Here we demonstrate how our ATS al-
gorithm works through a small scale example. We use the
following notations in the figures: solid lines represent original
arcs (i.e. the transitions of the FSM). Extra arcs, which make
the graph balanced, are shown with dotted lines. The re-
enabled transitions of filtered graphs that connect SCCs are
shown with bold dashed lines. The initial state of each test
sequence is denoted with a double circle. The input of each
transition is also labeled on its corresponding arc in the graphs.

Consider FSM M in Figure 2(a). From this, an Eulerian
graph GE is created in step 1 – see Figure 2(b). The TS

inverse spanning tree of GE used by the AT part, when
creating an Euler tour over GE is shown in 2(c). The resulting
AT input sequence of step 1 is bbacacabaacb starting at initial
state s0, followed by the AS input sequence bbc finishing
at state s3, forming a main sequence together. The first
alternative sequence is created in step 2.1 using the GT

E

Eulerian graph of filtered graph GT – see Figure 2(d). The
resulting AT input sequence is bbbbbac starting at state s3,
followed by the AS input sequence bbb terminating at state
s1. The second alternative sequence is created in step 2.2 over
GACT

E – see Figure 2(e). The resulting AT input sequence
is acabacac1, starting at state s1, followed by the AS input
sequence aacab terminating at state s0. Here the standard
version of the ATS algorithm (ATS0) terminates. Note that
arc s1 → s0 is re-enabled in GACT

E to connect two SCCs,
i.e. it is used both in the first and the second alternative
sequences. Thus, the iterative ATSa extension of the algorithm
(described in step 2.3) can be enabled to create an arc disjoint
sequence for the arc rem = {s1 → s0} element. At the
first iteration, graph GAC1

E is created – see Figure 2(f), and
s1 → s0 is removed from arc rem. The corresponding AT
part bbacbaacac starts at state s0 and is followed by the AS
part aaa. As arc rem = {} the algorithm terminates.

ATS complexity calculation:
Standard version (ATS0): The complexity of the AT and

AS generation parts are O(n3 +m) and O(n2), respectively,
due to the TT and the NN algorithms. Thus, step 1 and step
2 require O(n3 + m) elementary steps, resulting in a total
complexity of O(n3 +m) and in an O(m) overall length for
the test suite (in case of deterministic and completely specified
FSMs m = p · n, resulting in a O(n(n2 + p)) complexity and
O(p · n) length of the test suite).

Iterative extensions (ATSx and ATSa): The iterative part
requires O(η(n3+m)) additional complexity, where η < 2 ·n
in case of the ATSa and η ≤ min(depth, 2 · n) in case of
the ATSx version, because subgraph GT of step 2.1 contains
no more than 2 · (n − 1) arcs (the TS inverse spanning tree
contains exactly n − 1 arcs, and the tree that contains the
shortest path from the root node to each of the leaves of TS
contains no more than n− 1 arcs) that at worst case need to
be filtered out. The total length of the resulting test suite is
O(η ·m).

As our ATS algorithm traverses all transitions of the FSM
(AT part of step 1) it guarantees to find all output faults. As the
algorithm traverses all transitions, then visits all states (step 1)
and also provides alternative sequences that try to be as arc-
disjoint as possible, then visit all states (step 2) it is expected
to find most of the transfer faults; the actual fault coverage
of different ATS algorithm versions (ATS0, ATSa, ATSx) are
investigated in the next section.

1Note that the second extra multiplication of the s3 → s1 arc is not used
as all transitions are covered at least once when the algorithm visits state s3
for the third time, so there is no need to finish the Euler tour with returning
to start state s1.
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IV. SIMULATION RESULTS

We implemented our novel ATS algorithm, the random walk
with 100% transition coverage stop condition, the TT and
the HSI-methods in C++ using the graph algorithms and data
structures of the LEMON2 library.

The simulations were executed on a server running an
Ubuntu 18.04.5 LTS operating system with 1 GB memory
and one core of a shared Intel Xeon Gold 6140 CPU with
2.30GHz clock frequency.

We generated strongly connected, reduced random FSMs to
investigate the performance of the algorithms. The strongly
connected property is ensured by first creating a random
inverse spanning tree, the arcs of which are directed towards
the root node. Then a directed path is built from the root
node that visits each of the leaf nodes. Finally, arcs are added
between random nodes to reach the desired average outdegree
denoted by deg+.

Number of states
ID CS /

PS
min. max. size of

step
deg+

/ |I|
|O| simulation

goal

Scenario 1 PS 5 2000 5 5 5 complexity
Scenario 2 PS 5 800 5 25 5 complexity
Scenario 3 PS 5 100 5 5 2 fault cov.
Scenario 4 PS 5 100 5 5 5 fault cov.
Scenario 5 CS 5 2000 5 5 5 complexity
Scenario 6 CS 5 800 5 25 5 complexity
Scenario 7 CS 5 100 5 5 2 fault cov.
Scenario 8 CS 5 100 5 5 5 fault cov.

Table II
INVESTIGATED SCENARIOS

Different scenarios were created both for partially specified
(PS) and completely specified (CS) FSMs3 to investigate the
complexity (time required for test generation and the size
of the test suite) and the fault coverage of the algorithms
– see Table II. In the last subsection the ATS algorithm is
investigated on a small-scale telecommunication example.

A. Partially specified machines

1) Complexity investigations: Scenarios 1 and 2 examine
how the time required for test generation and the overall length
of the test sequences are affected by the number of states.

First, consider Scenario 1, where each state of the FSM has
5 transitions in average. Figure 3 shows the test generation
time of the Random, TT and the ATS algorithms; the latter one
with the standard version (ATS0), with the iterative versions
with depth parameters 1 (ATS1) and 2 (ATS2) and without a
predefined depth parameter (ATSa). The results indicate that
the complexity of the TT and the ATS test generation is around
the cubic function of the number of states. The test generation
time of the Random algorithm is much less as it only selects
a new transition randomly and checks if the stop condition is

2Library for Efficient Modeling and Optimization in Networks (LEMON),
http://lemon.cs.elte.hu

3The motivation behind investigating both PS and CS machines with similar
parameters is that the performance of the TT and ATS algorithms is expected
to depend on how far each sj ∈ S state of the machine is from being balanced;
in the latter case deg+(sj) = deg+ = |I| for all sj ∈ S.
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fulfilled at each step. Figure 4 shows the overall length of the
resulting test sequences. As deg+ is fixed, the length of the
test sequence is the linear function of the number of states.
The length of the test sequence of ATS0, ATS1, ATS2 and
ATSa is around 3.5, 4.7, 5.9 and 7 times longer on average as
that of the one generated by the TT method, respectively.
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We also investigate Scenario 2, when 25 transitions on
average are set for each state of the FSM. Figures 5 and 6 show
the test generation times and the overall lengths of the resulting
test sequences, respectively. The trends are similar to the case
of Scenario 1, but the complexities are higher due to denser
FSMs. Also note that the ATS is able to create completely arc
disjoint sequences in all cases even with 1 depth parameter
(ATS1) and if the number of states are relatively low, then even
the standard version (ATS0) creates completely arc disjoint
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IV. SIMULATION RESULTS

We implemented our novel ATS algorithm, the random walk
with 100% transition coverage stop condition, the TT and
the HSI-methods in C++ using the graph algorithms and data
structures of the LEMON2 library.

The simulations were executed on a server running an
Ubuntu 18.04.5 LTS operating system with 1 GB memory
and one core of a shared Intel Xeon Gold 6140 CPU with
2.30GHz clock frequency.

We generated strongly connected, reduced random FSMs to
investigate the performance of the algorithms. The strongly
connected property is ensured by first creating a random
inverse spanning tree, the arcs of which are directed towards
the root node. Then a directed path is built from the root
node that visits each of the leaf nodes. Finally, arcs are added
between random nodes to reach the desired average outdegree
denoted by deg+.
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min. max. size of

step
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/ |I|
|O| simulation
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Scenario 1 PS 5 2000 5 5 5 complexity
Scenario 2 PS 5 800 5 25 5 complexity
Scenario 3 PS 5 100 5 5 2 fault cov.
Scenario 4 PS 5 100 5 5 5 fault cov.
Scenario 5 CS 5 2000 5 5 5 complexity
Scenario 6 CS 5 800 5 25 5 complexity
Scenario 7 CS 5 100 5 5 2 fault cov.
Scenario 8 CS 5 100 5 5 5 fault cov.

Table II
INVESTIGATED SCENARIOS

Different scenarios were created both for partially specified
(PS) and completely specified (CS) FSMs3 to investigate the
complexity (time required for test generation and the size
of the test suite) and the fault coverage of the algorithms
– see Table II. In the last subsection the ATS algorithm is
investigated on a small-scale telecommunication example.

A. Partially specified machines

1) Complexity investigations: Scenarios 1 and 2 examine
how the time required for test generation and the overall length
of the test sequences are affected by the number of states.

First, consider Scenario 1, where each state of the FSM has
5 transitions in average. Figure 3 shows the test generation
time of the Random, TT and the ATS algorithms; the latter one
with the standard version (ATS0), with the iterative versions
with depth parameters 1 (ATS1) and 2 (ATS2) and without a
predefined depth parameter (ATSa). The results indicate that
the complexity of the TT and the ATS test generation is around
the cubic function of the number of states. The test generation
time of the Random algorithm is much less as it only selects
a new transition randomly and checks if the stop condition is
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parameters is that the performance of the TT and ATS algorithms is expected
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in the latter case deg+(sj) = deg+ = |I| for all sj ∈ S.
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fulfilled at each step. Figure 4 shows the overall length of the
resulting test sequences. As deg+ is fixed, the length of the
test sequence is the linear function of the number of states.
The length of the test sequence of ATS0, ATS1, ATS2 and
ATSa is around 3.5, 4.7, 5.9 and 7 times longer on average as
that of the one generated by the TT method, respectively.
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We also investigate Scenario 2, when 25 transitions on
average are set for each state of the FSM. Figures 5 and 6 show
the test generation times and the overall lengths of the resulting
test sequences, respectively. The trends are similar to the case
of Scenario 1, but the complexities are higher due to denser
FSMs. Also note that the ATS is able to create completely arc
disjoint sequences in all cases even with 1 depth parameter
(ATS1) and if the number of states are relatively low, then even
the standard version (ATS0) creates completely arc disjoint
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IV. SIMULATION RESULTS

We implemented our novel ATS algorithm, the random walk
with 100% transition coverage stop condition, the TT and
the HSI-methods in C++ using the graph algorithms and data
structures of the LEMON2 library.

The simulations were executed on a server running an
Ubuntu 18.04.5 LTS operating system with 1 GB memory
and one core of a shared Intel Xeon Gold 6140 CPU with
2.30GHz clock frequency.

We generated strongly connected, reduced random FSMs to
investigate the performance of the algorithms. The strongly
connected property is ensured by first creating a random
inverse spanning tree, the arcs of which are directed towards
the root node. Then a directed path is built from the root
node that visits each of the leaf nodes. Finally, arcs are added
between random nodes to reach the desired average outdegree
denoted by deg+.
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Table II
INVESTIGATED SCENARIOS

Different scenarios were created both for partially specified
(PS) and completely specified (CS) FSMs3 to investigate the
complexity (time required for test generation and the size
of the test suite) and the fault coverage of the algorithms
– see Table II. In the last subsection the ATS algorithm is
investigated on a small-scale telecommunication example.

A. Partially specified machines

1) Complexity investigations: Scenarios 1 and 2 examine
how the time required for test generation and the overall length
of the test sequences are affected by the number of states.

First, consider Scenario 1, where each state of the FSM has
5 transitions in average. Figure 3 shows the test generation
time of the Random, TT and the ATS algorithms; the latter one
with the standard version (ATS0), with the iterative versions
with depth parameters 1 (ATS1) and 2 (ATS2) and without a
predefined depth parameter (ATSa). The results indicate that
the complexity of the TT and the ATS test generation is around
the cubic function of the number of states. The test generation
time of the Random algorithm is much less as it only selects
a new transition randomly and checks if the stop condition is
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in the latter case deg+(sj) = deg+ = |I| for all sj ∈ S.
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fulfilled at each step. Figure 4 shows the overall length of the
resulting test sequences. As deg+ is fixed, the length of the
test sequence is the linear function of the number of states.
The length of the test sequence of ATS0, ATS1, ATS2 and
ATSa is around 3.5, 4.7, 5.9 and 7 times longer on average as
that of the one generated by the TT method, respectively.
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We also investigate Scenario 2, when 25 transitions on
average are set for each state of the FSM. Figures 5 and 6 show
the test generation times and the overall lengths of the resulting
test sequences, respectively. The trends are similar to the case
of Scenario 1, but the complexities are higher due to denser
FSMs. Also note that the ATS is able to create completely arc
disjoint sequences in all cases even with 1 depth parameter
(ATS1) and if the number of states are relatively low, then even
the standard version (ATS0) creates completely arc disjoint
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with 100% transition coverage stop condition, the TT and
the HSI-methods in C++ using the graph algorithms and data
structures of the LEMON2 library.

The simulations were executed on a server running an
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and one core of a shared Intel Xeon Gold 6140 CPU with
2.30GHz clock frequency.
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investigate the performance of the algorithms. The strongly
connected property is ensured by first creating a random
inverse spanning tree, the arcs of which are directed towards
the root node. Then a directed path is built from the root
node that visits each of the leaf nodes. Finally, arcs are added
between random nodes to reach the desired average outdegree
denoted by deg+.
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(PS) and completely specified (CS) FSMs3 to investigate the
complexity (time required for test generation and the size
of the test suite) and the fault coverage of the algorithms
– see Table II. In the last subsection the ATS algorithm is
investigated on a small-scale telecommunication example.
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1) Complexity investigations: Scenarios 1 and 2 examine
how the time required for test generation and the overall length
of the test sequences are affected by the number of states.

First, consider Scenario 1, where each state of the FSM has
5 transitions in average. Figure 3 shows the test generation
time of the Random, TT and the ATS algorithms; the latter one
with the standard version (ATS0), with the iterative versions
with depth parameters 1 (ATS1) and 2 (ATS2) and without a
predefined depth parameter (ATSa). The results indicate that
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the cubic function of the number of states. The test generation
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fulfilled at each step. Figure 4 shows the overall length of the
resulting test sequences. As deg+ is fixed, the length of the
test sequence is the linear function of the number of states.
The length of the test sequence of ATS0, ATS1, ATS2 and
ATSa is around 3.5, 4.7, 5.9 and 7 times longer on average as
that of the one generated by the TT method, respectively.
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We also investigate Scenario 2, when 25 transitions on
average are set for each state of the FSM. Figures 5 and 6 show
the test generation times and the overall lengths of the resulting
test sequences, respectively. The trends are similar to the case
of Scenario 1, but the complexities are higher due to denser
FSMs. Also note that the ATS is able to create completely arc
disjoint sequences in all cases even with 1 depth parameter
(ATS1) and if the number of states are relatively low, then even
the standard version (ATS0) creates completely arc disjoint
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Figure 3. Scenario 1: Test generation time
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Figure 4. Scenario 1: Test sequence length

fulfilled at each step. Figure 4 shows the overall length of the
resulting test sequences. As deg+ is fixed, the length of the
test sequence is the linear function of the number of states.
The length of the test sequence of ATS0, ATS1, ATS2 and
ATSa is around 3.5, 4.7, 5.9 and 7 times longer on average as
that of the one generated by the TT method, respectively.

0 100 200 300 400 500 600 700 800

Number of states

10
-4

10
-2

10
0

10
2

10
4

R
u

n
 t

im
e

 (
s
e

c
o

n
d

s
)

ATS1,2,a

ATS0

TT

Random

Figure 5. Scenario 2: Test generation time

We also investigate Scenario 2, when 25 transitions on
average are set for each state of the FSM. Figures 5 and 6 show
the test generation times and the overall lengths of the resulting
test sequences, respectively. The trends are similar to the case
of Scenario 1, but the complexities are higher due to denser
FSMs. Also note that the ATS is able to create completely arc
disjoint sequences in all cases even with 1 depth parameter
(ATS1) and if the number of states are relatively low, then even
the standard version (ATS0) creates completely arc disjoint
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Figure 6. Scenario 2: Test sequence length

sequences. Due to this reason, the iterative extension of the
ATS terminate earlier resulting in the same test generation
times and lengths of test sequences for different ATS versions
(ATS1, ATS2, ATSa). The length of the test sequence of ATS0
and ATS1/2/a is around 2.3 and 2.9 times longer on average
as that of the one generated by the TT method, respectively.
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2) Fault coverage investigation: In Scenario 3 and 4 the
fault coverage of different algorithms is investigated with
randomly injected transfer faults4 with 2 and 5 output symbols
for the FSMs, respectively. Each data point in the figures had
been obtained by 1000 simulation runs; in each simulation

4Note that output faults are not investigated as the TT and the ATS
algorithms traverse all transitions of the specification model, thus all of them
are able to show both the absence or the presence of single output faults.

a single transition fault is injected to an FSM with given
parameters and we observe how many times from these 1000
distinct cases do the algorithms discover the fault.

The results of the TT and the ATS method for Scenario
3 and 4 are presented in Figures 7 and 8, respectively. The
results show that the ATS algorithm is much more effective
in finding transfer faults than the TT, even with its standard
version (ATS0). If the iterative part is switched on and the
depth parameter increases or is switched off (ATS1 → ATS2
→ ATSa), the fault coverage increases; for all but the smallest
machines ATS1, ATS2 and ATSa is able to catch virtually
all faults5. The relative number of discovered faults increases
if the number of states increases both in case of the TT
and of the ATS. The reason is that if the size of the test
sequence increases, the probability that the desired output and
the observed output of the test sequence differs increases. The
difference between Scenario 3 and 4 simulations show that
the probability of discovering faults increases as the number
of output symbols is raised6. The reason is that different
transitions with more possible output symbols to select from
will more probably differ from each other.
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5Note that in Scenario 3 the fault coverage of ATS0 and ATS1 are almost
identical in the performed simulations except at three points (n = 45, 70, 85)
and that the fault coverage of ATS2 and ATSa only differs at one point (n =
80).

6Note that in Scenario 4 the fault coverage of ATS1 and ATS2 are almost
identical in the performed simulations except at two points (n = 60, 85),
while the fault coverage of ATS2 and ATSa is identical.
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The minimum, the maximum and the average number of
iterations for the ATSa algorithm version is also investigated
– the results for Scenario 3 are presented in Figure 97. For
Scenario 3 Figure 10 presents the ratio when ATSa terminates
because for all t transition an arc disjoint sequence has been
found (in other cases for some transitions no arc disjoint
sequence can be found due to the structure of the FSM)7.

B. Completely specified machines

Similar scenarios were created for completely specified
machines as in case of partially specified ones, but instead of
average outdegree, we used the term number of input symbols,
as for all states the number of outgoing transitions will be
equal with this parameter.
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Figure 11. Scenario 5: Test generation time
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Figure 12. Scenario 5: Test sequence length

1) Complexity investigations: First consider Scenario 5,
where the FSMs have 5 input symbols. Figure 11 and 12 show
the test generation time and the entire length of the resulting
test suite, respectively for the Random, HSI, TT algorithms
and for the standard (ATS0) and iterative versions (ATS1,
ATS2) of the ATS algorithm.

As in case of partially specified machines, the complexity
of the TT and the ATS test generation is the cubic function
of the number of states and the length of the TT and the
ATS test sequences is the linear function of the number of
states. Note that the test generation time of the TT and the

7Note that the results are very similar for Scenario 4 as the output symbols
of the transitions do not affect the test generation of ATS.

different versions of ATS are about 35% and 15 − 22% less
than in case of their partially specified counterpart (Scenario
1), respectively. The reason is that in case of completely
specified FSMs, every state has the same number of outgoing
transitions, thus less extra arc multiplication is required in
the Eulerian graph GE of FSM M compared to the partially
specified FSMs. For the same reason the overall length of the
TT and the ATS test sequences are around 11% and 8-9% less
in Scenario 5 compared to Scenario 1.

The test generation complexity is less than the theoretic
cubic upper limit in case of the HSI method. The reason is that
each member of the separating family of sequences typically
consists of a test sequence with 1 or 2 length instead of the
theoretical worst case n − 1 length. However, the size of the
test suite generated by the HSI is significantly bigger than
the ones generated by the TT and the ATS, as this test suite
systematically checks all n states and n · (p − 1) remaining
transitions of the FSM and the verification of a state or the
end state of a transition requires n− 1 distinct sequences.

The test generation time and the entire length of the result-
ing test suite for FSMs with 25 input symbols are presented
in Figure 13 and 14, respectively.
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Figure 13. Scenario 6: Test generation time
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Figure 14. Scenario 6: Test sequence length

2) Fault coverage investigation: The results of the TT, the
ATS and the HSI methods for Scenario 7 and 8 are presented
in Figures 15 and 16, respectively. As expected, the structured
HSI finds all next state faults and the TT-method discovers
the least number of faults of the triple. The ATS algorithm
is very efficient in discovering faults even with the standard
version (ATS0) and it can be further enhanced if the iterative
part is switched on (ATS1, ATS2 and ATSa). Note that in
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Scenario 8 ATS1, ATS2 and ATSa provide exactly the same
fault coverage in the observed simulations and at and above
15 states they are able to discover all transfer faults as the HSI
but with the fraction of its test suite size.

C. SIP UAC registration example

Simulations were also performed to investigate the ATS al-
gorithm with an example from the telecommunication domain.
For this, the following functionalities of the User Agent Client
(UAC) during the registration process of the SIP (Session
Initiation Protocol) [1] over the TCP (Transmission Control
Protocol) transport layer were considered:

• Successful new registration (see Section 2.1 of [2])
• Cancellation of registration (see Section 10.2.2 of [1] and

Section 2.4 of [2])
• Handle negative responses for registration requests (see

Section 10.3 / 4th − 6th points of [1]).
• Interval too brief (see Section 10.3 / 7th point of [1])
• Silent discard (see Section 10.2.7 / 7th point of [1])
• Re-registration (see Sections 10.2.1.1 and 10.2.4 of [1])
The resulting FSM is presented in Figure 17. Note that only

the signaling level was considered; a detailed description about
how this FSM can be constructed from the related call-flows
is presented in [21].

The length of the TT test sequence is 19 transitions, the
overall length of the sequences generated by ATS0 is 47.
Note that ATS0 algorithm can not find arc disjoint alternative
sequences for three transitions and due to the structure of the
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403 Forbidden 
/ USER.notdone

404 Not Found 
/ USER.notdone

400 Invalid Request 
/ USER.notdone
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Registration timeout
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USER.exit
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 200 OK
  / USER.done
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/ USER.done

Figure 17. FSMs for the registration process of SIP UAC

FSM, the iterative version (ATSa) can not find arc disjoint
sequences for these transitions, either.

As the FSM has 12 transitions and 4 states, 12·(4−1) = 36
different atomic transition faults are possible; the correspond-
ing 36 faulty FSMs were created and the fault coverage of TT
and ATS was investigated. The TT was able to discover 32
and the ATS0 was able to find 35 faults.

V. CONCLUSION AND FUTURE WORKS

In the current article we proposed a new heuristic algorithm
for the All-Transition-State criteria of deterministic finite state
machine specifications. The length of the resulting test suite
and its fault coverage can be fine-tuned with the three different
versions of our algorithm (standard, iterative with and without
an iteration limit) allowing the test engineer to find a suitable
trade-off between the overall length of the test suite and fault
coverage. The simulations show that the size of the resulting
test suite has the same order of magnitude as the one produced
by the TT-method, while its fault detection capability is near
as effective as the one generated by the HSI-method, but with
the fraction of its test suite size.

In the future we would like to extend the ATS algorithm to
handle changing specifications, i.e. to identify the effects of
changes in the test suite derived for a previous system version
and to only update those parts that are necessary. As our
algorithm reused some fundamental parts of the TT-method,
many parts of the incremental TT [20] method can be utilized
to fulfill this purpose. We also plan to extend our method for
Extended Finite State Machine models, where the guarding
conditions over variable values can also be considered when
generating the test suite. We also would like to perform an
extensive analysis with specification machines of different
problem domains.
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Scenario 8 ATS1, ATS2 and ATSa provide exactly the same
fault coverage in the observed simulations and at and above
15 states they are able to discover all transfer faults as the HSI
but with the fraction of its test suite size.

C. SIP UAC registration example

Simulations were also performed to investigate the ATS al-
gorithm with an example from the telecommunication domain.
For this, the following functionalities of the User Agent Client
(UAC) during the registration process of the SIP (Session
Initiation Protocol) [1] over the TCP (Transmission Control
Protocol) transport layer were considered:

• Successful new registration (see Section 2.1 of [2])
• Cancellation of registration (see Section 10.2.2 of [1] and

Section 2.4 of [2])
• Handle negative responses for registration requests (see

Section 10.3 / 4th − 6th points of [1]).
• Interval too brief (see Section 10.3 / 7th point of [1])
• Silent discard (see Section 10.2.7 / 7th point of [1])
• Re-registration (see Sections 10.2.1.1 and 10.2.4 of [1])
The resulting FSM is presented in Figure 17. Note that only

the signaling level was considered; a detailed description about
how this FSM can be constructed from the related call-flows
is presented in [21].

The length of the TT test sequence is 19 transitions, the
overall length of the sequences generated by ATS0 is 47.
Note that ATS0 algorithm can not find arc disjoint alternative
sequences for three transitions and due to the structure of the
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FSM, the iterative version (ATSa) can not find arc disjoint
sequences for these transitions, either.

As the FSM has 12 transitions and 4 states, 12·(4−1) = 36
different atomic transition faults are possible; the correspond-
ing 36 faulty FSMs were created and the fault coverage of TT
and ATS was investigated. The TT was able to discover 32
and the ATS0 was able to find 35 faults.
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coverage. The simulations show that the size of the resulting
test suite has the same order of magnitude as the one produced
by the TT-method, while its fault detection capability is near
as effective as the one generated by the HSI-method, but with
the fraction of its test suite size.

In the future we would like to extend the ATS algorithm to
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changes in the test suite derived for a previous system version
and to only update those parts that are necessary. As our
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to fulfill this purpose. We also plan to extend our method for
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