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Abstract—Fuzzy cognitive maps (FCM) have been broadly 

employed to analyze complex and decidedly uncertain systems in 
modeling, forecasting, decision making, etc. Road traffic flow is 
also notoriously known as a highly uncertain nonlinear and 
complex system. Even though applications of FCM in risk analysis 
have been presented in various engineering fields, this research 
aims at modeling road traffic flow based on macroscopic 
characteristics through FCM. Therefore, a simulation of variables 
involved with road traffic flow carried out through FCM 
reasoning on historical data collected from the e-toll dataset of 
Hungarian networks of freeways. The proposed FCM model is 
developed based on 58 selected freeway segments as the “concepts” 
of the FCM; moreover, a new inference rule for employing in FCM 
reasoning process along with its algorithms have been presented. 
The results illustrate FCM representation and computation of the 
real segments with their main road traffic-related characteristics 
that have reached an equilibrium point. Furthermore, a 
simulation of the road traffic flow by performing the analysis of 
customized scenarios is presented, through which macroscopic 
modeling objectives such as predicting future road traffic flow 
state, route guidance in various scenarios, freeway geometric 
characteristics indication, and effectual mobility can be evaluated.  
 

Index Terms— Fuzzy cognitive map, road traffic flow, 
macroscopic model 

I. INTRODUCTION 
raffic related issues have significant environmental, 

economic, and social consequences, including air pollution, 
the reduction of effectual mobility, the increase of fuel and time 
waste, etc. These problems can be mitigated to maintain 
citizens’ safety, to balance the demand-capacity congestion 
ratio, and to reduce the cost related congestion through a wide 
range of methods from detecting frequent traffic congestions by 
using spatial congestion propagation patterns [1], to create 
intelligent traffic lights controller algorithms and cooperative 
scheduling [2]. Analyzing and modeling road traffic flow-
associated parameters are the main aims of these methods. 
Modeling these parameters (e.g., density, time, velocity) is seen 
as indispensable to comprehend the heterogeneous behavior of 
road traffic [3], [4], even though it is difficult due to the 
nonlinearity and uncertainty caused by internal and external 
elements, for example, drivers’ preferences, weather 
conditions, imprecision in the collected data by sensors [5]. 
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Modeling these nonlinear and uncertain characteristics 
becomes more applicable by the development of intelligent 
transportation systems (ITS) and soft computing (SC) 
techniques [6].  
The field of intelligent transportation systems arose in the early 
1950s through the combination of multidisciplinary techniques 
such as information technology, electronics, and traffic 
engineering, in order to deal with transportation-related 
problems more efficiently by new data inference and 
communication tools [7]. Such systems mainly aim at 
enhancing the productivity of the current transportation systems 
in order to avoid traffic breakdowns and the traffic shifting from 
uncongested to a congested state. All these initiatives have 
similar characteristics; namely, first, they all seek to understand 
the essence of the road traffic flow at a particular location and 
then control its alterations. Thus, both rely mainly on 
conventional statistics-based approaches, e.g., Bayesian 
network models, nonparametric regression, history average, 
and autoregressive integrated moving average. These 
techniques are often unable to completely address the 
complexities associated with involved parameters of traffic and 
their relationships and mainly resulting in unreliable road traffic 
detection and prediction [8], [9].  
By introducing self-learning data processing techniques rather 
than model-based estimation methods caused by the 
advancement in inferential intelligence, data-driven approaches 
have developed rapidly [10], [11]. The emphasis of the classical 
numeric methods is on assuming certain statistical behaviors of 
the system in advance, mainly based on stationary and 
deterministic features. Hence, they fail to model the complex, 
non-deterministic, uncertain behavior of the system, where 
intelligent self-learning data processing techniques could be 
able to model the complexity of the system on hand, based on 
understanding the available data to build up an adequate 
structure. This understanding of the system is achievable by 
sacrificing completeness and accuracy and by tolerating 
imprecision in order to attain tractability, cognition, and cost-
effective solutions [12], [13]. Zadeh named the various 
methodologies based on intelligence and sub-symbolic 
representation of the phenomena ‘Soft Computing’ (SC) [14]. 
Recently, soft computing techniques such as fuzzy-based 
inference, neural networks, evolutionary and population-based 
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computing, such as swarm intelligence, etc., have provided 
significant achievements in improving the performance of ITS. 
These enhancements are achieved mainly due to the massive 
changes in the data scale generated and collected from various 
sources by the involved stakeholders, e.g., governments, 
citizens, and the industry with respect to these systems [15], 
[16]. Intelligent transportation-based systems are indeed a well-
suited area to apply soft computing techniques since the data 
provided here are full of uncertainty and vagueness, where 
technical disciplines of SC techniques such as approximate 
computing and randomized search can be properly employed 
[17], [18]. In previous studies, SC methods have been proposed 
in various transportation problems such as road traffic flow and 
state prediction in [8] and [17], vehicle route planning, and 
vehicular ad-hoc networks in [20]. Thus far, the abilities of SC-
based techniques in terms of modeling the road traffic flow in 
networks of freeways have been more or less neglected.  
Moreover, in traffic control engineering projects, the road 
traffic flow modeling has significant contributions, take for 
instance, strategy assessment and development for road traffic 
control management, the inspection, and forecast of road traffic 
conditions in dynamic networks in the short term, evaluating 
the effect of recent constructions and comparing alternatives, 
etc. [21], [22]. With regard to road traffic flow characterization, 
three classes representing three levels of the models have been 
applied: the macroscopic, microscopic, and mesoscopic levels 
[23]. At the macroscopic level, aggregate road traffic is 
modeled by global variables, i.e., velocity, density, and flow of 
the road traffic as a mass behavior, while individual vehicle 
behavior is considered at the microscopic level only [24]. Both 
aggregate and individual behaviors are analyzed at the 
intermediate mesoscopic level [25]. The first macroscopic road 
traffic flow model was introduced by Lighthill [26]; since then, 
these models have gained increasing attention because of their 
uncomplicatedness and low inferential complexity, the latter 
enabling real-time evaluation and actions. This study aims at 
introducing a new macroscopic model based on fuzzy cognitive 
maps as one of the SC techniques for networks of freeways 
simulation.  

Kosko defined Fuzzy Cognitive Maps (FCM) as: “fuzzy 
feedback models of causality that combine aspects of fuzzy 
logic, neural networks, semantic networks, expert systems, and 
nonlinear dynamical systems” [27]. Since then, a wide range of 
FCM applications have been conducted, see i.e., [28], [29]. One 
of the most frequent applications of FCM is in describing and 
simulating systems, including uncertainty and imprecision [17], 
[30]. Although FCM applications in the risk analysis area based 
on the concepts of failure, incident, error, etc. have been 
proposed already [31], the research effort described here has 
primarily been to model uncertain and non-deterministic 
conditions of heterogeneous road traffic flow systems through 
developing a macroscopic level-based method. The proposed 
FCM model also leads to illustrating the key arguments 
supporting the approach based on FCM, i.e., the sophistication 
and the efficient computational effort. Accordingly, this paper 
is devoted to demonstrating the abilities of FCM in modeling 
road traffic flow based on historical data collected from the 

networks of freeways in Hungary. This approach will lead to 
predicting the future states of road traffic flow, some 
indications concerning the geometric and geographic 
characteristics of the freeways, and the overall behavior of the 
network in various road traffic scenarios. 
The rest of the paper is outlined as follows. In the next section, 
various road traffic flow models along with an introduction of 
METANET and FCM as the basis of the proposed model are 
highlighted. The third section presents the proposed new 
method with implementation aspects. Following that, the 
description of the applied dataset is given and the steps of the 
proposed new algorithm are defined and elaborated. In the 
fourth section, the performance of the proposed model’s results 
is investigated. Some conclusions are presented in the fifth and 
last sections. 

II. MODELS 
The necessity of modeling road traffic flow was raised because 
of the importance of mathematically describing the dynamic 
and complex behavior of road traffic-related systems. The first 
theoretic model of road traffic flow was introduced in [32]. 
Since then, a variety of road traffic flow-based models with 
different properties have been proposed. These models have 
been developed for various aims ranging from system analysis 
and future state forecasting to the modification of the current 
infrastructures. Categorizing these models is mainly based on 
two factors, the level of details coupled with the differentiation 
between macroscopic, microscopic, and mesoscopic methods 
[33]. In this study, the model’s focus is narrowed down on 
discrete macroscopic characteristics, which lays emphasis on 
the overall behavior of vehicles over time. As well as the 
involved variables are discretized (both temporally and 
spatially) instead of using continuous variable, i.e., freeways 
are considered as a set of segments with defined lengths, and 
time is also divided into discrete intervals [34]. 
Subsequently, a generic integrated approach in Section Three is 
presented; as a matter of fact, the approach not only can be 
applied to modeling macroscopic road traffic flow, but it also 
illustrates the potential application of fuzzy cognitive maps in 
modeling complex and nonlinear systems, which are known 
notoriously as full of uncertainty and imprecision. This unified 
approach is presented by employing two particular models: 
METANET [35] from the class of macroscopic road traffic flow 
models and the fuzzy cognitive map approach [36] as a soft 
computing method through which recognizing, classifying, and 
modeling complex systems is a possible approach. 

A. METANET 
METANET was introduced as a program to simulate freeway 
networks in a macroscopic way [35]. This simulation of the 
road traffic behavior in networks of freeways is based on an 
overall road traffic flow modeling that was originally developed 
by Payne [37]. METANET, as the most recognized second-
order macroscopic approach, has been used in engineering and 
control-related problems. Second-order approaches lay 
emphasis on vehicles density and velocity by characterizing 
them in dynamic equations [5]. These properties allow a 
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logic, neural networks, semantic networks, expert systems, and 
nonlinear dynamical systems” [27]. Since then, a wide range of 
FCM applications have been conducted, see i.e., [28], [29]. One 
of the most frequent applications of FCM is in describing and 
simulating systems, including uncertainty and imprecision [17], 
[30]. Although FCM applications in the risk analysis area based 
on the concepts of failure, incident, error, etc. have been 
proposed already [31], the research effort described here has 
primarily been to model uncertain and non-deterministic 
conditions of heterogeneous road traffic flow systems through 
developing a macroscopic level-based method. The proposed 
FCM model also leads to illustrating the key arguments 
supporting the approach based on FCM, i.e., the sophistication 
and the efficient computational effort. Accordingly, this paper 
is devoted to demonstrating the abilities of FCM in modeling 
road traffic flow based on historical data collected from the 

networks of freeways in Hungary. This approach will lead to 
predicting the future states of road traffic flow, some 
indications concerning the geometric and geographic 
characteristics of the freeways, and the overall behavior of the 
network in various road traffic scenarios. 
The rest of the paper is outlined as follows. In the next section, 
various road traffic flow models along with an introduction of 
METANET and FCM as the basis of the proposed model are 
highlighted. The third section presents the proposed new 
method with implementation aspects. Following that, the 
description of the applied dataset is given and the steps of the 
proposed new algorithm are defined and elaborated. In the 
fourth section, the performance of the proposed model’s results 
is investigated. Some conclusions are presented in the fifth and 
last sections. 

II. MODELS 
The necessity of modeling road traffic flow was raised because 
of the importance of mathematically describing the dynamic 
and complex behavior of road traffic-related systems. The first 
theoretic model of road traffic flow was introduced in [32]. 
Since then, a variety of road traffic flow-based models with 
different properties have been proposed. These models have 
been developed for various aims ranging from system analysis 
and future state forecasting to the modification of the current 
infrastructures. Categorizing these models is mainly based on 
two factors, the level of details coupled with the differentiation 
between macroscopic, microscopic, and mesoscopic methods 
[33]. In this study, the model’s focus is narrowed down on 
discrete macroscopic characteristics, which lays emphasis on 
the overall behavior of vehicles over time. As well as the 
involved variables are discretized (both temporally and 
spatially) instead of using continuous variable, i.e., freeways 
are considered as a set of segments with defined lengths, and 
time is also divided into discrete intervals [34]. 
Subsequently, a generic integrated approach in Section Three is 
presented; as a matter of fact, the approach not only can be 
applied to modeling macroscopic road traffic flow, but it also 
illustrates the potential application of fuzzy cognitive maps in 
modeling complex and nonlinear systems, which are known 
notoriously as full of uncertainty and imprecision. This unified 
approach is presented by employing two particular models: 
METANET [35] from the class of macroscopic road traffic flow 
models and the fuzzy cognitive map approach [36] as a soft 
computing method through which recognizing, classifying, and 
modeling complex systems is a possible approach. 

A. METANET 
METANET was introduced as a program to simulate freeway 
networks in a macroscopic way [35]. This simulation of the 
road traffic behavior in networks of freeways is based on an 
overall road traffic flow modeling that was originally developed 
by Payne [37]. METANET, as the most recognized second-
order macroscopic approach, has been used in engineering and 
control-related problems. Second-order approaches lay 
emphasis on vehicles density and velocity by characterizing 
them in dynamic equations [5]. These properties allow a 
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approach is presented by employing two particular models: 
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models and the fuzzy cognitive map approach [36] as a soft 
computing method through which recognizing, classifying, and 
modeling complex systems is a possible approach. 

A. METANET 
METANET was introduced as a program to simulate freeway 
networks in a macroscopic way [35]. This simulation of the 
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by Payne [37]. METANET, as the most recognized second-
order macroscopic approach, has been used in engineering and 
control-related problems. Second-order approaches lay 
emphasis on vehicles density and velocity by characterizing 
them in dynamic equations [5]. These properties allow a 

reasonably low-time inferential process. Therefore, real-time 
network simulation and representation are efficiently possible. 
The freeway network is embodied by a directed graph, i.e., 
bifurcations and junctions are represented by the nodes of the 
graph, while the freeway sections between these places are 
characterized by the edges (links). A freeway with two 
directions is modeled as two distinct directed edges with reverse 
directions. Edges are assumed to possess homogeneous 
geometric properties, e.g., the number of lanes is fixed. On the 
other hand, heterogeneous freeways may be modeled by 
connected edges separated by nodes at the places where the 
change of geometry happens [35]. Nonlinear difference 
equations are reflected in the model to illustrate the evolution 
of the road traffic associated variables, i.e., average space-mean 
velocity 𝑣𝑣 (km/h), average density 𝜌𝜌 (veh/km/lane), and 
average flow 𝑞𝑞 (veh/h). 
In the METANET simulation, whenever the geometry of 
freeway changes, e.g., a lane rises or drops, a junction, etc., a 
node is added to the model. Connections among these nodes are 
called links. Afterward, links are separated into equal segments. 
The following are the essential equations that are employed for 
determining the road traffic variables for each segment 𝑖𝑖 of  link 
𝑚𝑚 [5]. 
 
𝑞𝑞𝑚𝑚,𝑖𝑖(𝑘𝑘) = 𝜆𝜆𝑚𝑚𝜌𝜌𝑚𝑚,𝑖𝑖(𝑘𝑘)𝑣𝑣𝑚𝑚,𝑖𝑖(𝑘𝑘)                           (1) 
 
𝜌𝜌𝑚𝑚,𝑖𝑖(𝑘𝑘 + 1) = 𝜌𝜌𝑚𝑚,𝑖𝑖(𝑘𝑘) + 𝑇𝑇𝑠𝑠

𝐿𝐿𝑚𝑚𝜆𝜆𝑚𝑚
[𝑞𝑞𝑚𝑚,𝑖𝑖−1(𝑘𝑘) − 𝑞𝑞𝑚𝑚,𝑖𝑖(𝑘𝑘)]       (2) 

 
𝑣𝑣𝑚𝑚,𝑖𝑖 (𝑘𝑘 + 1) = 𝑣𝑣𝑚𝑚,𝑖𝑖(𝑘𝑘) + 𝑇𝑇𝑠𝑠

𝜏𝜏 [𝑉𝑉[𝜌𝜌𝑚𝑚,𝑖𝑖(𝑘𝑘)] − 𝑣𝑣𝑚𝑚,𝑖𝑖(𝑘𝑘) 

+ 𝑇𝑇𝑠𝑠𝑣𝑣𝑚𝑚,𝑖𝑖(𝑘𝑘)[𝑣𝑣𝑚𝑚,𝑖𝑖−1(𝑘𝑘)−𝑣𝑣𝑚𝑚,𝑖𝑖(𝑘𝑘)]
𝐿𝐿𝑚𝑚

− 𝑇𝑇𝑠𝑠𝜂𝜂[𝜌𝜌𝑚𝑚,𝑖𝑖+1(𝑘𝑘)−𝜌𝜌𝑚𝑚,𝑖𝑖(𝑘𝑘)]
𝜏𝜏𝐿𝐿𝑚𝑚(𝜌𝜌𝑚𝑚,𝑖𝑖(𝑘𝑘)+𝜅𝜅)                  (3) 

 
𝑉𝑉[𝜌𝜌𝔪𝔪,𝑖𝑖(𝑘𝑘)] = 𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑚𝑚 exp [− 1

𝑏𝑏𝔪𝔪
(𝜌𝜌𝑚𝑚,𝑖𝑖(𝑘𝑘)

𝜌𝜌𝑐𝑐𝑐𝑐,𝑚𝑚
)𝑏𝑏𝔪𝔪]                 (4) 

 
where 𝑞𝑞𝔪𝔪,𝑖𝑖(𝑘𝑘) represents the outflow of segment 𝑖𝑖 in link 𝑚𝑚 
over the time frame [𝑘𝑘𝑇𝑇𝑠𝑠, (𝑘𝑘 + 1) 𝑇𝑇𝑠𝑠], 𝑣𝑣𝑚𝑚,𝑖𝑖(𝑘𝑘) and 𝜌𝜌𝔪𝔪,𝑖𝑖(𝑘𝑘), 
signify space-mean speed (average speed of vehicles passing a 
segment during a time period) and the density of segment 𝑖𝑖 of 
link 𝑚𝑚 at time frame 𝑘𝑘, respectively. 𝐿𝐿𝑚𝑚 represent the lengths 
of the segments situated in link m, while  𝜆𝜆𝑚𝑚 is the number of 
lanes in link m, and 𝑇𝑇𝑠𝑠 represents the simulation discrete time 
frame. In Eq. (3), τ,  𝜂𝜂, and κ are global variables with constant 
values for all links in the freeway. They are named time 
constant, anticipation constant, and model parameter, 
respectively. Additionally, 𝜌𝜌𝑐𝑐𝑓𝑓,𝑚𝑚 as critical density, 𝑏𝑏𝑚𝑚 as the 
parameter of the fundamental diagram, and 𝑣𝑣𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑚𝑚 as free-flow 
speed are specific for the basic diagram of the computed link 𝑚𝑚 
[5], [35]. 

B. The Fuzzy Cognitive Map approach 
As an advancement of classic cognitive maps [38], the concept 
of the fuzzy cognitive map was introduced by Kosko [36] for 
the purpose of dealing with shortcomings related to the binary 
nature of the original cognitive map model. FCMs integrate the 
model of cognitive maps, and the idea of fuzzy set proposed 
originally by Zadeh [39]. They contain fuzzy nodes or concepts 
to explain the non-binary states of the modeled system 
components (concepts) as well as the gradual intensities of 

causalities among them. Although both models are represented 
as directed and signed graphs, the causal mechanisms with 
imprecise causal data can be described adequately only by the 
FCM. In this approach, more human-like reasoning in complex 
dynamic systems is applied, both in the model structure and the 
related computational processes. A schematic illustration of the 
FCM is indicated in Fig. 1; connections and interrelationships 
among concepts are modeled with weighted arcs.  

 
Fig. 1 A schematic illustration of simple FCM [7] 

 
As it can be seen (Fig. 1), the variables of the system are 
represented by the indicated nodes C1 to C5. These variables are 
known as cause concepts where include nodes at the origin 
points of the arcs as well as effect concepts, where located at 
the terminal points of arcs. Take for instance, the C1→C2 
connection, where C1 is the cause variable because of impacting 
on C2 as the effect variable. All concepts are individually 
identified by a number Ai commonly in the interval [0,1], which 
signifies its value in the model. Considering the signed (bipolar) 
fuzzy interval [-1,1] enables the model to assign grades or 
degrees of causality to the connections among the concepts 
[40]. The type of connection between two concepts signifies the 
influence of one concept (Ci) upon another one (Cj), where the 
interaction between them can be interpreted as excitatory or 
positive causality (𝑤𝑤𝑖𝑖𝑖𝑖 >  0), and inhibitory or negative 
causality (𝑤𝑤𝑖𝑖𝑖𝑖 <  0); and finally, null or no connection (𝑤𝑤𝑖𝑖𝑖𝑖 =
 0). Hence, the behavior of the system is warehoused and 
reflected in the structure of the concepts and the respective 
interconnections among them[41], [42].  
Eq. (5) indicates the first introduced inference rule for the fuzzy 
cognitive map with A(0) as the initial activation vector; then the 
new activation vectors are computed at every individual step t 
and after defining the number of iterations after which the 
model will reach either its equilibrium point, or, the so-called 
limit cycle, or, eventually a chaotic behavior. The model shows 
these states under the following circumstances [36], [43], [44]:  

• it stabilizes at fixed numerical values, achieving 
equilibrium at a fixed-point attractor with output 
values that are decimals in the interval. 

• it displays limit cycle behavior, with output values 
falling into a loop of numerical values over a set time 
period. 

• it illustrates a chaotic behavior, with each output value 
reaching a wide range of numerical values in a 
random, non-periodical, and non-deterministic 
manner. 
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falling into a loop of numerical values over a set time 
period. 

• it illustrates a chaotic behavior, with each output value 
reaching a wide range of numerical values in a 
random, non-periodical, and non-deterministic 
manner. 

reasonably low-time inferential process. Therefore, real-time 
network simulation and representation are efficiently possible. 
The freeway network is embodied by a directed graph, i.e., 
bifurcations and junctions are represented by the nodes of the 
graph, while the freeway sections between these places are 
characterized by the edges (links). A freeway with two 
directions is modeled as two distinct directed edges with reverse 
directions. Edges are assumed to possess homogeneous 
geometric properties, e.g., the number of lanes is fixed. On the 
other hand, heterogeneous freeways may be modeled by 
connected edges separated by nodes at the places where the 
change of geometry happens [35]. Nonlinear difference 
equations are reflected in the model to illustrate the evolution 
of the road traffic associated variables, i.e., average space-mean 
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B. The Fuzzy Cognitive Map approach 
As an advancement of classic cognitive maps [38], the concept 
of the fuzzy cognitive map was introduced by Kosko [36] for 
the purpose of dealing with shortcomings related to the binary 
nature of the original cognitive map model. FCMs integrate the 
model of cognitive maps, and the idea of fuzzy set proposed 
originally by Zadeh [39]. They contain fuzzy nodes or concepts 
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components (concepts) as well as the gradual intensities of 

causalities among them. Although both models are represented 
as directed and signed graphs, the causal mechanisms with 
imprecise causal data can be described adequately only by the 
FCM. In this approach, more human-like reasoning in complex 
dynamic systems is applied, both in the model structure and the 
related computational processes. A schematic illustration of the 
FCM is indicated in Fig. 1; connections and interrelationships 
among concepts are modeled with weighted arcs.  
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Fig. 1 A schematic illustration of simple FCM [7] 
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Thus, updates are iteratively introduced until a terminal state 
has been reached. In this procedure, a state vector containing 
the activation degrees of the involved concepts is produced by 
the FCM at every discrete time frame [29].
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Although Eq. (5) had been employed in many FCM 
applications as the inference rule, a revised updating rule was 
introduced in [45], which is presented in Eq. (6), where the 
concept also considers its past value. The concepts are taken 
into account first, by their previous activation values, and 
second, by the activation values provided by other concepts and 
their corresponding weights.
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Various computation rules have been proposed [46], [47].
Applying the appropriate computational rule is determined by 
the type of the problem. Thus, the problem needs a profound 
understanding of all involved aspects before these rules are set. 
In both Eqs. (5) and (6), f is a threshold (squeezing) function. It 
expresses a monotonically non-decreasing function that defines 
the activation value of every concept toward the desired interval 
𝐼𝐼, where either 𝐼𝐼 = [0, 1] or I = [−1, 1], determined by the actual 
domain. The most broadly employed transfer functions are the 
bivalent, the saturation, or the trivalent, hyperbolic tangent, and 
sigmoid functions.

𝑓𝑓(𝑥𝑥) = 1
1 + 𝑒𝑒−𝜆𝜆(𝑥𝑥−ℎ)

(7)

The sigmoid function is given in Eq. (7). It is a continuous 
transfer function that provides an illimitable number of various 
states that are distributed within the desired hypercube. In the 
sigmoid transfer function, λ > 0 and h > 0 are user-defined 
parameters adjusting the function slope and offset, respectively. 
Greater values of 𝜆𝜆 raise the steepness, and it controls 
responsiveness to the variations of x. Fig. 2 shows the effect of 
the choice of value of 𝜆𝜆 in the transformation or inference 
results. Besides, increasing the activation value leads to the 
growth of the derivative [29].

Fig. 2 Computation results determined by 𝜆𝜆 value [48]

III. THE PROPOSED NEW METHOD

In the sequel, an approach is presented which can integrate the 
macroscopic method with the fuzzy cognitive map approach to 
model road traffic flow. FCMs can be seen as recurrent neural 

networks with inference features, which include a set of neural 
computing entities or concepts [41]. Defining activation values 
for these concepts coupled with weight assignments is an
essential part of creating the road traffic flow model based on 
FCM. In the proposed model, the activation values are assigned 
by an inference rule that is determined by combining the 
highlighted equations in Table 1. Therefore, it can be observed 
that the emphasis of the proposed integration is on two 
important factors; not only can activation values be computed 
by the values of the linked concepts with the corresponding 
causal weights at each time step, but concepts also take into 
account their own previous values. Algorithm steps will be 
elaborately explained in the implementation steps after 
describing the dataset.

Table 1: Involved indices/methods in the proposed inference rule
Author/s Equation/Method Usage
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Computing the 
future density of 
segment 𝑖𝑖 (i.e., 
various sections with 
specific length 
between 100-18000 
m) of link 𝑚𝑚 (i.e., 
homogeneous 
freeway consist of 
several segments)  at 
simulation time step.

[45] 𝐴𝐴𝑖𝑖
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Computing the value 
of concept Ci at time 
t, that the value of Ci

is the calculated 
density in the 
segment (section) of 
the given link 
(freeway).

A. Data description
The presented FCM model was trained on road traffic data of 
the Hungarian network of freeways. Freeway users in Hungary 
experience complex and dynamic patterns of congestion. 
Besides other reasons, e.g., rather intensive road traffic caused 
by Hungary’s strategic location in the European transport 
network and the system of corridors [49], this is mainly because 
of the increasing number of registered vehicles is Hungary, i.e., 
an increase of around 25% from 2010 to 2018 [50]. These 
problems lead to complex behavior with temporal and spatial 
alterations in road traffic. Therefore, modeling vehicles flow by 
available resources is seen as indispensable.
The dataset is collected from the online transaction processing 
server of the Hungarian e-toll system, which is an electronic 
system operated by the Hungarian national toll payment 
services for the whole network of motorways and primary 
highways of the country. This system enables the assistance and
support of the verification of freeways usage, admittance, 
levying, and finally collecting the tolls of the standard road 
sections tollways [51]. The dataset contains seven variables: the 
name of the freeway, the section name (identifier), the collected 
e-toll over a span of one week in each section (segment) of the 
212 freeway sections (links), which latter is considered as a 
proportional indicator of the number of vehicles, the time (per 
minute), the day, the length of the sections, and the number of 
the lanes in each section. These links include 2446 different 
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The sigmoid function is given in Eq. (7). It is a continuous 
transfer function that provides an illimitable number of various 
states that are distributed within the desired hypercube. In the 
sigmoid transfer function, λ > 0 and h > 0 are user-defined 
parameters adjusting the function slope and offset, respectively. 
Greater values of 𝜆𝜆 raise the steepness, and it controls 
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the choice of value of 𝜆𝜆 in the transformation or inference 
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A. Data description
The presented FCM model was trained on road traffic data of 
the Hungarian network of freeways. Freeway users in Hungary 
experience complex and dynamic patterns of congestion. 
Besides other reasons, e.g., rather intensive road traffic caused 
by Hungary’s strategic location in the European transport 
network and the system of corridors [49], this is mainly because 
of the increasing number of registered vehicles is Hungary, i.e., 
an increase of around 25% from 2010 to 2018 [50]. These 
problems lead to complex behavior with temporal and spatial 
alterations in road traffic. Therefore, modeling vehicles flow by 
available resources is seen as indispensable.
The dataset is collected from the online transaction processing 
server of the Hungarian e-toll system, which is an electronic 
system operated by the Hungarian national toll payment 
services for the whole network of motorways and primary 
highways of the country. This system enables the assistance and
support of the verification of freeways usage, admittance, 
levying, and finally collecting the tolls of the standard road 
sections tollways [51]. The dataset contains seven variables: the 
name of the freeway, the section name (identifier), the collected 
e-toll over a span of one week in each section (segment) of the 
212 freeway sections (links), which latter is considered as a 
proportional indicator of the number of vehicles, the time (per 
minute), the day, the length of the sections, and the number of 
the lanes in each section. These links include 2446 different 

Thus, updates are iteratively introduced until a terminal state 
has been reached. In this procedure, a state vector containing 
the activation degrees of the involved concepts is produced by 
the FCM at every discrete time frame [29].
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Although Eq. (5) had been employed in many FCM 
applications as the inference rule, a revised updating rule was 
introduced in [45], which is presented in Eq. (6), where the 
concept also considers its past value. The concepts are taken 
into account first, by their previous activation values, and 
second, by the activation values provided by other concepts and 
their corresponding weights.

𝐴𝐴𝑖𝑖
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Various computation rules have been proposed [46], [47].
Applying the appropriate computational rule is determined by 
the type of the problem. Thus, the problem needs a profound 
understanding of all involved aspects before these rules are set. 
In both Eqs. (5) and (6), f is a threshold (squeezing) function. It 
expresses a monotonically non-decreasing function that defines 
the activation value of every concept toward the desired interval 
𝐼𝐼, where either 𝐼𝐼 = [0, 1] or I = [−1, 1], determined by the actual 
domain. The most broadly employed transfer functions are the 
bivalent, the saturation, or the trivalent, hyperbolic tangent, and 
sigmoid functions.

𝑓𝑓(𝑥𝑥) = 1
1 + 𝑒𝑒−𝜆𝜆(𝑥𝑥−ℎ)

(7)

The sigmoid function is given in Eq. (7). It is a continuous 
transfer function that provides an illimitable number of various 
states that are distributed within the desired hypercube. In the 
sigmoid transfer function, λ > 0 and h > 0 are user-defined 
parameters adjusting the function slope and offset, respectively. 
Greater values of 𝜆𝜆 raise the steepness, and it controls 
responsiveness to the variations of x. Fig. 2 shows the effect of 
the choice of value of 𝜆𝜆 in the transformation or inference 
results. Besides, increasing the activation value leads to the 
growth of the derivative [29].

Fig. 2 Computation results determined by 𝜆𝜆 value [48]
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network and the system of corridors [49], this is mainly because 
of the increasing number of registered vehicles is Hungary, i.e., 
an increase of around 25% from 2010 to 2018 [50]. These 
problems lead to complex behavior with temporal and spatial 
alterations in road traffic. Therefore, modeling vehicles flow by 
available resources is seen as indispensable.
The dataset is collected from the online transaction processing 
server of the Hungarian e-toll system, which is an electronic 
system operated by the Hungarian national toll payment 
services for the whole network of motorways and primary 
highways of the country. This system enables the assistance and
support of the verification of freeways usage, admittance, 
levying, and finally collecting the tolls of the standard road 
sections tollways [51]. The dataset contains seven variables: the 
name of the freeway, the section name (identifier), the collected 
e-toll over a span of one week in each section (segment) of the 
212 freeway sections (links), which latter is considered as a 
proportional indicator of the number of vehicles, the time (per 
minute), the day, the length of the sections, and the number of 
the lanes in each section. These links include 2446 different 
segments altogether. Each segment length varies from 100 to 
18,000 meters. For the sake of reducing the complexity of the 
model, a sample of 58 segments was selected, the full set of 
freeway sections through which Budapest is connected to the 
Austrian border. 
Most of the road traffic models’ aim is to explain the behavior 
of traffic-involved variables over the full range of operation, 
where identified locations have a pivotal role in the investigated 
dataset. This dataset can represent road traffic behavior based 
on location in a real-time manner. In Fig. 3, a sample of 
connections among three segments A, B, and C, are illustrated. 
Since the available dataset is based on time series, therefore, 
current traffic state in upstream segments can characterize road 
traffic flow conditions in downstream segments in the next time 
frames. 

Fig. 3 A sample of freeway network and segment connections  

The above-mentioned segments’ causal relationships and 
correlations can be observed in Fig. 4. In the horizontal axis, the 
first digit represents the day, while the second and third digits 
represent the hour (in 24-hour format); an accurate behavior of 
road traffic flow over time is indicated, showing how traffic 
flow in the upstream segment can affect the subsequent 
segments. The calculated road traffic flow correlation among 
segments reveals that the correlation of A and B is 0.03, 
between A and C it is 0.9, and B and C correlate to 0.1; through 
which values various conclusions and correlation analyses can 
be conducted to identify the behavior and intensity of road 
traffic flow. 

Fig. 4 Causal relationships of road traffic streamflow of three sample 
segments

B. The Model
The key deficit of applying FCM is the critical reliance on the 
initial expert judgment [52]. This issue stands out, particularly 
in modeling complex systems. In this research, extracted 
parameters of a macroscopic road traffic model have been 
applied for assigning initial values of concepts and weights. 
Each road segment is represented by a concept whose value is 
considered as the density 𝜌𝜌 of segment 𝑖𝑖 of link 𝑚𝑚, and the 
weighted arcs are set to a constant value based on 𝐿𝐿𝑚𝑚𝜆𝜆𝑚𝑚
variables as approximate capacity; where 𝐿𝐿𝑚𝑚 denotes the length 
of the segments of link m, 𝜆𝜆𝑚𝑚 denotes the number of lanes of 
link m. The concepts and the weights initializations are set 
based on the aforementioned values. Afterward, the system is 

allowed to interact, and after every iteration, the new state 
vector is assigned newly generated values. This procedure will 
continue until the model exhibits an equilibrium state by 
reaching a stabilized condition at a fixed numerical boundary. 
The macroscopic road traffic model based on FCM is presented 
by the proposed algorithm in Fig. 5.

Simulation steps

• Preprocessing:

Step 1 Importing the dataset, consisting of seven columns: m, is the link 
name, i, is the segment name, 𝑞𝑞𝔪𝔪,𝑖𝑖, is the no. of vehicles, 𝑇𝑇𝑠𝑠, the 
time day, 𝐿𝐿𝑚𝑚 the segment length, and 𝜆𝜆𝑚𝑚.the no. of segment 
lanes 

Step 2 Calculating and adding the density (concept values) as the eighth 
column according to the equation:

𝜌𝜌𝑚𝑚,𝑖𝑖 =
𝑛𝑛𝑡𝑡
𝐿𝐿𝑚𝑚𝜆𝜆𝑚𝑚

Step 3 Calculating 𝐿𝐿𝑚𝑚𝜆𝜆𝑚𝑚 as weight values initialization and adding the 
results as the ninth column to the dataset.
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(𝑋𝑋 max − 𝑋𝑋𝑚𝑚𝑖𝑖𝑛𝑛)

Step 5 Defining connection weight matrix Wij as 𝐿𝐿𝑚𝑚𝑖𝑖𝜆𝜆𝑚𝑚𝑖𝑖 based on the 
sequence of the segments, based on two possible types of causal 
relationships among concepts, i.e., when road traffic streams 
from concept Ci to Cj:

• Wij > 0 excitatory causality
• Wji < 0 inhibitory causality

Step 6
Transforming equation 1 to 2 for calculating the value of concept 
Ci as the density of segment i at time t: (𝜌𝜌𝑚𝑚,𝑖𝑖𝑡𝑡 ).              
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• Main Algorithm:

Step 7 Read the input initial concept state (input vector) A0 as 𝜌𝜌𝑚𝑚,𝑖𝑖0 .

Step 8 Define the relationship weight matrix Wij

Step 9 Calculate the concept state 𝜌𝜌𝑚𝑚,𝑖𝑖𝑡𝑡 according to the equation:
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Step 10 Apply the threshold function to output vector  𝜌𝜌𝑚𝑚,𝑖𝑖𝑡𝑡 = 𝑓𝑓( 𝜌𝜌𝑚𝑚,𝑖𝑖𝑡𝑡 ):
𝑓𝑓(𝑥𝑥) = 1

1 + 𝑒𝑒−𝜆𝜆(𝑥𝑥−ℎ)

Step 11 If ( 𝜌𝜌𝑚𝑚,𝑖𝑖𝑡𝑡+1 = 𝜌𝜌𝑚𝑚,𝑖𝑖𝑡𝑡 ), stop;

Else Go To Step 7;
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segments altogether. Each segment length varies from 100 to 
18,000 meters. For the sake of reducing the complexity of the 
model, a sample of 58 segments was selected, the full set of 
freeway sections through which Budapest is connected to the 
Austrian border. 
Most of the road traffic models’ aim is to explain the behavior 
of traffic-involved variables over the full range of operation, 
where identified locations have a pivotal role in the investigated 
dataset. This dataset can represent road traffic behavior based 
on location in a real-time manner. In Fig. 3, a sample of 
connections among three segments A, B, and C, are illustrated. 
Since the available dataset is based on time series, therefore, 
current traffic state in upstream segments can characterize road 
traffic flow conditions in downstream segments in the next time 
frames. 

Fig. 3 A sample of freeway network and segment connections  

The above-mentioned segments’ causal relationships and 
correlations can be observed in Fig. 4. In the horizontal axis, the 
first digit represents the day, while the second and third digits 
represent the hour (in 24-hour format); an accurate behavior of 
road traffic flow over time is indicated, showing how traffic 
flow in the upstream segment can affect the subsequent 
segments. The calculated road traffic flow correlation among 
segments reveals that the correlation of A and B is 0.03, 
between A and C it is 0.9, and B and C correlate to 0.1; through 
which values various conclusions and correlation analyses can 
be conducted to identify the behavior and intensity of road 
traffic flow. 

Fig. 4 Causal relationships of road traffic streamflow of three sample 
segments

B. The Model
The key deficit of applying FCM is the critical reliance on the 
initial expert judgment [52]. This issue stands out, particularly 
in modeling complex systems. In this research, extracted 
parameters of a macroscopic road traffic model have been 
applied for assigning initial values of concepts and weights. 
Each road segment is represented by a concept whose value is 
considered as the density 𝜌𝜌 of segment 𝑖𝑖 of link 𝑚𝑚, and the 
weighted arcs are set to a constant value based on 𝐿𝐿𝑚𝑚𝜆𝜆𝑚𝑚
variables as approximate capacity; where 𝐿𝐿𝑚𝑚 denotes the length 
of the segments of link m, 𝜆𝜆𝑚𝑚 denotes the number of lanes of 
link m. The concepts and the weights initializations are set 
based on the aforementioned values. Afterward, the system is 

allowed to interact, and after every iteration, the new state 
vector is assigned newly generated values. This procedure will 
continue until the model exhibits an equilibrium state by 
reaching a stabilized condition at a fixed numerical boundary. 
The macroscopic road traffic model based on FCM is presented 
by the proposed algorithm in Fig. 5.

Simulation steps

• Preprocessing:

Step 1 Importing the dataset, consisting of seven columns: m, is the link 
name, i, is the segment name, 𝑞𝑞𝔪𝔪,𝑖𝑖, is the no. of vehicles, 𝑇𝑇𝑠𝑠, the 
time day, 𝐿𝐿𝑚𝑚 the segment length, and 𝜆𝜆𝑚𝑚.the no. of segment 
lanes 

Step 2 Calculating and adding the density (concept values) as the eighth 
column according to the equation:

𝜌𝜌𝑚𝑚,𝑖𝑖 =
𝑛𝑛𝑡𝑡
𝐿𝐿𝑚𝑚𝜆𝜆𝑚𝑚

Step 3 Calculating 𝐿𝐿𝑚𝑚𝜆𝜆𝑚𝑚 as weight values initialization and adding the 
results as the ninth column to the dataset.

Step 4 Normalizing and adjusting concepts (density) and weights
(𝐿𝐿𝑚𝑚𝜆𝜆𝑚𝑚) in the [0,1] interval scale:

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑚𝑚𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
(𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑖𝑖𝑛𝑛)

(𝑋𝑋 max − 𝑋𝑋𝑚𝑚𝑖𝑖𝑛𝑛)

Step 5 Defining connection weight matrix Wij as 𝐿𝐿𝑚𝑚𝑖𝑖𝜆𝜆𝑚𝑚𝑖𝑖 based on the 
sequence of the segments, based on two possible types of causal 
relationships among concepts, i.e., when road traffic streams 
from concept Ci to Cj:

• Wij > 0 excitatory causality
• Wji < 0 inhibitory causality

Step 6
Transforming equation 1 to 2 for calculating the value of concept 
Ci as the density of segment i at time t: (𝜌𝜌𝑚𝑚,𝑖𝑖𝑡𝑡 ).              

   1) 𝐴𝐴𝑖𝑖
(𝑡𝑡+1) = 𝑓𝑓

(

 ∑𝑊𝑊𝑖𝑖𝑖𝑖
𝑛𝑛

𝑖𝑖=1  
𝑖𝑖≠𝑖𝑖 

𝐴𝐴𝑖𝑖𝑡𝑡 + 𝐴𝐴𝑖𝑖𝑡𝑡

)

                                          

  2) 𝜌𝜌𝑚𝑚,𝑖𝑖𝑡𝑡+1 = 𝑓𝑓(∑ 𝜌𝜌𝑚𝑚,𝑖𝑖,𝑖𝑖𝑡𝑡
𝑛𝑛

𝑖𝑖=1  
𝑖𝑖≠𝑖𝑖 

 𝑊𝑊𝑖𝑖𝑖𝑖 + 𝜌𝜌𝑚𝑚,𝑖𝑖,𝑖𝑖𝑡𝑡 )

• Main Algorithm:

Step 7 Read the input initial concept state (input vector) A0 as 𝜌𝜌𝑚𝑚,𝑖𝑖0 .

Step 8 Define the relationship weight matrix Wij

Step 9 Calculate the concept state 𝜌𝜌𝑚𝑚,𝑖𝑖𝑡𝑡 according to the equation:

 𝜌𝜌𝑚𝑚,𝑖𝑖𝑡𝑡 = 𝑓𝑓(∑ 𝜌𝜌𝑚𝑚,𝑖𝑖,𝑖𝑖𝑡𝑡−1
𝑛𝑛

𝑖𝑖=1  
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𝑊𝑊𝑖𝑖𝑖𝑖 + 𝜌𝜌𝑚𝑚,𝑖𝑖,𝑖𝑖𝑡𝑡−1 )

Step 10 Apply the threshold function to output vector  𝜌𝜌𝑚𝑚,𝑖𝑖𝑡𝑡 = 𝑓𝑓( 𝜌𝜌𝑚𝑚,𝑖𝑖𝑡𝑡 ):
𝑓𝑓(𝑥𝑥) = 1

1 + 𝑒𝑒−𝜆𝜆(𝑥𝑥−ℎ)

Step 11 If ( 𝜌𝜌𝑚𝑚,𝑖𝑖𝑡𝑡+1 = 𝜌𝜌𝑚𝑚,𝑖𝑖𝑡𝑡 ), stop;

Else Go To Step 7;

End
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road traffic flow over time is indicated, showing how traffic 
flow in the upstream segment can affect the subsequent 
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segments reveals that the correlation of A and B is 0.03, 
between A and C it is 0.9, and B and C correlate to 0.1; through 
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be conducted to identify the behavior and intensity of road 
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link m. The concepts and the weights initializations are set 
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allowed to interact, and after every iteration, the new state 
vector is assigned newly generated values. This procedure will 
continue until the model exhibits an equilibrium state by 
reaching a stabilized condition at a fixed numerical boundary. 
The macroscopic road traffic model based on FCM is presented 
by the proposed algorithm in Fig. 5.

Simulation steps
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name, i, is the segment name, 𝑞𝑞𝔪𝔪,𝑖𝑖, is the no. of vehicles, 𝑇𝑇𝑠𝑠, the 
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relationships among concepts, i.e., when road traffic streams 
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link m. The concepts and the weights initializations are set 
based on the aforementioned values. Afterward, the system is 
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reaching a stabilized condition at a fixed numerical boundary. 
The macroscopic road traffic model based on FCM is presented 
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• Main Algorithm:

Step 7 Read the input initial concept state (input vector) A0 as 𝜌𝜌𝑚𝑚,𝑖𝑖0 .
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Step 10 Apply the threshold function to output vector  𝜌𝜌𝑚𝑚,𝑖𝑖𝑡𝑡 = 𝑓𝑓( 𝜌𝜌𝑚𝑚,𝑖𝑖𝑡𝑡 ):
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Step 11 If ( 𝜌𝜌𝑚𝑚,𝑖𝑖𝑡𝑡+1 = 𝜌𝜌𝑚𝑚,𝑖𝑖𝑡𝑡 ), stop;

Else Go To Step 7;
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IV. RESULTS

Complex road traffic flow processes are characterized by 
various dimensions and components that are highly dependent 

segments altogether. Each segment length varies from 100 to 
18,000 meters. For the sake of reducing the complexity of the 
model, a sample of 58 segments was selected, the full set of 
freeway sections through which Budapest is connected to the 
Austrian border. 
Most of the road traffic models’ aim is to explain the behavior 
of traffic-involved variables over the full range of operation, 
where identified locations have a pivotal role in the investigated 
dataset. This dataset can represent road traffic behavior based 
on location in a real-time manner. In Fig. 3, a sample of 
connections among three segments A, B, and C, are illustrated. 
Since the available dataset is based on time series, therefore, 
current traffic state in upstream segments can characterize road 
traffic flow conditions in downstream segments in the next time 
frames. 

Fig. 3 A sample of freeway network and segment connections  

The above-mentioned segments’ causal relationships and 
correlations can be observed in Fig. 4. In the horizontal axis, the 
first digit represents the day, while the second and third digits 
represent the hour (in 24-hour format); an accurate behavior of 
road traffic flow over time is indicated, showing how traffic 
flow in the upstream segment can affect the subsequent 
segments. The calculated road traffic flow correlation among 
segments reveals that the correlation of A and B is 0.03, 
between A and C it is 0.9, and B and C correlate to 0.1; through 
which values various conclusions and correlation analyses can 
be conducted to identify the behavior and intensity of road 
traffic flow. 

Fig. 4 Causal relationships of road traffic streamflow of three sample 
segments

B. The Model
The key deficit of applying FCM is the critical reliance on the 
initial expert judgment [52]. This issue stands out, particularly 
in modeling complex systems. In this research, extracted 
parameters of a macroscopic road traffic model have been 
applied for assigning initial values of concepts and weights. 
Each road segment is represented by a concept whose value is 
considered as the density 𝜌𝜌 of segment 𝑖𝑖 of link 𝑚𝑚, and the 
weighted arcs are set to a constant value based on 𝐿𝐿𝑚𝑚𝜆𝜆𝑚𝑚
variables as approximate capacity; where 𝐿𝐿𝑚𝑚 denotes the length 
of the segments of link m, 𝜆𝜆𝑚𝑚 denotes the number of lanes of 
link m. The concepts and the weights initializations are set 
based on the aforementioned values. Afterward, the system is 

allowed to interact, and after every iteration, the new state 
vector is assigned newly generated values. This procedure will 
continue until the model exhibits an equilibrium state by 
reaching a stabilized condition at a fixed numerical boundary. 
The macroscopic road traffic model based on FCM is presented 
by the proposed algorithm in Fig. 5.

Simulation steps

• Preprocessing:

Step 1 Importing the dataset, consisting of seven columns: m, is the link 
name, i, is the segment name, 𝑞𝑞𝔪𝔪,𝑖𝑖, is the no. of vehicles, 𝑇𝑇𝑠𝑠, the 
time day, 𝐿𝐿𝑚𝑚 the segment length, and 𝜆𝜆𝑚𝑚.the no. of segment 
lanes 

Step 2 Calculating and adding the density (concept values) as the eighth 
column according to the equation:

𝜌𝜌𝑚𝑚,𝑖𝑖 =
𝑛𝑛𝑡𝑡
𝐿𝐿𝑚𝑚𝜆𝜆𝑚𝑚

Step 3 Calculating 𝐿𝐿𝑚𝑚𝜆𝜆𝑚𝑚 as weight values initialization and adding the 
results as the ninth column to the dataset.

Step 4 Normalizing and adjusting concepts (density) and weights
(𝐿𝐿𝑚𝑚𝜆𝜆𝑚𝑚) in the [0,1] interval scale:
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(𝑋𝑋 max − 𝑋𝑋𝑚𝑚𝑖𝑖𝑛𝑛)

Step 5 Defining connection weight matrix Wij as 𝐿𝐿𝑚𝑚𝑖𝑖𝜆𝜆𝑚𝑚𝑖𝑖 based on the 
sequence of the segments, based on two possible types of causal 
relationships among concepts, i.e., when road traffic streams 
from concept Ci to Cj:

• Wij > 0 excitatory causality
• Wji < 0 inhibitory causality

Step 6
Transforming equation 1 to 2 for calculating the value of concept 
Ci as the density of segment i at time t: (𝜌𝜌𝑚𝑚,𝑖𝑖𝑡𝑡 ).              

   1) 𝐴𝐴𝑖𝑖
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• Main Algorithm:
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Else Go To Step 7;
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and interconnected. For this reason, FCM as a soft computing 
technique is presented to address networks of freeways 
included imprecision and uncertainty. These uncertainties from 
the macroscopic modeling point of view are mainly connected 
with road traffic flow, density, and approximate capacity 
associated variables that can increase the probability of a
breakdown and shifting the free flow state of traffic to 
congested flow [11], [34]. According to the applied algorithm 
in the previous section, segments of each link (freeway) are 
assigned as the concepts (nodes) of the FCM, where calculated 
density defines their values. In Fig. 6, a geographical 
representation of the selected segments is presented. There are 
58 segments in the three investigated links, i.e., S1, S2, and S3.
Each of these links can be selected as the possible route from 
Budapest to the main Hungarian-Austrian border corridor 
represented as E. ES1, and ES2 are the endpoints of the S1 and 
S2 links, respectively.

Fig. 6 Geographical locations of the selected segments 

Therefore, the concept value initialization as the first step of 
FCM construction was determined corresponding to the real 

measured density, i.e., 𝜌𝜌𝑚𝑚,𝑖𝑖
𝑡𝑡 for segment (i), link (m), and time 

step (t). This value stands for downstream in the selected 
segment (transformed in the interval [0,1]), where the flow has 
not arrived at the next segment yet. Afterward, the FCM road 
traffic flow model developed by assigning weight values in 
accordance with the approximate capacity of each link through 
𝐿𝐿𝑚𝑚𝜆𝜆𝑚𝑚. Fig. 7 depicts the initial state of the concepts and their 
respective interconnections along with the quantified weights in 
the interval [-1,1], which enables the classification of the 
degrees of causality among the segments. Two types of 
interactions among the segments are considered; where one 
segment (Ci) has excitatory causality on the subsequent 
segment (Cj), then 𝑤𝑤𝑖𝑖𝑖𝑖 >  0, which means downstream of Ci
becomes upstream of Cj, while Cj has negative causality on Ci
signified by a causal edge with a negative value from Cj to Ci .
Consequently, the behavior of the segments coupled with 
interconnections among them is reflected and warehoused in 
the FCM thus constructed. 
In Fig. 7, three alternative links that can be chosen from 
Budapest to the Austrian border are illustrated by S1, S2, and S3
and their 58 nodes in the network. S1 includes nine segments 
that end at segment ES1 and joins to one of the S2 segments; S3,
as the most chosen route, also has close interaction with the 
segments in S2, which both end at segment E as the last 
Hungarian segment before entering Austrian territory. Greater 
activation values in the concepts (segments) are indicated by 
larger nodes in the modeled FCM; they represent greater 
density and show stronger activation values that cause greater 
impact on the network.

Fig. 7 FCM model of road traffic flow

In Fig. 7, an illustration of the FCM with initialized concepts 
and weights is shown. In terms of the initial state of the 
concepts, FCM begins to simulate the performance of the 
process. In every running step of the FCM, the state of concepts 
is computed according to step 9 (i.e., in the model simulation 
steps, see section 3). These steps are considered as those of a 
process in which the values of the defined concepts are 
analyzed. The value of every concept is assigned by considering 
all involved causal connection weights directed towards the 

concept and multiplying every weight by the value of the 
concept, which causes the connection, then adding the last value 
of every concept. In this simulation, a sigmoid function with 
𝜆𝜆 > 0 was employed; therefore, the outcomes assumed values 
in the interval [0,1]. 
The FCM for road traffic flow modeling with initial vector 
values A0 simulates the state of the system, and the values of the 
concepts for the desired iteration are illustrated in Fig. 8. The 
configuration of the FCM reasoning process was set on the 
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stopping criterion when the fixed-point attractor was reached 
with 0.001 accuracy, and the values of concepts converged to 
the equilibrium region after seven iterations.  
Table 2 presents the values of the concepts for these iterations. 
The results of the proposed FCM model of the road traffic flow 
follows a straightforward rule where each freeway segment is 
represented by a concept, and the density of each segment is 
signified by the computed values. As it can be observed, the 
values of these concepts mostly do not alter after the sixth step. 
Once the FCM reaches the equilibrium state, the new values of 
concepts are exchanged by the equivalent real values and vice 
versa. Evaluating the simulation results in the main segments of 
link S3 as the most demanded part of the selected network 

illustrates the values of S3, S3a, S3c, S3d, S3e, S3i, S3j, S3h, S3k, and 
S3n, which formed the only group among all segments where 
after reaching a peak a downward trend followed. At the same 
time, the other five segments, namely, S3b, S3f, S3g, S3l, and S3m
showed constant increasing behavior. In this group of segments, 
when the FCM reaches the equilibrium point, the simulated 
density values of segments are transmitted to the real system 
and set the corresponding connected nodes. Finally, the FCM 
receives the simulated measurements from segments 
interactions, it interacts, then reaches an equilibrium point and 
transmits the density values of concepts to the whole model, and 
this iterative process continues.

Fig. 8 Concepts’ values variation in the FCM inference process

Table 2: Partial concepts’ values of link S3 in the first simulation steps
Step S3 S3a S3b S3c S3d S3e S3f S3g S3h S3i S3j S3k S3l S3m S3n

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
2 0.5622 0.5987 0.6225 0.5374 0.5987 0.6341 0.6225 0.6341 0.525 0.5744 0.69 0.5866 0.6457 0.5498 0.5622
3 0.5639 0.6121 0.6531 0.5225 0.6089 0.6629 0.6508 0.6702 0.5173 0.566 0.7371 0.6114 0.6795 0.5524 0.5476
4 0.5621 0.6118 0.6611 0.5151 0.6072 0.6668 0.6567 0.6796 0.5183 0.5566 0.7433 0.6195 0.6872 0.5569 0.539
5 0.5614 0.6106 0.6631 0.5135 0.6059 0.6665 0.6577 0.6818 0.521 0.5534 0.7424 0.6209 0.6891 0.5601 0.5382
6 0.5614 0.61 0.6635 0.5134 0.6056 0.6661 0.6577 0.6821 0.5225 0.553 0.7416 0.6207 0.6895 0.5611 0.5392
7 0.5614 0.6099 0.6635 0.5134 0.6056 0.6659 0.6577 0.6821 0.5229 0.553 0.7413 0.6204 0.6895 0.5611 0.5398

An advantage of the proposed FCM road traffic flow model is 
that it supports performing what-if simulation analysis based on 
altering the properties of the involved variables, and 
subsequently, it may be observed how the system behavior 
might be affected by changes in particular variables. As a most 
common congestion-related event in the freeways, lane drop is 
being caused by various possible events such as accidents,
maintenance, etc., that can lead to shifting free-flow traffic to a
congested state and delayed travel time. Therefore, this scenario 
was performed in the S3h segment chosen as one of the high-
density segments in the selected network, with a reproducible 
recurring congestion event potential forming a bottleneck 
location. Bottlenecks are parts of segments where traffic 
congestion is repeatedly evidenced, which possess a reducing 
capacity on the segment upstream and freely flowing traffic on 
downstream. They have two main types of dynamics, namely, 
slow-moving vehicles and frequent accidents, as well as static 
features, e.g., tunnel entrances [53], [54]. In this scenario, one 
of the two lanes of S3h was dropped, and the FCM simulation 

process started. The results of this simulation can be observed 
in Table 3. As opposed to the first inference process, where 
values stop changing after the sixth step, in this case, the values 
of the concepts mostly continued changing after the sixth step 
as well. 
Although one lane was dropped, the density in the S3h segment 
decreased only slightly, which fact shows that density in the 
remaining lane dramatically increased. In the meanwhile, 
density value alterations in the corresponding connected nodes 
S3g and S3i with S3h in link S3 (S3g and S3i can be seen in Fig. 9) 
are indicated. Their geographical map and the FCM concept 
representations can be seen in Fig. 6, respectively. The 
simulation of one lane being dropped shows a downward trend 
up to 10% in the density of the subsequent connected segment 
(S3i) compared to the results of the first simulation process in 
Table 2; whereas, it has a rising impact on the traffic state in the 
previous segments as the upstream of the sections S3h, where S3g
and S3f experienced upward trends in their density around 20% 
and 5%, respectively.
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simulation of one lane being dropped shows a downward trend 
up to 10% in the density of the subsequent connected segment 
(S3i) compared to the results of the first simulation process in 
Table 2; whereas, it has a rising impact on the traffic state in the 
previous segments as the upstream of the sections S3h, where S3g
and S3f experienced upward trends in their density around 20% 
and 5%, respectively.
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Table 3: One segment lane dropped impact on the network
Step S3 S3a S3b S3c S3d S3e S3f S3g S3h S3i S3j S3k S3l S3m S3n

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
2 0.5622 0.5987 0.6225 0.5374 0.5987 0.6341 0.6341 0.6341 0.5125 0.5744 0.69 0.5866 0.6457 0.5498 0.5622
3 0.5639 0.6121 0.6531 0.5225 0.6089 0.6616 0.6676 0.6725 0.4983 0.5654 0.7371 0.6114 0.6795 0.5524 0.5476
4 0.5621 0.6118 0.6611 0.5151 0.6073 0.6646 0.6752 0.6835 0.4971 0.5555 0.7432 0.6195 0.6872 0.5569 0.539
5 0.5614 0.6106 0.6631 0.5135 0.6061 0.664 0.6865 0.7263 0.4992 0.5321 0.7422 0.6209 0.6891 0.5601 0.5382
6 0.5614 0.61 0.6635 0.5133 0.6058 0.6634 0.691 0.8268 0.516 0.5105 0.7413 0.6207 0.6895 0.5611 0.5392
7 0.5614 0.6099 0.6635 0.5134 0.6058 0.6632 0.691 0.8269 0.5188 0.5015 0.7411 0.6204 0.6895 0.5611 0.5398

The presented simulations indicated the abilities of the FCM as 
a practical soft computing method, not only in macroscopic 
modeling to investigate the overall behavior of road traffic flow 
but also to capture the interesting and flexible features in terms 
of examining and monitoring alterations and modifications of 
the involved parameters that may affect the whole networks of 
freeways. These characteristics offer valuable information and 
can contribute to beneficial results related to the traffic 
engineering field, such as prediction and surveillance of the 
road traffic flow state in complex and uncertain networks, the 
estimation of the influence of new road constructions, or the 
comparison of various alternatives, the prediction of the effects 
of capacity increase or reduction, and the improvement and 
assessment of road traffic control associated strategies, 
detecting prone error locations and optimizing the network 
itself [5], [22], [35].

V. CONCLUSION

The current rapid progress in road traffic flow modeling urges 
a distinct emphasis on examining the capacities of various soft 
computing techniques in this field. This research paper 
proposed a novel macroscopic model of the road traffic flow, 
based on the FCM approach as one of the emerging soft 
computing techniques. Alongside being generic, as it can be 
adopted to most combinations of a macroscopic road traffic 
flow modeling, this approach introduced a new application of 
fuzzy cognitive maps in modeling a nonlinear and complex 
network of freeways for the very first time, with the focus on 
detecting the reasons of road traffic congestion. Also,
sustainability-related objectives can be investigated with this 
approach as the key argument in designing and managing 
transportation systems, an approach that affects the potential of 
improving road traffic control strategies.
It is plausible that all contributions of a macroscopic road traffic 
flow model cannot be provided by the FCM model, mainly due 
to the problem complexity, and the obtained results may differ 
from the real state of the road traffic. However, any estimation 
technique can inherently include a tradeoff between model 
performance and operation speed. In this light, FCM provides 
real advantages; for example, once trained, the road traffic 
simulation can be performed rapidly and in most cases at an 
approved level of accuracy. Furthermore, the dataset of the 
study does not contain all segments that can affect road traffic 
behavior, but only those where the e-toll network is included. It 
is worth mentioning that the resolution of the representation of 
the networks of freeways can be dramatically improved by 
employing further mapping and data, consequently leading to 
more accurate – and obviously, more complex - FCM models 
with refined simulation results.
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to the problem complexity, and the obtained results may differ 
from the real state of the road traffic. However, any estimation 
technique can inherently include a tradeoff between model 
performance and operation speed. In this light, FCM provides 
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simulation can be performed rapidly and in most cases at an 
approved level of accuracy. Furthermore, the dataset of the 
study does not contain all segments that can affect road traffic 
behavior, but only those where the e-toll network is included. It 
is worth mentioning that the resolution of the representation of 
the networks of freeways can be dramatically improved by 
employing further mapping and data, consequently leading to 
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