
Enhancing the operational efficiency of
quantum random number generators

JUNE 2021 • VOLUME XIII • NUMBER 210

INFOCOMMUNICATIONS JOURNAL

Enhancing the operational efficiency of
quantum random number generators

Botond L. Márton, Dóra Istenes and László Bacsárdi, Member, IEEE

DOI: 10.36244/ICJ.2021.2.2

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—Random numbers are of vital importance in today’s

world and used for example in many cryptographical protocols to
secure the communication over the internet. The generators
producing these numbers are Pseudo Random Number
Generators (PRNGs) or True Random Number Generators
(TRNGs). A subclass of TRNGs are the Quantum based Random
Number Generators (QRNGs) whose generation processes are
based on quantum phenomena. However, the achievable quality
of the numbers generated from a practical implementation can
differ from the theoretically possible. To ease this negative effect
post-processing can be used, which contains the use of extractors.
They extract as much entropy as possible from the original
source and produce a new output with better properties. The
quality and the different properties of a given output can be
measured with the help of statistical tests. In our work we
examined the effect of different extractors on two QRNG outputs
and found that with the right extractor we can improve their
quality.

Index Terms—random numbers, statistical testing, quantum
communication, QRNG

I. INTRODUCTION
UANTUM TECHNOLOGIES are developing at a rapid speed
in the modern world and they vastly differ from their

classical counterparts. They offer new approaches for
communication, cryptography or algorithm design. From an
algorithmic standpoint they propose new and in many cases
faster algorithms (for example Shor’s algorithm for prime
factoring or in the area of resource distribution [1]) which can
utilize the unique phenomena present only in the world of
quantum mechanics[2][3]. Two of the most developed
technologies in the field are QRNGs and QKD (Quantum Key
Distribution). QKD is mostly used as a building block in
cryptographic solutions. One of these is the one-time pad
encryption scheme, where parties use a different, unique
random key for the encryption of each message. This is a
mathematically proven secure method, with only one
weakness, sharing the keys. QKD patches this weakness by
providing a safe way to share the keys between the parties [4].

The authors are with the Department of Networked Systems and Services,
Budapest University of Technology and Economics, Budapest,
H-1117 Hungary. E-mail: martonboti@gmail.com, idooori@gmail.com,
bacsardi@hit.bme.hu. The work was supported by the National Research
Development and Innovation Office of Hungary (Project No. 2017-1.2.1-

NKP-2017-00001). L. Bacsárdi thanks the support of the János Bolyai
Research Scholarship of the Hungarian Academy of Sciences.

The application of random numbers ranges from dice
simulators to cryptographic systems and mathematical
simulations [5]. These various usages require different traits
from the generators. High bitrate, quality, and safety are
among the attributes the different applications expect.

Quantum generators make ideal outputs for most
requirements, but their main quality is generating truly random
numbers due to an underlying quantum phenomenon. Even so,
they have their flaws, which mainly come from the limits of
our physical tools.

The field of QRNGs is becoming more popular as some of
the generators are already available on the commercial market
(one of which is briefly introduced in Section II.A), see [6] for
more. At the same time the field of randomness extraction also
had interesting results. Ma et al investigated the effect of a
Trevisian and Toeplitz extractor on a QRNG in [7]. In our
work, we applied the Toeplitz extractor as well but the QRNG
they used is based on a different generation mechanism. Qi
and Bing tested a generator based on amplified spontaneous
emission [8]. One of the QRNGs we worked with is also based
on amplified spontaneous emission, but they used a different
setup. In [9] Zhang, Xiao-Guang, et al presented a generator
based on laser phase fluctuations, where they used a pipeline
based solution with a Toeplitz extractor to achieve real-time
processing. In our work we used the Toeplitz extractor, but the
real-time operation was not one of our goals, therefore our
implementation differs. Shakhovoy, Roman, et al. introduced a
QRNG which works without the need for post-processing
[10]. In current work we focused on investigation of QRNG,
but another important question is the comparison of efficiency
between QRNGs and PRNGs which was investigated by
Martínez, Aldo C., et al in [11].

In our work we concentrated on two QRNGs, which were
built at Budapest University of Technology and Economics
(BME)[16]. Prior to our work, the generators were only tested
without post-processing. In this paper, we present how
extractors can improve the quality of two outputs from these
generators. We implemented the extractors in Python,
examined their applicability and their yielded results.

This article is structured as follows. In Section II we will
introduce two popular generation methods used in QRNGs (on
which the tested generators are based on) then we will show
how can we measure the quality of random numbers and what
is an extractor. After that in Section III we will present what
we found during our testing, while Section IV contains our
conclusion.

Enhancing the operational efficiency of
quantum random number generators

Botond L. Márton, Dóra Istenes and László Bacsárdi, Member, IEEE

Q

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—Random numbers are of vital importance in today’s

world and used for example in many cryptographical protocols to
secure the communication over the internet. The generators
producing these numbers are Pseudo Random Number
Generators (PRNGs) or True Random Number Generators
(TRNGs). A subclass of TRNGs are the Quantum based Random
Number Generators (QRNGs) whose generation processes are
based on quantum phenomena. However, the achievable quality
of the numbers generated from a practical implementation can
differ from the theoretically possible. To ease this negative effect
post-processing can be used, which contains the use of extractors.
They extract as much entropy as possible from the original
source and produce a new output with better properties. The
quality and the different properties of a given output can be
measured with the help of statistical tests. In our work we
examined the effect of different extractors on two QRNG outputs
and found that with the right extractor we can improve their
quality.

Index Terms—random numbers, statistical testing, quantum
communication, QRNG

I. INTRODUCTION
UANTUM TECHNOLOGIES are developing at a rapid speed
in the modern world and they vastly differ from their

classical counterparts. They offer new approaches for
communication, cryptography or algorithm design. From an
algorithmic standpoint they propose new and in many cases
faster algorithms (for example Shor’s algorithm for prime
factoring or in the area of resource distribution [1]) which can
utilize the unique phenomena present only in the world of
quantum mechanics[2][3]. Two of the most developed
technologies in the field are QRNGs and QKD (Quantum Key
Distribution). QKD is mostly used as a building block in
cryptographic solutions. One of these is the one-time pad
encryption scheme, where parties use a different, unique
random key for the encryption of each message. This is a
mathematically proven secure method, with only one
weakness, sharing the keys. QKD patches this weakness by
providing a safe way to share the keys between the parties [4].

The authors are with the Department of Networked Systems and Services,
Budapest University of Technology and Economics, Budapest,
H-1117 Hungary. E-mail: martonboti@gmail.com, idooori@gmail.com,
bacsardi@hit.bme.hu. The work was supported by the National Research
Development and Innovation Office of Hungary (Project No. 2017-1.2.1-

NKP-2017-00001). L. Bacsárdi thanks the support of the János Bolyai
Research Scholarship of the Hungarian Academy of Sciences.

The application of random numbers ranges from dice
simulators to cryptographic systems and mathematical
simulations [5]. These various usages require different traits
from the generators. High bitrate, quality, and safety are
among the attributes the different applications expect.

Quantum generators make ideal outputs for most
requirements, but their main quality is generating truly random
numbers due to an underlying quantum phenomenon. Even so,
they have their flaws, which mainly come from the limits of
our physical tools.

The field of QRNGs is becoming more popular as some of
the generators are already available on the commercial market
(one of which is briefly introduced in Section II.A), see [6] for
more. At the same time the field of randomness extraction also
had interesting results. Ma et al investigated the effect of a
Trevisian and Toeplitz extractor on a QRNG in [7]. In our
work, we applied the Toeplitz extractor as well but the QRNG
they used is based on a different generation mechanism. Qi
and Bing tested a generator based on amplified spontaneous
emission [8]. One of the QRNGs we worked with is also based
on amplified spontaneous emission, but they used a different
setup. In [9] Zhang, Xiao-Guang, et al presented a generator
based on laser phase fluctuations, where they used a pipeline
based solution with a Toeplitz extractor to achieve real-time
processing. In our work we used the Toeplitz extractor, but the
real-time operation was not one of our goals, therefore our
implementation differs. Shakhovoy, Roman, et al. introduced a
QRNG which works without the need for post-processing
[10]. In current work we focused on investigation of QRNG,
but another important question is the comparison of efficiency
between QRNGs and PRNGs which was investigated by
Martínez, Aldo C., et al in [11].

In our work we concentrated on two QRNGs, which were
built at Budapest University of Technology and Economics
(BME)[16]. Prior to our work, the generators were only tested
without post-processing. In this paper, we present how
extractors can improve the quality of two outputs from these
generators. We implemented the extractors in Python,
examined their applicability and their yielded results.

This article is structured as follows. In Section II we will
introduce two popular generation methods used in QRNGs (on
which the tested generators are based on) then we will show
how can we measure the quality of random numbers and what
is an extractor. After that in Section III we will present what
we found during our testing, while Section IV contains our
conclusion.

Enhancing the operational efficiency of
quantum random number generators

Botond L. Márton, Dóra Istenes and László Bacsárdi, Member, IEEE

Q

The authors are with the Department of Networked Systems and Services,
Budapest University of Technology and Economics, Budapest, H-1117 Hungary.

E-mail: martonboti@gmail.com, idooori@gmail.com, bacsardi@hit.bme.hu.
The work was supported by the National Research Development and

Innovation Office of Hungary (Project No. 2017-1.2.1-NKP-2017-00001).
L. Bacsárdi thanks the support of the János Bolyai Research Scholarship of the
Hungarian Academy of Sciences.

Abstract— Random numbers are of vital importance in today’s
world and used for example in many cryptographical protocols
to secure the communication over the internet. The generators
producing these numbers are Pseudo Random Number
Generators (PRNGs) or True Random Number Generators
(TRNGs). A subclass of TRNGs are the Quantum based Random
Number Generators (QRNGs) whose generation processes are
based on quantum phenomena. However, the achievable quality
of the numbers generated from a practical implementation can
differ from the theoretically possible. To ease this negative effect
post-processing can be used, which contains the use of extractors.
They extract as much entropy as possible from the original source
and produce a new output with better properties. The quality and
the different properties of a given output can be measured with
the help of statistical tests. In our work we examined the effect of
different extractors on two QRNG outputs and found that with
the right extractor we can improve their quality.

Index Terms—random numbers, statistical testing, quantum
communication, QRNG

https://doi.org/10.36244/ICJ.2021.2.2
mailto:martonboti%40gmail.com?subject=
mailto:idooori%40gmail.com?subject=
mailto:bacsardi%40hit.bme.hu?subject=

Enhancing the operational efficiency of
quantum random number generators

INFOCOMMUNICATIONS JOURNAL

JUNE 2021 • VOLUME XIII • NUMBER 2 11

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

II. RANDOM NUMBER GENERATORS

A. Generation methods
PRNGs generate a stream based on a mathematical

algorithm and a starting point, the so-called seed. Although
this makes it easy to generate numbers in high quantity, it also
makes the output deterministic, and in turn prone to
exploitation. Within possession of its algorithm and seed,
which may be acquired through inspecting the output, the
PRNGs upcoming outputs become easily predictable. This
makes it highly unsafe to use them in applications with a high-
security requirement, such as lottery or cryptographic
solutions [12].

For TRNGs their entropy source comes from inherently
random events, like radioactive decay, atmospheric noise or
quantum mechanical events. Their set up is much more
complex than the PRNGs, and their generation speed is also
slower, but due to the high unpredictability of their source,
their output is adequate for high-security uses.

QRNGs provide non-deterministic outputs in great
quantities in a short time. and they are one of the most actively
developed quantum computing technologies.

The two main producers of commercially available QRNG
chips are ID Quantique (IDQ) and Quantum Numbers Corp
(QNC). Both companies produce state of the art QRNG chips
although the smallest commercial one belongs to IDQ, the
Quantis QRNG chip. It contains a LED light source that emits
random number of photons which are captured and counted by
an image sensor, providing a set of easily accessible raw
numbers. It also has a self-verification process, where if it
detects any failure it starts an automatic recovery procedure
instantly and notifies the user [13].

B. Photon detection interval
Many types of optical QRNGs exist. A portion of them rely

on a beam splitters and different amount of detectors. These
tools can contribute greatly to the bias of a generator. In
theory there are ideal equipments but in truth, perfect tools do
not exist. Even a single detector’s quantum efficiency is not
100% but using multiple detectors raises the problem of the
two detectors differences [14].

The photon detection interval generator uses only one
detector, as to mitigate the bias.

The distribution of the time between two detections is
exponential with a probability density function where
is the expected number of photons detected in a unit of time.

The time values are compared in pairs. For time
values the generator returns 0 if and 1 in case of
 . We restart the clock at each detection to eliminate
correlation between the data. The time values of course have a
certain amount of accuracy which makes equal values more
probable. To overcome this issue we discard equal values [6].

C. Amplified Spontaneous Emission
To achieve long ranges in fiber communication optical

amplification is used. The basis for this technique is
stimulated emission. During stimulated emission when a
particle in excited state interacts with an incoming photon, the
excited particle drops to a lower energy level emitting a new
photon, whose properties are the same as the ones which

started the process. For stimulated emission to be dominant
over absorption, population inversion must be present. This
means that there are more particles in excited state than in
lower energy state. However, if stimulated emission is
possible for a particle, than so is spontaneous emission, during
which an excited particle randomly drops to a lower energy
level while emitting a new photon with random properties.
This photon then can cause stimulated emission thus creating
amplified spontaneous emission, ASE. In an optical system
this phenomenon is considered noise which fortunately can be
measured, therefore it can be used as a basis for random
number generation. During generation if there is no incoming
signal in the amplifier, ASE will be the dominant interaction.
Then the optical power can be sampled, giving statistically
independent random variables. [6][15][16]

D. Measuring the randomness
As we saw earlier, there are many ways to build a random

number generator. But we need to determine the quality of the
numbers (or the bits) which are coming out of the machine.
The first problem is that we have to measure how random the
output is. This means that we need to define what randomness
is. This is a hard task, because we cannot tell certainly
whether a given finite sequence of bits is random or not. In
most cases we have to settle for a more practical solution.
Instead of declaring that the output of a generator is truly
random with absolute certainty, we will say that the output is
closer to a true random source then a given limit. Therefore
we can only say with a given probability, that the measured
output is random or not, but if this probability is high enough,
this approach is good for most usages.

The tests we can use on a generator (or the output of this
generator) can range from the very simple to the more
complex; but they have a common property: they require a
finite number of bits. This means that firstly the length of the
bit sequence is important. The longer the sequence is the better
the precision of the tests. Secondly, this means that we can
never look at the whole output of a generator, only a part of it
and we have to make a decision based on this part. It is
therefore possible that the generator will fail the same test that
it passed earlier, because on the second run the new output
will be different. To give an example of a simple test one can
think about a truly random source, e.g. the uniform
distribution. It puts out a 1 or a 0 bit with equal probability
(50%), so if one looks at a longer and longer sequence from
this source, one will find out the number of 1s and 0s is
approaching the same number. This can be interpreted as a
test: we count the 1 and 0 bits in the output of the generator
and compare them to each other.

The main goal of these tests is to measure the randomness
of the sequence which cannot be made with certainty as it was
stated earlier, that’s the reason why these tests are statistical
tests. They take a statistical property (for example the number
of 1s and 0s as mentioned above) and based on this result and
a previously given criterion (for example: how far can the
number of 1s and 0s differ from each other) can declare
whether the sequence passed or not. Most of the tests fall
under the statistical hypothesis test category. In the hypothesis
test we want to accept or reject the null-hypothesis (H0).
During the testing of a random number generator the null-

Enhancing the operational efficiency of
quantum random number generators

JUNE 2021 • VOLUME XIII • NUMBER 212

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

hypothesis is that the generator is producing random numbers.
The other hypothesis in the test is called the alternative
hypothesis (Ha). Ha is the opposite of H0: it says that the
generator isn’t producing truly random numbers. The next step
is to calculate a distribution function with the help of a
probabilistic value (most of the time these are well known
probabilistic values) while assuming that the null-hypothesis is
true. After this we select a significance level (α) on this
distribution. Generally, this is a very small value. In the RNG
testing α tends to be around 1%. Lastly, we calculate the
statistical value which the given test measures and compare it
to the significance level. If it is below α, we reject the null-
hypothesis and accept the alternative. If it is above it, we
accept the null-hypothesis and reject the alternative. Based on
our decision and the reality we have four possible outcomes. If
we accepted the null-hypothesis and it is in fact true, we chose
correctly (this has a probability of 1-α). It is the same if we
rejected it and it was false in reality (the probability of this
outcome is 1-β). The other two outcomes are called Type I and
Type II error. The Type I error occurs when we rejected H0,
but it was true. This outcome has a probability of α and is
called false positive. The Type II error is when we accept H0,
but it was false. It has a probability of β and is called false
negative. Out of these two the Type I is more acceptable and
with a good decision on the value of α we can fine tune it. In
this case we falsely brand the RNG as “not random” in the
test. But with the help of other tests we can still state at the
end that it is in fact “random”. The Type II error is harder to
manage, because here a “not random” source passed the test it
should not have. To lower the probability of the Type II error
we have to choose an acceptable value for α and for the length
of the sequence. The above mentioned information can also be
interpreted as a so called p-value. The p-value is between 0
and 1 and it is the probability of getting results at least as
extreme as the ones observed, given that the null-hypothesis is
correct. In other words it is a metric showing how strong our
evidences supporting the null-hypothesis are. To use the p-
value we compare it to α and if it is below it we reject H0. It is
important to note here that α is used as a lower and 1- α is
used as an upper bound and the p-values obtained throughout
the test should follow a uniform distribution as well.

When we want to measure the randomness of a given bit
sequence one test can only look at one property of the
sequence. Therefore we need multiple tests which we can use
and we need them to be different (in the sense that they are
testing different properties). To solve the issue certain test
were grouped together into a so-called test suite. Some of the
suites are defined by standards, other are organized by various
people.

An example for a standardized test suite is the NIST STS
(National Institution of Standards and Technology Statistical
Test Suite) [17] which consist of 15 different test and used
widely in the world. Another test is the Diehard [18] and it is
extended version the Dieharder [19] which are maintained by
a community. The Dieharder suite consists of around 100 tests
(it includes the NIST STS as well) which cover a large range
of complexity. One of these test is the 32x32 binary rank test.
This test takes 32 32-bit integer and builds a 32-by-32 matrix
of 1s and 0s. Then it calculates the rank of this matrix and
goes on for the next 32 number. Ranks less than or equal to 29

are rare, therefore they are treated as one rank. A Chi-squared
test [20] is performed on the ranks 32, 31, 30, and ≤
29,checking the uniformity of these rank groups.

One important question regarding these tests is when to use
them. Using the tests must be part of the creation process of
the generator. It is important during this time to run selected
tests which might point to possible flaws in the design. After
the generator is complete or when it is used in a real system
monitoring the randomness of the output is vital for the
underlying system which is using the numbers from the
generator and for the maintenance of the generator as well.
These tests can be used in real-time [21]. The NIST published
several recommendations on which tests to use in which part
of the generators lifecycle [22].

E. Extractors
With the help of the statistical tests we mentioned in the

previous section we can measure the quality of the numbers
produced by a generator while we are building it. This helps
us to see how far are we in the development. If we are not
satisfied with the results, we can try to make the construction
better with for example a new layout or with the help of more
precise components. But there is point where we cannot
improve the system further just by fine tuning because the
physical implementation of an RNG cannot be 100% efficient
or the physical phenomenon which the generator is based on
hasn’t got a high enough entropy. This means that we have to
find another way to improve the quality of the generated
numbers which comes after the generation phase. This is the
post-processing, where we aim to improve the original output
of the generator by making a new with better properties.

During post-processing we use extractor functions or
algorithms. Their main goal is to extract as much entropy from
the original source as possible and to create a new output
whose entropy is as close to the original source as possible and
has a better quality [23]. Previously we mentioned that a good
random number generator is close to a truly random source or
indistinguishable from it. Now we will define what this means.
The distance of two random variable can be written as:

where X and Y are random variables of the same sample space
A. If we think about our generator and a truly random source
as a random variable can modify the definition to this:

 .

In this inequality X is random variable (our generator), U is a
random variable representing the uniform distribution (a truly
random source) and ε is an upper bound for the distance. If X
satisfies this inequality we say that X is ε uniform.
 The next step is to measure the entropy of the source,
because the main objective of the extractors is to extract as
much entropy as possible and we need a way to compare the
new output to the old one. There are different ways to measure
the entropy for example the Shannon entropy but in the case of
extractors the min-entropy is the mostly used version. The
definition of the min-entropy is the following:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

hypothesis is that the generator is producing random numbers.
The other hypothesis in the test is called the alternative
hypothesis (Ha). Ha is the opposite of H0: it says that the
generator isn’t producing truly random numbers. The next step
is to calculate a distribution function with the help of a
probabilistic value (most of the time these are well known
probabilistic values) while assuming that the null-hypothesis is
true. After this we select a significance level (α) on this
distribution. Generally, this is a very small value. In the RNG
testing α tends to be around 1%. Lastly, we calculate the
statistical value which the given test measures and compare it
to the significance level. If it is below α, we reject the null-
hypothesis and accept the alternative. If it is above it, we
accept the null-hypothesis and reject the alternative. Based on
our decision and the reality we have four possible outcomes. If
we accepted the null-hypothesis and it is in fact true, we chose
correctly (this has a probability of 1-α). It is the same if we
rejected it and it was false in reality (the probability of this
outcome is 1-β). The other two outcomes are called Type I and
Type II error. The Type I error occurs when we rejected H0,
but it was true. This outcome has a probability of α and is
called false positive. The Type II error is when we accept H0,
but it was false. It has a probability of β and is called false
negative. Out of these two the Type I is more acceptable and
with a good decision on the value of α we can fine tune it. In
this case we falsely brand the RNG as “not random” in the
test. But with the help of other tests we can still state at the
end that it is in fact “random”. The Type II error is harder to
manage, because here a “not random” source passed the test it
should not have. To lower the probability of the Type II error
we have to choose an acceptable value for α and for the length
of the sequence. The above mentioned information can also be
interpreted as a so called p-value. The p-value is between 0
and 1 and it is the probability of getting results at least as
extreme as the ones observed, given that the null-hypothesis is
correct. In other words it is a metric showing how strong our
evidences supporting the null-hypothesis are. To use the p-
value we compare it to α and if it is below it we reject H0. It is
important to note here that α is used as a lower and 1- α is
used as an upper bound and the p-values obtained throughout
the test should follow a uniform distribution as well.

When we want to measure the randomness of a given bit
sequence one test can only look at one property of the
sequence. Therefore we need multiple tests which we can use
and we need them to be different (in the sense that they are
testing different properties). To solve the issue certain test
were grouped together into a so-called test suite. Some of the
suites are defined by standards, other are organized by various
people.

An example for a standardized test suite is the NIST STS
(National Institution of Standards and Technology Statistical
Test Suite) [17] which consist of 15 different test and used
widely in the world. Another test is the Diehard [18] and it is
extended version the Dieharder [19] which are maintained by
a community. The Dieharder suite consists of around 100 tests
(it includes the NIST STS as well) which cover a large range
of complexity. One of these test is the 32x32 binary rank test.
This test takes 32 32-bit integer and builds a 32-by-32 matrix
of 1s and 0s. Then it calculates the rank of this matrix and
goes on for the next 32 number. Ranks less than or equal to 29

are rare, therefore they are treated as one rank. A Chi-squared
test [20] is performed on the ranks 32, 31, 30, and ≤
29,checking the uniformity of these rank groups.

One important question regarding these tests is when to use
them. Using the tests must be part of the creation process of
the generator. It is important during this time to run selected
tests which might point to possible flaws in the design. After
the generator is complete or when it is used in a real system
monitoring the randomness of the output is vital for the
underlying system which is using the numbers from the
generator and for the maintenance of the generator as well.
These tests can be used in real-time [21]. The NIST published
several recommendations on which tests to use in which part
of the generators lifecycle [22].

E. Extractors
With the help of the statistical tests we mentioned in the

previous section we can measure the quality of the numbers
produced by a generator while we are building it. This helps
us to see how far are we in the development. If we are not
satisfied with the results, we can try to make the construction
better with for example a new layout or with the help of more
precise components. But there is point where we cannot
improve the system further just by fine tuning because the
physical implementation of an RNG cannot be 100% efficient
or the physical phenomenon which the generator is based on
hasn’t got a high enough entropy. This means that we have to
find another way to improve the quality of the generated
numbers which comes after the generation phase. This is the
post-processing, where we aim to improve the original output
of the generator by making a new with better properties.

During post-processing we use extractor functions or
algorithms. Their main goal is to extract as much entropy from
the original source as possible and to create a new output
whose entropy is as close to the original source as possible and
has a better quality [23]. Previously we mentioned that a good
random number generator is close to a truly random source or
indistinguishable from it. Now we will define what this means.
The distance of two random variable can be written as:

where X and Y are random variables of the same sample space
A. If we think about our generator and a truly random source
as a random variable can modify the definition to this:

 .

In this inequality X is random variable (our generator), U is a
random variable representing the uniform distribution (a truly
random source) and ε is an upper bound for the distance. If X
satisfies this inequality we say that X is ε uniform.
 The next step is to measure the entropy of the source,
because the main objective of the extractors is to extract as
much entropy as possible and we need a way to compare the
new output to the old one. There are different ways to measure
the entropy for example the Shannon entropy but in the case of
extractors the min-entropy is the mostly used version. The
definition of the min-entropy is the following:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

hypothesis is that the generator is producing random numbers.
The other hypothesis in the test is called the alternative
hypothesis (Ha). Ha is the opposite of H0: it says that the
generator isn’t producing truly random numbers. The next step
is to calculate a distribution function with the help of a
probabilistic value (most of the time these are well known
probabilistic values) while assuming that the null-hypothesis is
true. After this we select a significance level (α) on this
distribution. Generally, this is a very small value. In the RNG
testing α tends to be around 1%. Lastly, we calculate the
statistical value which the given test measures and compare it
to the significance level. If it is below α, we reject the null-
hypothesis and accept the alternative. If it is above it, we
accept the null-hypothesis and reject the alternative. Based on
our decision and the reality we have four possible outcomes. If
we accepted the null-hypothesis and it is in fact true, we chose
correctly (this has a probability of 1-α). It is the same if we
rejected it and it was false in reality (the probability of this
outcome is 1-β). The other two outcomes are called Type I and
Type II error. The Type I error occurs when we rejected H0,
but it was true. This outcome has a probability of α and is
called false positive. The Type II error is when we accept H0,
but it was false. It has a probability of β and is called false
negative. Out of these two the Type I is more acceptable and
with a good decision on the value of α we can fine tune it. In
this case we falsely brand the RNG as “not random” in the
test. But with the help of other tests we can still state at the
end that it is in fact “random”. The Type II error is harder to
manage, because here a “not random” source passed the test it
should not have. To lower the probability of the Type II error
we have to choose an acceptable value for α and for the length
of the sequence. The above mentioned information can also be
interpreted as a so called p-value. The p-value is between 0
and 1 and it is the probability of getting results at least as
extreme as the ones observed, given that the null-hypothesis is
correct. In other words it is a metric showing how strong our
evidences supporting the null-hypothesis are. To use the p-
value we compare it to α and if it is below it we reject H0. It is
important to note here that α is used as a lower and 1- α is
used as an upper bound and the p-values obtained throughout
the test should follow a uniform distribution as well.

When we want to measure the randomness of a given bit
sequence one test can only look at one property of the
sequence. Therefore we need multiple tests which we can use
and we need them to be different (in the sense that they are
testing different properties). To solve the issue certain test
were grouped together into a so-called test suite. Some of the
suites are defined by standards, other are organized by various
people.

An example for a standardized test suite is the NIST STS
(National Institution of Standards and Technology Statistical
Test Suite) [17] which consist of 15 different test and used
widely in the world. Another test is the Diehard [18] and it is
extended version the Dieharder [19] which are maintained by
a community. The Dieharder suite consists of around 100 tests
(it includes the NIST STS as well) which cover a large range
of complexity. One of these test is the 32x32 binary rank test.
This test takes 32 32-bit integer and builds a 32-by-32 matrix
of 1s and 0s. Then it calculates the rank of this matrix and
goes on for the next 32 number. Ranks less than or equal to 29

are rare, therefore they are treated as one rank. A Chi-squared
test [20] is performed on the ranks 32, 31, 30, and ≤
29,checking the uniformity of these rank groups.

One important question regarding these tests is when to use
them. Using the tests must be part of the creation process of
the generator. It is important during this time to run selected
tests which might point to possible flaws in the design. After
the generator is complete or when it is used in a real system
monitoring the randomness of the output is vital for the
underlying system which is using the numbers from the
generator and for the maintenance of the generator as well.
These tests can be used in real-time [21]. The NIST published
several recommendations on which tests to use in which part
of the generators lifecycle [22].

E. Extractors
With the help of the statistical tests we mentioned in the

previous section we can measure the quality of the numbers
produced by a generator while we are building it. This helps
us to see how far are we in the development. If we are not
satisfied with the results, we can try to make the construction
better with for example a new layout or with the help of more
precise components. But there is point where we cannot
improve the system further just by fine tuning because the
physical implementation of an RNG cannot be 100% efficient
or the physical phenomenon which the generator is based on
hasn’t got a high enough entropy. This means that we have to
find another way to improve the quality of the generated
numbers which comes after the generation phase. This is the
post-processing, where we aim to improve the original output
of the generator by making a new with better properties.

During post-processing we use extractor functions or
algorithms. Their main goal is to extract as much entropy from
the original source as possible and to create a new output
whose entropy is as close to the original source as possible and
has a better quality [23]. Previously we mentioned that a good
random number generator is close to a truly random source or
indistinguishable from it. Now we will define what this means.
The distance of two random variable can be written as:

where X and Y are random variables of the same sample space
A. If we think about our generator and a truly random source
as a random variable can modify the definition to this:

 .

In this inequality X is random variable (our generator), U is a
random variable representing the uniform distribution (a truly
random source) and ε is an upper bound for the distance. If X
satisfies this inequality we say that X is ε uniform.
 The next step is to measure the entropy of the source,
because the main objective of the extractors is to extract as
much entropy as possible and we need a way to compare the
new output to the old one. There are different ways to measure
the entropy for example the Shannon entropy but in the case of
extractors the min-entropy is the mostly used version. The
definition of the min-entropy is the following:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

hypothesis is that the generator is producing random numbers.
The other hypothesis in the test is called the alternative
hypothesis (Ha). Ha is the opposite of H0: it says that the
generator isn’t producing truly random numbers. The next step
is to calculate a distribution function with the help of a
probabilistic value (most of the time these are well known
probabilistic values) while assuming that the null-hypothesis is
true. After this we select a significance level (α) on this
distribution. Generally, this is a very small value. In the RNG
testing α tends to be around 1%. Lastly, we calculate the
statistical value which the given test measures and compare it
to the significance level. If it is below α, we reject the null-
hypothesis and accept the alternative. If it is above it, we
accept the null-hypothesis and reject the alternative. Based on
our decision and the reality we have four possible outcomes. If
we accepted the null-hypothesis and it is in fact true, we chose
correctly (this has a probability of 1-α). It is the same if we
rejected it and it was false in reality (the probability of this
outcome is 1-β). The other two outcomes are called Type I and
Type II error. The Type I error occurs when we rejected H0,
but it was true. This outcome has a probability of α and is
called false positive. The Type II error is when we accept H0,
but it was false. It has a probability of β and is called false
negative. Out of these two the Type I is more acceptable and
with a good decision on the value of α we can fine tune it. In
this case we falsely brand the RNG as “not random” in the
test. But with the help of other tests we can still state at the
end that it is in fact “random”. The Type II error is harder to
manage, because here a “not random” source passed the test it
should not have. To lower the probability of the Type II error
we have to choose an acceptable value for α and for the length
of the sequence. The above mentioned information can also be
interpreted as a so called p-value. The p-value is between 0
and 1 and it is the probability of getting results at least as
extreme as the ones observed, given that the null-hypothesis is
correct. In other words it is a metric showing how strong our
evidences supporting the null-hypothesis are. To use the p-
value we compare it to α and if it is below it we reject H0. It is
important to note here that α is used as a lower and 1- α is
used as an upper bound and the p-values obtained throughout
the test should follow a uniform distribution as well.

When we want to measure the randomness of a given bit
sequence one test can only look at one property of the
sequence. Therefore we need multiple tests which we can use
and we need them to be different (in the sense that they are
testing different properties). To solve the issue certain test
were grouped together into a so-called test suite. Some of the
suites are defined by standards, other are organized by various
people.

An example for a standardized test suite is the NIST STS
(National Institution of Standards and Technology Statistical
Test Suite) [17] which consist of 15 different test and used
widely in the world. Another test is the Diehard [18] and it is
extended version the Dieharder [19] which are maintained by
a community. The Dieharder suite consists of around 100 tests
(it includes the NIST STS as well) which cover a large range
of complexity. One of these test is the 32x32 binary rank test.
This test takes 32 32-bit integer and builds a 32-by-32 matrix
of 1s and 0s. Then it calculates the rank of this matrix and
goes on for the next 32 number. Ranks less than or equal to 29

are rare, therefore they are treated as one rank. A Chi-squared
test [20] is performed on the ranks 32, 31, 30, and ≤
29,checking the uniformity of these rank groups.

One important question regarding these tests is when to use
them. Using the tests must be part of the creation process of
the generator. It is important during this time to run selected
tests which might point to possible flaws in the design. After
the generator is complete or when it is used in a real system
monitoring the randomness of the output is vital for the
underlying system which is using the numbers from the
generator and for the maintenance of the generator as well.
These tests can be used in real-time [21]. The NIST published
several recommendations on which tests to use in which part
of the generators lifecycle [22].

E. Extractors
With the help of the statistical tests we mentioned in the

previous section we can measure the quality of the numbers
produced by a generator while we are building it. This helps
us to see how far are we in the development. If we are not
satisfied with the results, we can try to make the construction
better with for example a new layout or with the help of more
precise components. But there is point where we cannot
improve the system further just by fine tuning because the
physical implementation of an RNG cannot be 100% efficient
or the physical phenomenon which the generator is based on
hasn’t got a high enough entropy. This means that we have to
find another way to improve the quality of the generated
numbers which comes after the generation phase. This is the
post-processing, where we aim to improve the original output
of the generator by making a new with better properties.

During post-processing we use extractor functions or
algorithms. Their main goal is to extract as much entropy from
the original source as possible and to create a new output
whose entropy is as close to the original source as possible and
has a better quality [23]. Previously we mentioned that a good
random number generator is close to a truly random source or
indistinguishable from it. Now we will define what this means.
The distance of two random variable can be written as:

where X and Y are random variables of the same sample space
A. If we think about our generator and a truly random source
as a random variable can modify the definition to this:

 .

In this inequality X is random variable (our generator), U is a
random variable representing the uniform distribution (a truly
random source) and ε is an upper bound for the distance. If X
satisfies this inequality we say that X is ε uniform.
 The next step is to measure the entropy of the source,
because the main objective of the extractors is to extract as
much entropy as possible and we need a way to compare the
new output to the old one. There are different ways to measure
the entropy for example the Shannon entropy but in the case of
extractors the min-entropy is the mostly used version. The
definition of the min-entropy is the following:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

hypothesis is that the generator is producing random numbers.
The other hypothesis in the test is called the alternative
hypothesis (Ha). Ha is the opposite of H0: it says that the
generator isn’t producing truly random numbers. The next step
is to calculate a distribution function with the help of a
probabilistic value (most of the time these are well known
probabilistic values) while assuming that the null-hypothesis is
true. After this we select a significance level (α) on this
distribution. Generally, this is a very small value. In the RNG
testing α tends to be around 1%. Lastly, we calculate the
statistical value which the given test measures and compare it
to the significance level. If it is below α, we reject the null-
hypothesis and accept the alternative. If it is above it, we
accept the null-hypothesis and reject the alternative. Based on
our decision and the reality we have four possible outcomes. If
we accepted the null-hypothesis and it is in fact true, we chose
correctly (this has a probability of 1-α). It is the same if we
rejected it and it was false in reality (the probability of this
outcome is 1-β). The other two outcomes are called Type I and
Type II error. The Type I error occurs when we rejected H0,
but it was true. This outcome has a probability of α and is
called false positive. The Type II error is when we accept H0,
but it was false. It has a probability of β and is called false
negative. Out of these two the Type I is more acceptable and
with a good decision on the value of α we can fine tune it. In
this case we falsely brand the RNG as “not random” in the
test. But with the help of other tests we can still state at the
end that it is in fact “random”. The Type II error is harder to
manage, because here a “not random” source passed the test it
should not have. To lower the probability of the Type II error
we have to choose an acceptable value for α and for the length
of the sequence. The above mentioned information can also be
interpreted as a so called p-value. The p-value is between 0
and 1 and it is the probability of getting results at least as
extreme as the ones observed, given that the null-hypothesis is
correct. In other words it is a metric showing how strong our
evidences supporting the null-hypothesis are. To use the p-
value we compare it to α and if it is below it we reject H0. It is
important to note here that α is used as a lower and 1- α is
used as an upper bound and the p-values obtained throughout
the test should follow a uniform distribution as well.

When we want to measure the randomness of a given bit
sequence one test can only look at one property of the
sequence. Therefore we need multiple tests which we can use
and we need them to be different (in the sense that they are
testing different properties). To solve the issue certain test
were grouped together into a so-called test suite. Some of the
suites are defined by standards, other are organized by various
people.

An example for a standardized test suite is the NIST STS
(National Institution of Standards and Technology Statistical
Test Suite) [17] which consist of 15 different test and used
widely in the world. Another test is the Diehard [18] and it is
extended version the Dieharder [19] which are maintained by
a community. The Dieharder suite consists of around 100 tests
(it includes the NIST STS as well) which cover a large range
of complexity. One of these test is the 32x32 binary rank test.
This test takes 32 32-bit integer and builds a 32-by-32 matrix
of 1s and 0s. Then it calculates the rank of this matrix and
goes on for the next 32 number. Ranks less than or equal to 29

are rare, therefore they are treated as one rank. A Chi-squared
test [20] is performed on the ranks 32, 31, 30, and ≤
29,checking the uniformity of these rank groups.

One important question regarding these tests is when to use
them. Using the tests must be part of the creation process of
the generator. It is important during this time to run selected
tests which might point to possible flaws in the design. After
the generator is complete or when it is used in a real system
monitoring the randomness of the output is vital for the
underlying system which is using the numbers from the
generator and for the maintenance of the generator as well.
These tests can be used in real-time [21]. The NIST published
several recommendations on which tests to use in which part
of the generators lifecycle [22].

E. Extractors
With the help of the statistical tests we mentioned in the

previous section we can measure the quality of the numbers
produced by a generator while we are building it. This helps
us to see how far are we in the development. If we are not
satisfied with the results, we can try to make the construction
better with for example a new layout or with the help of more
precise components. But there is point where we cannot
improve the system further just by fine tuning because the
physical implementation of an RNG cannot be 100% efficient
or the physical phenomenon which the generator is based on
hasn’t got a high enough entropy. This means that we have to
find another way to improve the quality of the generated
numbers which comes after the generation phase. This is the
post-processing, where we aim to improve the original output
of the generator by making a new with better properties.

During post-processing we use extractor functions or
algorithms. Their main goal is to extract as much entropy from
the original source as possible and to create a new output
whose entropy is as close to the original source as possible and
has a better quality [23]. Previously we mentioned that a good
random number generator is close to a truly random source or
indistinguishable from it. Now we will define what this means.
The distance of two random variable can be written as:

where X and Y are random variables of the same sample space
A. If we think about our generator and a truly random source
as a random variable can modify the definition to this:

 .

In this inequality X is random variable (our generator), U is a
random variable representing the uniform distribution (a truly
random source) and ε is an upper bound for the distance. If X
satisfies this inequality we say that X is ε uniform.
 The next step is to measure the entropy of the source,
because the main objective of the extractors is to extract as
much entropy as possible and we need a way to compare the
new output to the old one. There are different ways to measure
the entropy for example the Shannon entropy but in the case of
extractors the min-entropy is the mostly used version. The
definition of the min-entropy is the following:

Enhancing the operational efficiency of
quantum random number generators

INFOCOMMUNICATIONS JOURNAL

JUNE 2021 • VOLUME XIII • NUMBER 2 13

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

where log is the base 2 logarithm and X is a random variable.
With the help of this definition we can calculate the minimum
entropy for the source if we want an ε-uniform bit sequence
with length m. For the uniform distribution the probability of
all possible outcome is 2-m. This means that the min-entropy is
m and this is the value we want to reach (or get close to it).
 We can distinguish different extractors. The first group is
the deterministic extractors. These extractors use a source
denoted with C, a min-entropy, an input with a length of n and
have an output with length k and of course they are ε-uniform.
Because they are deterministic the output only depends on the
input, this means that for the same input they will produce the
same output.
 The second group is the so-called seeded extractors. They
have the same properties as the deterministic extractors, but
they also have a seed with length d. The seed is used as an
initialization vector just like with a hash function for example.
During the creation of the new output these extractors are
using seed as well as the input. This means that the same input
won’t result in the same output (of course if the seed is the
same it will). The seed has to be a random sequence because
only then will it provide the desired effect of altering the
output in a hard to reverse way. But producing a long random
sequence could be a hard task, therefore we want to minimize
the length of seed while at same time maximize the possible
length of the output.

In our testing we chose and implemented 8 extractor
algorithms. The extractors we picked cover a wide range of
different properties. We have simple ones, which manipulate
the bits with logical operators to produce the output. But we
also have more complex algorithms, which use techniques that
are widely used in cryptography for example. Now we would
like to introduce some of these extractors.

1) The XOR Operator as an Extractor
The XOR logical operator is one of the most used operator

in computer science ranging from RAID technology to
cryptography but it can also be used as a very simple extractor
[24].

The XOR operator can be used effectively to lower the bias
of the source but only if the bits are independent. The easiest
way to use this extractor is to go over the original output of the
generator and use the XOR on the bits in pairs. This means
that the new output will have half the length of the original
one. We can go further an use the XOR n times always using
the new output as the input for the next XOR. Doing so will
lower the length of the generated output at the end 1/(n+1)
times the original.

Although this extractor is very simple, can lower the bias of
the source and can be quickly computed, it is not used,
because the independency of the output bits cannot be
guaranteed every time and it has a heavy effect on the length
of the output (therefore the possible bitrate of the generator).

2) The Von Neumann Extractor
The Von Neumann extractor was created by John Von

Neumann and it is the first extractor to be created [25].
Because it is the first extractor its main aim is to eliminate the
bias of the source (like the XOR).
 The operation of the algorithm is very simple, but just like
at the XOR it is important that the bits are independent. It
takes two bits as input and based on the values of these two it
produces one or no bit. If the two bits are equal it discards the
two bits. If they different it will give out the first one as the
output. For a uniform source the new output will have the
quarter of the length of the original.
 The Von Neumann extractor has the same problems as the
XOR. Although it is easy to use and it can eliminate the bias,
it has a heavy toll on the length of the output.

3) Other variants of the Von Neumann extractor
Since the Von Neumann extractor was the first extractor,

many have modified its operation. The two main problems the
original design had are that it discards to many bits of the
original bitstream and only has 2 bit long input. To overcome
these issues the iterating [26] and the N bit Von Neuman
extractors have been created [27][28].

In the case of the Iterating Von Neumann the original
extractor is used as a building block. The discarded bits are
reused as new input, but before this they are modified with
different operators. For the N bit Von Neumann extractor the
original design was extended in such a way that the length of
the input can be longer than two bits.
4) H Function

The H function was created by Markus Dichtl [29] and just
like the previous algorithms this extractor can also be simply
implemented with logical gates, but compared to them it can
achieve better result (as we will see in the tests).

It takes 16 bits as an input and gives out 8 bits as output and
presumes that the bits are independent. In this area it is similar
to the XOR. The algorithm works in the following way: We
take the input bits and make two groups. The first is which
is the first 8 bit, the second is which is the next 8 bit. The
output of the algorithm is

 .

Where rotate_left(a1,1) means rotating the to the left with 1
step by taking the leftmost bit and putting it in the rightmost
position.

Although the H function produces a new sequence with half
the length of the original one, it can better reduce the bias
compared to the XOR operator. It can be implemented simply
with logic gates and it is very efficient to use.

5) Hash Function As Extractors
Hash functions were not designed with the intent to be used

as extractors but today they can be used as extractor
algorithms for example during key derivation in cryptography
[30].

A deterministic function which takes an m bit length input
and gives out an n bit length output have to have specific
properties to be called a hash function. These include collision

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

hypothesis is that the generator is producing random numbers.
The other hypothesis in the test is called the alternative
hypothesis (Ha). Ha is the opposite of H0: it says that the
generator isn’t producing truly random numbers. The next step
is to calculate a distribution function with the help of a
probabilistic value (most of the time these are well known
probabilistic values) while assuming that the null-hypothesis is
true. After this we select a significance level (α) on this
distribution. Generally, this is a very small value. In the RNG
testing α tends to be around 1%. Lastly, we calculate the
statistical value which the given test measures and compare it
to the significance level. If it is below α, we reject the null-
hypothesis and accept the alternative. If it is above it, we
accept the null-hypothesis and reject the alternative. Based on
our decision and the reality we have four possible outcomes. If
we accepted the null-hypothesis and it is in fact true, we chose
correctly (this has a probability of 1-α). It is the same if we
rejected it and it was false in reality (the probability of this
outcome is 1-β). The other two outcomes are called Type I and
Type II error. The Type I error occurs when we rejected H0,
but it was true. This outcome has a probability of α and is
called false positive. The Type II error is when we accept H0,
but it was false. It has a probability of β and is called false
negative. Out of these two the Type I is more acceptable and
with a good decision on the value of α we can fine tune it. In
this case we falsely brand the RNG as “not random” in the
test. But with the help of other tests we can still state at the
end that it is in fact “random”. The Type II error is harder to
manage, because here a “not random” source passed the test it
should not have. To lower the probability of the Type II error
we have to choose an acceptable value for α and for the length
of the sequence. The above mentioned information can also be
interpreted as a so called p-value. The p-value is between 0
and 1 and it is the probability of getting results at least as
extreme as the ones observed, given that the null-hypothesis is
correct. In other words it is a metric showing how strong our
evidences supporting the null-hypothesis are. To use the p-
value we compare it to α and if it is below it we reject H0. It is
important to note here that α is used as a lower and 1- α is
used as an upper bound and the p-values obtained throughout
the test should follow a uniform distribution as well.

When we want to measure the randomness of a given bit
sequence one test can only look at one property of the
sequence. Therefore we need multiple tests which we can use
and we need them to be different (in the sense that they are
testing different properties). To solve the issue certain test
were grouped together into a so-called test suite. Some of the
suites are defined by standards, other are organized by various
people.

An example for a standardized test suite is the NIST STS
(National Institution of Standards and Technology Statistical
Test Suite) [17] which consist of 15 different test and used
widely in the world. Another test is the Diehard [18] and it is
extended version the Dieharder [19] which are maintained by
a community. The Dieharder suite consists of around 100 tests
(it includes the NIST STS as well) which cover a large range
of complexity. One of these test is the 32x32 binary rank test.
This test takes 32 32-bit integer and builds a 32-by-32 matrix
of 1s and 0s. Then it calculates the rank of this matrix and
goes on for the next 32 number. Ranks less than or equal to 29

are rare, therefore they are treated as one rank. A Chi-squared
test [20] is performed on the ranks 32, 31, 30, and ≤
29,checking the uniformity of these rank groups.

One important question regarding these tests is when to use
them. Using the tests must be part of the creation process of
the generator. It is important during this time to run selected
tests which might point to possible flaws in the design. After
the generator is complete or when it is used in a real system
monitoring the randomness of the output is vital for the
underlying system which is using the numbers from the
generator and for the maintenance of the generator as well.
These tests can be used in real-time [21]. The NIST published
several recommendations on which tests to use in which part
of the generators lifecycle [22].

E. Extractors
With the help of the statistical tests we mentioned in the

previous section we can measure the quality of the numbers
produced by a generator while we are building it. This helps
us to see how far are we in the development. If we are not
satisfied with the results, we can try to make the construction
better with for example a new layout or with the help of more
precise components. But there is point where we cannot
improve the system further just by fine tuning because the
physical implementation of an RNG cannot be 100% efficient
or the physical phenomenon which the generator is based on
hasn’t got a high enough entropy. This means that we have to
find another way to improve the quality of the generated
numbers which comes after the generation phase. This is the
post-processing, where we aim to improve the original output
of the generator by making a new with better properties.

During post-processing we use extractor functions or
algorithms. Their main goal is to extract as much entropy from
the original source as possible and to create a new output
whose entropy is as close to the original source as possible and
has a better quality [23]. Previously we mentioned that a good
random number generator is close to a truly random source or
indistinguishable from it. Now we will define what this means.
The distance of two random variable can be written as:

where X and Y are random variables of the same sample space
A. If we think about our generator and a truly random source
as a random variable can modify the definition to this:

 .

In this inequality X is random variable (our generator), U is a
random variable representing the uniform distribution (a truly
random source) and ε is an upper bound for the distance. If X
satisfies this inequality we say that X is ε uniform.
 The next step is to measure the entropy of the source,
because the main objective of the extractors is to extract as
much entropy as possible and we need a way to compare the
new output to the old one. There are different ways to measure
the entropy for example the Shannon entropy but in the case of
extractors the min-entropy is the mostly used version. The
definition of the min-entropy is the following:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

hypothesis is that the generator is producing random numbers.
The other hypothesis in the test is called the alternative
hypothesis (Ha). Ha is the opposite of H0: it says that the
generator isn’t producing truly random numbers. The next step
is to calculate a distribution function with the help of a
probabilistic value (most of the time these are well known
probabilistic values) while assuming that the null-hypothesis is
true. After this we select a significance level (α) on this
distribution. Generally, this is a very small value. In the RNG
testing α tends to be around 1%. Lastly, we calculate the
statistical value which the given test measures and compare it
to the significance level. If it is below α, we reject the null-
hypothesis and accept the alternative. If it is above it, we
accept the null-hypothesis and reject the alternative. Based on
our decision and the reality we have four possible outcomes. If
we accepted the null-hypothesis and it is in fact true, we chose
correctly (this has a probability of 1-α). It is the same if we
rejected it and it was false in reality (the probability of this
outcome is 1-β). The other two outcomes are called Type I and
Type II error. The Type I error occurs when we rejected H0,
but it was true. This outcome has a probability of α and is
called false positive. The Type II error is when we accept H0,
but it was false. It has a probability of β and is called false
negative. Out of these two the Type I is more acceptable and
with a good decision on the value of α we can fine tune it. In
this case we falsely brand the RNG as “not random” in the
test. But with the help of other tests we can still state at the
end that it is in fact “random”. The Type II error is harder to
manage, because here a “not random” source passed the test it
should not have. To lower the probability of the Type II error
we have to choose an acceptable value for α and for the length
of the sequence. The above mentioned information can also be
interpreted as a so called p-value. The p-value is between 0
and 1 and it is the probability of getting results at least as
extreme as the ones observed, given that the null-hypothesis is
correct. In other words it is a metric showing how strong our
evidences supporting the null-hypothesis are. To use the p-
value we compare it to α and if it is below it we reject H0. It is
important to note here that α is used as a lower and 1- α is
used as an upper bound and the p-values obtained throughout
the test should follow a uniform distribution as well.

When we want to measure the randomness of a given bit
sequence one test can only look at one property of the
sequence. Therefore we need multiple tests which we can use
and we need them to be different (in the sense that they are
testing different properties). To solve the issue certain test
were grouped together into a so-called test suite. Some of the
suites are defined by standards, other are organized by various
people.

An example for a standardized test suite is the NIST STS
(National Institution of Standards and Technology Statistical
Test Suite) [17] which consist of 15 different test and used
widely in the world. Another test is the Diehard [18] and it is
extended version the Dieharder [19] which are maintained by
a community. The Dieharder suite consists of around 100 tests
(it includes the NIST STS as well) which cover a large range
of complexity. One of these test is the 32x32 binary rank test.
This test takes 32 32-bit integer and builds a 32-by-32 matrix
of 1s and 0s. Then it calculates the rank of this matrix and
goes on for the next 32 number. Ranks less than or equal to 29

are rare, therefore they are treated as one rank. A Chi-squared
test [20] is performed on the ranks 32, 31, 30, and ≤
29,checking the uniformity of these rank groups.

One important question regarding these tests is when to use
them. Using the tests must be part of the creation process of
the generator. It is important during this time to run selected
tests which might point to possible flaws in the design. After
the generator is complete or when it is used in a real system
monitoring the randomness of the output is vital for the
underlying system which is using the numbers from the
generator and for the maintenance of the generator as well.
These tests can be used in real-time [21]. The NIST published
several recommendations on which tests to use in which part
of the generators lifecycle [22].

E. Extractors
With the help of the statistical tests we mentioned in the

previous section we can measure the quality of the numbers
produced by a generator while we are building it. This helps
us to see how far are we in the development. If we are not
satisfied with the results, we can try to make the construction
better with for example a new layout or with the help of more
precise components. But there is point where we cannot
improve the system further just by fine tuning because the
physical implementation of an RNG cannot be 100% efficient
or the physical phenomenon which the generator is based on
hasn’t got a high enough entropy. This means that we have to
find another way to improve the quality of the generated
numbers which comes after the generation phase. This is the
post-processing, where we aim to improve the original output
of the generator by making a new with better properties.

During post-processing we use extractor functions or
algorithms. Their main goal is to extract as much entropy from
the original source as possible and to create a new output
whose entropy is as close to the original source as possible and
has a better quality [23]. Previously we mentioned that a good
random number generator is close to a truly random source or
indistinguishable from it. Now we will define what this means.
The distance of two random variable can be written as:

where X and Y are random variables of the same sample space
A. If we think about our generator and a truly random source
as a random variable can modify the definition to this:

 .

In this inequality X is random variable (our generator), U is a
random variable representing the uniform distribution (a truly
random source) and ε is an upper bound for the distance. If X
satisfies this inequality we say that X is ε uniform.
 The next step is to measure the entropy of the source,
because the main objective of the extractors is to extract as
much entropy as possible and we need a way to compare the
new output to the old one. There are different ways to measure
the entropy for example the Shannon entropy but in the case of
extractors the min-entropy is the mostly used version. The
definition of the min-entropy is the following:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

hypothesis is that the generator is producing random numbers.
The other hypothesis in the test is called the alternative
hypothesis (Ha). Ha is the opposite of H0: it says that the
generator isn’t producing truly random numbers. The next step
is to calculate a distribution function with the help of a
probabilistic value (most of the time these are well known
probabilistic values) while assuming that the null-hypothesis is
true. After this we select a significance level (α) on this
distribution. Generally, this is a very small value. In the RNG
testing α tends to be around 1%. Lastly, we calculate the
statistical value which the given test measures and compare it
to the significance level. If it is below α, we reject the null-
hypothesis and accept the alternative. If it is above it, we
accept the null-hypothesis and reject the alternative. Based on
our decision and the reality we have four possible outcomes. If
we accepted the null-hypothesis and it is in fact true, we chose
correctly (this has a probability of 1-α). It is the same if we
rejected it and it was false in reality (the probability of this
outcome is 1-β). The other two outcomes are called Type I and
Type II error. The Type I error occurs when we rejected H0,
but it was true. This outcome has a probability of α and is
called false positive. The Type II error is when we accept H0,
but it was false. It has a probability of β and is called false
negative. Out of these two the Type I is more acceptable and
with a good decision on the value of α we can fine tune it. In
this case we falsely brand the RNG as “not random” in the
test. But with the help of other tests we can still state at the
end that it is in fact “random”. The Type II error is harder to
manage, because here a “not random” source passed the test it
should not have. To lower the probability of the Type II error
we have to choose an acceptable value for α and for the length
of the sequence. The above mentioned information can also be
interpreted as a so called p-value. The p-value is between 0
and 1 and it is the probability of getting results at least as
extreme as the ones observed, given that the null-hypothesis is
correct. In other words it is a metric showing how strong our
evidences supporting the null-hypothesis are. To use the p-
value we compare it to α and if it is below it we reject H0. It is
important to note here that α is used as a lower and 1- α is
used as an upper bound and the p-values obtained throughout
the test should follow a uniform distribution as well.

When we want to measure the randomness of a given bit
sequence one test can only look at one property of the
sequence. Therefore we need multiple tests which we can use
and we need them to be different (in the sense that they are
testing different properties). To solve the issue certain test
were grouped together into a so-called test suite. Some of the
suites are defined by standards, other are organized by various
people.

An example for a standardized test suite is the NIST STS
(National Institution of Standards and Technology Statistical
Test Suite) [17] which consist of 15 different test and used
widely in the world. Another test is the Diehard [18] and it is
extended version the Dieharder [19] which are maintained by
a community. The Dieharder suite consists of around 100 tests
(it includes the NIST STS as well) which cover a large range
of complexity. One of these test is the 32x32 binary rank test.
This test takes 32 32-bit integer and builds a 32-by-32 matrix
of 1s and 0s. Then it calculates the rank of this matrix and
goes on for the next 32 number. Ranks less than or equal to 29

are rare, therefore they are treated as one rank. A Chi-squared
test [20] is performed on the ranks 32, 31, 30, and ≤
29,checking the uniformity of these rank groups.

One important question regarding these tests is when to use
them. Using the tests must be part of the creation process of
the generator. It is important during this time to run selected
tests which might point to possible flaws in the design. After
the generator is complete or when it is used in a real system
monitoring the randomness of the output is vital for the
underlying system which is using the numbers from the
generator and for the maintenance of the generator as well.
These tests can be used in real-time [21]. The NIST published
several recommendations on which tests to use in which part
of the generators lifecycle [22].

E. Extractors
With the help of the statistical tests we mentioned in the

previous section we can measure the quality of the numbers
produced by a generator while we are building it. This helps
us to see how far are we in the development. If we are not
satisfied with the results, we can try to make the construction
better with for example a new layout or with the help of more
precise components. But there is point where we cannot
improve the system further just by fine tuning because the
physical implementation of an RNG cannot be 100% efficient
or the physical phenomenon which the generator is based on
hasn’t got a high enough entropy. This means that we have to
find another way to improve the quality of the generated
numbers which comes after the generation phase. This is the
post-processing, where we aim to improve the original output
of the generator by making a new with better properties.

During post-processing we use extractor functions or
algorithms. Their main goal is to extract as much entropy from
the original source as possible and to create a new output
whose entropy is as close to the original source as possible and
has a better quality [23]. Previously we mentioned that a good
random number generator is close to a truly random source or
indistinguishable from it. Now we will define what this means.
The distance of two random variable can be written as:

where X and Y are random variables of the same sample space
A. If we think about our generator and a truly random source
as a random variable can modify the definition to this:

 .

In this inequality X is random variable (our generator), U is a
random variable representing the uniform distribution (a truly
random source) and ε is an upper bound for the distance. If X
satisfies this inequality we say that X is ε uniform.
 The next step is to measure the entropy of the source,
because the main objective of the extractors is to extract as
much entropy as possible and we need a way to compare the
new output to the old one. There are different ways to measure
the entropy for example the Shannon entropy but in the case of
extractors the min-entropy is the mostly used version. The
definition of the min-entropy is the following:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

hypothesis is that the generator is producing random numbers.
The other hypothesis in the test is called the alternative
hypothesis (Ha). Ha is the opposite of H0: it says that the
generator isn’t producing truly random numbers. The next step
is to calculate a distribution function with the help of a
probabilistic value (most of the time these are well known
probabilistic values) while assuming that the null-hypothesis is
true. After this we select a significance level (α) on this
distribution. Generally, this is a very small value. In the RNG
testing α tends to be around 1%. Lastly, we calculate the
statistical value which the given test measures and compare it
to the significance level. If it is below α, we reject the null-
hypothesis and accept the alternative. If it is above it, we
accept the null-hypothesis and reject the alternative. Based on
our decision and the reality we have four possible outcomes. If
we accepted the null-hypothesis and it is in fact true, we chose
correctly (this has a probability of 1-α). It is the same if we
rejected it and it was false in reality (the probability of this
outcome is 1-β). The other two outcomes are called Type I and
Type II error. The Type I error occurs when we rejected H0,
but it was true. This outcome has a probability of α and is
called false positive. The Type II error is when we accept H0,
but it was false. It has a probability of β and is called false
negative. Out of these two the Type I is more acceptable and
with a good decision on the value of α we can fine tune it. In
this case we falsely brand the RNG as “not random” in the
test. But with the help of other tests we can still state at the
end that it is in fact “random”. The Type II error is harder to
manage, because here a “not random” source passed the test it
should not have. To lower the probability of the Type II error
we have to choose an acceptable value for α and for the length
of the sequence. The above mentioned information can also be
interpreted as a so called p-value. The p-value is between 0
and 1 and it is the probability of getting results at least as
extreme as the ones observed, given that the null-hypothesis is
correct. In other words it is a metric showing how strong our
evidences supporting the null-hypothesis are. To use the p-
value we compare it to α and if it is below it we reject H0. It is
important to note here that α is used as a lower and 1- α is
used as an upper bound and the p-values obtained throughout
the test should follow a uniform distribution as well.

When we want to measure the randomness of a given bit
sequence one test can only look at one property of the
sequence. Therefore we need multiple tests which we can use
and we need them to be different (in the sense that they are
testing different properties). To solve the issue certain test
were grouped together into a so-called test suite. Some of the
suites are defined by standards, other are organized by various
people.

An example for a standardized test suite is the NIST STS
(National Institution of Standards and Technology Statistical
Test Suite) [17] which consist of 15 different test and used
widely in the world. Another test is the Diehard [18] and it is
extended version the Dieharder [19] which are maintained by
a community. The Dieharder suite consists of around 100 tests
(it includes the NIST STS as well) which cover a large range
of complexity. One of these test is the 32x32 binary rank test.
This test takes 32 32-bit integer and builds a 32-by-32 matrix
of 1s and 0s. Then it calculates the rank of this matrix and
goes on for the next 32 number. Ranks less than or equal to 29

are rare, therefore they are treated as one rank. A Chi-squared
test [20] is performed on the ranks 32, 31, 30, and ≤
29,checking the uniformity of these rank groups.

One important question regarding these tests is when to use
them. Using the tests must be part of the creation process of
the generator. It is important during this time to run selected
tests which might point to possible flaws in the design. After
the generator is complete or when it is used in a real system
monitoring the randomness of the output is vital for the
underlying system which is using the numbers from the
generator and for the maintenance of the generator as well.
These tests can be used in real-time [21]. The NIST published
several recommendations on which tests to use in which part
of the generators lifecycle [22].

E. Extractors
With the help of the statistical tests we mentioned in the

previous section we can measure the quality of the numbers
produced by a generator while we are building it. This helps
us to see how far are we in the development. If we are not
satisfied with the results, we can try to make the construction
better with for example a new layout or with the help of more
precise components. But there is point where we cannot
improve the system further just by fine tuning because the
physical implementation of an RNG cannot be 100% efficient
or the physical phenomenon which the generator is based on
hasn’t got a high enough entropy. This means that we have to
find another way to improve the quality of the generated
numbers which comes after the generation phase. This is the
post-processing, where we aim to improve the original output
of the generator by making a new with better properties.

During post-processing we use extractor functions or
algorithms. Their main goal is to extract as much entropy from
the original source as possible and to create a new output
whose entropy is as close to the original source as possible and
has a better quality [23]. Previously we mentioned that a good
random number generator is close to a truly random source or
indistinguishable from it. Now we will define what this means.
The distance of two random variable can be written as:

where X and Y are random variables of the same sample space
A. If we think about our generator and a truly random source
as a random variable can modify the definition to this:

 .

In this inequality X is random variable (our generator), U is a
random variable representing the uniform distribution (a truly
random source) and ε is an upper bound for the distance. If X
satisfies this inequality we say that X is ε uniform.
 The next step is to measure the entropy of the source,
because the main objective of the extractors is to extract as
much entropy as possible and we need a way to compare the
new output to the old one. There are different ways to measure
the entropy for example the Shannon entropy but in the case of
extractors the min-entropy is the mostly used version. The
definition of the min-entropy is the following:

Enhancing the operational efficiency of
quantum random number generators

JUNE 2021 • VOLUME XIII • NUMBER 214

INFOCOMMUNICATIONS JOURNAL

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

resistance, the avalanche effect, one-way property etc. The
properties of a hash function make it a good choice for
extraction. The output values are uniformly distributed and
one bit difference between two inputs result in a bigger
difference between the outputs. Other than that the length of
the output can be the same as the input therefore the bitrate of
the generator does not change. The physical implementation of
a hash function can be achieved with good efficiency because
there are specific hardware components which are designed
for the fast computation of specific hash functions.

One of these hash functions is the Toeplitz hashing [31],
where a Toeplitz matrix is used during extraction where the
input bits (divided into smaller groups) as a vector is
multiplied with this matrix.

6) Using S-boxes as extractors
Substitution boxes (S-boxes) are mostly used in symmetric
key encryption algorithms. For example they are used in the
Data Encryption Standard (DES) [32]. They take an m long
bits of input and give out bits of n length, substituting the
input for the output. As their main goal in encryption systems
is to increase confusion, they can be used as extractors [33].

III. TESTING THE GENERATORS AND THE EXTRACTORS
Our main objective during the testing was to find out how

can the different extractors improve the quality of the original
outputs from the generator. During the testing of the two
generators we firstly implemented the extractors we
previously introduced. For running the test we used the
Dieharder test suite which we introduced in the previous
chapter. This test suite has a command line program which can
be used on Linux based operating systems and provides a
variety of possible arguments which can be given to the test
[34].

In the implementation phase we decided that for the N bit
Von Neumann extractor we will implement the N=4 case and
for the iterative Von Neuman extractor we use 2 iteration. For
the extractor which uses the Toeplitz matrix we generated
Toeplitz matrix with the help of a PRNG. For the S-boxes we
used the one which can be found in DES. For the hash
function we chose the SHA-256.

After we implemented the extractors we had to choose the
tests we wanted to run. We chose 19 test from the Dieharder
test suite from which 16 was part of the Dierharder and 3 was
part of the NIST STS. We only chose this subset of the
Dierharder tests, because the generators were already tested
with the NIST STS in previously published paper [21] and our
main goal was to demonstrate the effect of the extractors on
the original output. Therefore the results we will be presenting
in the following subsections cannot be taken as a thorough
statistical test of the generators.

After we chose the tests we set up the testing environment.
We gathered data from the two generators. In case of the
generator which is based on the arrival times of photons the
size of the data was bigger. After this we ran the tests on the
original output as well as the new ones which were produced
by the 8 implemented extractor. We summarized the result in
tables. In the rows we can see the tests, in the columns we can
see the name of the tested outputs. If the generator PASSED

the given test we can see the p-value it has achieved, if it
failed it we can see an “F”.

A. Testing the ASE generator
The first generator we tested was the ASE generator. First

of all we have to note that during the creation of the original
output we deliberately introduced oversampling into the
creation process. This resulted in a higher bitrate, but as we
will see it heavily effected the quality of the numbers.

Table 1 shows the results of the original output as well as 4
simple extractors. We can see the effect of the oversampling.
The original output could only pass 1 test out of 19. The
simple extractors could slightly improve the quality, only 1 or
2 more tests were successful with their help. This correlates
with the previously mentioned information about these
extractors.

Table 2 shows the results of the 4 more complex extractors.
As we can see they performed much better compared to the
previous ones. The H function performed really good
considering it is simple construction and the hash function
could almost eliminate all the failed tests. During the testing of
this generator, we found that if there is a problem in the
creation process (here, for example oversampling) with the
help of extractors we cannot eliminate it perfectly, but we can
mitigate the effect it has on the quality of the numbers. This is
important, because there could be an underlying system which
uses the number created by the generator and it requires a high
bitrate. If we can only provide the desired bitrate with
oversampling then the extractors could help us meet some of
the quality requirements.

B. Testing The Generator Based On The Arrival Times Of
Photons

The second generator we tested was the one which is based
on the arrival times of photons.

Table 3 shows the results of the original and the 4 simple
extractors. We can see that the original output achieved a good
result, only 2 out 19 tests failed. The explanation for the 2
failed test is the minimal inaccuracy of the hardware
components in the generator (for example the photon sensor).
The extractors couldn’t improve the quality of the output to a
perfect case but the XOR for example only failed 1 test. Table
4 shows the results for the second group of extractors. As we
can see they performed better. The H function and the hash
function were able to achieve a perfect result, eliminating the
2 failed test in the original one. The other 2 extractor achieved
good results as well. We can conclude from the testing of this
generator that with the help of extractors we can eliminate the
negative effects the physical implementation introduces to the
system.

IV. CONCLUSION
In our paper we presented the concept of QRNGs and also

briefly presented two of techniques which are used in these
generators during the creation of the numbers. We introduced
selected tests which can be used to determine the quality of the
generated numbers on a probabilistic basis. After this we
presented the idea of extractors and showed where they fit into
in the lifecycle of the generator.

Enhancing the operational efficiency of
quantum random number generators

INFOCOMMUNICATIONS JOURNAL

JUNE 2021 • VOLUME XIII • NUMBER 2 15

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

resistance, the avalanche effect, one-way property etc. The
properties of a hash function make it a good choice for
extraction. The output values are uniformly distributed and
one bit difference between two inputs result in a bigger
difference between the outputs. Other than that the length of
the output can be the same as the input therefore the bitrate of
the generator does not change. The physical implementation of
a hash function can be achieved with good efficiency because
there are specific hardware components which are designed
for the fast computation of specific hash functions.

One of these hash functions is the Toeplitz hashing [31],
where a Toeplitz matrix is used during extraction where the
input bits (divided into smaller groups) as a vector is
multiplied with this matrix.

6) Using S-boxes as extractors
Substitution boxes (S-boxes) are mostly used in symmetric
key encryption algorithms. For example they are used in the
Data Encryption Standard (DES) [32]. They take an m long
bits of input and give out bits of n length, substituting the
input for the output. As their main goal in encryption systems
is to increase confusion, they can be used as extractors [33].

III. TESTING THE GENERATORS AND THE EXTRACTORS
Our main objective during the testing was to find out how

can the different extractors improve the quality of the original
outputs from the generator. During the testing of the two
generators we firstly implemented the extractors we
previously introduced. For running the test we used the
Dieharder test suite which we introduced in the previous
chapter. This test suite has a command line program which can
be used on Linux based operating systems and provides a
variety of possible arguments which can be given to the test
[34].

In the implementation phase we decided that for the N bit
Von Neumann extractor we will implement the N=4 case and
for the iterative Von Neuman extractor we use 2 iteration. For
the extractor which uses the Toeplitz matrix we generated
Toeplitz matrix with the help of a PRNG. For the S-boxes we
used the one which can be found in DES. For the hash
function we chose the SHA-256.

After we implemented the extractors we had to choose the
tests we wanted to run. We chose 19 test from the Dieharder
test suite from which 16 was part of the Dierharder and 3 was
part of the NIST STS. We only chose this subset of the
Dierharder tests, because the generators were already tested
with the NIST STS in previously published paper [21] and our
main goal was to demonstrate the effect of the extractors on
the original output. Therefore the results we will be presenting
in the following subsections cannot be taken as a thorough
statistical test of the generators.

After we chose the tests we set up the testing environment.
We gathered data from the two generators. In case of the
generator which is based on the arrival times of photons the
size of the data was bigger. After this we ran the tests on the
original output as well as the new ones which were produced
by the 8 implemented extractor. We summarized the result in
tables. In the rows we can see the tests, in the columns we can
see the name of the tested outputs. If the generator PASSED

the given test we can see the p-value it has achieved, if it
failed it we can see an “F”.

A. Testing the ASE generator
The first generator we tested was the ASE generator. First

of all we have to note that during the creation of the original
output we deliberately introduced oversampling into the
creation process. This resulted in a higher bitrate, but as we
will see it heavily effected the quality of the numbers.

Table 1 shows the results of the original output as well as 4
simple extractors. We can see the effect of the oversampling.
The original output could only pass 1 test out of 19. The
simple extractors could slightly improve the quality, only 1 or
2 more tests were successful with their help. This correlates
with the previously mentioned information about these
extractors.

Table 2 shows the results of the 4 more complex extractors.
As we can see they performed much better compared to the
previous ones. The H function performed really good
considering it is simple construction and the hash function
could almost eliminate all the failed tests. During the testing of
this generator, we found that if there is a problem in the
creation process (here, for example oversampling) with the
help of extractors we cannot eliminate it perfectly, but we can
mitigate the effect it has on the quality of the numbers. This is
important, because there could be an underlying system which
uses the number created by the generator and it requires a high
bitrate. If we can only provide the desired bitrate with
oversampling then the extractors could help us meet some of
the quality requirements.

B. Testing The Generator Based On The Arrival Times Of
Photons

The second generator we tested was the one which is based
on the arrival times of photons.

Table 3 shows the results of the original and the 4 simple
extractors. We can see that the original output achieved a good
result, only 2 out 19 tests failed. The explanation for the 2
failed test is the minimal inaccuracy of the hardware
components in the generator (for example the photon sensor).
The extractors couldn’t improve the quality of the output to a
perfect case but the XOR for example only failed 1 test. Table
4 shows the results for the second group of extractors. As we
can see they performed better. The H function and the hash
function were able to achieve a perfect result, eliminating the
2 failed test in the original one. The other 2 extractor achieved
good results as well. We can conclude from the testing of this
generator that with the help of extractors we can eliminate the
negative effects the physical implementation introduces to the
system.

IV. CONCLUSION
In our paper we presented the concept of QRNGs and also

briefly presented two of techniques which are used in these
generators during the creation of the numbers. We introduced
selected tests which can be used to determine the quality of the
generated numbers on a probabilistic basis. After this we
presented the idea of extractors and showed where they fit into
in the lifecycle of the generator.

Name of the test H function S-box Toeplitz-matrix SHA256

diehard_birthdays 0.946 0.136 F F

diehard_operm 50.187 0.359 F 0.414

diehard_rank_32x32 0.467 0.101 F 0.861

diehard_rank_6x8 0.419 F F 0.497

diehard_bitstream F F F 0.822

diehard_opso F F F 0.231

diehard_oqso 0.010 F F F

diehard_dna 0.035 F F 0.382

diehard_count_1s_str F F F 0.361

diehard_count_1s_byt 0.196 F F 0.406

diehard_parking_lot 0.061 F F 0.011

diehard_2dsphere 0.872 F F 0.564

diehard_3dsphere 0.844 0.097 F 0.823

diehard_squeeze F F F 0.954

diehard_runs F 0.475 0.522 0.198

diehard_craps F F F F

sts_monobit F F F 0.062

sts_runs F F F 0.322

sts_serial F F F 0.563

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

We have presented 8 extractors, together with their operation
and listed some of their strengths and weaknesses. In the last
part of our paper we concentrated on these 8 extractors and
their effect on the quality of the outputs produced by two
QRNGs. We ran several statistical tests to determine how the
extractors effect the properties of the numbers and presented
the outcome of these tests on both generators. After we
performed the tests we concluded that post-processing can be
utilized to enhance the output of the generators, but we have to
select the right extractors as not all of them can perform

equally. While there are ones which can greatly increase the
number of passed tests, they can also decrease the possible
output speed of the generator. Another important property we
found was that in case of a miscalibration during the
generation process inside the generator the extractors can to a
certain degree mitigate the negative effects. The chosen tests
do not cover all the aspects which are needed for a deep
statistical testing of the complete post-processing with these
extractors, therefore as a future improvement it can be studied.

Table 1: The results for the generator based on amplified spontaneous emission Part 1.

Name of the test H function S-box Toeplitz-matrix SHA256

diehard_birthdays 0.946 0.136 F F

diehard_operm5 0.187 0.359 F 0.414

diehard_rank_32x32 0.467 0.101 F 0.861

diehard_rank_6x8 0.419 F F 0.497

diehard_bitstream F F F 0.822

diehard_opso F F F 0.231

diehard_oqso 0.010 F F F

diehard_dna 0.035 F F 0.382

diehard_count_1s_str F F F 0.361

diehard_count_1s_byt 0.196 F F 0.406

diehard_parking_lot 0.061 F F 0.011

diehard_2dsphere 0.872 F F 0.564

diehard_3dsphere 0.844 0.097 F 0.823

diehard_squeeze F F F 0.954

diehard_runs F 0.475 0.522 0.198

diehard_craps F F F F

sts_monobit F F F 0.062

sts_runs F F F 0.322

sts_serial F F F 0.563

Name of the test Original XOR Von Neumann Iterating Von Neumann 4 bit Von Neumann

diehard_birthdays F F F F F

TABLE I
The results for the generator based on amplified spontaneous emission Part 1.

Enhancing the operational efficiency of
quantum random number generators

JUNE 2021 • VOLUME XIII • NUMBER 216

INFOCOMMUNICATIONS JOURNAL

Name of the test Original XOR Von Neumann Iterating Von Neumann 4 bit Von Neumann

diehard_birthdays 0.564 0.810 0.536 0.100 0.853

diehard_operm5 0.952 0.163 0.066 0.463 0.360

diehard_rank_32x32 0.313 0.948 0.576 0.327 0.917

diehard_rank_6x8 0.121 0.817 0.606 0.884 F

diehard_bitstream 0.305 0.121 0.524 0.297 F

diehard_opso F 0.448 0.227 0.068 F

diehard_oqso 0.927 0.691 0.987 0.134 F

diehard_dna 0.549 0.602 0.972 0.533 F

diehard_count_1s_str 0.927 0.976 0.935 0.540 F

diehard_count_1s_byt 0.941 0.875 0.674 0.821 F

diehard_parking_lot 0.863 0.100 0.273 0.012 F

diehard_2dsphere 0.576 0.336 0.754 F F

diehard_3dsphere 0.574 0.982 0.575 0.031 0.246

diehard_squeeze 0.114 0.498 0.043 0.013 F

diehard_runs 0.176 0.805 0.684 0.284 0.419

diehard_craps 0.307 0.711 F 0.737 F

sts_monobit 0.360 F 0.762 0.249 F

sts_runs F 0.892 F F F

sts_serial 0.570 0.459 0.548 0.453 F

TABLE II
The results for the generator based on amplified spontaneous emission Part 2.

TABLE III
 The results for the generator based on the arrival times of photons Part 1.

Name of the test Original XOR Von Neumann Iterating Von Neumann 4 bit Von Neumann

diehard_birthdays F F F F F

diehard_operm5 F 0.080 F F 0.078

diehard_rank_32x32 0.565 0.042 0.036 0.479 0.215

diehard_rank_6x8 F F F F F

diehard_bitstream F F F F F

diehard_opso F F F F F

diehard_oqso F F F F F

diehard_dna F F F F F

diehard_count_1s_str F F F F F

diehard_count_1s_byt F F F F F

diehard_parking_lot F F F F F

diehard_2dsphere F F F F F

diehard_3dsphere F F F F F

diehard_squeeze F F F F F

diehard_runs F 0.631 0.767 0.363 0.617

diehard_craps F F F F F

sts_monobit F F F F F

sts_runs F F F F F

sts_serial F F F F F

Enhancing the operational efficiency of
quantum random number generators

INFOCOMMUNICATIONS JOURNAL

JUNE 2021 • VOLUME XIII • NUMBER 2 17

RefeRences

 [1] Sara El Gaily, Sándor Imre, “Quantum Optimization of Resource
Distribution Management for Multi-Task, Multi-Subtasks”,
Infocommunications Journal, Vol. XI, No 4, December 2019, pp. 47-
53. doi: 10.36244/ICJ.2019.4.7

 [2] Sandor Imre, Laszlo Gyongyosi. “Advanced quantum
communications: an engineering approach”, Wiley, 2012, ISBN:
978-1-118-00236-0, doi: 10.1002/9781118337462

 [3] Laszlo Gyongyosi, Sandor Imre, Hung Viet Nguyen: “A Survey on
Quantum Channel Capacities”, IEEE [11] Communications Surveys
and Tutorials, IEEE, doi: 10.1109/COMST.2017.2786748, 2018.

 [4] Laszlo Gyongyosi, Laszlo Bacsardi and Sandor Imre, “A Survey on
Quantum Key Distribution”, Infocommunications Journal, Vol. XI,
No 2, June 2019, pp. 14-21. doi: 10.36244/ICJ.2019.2.2

 [5] Mario Stipcevic, “Quantum random number generators and their
applications in cryptography”, Proc. SPIE 8375, Advanced Photon
Counting Techniques VI, 837504 (2012); doi: 10.1117/12.919920

 [6] Herrero-Collantes, Miguel, and Juan Carlos Garcia- Escartin,
“Quantum random number generators.” Reviews of Modern Physics
89.1 (2017), doi: 10.1103/revmodphys.89.015004

 [7] Ma, Xiongfeng, et al. “Post-processing for quantum random-number
generators: Entropy evaluation and randomness extraction.” Physical
Review A 87.6 (2013), doi: 10.1103/physreva.87.062327.

 [8] Qi, Bing. "True randomness from an incoherent source." Review of
Scientific Instruments 88.11 (2017), doi: 10.1063/1.4986048

 [9] Zhang, Xiao-Guang, et al. "Note: Fully integrated 3.2 Gbps quantum
random number generator with real-time extraction." Review of
Scientific Instruments 87.7 (2016), doi: 10.1063/1.4958663

 [10] Shakhovoy, Roman, et al. "Quantum noise extraction from the
interference of laser pulses in an optical quantum random number
generator." Optics express 28.5 (2020), doi: 10.1364/oe.380156

 [11] Martínez, Aldo C., et al. "Advanced statistical testing of quantum
random number generators." Entropy 20.11 (2018),

 doi: 10.3390/e20110886
[12] Kelsey, John, et al. “Cryptanalytic attacks on pseudorandom number

generators.” International workshop on fast software encryption.
Springer, Berlin, Heidelberg, (1998)

 doi: 10.1007/3-540-69710-1_12
 [13] Gras, Gaëtan, et al. “Quantum entropy model of an integrated QRNG

chip.” (2020) arXiv preprint arXiv:2011.14129
 [14] Michael A. Wayne, Evan R. Jeffrey, Gleb M. Akselrod and Paul G.

Kwiat: “Photon arrival time quantum random number generation”,
Journal of Modern Optics Vol. 56, No. 4, 20 February 2009, 516–
522, doi: 10.1080/09500340802553244

 [15] Jie Yang, Fan Fan, Jinlu Liu, Qi Su, Yang Li, Wei Huang, and Bingjie
Xu, “Randomness Quantification for Quantum Random Number
Generation Based on Detection of Amplified Spontaneous Emission
Noise” Quantum Science and Technology, Vol. VI, No. 1, 2020,

 doi: 10.1088/2058-9565/abbd80
 [16] Ádám Marosits, Ágoston Schranz and Eszter Udvary, “Amplified

spontaneous emission based quantum random number generator”,
Infocommunications Journal, Vol. XII, No 2, July 2020, pp. 12-17.
doi: 10.36244/ICJ.2020.2.2

 [17] “NIST SP 800-22: Documentation and Software” https://csrc.nist.
gov/projects/random-bit-generation/documentation-and-software,
(Last visit: 23 Feb 2021).

 [18] G. Marsaglia, “The Marsaglia Random Number CDROM including
the Diehard Battery of Tests of Randomness”. Florida State
University. 1995. archived on 2016-01-25.” https://web.archive.org/
web/20160125103112/http:/stat.fsu.edu/pub/diehard/.sdfsdf

 [19] Robert G. Brown. “Robert G. Brown's General Tools Page”,
https://webhome.phy.duke.edu/~rgb/General/dieharder.php, (Last
visit: 23 Feb 2021.)

Name of the test H function S-box Toeplitz-matrix SHA256

diehard_birthdays 0.307 0.732 0.991 0.065

diehard_operm5 0.359 0.912 0.336 0.241

diehard_rank_32x32 0.243 0.383 0.313 0.007

diehard_rank_6x8 0.304 F 0.121 0.438

diehard_bitstream 0.115 F 0.145 0.120

diehard_opso 0.880 F 0.219 0.354

diehard_oqso 0.858 F 0.524 0.412

diehard_dna 0.482 0.351 0.368 0.734

diehard_count_1s_str 0.575 F 0.280 0.578

diehard_count_1s_byt 0.037 F 0.520 0.280

diehard_parking_lot 0.547 0.109 0.576 0.818

diehard_2dsphere 0.784 0.126 0.304 0.792

diehard_3dsphere 0.877 0.524 0.565 0.501

diehard_squeeze 0.905 F 0.348 0.274

diehard_runs 0.780 0.555 0.463 0.518

diehard_craps 0.644 0.392 0.733 0.384

sts_monobit 0.898 0.041 0.403 0.989

sts_runs 0.632 F F 0.520

sts_serial 0.576 F 0.468 0.565

TABLE IV
The results for the generator based on the arrival times of photons Part 2

https://doi.org/10.36244/ICJ.2019.4.7
https://doi.org/10.1002/9781118337462
https://doi.org/10.1109/COMST.2017.2786748
https://doi.org/10.36244/ICJ.2019.2.2
https://doi.org/10.1117/12.919920
https://doi.org/10.1103/revmodphys.89.015004
https://doi.org/10.1103/physreva.87.062327
https://doi.org/10.1063/1.4986048
https://doi.org/10.1063/1.4958663
https://doi.org/10.1364/oe.380156
https://doi.org/10.3390/e20110886
https://doi.org/10.1007/3-540-69710-1_12
https://arxiv.org/abs/2011.14129
https://doi.org/10.1080/09500340802553244
https://doi.org/10.1088/2058-9565/abbd80
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://web.archive.org/web/20160125103112/http:/stat.fsu.edu/pub/diehard/.sdfsdf
https://web.archive.org/web/20160125103112/http:/stat.fsu.edu/pub/diehard/.sdfsdf
https://webhome.phy.duke.edu/~rgb/General/dieharder.php

Enhancing the operational efficiency of
quantum random number generators

JUNE 2021 • VOLUME XIII • NUMBER 218

INFOCOMMUNICATIONS JOURNAL

 [20] NIST/SEMATECH e-Handbook of Statistical Methods, “Chi-Square
Goodness-of-Fit Test” https://itl.nist.gov/div898/handbook/eda/
section3/eda35f.htm (Last visit: 14 May 2021)

 [21] Balazs Solymos, Laszlo Bacsardi, “Real-time Processing
System for a Quantum Random Number Generator”,
Infocommunications Journal, Vol. XII, No 1, March 2020, pp. 53-59.
doi: 10.36244/ICJ.2020.1.8

 [22] “SP 800-90B Recommendation for the Entropy Sources Used for
Random Bit Generation,” https://csrc.nist.gov/publications/detail/
sp/800-90b/final, (Last visit: 23 Feb 2021)

 [23] Salil P. Vadhan, “Pseudorandomness”, Foundations and Trends in
Theoretical Computer Science: Vol. 7: No. 1–3, 2012, pp. 1-336.

 [24] R. B. Davies, “Exclusive OR (XOR) and hardware random
number generators”, Tech. Rep., 2002. [Online], Available:
http://www.robertnz.net/pdf/xor2.pdf (Last visit: 23 Feb 2021)

 [25] John Von Neumann, “Various techniques used in connection with
random digits”, National Bureau of Standards Applied Math Series
12, pp. 36–38., 1951

[26] Y. Peres, “Iterating Von Neumann’s Procedure for Extracting
Random Bits”, Ann. Statist., pp. 590–597., 1992,

 doi: 10.1214/aos/1176348543
 [27] P. Elias, “The efficient construction of an unbiased random sequence”

Ann. Math.Statist., pp. 865–870., 1972,
 doi: 10.1214/aoms/1177692552
 [28] Ruilin Zhang, Sijia Chen, Chao Wan, Hirofumi Shinohara, “High-

Throughput Von Neumann Post- Processing for Random Number
Generator”, 201850 International Symposium on VLSI Design
Automation and Test (VLSI-DAT), pp.1-4, 2018,

 doi: 10.1109/vlsi-dat.2018.8373253
 [29] Markus Dichtl, “Bad and Good Ways of Post-Processing Biased

Physical Random Numbers” 14th International Workshop, FSE2007,
Luxembourg, Luxembourg, March 26-28, 2007,

 doi: 10.1007/978-3-540-74619-5_9
 [30] Wegman, Mark N., and J. Lawrence Carter, “New hash

functions and their use in authentication and set equality.”
Journal of computer and system sciences 22.3 (1981): 265-279.,
doi: 10.1016/0022-0000(81)90033-7

 [31] Krawczyk H., “New Hash Functions for Message Authentication.”,
Advances in Cryptology, EUROCRYPT (1995) Lecture Notes
in Computer Science, vol 921. Springer, Berlin, Heidelberg.
doi: 10.1007/3-540-49264-X_24

 [32] “Data Encryption Standard (DES)” https://csrc.nist.gov/publications/
detail/fips/46/3/archive/1999-10-25 (Last visit: 23 Feb 2021)

 [33] AVAROĞLU, ERDİNÇ, and Taner Tuncer. “A novel S-box-based post-
processing method for true random number generation.” Turkish Journal
of Electrical Engineering & Computer Sciences 28.1 (2020): 288- 301.,
doi: 10.3906/elk-1906-194

 [34] “dieharder - Linux man page” https://linux.die.net/man/1/dieharder (Last
visit: 23 Feb 2021)

Botond L. Márton received his B.Sc. degree in
computer engineering from Budapest University of
Technology and Economics (BME) in early 2021. He
is currently pursuing his M.Sc. at BME. Currently
he is involved in a quantum key distribution project
at the university. His research interests are quantum
computing and quantum communications.

Dóra Istenes received her B.Sc. degree in the
beginning of 2021 in Computer Science Engineering
from the Budapest University of Technology and
Economics (BME). She started her M.Sc. studies at
BME in the same year. Her current research interests
are quantum computing and communications.

László Bacsárdi (M'07) received his MSc degree in
2006 in Computer Engineering from the Budapest
University of Technology and Economics (BME) and
his PhD in 2012. He is corresponding member of the
International Academy of Astronautics (IAA). Between
2009 and 2020, he worked at the University of Sopron,
Hungary in various positions including Head of
Institute of Informatics and Economics. Since 2020, he
is associate professor at the Department of Networked
Systems and Services, BME and head of Mobile

Communications and Quantum Technologies Laboratory. His current research
interests are quantum computing, quantum communications and ICT solutions
developed for Industry 4.0. He is chair of the Telecommunications Chapter
of the Hungarian Scientific Association for Infocommunications (HTE), Vice
President of the Hungarian Astronautical Society (MANT). Furthermore, he
is member of AIAA, IEEE and HTE as well as alumni member of the UN
established Space Generation Advisory Council (SGAC). In 2017, he won
the IAF Young Space Leadership Award from the International Astronautical
Federation.

https://itl.nist.gov/div898/handbook/eda/section3/eda35f.htm
https://itl.nist.gov/div898/handbook/eda/section3/eda35f.htm
https://doi.org/10.36244/ICJ.2020.1.8
https://csrc.nist.gov/publications/detail/sp/800-90b/final
https://csrc.nist.gov/publications/detail/sp/800-90b/final
http://www.robertnz.net/pdf/xor2.pdf
https://doi.org/10.1214/aos/1176348543
https://doi.org/10.1214/aoms/1177692552
https://doi.org/10.1109/vlsi-dat.2018.8373253
https://doi.org/10.1007/978-3-540-74619-5_9
https://doi.org/10.1016/0022-0000(81)90033-7
https://doi.org/10.1007/3-540-49264-X_24
https://csrc.nist.gov/publications/detail/fips/46/3/archive/1999-10-25
https://csrc.nist.gov/publications/detail/fips/46/3/archive/1999-10-25
https://doi.org/10.3906/elk-1906-194
https://linux.die.net/man/1/dieharder

