
Joint Beacon Power and Beacon Rate Control Based on  
Game Theoretic Approach in Vehicular Ad Hoc Networks 1

 Abstract— In vehicular ad hoc networks (VANETs), each 
vehicle broadcasts its information periodically in its 
beacons to create awareness for surrounding vehicles aware 
of their presence. But, the wireless channel is congested by 
the increase beacons number, packet collision lost a lot of 
beacons. This paper tackles the problem of joint beaconing 
power and a beaconing rate in VANETs. A joint utility-
based beacon power and beacon rate game are formulated 
as a non-cooperative game and a cooperative game.  A three 
distributed and iterative algorithm (Nash Seeking 
Algorithm, Best Response Algorithm, Cooperative 
Bargaining Algorithm) for computing the desired 
equilibrium is introduced, where the optimal values of each 
vehicle beaconing power and beaconing rate are 
simultaneously updated at the same step. Extensive 
simulations show the convergence of a proposed algorithm 
to the equilibrium and give some insights on how the game 
parameters may vary the game outcome. It is demonstrated 
that the Cooperative Bargaining Algorithm is a fast 
algorithm that converges the equilibrium. 

Index Terms—. Beacon rate, Beacon power, Non-cooperative 
game, Cooperative game, VANETs, Game theory, Nash 
equilibrium, Nash bargaining solution. 

I. INTRODUCTION

VANETs is a new paradigm of wireless communications 
that aim to exploit the recent advances in wireless devices 
technology to enable intelligent inter-vehicle 

communication. The appearance of VANETs has been 
becoming an interesting field for the traffic research community 
during the last decades. VANETs provides a new trend for 
Intelligent Transportation Systems such as public transport 
management  [1], and improve security in transportation to 
reduce the number of disasters. Various types of safety have 
been designed for VANETs, including emergency alert, 
accident notification, curve alert, file-sharing, internet, and 
advertisements. 
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Enhance security is achieved by Basic Safety Messages 
(BSMs) exchanged between vehicles in VANETs, the BSMs 
are called beacons. Vehicles periodically broadcast beacons 
within the network to inform other vehicles of their situation 
(vehicle nodes position, speed, and direction information). On 
the other hand, beacons or safety messages are broadcasted in 
case of emergencies, such as collisions, accidents, and road 
surface collapse. In dense vehicular networks, a high number of 
beacons get lost, and congestion in the channel load result 
because of the growth in beaconing rates, and thus, degrades 
vehicles' awareness and the accuracy of the safety of vehicles. 
Channel congestion is a critical factor that leads to delayed or 
failed messages delivery. With higher vehicle density, it is not 
clear if the channel capacity will be sufficient to support the 
data load generated by beacons. Therefore, the development of 
effective congestion control strategies for VANETs is of utmost 
importance and has been an area of intense research interest in 
recent years. 

The modelization of analytical models to study the behavior 
of the vehicle in VANETs is a challenge that gets an increasing 
interest of researchers. Several models have been proposed to 
analyze the VANET performance to suggest suitable solutions 
to VANETs. Congestion control is a challenge in computer 
networks. The metric used to evaluate congestion control are 
fairness between the vehicle, the time needed for the 
convergence, and oscillation size [2]. Congestion control in 
VANETs should operate in a distributed manner without 
involving any infrastructure. Due to the highly dynamic nature 
of VANETs, the convergence time of the control mechanism 
must be minimal. 

Several work used game theory in wireless networks [3] [4] 
[5] [6] [7] [8]. The authors in [9] proposed a beacon power 
control algorithm; every player calculates the maximum 
beaconing power to achieve the maximum communication 
power and keeps the Channel Busy Ratio (CBR) under a 
threshold. In [10], the authors study the performance of a multi-
hop broadcast protocol in VNETs safety by designing a generic 
probabilistic forwarding scheme and proposing an analytical 
model to study the performance of the proposed model. The 
authors in [11] provide a mechanism to find the optimal beacon 
rates founded on the maximization of the utility function and 
show the impact of the beacon rate on the performance of the 
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network. In [12], the author studied a dynamic congestion 
control mechanism as a means of broadcasting BSM, and to 
guarantee the reliable and timely delivery of messages to all 
neighbors in a network. The authors in [13] used the tabu search 
algorithm with multi-channel allocation capability to reduce the 
time delay and jitter for improving the quality of service in 
VANET. In [10], the authors proposed a vehicle mobility 
prediction founded beacon rate adaptation approach, where 
each vehicle uses the prediction module to get the situation of 
their neighbors in real-time. The authors in [14] studied the 
competition among vehicles in beaconing power as a non-
cooperative game. In [15] the authors used the non-cooperative 
game for designing a beacon rate control mechanism. The 
authors proved the uniqueness of the Nash equilibrium point 
and proposed a distributed method is used to find the 
equilibrium point. In this paper, we utilize a non-cooperative 
game and the cooperative game to study the joint control 
beaconing rate and beaconing power in VANETs. We propose 
three algorithms for learning joint beaconing rate and 
beaconing power at Nash equilibrium and Nash bargaining 
solution. 

In this paper, a fair and stable joint beaconing power and 
beaconing rate problem in VANETs are formulated and solved 
based on the non-cooperative games and cooperative game. The 
incentive and objective of the proposed approach are finding 
the vehicle beaconing power and beaconing rate in a distributed 
manner to decrease the number of losses of beacons. The theory 
of supermodular games and the Nash bargaining solution are 
used to solve the corresponding optimization problem. We 
prove the existence of the Nash equilibrium point in the non-
cooperative game. Furthermore, we implement three learning 
algorithms that find the equilibrium point in a distributed 
manner by adjusting beaconing rates and beaconing powers 
jointly in a single step. Performance evaluation shows the 
convergence of the proposed algorithm to the equilibrium 
beaconing power and the beaconing equilibrium rate, and show 
the impact of system parameters on vehicle strategies. Also, it 
is revealed that the proposed cooperative game algorithm is the 
best choice for the vehicle to control the beaconing rate and 
beaconing power. 

The rest of this paper is organized as follows. In Section II,
we describe the proposed model. In Section III, we present the 
non-cooperative game formulation and the price of anarchy. In 
Section IV, we present a cooperative game. Then, we present 
the Performance evaluation in Section V. Finally, in Section VI
conclusions. 

II. SYSTEM MODEL 
The utility function of each vehicle is the difference between 
revenue and fees. Accordingly, the payoff of the vehicle 𝑖𝑖 can 
be written as:  
𝑈𝑈𝑖𝑖 = 𝑎𝑎𝑖𝑖log(𝑟𝑟𝑖𝑖 + 𝑝𝑝𝑖𝑖 + 1) − 𝑐𝑐𝑖𝑖𝑝𝑝𝑖𝑖𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖, 𝑝𝑝−𝑖𝑖, 𝑟𝑟−𝑖𝑖) − (𝐶𝐶𝑠𝑠𝑖𝑖 +
𝐶𝐶𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖 + 𝐶𝐶𝑟𝑟𝑖𝑖𝑟𝑟𝑖𝑖)                                                                  (1) 
where 𝑎𝑎𝑖𝑖 and 𝑐𝑐𝑖𝑖 are two positive parameters. 
𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖 , 𝑝𝑝−𝑖𝑖, 𝑟𝑟−𝑖𝑖) is the channel busy ratio that vehicle 𝑖𝑖
senses, and it is a function of all vehicle beaconing rates and 
beaconing power, where 𝑝𝑝𝑝𝑖𝑖 = (𝑝𝑝1, . . , 𝑝𝑝𝑖𝑖−1, 𝑝𝑝𝑖𝑖𝑖1, … , 𝑝𝑝N). The 
term 𝑎𝑎log(𝑟𝑟𝑖𝑖 + 𝑝𝑝𝑖𝑖 + 1) is the revenue of vehicle 𝑖𝑖; it is an 
increasing function with respect to beaconing rate and 

beaconing power. A logarithmic function has been used 
because it is increasing and has excellent concavity properties. 
Thus, the vehicle with lower beaconing power and their 
beaconing rate has more incentive to increase their beaconing 
power and their beaconing rate.  The second term 
𝑐𝑐𝑖𝑖𝑝𝑝𝑖𝑖𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖 , 𝑝𝑝−𝑖𝑖, 𝑟𝑟−𝑖𝑖), is the congestion cost. It indicates that 
a vehicle should pay higher costs at higher congestions, which 
discourages the vehicles from using a high beacon rate and high 
beacon power. The third term 𝐶𝐶𝑠𝑠𝑖𝑖 + 𝐶𝐶𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖 + 𝐶𝐶𝑟𝑟𝑖𝑖𝑟𝑟𝑖𝑖  is the energy 
consumed to send beacons and to switch the state of the 
transceiver. 𝐶𝐶𝑠𝑠𝑖𝑖  is the energy consumed for switching the state 
of the transceiver, 𝐶𝐶𝑝𝑝𝑖𝑖 is the energy consumed for sending 
beacons with power 𝑝𝑝𝑖𝑖 , and 𝐶𝐶𝑟𝑟𝑖𝑖 is the energy consumed for 
sending beacons with a rate 𝑟𝑟𝑖𝑖. 
Then, we define 𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖 , 𝑝𝑝−𝑖𝑖, 𝑟𝑟−𝑖𝑖) as that in [16] by  

𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖, 𝑝𝑝−𝑖𝑖, 𝑟𝑟−𝑖𝑖) = ∑𝑁𝑁
𝑗𝑗𝑗1 ℎ𝑖𝑖𝑗𝑗𝑟𝑟𝑗𝑗 (2) 

where  

ℎ𝑖𝑖𝑗𝑗 = 𝑇𝑇𝑓𝑓𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓 ×
Γ(𝑓𝑓,𝑓𝑓𝐶𝐶𝑇𝑇𝑇𝑇

Ω𝑖𝑖𝑖𝑖
)

Γ(𝑓𝑓) (3) 
  

Ω𝑖𝑖𝑗𝑗 =
𝑝𝑝𝑖𝑖𝜆𝜆2

(4𝜋𝜋)2𝑑𝑑𝑖𝑖𝑖𝑖
𝛾𝛾 (4) 

Γ is the gamma function, Γ(. , . ) is the upper incomplete gamma 
function, 𝐶𝐶𝑇𝑇𝑇𝑇 is the threshold power level of carrier sense, 𝑝𝑝𝑗𝑗 is 
the 𝐶𝐶𝐵𝐵𝐵𝐵 transmit power of vehicle 𝑗𝑗, 𝑑𝑑𝑖𝑖𝑗𝑗  is the distance between 
𝑗𝑗th and 𝑖𝑖th vehicles, 𝑚𝑚 is Nakagami fading parameter, 𝜆𝜆 is the 
wavelength, 𝛾𝛾 is the path loss exponent, 𝑟𝑟𝑗𝑗 is the beaconing rate 
of vehicles 𝑗𝑗, and 𝑇𝑇𝑓𝑓𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓  is the time needed to transmit a beacon 
message. 

Equation (2) indicates that the channel load experienced by 
vehicle 𝑖𝑖 is the weighted sum of the beaconing rate of all the 
other vehicles ∑𝑁𝑁

𝑗𝑗𝑗1 ℎ𝑖𝑖𝑗𝑗𝑟𝑟𝑗𝑗. The channel load also depends on 
various parameters such as channel fading, the time needed to 
transmit a beacon message, and the distance of other vehicles. 
The coefficients ℎ𝑖𝑖𝑗𝑗 defined in (3), represents the action of these 
parameters in the channel load sensed by vehicle 𝑖𝑖. 

III. A NON-COOPERATIVE GAME FORMULATION 
Let 𝐺𝐺 = [𝒩𝒩, {𝑅𝑅𝑖𝑖, 𝑃𝑃𝑖𝑖}, {𝑈𝑈𝑖𝑖(. )}] denote the non-cooperative 
beaconing rate and beaconing power game (NRPG), where 
𝒩𝒩 = {1, . . . , 𝒩𝒩} is the index set identifying the vehicle, 𝑃𝑃𝑖𝑖  is the 
beaconing power strategy set of vehicle 𝑖𝑖, 𝑅𝑅𝑖𝑖 is the beaconing 
rate strategy set of vehicle 𝑖𝑖, and 𝑈𝑈𝑖𝑖(. ) is the utility function of 
vehicle 𝑖𝑖 defined in Equation (1). We assume that the strategy 
spaces 𝑅𝑅𝑖𝑖 and 𝑃𝑃𝑖𝑖  of each vehicle 𝑖𝑖 are compact and convex sets 
with maximum and minimum constraints, for any given vehicle 
𝑖𝑖 we consider as strategy spaces the closed intervals 𝑅𝑅𝑖𝑖 = [𝑟𝑟𝑖𝑖, 𝑟𝑟𝑖𝑖]
and 𝑃𝑃𝑖𝑖 = [𝑝𝑝𝑖𝑖, 𝑝𝑝𝑖𝑖]. Let the beaconing power vector 𝐩𝐩 =
(𝑝𝑝1, . . . , 𝑝𝑝𝑁𝑁)𝑇𝑇 ∈ 𝑃𝑃𝑁𝑁 = 𝑃𝑃1 × 𝑃𝑃2 ×. . .× 𝑃𝑃𝑁𝑁, beaconing rate vector 
𝐫𝐫 = (𝑟𝑟1, . . . , 𝑟𝑟𝑁𝑁)𝑇𝑇 ∈ 𝑅𝑅𝑁𝑁 = 𝑅𝑅1 × 𝑅𝑅2 ×. . .× 𝑅𝑅𝑁𝑁.
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network. In [12], the author studied a dynamic congestion 
control mechanism as a means of broadcasting BSM, and to 
guarantee the reliable and timely delivery of messages to all 
neighbors in a network. The authors in [13] used the tabu search 
algorithm with multi-channel allocation capability to reduce the 
time delay and jitter for improving the quality of service in 
VANET. In [10], the authors proposed a vehicle mobility 
prediction founded beacon rate adaptation approach, where 
each vehicle uses the prediction module to get the situation of 
their neighbors in real-time. The authors in [14] studied the 
competition among vehicles in beaconing power as a non-
cooperative game. In [15] the authors used the non-cooperative 
game for designing a beacon rate control mechanism. The 
authors proved the uniqueness of the Nash equilibrium point 
and proposed a distributed method is used to find the 
equilibrium point. In this paper, we utilize a non-cooperative 
game and the cooperative game to study the joint control 
beaconing rate and beaconing power in VANETs. We propose 
three algorithms for learning joint beaconing rate and 
beaconing power at Nash equilibrium and Nash bargaining 
solution. 

In this paper, a fair and stable joint beaconing power and 
beaconing rate problem in VANETs are formulated and solved 
based on the non-cooperative games and cooperative game. The 
incentive and objective of the proposed approach are finding 
the vehicle beaconing power and beaconing rate in a distributed 
manner to decrease the number of losses of beacons. The theory 
of supermodular games and the Nash bargaining solution are 
used to solve the corresponding optimization problem. We 
prove the existence of the Nash equilibrium point in the non-
cooperative game. Furthermore, we implement three learning 
algorithms that find the equilibrium point in a distributed 
manner by adjusting beaconing rates and beaconing powers 
jointly in a single step. Performance evaluation shows the 
convergence of the proposed algorithm to the equilibrium 
beaconing power and the beaconing equilibrium rate, and show 
the impact of system parameters on vehicle strategies. Also, it 
is revealed that the proposed cooperative game algorithm is the 
best choice for the vehicle to control the beaconing rate and 
beaconing power. 

The rest of this paper is organized as follows. In Section II,
we describe the proposed model. In Section III, we present the 
non-cooperative game formulation and the price of anarchy. In 
Section IV, we present a cooperative game. Then, we present 
the Performance evaluation in Section V. Finally, in Section VI
conclusions. 

II. SYSTEM MODEL 
The utility function of each vehicle is the difference between 
revenue and fees. Accordingly, the payoff of the vehicle 𝑖𝑖 can 
be written as:  
𝑈𝑈𝑖𝑖 = 𝑎𝑎𝑖𝑖log(𝑟𝑟𝑖𝑖 + 𝑝𝑝𝑖𝑖 + 1) − 𝑐𝑐𝑖𝑖𝑝𝑝𝑖𝑖𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖, 𝑝𝑝−𝑖𝑖, 𝑟𝑟−𝑖𝑖) − (𝐶𝐶𝑠𝑠𝑖𝑖 +
𝐶𝐶𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖 + 𝐶𝐶𝑟𝑟𝑖𝑖𝑟𝑟𝑖𝑖)                                                                  (1) 
where 𝑎𝑎𝑖𝑖 and 𝑐𝑐𝑖𝑖 are two positive parameters. 
𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖 , 𝑝𝑝−𝑖𝑖, 𝑟𝑟−𝑖𝑖) is the channel busy ratio that vehicle 𝑖𝑖
senses, and it is a function of all vehicle beaconing rates and 
beaconing power, where 𝑝𝑝𝑝𝑖𝑖 = (𝑝𝑝1, . . , 𝑝𝑝𝑖𝑖−1, 𝑝𝑝𝑖𝑖𝑖1, … , 𝑝𝑝N). The 
term 𝑎𝑎log(𝑟𝑟𝑖𝑖 + 𝑝𝑝𝑖𝑖 + 1) is the revenue of vehicle 𝑖𝑖; it is an 
increasing function with respect to beaconing rate and 

beaconing power. A logarithmic function has been used 
because it is increasing and has excellent concavity properties. 
Thus, the vehicle with lower beaconing power and their 
beaconing rate has more incentive to increase their beaconing 
power and their beaconing rate.  The second term 
𝑐𝑐𝑖𝑖𝑝𝑝𝑖𝑖𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖 , 𝑝𝑝−𝑖𝑖, 𝑟𝑟−𝑖𝑖), is the congestion cost. It indicates that 
a vehicle should pay higher costs at higher congestions, which 
discourages the vehicles from using a high beacon rate and high 
beacon power. The third term 𝐶𝐶𝑠𝑠𝑖𝑖 + 𝐶𝐶𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖 + 𝐶𝐶𝑟𝑟𝑖𝑖𝑟𝑟𝑖𝑖  is the energy 
consumed to send beacons and to switch the state of the 
transceiver. 𝐶𝐶𝑠𝑠𝑖𝑖  is the energy consumed for switching the state 
of the transceiver, 𝐶𝐶𝑝𝑝𝑖𝑖 is the energy consumed for sending 
beacons with power 𝑝𝑝𝑖𝑖 , and 𝐶𝐶𝑟𝑟𝑖𝑖 is the energy consumed for 
sending beacons with a rate 𝑟𝑟𝑖𝑖. 
Then, we define 𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖 , 𝑝𝑝−𝑖𝑖, 𝑟𝑟−𝑖𝑖) as that in [16] by  

𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖, 𝑝𝑝−𝑖𝑖, 𝑟𝑟−𝑖𝑖) = ∑𝑁𝑁
𝑗𝑗𝑗1 ℎ𝑖𝑖𝑗𝑗𝑟𝑟𝑗𝑗 (2) 

where  

ℎ𝑖𝑖𝑗𝑗 = 𝑇𝑇𝑓𝑓𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓 ×
Γ(𝑓𝑓,𝑓𝑓𝐶𝐶𝑇𝑇𝑇𝑇

Ω𝑖𝑖𝑖𝑖
)

Γ(𝑓𝑓) (3) 
  

Ω𝑖𝑖𝑗𝑗 =
𝑝𝑝𝑖𝑖𝜆𝜆2

(4𝜋𝜋)2𝑑𝑑𝑖𝑖𝑖𝑖
𝛾𝛾 (4) 

Γ is the gamma function, Γ(. , . ) is the upper incomplete gamma 
function, 𝐶𝐶𝑇𝑇𝑇𝑇 is the threshold power level of carrier sense, 𝑝𝑝𝑗𝑗 is 
the 𝐶𝐶𝐵𝐵𝐵𝐵 transmit power of vehicle 𝑗𝑗, 𝑑𝑑𝑖𝑖𝑗𝑗  is the distance between 
𝑗𝑗th and 𝑖𝑖th vehicles, 𝑚𝑚 is Nakagami fading parameter, 𝜆𝜆 is the 
wavelength, 𝛾𝛾 is the path loss exponent, 𝑟𝑟𝑗𝑗 is the beaconing rate 
of vehicles 𝑗𝑗, and 𝑇𝑇𝑓𝑓𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓  is the time needed to transmit a beacon 
message. 

Equation (2) indicates that the channel load experienced by 
vehicle 𝑖𝑖 is the weighted sum of the beaconing rate of all the 
other vehicles ∑𝑁𝑁

𝑗𝑗𝑗1 ℎ𝑖𝑖𝑗𝑗𝑟𝑟𝑗𝑗. The channel load also depends on 
various parameters such as channel fading, the time needed to 
transmit a beacon message, and the distance of other vehicles. 
The coefficients ℎ𝑖𝑖𝑗𝑗 defined in (3), represents the action of these 
parameters in the channel load sensed by vehicle 𝑖𝑖. 

III. A NON-COOPERATIVE GAME FORMULATION 
Let 𝐺𝐺 = [𝒩𝒩, {𝑅𝑅𝑖𝑖, 𝑃𝑃𝑖𝑖}, {𝑈𝑈𝑖𝑖(. )}] denote the non-cooperative 
beaconing rate and beaconing power game (NRPG), where 
𝒩𝒩 = {1, . . . , 𝒩𝒩} is the index set identifying the vehicle, 𝑃𝑃𝑖𝑖  is the 
beaconing power strategy set of vehicle 𝑖𝑖, 𝑅𝑅𝑖𝑖 is the beaconing 
rate strategy set of vehicle 𝑖𝑖, and 𝑈𝑈𝑖𝑖(. ) is the utility function of 
vehicle 𝑖𝑖 defined in Equation (1). We assume that the strategy 
spaces 𝑅𝑅𝑖𝑖 and 𝑃𝑃𝑖𝑖  of each vehicle 𝑖𝑖 are compact and convex sets 
with maximum and minimum constraints, for any given vehicle 
𝑖𝑖 we consider as strategy spaces the closed intervals 𝑅𝑅𝑖𝑖 = [𝑟𝑟𝑖𝑖, 𝑟𝑟𝑖𝑖]
and 𝑃𝑃𝑖𝑖 = [𝑝𝑝𝑖𝑖, 𝑝𝑝𝑖𝑖]. Let the beaconing power vector 𝐩𝐩 =
(𝑝𝑝1, . . . , 𝑝𝑝𝑁𝑁)𝑇𝑇 ∈ 𝑃𝑃𝑁𝑁 = 𝑃𝑃1 × 𝑃𝑃2 ×. . .× 𝑃𝑃𝑁𝑁, beaconing rate vector 
𝐫𝐫 = (𝑟𝑟1, . . . , 𝑟𝑟𝑁𝑁)𝑇𝑇 ∈ 𝑅𝑅𝑁𝑁 = 𝑅𝑅1 × 𝑅𝑅2 ×. . .× 𝑅𝑅𝑁𝑁.
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network. In [12], the author studied a dynamic congestion 
control mechanism as a means of broadcasting BSM, and to 
guarantee the reliable and timely delivery of messages to all 
neighbors in a network. The authors in [13] used the tabu search 
algorithm with multi-channel allocation capability to reduce the 
time delay and jitter for improving the quality of service in 
VANET. In [10], the authors proposed a vehicle mobility 
prediction founded beacon rate adaptation approach, where 
each vehicle uses the prediction module to get the situation of 
their neighbors in real-time. The authors in [14] studied the 
competition among vehicles in beaconing power as a non-
cooperative game. In [15] the authors used the non-cooperative 
game for designing a beacon rate control mechanism. The 
authors proved the uniqueness of the Nash equilibrium point 
and proposed a distributed method is used to find the 
equilibrium point. In this paper, we utilize a non-cooperative 
game and the cooperative game to study the joint control 
beaconing rate and beaconing power in VANETs. We propose 
three algorithms for learning joint beaconing rate and 
beaconing power at Nash equilibrium and Nash bargaining 
solution. 

In this paper, a fair and stable joint beaconing power and 
beaconing rate problem in VANETs are formulated and solved 
based on the non-cooperative games and cooperative game. The 
incentive and objective of the proposed approach are finding 
the vehicle beaconing power and beaconing rate in a distributed 
manner to decrease the number of losses of beacons. The theory 
of supermodular games and the Nash bargaining solution are 
used to solve the corresponding optimization problem. We 
prove the existence of the Nash equilibrium point in the non-
cooperative game. Furthermore, we implement three learning 
algorithms that find the equilibrium point in a distributed 
manner by adjusting beaconing rates and beaconing powers 
jointly in a single step. Performance evaluation shows the 
convergence of the proposed algorithm to the equilibrium 
beaconing power and the beaconing equilibrium rate, and show 
the impact of system parameters on vehicle strategies. Also, it 
is revealed that the proposed cooperative game algorithm is the 
best choice for the vehicle to control the beaconing rate and 
beaconing power. 

The rest of this paper is organized as follows. In Section II,
we describe the proposed model. In Section III, we present the 
non-cooperative game formulation and the price of anarchy. In 
Section IV, we present a cooperative game. Then, we present 
the Performance evaluation in Section V. Finally, in Section VI
conclusions. 

II. SYSTEM MODEL 
The utility function of each vehicle is the difference between 
revenue and fees. Accordingly, the payoff of the vehicle 𝑖𝑖 can 
be written as:  
𝑈𝑈𝑖𝑖 = 𝑎𝑎𝑖𝑖log(𝑟𝑟𝑖𝑖 + 𝑝𝑝𝑖𝑖 + 1) − 𝑐𝑐𝑖𝑖𝑝𝑝𝑖𝑖𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖, 𝑝𝑝−𝑖𝑖, 𝑟𝑟−𝑖𝑖) − (𝐶𝐶𝑠𝑠𝑖𝑖 +
𝐶𝐶𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖 + 𝐶𝐶𝑟𝑟𝑖𝑖𝑟𝑟𝑖𝑖)                                                                  (1) 
where 𝑎𝑎𝑖𝑖 and 𝑐𝑐𝑖𝑖 are two positive parameters. 
𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖 , 𝑝𝑝−𝑖𝑖, 𝑟𝑟−𝑖𝑖) is the channel busy ratio that vehicle 𝑖𝑖
senses, and it is a function of all vehicle beaconing rates and 
beaconing power, where 𝑝𝑝𝑝𝑖𝑖 = (𝑝𝑝1, . . , 𝑝𝑝𝑖𝑖−1, 𝑝𝑝𝑖𝑖𝑖1, … , 𝑝𝑝N). The 
term 𝑎𝑎log(𝑟𝑟𝑖𝑖 + 𝑝𝑝𝑖𝑖 + 1) is the revenue of vehicle 𝑖𝑖; it is an 
increasing function with respect to beaconing rate and 

beaconing power. A logarithmic function has been used 
because it is increasing and has excellent concavity properties. 
Thus, the vehicle with lower beaconing power and their 
beaconing rate has more incentive to increase their beaconing 
power and their beaconing rate.  The second term 
𝑐𝑐𝑖𝑖𝑝𝑝𝑖𝑖𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖 , 𝑝𝑝−𝑖𝑖, 𝑟𝑟−𝑖𝑖), is the congestion cost. It indicates that 
a vehicle should pay higher costs at higher congestions, which 
discourages the vehicles from using a high beacon rate and high 
beacon power. The third term 𝐶𝐶𝑠𝑠𝑖𝑖 + 𝐶𝐶𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖 + 𝐶𝐶𝑟𝑟𝑖𝑖𝑟𝑟𝑖𝑖  is the energy 
consumed to send beacons and to switch the state of the 
transceiver. 𝐶𝐶𝑠𝑠𝑖𝑖  is the energy consumed for switching the state 
of the transceiver, 𝐶𝐶𝑝𝑝𝑖𝑖 is the energy consumed for sending 
beacons with power 𝑝𝑝𝑖𝑖 , and 𝐶𝐶𝑟𝑟𝑖𝑖 is the energy consumed for 
sending beacons with a rate 𝑟𝑟𝑖𝑖. 
Then, we define 𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖 , 𝑝𝑝−𝑖𝑖, 𝑟𝑟−𝑖𝑖) as that in [16] by  

𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖, 𝑝𝑝−𝑖𝑖, 𝑟𝑟−𝑖𝑖) = ∑𝑁𝑁
𝑗𝑗𝑗1 ℎ𝑖𝑖𝑗𝑗𝑟𝑟𝑗𝑗 (2) 

where  

ℎ𝑖𝑖𝑗𝑗 = 𝑇𝑇𝑓𝑓𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓 ×
Γ(𝑓𝑓,𝑓𝑓𝐶𝐶𝑇𝑇𝑇𝑇

Ω𝑖𝑖𝑖𝑖
)

Γ(𝑓𝑓) (3) 
  

Ω𝑖𝑖𝑗𝑗 =
𝑝𝑝𝑖𝑖𝜆𝜆2

(4𝜋𝜋)2𝑑𝑑𝑖𝑖𝑖𝑖
𝛾𝛾 (4) 

Γ is the gamma function, Γ(. , . ) is the upper incomplete gamma 
function, 𝐶𝐶𝑇𝑇𝑇𝑇 is the threshold power level of carrier sense, 𝑝𝑝𝑗𝑗 is 
the 𝐶𝐶𝐵𝐵𝐵𝐵 transmit power of vehicle 𝑗𝑗, 𝑑𝑑𝑖𝑖𝑗𝑗  is the distance between 
𝑗𝑗th and 𝑖𝑖th vehicles, 𝑚𝑚 is Nakagami fading parameter, 𝜆𝜆 is the 
wavelength, 𝛾𝛾 is the path loss exponent, 𝑟𝑟𝑗𝑗 is the beaconing rate 
of vehicles 𝑗𝑗, and 𝑇𝑇𝑓𝑓𝑟𝑟𝑓𝑓𝑓𝑓𝑓𝑓  is the time needed to transmit a beacon 
message. 

Equation (2) indicates that the channel load experienced by 
vehicle 𝑖𝑖 is the weighted sum of the beaconing rate of all the 
other vehicles ∑𝑁𝑁

𝑗𝑗𝑗1 ℎ𝑖𝑖𝑗𝑗𝑟𝑟𝑗𝑗. The channel load also depends on 
various parameters such as channel fading, the time needed to 
transmit a beacon message, and the distance of other vehicles. 
The coefficients ℎ𝑖𝑖𝑗𝑗 defined in (3), represents the action of these 
parameters in the channel load sensed by vehicle 𝑖𝑖. 

III. A NON-COOPERATIVE GAME FORMULATION 
Let 𝐺𝐺 = [𝒩𝒩, {𝑅𝑅𝑖𝑖, 𝑃𝑃𝑖𝑖}, {𝑈𝑈𝑖𝑖(. )}] denote the non-cooperative 
beaconing rate and beaconing power game (NRPG), where 
𝒩𝒩 = {1, . . . , 𝒩𝒩} is the index set identifying the vehicle, 𝑃𝑃𝑖𝑖  is the 
beaconing power strategy set of vehicle 𝑖𝑖, 𝑅𝑅𝑖𝑖 is the beaconing 
rate strategy set of vehicle 𝑖𝑖, and 𝑈𝑈𝑖𝑖(. ) is the utility function of 
vehicle 𝑖𝑖 defined in Equation (1). We assume that the strategy 
spaces 𝑅𝑅𝑖𝑖 and 𝑃𝑃𝑖𝑖  of each vehicle 𝑖𝑖 are compact and convex sets 
with maximum and minimum constraints, for any given vehicle 
𝑖𝑖 we consider as strategy spaces the closed intervals 𝑅𝑅𝑖𝑖 = [𝑟𝑟𝑖𝑖, 𝑟𝑟𝑖𝑖]
and 𝑃𝑃𝑖𝑖 = [𝑝𝑝𝑖𝑖, 𝑝𝑝𝑖𝑖]. Let the beaconing power vector 𝐩𝐩 =
(𝑝𝑝1, . . . , 𝑝𝑝𝑁𝑁)𝑇𝑇 ∈ 𝑃𝑃𝑁𝑁 = 𝑃𝑃1 × 𝑃𝑃2 ×. . .× 𝑃𝑃𝑁𝑁, beaconing rate vector 
𝐫𝐫 = (𝑟𝑟1, . . . , 𝑟𝑟𝑁𝑁)𝑇𝑇 ∈ 𝑅𝑅𝑁𝑁 = 𝑅𝑅1 × 𝑅𝑅2 ×. . .× 𝑅𝑅𝑁𝑁.
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Definition 1 The strategy vector (𝒑𝒑∗, 𝒓𝒓∗) =
(𝑝𝑝1∗, 𝑝𝑝2∗, . . . , 𝑝𝑝𝑁𝑁∗ , 𝑟𝑟1∗, 𝑟𝑟2∗, . . . , 𝑟𝑟𝑁𝑁∗) is a Nash equilibrium of the 
NRPG 𝐺𝐺 = 𝐺𝐺𝐺, {𝑅𝑅𝑖𝑖, 𝑃𝑃𝑖𝑖}, {𝑈𝑈𝑖𝑖(. , . )}] if

∀(𝑖𝑖, 𝑟𝑟𝑖𝑖, 𝑝𝑝𝑖𝑖) ∈ (𝐺𝐺, 𝑅𝑅𝑖𝑖, 𝑃𝑃𝑖𝑖),
𝑈𝑈𝑖𝑖(𝑝𝑝𝑖𝑖∗, 𝑟𝑟𝑖𝑖∗, 𝐩𝐩−𝑖𝑖∗ , 𝐫𝐫−𝑖𝑖∗ ) ≥ 𝑈𝑈𝑖𝑖(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖 , 𝐩𝐩−𝑖𝑖∗ , 𝐫𝐫−𝑖𝑖∗ )

Definition 2  The game 𝐺𝐺 is submodular if she satisfies the 
following conditions:  

 𝑆𝑆𝑖𝑖 = 𝑃𝑃𝑖𝑖 × 𝑅𝑅𝑖𝑖 is a compact subset of Euclidean space.  
 𝑈𝑈𝑖𝑖(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖), 𝑝𝑝𝑖𝑖 ∈ 𝑃𝑃𝑖𝑖 , 𝑟𝑟𝑖𝑖 ∈ 𝑅𝑅𝑖𝑖 is smooth and:   

 submodular in (𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖) for fixed (𝐩𝐩−𝑖𝑖, 𝐫𝐫−𝑖𝑖) i.e.,  
∂2𝑈𝑈𝑖𝑖
∂𝑝𝑝𝑖𝑖 ∂𝑟𝑟𝑖𝑖

≤ 0 (5) 
  

 Has non-increasing differences in 
{(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖), (𝐩𝐩−𝑖𝑖, 𝐫𝐫−𝑖𝑖)} , i.e.,  

 ∂
2𝑈𝑈𝑖𝑖

∂𝑟𝑟𝑖𝑖 ∂𝑟𝑟𝑗𝑗
≤ 0, ∀𝑗𝑗 𝑗 𝑖𝑖 (6) 

 given that  
 ∂

2𝑈𝑈𝑖𝑖
∂𝑟𝑟𝑖𝑖 ∂𝑝𝑝𝑗𝑗

= 0, ∀𝑗𝑗 𝑗 𝑖𝑖 (7) 

Theorem 1  The utility function 𝑈𝑈𝑖𝑖(𝒑𝒑, 𝒓𝒓) is submodular in 
(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖) for fixed (𝒑𝒑−𝑖𝑖, 𝒓𝒓−𝑖𝑖).  
Proof: The second-order partial derivative utility function is 
written as:  

∂2𝑈𝑈𝑖𝑖
∂𝑝𝑝𝑖𝑖 ∂𝑟𝑟𝑖𝑖

= − 𝑎𝑎𝑖𝑖
(1+𝑟𝑟𝑖𝑖+𝑝𝑝𝑖𝑖)2

− 𝑐𝑐𝑖𝑖ℎ𝑖𝑖𝑖𝑖 ≤ 0 (8) 
then the utility function 𝑈𝑈𝑖𝑖(𝐩𝐩, 𝐫𝐫) is submodular in (𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖) for 
each fixed (𝐩𝐩−𝑖𝑖, 𝐫𝐫−𝑖𝑖). 

Theorem 2  The utility function 𝑈𝑈𝑖𝑖(𝒑𝒑, 𝒓𝒓) has non-increasing 
differences in {(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖), (𝒑𝒑−𝑖𝑖, 𝒓𝒓−𝑖𝑖)}. 

Proof: The second partial derivative of the utility function is  
∂2𝑈𝑈𝑖𝑖
∂𝑟𝑟𝑖𝑖 ∂𝑟𝑟𝑗𝑗

= 0 (9) 

 and  
∂2𝑈𝑈𝑖𝑖
∂𝑟𝑟𝑖𝑖 ∂𝑝𝑝𝑗𝑗

= 0 (10) 

Then the utility function 𝑈𝑈𝑖𝑖(𝐩𝐩, 𝐫𝐫) has non-increasing
differences in {(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖), (𝐩𝐩−𝑖𝑖, 𝐫𝐫−𝑖𝑖)}.

Based on theorems 1, theorems 2, and definition 2, we conclude 
the following theorems. 
  
Theorem 3  The NRPG 𝐺𝐺 is submodular in (𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖) for all 𝑖𝑖 ∈
𝐺𝐺.

Based on theorem 3, the game 𝐺𝐺 is a submodular game, and the 
set of its Nash equilibrium points is nonempty. Therefore, the 
following holds:  

Theorem 4 The NRPG game 𝐺𝐺 = 𝐺𝐺𝐺, {𝑅𝑅𝑖𝑖, 𝑃𝑃𝑖𝑖}, {𝑈𝑈𝑖𝑖(𝐩𝐩, 𝐫𝐫)}] has 
at least one Nash equilibrium [6], which is defined as: 

(𝑝𝑝𝑖𝑖∗, 𝑟𝑟𝑖𝑖∗) = arg max
𝑝𝑝𝑖𝑖∈𝑃𝑃𝑖𝑖,𝑟𝑟𝑖𝑖∈𝑅𝑅𝑖𝑖

𝑈𝑈𝑖𝑖(𝐩𝐩, 𝐫𝐫) (11) 

  
The following theorem proves the uniqueness of the Nash 
equilibrium point. 

  Theorem 5  The unique Nash equilibrium point of the NRPG 𝐺𝐺
is given by: 

(𝑝𝑝𝑖𝑖∗, 𝑟𝑟𝑖𝑖∗) = arg max
𝑝𝑝𝑖𝑖∈𝑃𝑃𝑖𝑖,𝑟𝑟𝑖𝑖∈𝑅𝑅𝑖𝑖

𝑈𝑈𝑖𝑖(𝐩𝐩, 𝐫𝐫) (12) 

 s.t.  
∂𝑈𝑈𝑖𝑖(𝐩𝐩,𝐫𝐫)
∂𝑝𝑝𝑖𝑖

|
𝑝𝑝𝑖𝑖=𝑝𝑝𝑖𝑖∗

= 0𝑎𝑎𝑎𝑎𝑎𝑎 ∂𝑈𝑈𝑖𝑖(𝐩𝐩,𝐫𝐫)∂𝑟𝑟𝑖𝑖
|
𝑟𝑟𝑖𝑖=𝑟𝑟𝑖𝑖∗

= 0 (13) 

 and  
(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖)𝐽𝐽(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖)(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖)𝑇𝑇 ≤ 0,∀𝑝𝑝𝑖𝑖 ∈ 𝑃𝑃𝑖𝑖,∀𝑟𝑟𝑖𝑖 ∈ 𝑅𝑅𝑖𝑖 (14) 

where 𝐽𝐽 =

(

 
 
∂2𝑈𝑈𝑖𝑖
∂𝑝𝑝𝑖𝑖2

∂2𝑈𝑈𝑖𝑖
∂𝑝𝑝𝑖𝑖 ∂𝑟𝑟𝑖𝑖

∂2𝑈𝑈𝑖𝑖
∂𝑝𝑝𝑖𝑖 ∂𝑟𝑟𝑖𝑖

∂2𝑈𝑈𝑖𝑖
∂𝑟𝑟𝑖𝑖2

)

 
 

 is the Hessian matrix at point 

(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖).   
Proof: The conditions of the first-order partial derivatives (13) 
determine the stationary points of the utility function 𝑈𝑈𝑖𝑖(𝐩𝐩, 𝐫𝐫),
which can either be a maximum, a minimum or a saddle point. 
The condition (14) is necessary to find the global maximum of 
the utility function. 

𝐽𝐽 =

(

 
 
∂2𝑈𝑈𝑖𝑖
∂𝑝𝑝𝑖𝑖2

∂2𝑈𝑈𝑖𝑖
∂𝑝𝑝𝑖𝑖 ∂𝑟𝑟𝑖𝑖

∂2𝑈𝑈𝑖𝑖
∂𝑝𝑝𝑖𝑖 ∂𝑟𝑟𝑖𝑖

∂2𝑈𝑈𝑖𝑖
∂𝑟𝑟𝑖𝑖2

)

 
 

(15) 

= (
− 𝑎𝑎𝑖𝑖
(1+𝑟𝑟𝑖𝑖+𝑝𝑝𝑖𝑖)2

− 𝑎𝑎𝑖𝑖
(1+𝑟𝑟𝑖𝑖+𝑝𝑝𝑖𝑖)2

− 𝑐𝑐𝑖𝑖ℎ𝑖𝑖𝑖𝑖
− 𝑎𝑎𝑖𝑖
(1+𝑟𝑟𝑖𝑖+𝑝𝑝𝑖𝑖)2

− 𝑐𝑐𝑖𝑖ℎ𝑖𝑖𝑖𝑖 − 𝑎𝑎𝑖𝑖
(1+𝑟𝑟𝑖𝑖+𝑝𝑝𝑖𝑖)2

) (16) 

 Thus,  

(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖)𝐽𝐽(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖)(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖)𝑇𝑇 = −
𝑎𝑎𝑖𝑖𝑝𝑝𝑖𝑖2

(1 + 𝑟𝑟𝑖𝑖 + 𝑝𝑝𝑖𝑖)2
− 𝑎𝑎𝑖𝑖𝑟𝑟𝑖𝑖2
(1 + 𝑟𝑟𝑖𝑖 + 𝑝𝑝𝑖𝑖)2

− 𝑎𝑎𝑖𝑖𝑝𝑝𝑖𝑖2

(1+𝑟𝑟𝑖𝑖+𝑝𝑝𝑖𝑖)2
− 𝑐𝑐𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖2 −

𝑎𝑎𝑖𝑖𝑟𝑟𝑖𝑖2

(1+𝑟𝑟𝑖𝑖+𝑝𝑝𝑖𝑖)2
− 𝑐𝑐𝑖𝑖ℎ𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖2 ≤ 0 (17) 

Then, the Hessian matrix 𝐽𝐽 is negative definite. 

Since it is hard to get the analytical result of the system (13), 
we use an iterative and distributed algorithm that finds the 
unique Nash equilibrium point (𝐩𝐩∗, 𝐫𝐫∗). This algorithm is 
defined as follows. 

A. Iterative Nash Equilibrium Algorithm 
In this section, based on our previous analysis, we introduce 
two distributed and iterative learning processes that 
convergence toward the Nash equilibrium point of NRPG. The 
best response algorithm is known to reach equilibria for S-
modular games, by exploiting the monotonicity of the best 
response functions. Each player fixes its desirable strategies to 
maximize its profit. Then, each player can observe the policy 
taken by its competitors in previous rounds and input them in 
its decision process to update its policy. Then, it becomes 
natural to accept the Nash equilibrium as the attractive point of 
the game. Yet, the best response algorithm requires perfect 
rationality and complete information, which is not practical for 
real-world applications and may increase the signaling load as 
well. Therefore, we propose an adaptive distributed learning 
framework to discover equilibria for the activation game based 
on the "Nash Seeking Algorithm" with stochastic state-
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dependent payoffs for continuous actions. Algorithm 1 
summarizes the best response learning steps that each player 
has to perform to discover its Nash equilibrium strategy. 

Nash seeking algorithm is one of the most Known learning 
schemes. It is a discrete-time learning algorithm, using sinus 
perturbation, for continuous action games where each vehicle 
has only a numerical realization of the payoff at each time. At 
each iteration 𝑡𝑡, the vehicle 𝑖𝑖 chooses its beaconing power and 
beaconing rate and obtains from the environment the realization 
of its payoff. The improvement of the strategy is based on the 
current observation of the realized payoff and previously 
chosen strategies. Hence, we say vehicles learn to play an 
equilibrium, if after a given number of iterations, the strategy 
profile converges to an equilibrium strategy. The proposed 
learning framework has the following parameters: 𝜙𝜙𝑖𝑖 and 𝜙𝜙𝜙𝑖𝑖
are the perturbation phase, 𝑧𝑧𝑖𝑖 and 𝑧𝑧𝜙𝑖𝑖  are the growth rate, 𝑏𝑏𝑖𝑖 and 
𝑏𝑏𝜙𝑖𝑖 are the perturbation amplitude, and Ω𝑖𝑖  and Ω𝜙𝑖𝑖  are the 
perturbation frequency. This procedure is repeated for the 
window 𝑇𝑇. Algorithm 2 summarizes the Nash seeking 
algorithm learning steps that vehicle 𝑖𝑖 has to perform in order 
to discover its Nash equilibrium beaconing power and 
beaconing rate. 

Algorithm 1 Best Response Algorithm
1: Initialize vectors 𝐩𝐩(0) = [𝑝𝑝1(0), . . . , 𝑝𝑝𝑁𝑁(0)] and 𝐫𝐫(0) =
[𝑟𝑟1(0), . . . , 𝑟𝑟𝑁𝑁(0)] randomly;
2: For each vehicle 𝑖𝑖 at round 𝑡𝑡 computes:

 𝑝𝑝𝑖𝑖(𝑡𝑡 + 1) = argmax
𝑝𝑝𝑖𝑖∈𝑃𝑃𝑖𝑖

(𝑈𝑈𝑖𝑖(𝐩𝐩, 𝐫𝐫)).

 𝑟𝑟𝑖𝑖(𝑡𝑡 + 1) = argmax
𝑟𝑟𝑖𝑖∈𝑅𝑅𝑖𝑖

(𝑈𝑈𝑖𝑖(𝐩𝐩, 𝐫𝐫)).

3: If |𝑟𝑟𝑖𝑖(𝑡𝑡 + 1) − 𝑟𝑟𝑖𝑖(𝑡𝑡)| < 𝜀𝜀 and |𝑝𝑝𝑖𝑖(𝑡𝑡 + 1) − 𝑝𝑝𝑖𝑖(𝑡𝑡)| < 𝜀𝜀,
then STOP.
4: Else make 𝑡𝑡 ← 𝑡𝑡 + 1 and go to step (2).  

Algorithm 2 Nash Seeking Algorithm
1: Data:

 𝜙𝜙𝑖𝑖 ∈ [0,2𝜋𝜋] and 𝜙𝜙𝜙𝑖𝑖 ∈ [0,2𝜋𝜋] : perturbation 
phase; 

 𝑏𝑏𝑖𝑖 > 0, 𝑏𝑏𝜙𝑖𝑖 > 0 : perturbation amplitude; 
 Ω𝑖𝑖 , Ω𝜙𝑖𝑖 : perturbation phase; 
 𝑧𝑧𝑖𝑖, 𝑧𝑧𝜙𝑖𝑖 : the growth rate; 

2: Result: Equilibrium beaconing power 𝑝𝑝𝑖𝑖 and Equilibrium 
beaconing rate 𝑟𝑟𝑖𝑖
3: Initialization:
4: Assign a value for 𝜏𝜏𝑖𝑖,0∗ , 𝜍𝜍𝑖𝑖,0∗ , 𝑝𝑝𝑖𝑖,0∗ and 𝑟𝑟𝑖𝑖,0∗ for 𝑖𝑖 = 1,2, . . . , 𝑁𝑁;
5: Learning pattern: For each iteration 𝑡𝑡:
6: Observes the payoff 𝑈𝑈𝑖𝑖,𝑡𝑡 and estimates 𝜏𝜏𝑖𝑖,𝑡𝑡+1∗ and 𝜍𝜍𝑖𝑖,𝑡𝑡+1∗

using  
 𝜏𝜏𝑖𝑖,𝑡𝑡+1∗ = 𝜏𝜏𝑖𝑖,𝑡𝑡∗ + 𝑡𝑡∗𝑧𝑧𝑖𝑖𝑏𝑏𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠(Ω𝑖𝑖𝑡𝑡∗ + 𝜙𝜙𝑖𝑖)𝑈𝑈𝑖𝑖,𝑡𝑡;
 𝜍𝜍𝑖𝑖,𝑡𝑡+1∗ = 𝜍𝜍𝑖𝑖,𝑡𝑡∗ + 𝑡𝑡∗𝑧𝑧𝜙𝑖𝑖𝑏𝑏𝜙𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠(Ω𝜙𝑖𝑖𝑡𝑡∗ + 𝜙𝜙𝜙𝑖𝑖)𝑈𝑈𝑖𝑖,𝑡𝑡;

7: Update beaconing rate 𝑟𝑟𝑖𝑖 and beaconing power 𝑝𝑝𝑖𝑖 using 
the following rules

 𝑝𝑝𝑖𝑖,𝑡𝑡+1∗ = 𝜏𝜏𝑖𝑖,𝑡𝑡+1∗ + 𝑏𝑏𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠(Ω𝑖𝑖𝑡𝑡∗ + 𝜙𝜙𝑖𝑖);
 𝑟𝑟𝑖𝑖,𝑡𝑡+1∗ = 𝜍𝜍𝑖𝑖,𝑡𝑡+1∗ + 𝑏𝑏𝜙𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠(Ω𝜙𝑖𝑖𝑡𝑡∗ + 𝜙𝜙𝜙𝑖𝑖);

B. Price of Anarchy  
The price of anarchy (PoA) is defined as the ratio between the 
performance measures of the worst equilibrium and the optimal 
outcome. A PoA close to 1 indicates that the equilibrium is 
approximately socially optimal, and thus the consequences of 
selfish behavior are relatively benign. 
In [17], we measure the loss of efficiency due to actors' 
selfishness as the quotient between the social welfare obtained 
at the Nash equilibrium and the maximum value of the social 
welfare:  

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑚𝑚𝑖𝑖𝑛𝑛𝑝𝑝,𝑝𝑝𝑊𝑊𝑁𝑁𝑁𝑁(𝐩𝐩,𝐫𝐫)
𝑚𝑚𝑚𝑚𝑥𝑥𝑝𝑝,𝑝𝑝𝑊𝑊(𝐩𝐩,𝐫𝐫) (29) 

where 𝑊𝑊(𝑝𝑝, 𝑟𝑟) = ∑𝑁𝑁
𝑖𝑖𝑖1 𝑈𝑈𝑖𝑖(𝐩𝐩, 𝐫𝐫) is the social welfare function 

and 𝑊𝑊𝑁𝑁𝑁𝑁(𝐩𝐩∗, 𝐫𝐫∗) = ∑𝑁𝑁
𝑖𝑖𝑖1 𝑈𝑈𝑖𝑖(𝐩𝐩, 𝐫𝐫) is a sum of utilities of all 

players at Nash Equilibrium. 

IV. COOPERATIVE GAME
The Nash bargaining game [18] is a cooperative game in which 
players have a mutual agreement for cooperation in order to 
obtain a higher payoff compared to the non-cooperative case. 
Let 𝒰𝒰 be a closed and convex subset of ℝ𝑁𝑁 that represents the 
set of feasible payoff allocations that the players can get if they 
all cooperate. Suppose {𝑈𝑈𝑖𝑖 ∈ 𝒰𝒰|𝑈𝑈𝑖𝑖 ≥ 𝑈𝑈𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛, ∀𝑖𝑖 ∈ 𝑖𝑖𝑖 is a 
nonempty bounded set. Define 𝐔𝐔𝑚𝑚𝑖𝑖𝑛𝑛 =
(𝑈𝑈1𝑚𝑚𝑖𝑖𝑛𝑛, 𝑈𝑈2𝑚𝑚𝑖𝑖𝑛𝑛, . . . , 𝑈𝑈𝑁𝑁𝑚𝑚𝑖𝑖𝑛𝑛), then the pair of (𝒰𝒰, 𝐔𝐔𝑚𝑚𝑖𝑖𝑛𝑛) constructs a 
𝐾𝐾 −player bargaining game. Here, we define the Pareto 
efficient point [19], where a player can not find another point 
that improves the utility of all the players at the same time.  

Definition 3 A strategy profile (𝒑𝒑∗, 𝒓𝒓∗) =
(𝑝𝑝1∗, 𝑝𝑝2∗, . . . , 𝑝𝑝𝑁𝑁∗ , 𝑟𝑟1∗, 𝑟𝑟2∗, . . . , 𝑟𝑟𝑁𝑁∗) is Pareto-optimal if and only if 
there is no other strategy profile (𝐩𝐩, 𝐫𝐫) such that 𝑈𝑈𝑖𝑖(𝐩𝐩, 𝐫𝐫) ≥
𝑈𝑈𝑖𝑖(𝐩𝐩∗, 𝐫𝐫∗), ∀𝑖𝑖 ∈ 𝑖𝑖, and 𝑈𝑈𝑖𝑖(𝐩𝐩, 𝐫𝐫) > 𝑈𝑈𝑖𝑖(𝐩𝐩∗, 𝐫𝐫∗), ∃𝑖𝑖 ∈ 𝑖𝑖, i.e., 
there exists no other strategies that lead to superior 
performance for some players without causing inferior 
performance for some other players [19].

There may be an infinite number of Pareto optimal points in a 
game of multi-players. Thus, we must address how to select a 
Pareto point for a cooperative bargaining game. We need a 
criterion to select the best Pareto point of the system. A possible 
criterion is the fairness of resource allocation. Notably, the
fairness of bargaining games is a Nash bargaining solution, 
which can provide a unique and fair Pareto optimal point under 
the following axioms.  

Definition 4 𝑟𝑟 is a Nash bargaining solution in 𝒰𝒰 for  𝐔𝐔𝑚𝑚𝑖𝑖𝑛𝑛

i.e., 𝑟𝑟 = ℋ(𝒰𝒰,𝐔𝐔𝑚𝑚𝑖𝑖𝑛𝑛), if the following axioms are satisfied [19].  
 Individual rationality: 𝑟𝑟𝑖𝑖 ≥ 𝑈𝑈𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛, 𝑟𝑟𝑖𝑖 ∈ 𝑟𝑟, 𝑖𝑖 ∈ 𝑖𝑖.
 Feasibility: 𝑟𝑟 ∈ 𝒰𝒰.
 Pareto Optimality: 𝑟𝑟 is Pareto optimal.  
 Independence of Irrelevant Alternatives: If 𝑟𝑟 ∈ 𝒰𝒰𝜙 𝒰

𝒰𝒰, 𝑟𝑟 = ℋ(𝒰𝒰,𝐔𝐔𝑚𝑚𝑖𝑖𝑛𝑛), then 𝑟𝑟 = ℋ(𝒰𝒰𝜙, 𝐔𝐔𝑚𝑚𝑖𝑖𝑛𝑛).
 Independence of Linear Transformations: For any 

linear scale transformation 𝛩𝛩, 𝛩𝛩(ℋ(𝒰𝒰,𝐔𝐔𝑚𝑚𝑖𝑖𝑛𝑛)) =
ℋ(𝛩𝛩(𝒰𝒰), 𝛩𝛩(𝐔𝐔𝑚𝑚𝑖𝑖𝑛𝑛)).

 Symmetry: If 𝒰𝒰 is invariant under all exchanges of 
5

players, that is ℋ𝑖𝑖(𝒰𝒰𝒰 𝒰𝒰𝑚𝑚𝑖𝑖𝑚𝑚) = ℋ𝑗𝑗(𝒰𝒰𝒰 𝒰𝒰𝑚𝑚𝑖𝑖𝑚𝑚), ∀𝑖𝑖, 𝑗𝑗.  
   

Theorem 6  A unique and fair Nash bargaining solution 𝐱𝐱∗ =
(𝐩𝐩∗𝒰 𝐫𝐫∗) that satisfies all the axioms in Definition 4 can be 
obtained by maximizing a product term as follows: 

𝒙𝒙∗ = argmax
𝑝𝑝𝑖𝑖∈𝑃𝑃𝑖𝑖𝒰𝑟𝑟𝑖𝑖∈𝑅𝑅𝑖𝑖

∏𝑁𝑁
𝑖𝑖𝑖𝑖 𝑈𝑈𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫) (18) 

Proof: The proof of the theorem 6 is omitted due to space 
limitations. A similarly detailed proof can be found in [18].

Our work aims to maximize utility functions while decreasing 
the number of losses beacons. Therefore, the corresponding 
cooperative Nash bargaining game-theoretic power and rate 
control problem for vehicle underlying the communication 
system can be formulated as:  

𝐏𝐏𝐏𝐏: max
𝑝𝑝𝑖𝑖∈𝑃𝑃𝑖𝑖𝒰𝑟𝑟𝑖𝑖∈𝑅𝑅𝑖𝑖

∏𝑁𝑁
𝑖𝑖𝑖𝑖 𝑈𝑈𝑗𝑗(𝐩𝐩𝒰 𝐫𝐫) (19) 

𝑠𝑠𝑠 𝑠𝑠𝑠 𝑠𝐶𝐶𝐶: 𝐶 𝐶 𝐶𝐶𝑖𝑖 𝐶 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

C2: 𝐶 𝐶 𝑟𝑟𝑖𝑖 𝐶 𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

where constraint 𝐶𝐶𝐶 limits the beaconing power of vehicle 𝑖𝑖 to 
be below 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  and 𝐶𝐶2 limits the beaconing rate of vehicle 𝑖𝑖 to 
be below 𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚.

Lemma 1  Define 𝑉𝑉𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫) 𝐩 𝑙𝑙𝑙𝑙(𝑈𝑈𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫)), 𝑖𝑖 ∈ 𝑖𝑖. These 
objective functions are concave and injective, which satisfy all 
the Nash axioms in Definition 4.  

Proof: The proof of theorem 5 shows that the Hessian matrix of 
the utility function 𝑈𝑈𝑖𝑖(p𝒰 r) is negatively define. Then, the 
utility function 𝑈𝑈𝑖𝑖(p𝒰 r) is strictly concave with regard to the 2-
tuple (𝐶𝐶𝑖𝑖𝒰 𝑟𝑟𝑖𝑖). Subsequently, 𝑉𝑉𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫) = 𝑙𝑙𝑙𝑙(𝑈𝑈𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫)) is also
concave in (𝐶𝐶𝑖𝑖𝒰 𝑟𝑟𝑖𝑖). Therefore, 𝑉𝑉𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫) defined above satisfies 
all the axioms required by Definition 4 and Theorem 6.  

According to Theorem 6 and Lemma 1, the unique Nash 
bargaining equilibrium with fairness can be found over the 
strategy space. Then, taking advantage of the increasing 
property of the logarithmic function, the optimization problem 
P1 can be rewritten as: 

𝐏𝐏𝐏𝐏: max
𝑝𝑝𝑖𝑖∈𝑃𝑃𝑖𝑖𝒰𝑟𝑟𝑖𝑖∈𝑅𝑅𝑖𝑖

∑𝑁𝑁
𝑖𝑖𝑖𝑖 𝑉𝑉𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫) = max

𝑝𝑝𝑖𝑖∈𝑃𝑃𝑖𝑖𝒰𝑟𝑟𝑖𝑖∈𝑅𝑅𝑖𝑖
∑𝑁𝑁
𝑖𝑖𝑖𝑖 𝑈𝑈𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫) (20) 

𝑠𝑠𝑠 𝑠𝑠𝑠 𝑠𝐶𝐶𝐶: 𝐶 𝐶 𝐶𝐶𝑖𝑖 𝐶 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

𝐶𝐶2: 𝐶 𝐶 𝑟𝑟𝑖𝑖 𝐶 𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

A. Solution of the Cooperative Gam 
Herein, we derive the unique equilibrium by solving the 
constrained optimization problem in (20) utilizing the method 
of Lagrange multipliers [20]. Introducing Lagrange multipliers 
{𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁  and {𝜓𝜓𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁  for the multiple constraints, the 
Lagrangian of problem (20) can equivalently be solved by 
maximizing the following expression:  
ℱ(𝐩𝐩𝒰 𝐫𝐫𝒰 {𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁 𝒰 {𝜓𝜓𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁 ) = ∑𝑁𝑁
𝑖𝑖𝑖𝑖 (𝑎𝑎𝑖𝑖log(𝑟𝑟𝑖𝑖 + 𝐶𝐶𝑖𝑖 + 𝐶) −

𝑐𝑐𝑖𝑖𝐶𝐶𝑖𝑖𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫) − (𝐶𝐶𝑠𝑠𝑖𝑖 + 𝐶𝐶𝑝𝑝𝑖𝑖𝐶𝐶𝑖𝑖 + 𝐶𝐶𝑟𝑟𝑖𝑖𝑟𝑟𝑖𝑖) − 𝜒𝜒𝑖𝑖𝐶𝐶𝑖𝑖 − 𝜓𝜓𝑖𝑖𝑟𝑟𝑖𝑖) (21) 

Based on the standard optimization methods and the Karush–
Kuhn–Tucker conditions, the beaconing power of vehicle 𝑖𝑖 can 
be obtained by taking the first derivative of (21) with respect to 
𝐶𝐶𝑖𝑖 , which is expressed as follows: 

∂ℱ
∂𝑝𝑝𝑖𝑖

= 𝑚𝑚𝑖𝑖
𝑖+𝑝𝑝𝑖𝑖+𝑟𝑟𝑖𝑖

− 𝑐𝑐𝑖𝑖𝐶𝐶𝐶𝐶𝑅𝑅(𝐩𝐩𝒰 𝐫𝐫) − 𝐶𝐶𝑝𝑝𝑖𝑖 − 𝜒𝜒𝑖𝑖 (22) 

Letting ∂ℱ∂𝑝𝑝𝑖𝑖
= 𝐶 we get,  

𝐶𝐶𝑖𝑖∗ =
𝑚𝑚𝑖𝑖

𝑐𝑐𝑖𝑖𝐶𝐶𝐶𝐶𝑅𝑅(𝐩𝐩𝒰𝐫𝐫)+𝐶𝐶𝑝𝑝𝑖𝑖+𝜒𝜒𝑖𝑖
∗ − 𝐶 − 𝑟𝑟𝑖𝑖∗ (23) 

Meanwhile, the beaconing rate of vehicle 𝑖𝑖 can be obtained by 
taking the first derivative of (21) with respect to 𝑟𝑟𝑖𝑖 as  

∂ℱ
∂𝑟𝑟𝑖𝑖

= 𝑚𝑚𝑖𝑖
𝑖+𝑝𝑝𝑖𝑖+𝑟𝑟𝑖𝑖

− 𝑐𝑐𝑖𝑖ℎ𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑟𝑟𝑖𝑖 − 𝜓𝜓𝑖𝑖 (24) 
Let (24) equals to zero, then we get  

𝑟𝑟𝑖𝑖∗ =
𝑚𝑚𝑖𝑖

𝑐𝑐𝑖𝑖ℎ𝑖𝑖𝑖𝑖+𝐶𝐶𝑟𝑟𝑖𝑖+𝜓𝜓𝑖𝑖
∗ − 𝐶 − 𝐶𝐶𝑖𝑖∗ (25) 

In this work, we employ the fixed-point technique to derive an 
iterative procedure that updates the beaconing rate and 
beaconing power control decisions, which can be given as:  

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+𝑖 = [ 𝑚𝑚𝑖𝑖
𝑐𝑐𝑖𝑖𝐶𝐶𝐶𝐶𝑅𝑅(𝐩𝐩𝒰𝐫𝐫)+𝐶𝐶𝑝𝑝𝑖𝑖+𝜒𝜒𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐶 − 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖]
0

𝑝𝑝𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚

 (26) 

𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+𝑖 = [ 𝑚𝑚𝑖𝑖
𝑐𝑐𝑖𝑖ℎ𝑖𝑖𝑖𝑖+𝐶𝐶𝑟𝑟𝑖𝑖+𝜓𝜓𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐶 − 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖]
0

𝑟𝑟𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚

 (27) 

B.  Update of the Lagrange Multipliers 
The Lagrange multipliers {𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁  and {𝜓𝜓𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁  need to be 
updated to guarantee the fast convergence property. Several 
practical approaches can be employed in the update of Lagrange 
multipliers. In this paper, the sub-gradient technique is utilized 
to update the multipliers, as formulated as follows: 

{𝜓𝜓𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖+𝑖 = [𝜓𝜓𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖 − 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+𝑖]
+

𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+𝑖 = [𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+𝑖]
+ (28) 

where (𝑥𝑥)+ = 𝑚𝑚𝑎𝑎𝑥𝑥(𝐶𝒰 𝑥𝑥), 𝛽𝛽 denotes the step size of iteration 
𝑖𝑖𝑠𝑠𝑖𝑖 (𝑖𝑖𝑠𝑠𝑖𝑖 ∈ {𝐶𝒰2𝒰 𝑠 𝑠 𝑠 𝒰 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚} and 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  denotes the maximum 
number of iterations.  

C. Iterative Nash Bargaining Algorithm 
In this section, a distributed algorithm is proposed as an 
implementation of our cooperative bargaining beaconing rate 
and beaconing power control solution. The proposed iterative 
Algorithm 3 will guarantee convergence by using the 
subgradient method.  

Algorithm 3 Cooperative Bargaining Algorithm
1: Initialize 𝑐𝑐𝑖𝑖, 𝑎𝑎𝑖𝑖, 𝐶𝐶𝑝𝑝𝑖𝑖, 𝐶𝐶𝑟𝑟𝑖𝑖 and Lagrange multipliers {𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁

and {𝜓𝜓𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁 ; set 𝑖𝑖𝑠𝑠𝑖𝑖 = 𝐶;

2: Initialize {𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁 and {𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁 ;
3: repeat
4:   for 𝑖𝑖 = 𝐶 to 𝑁𝑁 do
5:      (i) Update 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 according to (26);
6:      (ii) Update 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 according to (27);
8:      (iii) Update 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝜓𝜓𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖 according to (28);
9:    end for
10:  (iv) Set 𝑖𝑖𝑠𝑠𝑖𝑖 ← 𝑖𝑖𝑠𝑠𝑖𝑖 + 𝐶;
11: until Convergence or 𝑖𝑖𝑠𝑠𝑖𝑖 = 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚
12: return {𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁 and {𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁 .

INFOCOMMUNICATIONS JOURNAL

MARCH 2021 • VOLUME XIII • NUMBER 1 61



Joint Beacon Power and Beacon Rate Control Based on  
Game Theoretic Approach in Vehicular Ad Hoc Networks

5

players, that is ℋ𝑖𝑖(𝒰𝒰𝒰 𝒰𝒰𝑚𝑚𝑖𝑖𝑚𝑚) = ℋ𝑗𝑗(𝒰𝒰𝒰 𝒰𝒰𝑚𝑚𝑖𝑖𝑚𝑚), ∀𝑖𝑖, 𝑗𝑗.  
   

Theorem 6  A unique and fair Nash bargaining solution 𝐱𝐱∗ =
(𝐩𝐩∗𝒰 𝐫𝐫∗) that satisfies all the axioms in Definition 4 can be 
obtained by maximizing a product term as follows: 

𝒙𝒙∗ = argmax
𝑝𝑝𝑖𝑖∈𝑃𝑃𝑖𝑖𝒰𝑟𝑟𝑖𝑖∈𝑅𝑅𝑖𝑖

∏𝑁𝑁
𝑖𝑖𝑖𝑖 𝑈𝑈𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫) (18) 

Proof: The proof of the theorem 6 is omitted due to space 
limitations. A similarly detailed proof can be found in [18].

Our work aims to maximize utility functions while decreasing 
the number of losses beacons. Therefore, the corresponding 
cooperative Nash bargaining game-theoretic power and rate 
control problem for vehicle underlying the communication 
system can be formulated as:  

𝐏𝐏𝐏𝐏: max
𝑝𝑝𝑖𝑖∈𝑃𝑃𝑖𝑖𝒰𝑟𝑟𝑖𝑖∈𝑅𝑅𝑖𝑖

∏𝑁𝑁
𝑖𝑖𝑖𝑖 𝑈𝑈𝑗𝑗(𝐩𝐩𝒰 𝐫𝐫) (19) 

𝑠𝑠𝑠 𝑠𝑠𝑠 𝑠𝐶𝐶𝐶: 𝐶 𝐶 𝐶𝐶𝑖𝑖 𝐶 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

C2: 𝐶 𝐶 𝑟𝑟𝑖𝑖 𝐶 𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

where constraint 𝐶𝐶𝐶 limits the beaconing power of vehicle 𝑖𝑖 to 
be below 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  and 𝐶𝐶2 limits the beaconing rate of vehicle 𝑖𝑖 to 
be below 𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚.

Lemma 1  Define 𝑉𝑉𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫) 𝐩 𝑙𝑙𝑙𝑙(𝑈𝑈𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫)), 𝑖𝑖 ∈ 𝑖𝑖. These 
objective functions are concave and injective, which satisfy all 
the Nash axioms in Definition 4.  

Proof: The proof of theorem 5 shows that the Hessian matrix of 
the utility function 𝑈𝑈𝑖𝑖(p𝒰 r) is negatively define. Then, the 
utility function 𝑈𝑈𝑖𝑖(p𝒰 r) is strictly concave with regard to the 2-
tuple (𝐶𝐶𝑖𝑖𝒰 𝑟𝑟𝑖𝑖). Subsequently, 𝑉𝑉𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫) = 𝑙𝑙𝑙𝑙(𝑈𝑈𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫)) is also
concave in (𝐶𝐶𝑖𝑖𝒰 𝑟𝑟𝑖𝑖). Therefore, 𝑉𝑉𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫) defined above satisfies 
all the axioms required by Definition 4 and Theorem 6.  

According to Theorem 6 and Lemma 1, the unique Nash 
bargaining equilibrium with fairness can be found over the 
strategy space. Then, taking advantage of the increasing 
property of the logarithmic function, the optimization problem 
P1 can be rewritten as: 

𝐏𝐏𝐏𝐏: max
𝑝𝑝𝑖𝑖∈𝑃𝑃𝑖𝑖𝒰𝑟𝑟𝑖𝑖∈𝑅𝑅𝑖𝑖

∑𝑁𝑁
𝑖𝑖𝑖𝑖 𝑉𝑉𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫) = max

𝑝𝑝𝑖𝑖∈𝑃𝑃𝑖𝑖𝒰𝑟𝑟𝑖𝑖∈𝑅𝑅𝑖𝑖
∑𝑁𝑁
𝑖𝑖𝑖𝑖 𝑈𝑈𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫) (20) 

𝑠𝑠𝑠 𝑠𝑠𝑠 𝑠𝐶𝐶𝐶: 𝐶 𝐶 𝐶𝐶𝑖𝑖 𝐶 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

𝐶𝐶2: 𝐶 𝐶 𝑟𝑟𝑖𝑖 𝐶 𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

A. Solution of the Cooperative Gam 
Herein, we derive the unique equilibrium by solving the 
constrained optimization problem in (20) utilizing the method 
of Lagrange multipliers [20]. Introducing Lagrange multipliers 
{𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁  and {𝜓𝜓𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁  for the multiple constraints, the 
Lagrangian of problem (20) can equivalently be solved by 
maximizing the following expression:  
ℱ(𝐩𝐩𝒰 𝐫𝐫𝒰 {𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁 𝒰 {𝜓𝜓𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁 ) = ∑𝑁𝑁
𝑖𝑖𝑖𝑖 (𝑎𝑎𝑖𝑖log(𝑟𝑟𝑖𝑖 + 𝐶𝐶𝑖𝑖 + 𝐶) −

𝑐𝑐𝑖𝑖𝐶𝐶𝑖𝑖𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫) − (𝐶𝐶𝑠𝑠𝑖𝑖 + 𝐶𝐶𝑝𝑝𝑖𝑖𝐶𝐶𝑖𝑖 + 𝐶𝐶𝑟𝑟𝑖𝑖𝑟𝑟𝑖𝑖) − 𝜒𝜒𝑖𝑖𝐶𝐶𝑖𝑖 − 𝜓𝜓𝑖𝑖𝑟𝑟𝑖𝑖) (21) 

Based on the standard optimization methods and the Karush–
Kuhn–Tucker conditions, the beaconing power of vehicle 𝑖𝑖 can 
be obtained by taking the first derivative of (21) with respect to 
𝐶𝐶𝑖𝑖 , which is expressed as follows: 

∂ℱ
∂𝑝𝑝𝑖𝑖

= 𝑚𝑚𝑖𝑖
𝑖+𝑝𝑝𝑖𝑖+𝑟𝑟𝑖𝑖

− 𝑐𝑐𝑖𝑖𝐶𝐶𝐶𝐶𝑅𝑅(𝐩𝐩𝒰 𝐫𝐫) − 𝐶𝐶𝑝𝑝𝑖𝑖 − 𝜒𝜒𝑖𝑖 (22) 

Letting ∂ℱ∂𝑝𝑝𝑖𝑖
= 𝐶 we get,  

𝐶𝐶𝑖𝑖∗ =
𝑚𝑚𝑖𝑖

𝑐𝑐𝑖𝑖𝐶𝐶𝐶𝐶𝑅𝑅(𝐩𝐩𝒰𝐫𝐫)+𝐶𝐶𝑝𝑝𝑖𝑖+𝜒𝜒𝑖𝑖
∗ − 𝐶 − 𝑟𝑟𝑖𝑖∗ (23) 

Meanwhile, the beaconing rate of vehicle 𝑖𝑖 can be obtained by 
taking the first derivative of (21) with respect to 𝑟𝑟𝑖𝑖 as  

∂ℱ
∂𝑟𝑟𝑖𝑖

= 𝑚𝑚𝑖𝑖
𝑖+𝑝𝑝𝑖𝑖+𝑟𝑟𝑖𝑖

− 𝑐𝑐𝑖𝑖ℎ𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑟𝑟𝑖𝑖 − 𝜓𝜓𝑖𝑖 (24) 
Let (24) equals to zero, then we get  

𝑟𝑟𝑖𝑖∗ =
𝑚𝑚𝑖𝑖

𝑐𝑐𝑖𝑖ℎ𝑖𝑖𝑖𝑖+𝐶𝐶𝑟𝑟𝑖𝑖+𝜓𝜓𝑖𝑖
∗ − 𝐶 − 𝐶𝐶𝑖𝑖∗ (25) 

In this work, we employ the fixed-point technique to derive an 
iterative procedure that updates the beaconing rate and 
beaconing power control decisions, which can be given as:  

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+𝑖 = [ 𝑚𝑚𝑖𝑖
𝑐𝑐𝑖𝑖𝐶𝐶𝐶𝐶𝑅𝑅(𝐩𝐩𝒰𝐫𝐫)+𝐶𝐶𝑝𝑝𝑖𝑖+𝜒𝜒𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐶 − 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖]
0

𝑝𝑝𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚

 (26) 

𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+𝑖 = [ 𝑚𝑚𝑖𝑖
𝑐𝑐𝑖𝑖ℎ𝑖𝑖𝑖𝑖+𝐶𝐶𝑟𝑟𝑖𝑖+𝜓𝜓𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐶 − 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖]
0

𝑟𝑟𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚

 (27) 

B.  Update of the Lagrange Multipliers 
The Lagrange multipliers {𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁  and {𝜓𝜓𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁  need to be 
updated to guarantee the fast convergence property. Several 
practical approaches can be employed in the update of Lagrange 
multipliers. In this paper, the sub-gradient technique is utilized 
to update the multipliers, as formulated as follows: 

{𝜓𝜓𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖+𝑖 = [𝜓𝜓𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖 − 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+𝑖]
+

𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+𝑖 = [𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+𝑖]
+ (28) 

where (𝑥𝑥)+ = 𝑚𝑚𝑎𝑎𝑥𝑥(𝐶𝒰 𝑥𝑥), 𝛽𝛽 denotes the step size of iteration 
𝑖𝑖𝑠𝑠𝑖𝑖 (𝑖𝑖𝑠𝑠𝑖𝑖 ∈ {𝐶𝒰2𝒰 𝑠 𝑠 𝑠 𝒰 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚} and 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  denotes the maximum 
number of iterations.  

C. Iterative Nash Bargaining Algorithm 
In this section, a distributed algorithm is proposed as an 
implementation of our cooperative bargaining beaconing rate 
and beaconing power control solution. The proposed iterative 
Algorithm 3 will guarantee convergence by using the 
subgradient method.  

Algorithm 3 Cooperative Bargaining Algorithm
1: Initialize 𝑐𝑐𝑖𝑖, 𝑎𝑎𝑖𝑖, 𝐶𝐶𝑝𝑝𝑖𝑖, 𝐶𝐶𝑟𝑟𝑖𝑖 and Lagrange multipliers {𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁

and {𝜓𝜓𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁 ; set 𝑖𝑖𝑠𝑠𝑖𝑖 = 𝐶;

2: Initialize {𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁 and {𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁 ;
3: repeat
4:   for 𝑖𝑖 = 𝐶 to 𝑁𝑁 do
5:      (i) Update 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 according to (26);
6:      (ii) Update 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 according to (27);
8:      (iii) Update 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝜓𝜓𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖 according to (28);
9:    end for
10:  (iv) Set 𝑖𝑖𝑠𝑠𝑖𝑖 ← 𝑖𝑖𝑠𝑠𝑖𝑖 + 𝐶;
11: until Convergence or 𝑖𝑖𝑠𝑠𝑖𝑖 = 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚
12: return {𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁 and {𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁 .

5

players, that is ℋ𝑖𝑖(𝒰𝒰𝒰 𝒰𝒰𝑚𝑚𝑖𝑖𝑚𝑚) = ℋ𝑗𝑗(𝒰𝒰𝒰 𝒰𝒰𝑚𝑚𝑖𝑖𝑚𝑚), ∀𝑖𝑖, 𝑗𝑗.  
   

Theorem 6  A unique and fair Nash bargaining solution 𝐱𝐱∗ =
(𝐩𝐩∗𝒰 𝐫𝐫∗) that satisfies all the axioms in Definition 4 can be 
obtained by maximizing a product term as follows: 

𝒙𝒙∗ = argmax
𝑝𝑝𝑖𝑖∈𝑃𝑃𝑖𝑖𝒰𝑟𝑟𝑖𝑖∈𝑅𝑅𝑖𝑖

∏𝑁𝑁
𝑖𝑖𝑖𝑖 𝑈𝑈𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫) (18) 

Proof: The proof of the theorem 6 is omitted due to space 
limitations. A similarly detailed proof can be found in [18].

Our work aims to maximize utility functions while decreasing 
the number of losses beacons. Therefore, the corresponding 
cooperative Nash bargaining game-theoretic power and rate 
control problem for vehicle underlying the communication 
system can be formulated as:  

𝐏𝐏𝐏𝐏: max
𝑝𝑝𝑖𝑖∈𝑃𝑃𝑖𝑖𝒰𝑟𝑟𝑖𝑖∈𝑅𝑅𝑖𝑖

∏𝑁𝑁
𝑖𝑖𝑖𝑖 𝑈𝑈𝑗𝑗(𝐩𝐩𝒰 𝐫𝐫) (19) 

𝑠𝑠𝑠 𝑠𝑠𝑠 𝑠𝐶𝐶𝐶: 𝐶 𝐶 𝐶𝐶𝑖𝑖 𝐶 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

C2: 𝐶 𝐶 𝑟𝑟𝑖𝑖 𝐶 𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

where constraint 𝐶𝐶𝐶 limits the beaconing power of vehicle 𝑖𝑖 to 
be below 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  and 𝐶𝐶2 limits the beaconing rate of vehicle 𝑖𝑖 to 
be below 𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚.

Lemma 1  Define 𝑉𝑉𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫) 𝐩 𝑙𝑙𝑙𝑙(𝑈𝑈𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫)), 𝑖𝑖 ∈ 𝑖𝑖. These 
objective functions are concave and injective, which satisfy all 
the Nash axioms in Definition 4.  

Proof: The proof of theorem 5 shows that the Hessian matrix of 
the utility function 𝑈𝑈𝑖𝑖(p𝒰 r) is negatively define. Then, the 
utility function 𝑈𝑈𝑖𝑖(p𝒰 r) is strictly concave with regard to the 2-
tuple (𝐶𝐶𝑖𝑖𝒰 𝑟𝑟𝑖𝑖). Subsequently, 𝑉𝑉𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫) = 𝑙𝑙𝑙𝑙(𝑈𝑈𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫)) is also
concave in (𝐶𝐶𝑖𝑖𝒰 𝑟𝑟𝑖𝑖). Therefore, 𝑉𝑉𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫) defined above satisfies 
all the axioms required by Definition 4 and Theorem 6.  

According to Theorem 6 and Lemma 1, the unique Nash 
bargaining equilibrium with fairness can be found over the 
strategy space. Then, taking advantage of the increasing 
property of the logarithmic function, the optimization problem 
P1 can be rewritten as: 

𝐏𝐏𝐏𝐏: max
𝑝𝑝𝑖𝑖∈𝑃𝑃𝑖𝑖𝒰𝑟𝑟𝑖𝑖∈𝑅𝑅𝑖𝑖

∑𝑁𝑁
𝑖𝑖𝑖𝑖 𝑉𝑉𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫) = max

𝑝𝑝𝑖𝑖∈𝑃𝑃𝑖𝑖𝒰𝑟𝑟𝑖𝑖∈𝑅𝑅𝑖𝑖
∑𝑁𝑁
𝑖𝑖𝑖𝑖 𝑈𝑈𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫) (20) 

𝑠𝑠𝑠 𝑠𝑠𝑠 𝑠𝐶𝐶𝐶: 𝐶 𝐶 𝐶𝐶𝑖𝑖 𝐶 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

𝐶𝐶2: 𝐶 𝐶 𝑟𝑟𝑖𝑖 𝐶 𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

A. Solution of the Cooperative Gam 
Herein, we derive the unique equilibrium by solving the 
constrained optimization problem in (20) utilizing the method 
of Lagrange multipliers [20]. Introducing Lagrange multipliers 
{𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁  and {𝜓𝜓𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁  for the multiple constraints, the 
Lagrangian of problem (20) can equivalently be solved by 
maximizing the following expression:  
ℱ(𝐩𝐩𝒰 𝐫𝐫𝒰 {𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁 𝒰 {𝜓𝜓𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁 ) = ∑𝑁𝑁
𝑖𝑖𝑖𝑖 (𝑎𝑎𝑖𝑖log(𝑟𝑟𝑖𝑖 + 𝐶𝐶𝑖𝑖 + 𝐶) −

𝑐𝑐𝑖𝑖𝐶𝐶𝑖𝑖𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫) − (𝐶𝐶𝑠𝑠𝑖𝑖 + 𝐶𝐶𝑝𝑝𝑖𝑖𝐶𝐶𝑖𝑖 + 𝐶𝐶𝑟𝑟𝑖𝑖𝑟𝑟𝑖𝑖) − 𝜒𝜒𝑖𝑖𝐶𝐶𝑖𝑖 − 𝜓𝜓𝑖𝑖𝑟𝑟𝑖𝑖) (21) 

Based on the standard optimization methods and the Karush–
Kuhn–Tucker conditions, the beaconing power of vehicle 𝑖𝑖 can 
be obtained by taking the first derivative of (21) with respect to 
𝐶𝐶𝑖𝑖 , which is expressed as follows: 

∂ℱ
∂𝑝𝑝𝑖𝑖

= 𝑚𝑚𝑖𝑖
𝑖+𝑝𝑝𝑖𝑖+𝑟𝑟𝑖𝑖

− 𝑐𝑐𝑖𝑖𝐶𝐶𝐶𝐶𝑅𝑅(𝐩𝐩𝒰 𝐫𝐫) − 𝐶𝐶𝑝𝑝𝑖𝑖 − 𝜒𝜒𝑖𝑖 (22) 

Letting ∂ℱ∂𝑝𝑝𝑖𝑖
= 𝐶 we get,  

𝐶𝐶𝑖𝑖∗ =
𝑚𝑚𝑖𝑖

𝑐𝑐𝑖𝑖𝐶𝐶𝐶𝐶𝑅𝑅(𝐩𝐩𝒰𝐫𝐫)+𝐶𝐶𝑝𝑝𝑖𝑖+𝜒𝜒𝑖𝑖
∗ − 𝐶 − 𝑟𝑟𝑖𝑖∗ (23) 

Meanwhile, the beaconing rate of vehicle 𝑖𝑖 can be obtained by 
taking the first derivative of (21) with respect to 𝑟𝑟𝑖𝑖 as  

∂ℱ
∂𝑟𝑟𝑖𝑖

= 𝑚𝑚𝑖𝑖
𝑖+𝑝𝑝𝑖𝑖+𝑟𝑟𝑖𝑖

− 𝑐𝑐𝑖𝑖ℎ𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑟𝑟𝑖𝑖 − 𝜓𝜓𝑖𝑖 (24) 
Let (24) equals to zero, then we get  

𝑟𝑟𝑖𝑖∗ =
𝑚𝑚𝑖𝑖

𝑐𝑐𝑖𝑖ℎ𝑖𝑖𝑖𝑖+𝐶𝐶𝑟𝑟𝑖𝑖+𝜓𝜓𝑖𝑖
∗ − 𝐶 − 𝐶𝐶𝑖𝑖∗ (25) 

In this work, we employ the fixed-point technique to derive an 
iterative procedure that updates the beaconing rate and 
beaconing power control decisions, which can be given as:  

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+𝑖 = [ 𝑚𝑚𝑖𝑖
𝑐𝑐𝑖𝑖𝐶𝐶𝐶𝐶𝑅𝑅(𝐩𝐩𝒰𝐫𝐫)+𝐶𝐶𝑝𝑝𝑖𝑖+𝜒𝜒𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐶 − 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖]
0

𝑝𝑝𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚

 (26) 

𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+𝑖 = [ 𝑚𝑚𝑖𝑖
𝑐𝑐𝑖𝑖ℎ𝑖𝑖𝑖𝑖+𝐶𝐶𝑟𝑟𝑖𝑖+𝜓𝜓𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐶 − 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖]
0

𝑟𝑟𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚

 (27) 

B.  Update of the Lagrange Multipliers 
The Lagrange multipliers {𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁  and {𝜓𝜓𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁  need to be 
updated to guarantee the fast convergence property. Several 
practical approaches can be employed in the update of Lagrange 
multipliers. In this paper, the sub-gradient technique is utilized 
to update the multipliers, as formulated as follows: 

{𝜓𝜓𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖+𝑖 = [𝜓𝜓𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖 − 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+𝑖]
+

𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+𝑖 = [𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+𝑖]
+ (28) 

where (𝑥𝑥)+ = 𝑚𝑚𝑎𝑎𝑥𝑥(𝐶𝒰 𝑥𝑥), 𝛽𝛽 denotes the step size of iteration 
𝑖𝑖𝑠𝑠𝑖𝑖 (𝑖𝑖𝑠𝑠𝑖𝑖 ∈ {𝐶𝒰2𝒰 𝑠 𝑠 𝑠 𝒰 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚} and 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  denotes the maximum 
number of iterations.  

C. Iterative Nash Bargaining Algorithm 
In this section, a distributed algorithm is proposed as an 
implementation of our cooperative bargaining beaconing rate 
and beaconing power control solution. The proposed iterative 
Algorithm 3 will guarantee convergence by using the 
subgradient method.  

Algorithm 3 Cooperative Bargaining Algorithm
1: Initialize 𝑐𝑐𝑖𝑖, 𝑎𝑎𝑖𝑖, 𝐶𝐶𝑝𝑝𝑖𝑖, 𝐶𝐶𝑟𝑟𝑖𝑖 and Lagrange multipliers {𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁

and {𝜓𝜓𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁 ; set 𝑖𝑖𝑠𝑠𝑖𝑖 = 𝐶;

2: Initialize {𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁 and {𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁 ;
3: repeat
4:   for 𝑖𝑖 = 𝐶 to 𝑁𝑁 do
5:      (i) Update 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 according to (26);
6:      (ii) Update 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 according to (27);
8:      (iii) Update 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝜓𝜓𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖 according to (28);
9:    end for
10:  (iv) Set 𝑖𝑖𝑠𝑠𝑖𝑖 ← 𝑖𝑖𝑠𝑠𝑖𝑖 + 𝐶;
11: until Convergence or 𝑖𝑖𝑠𝑠𝑖𝑖 = 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚
12: return {𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁 and {𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁 .

5

players, that is ℋ𝑖𝑖(𝒰𝒰𝒰 𝒰𝒰𝑚𝑚𝑖𝑖𝑚𝑚) = ℋ𝑗𝑗(𝒰𝒰𝒰 𝒰𝒰𝑚𝑚𝑖𝑖𝑚𝑚), ∀𝑖𝑖, 𝑗𝑗.  
   

Theorem 6  A unique and fair Nash bargaining solution 𝐱𝐱∗ =
(𝐩𝐩∗𝒰 𝐫𝐫∗) that satisfies all the axioms in Definition 4 can be 
obtained by maximizing a product term as follows: 

𝒙𝒙∗ = argmax
𝑝𝑝𝑖𝑖∈𝑃𝑃𝑖𝑖𝒰𝑟𝑟𝑖𝑖∈𝑅𝑅𝑖𝑖

∏𝑁𝑁
𝑖𝑖𝑖𝑖 𝑈𝑈𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫) (18) 

Proof: The proof of the theorem 6 is omitted due to space 
limitations. A similarly detailed proof can be found in [18].

Our work aims to maximize utility functions while decreasing 
the number of losses beacons. Therefore, the corresponding 
cooperative Nash bargaining game-theoretic power and rate 
control problem for vehicle underlying the communication 
system can be formulated as:  

𝐏𝐏𝐏𝐏: max
𝑝𝑝𝑖𝑖∈𝑃𝑃𝑖𝑖𝒰𝑟𝑟𝑖𝑖∈𝑅𝑅𝑖𝑖

∏𝑁𝑁
𝑖𝑖𝑖𝑖 𝑈𝑈𝑗𝑗(𝐩𝐩𝒰 𝐫𝐫) (19) 

𝑠𝑠𝑠 𝑠𝑠𝑠 𝑠𝐶𝐶𝐶: 𝐶 𝐶 𝐶𝐶𝑖𝑖 𝐶 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

C2: 𝐶 𝐶 𝑟𝑟𝑖𝑖 𝐶 𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

where constraint 𝐶𝐶𝐶 limits the beaconing power of vehicle 𝑖𝑖 to 
be below 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  and 𝐶𝐶2 limits the beaconing rate of vehicle 𝑖𝑖 to 
be below 𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚.

Lemma 1  Define 𝑉𝑉𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫) 𝐩 𝑙𝑙𝑙𝑙(𝑈𝑈𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫)), 𝑖𝑖 ∈ 𝑖𝑖. These 
objective functions are concave and injective, which satisfy all 
the Nash axioms in Definition 4.  

Proof: The proof of theorem 5 shows that the Hessian matrix of 
the utility function 𝑈𝑈𝑖𝑖(p𝒰 r) is negatively define. Then, the 
utility function 𝑈𝑈𝑖𝑖(p𝒰 r) is strictly concave with regard to the 2-
tuple (𝐶𝐶𝑖𝑖𝒰 𝑟𝑟𝑖𝑖). Subsequently, 𝑉𝑉𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫) = 𝑙𝑙𝑙𝑙(𝑈𝑈𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫)) is also
concave in (𝐶𝐶𝑖𝑖𝒰 𝑟𝑟𝑖𝑖). Therefore, 𝑉𝑉𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫) defined above satisfies 
all the axioms required by Definition 4 and Theorem 6.  

According to Theorem 6 and Lemma 1, the unique Nash 
bargaining equilibrium with fairness can be found over the 
strategy space. Then, taking advantage of the increasing 
property of the logarithmic function, the optimization problem 
P1 can be rewritten as: 

𝐏𝐏𝐏𝐏: max
𝑝𝑝𝑖𝑖∈𝑃𝑃𝑖𝑖𝒰𝑟𝑟𝑖𝑖∈𝑅𝑅𝑖𝑖

∑𝑁𝑁
𝑖𝑖𝑖𝑖 𝑉𝑉𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫) = max

𝑝𝑝𝑖𝑖∈𝑃𝑃𝑖𝑖𝒰𝑟𝑟𝑖𝑖∈𝑅𝑅𝑖𝑖
∑𝑁𝑁
𝑖𝑖𝑖𝑖 𝑈𝑈𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫) (20) 

𝑠𝑠𝑠 𝑠𝑠𝑠 𝑠𝐶𝐶𝐶: 𝐶 𝐶 𝐶𝐶𝑖𝑖 𝐶 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

𝐶𝐶2: 𝐶 𝐶 𝑟𝑟𝑖𝑖 𝐶 𝑟𝑟𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚

A. Solution of the Cooperative Gam 
Herein, we derive the unique equilibrium by solving the 
constrained optimization problem in (20) utilizing the method 
of Lagrange multipliers [20]. Introducing Lagrange multipliers 
{𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁  and {𝜓𝜓𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁  for the multiple constraints, the 
Lagrangian of problem (20) can equivalently be solved by 
maximizing the following expression:  
ℱ(𝐩𝐩𝒰 𝐫𝐫𝒰 {𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁 𝒰 {𝜓𝜓𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁 ) = ∑𝑁𝑁
𝑖𝑖𝑖𝑖 (𝑎𝑎𝑖𝑖log(𝑟𝑟𝑖𝑖 + 𝐶𝐶𝑖𝑖 + 𝐶) −

𝑐𝑐𝑖𝑖𝐶𝐶𝑖𝑖𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖(𝐩𝐩𝒰 𝐫𝐫) − (𝐶𝐶𝑠𝑠𝑖𝑖 + 𝐶𝐶𝑝𝑝𝑖𝑖𝐶𝐶𝑖𝑖 + 𝐶𝐶𝑟𝑟𝑖𝑖𝑟𝑟𝑖𝑖) − 𝜒𝜒𝑖𝑖𝐶𝐶𝑖𝑖 − 𝜓𝜓𝑖𝑖𝑟𝑟𝑖𝑖) (21) 

Based on the standard optimization methods and the Karush–
Kuhn–Tucker conditions, the beaconing power of vehicle 𝑖𝑖 can 
be obtained by taking the first derivative of (21) with respect to 
𝐶𝐶𝑖𝑖 , which is expressed as follows: 

∂ℱ
∂𝑝𝑝𝑖𝑖

= 𝑚𝑚𝑖𝑖
𝑖+𝑝𝑝𝑖𝑖+𝑟𝑟𝑖𝑖

− 𝑐𝑐𝑖𝑖𝐶𝐶𝐶𝐶𝑅𝑅(𝐩𝐩𝒰 𝐫𝐫) − 𝐶𝐶𝑝𝑝𝑖𝑖 − 𝜒𝜒𝑖𝑖 (22) 

Letting ∂ℱ∂𝑝𝑝𝑖𝑖
= 𝐶 we get,  

𝐶𝐶𝑖𝑖∗ =
𝑚𝑚𝑖𝑖

𝑐𝑐𝑖𝑖𝐶𝐶𝐶𝐶𝑅𝑅(𝐩𝐩𝒰𝐫𝐫)+𝐶𝐶𝑝𝑝𝑖𝑖+𝜒𝜒𝑖𝑖
∗ − 𝐶 − 𝑟𝑟𝑖𝑖∗ (23) 

Meanwhile, the beaconing rate of vehicle 𝑖𝑖 can be obtained by 
taking the first derivative of (21) with respect to 𝑟𝑟𝑖𝑖 as  

∂ℱ
∂𝑟𝑟𝑖𝑖

= 𝑚𝑚𝑖𝑖
𝑖+𝑝𝑝𝑖𝑖+𝑟𝑟𝑖𝑖

− 𝑐𝑐𝑖𝑖ℎ𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑟𝑟𝑖𝑖 − 𝜓𝜓𝑖𝑖 (24) 
Let (24) equals to zero, then we get  

𝑟𝑟𝑖𝑖∗ =
𝑚𝑚𝑖𝑖

𝑐𝑐𝑖𝑖ℎ𝑖𝑖𝑖𝑖+𝐶𝐶𝑟𝑟𝑖𝑖+𝜓𝜓𝑖𝑖
∗ − 𝐶 − 𝐶𝐶𝑖𝑖∗ (25) 

In this work, we employ the fixed-point technique to derive an 
iterative procedure that updates the beaconing rate and 
beaconing power control decisions, which can be given as:  

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+𝑖 = [ 𝑚𝑚𝑖𝑖
𝑐𝑐𝑖𝑖𝐶𝐶𝐶𝐶𝑅𝑅(𝐩𝐩𝒰𝐫𝐫)+𝐶𝐶𝑝𝑝𝑖𝑖+𝜒𝜒𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐶 − 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖]
0

𝑝𝑝𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚

 (26) 

𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+𝑖 = [ 𝑚𝑚𝑖𝑖
𝑐𝑐𝑖𝑖ℎ𝑖𝑖𝑖𝑖+𝐶𝐶𝑟𝑟𝑖𝑖+𝜓𝜓𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖 − 𝐶 − 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖]
0

𝑟𝑟𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚

 (27) 

B.  Update of the Lagrange Multipliers 
The Lagrange multipliers {𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁  and {𝜓𝜓𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁  need to be 
updated to guarantee the fast convergence property. Several 
practical approaches can be employed in the update of Lagrange 
multipliers. In this paper, the sub-gradient technique is utilized 
to update the multipliers, as formulated as follows: 

{𝜓𝜓𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖+𝑖 = [𝜓𝜓𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖 − 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+𝑖]
+

𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+𝑖 = [𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖+𝑖]
+ (28) 

where (𝑥𝑥)+ = 𝑚𝑚𝑎𝑎𝑥𝑥(𝐶𝒰 𝑥𝑥), 𝛽𝛽 denotes the step size of iteration 
𝑖𝑖𝑠𝑠𝑖𝑖 (𝑖𝑖𝑠𝑠𝑖𝑖 ∈ {𝐶𝒰2𝒰 𝑠 𝑠 𝑠 𝒰 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚} and 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  denotes the maximum 
number of iterations.  

C. Iterative Nash Bargaining Algorithm 
In this section, a distributed algorithm is proposed as an 
implementation of our cooperative bargaining beaconing rate 
and beaconing power control solution. The proposed iterative 
Algorithm 3 will guarantee convergence by using the 
subgradient method.  

Algorithm 3 Cooperative Bargaining Algorithm
1: Initialize 𝑐𝑐𝑖𝑖, 𝑎𝑎𝑖𝑖, 𝐶𝐶𝑝𝑝𝑖𝑖, 𝐶𝐶𝑟𝑟𝑖𝑖 and Lagrange multipliers {𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁

and {𝜓𝜓𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁 ; set 𝑖𝑖𝑠𝑠𝑖𝑖 = 𝐶;

2: Initialize {𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁 and {𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁 ;
3: repeat
4:   for 𝑖𝑖 = 𝐶 to 𝑁𝑁 do
5:      (i) Update 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 according to (26);
6:      (ii) Update 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 according to (27);
8:      (iii) Update 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝜓𝜓𝑖𝑖

𝑖𝑖𝑖𝑖𝑖𝑖 according to (28);
9:    end for
10:  (iv) Set 𝑖𝑖𝑠𝑠𝑖𝑖 ← 𝑖𝑖𝑠𝑠𝑖𝑖 + 𝐶;
11: until Convergence or 𝑖𝑖𝑠𝑠𝑖𝑖 = 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚
12: return {𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁 and {𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}𝑖𝑖𝑖𝑖𝑁𝑁 .
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V. PERFORMANCE EVALUATION 
Extensive experiments have been conducted toward 
investigating the following issues: (1) what is the number of 
iterations required by the proposed algorithm to converge 
toward the equilibrium beaconing rate and equilibrium 
beaconing power; (2) what is the fast algorithm that converges 
toward the equilibrium strategies; (3) In what way could system 
parameters affect the beaconing equilibrium rate and the 
equilibrium beaconing power? In this section, we demonstrate 
these experimental results by considering the previous 
expressions of the utility function. As an illustration, we 
consider a scenario with two vehicles. 

Fig. 1.  Seeking the equilibrium beaconing power using the best response 
algorithm. 

Fig. 2.  Seeking the beaconing equilibrium rate using the best response 
algorithm. 

Fig. 3. Seeking the equilibrium beaconing power using the Nash seeking 
algorithm. 

Fig. 4.  Seeking the beaconing equilibrium rate using the Nash seeking 
algorithm. 

Fig. 5.  Seeking the equilibrium beaconing power using a cooperative 
bargaining algorithm. 

6

V. PERFORMANCE EVALUATION 
Extensive experiments have been conducted toward 
investigating the following issues: (1) what is the number of 
iterations required by the proposed algorithm to converge 
toward the equilibrium beaconing rate and equilibrium 
beaconing power; (2) what is the fast algorithm that converges 
toward the equilibrium strategies; (3) In what way could system 
parameters affect the beaconing equilibrium rate and the 
equilibrium beaconing power? In this section, we demonstrate 
these experimental results by considering the previous 
expressions of the utility function. As an illustration, we 
consider a scenario with two vehicles. 

Fig. 1.  Seeking the equilibrium beaconing power using the best response 
algorithm. 

Fig. 2.  Seeking the beaconing equilibrium rate using the best response 
algorithm. 

Fig. 3. Seeking the equilibrium beaconing power using the Nash seeking 
algorithm. 

Fig. 4.  Seeking the beaconing equilibrium rate using the Nash seeking 
algorithm. 

Fig. 5.  Seeking the equilibrium beaconing power using a cooperative 
bargaining algorithm. 

6

V. PERFORMANCE EVALUATION 
Extensive experiments have been conducted toward 
investigating the following issues: (1) what is the number of 
iterations required by the proposed algorithm to converge 
toward the equilibrium beaconing rate and equilibrium 
beaconing power; (2) what is the fast algorithm that converges 
toward the equilibrium strategies; (3) In what way could system 
parameters affect the beaconing equilibrium rate and the 
equilibrium beaconing power? In this section, we demonstrate 
these experimental results by considering the previous 
expressions of the utility function. As an illustration, we 
consider a scenario with two vehicles. 

Fig. 1.  Seeking the equilibrium beaconing power using the best response 
algorithm. 

Fig. 2.  Seeking the beaconing equilibrium rate using the best response 
algorithm. 

Fig. 3. Seeking the equilibrium beaconing power using the Nash seeking 
algorithm. 

Fig. 4.  Seeking the beaconing equilibrium rate using the Nash seeking 
algorithm. 

Fig. 5.  Seeking the equilibrium beaconing power using a cooperative 
bargaining algorithm. 

6

V. PERFORMANCE EVALUATION 
Extensive experiments have been conducted toward 
investigating the following issues: (1) what is the number of 
iterations required by the proposed algorithm to converge 
toward the equilibrium beaconing rate and equilibrium 
beaconing power; (2) what is the fast algorithm that converges 
toward the equilibrium strategies; (3) In what way could system 
parameters affect the beaconing equilibrium rate and the 
equilibrium beaconing power? In this section, we demonstrate 
these experimental results by considering the previous 
expressions of the utility function. As an illustration, we 
consider a scenario with two vehicles. 

Fig. 1.  Seeking the equilibrium beaconing power using the best response 
algorithm. 

Fig. 2.  Seeking the beaconing equilibrium rate using the best response 
algorithm. 

Fig. 3. Seeking the equilibrium beaconing power using the Nash seeking 
algorithm. 

Fig. 4.  Seeking the beaconing equilibrium rate using the Nash seeking 
algorithm. 

Fig. 5.  Seeking the equilibrium beaconing power using a cooperative 
bargaining algorithm. 

6

V. PERFORMANCE EVALUATION 
Extensive experiments have been conducted toward 
investigating the following issues: (1) what is the number of 
iterations required by the proposed algorithm to converge 
toward the equilibrium beaconing rate and equilibrium 
beaconing power; (2) what is the fast algorithm that converges 
toward the equilibrium strategies; (3) In what way could system 
parameters affect the beaconing equilibrium rate and the 
equilibrium beaconing power? In this section, we demonstrate 
these experimental results by considering the previous 
expressions of the utility function. As an illustration, we 
consider a scenario with two vehicles. 

Fig. 1.  Seeking the equilibrium beaconing power using the best response 
algorithm. 

Fig. 2.  Seeking the beaconing equilibrium rate using the best response 
algorithm. 

Fig. 3. Seeking the equilibrium beaconing power using the Nash seeking 
algorithm. 

Fig. 4.  Seeking the beaconing equilibrium rate using the Nash seeking 
algorithm. 

Fig. 5.  Seeking the equilibrium beaconing power using a cooperative 
bargaining algorithm. 

6

V. PERFORMANCE EVALUATION 
Extensive experiments have been conducted toward 
investigating the following issues: (1) what is the number of 
iterations required by the proposed algorithm to converge 
toward the equilibrium beaconing rate and equilibrium 
beaconing power; (2) what is the fast algorithm that converges 
toward the equilibrium strategies; (3) In what way could system 
parameters affect the beaconing equilibrium rate and the 
equilibrium beaconing power? In this section, we demonstrate 
these experimental results by considering the previous 
expressions of the utility function. As an illustration, we 
consider a scenario with two vehicles. 

Fig. 1.  Seeking the equilibrium beaconing power using the best response 
algorithm. 

Fig. 2.  Seeking the beaconing equilibrium rate using the best response 
algorithm. 

Fig. 3. Seeking the equilibrium beaconing power using the Nash seeking 
algorithm. 

Fig. 4.  Seeking the beaconing equilibrium rate using the Nash seeking 
algorithm. 

Fig. 5.  Seeking the equilibrium beaconing power using a cooperative 
bargaining algorithm. 
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Fig. 6.  Seeking the beaconing equilibrium rate using a cooperative 
bargaining algorithm. 

The uniqueness of the joint beaconing rate and beaconing 
power at Nash equilibrium is demonstrated in Figures 1, 2, 3, 
and 4. The best response algorithm and Nash seeking algorithm 
converges to the values of the beaconing rate and beaconing 
power at Nash equilibrium. Furthermore, based on the results 
presented in figure 1, 2, 3, 4, 5, and 6 we observe that the 
convergence of the proposed algorithms is very fast, Nash 
seeking algorithm converges within approximately 43
iterations, the best response algorithm needs five to 35
iterations to converge, while the cooperative bargaining 
algorithm converges after 10 iterations to the Pareto-optimal 
equilibrium. Then, the cooperative bargaining algorithm is the 
algorithm that converges very fast to the equilibrium; thus, it 
can be easily adopted in a realistic scenario. 

Note that for any vehicle 𝑖𝑖, it's Nash equilibrium beaconing rate 
𝑟𝑟𝑖𝑖 and beaconing power 𝑝𝑝𝑖𝑖  primarily depends on the parameter 
𝑎𝑎𝑖𝑖, 𝑐𝑐𝑖𝑖, 𝐶𝐶𝑝𝑝𝑖𝑖 and 𝐶𝐶𝑟𝑟𝑖𝑖. As such, we investigate how the Nash 
equilibrium points can be affected by these parameters. 

Figures 7 and 8 show the beaconing rate and beaconing power 
of the vehicle when the parameter 𝑎𝑎 increases from 1 to 20. The 
beaconing rate and beaconing power of the vehicle increase 
with the increase of the parameter 𝑎𝑎. The reason is that as the 
parameter 𝑎𝑎 increases, the utility increase. Therefore, the 
vehicles are more incentive to increase their beaconing rate and 
beaconing power. Greater parameter 𝑎𝑎 leads to the use of higher 
beaconing rate and beaconing power by vehicles because of the 
utility function increases. 

Fig. 7.  Beaconing power with respect to 𝑎𝑎. 

Fig. 8.  Beaconing rate with respect to 𝑎𝑎. 

Fig. 9. Beaconing power with respect to 𝑐𝑐.
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Fig. 14.  Price of Anarchy as a function of parameter 𝑎𝑎. 

Figure 13 shows the 𝑃𝑃𝑃𝑃𝑃𝑃 variation curve as a function of the 
parameter 𝑐𝑐. 𝑃𝑃𝑃𝑃𝑃𝑃 decreases with respect to 𝑐𝑐. When 𝑐𝑐 is lower, 
the price of anarchy is socially efficient; moreover, when 𝑐𝑐 is 
lower, the vehicles cooperate for optimizing the Nash 
equilibrium. On the other hand, when 𝑐𝑐 increase the 𝑃𝑃𝑃𝑃𝑃𝑃 is 
lower, then the Nash equilibrium is not socially efficient, 
vehicles are selfish, and each one seeks to maximize its profit 
individually. 
Figure 14 shows 𝑃𝑃𝑃𝑃𝑃𝑃 variation curve as a function of parameter 
𝑎𝑎. In that figure, 𝑃𝑃𝑃𝑃𝑃𝑃 increases with respect to the parameter 𝑎𝑎.
When the parameter 𝑎𝑎 is lower, the price of anarchy is lower. 
Then, the Nash equilibrium is not socially efficient, the vehicles 
are selfish, and each one seeks to maximize its profit 
individually. However, when the parameter 𝑎𝑎 increases, the 
equilibrium becomes more and more socially efficient, this 
increase finds the simple intuition that when parameter 𝑎𝑎
increase vehicles cooperate with each other for optimizing Nash 
equilibrium. 

VI. CONCLUSION 
In this paper, the problem of joint beaconing rate and beaconing 
power control in VANETs is addressed via S-modular theory. 
The competition between the vehicle in VNETs is formulated 
as a non-cooperative game and a cooperative game, where each 
vehicle chooses the joint beaconing rate and beaconing power. 
We have performed the equilibrium analysis and proposed a 
three distributed algorithm for computing the equilibrium point. 
Simulation results illustrate the impacts of the system 
parameters on the joint beaconing rate and beacon power and 
show the number of iteration required by each algorithm for the 
convergence to the equilibrium. The analysis and simulation 
results provide a better understanding of the complex 
interactions among vehicles under a competitive and 
cooperative condition, which is a benefit for the optimization of 
vehicle strategies. 
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Fig. 10.   Beaconing rate with respect to 𝑐𝑐. 

We plot in Figures 9 and 10, respectively, the interplay of cost 
𝑐𝑐 the beaconing rate and beaconing power, for both vehicles 
that we consider in this example. On the one hand, we note that 
the beaconing equilibrium rate and beaconing power for both 
vehicles is decreasing with respect to the cost 𝑐𝑐. When the cost 
𝑐𝑐 increases, the vehicles pay more price at higher congestions, 
yielding a lower payoff. Therefore, the vehicles need to 
decrease their beaconing rate and beaconing power to decrease 
the congestion cost. In addition, the Nash bargaining solution 
beaconing strategy are lower than the non-cooperative 
beaconing strategy, which indicates that the Nash bargaining 
solution is more efficient in terms of congestion cost. Therefore, 
cooperation is the best choice for the vehicle. 

Fig. 11.  Beaconing power with respect to 𝐶𝐶𝑝𝑝. 

Fig. 12.  Beaconing rate with respect to 𝐶𝐶𝑟𝑟. 

Figures 11 and 12 show both the beaconing power and the 
beaconing for the non-cooperative games and the cooperative 
strategic beaconing obtained using the Nash bargaining 
solution. When energy cost (𝐶𝐶𝑟𝑟 and 𝐶𝐶𝑝𝑝) increases, the 
beaconing power, and beaconing rate decreases, it can be seen 
that the Nash bargaining solution beaconing strategy exhibits 
low as the energy cost level increases compared to the non-
cooperative beaconing strategy. A unique feature is that the 
strategic beaconing scheme based on the Nash bargaining 
solution performs better in terms of energy compared to the 
non-cooperative strategy for all the values of energy cost. 
Therefore, the Nash bargaining solution scheme guarantees a 
higher network lifetime compared to a non-cooperative policy. 

Fig. 13.  Price of Anarchy as a function of parameter 𝑐𝑐. 
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Fig. 14.  Price of Anarchy as a function of parameter 𝑎𝑎. 
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