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Abstract—Random numbers are of vital importance in today’s 

world and used for example in many cryptographical protocols to 
secure the communication over the internet. The generators 
producing these numbers are Pseudo Random Number 
Generators (PRNGs) or True Random Number Generators 
(TRNGs). A subclass of TRNGs are the Quantum based Random 
Number Generators (QRNGs) whose generation processes are 
based on quantum phenomena. However, the achievable quality 
of the numbers generated from a practical implementation can 
differ from the theoretically possible. To ease this negative effect 
post-processing can be used, which contains the use of extractors. 
They extract as much entropy as possible from the original 
source and produce a new output with better properties. The 
quality and the different properties of a given output can be 
measured with the help of statistical tests. In our work we 
examined the effect of different extractors on two QRNG outputs 
and found that with the right extractor we can improve their 
quality.  
 

Index Terms—random numbers, statistical testing, quantum 
communication, QRNG  
 

I. INTRODUCTION 
UANTUM TECHNOLOGIES are developing at a rapid speed 
in the modern world and they vastly differ from their 

classical counterparts. They offer new approaches for 
communication, cryptography or algorithm design. From an 
algorithmic standpoint they propose new and in many cases 
faster algorithms (for example Shor’s algorithm for prime 
factoring or in the area of resource distribution [1]) which can 
utilize the unique phenomena present only in the world of 
quantum mechanics[2][3]. Two of the most developed 
technologies in the field are QRNGs and QKD (Quantum Key 
Distribution). QKD is mostly used as a building block in 
cryptographic solutions. One of these is the one-time pad 
encryption scheme, where parties use a different, unique 
random key for the encryption of each message. This is a 
mathematically proven secure method, with only one 
weakness, sharing the keys. QKD patches this weakness by 
providing a safe way to share the keys between the parties [4].  
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The application of random numbers ranges from dice 
simulators to cryptographic systems and mathematical 
simulations [5]. These various usages require different traits 
from the generators. High bitrate, quality, and safety are 
among the attributes the different applications expect. 

Quantum generators make ideal outputs for most 
requirements, but their main quality is generating truly random 
numbers due to an underlying quantum phenomenon. Even so, 
they have their flaws, which mainly come from the limits of 
our physical tools.  

The field of QRNGs is becoming more popular as some of 
the generators are already available on the commercial market 
(one of which is briefly introduced in Section II.A), see [6] for 
more. At the same time the field of randomness extraction also 
had interesting results. Ma et al investigated the effect of a 
Trevisian and Toeplitz extractor on a QRNG in [7]. In our 
work, we applied the Toeplitz extractor as well but the QRNG 
they used is based on a different generation mechanism. Qi 
and Bing tested a generator based on amplified spontaneous 
emission [8]. One of the QRNGs we worked with is also based 
on amplified spontaneous emission, but they used a different 
setup. In [9] Zhang, Xiao-Guang, et al presented a generator 
based on laser phase fluctuations, where they used a pipeline 
based solution with a Toeplitz extractor to achieve real-time 
processing. In our work we used the Toeplitz extractor, but the 
real-time operation was not one of our goals, therefore our 
implementation differs. Shakhovoy, Roman, et al. introduced a 
QRNG which works without the need for post-processing 
[10]. In current work we focused on investigation of QRNG, 
but another important question is the comparison of efficiency 
between QRNGs and PRNGs which was investigated by 
Martínez, Aldo C., et al in [11].  

In our work we concentrated on two QRNGs, which were 
built at Budapest University of Technology and Economics 
(BME)[16]. Prior to our work, the generators were only tested 
without post-processing. In this paper, we present how 
extractors can improve the quality of two outputs from these 
generators. We implemented the extractors in Python, 
examined their applicability and their yielded results. 

This article is structured as follows. In Section II we will 
introduce two popular generation methods used in QRNGs (on 
which the tested generators are based on) then we will show 
how can we measure the quality of random numbers and what 
is an extractor. After that in Section III we will present what 
we found during our testing, while Section IV contains our 
conclusion. 
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II. RANDOM NUMBER GENERATORS 

A. Generation methods 
PRNGs generate a stream based on a mathematical 

algorithm and a starting point, the so-called seed. Although 
this makes it easy to generate numbers in high quantity, it also 
makes the output deterministic, and in turn prone to 
exploitation. Within possession of its algorithm and seed, 
which may be acquired through inspecting the output, the 
PRNGs upcoming outputs become easily predictable. This 
makes it highly unsafe to use them in applications with a high-
security requirement, such as lottery or cryptographic 
solutions [12].  

For TRNGs their entropy source comes from inherently 
random events, like radioactive decay, atmospheric noise or 
quantum mechanical events. Their set up is much more 
complex than the PRNGs, and their generation speed is also 
slower, but due to the high unpredictability of their source, 
their output is adequate for high-security uses. 

QRNGs provide non-deterministic outputs in great 
quantities in a short time. and they are one of the most actively 
developed quantum computing technologies.  

The two main producers of commercially available QRNG 
chips are ID Quantique (IDQ) and Quantum Numbers Corp 
(QNC). Both companies produce state of the art QRNG chips 
although the smallest commercial one belongs to IDQ, the 
Quantis QRNG chip. It contains a LED light source that emits 
random number of photons which are captured and counted by 
an image sensor, providing a set of easily accessible raw 
numbers. It also has a self-verification process, where if it 
detects any failure it starts an automatic recovery procedure 
instantly and notifies the user [13].  

B. Photon detection interval 
Many types of optical QRNGs exist. A portion of them rely 

on a beam splitters and different amount of detectors. These 
tools can contribute greatly to the bias of a generator. In 
theory there are ideal equipments but in truth, perfect tools do 
not exist. Even a single detector’s quantum efficiency is not 
100% but using multiple detectors raises the problem of the 
two detectors differences [14]. 

The photon detection interval generator uses only one 
detector, as to mitigate the bias. 

The distribution of the time between two detections is 
exponential with a probability density function       where   
is the expected number of photons detected in a unit of time. 

The time values are compared in pairs. For       time 
values the generator returns 0 if       and 1 in case of 
     . We restart the clock at each detection to eliminate 
correlation between the data. The time values of course have a 
certain amount of accuracy which makes equal values more 
probable. To overcome this issue we discard equal values [6].  

C. Amplified Spontaneous Emission 
To achieve long ranges in fiber communication optical 

amplification is used. The basis for this technique is 
stimulated emission. During stimulated emission when a 
particle in excited state interacts with an incoming photon, the 
excited particle drops to a lower energy level emitting a new 
photon, whose properties are the same as the ones which 

started the process. For stimulated emission to be dominant 
over absorption, population inversion must be present. This 
means that there are more particles in excited state than in 
lower energy state.  However, if stimulated emission is 
possible for a particle, than so is spontaneous emission, during 
which an excited particle randomly drops to a lower energy 
level while emitting a new  photon with random properties. 
This photon then can cause stimulated emission thus creating 
amplified spontaneous emission, ASE. In an optical system 
this phenomenon is considered noise which fortunately can be 
measured, therefore it can be used as a basis for random 
number generation. During generation if there is no incoming 
signal in the amplifier, ASE will be the dominant interaction. 
Then the optical power can be sampled, giving statistically 
independent random variables. [6][15][16] 

D. Measuring the randomness 
As we saw earlier, there are many ways to build a random 

number generator. But we need to determine the quality of the 
numbers (or the bits) which are coming out of the machine. 
The first problem is that we have to measure how random the 
output is. This means that we need to define what randomness 
is. This is a hard task, because we cannot tell  certainly 
whether a given finite sequence of bits is random or not. In 
most cases we have to settle for a more practical solution. 
Instead of declaring that the output of a generator is truly 
random with absolute certainty, we will say that the output is 
closer to a true random source then a given limit. Therefore 
we can only say with a given probability, that the measured 
output is random or not, but if this probability is high enough, 
this approach is good for most usages. 

The tests we can use on a generator (or the output of this 
generator) can range from the very simple to the more 
complex; but they have a common property: they require a 
finite number of bits. This means that firstly the length of the 
bit sequence is important. The longer the sequence is the better 
the precision of the tests. Secondly, this means that we can 
never look at the whole output of a generator, only a part of it 
and we have to make a decision based on this part. It is 
therefore possible that the generator will fail the same test that 
it passed earlier, because on the second run the new output 
will be different. To give an example of a simple test one can 
think about a truly random source, e.g. the uniform 
distribution. It puts out a 1 or a 0 bit with equal probability 
(50%), so if one looks at a longer and longer sequence from 
this source, one will find out the number of 1s and 0s is 
approaching the same number. This can be interpreted as a 
test: we count the 1 and 0 bits in the output of the generator 
and compare them to each other.  

The main goal of these tests is to measure the randomness 
of the sequence which cannot be made with certainty as it was 
stated earlier, that’s the reason why these tests are statistical 
tests. They take a statistical property (for example the number 
of 1s and 0s as mentioned above) and based on this result and 
a previously given criterion (for example: how far can the 
number of 1s and 0s differ from each other) can declare 
whether the sequence passed or not. Most of the tests fall 
under the statistical hypothesis test category. In the hypothesis 
test we want to accept or reject the null-hypothesis (H0). 
During the testing of a random number generator the null-
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hypothesis is that the generator is producing random numbers. 
The other hypothesis in the test is called the alternative 
hypothesis (Ha). Ha is the opposite of H0: it says that the 
generator isn’t producing truly random numbers. The next step 
is to calculate a distribution function with the help of a 
probabilistic value (most of the time these are well known 
probabilistic values) while assuming that the null-hypothesis is 
true. After this we select a significance level (α) on this 
distribution. Generally, this is a very small value. In the RNG 
testing α tends to be around 1%. Lastly, we calculate the 
statistical value which the given test measures and compare it 
to the significance level. If it is below α, we reject the null-
hypothesis and accept the alternative. If it is above it, we 
accept the null-hypothesis and reject the alternative. Based on 
our decision and the reality we have four possible outcomes. If 
we accepted the null-hypothesis and it is in fact true, we chose 
correctly (this has a probability of 1-α). It is the same if we 
rejected it and it was false in reality (the probability of this 
outcome is 1-β). The other two outcomes are called Type I and 
Type II error. The Type I error occurs when we rejected H0, 
but it was true. This outcome has a probability of α and is 
called false positive. The Type II error is when we accept H0, 
but it was false. It has a probability of β and is called false 
negative. Out of these two the Type I is more acceptable and 
with a good decision on the value of α we can fine tune it. In 
this case we falsely brand the RNG as “not random” in the 
test. But with the help of other tests we can still state at the 
end that it is in fact “random”. The Type II error is harder to 
manage, because here a “not random” source passed the test it 
should not have. To lower the probability of the Type II error 
we have to choose an acceptable value for α and for the length 
of the sequence. The above mentioned information can also be 
interpreted as a so called p-value. The p-value is between 0 
and 1 and it is the probability of getting results at least as 
extreme as the ones observed, given that the null-hypothesis is 
correct. In other words it is a metric showing how strong our 
evidences supporting the null-hypothesis are. To use the p-
value we compare it to α and if it is below it we reject H0. It is 
important to note here that α is used as a lower and  1- α is 
used as an upper bound and the p-values obtained throughout 
the test should follow a uniform distribution as well. 

When we want to measure the randomness of a given bit 
sequence one test can only look at one property of the 
sequence. Therefore we need multiple tests which we can use 
and we need them to be different (in the sense that they are 
testing different properties). To solve the issue certain test 
were grouped together into a so-called test suite. Some of the 
suites are defined by standards, other are organized by various 
people. 

An example for a standardized test suite is the NIST STS 
(National Institution of Standards and Technology Statistical 
Test Suite) [17] which consist of 15 different test and used 
widely in the world. Another test is the Diehard [18] and it is 
extended version the Dieharder [19] which are maintained by 
a community. The Dieharder suite consists of around 100 tests 
(it includes the NIST STS as well) which cover a large range 
of complexity. One of these test is the 32x32 binary rank test. 
This test takes 32 32-bit integer and builds a 32-by-32 matrix 
of 1s and 0s. Then it calculates the rank of this matrix and 
goes on for the next 32 number. Ranks less than or equal to 29 

are rare, therefore they are treated as one rank. A Chi-squared 
test [20] is performed on the ranks 32, 31, 30, and ≤ 
29,checking the uniformity of these rank groups. 

One important question regarding these tests is when to use 
them. Using the tests must be part of the creation process of 
the generator. It is important during this time to run selected 
tests which might point to possible flaws in the design. After 
the generator is complete or when it is used in a real system 
monitoring the randomness of the output is vital for the 
underlying system which is using the numbers from the 
generator and for the maintenance of the generator as well. 
These tests can be used in real-time [21]. The NIST published 
several recommendations on which tests to use in which part 
of the generators lifecycle [22]. 

E. Extractors 
With the help of the statistical tests we mentioned in the 

previous section we can measure the quality of the numbers 
produced by a generator while we are building it. This helps 
us to see how far are we in the development. If we are not 
satisfied with the results, we can try to make the construction 
better with for example a new layout or with the help of more 
precise components. But there is point where we cannot 
improve the system further just by fine tuning because the 
physical implementation of an RNG cannot be 100% efficient 
or the physical phenomenon which the generator is based on 
hasn’t got a high enough entropy. This means that we have to 
find another way to improve the quality of the generated 
numbers which comes after the generation phase. This is the 
post-processing, where we aim to improve the original output 
of the generator by making a new with better properties. 

During post-processing we use extractor functions or 
algorithms. Their main goal is to extract as much entropy from 
the original source as possible and to create a new output 
whose entropy is as close to the original source as possible and 
has a better quality [23]. Previously we mentioned that a good 
random number generator is close to a truly random source or 
indistinguishable from it. Now we will define what this means. 
The distance of two random variable can be written as: 

 
           

     
              

 
where X and Y are random variables of the same sample space 
A. If we think about our generator and a truly random source 
as a random variable can modify the definition to this: 
 

                                  . 
 
In this inequality X is random variable (our generator), U is a 
random variable representing the uniform distribution (a truly 
random source) and ε is an upper bound for the distance. If X 
satisfies this inequality we say that X is ε uniform. 
 The next step is to measure the entropy of the source, 
because the main objective of the extractors is to extract as 
much entropy as possible and we need a way to compare the 
new output to the old one. There are different ways to measure 
the entropy for example the Shannon entropy but in the case of 
extractors the min-entropy is the mostly used version. The 
definition of the min-entropy is the following: 
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of the generator by making a new with better properties. 

During post-processing we use extractor functions or 
algorithms. Their main goal is to extract as much entropy from 
the original source as possible and to create a new output 
whose entropy is as close to the original source as possible and 
has a better quality [23]. Previously we mentioned that a good 
random number generator is close to a truly random source or 
indistinguishable from it. Now we will define what this means. 
The distance of two random variable can be written as: 

 
           

     
              

 
where X and Y are random variables of the same sample space 
A. If we think about our generator and a truly random source 
as a random variable can modify the definition to this: 
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In this inequality X is random variable (our generator), U is a 
random variable representing the uniform distribution (a truly 
random source) and ε is an upper bound for the distance. If X 
satisfies this inequality we say that X is ε uniform. 
 The next step is to measure the entropy of the source, 
because the main objective of the extractors is to extract as 
much entropy as possible and we need a way to compare the 
new output to the old one. There are different ways to measure 
the entropy for example the Shannon entropy but in the case of 
extractors the min-entropy is the mostly used version. The 
definition of the min-entropy is the following: 
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hypothesis is that the generator is producing random numbers. 
The other hypothesis in the test is called the alternative 
hypothesis (Ha). Ha is the opposite of H0: it says that the 
generator isn’t producing truly random numbers. The next step 
is to calculate a distribution function with the help of a 
probabilistic value (most of the time these are well known 
probabilistic values) while assuming that the null-hypothesis is 
true. After this we select a significance level (α) on this 
distribution. Generally, this is a very small value. In the RNG 
testing α tends to be around 1%. Lastly, we calculate the 
statistical value which the given test measures and compare it 
to the significance level. If it is below α, we reject the null-
hypothesis and accept the alternative. If it is above it, we 
accept the null-hypothesis and reject the alternative. Based on 
our decision and the reality we have four possible outcomes. If 
we accepted the null-hypothesis and it is in fact true, we chose 
correctly (this has a probability of 1-α). It is the same if we 
rejected it and it was false in reality (the probability of this 
outcome is 1-β). The other two outcomes are called Type I and 
Type II error. The Type I error occurs when we rejected H0, 
but it was true. This outcome has a probability of α and is 
called false positive. The Type II error is when we accept H0, 
but it was false. It has a probability of β and is called false 
negative. Out of these two the Type I is more acceptable and 
with a good decision on the value of α we can fine tune it. In 
this case we falsely brand the RNG as “not random” in the 
test. But with the help of other tests we can still state at the 
end that it is in fact “random”. The Type II error is harder to 
manage, because here a “not random” source passed the test it 
should not have. To lower the probability of the Type II error 
we have to choose an acceptable value for α and for the length 
of the sequence. The above mentioned information can also be 
interpreted as a so called p-value. The p-value is between 0 
and 1 and it is the probability of getting results at least as 
extreme as the ones observed, given that the null-hypothesis is 
correct. In other words it is a metric showing how strong our 
evidences supporting the null-hypothesis are. To use the p-
value we compare it to α and if it is below it we reject H0. It is 
important to note here that α is used as a lower and  1- α is 
used as an upper bound and the p-values obtained throughout 
the test should follow a uniform distribution as well. 

When we want to measure the randomness of a given bit 
sequence one test can only look at one property of the 
sequence. Therefore we need multiple tests which we can use 
and we need them to be different (in the sense that they are 
testing different properties). To solve the issue certain test 
were grouped together into a so-called test suite. Some of the 
suites are defined by standards, other are organized by various 
people. 

An example for a standardized test suite is the NIST STS 
(National Institution of Standards and Technology Statistical 
Test Suite) [17] which consist of 15 different test and used 
widely in the world. Another test is the Diehard [18] and it is 
extended version the Dieharder [19] which are maintained by 
a community. The Dieharder suite consists of around 100 tests 
(it includes the NIST STS as well) which cover a large range 
of complexity. One of these test is the 32x32 binary rank test. 
This test takes 32 32-bit integer and builds a 32-by-32 matrix 
of 1s and 0s. Then it calculates the rank of this matrix and 
goes on for the next 32 number. Ranks less than or equal to 29 

are rare, therefore they are treated as one rank. A Chi-squared 
test [20] is performed on the ranks 32, 31, 30, and ≤ 
29,checking the uniformity of these rank groups. 

One important question regarding these tests is when to use 
them. Using the tests must be part of the creation process of 
the generator. It is important during this time to run selected 
tests which might point to possible flaws in the design. After 
the generator is complete or when it is used in a real system 
monitoring the randomness of the output is vital for the 
underlying system which is using the numbers from the 
generator and for the maintenance of the generator as well. 
These tests can be used in real-time [21]. The NIST published 
several recommendations on which tests to use in which part 
of the generators lifecycle [22]. 

E. Extractors 
With the help of the statistical tests we mentioned in the 

previous section we can measure the quality of the numbers 
produced by a generator while we are building it. This helps 
us to see how far are we in the development. If we are not 
satisfied with the results, we can try to make the construction 
better with for example a new layout or with the help of more 
precise components. But there is point where we cannot 
improve the system further just by fine tuning because the 
physical implementation of an RNG cannot be 100% efficient 
or the physical phenomenon which the generator is based on 
hasn’t got a high enough entropy. This means that we have to 
find another way to improve the quality of the generated 
numbers which comes after the generation phase. This is the 
post-processing, where we aim to improve the original output 
of the generator by making a new with better properties. 

During post-processing we use extractor functions or 
algorithms. Their main goal is to extract as much entropy from 
the original source as possible and to create a new output 
whose entropy is as close to the original source as possible and 
has a better quality [23]. Previously we mentioned that a good 
random number generator is close to a truly random source or 
indistinguishable from it. Now we will define what this means. 
The distance of two random variable can be written as: 

 
           

     
              

 
where X and Y are random variables of the same sample space 
A. If we think about our generator and a truly random source 
as a random variable can modify the definition to this: 
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In this inequality X is random variable (our generator), U is a 
random variable representing the uniform distribution (a truly 
random source) and ε is an upper bound for the distance. If X 
satisfies this inequality we say that X is ε uniform. 
 The next step is to measure the entropy of the source, 
because the main objective of the extractors is to extract as 
much entropy as possible and we need a way to compare the 
new output to the old one. There are different ways to measure 
the entropy for example the Shannon entropy but in the case of 
extractors the min-entropy is the mostly used version. The 
definition of the min-entropy is the following: 
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hypothesis is that the generator is producing random numbers. 
The other hypothesis in the test is called the alternative 
hypothesis (Ha). Ha is the opposite of H0: it says that the 
generator isn’t producing truly random numbers. The next step 
is to calculate a distribution function with the help of a 
probabilistic value (most of the time these are well known 
probabilistic values) while assuming that the null-hypothesis is 
true. After this we select a significance level (α) on this 
distribution. Generally, this is a very small value. In the RNG 
testing α tends to be around 1%. Lastly, we calculate the 
statistical value which the given test measures and compare it 
to the significance level. If it is below α, we reject the null-
hypothesis and accept the alternative. If it is above it, we 
accept the null-hypothesis and reject the alternative. Based on 
our decision and the reality we have four possible outcomes. If 
we accepted the null-hypothesis and it is in fact true, we chose 
correctly (this has a probability of 1-α). It is the same if we 
rejected it and it was false in reality (the probability of this 
outcome is 1-β). The other two outcomes are called Type I and 
Type II error. The Type I error occurs when we rejected H0, 
but it was true. This outcome has a probability of α and is 
called false positive. The Type II error is when we accept H0, 
but it was false. It has a probability of β and is called false 
negative. Out of these two the Type I is more acceptable and 
with a good decision on the value of α we can fine tune it. In 
this case we falsely brand the RNG as “not random” in the 
test. But with the help of other tests we can still state at the 
end that it is in fact “random”. The Type II error is harder to 
manage, because here a “not random” source passed the test it 
should not have. To lower the probability of the Type II error 
we have to choose an acceptable value for α and for the length 
of the sequence. The above mentioned information can also be 
interpreted as a so called p-value. The p-value is between 0 
and 1 and it is the probability of getting results at least as 
extreme as the ones observed, given that the null-hypothesis is 
correct. In other words it is a metric showing how strong our 
evidences supporting the null-hypothesis are. To use the p-
value we compare it to α and if it is below it we reject H0. It is 
important to note here that α is used as a lower and  1- α is 
used as an upper bound and the p-values obtained throughout 
the test should follow a uniform distribution as well. 

When we want to measure the randomness of a given bit 
sequence one test can only look at one property of the 
sequence. Therefore we need multiple tests which we can use 
and we need them to be different (in the sense that they are 
testing different properties). To solve the issue certain test 
were grouped together into a so-called test suite. Some of the 
suites are defined by standards, other are organized by various 
people. 

An example for a standardized test suite is the NIST STS 
(National Institution of Standards and Technology Statistical 
Test Suite) [17] which consist of 15 different test and used 
widely in the world. Another test is the Diehard [18] and it is 
extended version the Dieharder [19] which are maintained by 
a community. The Dieharder suite consists of around 100 tests 
(it includes the NIST STS as well) which cover a large range 
of complexity. One of these test is the 32x32 binary rank test. 
This test takes 32 32-bit integer and builds a 32-by-32 matrix 
of 1s and 0s. Then it calculates the rank of this matrix and 
goes on for the next 32 number. Ranks less than or equal to 29 

are rare, therefore they are treated as one rank. A Chi-squared 
test [20] is performed on the ranks 32, 31, 30, and ≤ 
29,checking the uniformity of these rank groups. 

One important question regarding these tests is when to use 
them. Using the tests must be part of the creation process of 
the generator. It is important during this time to run selected 
tests which might point to possible flaws in the design. After 
the generator is complete or when it is used in a real system 
monitoring the randomness of the output is vital for the 
underlying system which is using the numbers from the 
generator and for the maintenance of the generator as well. 
These tests can be used in real-time [21]. The NIST published 
several recommendations on which tests to use in which part 
of the generators lifecycle [22]. 

E. Extractors 
With the help of the statistical tests we mentioned in the 

previous section we can measure the quality of the numbers 
produced by a generator while we are building it. This helps 
us to see how far are we in the development. If we are not 
satisfied with the results, we can try to make the construction 
better with for example a new layout or with the help of more 
precise components. But there is point where we cannot 
improve the system further just by fine tuning because the 
physical implementation of an RNG cannot be 100% efficient 
or the physical phenomenon which the generator is based on 
hasn’t got a high enough entropy. This means that we have to 
find another way to improve the quality of the generated 
numbers which comes after the generation phase. This is the 
post-processing, where we aim to improve the original output 
of the generator by making a new with better properties. 

During post-processing we use extractor functions or 
algorithms. Their main goal is to extract as much entropy from 
the original source as possible and to create a new output 
whose entropy is as close to the original source as possible and 
has a better quality [23]. Previously we mentioned that a good 
random number generator is close to a truly random source or 
indistinguishable from it. Now we will define what this means. 
The distance of two random variable can be written as: 

 
           

     
              

 
where X and Y are random variables of the same sample space 
A. If we think about our generator and a truly random source 
as a random variable can modify the definition to this: 
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In this inequality X is random variable (our generator), U is a 
random variable representing the uniform distribution (a truly 
random source) and ε is an upper bound for the distance. If X 
satisfies this inequality we say that X is ε uniform. 
 The next step is to measure the entropy of the source, 
because the main objective of the extractors is to extract as 
much entropy as possible and we need a way to compare the 
new output to the old one. There are different ways to measure 
the entropy for example the Shannon entropy but in the case of 
extractors the min-entropy is the mostly used version. The 
definition of the min-entropy is the following: 
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hypothesis is that the generator is producing random numbers. 
The other hypothesis in the test is called the alternative 
hypothesis (Ha). Ha is the opposite of H0: it says that the 
generator isn’t producing truly random numbers. The next step 
is to calculate a distribution function with the help of a 
probabilistic value (most of the time these are well known 
probabilistic values) while assuming that the null-hypothesis is 
true. After this we select a significance level (α) on this 
distribution. Generally, this is a very small value. In the RNG 
testing α tends to be around 1%. Lastly, we calculate the 
statistical value which the given test measures and compare it 
to the significance level. If it is below α, we reject the null-
hypothesis and accept the alternative. If it is above it, we 
accept the null-hypothesis and reject the alternative. Based on 
our decision and the reality we have four possible outcomes. If 
we accepted the null-hypothesis and it is in fact true, we chose 
correctly (this has a probability of 1-α). It is the same if we 
rejected it and it was false in reality (the probability of this 
outcome is 1-β). The other two outcomes are called Type I and 
Type II error. The Type I error occurs when we rejected H0, 
but it was true. This outcome has a probability of α and is 
called false positive. The Type II error is when we accept H0, 
but it was false. It has a probability of β and is called false 
negative. Out of these two the Type I is more acceptable and 
with a good decision on the value of α we can fine tune it. In 
this case we falsely brand the RNG as “not random” in the 
test. But with the help of other tests we can still state at the 
end that it is in fact “random”. The Type II error is harder to 
manage, because here a “not random” source passed the test it 
should not have. To lower the probability of the Type II error 
we have to choose an acceptable value for α and for the length 
of the sequence. The above mentioned information can also be 
interpreted as a so called p-value. The p-value is between 0 
and 1 and it is the probability of getting results at least as 
extreme as the ones observed, given that the null-hypothesis is 
correct. In other words it is a metric showing how strong our 
evidences supporting the null-hypothesis are. To use the p-
value we compare it to α and if it is below it we reject H0. It is 
important to note here that α is used as a lower and  1- α is 
used as an upper bound and the p-values obtained throughout 
the test should follow a uniform distribution as well. 

When we want to measure the randomness of a given bit 
sequence one test can only look at one property of the 
sequence. Therefore we need multiple tests which we can use 
and we need them to be different (in the sense that they are 
testing different properties). To solve the issue certain test 
were grouped together into a so-called test suite. Some of the 
suites are defined by standards, other are organized by various 
people. 

An example for a standardized test suite is the NIST STS 
(National Institution of Standards and Technology Statistical 
Test Suite) [17] which consist of 15 different test and used 
widely in the world. Another test is the Diehard [18] and it is 
extended version the Dieharder [19] which are maintained by 
a community. The Dieharder suite consists of around 100 tests 
(it includes the NIST STS as well) which cover a large range 
of complexity. One of these test is the 32x32 binary rank test. 
This test takes 32 32-bit integer and builds a 32-by-32 matrix 
of 1s and 0s. Then it calculates the rank of this matrix and 
goes on for the next 32 number. Ranks less than or equal to 29 

are rare, therefore they are treated as one rank. A Chi-squared 
test [20] is performed on the ranks 32, 31, 30, and ≤ 
29,checking the uniformity of these rank groups. 

One important question regarding these tests is when to use 
them. Using the tests must be part of the creation process of 
the generator. It is important during this time to run selected 
tests which might point to possible flaws in the design. After 
the generator is complete or when it is used in a real system 
monitoring the randomness of the output is vital for the 
underlying system which is using the numbers from the 
generator and for the maintenance of the generator as well. 
These tests can be used in real-time [21]. The NIST published 
several recommendations on which tests to use in which part 
of the generators lifecycle [22]. 

E. Extractors 
With the help of the statistical tests we mentioned in the 

previous section we can measure the quality of the numbers 
produced by a generator while we are building it. This helps 
us to see how far are we in the development. If we are not 
satisfied with the results, we can try to make the construction 
better with for example a new layout or with the help of more 
precise components. But there is point where we cannot 
improve the system further just by fine tuning because the 
physical implementation of an RNG cannot be 100% efficient 
or the physical phenomenon which the generator is based on 
hasn’t got a high enough entropy. This means that we have to 
find another way to improve the quality of the generated 
numbers which comes after the generation phase. This is the 
post-processing, where we aim to improve the original output 
of the generator by making a new with better properties. 

During post-processing we use extractor functions or 
algorithms. Their main goal is to extract as much entropy from 
the original source as possible and to create a new output 
whose entropy is as close to the original source as possible and 
has a better quality [23]. Previously we mentioned that a good 
random number generator is close to a truly random source or 
indistinguishable from it. Now we will define what this means. 
The distance of two random variable can be written as: 

 
           

     
              

 
where X and Y are random variables of the same sample space 
A. If we think about our generator and a truly random source 
as a random variable can modify the definition to this: 
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In this inequality X is random variable (our generator), U is a 
random variable representing the uniform distribution (a truly 
random source) and ε is an upper bound for the distance. If X 
satisfies this inequality we say that X is ε uniform. 
 The next step is to measure the entropy of the source, 
because the main objective of the extractors is to extract as 
much entropy as possible and we need a way to compare the 
new output to the old one. There are different ways to measure 
the entropy for example the Shannon entropy but in the case of 
extractors the min-entropy is the mostly used version. The 
definition of the min-entropy is the following: 
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where log is the base 2 logarithm and X is a random variable. 
With the help of this definition we can calculate the minimum 
entropy for the source if we want an ε-uniform bit sequence 
with length m. For the uniform distribution the probability of 
all possible outcome is 2-m. This means that the min-entropy is 
m and this is the value we want to reach (or get close to it). 
 We can distinguish different extractors. The first group is 
the deterministic extractors. These extractors use a source 
denoted with C, a min-entropy, an input with a length of n and 
have an output with length k and of course they are ε-uniform. 
Because they are deterministic the output only depends on the 
input, this means that for the same input they will produce the 
same output. 
 The second group is the so-called seeded extractors. They 
have the same properties as the deterministic extractors, but 
they also have a seed with length d. The seed is used as an 
initialization vector just like with a hash function for example. 
During the creation of the new output these extractors are 
using seed as well as the input. This means that the same input 
won’t result in the same output (of course if the seed is the 
same it will). The seed has to be a random sequence because 
only then will it provide the desired effect of altering the 
output in a hard to reverse way. But producing a long random 
sequence could be a hard task, therefore we want to minimize 
the length of seed while at same time maximize the possible 
length of the output. 

In our testing we chose and implemented 8 extractor 
algorithms. The extractors we picked cover a wide range of 
different properties. We have simple ones, which manipulate 
the bits with logical operators to produce the output. But we 
also have more complex algorithms, which use techniques that 
are widely used in cryptography for example. Now we would 
like to introduce some of these extractors.  

1) The XOR Operator as an Extractor 
The XOR logical operator is one of the most used operator 

in computer science ranging from RAID technology to 
cryptography but it can also be used as a very simple extractor 
[24].  

The XOR operator can be used effectively to lower the bias 
of the source but only if the bits are independent. The easiest 
way to use this extractor is to go over the original output of the 
generator and use the XOR on the bits in pairs. This means 
that the new output will have half the length of the original 
one. We can go further an use the XOR n times always using 
the new output as the input for the next XOR. Doing so will 
lower the length of the generated output at the end 1/(n+1) 
times the original. 

Although this extractor is very simple, can lower the bias of 
the source and can be quickly computed, it is not used, 
because the independency of the output bits cannot be 
guaranteed every time and it has a heavy effect on the length 
of the output (therefore the possible bitrate of the generator). 

2) The Von Neumann Extractor 
The Von Neumann extractor was created by John Von 

Neumann and it is the first extractor to be created [25].
Because it is the first extractor its main aim is to eliminate the 
bias of the source (like the XOR). 
 The operation of the algorithm is very simple, but just like 
at the XOR it is important that the bits are independent. It 
takes two bits as input and based on the values of these two it 
produces one or no bit. If the two bits are equal it discards the 
two bits. If they different it will give out the first one as the 
output. For a uniform source the new output will have the 
quarter of the length of the original. 
 The Von Neumann extractor has the same problems as the 
XOR. Although it is easy to use and it can eliminate the bias, 
it has a heavy toll on the length of the output. 

3) Other variants of the Von Neumann extractor 
Since the Von Neumann extractor was the first extractor, 

many have modified its operation. The two main problems the 
original design had are that it discards to many bits of the 
original bitstream and only has 2 bit long input. To overcome 
these issues the iterating [26] and the N bit Von Neuman 
extractors have been created [27][28].

In the case of the Iterating Von Neumann the original 
extractor is used as a building block. The discarded bits are 
reused as new input, but before this they are modified with 
different operators. For the N bit Von Neumann extractor the 
original design was extended in such a way that the length of 
the input can be longer than two bits.   
4) H Function 

The H function was created by Markus Dichtl [29] and just 
like the previous algorithms this extractor can also be simply 
implemented with logical gates, but compared to them it can 
achieve better result (as we will see in the tests). 

It takes 16 bits as an input and gives out 8 bits as output and 
presumes that the bits are independent. In this area it is similar 
to the XOR. The algorithm works in the following way: We 
take the input bits and make two groups. The first is    which 
is the first 8 bit, the second is    which is the next 8 bit. The 
output of the algorithm is 

                                          . 

Where rotate_left(a1,1) means rotating the    to the left with 1 
step by taking the leftmost bit and putting it in the rightmost 
position. 

Although the H function produces a new sequence with half 
the length of the original one, it can better reduce the bias 
compared to the XOR operator. It can be implemented simply 
with logic gates and it is very efficient to use. 

5) Hash Function As Extractors 
Hash functions were not designed with the intent to be used 

as extractors but today they can be used as extractor 
algorithms for example during key derivation in cryptography 
[30]. 

A deterministic function which takes an m bit length input 
and gives out an n bit length output have to have specific 
properties to be called a hash function. These include collision 
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hypothesis is that the generator is producing random numbers. 
The other hypothesis in the test is called the alternative 
hypothesis (Ha). Ha is the opposite of H0: it says that the 
generator isn’t producing truly random numbers. The next step 
is to calculate a distribution function with the help of a 
probabilistic value (most of the time these are well known 
probabilistic values) while assuming that the null-hypothesis is 
true. After this we select a significance level (α) on this 
distribution. Generally, this is a very small value. In the RNG 
testing α tends to be around 1%. Lastly, we calculate the 
statistical value which the given test measures and compare it 
to the significance level. If it is below α, we reject the null-
hypothesis and accept the alternative. If it is above it, we 
accept the null-hypothesis and reject the alternative. Based on 
our decision and the reality we have four possible outcomes. If 
we accepted the null-hypothesis and it is in fact true, we chose 
correctly (this has a probability of 1-α). It is the same if we 
rejected it and it was false in reality (the probability of this 
outcome is 1-β). The other two outcomes are called Type I and 
Type II error. The Type I error occurs when we rejected H0, 
but it was true. This outcome has a probability of α and is 
called false positive. The Type II error is when we accept H0, 
but it was false. It has a probability of β and is called false 
negative. Out of these two the Type I is more acceptable and 
with a good decision on the value of α we can fine tune it. In 
this case we falsely brand the RNG as “not random” in the 
test. But with the help of other tests we can still state at the 
end that it is in fact “random”. The Type II error is harder to 
manage, because here a “not random” source passed the test it 
should not have. To lower the probability of the Type II error 
we have to choose an acceptable value for α and for the length 
of the sequence. The above mentioned information can also be 
interpreted as a so called p-value. The p-value is between 0 
and 1 and it is the probability of getting results at least as 
extreme as the ones observed, given that the null-hypothesis is 
correct. In other words it is a metric showing how strong our 
evidences supporting the null-hypothesis are. To use the p-
value we compare it to α and if it is below it we reject H0. It is 
important to note here that α is used as a lower and  1- α is 
used as an upper bound and the p-values obtained throughout 
the test should follow a uniform distribution as well. 

When we want to measure the randomness of a given bit 
sequence one test can only look at one property of the 
sequence. Therefore we need multiple tests which we can use 
and we need them to be different (in the sense that they are 
testing different properties). To solve the issue certain test 
were grouped together into a so-called test suite. Some of the 
suites are defined by standards, other are organized by various 
people. 

An example for a standardized test suite is the NIST STS 
(National Institution of Standards and Technology Statistical 
Test Suite) [17] which consist of 15 different test and used 
widely in the world. Another test is the Diehard [18] and it is 
extended version the Dieharder [19] which are maintained by 
a community. The Dieharder suite consists of around 100 tests 
(it includes the NIST STS as well) which cover a large range 
of complexity. One of these test is the 32x32 binary rank test. 
This test takes 32 32-bit integer and builds a 32-by-32 matrix 
of 1s and 0s. Then it calculates the rank of this matrix and 
goes on for the next 32 number. Ranks less than or equal to 29 

are rare, therefore they are treated as one rank. A Chi-squared 
test [20] is performed on the ranks 32, 31, 30, and ≤ 
29,checking the uniformity of these rank groups. 

One important question regarding these tests is when to use 
them. Using the tests must be part of the creation process of 
the generator. It is important during this time to run selected 
tests which might point to possible flaws in the design. After 
the generator is complete or when it is used in a real system 
monitoring the randomness of the output is vital for the 
underlying system which is using the numbers from the 
generator and for the maintenance of the generator as well. 
These tests can be used in real-time [21]. The NIST published 
several recommendations on which tests to use in which part 
of the generators lifecycle [22]. 

E. Extractors 
With the help of the statistical tests we mentioned in the 

previous section we can measure the quality of the numbers 
produced by a generator while we are building it. This helps 
us to see how far are we in the development. If we are not 
satisfied with the results, we can try to make the construction 
better with for example a new layout or with the help of more 
precise components. But there is point where we cannot 
improve the system further just by fine tuning because the 
physical implementation of an RNG cannot be 100% efficient 
or the physical phenomenon which the generator is based on 
hasn’t got a high enough entropy. This means that we have to 
find another way to improve the quality of the generated 
numbers which comes after the generation phase. This is the 
post-processing, where we aim to improve the original output 
of the generator by making a new with better properties. 

During post-processing we use extractor functions or 
algorithms. Their main goal is to extract as much entropy from 
the original source as possible and to create a new output 
whose entropy is as close to the original source as possible and 
has a better quality [23]. Previously we mentioned that a good 
random number generator is close to a truly random source or 
indistinguishable from it. Now we will define what this means. 
The distance of two random variable can be written as: 

 
           

     
              

 
where X and Y are random variables of the same sample space 
A. If we think about our generator and a truly random source 
as a random variable can modify the definition to this: 
 

                                  . 
 
In this inequality X is random variable (our generator), U is a 
random variable representing the uniform distribution (a truly 
random source) and ε is an upper bound for the distance. If X 
satisfies this inequality we say that X is ε uniform. 
 The next step is to measure the entropy of the source, 
because the main objective of the extractors is to extract as 
much entropy as possible and we need a way to compare the 
new output to the old one. There are different ways to measure 
the entropy for example the Shannon entropy but in the case of 
extractors the min-entropy is the mostly used version. The 
definition of the min-entropy is the following: 
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hypothesis is that the generator is producing random numbers. 
The other hypothesis in the test is called the alternative 
hypothesis (Ha). Ha is the opposite of H0: it says that the 
generator isn’t producing truly random numbers. The next step 
is to calculate a distribution function with the help of a 
probabilistic value (most of the time these are well known 
probabilistic values) while assuming that the null-hypothesis is 
true. After this we select a significance level (α) on this 
distribution. Generally, this is a very small value. In the RNG 
testing α tends to be around 1%. Lastly, we calculate the 
statistical value which the given test measures and compare it 
to the significance level. If it is below α, we reject the null-
hypothesis and accept the alternative. If it is above it, we 
accept the null-hypothesis and reject the alternative. Based on 
our decision and the reality we have four possible outcomes. If 
we accepted the null-hypothesis and it is in fact true, we chose 
correctly (this has a probability of 1-α). It is the same if we 
rejected it and it was false in reality (the probability of this 
outcome is 1-β). The other two outcomes are called Type I and 
Type II error. The Type I error occurs when we rejected H0, 
but it was true. This outcome has a probability of α and is 
called false positive. The Type II error is when we accept H0, 
but it was false. It has a probability of β and is called false 
negative. Out of these two the Type I is more acceptable and 
with a good decision on the value of α we can fine tune it. In 
this case we falsely brand the RNG as “not random” in the 
test. But with the help of other tests we can still state at the 
end that it is in fact “random”. The Type II error is harder to 
manage, because here a “not random” source passed the test it 
should not have. To lower the probability of the Type II error 
we have to choose an acceptable value for α and for the length 
of the sequence. The above mentioned information can also be 
interpreted as a so called p-value. The p-value is between 0 
and 1 and it is the probability of getting results at least as 
extreme as the ones observed, given that the null-hypothesis is 
correct. In other words it is a metric showing how strong our 
evidences supporting the null-hypothesis are. To use the p-
value we compare it to α and if it is below it we reject H0. It is 
important to note here that α is used as a lower and  1- α is 
used as an upper bound and the p-values obtained throughout 
the test should follow a uniform distribution as well. 

When we want to measure the randomness of a given bit 
sequence one test can only look at one property of the 
sequence. Therefore we need multiple tests which we can use 
and we need them to be different (in the sense that they are 
testing different properties). To solve the issue certain test 
were grouped together into a so-called test suite. Some of the 
suites are defined by standards, other are organized by various 
people. 

An example for a standardized test suite is the NIST STS 
(National Institution of Standards and Technology Statistical 
Test Suite) [17] which consist of 15 different test and used 
widely in the world. Another test is the Diehard [18] and it is 
extended version the Dieharder [19] which are maintained by 
a community. The Dieharder suite consists of around 100 tests 
(it includes the NIST STS as well) which cover a large range 
of complexity. One of these test is the 32x32 binary rank test. 
This test takes 32 32-bit integer and builds a 32-by-32 matrix 
of 1s and 0s. Then it calculates the rank of this matrix and 
goes on for the next 32 number. Ranks less than or equal to 29 

are rare, therefore they are treated as one rank. A Chi-squared 
test [20] is performed on the ranks 32, 31, 30, and ≤ 
29,checking the uniformity of these rank groups. 

One important question regarding these tests is when to use 
them. Using the tests must be part of the creation process of 
the generator. It is important during this time to run selected 
tests which might point to possible flaws in the design. After 
the generator is complete or when it is used in a real system 
monitoring the randomness of the output is vital for the 
underlying system which is using the numbers from the 
generator and for the maintenance of the generator as well. 
These tests can be used in real-time [21]. The NIST published 
several recommendations on which tests to use in which part 
of the generators lifecycle [22]. 

E. Extractors 
With the help of the statistical tests we mentioned in the 

previous section we can measure the quality of the numbers 
produced by a generator while we are building it. This helps 
us to see how far are we in the development. If we are not 
satisfied with the results, we can try to make the construction 
better with for example a new layout or with the help of more 
precise components. But there is point where we cannot 
improve the system further just by fine tuning because the 
physical implementation of an RNG cannot be 100% efficient 
or the physical phenomenon which the generator is based on 
hasn’t got a high enough entropy. This means that we have to 
find another way to improve the quality of the generated 
numbers which comes after the generation phase. This is the 
post-processing, where we aim to improve the original output 
of the generator by making a new with better properties. 

During post-processing we use extractor functions or 
algorithms. Their main goal is to extract as much entropy from 
the original source as possible and to create a new output 
whose entropy is as close to the original source as possible and 
has a better quality [23]. Previously we mentioned that a good 
random number generator is close to a truly random source or 
indistinguishable from it. Now we will define what this means. 
The distance of two random variable can be written as: 

 
           

     
              

 
where X and Y are random variables of the same sample space 
A. If we think about our generator and a truly random source 
as a random variable can modify the definition to this: 
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In this inequality X is random variable (our generator), U is a 
random variable representing the uniform distribution (a truly 
random source) and ε is an upper bound for the distance. If X 
satisfies this inequality we say that X is ε uniform. 
 The next step is to measure the entropy of the source, 
because the main objective of the extractors is to extract as 
much entropy as possible and we need a way to compare the 
new output to the old one. There are different ways to measure 
the entropy for example the Shannon entropy but in the case of 
extractors the min-entropy is the mostly used version. The 
definition of the min-entropy is the following: 
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hypothesis is that the generator is producing random numbers. 
The other hypothesis in the test is called the alternative 
hypothesis (Ha). Ha is the opposite of H0: it says that the 
generator isn’t producing truly random numbers. The next step 
is to calculate a distribution function with the help of a 
probabilistic value (most of the time these are well known 
probabilistic values) while assuming that the null-hypothesis is 
true. After this we select a significance level (α) on this 
distribution. Generally, this is a very small value. In the RNG 
testing α tends to be around 1%. Lastly, we calculate the 
statistical value which the given test measures and compare it 
to the significance level. If it is below α, we reject the null-
hypothesis and accept the alternative. If it is above it, we 
accept the null-hypothesis and reject the alternative. Based on 
our decision and the reality we have four possible outcomes. If 
we accepted the null-hypothesis and it is in fact true, we chose 
correctly (this has a probability of 1-α). It is the same if we 
rejected it and it was false in reality (the probability of this 
outcome is 1-β). The other two outcomes are called Type I and 
Type II error. The Type I error occurs when we rejected H0, 
but it was true. This outcome has a probability of α and is 
called false positive. The Type II error is when we accept H0, 
but it was false. It has a probability of β and is called false 
negative. Out of these two the Type I is more acceptable and 
with a good decision on the value of α we can fine tune it. In 
this case we falsely brand the RNG as “not random” in the 
test. But with the help of other tests we can still state at the 
end that it is in fact “random”. The Type II error is harder to 
manage, because here a “not random” source passed the test it 
should not have. To lower the probability of the Type II error 
we have to choose an acceptable value for α and for the length 
of the sequence. The above mentioned information can also be 
interpreted as a so called p-value. The p-value is between 0 
and 1 and it is the probability of getting results at least as 
extreme as the ones observed, given that the null-hypothesis is 
correct. In other words it is a metric showing how strong our 
evidences supporting the null-hypothesis are. To use the p-
value we compare it to α and if it is below it we reject H0. It is 
important to note here that α is used as a lower and  1- α is 
used as an upper bound and the p-values obtained throughout 
the test should follow a uniform distribution as well. 

When we want to measure the randomness of a given bit 
sequence one test can only look at one property of the 
sequence. Therefore we need multiple tests which we can use 
and we need them to be different (in the sense that they are 
testing different properties). To solve the issue certain test 
were grouped together into a so-called test suite. Some of the 
suites are defined by standards, other are organized by various 
people. 

An example for a standardized test suite is the NIST STS 
(National Institution of Standards and Technology Statistical 
Test Suite) [17] which consist of 15 different test and used 
widely in the world. Another test is the Diehard [18] and it is 
extended version the Dieharder [19] which are maintained by 
a community. The Dieharder suite consists of around 100 tests 
(it includes the NIST STS as well) which cover a large range 
of complexity. One of these test is the 32x32 binary rank test. 
This test takes 32 32-bit integer and builds a 32-by-32 matrix 
of 1s and 0s. Then it calculates the rank of this matrix and 
goes on for the next 32 number. Ranks less than or equal to 29 

are rare, therefore they are treated as one rank. A Chi-squared 
test [20] is performed on the ranks 32, 31, 30, and ≤ 
29,checking the uniformity of these rank groups. 

One important question regarding these tests is when to use 
them. Using the tests must be part of the creation process of 
the generator. It is important during this time to run selected 
tests which might point to possible flaws in the design. After 
the generator is complete or when it is used in a real system 
monitoring the randomness of the output is vital for the 
underlying system which is using the numbers from the 
generator and for the maintenance of the generator as well. 
These tests can be used in real-time [21]. The NIST published 
several recommendations on which tests to use in which part 
of the generators lifecycle [22]. 

E. Extractors 
With the help of the statistical tests we mentioned in the 

previous section we can measure the quality of the numbers 
produced by a generator while we are building it. This helps 
us to see how far are we in the development. If we are not 
satisfied with the results, we can try to make the construction 
better with for example a new layout or with the help of more 
precise components. But there is point where we cannot 
improve the system further just by fine tuning because the 
physical implementation of an RNG cannot be 100% efficient 
or the physical phenomenon which the generator is based on 
hasn’t got a high enough entropy. This means that we have to 
find another way to improve the quality of the generated 
numbers which comes after the generation phase. This is the 
post-processing, where we aim to improve the original output 
of the generator by making a new with better properties. 

During post-processing we use extractor functions or 
algorithms. Their main goal is to extract as much entropy from 
the original source as possible and to create a new output 
whose entropy is as close to the original source as possible and 
has a better quality [23]. Previously we mentioned that a good 
random number generator is close to a truly random source or 
indistinguishable from it. Now we will define what this means. 
The distance of two random variable can be written as: 

 
           

     
              

 
where X and Y are random variables of the same sample space 
A. If we think about our generator and a truly random source 
as a random variable can modify the definition to this: 
 

                                  . 
 
In this inequality X is random variable (our generator), U is a 
random variable representing the uniform distribution (a truly 
random source) and ε is an upper bound for the distance. If X 
satisfies this inequality we say that X is ε uniform. 
 The next step is to measure the entropy of the source, 
because the main objective of the extractors is to extract as 
much entropy as possible and we need a way to compare the 
new output to the old one. There are different ways to measure 
the entropy for example the Shannon entropy but in the case of 
extractors the min-entropy is the mostly used version. The 
definition of the min-entropy is the following: 
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hypothesis is that the generator is producing random numbers. 
The other hypothesis in the test is called the alternative 
hypothesis (Ha). Ha is the opposite of H0: it says that the 
generator isn’t producing truly random numbers. The next step 
is to calculate a distribution function with the help of a 
probabilistic value (most of the time these are well known 
probabilistic values) while assuming that the null-hypothesis is 
true. After this we select a significance level (α) on this 
distribution. Generally, this is a very small value. In the RNG 
testing α tends to be around 1%. Lastly, we calculate the 
statistical value which the given test measures and compare it 
to the significance level. If it is below α, we reject the null-
hypothesis and accept the alternative. If it is above it, we 
accept the null-hypothesis and reject the alternative. Based on 
our decision and the reality we have four possible outcomes. If 
we accepted the null-hypothesis and it is in fact true, we chose 
correctly (this has a probability of 1-α). It is the same if we 
rejected it and it was false in reality (the probability of this 
outcome is 1-β). The other two outcomes are called Type I and 
Type II error. The Type I error occurs when we rejected H0, 
but it was true. This outcome has a probability of α and is 
called false positive. The Type II error is when we accept H0, 
but it was false. It has a probability of β and is called false 
negative. Out of these two the Type I is more acceptable and 
with a good decision on the value of α we can fine tune it. In 
this case we falsely brand the RNG as “not random” in the 
test. But with the help of other tests we can still state at the 
end that it is in fact “random”. The Type II error is harder to 
manage, because here a “not random” source passed the test it 
should not have. To lower the probability of the Type II error 
we have to choose an acceptable value for α and for the length 
of the sequence. The above mentioned information can also be 
interpreted as a so called p-value. The p-value is between 0 
and 1 and it is the probability of getting results at least as 
extreme as the ones observed, given that the null-hypothesis is 
correct. In other words it is a metric showing how strong our 
evidences supporting the null-hypothesis are. To use the p-
value we compare it to α and if it is below it we reject H0. It is 
important to note here that α is used as a lower and  1- α is 
used as an upper bound and the p-values obtained throughout 
the test should follow a uniform distribution as well. 

When we want to measure the randomness of a given bit 
sequence one test can only look at one property of the 
sequence. Therefore we need multiple tests which we can use 
and we need them to be different (in the sense that they are 
testing different properties). To solve the issue certain test 
were grouped together into a so-called test suite. Some of the 
suites are defined by standards, other are organized by various 
people. 

An example for a standardized test suite is the NIST STS 
(National Institution of Standards and Technology Statistical 
Test Suite) [17] which consist of 15 different test and used 
widely in the world. Another test is the Diehard [18] and it is 
extended version the Dieharder [19] which are maintained by 
a community. The Dieharder suite consists of around 100 tests 
(it includes the NIST STS as well) which cover a large range 
of complexity. One of these test is the 32x32 binary rank test. 
This test takes 32 32-bit integer and builds a 32-by-32 matrix 
of 1s and 0s. Then it calculates the rank of this matrix and 
goes on for the next 32 number. Ranks less than or equal to 29 

are rare, therefore they are treated as one rank. A Chi-squared 
test [20] is performed on the ranks 32, 31, 30, and ≤ 
29,checking the uniformity of these rank groups. 

One important question regarding these tests is when to use 
them. Using the tests must be part of the creation process of 
the generator. It is important during this time to run selected 
tests which might point to possible flaws in the design. After 
the generator is complete or when it is used in a real system 
monitoring the randomness of the output is vital for the 
underlying system which is using the numbers from the 
generator and for the maintenance of the generator as well. 
These tests can be used in real-time [21]. The NIST published 
several recommendations on which tests to use in which part 
of the generators lifecycle [22]. 

E. Extractors 
With the help of the statistical tests we mentioned in the 

previous section we can measure the quality of the numbers 
produced by a generator while we are building it. This helps 
us to see how far are we in the development. If we are not 
satisfied with the results, we can try to make the construction 
better with for example a new layout or with the help of more 
precise components. But there is point where we cannot 
improve the system further just by fine tuning because the 
physical implementation of an RNG cannot be 100% efficient 
or the physical phenomenon which the generator is based on 
hasn’t got a high enough entropy. This means that we have to 
find another way to improve the quality of the generated 
numbers which comes after the generation phase. This is the 
post-processing, where we aim to improve the original output 
of the generator by making a new with better properties. 

During post-processing we use extractor functions or 
algorithms. Their main goal is to extract as much entropy from 
the original source as possible and to create a new output 
whose entropy is as close to the original source as possible and 
has a better quality [23]. Previously we mentioned that a good 
random number generator is close to a truly random source or 
indistinguishable from it. Now we will define what this means. 
The distance of two random variable can be written as: 

 
           

     
              

 
where X and Y are random variables of the same sample space 
A. If we think about our generator and a truly random source 
as a random variable can modify the definition to this: 
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In this inequality X is random variable (our generator), U is a 
random variable representing the uniform distribution (a truly 
random source) and ε is an upper bound for the distance. If X 
satisfies this inequality we say that X is ε uniform. 
 The next step is to measure the entropy of the source, 
because the main objective of the extractors is to extract as 
much entropy as possible and we need a way to compare the 
new output to the old one. There are different ways to measure 
the entropy for example the Shannon entropy but in the case of 
extractors the min-entropy is the mostly used version. The 
definition of the min-entropy is the following: 
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resistance, the avalanche effect, one-way property etc. The 
properties of a hash function make it a good choice for 
extraction. The output values are uniformly distributed and 
one bit difference between two inputs result in a bigger 
difference between the outputs. Other than that the length of 
the output can be the same as the input therefore the bitrate of 
the generator does not change. The physical implementation of 
a hash function can be achieved with good efficiency because 
there are specific hardware components which are designed 
for the fast computation of specific hash functions. 

One of these hash functions is the Toeplitz hashing [31], 
where a Toeplitz matrix is used during extraction where the 
input bits (divided into smaller groups) as a vector is 
multiplied with this matrix. 

 
6)  Using S-boxes as extractors 
Substitution boxes (S-boxes) are mostly used in symmetric 
key encryption algorithms. For example they are used in the 
Data Encryption Standard (DES) [32]. They take an m long 
bits of input and give out bits of n length, substituting the 
input for the output. As their main goal in encryption systems 
is to increase confusion, they can be used as extractors [33]. 

III. TESTING THE GENERATORS AND THE EXTRACTORS 
Our main objective during the testing was to find out how 

can the different extractors improve the quality of the original 
outputs from the generator. During the testing of the two 
generators we firstly implemented the extractors we 
previously introduced. For running the test we used the 
Dieharder test suite which we introduced in the previous 
chapter. This test suite has a command line program which can 
be used on Linux based operating systems and provides a 
variety of possible arguments which can be given to the test 
[34]. 

In the implementation phase we decided that for the N bit 
Von Neumann extractor we will implement the N=4 case and 
for the iterative Von Neuman extractor we use 2 iteration. For 
the extractor which uses the Toeplitz matrix we generated 
Toeplitz matrix with the help of a PRNG. For the S-boxes we 
used the one which can be found in DES. For the hash 
function we chose the SHA-256. 

After we implemented the extractors we had to choose the 
tests we wanted to run. We chose 19 test from the Dieharder 
test suite from which 16 was part of the Dierharder and 3 was 
part of the NIST STS. We only chose this subset of the 
Dierharder tests, because the generators were already tested 
with the NIST STS in previously published paper [21] and our 
main goal was to demonstrate the effect of the extractors on 
the original output. Therefore the results we will be presenting 
in the following subsections cannot be taken as a thorough 
statistical test of the generators.  

After we chose the tests we set up the testing environment. 
We gathered data from the two generators. In case of the 
generator which is based on the arrival times of photons the 
size of the data was bigger. After this we ran the tests on the 
original output as well as the new ones which were produced 
by the 8 implemented extractor. We summarized the result in 
tables. In the rows we can see the tests, in the columns we can 
see the name of the tested outputs. If the generator PASSED 

the given test we can see the p-value it has achieved, if it 
failed it we can see an “F”. 

A. Testing the ASE generator 
The first generator we tested was the ASE generator. First 

of all we have to note that during the creation of the original 
output we deliberately introduced oversampling into the 
creation process. This resulted in a higher bitrate, but as we 
will see it heavily effected the quality of the numbers. 

Table 1 shows the results of the original output as well as 4 
simple extractors. We can see the effect of the oversampling. 
The original output could only pass 1 test out of 19. The 
simple extractors could slightly improve the quality, only 1 or 
2 more tests were successful with their help. This correlates 
with the previously mentioned information about these 
extractors.  

Table 2 shows the results of the 4 more complex extractors. 
As we can see they performed much better compared to the 
previous ones. The H function performed really good 
considering it is simple construction and the hash function 
could almost eliminate all the failed tests. During the testing of 
this generator, we found that if there is a problem in the 
creation process (here, for example oversampling) with the 
help of extractors we cannot eliminate it perfectly, but we can 
mitigate the effect it has on the quality of the numbers. This is 
important, because there could be an underlying system which 
uses the number created by the generator and it requires a high 
bitrate. If we can only provide the desired bitrate with 
oversampling then the extractors could help us meet some of 
the quality requirements. 

B. Testing The Generator Based On The Arrival Times Of 
Photons 

The second generator we tested was the one which is based 
on the arrival times of photons.  

Table 3 shows the results of the original and the 4 simple 
extractors. We can see that the original output achieved a good 
result, only 2 out 19 tests failed. The explanation for the 2 
failed test is the minimal inaccuracy of the hardware 
components in the generator (for example the photon sensor). 
The extractors couldn’t improve the quality of the output to a 
perfect case but the XOR for example only failed 1 test. Table 
4 shows the results for the second group of extractors. As we 
can see they performed better. The H function and the hash 
function were able to achieve a perfect result, eliminating the 
2 failed test in the original one. The other 2 extractor achieved 
good results as well. We can conclude from the testing of this 
generator that with the help of extractors we can eliminate the 
negative effects the physical implementation introduces to the 
system. 

IV. CONCLUSION 
In our paper we presented the concept of QRNGs and also 

briefly presented two of techniques which are used in these 
generators during the creation of the numbers. We introduced 
selected tests which can be used to determine the quality of the 
generated numbers on a probabilistic basis. After this we 
presented the idea of extractors and showed where they fit into 
in the lifecycle of the generator. 
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resistance, the avalanche effect, one-way property etc. The 
properties of a hash function make it a good choice for 
extraction. The output values are uniformly distributed and 
one bit difference between two inputs result in a bigger 
difference between the outputs. Other than that the length of 
the output can be the same as the input therefore the bitrate of 
the generator does not change. The physical implementation of 
a hash function can be achieved with good efficiency because 
there are specific hardware components which are designed 
for the fast computation of specific hash functions. 

One of these hash functions is the Toeplitz hashing [31], 
where a Toeplitz matrix is used during extraction where the 
input bits (divided into smaller groups) as a vector is 
multiplied with this matrix. 

 
6)  Using S-boxes as extractors 
Substitution boxes (S-boxes) are mostly used in symmetric 
key encryption algorithms. For example they are used in the 
Data Encryption Standard (DES) [32]. They take an m long 
bits of input and give out bits of n length, substituting the 
input for the output. As their main goal in encryption systems 
is to increase confusion, they can be used as extractors [33]. 

III. TESTING THE GENERATORS AND THE EXTRACTORS 
Our main objective during the testing was to find out how 

can the different extractors improve the quality of the original 
outputs from the generator. During the testing of the two 
generators we firstly implemented the extractors we 
previously introduced. For running the test we used the 
Dieharder test suite which we introduced in the previous 
chapter. This test suite has a command line program which can 
be used on Linux based operating systems and provides a 
variety of possible arguments which can be given to the test 
[34]. 

In the implementation phase we decided that for the N bit 
Von Neumann extractor we will implement the N=4 case and 
for the iterative Von Neuman extractor we use 2 iteration. For 
the extractor which uses the Toeplitz matrix we generated 
Toeplitz matrix with the help of a PRNG. For the S-boxes we 
used the one which can be found in DES. For the hash 
function we chose the SHA-256. 

After we implemented the extractors we had to choose the 
tests we wanted to run. We chose 19 test from the Dieharder 
test suite from which 16 was part of the Dierharder and 3 was 
part of the NIST STS. We only chose this subset of the 
Dierharder tests, because the generators were already tested 
with the NIST STS in previously published paper [21] and our 
main goal was to demonstrate the effect of the extractors on 
the original output. Therefore the results we will be presenting 
in the following subsections cannot be taken as a thorough 
statistical test of the generators.  

After we chose the tests we set up the testing environment. 
We gathered data from the two generators. In case of the 
generator which is based on the arrival times of photons the 
size of the data was bigger. After this we ran the tests on the 
original output as well as the new ones which were produced 
by the 8 implemented extractor. We summarized the result in 
tables. In the rows we can see the tests, in the columns we can 
see the name of the tested outputs. If the generator PASSED 

the given test we can see the p-value it has achieved, if it 
failed it we can see an “F”. 

A. Testing the ASE generator 
The first generator we tested was the ASE generator. First 

of all we have to note that during the creation of the original 
output we deliberately introduced oversampling into the 
creation process. This resulted in a higher bitrate, but as we 
will see it heavily effected the quality of the numbers. 

Table 1 shows the results of the original output as well as 4 
simple extractors. We can see the effect of the oversampling. 
The original output could only pass 1 test out of 19. The 
simple extractors could slightly improve the quality, only 1 or 
2 more tests were successful with their help. This correlates 
with the previously mentioned information about these 
extractors.  

Table 2 shows the results of the 4 more complex extractors. 
As we can see they performed much better compared to the 
previous ones. The H function performed really good 
considering it is simple construction and the hash function 
could almost eliminate all the failed tests. During the testing of 
this generator, we found that if there is a problem in the 
creation process (here, for example oversampling) with the 
help of extractors we cannot eliminate it perfectly, but we can 
mitigate the effect it has on the quality of the numbers. This is 
important, because there could be an underlying system which 
uses the number created by the generator and it requires a high 
bitrate. If we can only provide the desired bitrate with 
oversampling then the extractors could help us meet some of 
the quality requirements. 

B. Testing The Generator Based On The Arrival Times Of 
Photons 

The second generator we tested was the one which is based 
on the arrival times of photons.  

Table 3 shows the results of the original and the 4 simple 
extractors. We can see that the original output achieved a good 
result, only 2 out 19 tests failed. The explanation for the 2 
failed test is the minimal inaccuracy of the hardware 
components in the generator (for example the photon sensor). 
The extractors couldn’t improve the quality of the output to a 
perfect case but the XOR for example only failed 1 test. Table 
4 shows the results for the second group of extractors. As we 
can see they performed better. The H function and the hash 
function were able to achieve a perfect result, eliminating the 
2 failed test in the original one. The other 2 extractor achieved 
good results as well. We can conclude from the testing of this 
generator that with the help of extractors we can eliminate the 
negative effects the physical implementation introduces to the 
system. 

IV. CONCLUSION 
In our paper we presented the concept of QRNGs and also 

briefly presented two of techniques which are used in these 
generators during the creation of the numbers. We introduced 
selected tests which can be used to determine the quality of the 
generated numbers on a probabilistic basis. After this we 
presented the idea of extractors and showed where they fit into 
in the lifecycle of the generator. 

Name of the test H function S-box Toeplitz-matrix SHA256

diehard_birthdays 0.946 0.136 F F

diehard_operm 50.187 0.359 F 0.414

diehard_rank_32x32 0.467 0.101 F 0.861

diehard_rank_6x8 0.419 F F 0.497

diehard_bitstream F F F 0.822

diehard_opso F F F 0.231

diehard_oqso 0.010 F F F

diehard_dna 0.035 F F 0.382

diehard_count_1s_str F F F 0.361

diehard_count_1s_byt 0.196 F F 0.406

diehard_parking_lot 0.061 F F 0.011

diehard_2dsphere 0.872 F F 0.564

diehard_3dsphere 0.844 0.097 F 0.823

diehard_squeeze F F F 0.954

diehard_runs F 0.475 0.522 0.198

diehard_craps F F F F

sts_monobit F F F 0.062

sts_runs F F F 0.322

sts_serial F F F 0.563
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We have presented 8 extractors, together with their operation 
and listed some of their strengths and weaknesses. In the last 
part of our paper we concentrated on these 8 extractors and 
their effect on the quality of the outputs produced by two 
QRNGs. We ran several statistical tests to determine how the 
extractors effect the properties of the numbers and presented 
the outcome of these tests on both generators. After we 
performed the tests we concluded that post-processing can be 
utilized to enhance the output of the generators, but we have to 
select the right extractors as not all of them can perform 

equally. While there are ones which can greatly increase the 
number of passed tests, they can also decrease the possible 
output speed of the generator. Another important property we 
found was that in case of a miscalibration during the 
generation process inside the generator the extractors can to a 
certain degree mitigate the negative effects. The chosen tests 
do not cover all the aspects which are needed for a deep 
statistical testing of the complete post-processing with these 
extractors, therefore as a future improvement it can be studied.

Table 1: The results for the generator based on amplified spontaneous emission Part 1. 

Name of the test H function S-box Toeplitz-matrix SHA256 

diehard_birthdays 0.946 0.136 F F 

diehard_operm5 0.187 0.359 F 0.414 

diehard_rank_32x32 0.467 0.101 F 0.861 

diehard_rank_6x8 0.419 F F 0.497 

diehard_bitstream F F F 0.822 

diehard_opso F F F 0.231 

diehard_oqso 0.010 F F F 

diehard_dna 0.035 F F 0.382 

diehard_count_1s_str F F F 0.361 

diehard_count_1s_byt 0.196 F F 0.406 

diehard_parking_lot 0.061 F F 0.011 

diehard_2dsphere 0.872 F F 0.564 

diehard_3dsphere 0.844 0.097 F 0.823 

diehard_squeeze F F F 0.954 

diehard_runs F 0.475 0.522 0.198 

diehard_craps F F F F 

sts_monobit F F F 0.062 

sts_runs F F F 0.322 

sts_serial F F F 0.563 

Name of the test Original XOR Von Neumann Iterating Von Neumann 4 bit Von Neumann 

diehard_birthdays F F F F F 

TABLE I
The results for the generator based on amplified spontaneous emission Part 1.
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Name of the test Original XOR Von Neumann Iterating Von Neumann 4 bit Von Neumann

diehard_birthdays 0.564 0.810 0.536 0.100 0.853

diehard_operm5 0.952 0.163 0.066 0.463 0.360

diehard_rank_32x32 0.313 0.948 0.576 0.327 0.917

diehard_rank_6x8 0.121 0.817 0.606 0.884 F

diehard_bitstream 0.305 0.121  0.524 0.297 F

diehard_opso F 0.448 0.227 0.068 F

diehard_oqso 0.927 0.691 0.987 0.134 F

diehard_dna 0.549 0.602 0.972 0.533 F

diehard_count_1s_str 0.927 0.976 0.935 0.540 F

diehard_count_1s_byt 0.941 0.875 0.674 0.821 F

diehard_parking_lot 0.863 0.100 0.273 0.012 F

diehard_2dsphere 0.576 0.336 0.754 F F

diehard_3dsphere 0.574 0.982 0.575 0.031 0.246

diehard_squeeze 0.114 0.498 0.043 0.013 F

diehard_runs 0.176 0.805 0.684 0.284 0.419

diehard_craps 0.307 0.711 F 0.737 F

sts_monobit 0.360 F 0.762 0.249 F

sts_runs F 0.892 F F F

sts_serial 0.570 0.459 0.548 0.453 F

TABLE II
The results for the generator based on amplified spontaneous emission Part 2.

TABLE III
 The results for the generator based on the arrival times of photons Part 1.

Name of the test Original XOR Von Neumann Iterating Von Neumann 4 bit Von Neumann

diehard_birthdays F F F F F

diehard_operm5 F 0.080 F F 0.078

diehard_rank_32x32 0.565 0.042 0.036 0.479 0.215

diehard_rank_6x8 F F F F F

diehard_bitstream F F F F F

diehard_opso F F F F F

diehard_oqso F F F F F

diehard_dna F F F F F

diehard_count_1s_str F F F F F

diehard_count_1s_byt F F F F F

diehard_parking_lot F F F F F

diehard_2dsphere F F F F F

diehard_3dsphere F F F F F

diehard_squeeze F F F F F

diehard_runs F 0.631 0.767 0.363 0.617

diehard_craps F F F F F

sts_monobit F F F F F

sts_runs F F F F F

sts_serial F F F F F
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